

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Why Automatic Differentiation Won’t Cure Your
Calculus Blues
Richard Harris sees if he can crack the problem of
differentiation.

12 Back to School
Andy Thomas reminisces about his introduction to
computing.

14 Valgrind Part 1 – Introduction
Paul Floyd explores a suite of dynamic analysis tools.

16 Mutation Testing
Filip van Laenen investigates a way of testing our
tests.

23 Unit Testing Compilation Failure
Pete Barber makes sure that his code won’t compile.

28 Refactoring Towards Seams in C++
Michael Rüegg offers help to improve your legacy code
design.

32 Compiling a Static Web Site Using
the C Preprocessor
Sergey Ignatchenko relates a surprisingly low-tech
approach to web site creation.

36 A Position on Running Interference in
Languages
Teedy Deigh takes a timely look at type systems.

OVERLOAD 108

April 2012

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 109 should be submitted
by 1st May 2012 and for Overload
110 by 1st July 2012.

EDITORIALRIC PARKIN
Perhaps I should have just asked to sign up for the exam without the
lessons.
But this reminds me to a very recent debate. What should you teach about
IT in schools? There still exist exams in computer science [O Level], but
they tend to be for overseas students, and in the UK at GCSE level there’s
only ICT [GCSE]. Unfortunately these are widely disliked and thought to
be dull, off-putting, and not even very good at preparing people to use
computers at work – things change so quickly that almost by definition the
course is going to be badly out of date, and students who have grown up
in the era of widely available computers and smartphones are already going
to know an awful lot already.
Thankfully there’s an effort to revamp the curriculum and re-introduce
proper computing courses [CodeInClass], but we have to accept that it’s
not going to be interesting to everyone. Let’s face it, programming is
always going to be fairly niche activity. But what inspired me all those
years ago was having this machine that I could command to do stuff
quickly and easily, and it would be great to expose people to that to see
who’s interested in doing the more advanced courses. Thinking back there
were languages designed to get quick fun results [Logo], so reintroducing
them or more modern languages with a quick off-the-shelf environment
to get quick and easy feedback would be a great start. For example, the
OU has based its new introductory language, SENSE, on MIT’s Scratch
[MIT], and the students get a little board to play with too. This is only for
an introductory course, but quickly covers all the basics to allow people
to go on to further study. For a quick taste of how the language and
environment works, there are useful videos demonstrating it in action
[TU100].
One of things I love about programming is that it is in fact very creative –
you’re designing and building something – and if you can get students to
experience that buzz then you’ll get more and better people going into what
is a very important industry.
And it’s not just the languages. There’s been some excitement around a
project to develop extremely low cost computing again – the Raspberry Pi
[Pi]. This project was set up by a bunch of the people who’d experienced
the original home computer boom (in fact one of the authors of Elite is
involved) and wanted to bring some of that excitement and immediacy
back. In the age of expensive and over complex PCs, laptops, smartphones
and Games Consoles, they’d found that a lot of people were scared to fiddle
with them in case they ‘broke’ them (and get told off), and the development
suites were expensive and hugely complex. So their idea was to produce
a really cheap simple computer (£25, which means pretty much anyone can
afford to just get one on a whim) running open source software, and get
the wider community to do something with them. In many ways it’s even
simpler than the old home computers: while the processor and memory is
much better, it’s been designed to be a flexible core of a system, so you
need to add a keyboard and (once again) plug it into a TV. At least this
time around many people will have compatible monitors so you don’t have
to monopolise the only TV in the house.

And there’s already many ideas [Forum], from using python to make
enjoyable programming education packages, to running in-car
entertainment systems, emulators, and the core of many homebrew
hardware controllers. Given the rollout of IPv6, we are getting close to the
long predicted Internet Of Things, where masses of small cheap devices
connect and collaborate, and tiny boards such as the Pi could be a first taste
of this. Ultimately these will need to become entire systems on a chip,
including CPU, memory and Wifi connection, and perhaps even generate
their own power from ambient energy [EnergyHarvesting]. Then things
will get interesting.
But the most fun thing I’ve seen so far is someone has got a ZX Spectrum
emulator running on the Raspberry Pi [Emulator].
Nostalgia has never been more cutting edge.

References
[Acornsoft] http://www.bbcmicrogames.com/acornsoft.html
[April23] http://en.wikipedia.org/wiki/April_23
[Beeb] http://bbc.nvg.org/
[C64] A new one! http://www.commodoreusa.net/CUSA_C64.aspx
[CodeInClass] http://www.bbc.co.uk/news/technology-17373972
[Emulator] http://www.retrocomputers.eu/2012/03/23/raspberry-pi-

running-the-fuse-zx-spectrum-emulator/
[EnergyHarvesting] http://en.wikipedia.org/wiki/Energy_harvesting
[Forum] http://www.raspberrypi.org/forum/projects-and-collaboration-

general/the-projects-list-look-here-for-some-ideas
[GCSE] http://www.cie.org.uk/qualifications/academic/middlesec/igcse/

subject?assdef_id=969
[Logo] http://mckoss.com/logo/
[MIT] http://scratch.mit.edu/
[O Level] O Level computing: http://www.cie.org.uk/qualifications/

academic/middlesec/olevel/subject?assdef_id=904 and
http://www.edexcel.com/quals/olevel/7105/Pages/default.aspx

[Pi] http://www.raspberrypi.org/
[TU100] http://www.youtube.com/watch?v=-gcG5UuYZZk
[ZXSpectrum] http://en.wikipedia.org/wiki/ZX_Spectrum

Image
The image is of a Sinclair 48K ZX Spectrum, and was taken by Bill
Bertram: http://commons.wikimedia.org/wiki/User:Pixel8
April 2012 | Overload | 3

http://www.bbcmicrogames.com/acornsoft.html
http://en.wikipedia.org/wiki/April_23
http://bbc.nvg.org/
A new one! http://www.commodoreusa.net/CUSA_C64.aspx
http://www.bbc.co.uk/news/technology-17373972
http://www.retrocomputers.eu/2012/03/23/raspberry-pi-running-the-fuse-zx-spectrum-emulator/
http://www.retrocomputers.eu/2012/03/23/raspberry-pi-running-the-fuse-zx-spectrum-emulator/
http://en.wikipedia.org/wiki/Energy_harvesting
http://www.raspberrypi.org/forum/projects-and-collaboration-general/the-projects-list-look-here-for-some-ideas
http://www.raspberrypi.org/forum/projects-and-collaboration-general/the-projects-list-look-here-for-some-ideas
http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=969
http://www.cie.org.uk/qualifications/academic/middlesec/igcse/subject?assdef_id=969
http://mckoss.com/logo/
http://scratch.mit.edu/
http://www.cie.org.uk/qualifications/academic/middlesec/olevel/subject?assdef_id=904
http://www.cie.org.uk/qualifications/academic/middlesec/olevel/subject?assdef_id=904
http://www.edexcel.com/quals/olevel/7105/Pages/default.aspx
http://www.raspberrypi.org/
http://www.youtube.com/watch?v=-gcG5UuYZZk
http://en.wikipedia.org/wiki/ZX_Spectrum
http://commons.wikimedia.org/wiki/User:Pixel8

FEATURE RICHARD HARRIS
Why Automatic Differentiation
Won’t Cure Your Calculus Blues
We’ve tried and rejected many numerical approaches to
differentiation. Richard Harris has one final attempt.
t the beginning of the second half of this series we briefly covered
the history of the differential calculus and described the incredibly
useful Taylor’s theorem, which states that for a function f

where f'(x) denotes the first derivative of f at x, f"(x) denotes the second
and f(n)(x) the nth and where, by convention, the 0th derivative is the
function itself.
We have so far used it to perform a full error analysis of finite difference
algorithms and to automate the calculation of their terms with polynomial
curve fitting.
We went on to describe the far more accurate polynomial approximation
of Ridders’ algorithm [Ridders82] which treated the symmetric finite
difference as a function of the difference δ.
In the previous article we used expression objects to represent functions
as expression trees, from which it was possible to compute expression
representing their derivative by applying the relatively simple algebraic
rules of differentiation.
Noting that there was little we could do to control cancellation error in the
unknown expression for the derivative, assuming we hadn’t the appetite
to implement a full blown computer algebra system that is, we concluded
by combining this with interval arithmetic to automatically keep track of
such numerical errors.
Having claimed that short of just such a system our algorithm was as
accurate as it was possible to get, you may be a little surprised that there
is anything left to discuss.
However, as I also noted, expression objects are fairly memory intensive
due to the need to maintain the expression tree. Furthermore, a naïve
implementation such as ours is computationally expensive since it puts
cheap built in arithmetic operations behind relatively expensive virtual
function calls. The latter point isn’t particularly compelling since we can
in many cases remove the virtual functions by instead using templates.
Finally, we must take care when using expression objects in conjunction
with numerical approximations. As was demonstrated, it is quite possible
to accurately approximate one function with another whose derivative is
significantly different.
Whilst expression objects provide a powerful method for the calculation
of derivatives, we should ideally seek an equally accurate algorithm that

doesn’t require as much memory and uses no virtual functions or heavily
nested template types.
The question stands as to whether such an algorithm exists.
Given that I’m still writing, it should be more or less self-evident that it
does.
And, in another testament to its tremendous power, it’s based entirely upon
Taylor’s theorem.

Surreal numbers
Like Robinson’s non-standard numbers [Robinson74], Conway’s surreal
numbers [Knuth74] extend the reals in a way that admits a rigorous
definition of infinitesimals.
So what’s to stop us from actually using infinitesimals in our calculations?
Nothing. That’s what!
Much as we extend the reals to the complex numbers by representing
numbers with both a real and an imaginary part, we can extend the reals
to the surreals by representing numbers with both a real and an
infinitesimal part.

Note that we don’t actually need to define δ so long as it stands for the
same infinitesimal throughout our calculations.
Listing 1 gives a C++ definition of just such a numeric type.
Listing 2 provides the constructors and property accessors of the surreal
class.

A
f x f x f x f x

f x Rn
n n

n

n

+() = () + × ′() + × ′′() +
+ × () +

+

δ δ δ

δ

1
2

2

1

1

...

min

!
()

11
1 1

1
1

1 1

()
+ +()

+()
+ +()

× +()() ≤
≤ × +()()

!

!max

δ θδ

δ θδ

n n
n

n
n n

f x R

f x for 0 1≤ ≤θ

w a b= + δ

Listing 1

class surreal
{
public:
 surreal();
 surreal(double a);
 surreal(double a, double b);

 double real() const;
 double inf() const;

 int compare(const surreal &w) const;
 surreal & negate();

 surreal & operator+=(const surreal &w);
 surreal & operator-=(const surreal &w);
 surreal & operator*=(const surreal &w);
 surreal & operator/=(const surreal &w);

private:
 double a_;
 double b_;
};

Richard Harris has been a professional programmer since 1996. He
has a background in Artificial Intelligence and numerical computing
and is currently employed writing software for financial regulation.
4 | Overload | April 2012

FEATURERICHARD HARRIS

a naïve implementation such as ours is
computationally expensive since it puts

cheap built in arithmetic operations behind
relatively expensive virtual function calls
The compare member function first compares the real part of the number
and, if they are equal, then compares the infinitesimal part, as shown in
listing 3.
Negation, addition and subtraction are trivial operations in which we
perform the same action on both parts of the number

The implementation of these operations is given in listing 4.

Multiplication proceeds much as it does for complex numbers, although
we shall discard the term involving the square of δ.

Listing 5 provides the implementation of the multiplication operator.
Division would seem to be a slightly trickier proposition; we’re ignoring
second and higher order powers of δ. If the product of two of our surreal
number has a second order term, surely we’ll need it when dividing the
product by one of the arguments if we are to have any chance of recovering
the other. Or of recovering the correct result when dividing it by any other
surreal number, for that matter.
Well, appearances can be deceptive.

Listing 2

surreal::surreal() : a_(0.0), b_(0.0)
{
}

surreal::surreal(double a) : a_(a), b_(0.0)
{
}

surreal::surreal(double a, double b) : a_(a),
 b_(b)
{
}

double
surreal::real() const
{
 return a_;
}

double
surreal::inf() const
{
 return b_;
}

Listing 3

int surreal::compare(const surreal &w) const
{
 if(a_<w.a_) return -1;
 if(a_>w.a_) return 1;
 if(b_<w.b_) return -1;
 if(b_>w.b_) return 1;
 return 0;
}

w a b
w a b

w a b
w w a a b b

w w a a

1 1 1

2 2 2

1 2 1 2 1 2

1 2 1

= +
= +

− = − −

+ = +() + +()
− = −

δ
δ

δ

δ

22 1 2() + −()b b δ

Listing 4

surreal &
surreal::negate()
{
 a_ = -a_;
 b_ = -b_;
 return *this;
}

surreal &
surreal::operator+=(const surreal &w)
{
 a_ += w.a_;
 b_ += w.b_;
 return *this;
}

surreal &
surreal::operator-=(const surreal &w)
{
 a_ -= w.a_;
 b_ -= w.b_;
 return *this;
}

w w a b a b
a a a b a b
a a a b

1 2 1 1 2 2

1 2 1 2 2 1

1 2 1 2

× = +()× +()
= × + × + ×

= ×() + × +

δ δ

δ δ

aa b2 1×()δ

Listing 5

surreal &
surreal::operator*=(const surreal &w)
{
 b_ = a_*w.b_ + w.a_*b_;
 a_ *= w.a_;
 return *this;
}

April 2012 | Overload | 5

FEATURE RICHARD HARRIS

something about this sidestepping of the
need to retain higher order infinitesimals
seems a little bit fishy
Surreal number division
The trick is one we’re going to exploit time and again when implementing
arithmetic operations for this type; no matter what real number we multiply
δ by, it’s still infinitesimal, which means that we can still use Taylor’s
theorem!
What we shall therefore do is work out the Taylor series expansion of
reciprocation to first order. We can then multiply the numerator by the
reciprocal of the denominator. The required series for the reciprocal is
given by

where the vertical bar means ‘evaluated at the subscript’.
Hence our rule for reciprocation is

Note that this trick is effectively the chain rule for our surreal type in
that it allows us to calculate the derivative of an expression in which one
function is applied to the result of another.
The rule for division is therefore given by

Now something about this sidestepping of the need to retain higher order
infinitesimals seems a little bit fishy. To be truly comfortable that I haven’t
done something silly we should probably check that multiplying the ratio
of w1 and w2 by w2 yields w1 as expected.

Well, it’s clear that my reservations were undeserved; I really should have
had more faith in Taylor’s remarkable result. We can clearly use this
formula with confidence and the implementation in listing 6 does just that.

Whither algorithm?
Now this consistent extension of real arithmetic is all well and good, but
how does it help us to develop a machine precision accurate algorithm for
computing derivatives?
Well, the answer, perhaps a little unsurprisingly, lies in Taylor’s theorem.
The surreal result of a function is a first order Taylor series expansion
about an infinitesimal deviation from the value of that function. By
Taylor’s theorem, the coefficient by which δ is multiplied in the result of
a function is therefore equal to its first derivative.
We can therefore trivially recover the derivative of a calculation by calling
the inf member function on its result.
For example consider

Using our surreal type we can simply divide 1 by the square of an
infinitesimal deviation from 2

Clearly the coefficient of the infinitesimal part is equal to the required
derivative.
This use of the Taylor series to compute derivatives is known as automatic
differentiation, as the title of this article might have hinted at.

Further arithmetic operations
Before we can use our surreal type to compute the derivatives of
functions in general, we shall need to implement the full suite of C++
arithmetic operations.

1 1 1
a b a

b d
dx x a+

= + ×
δ

δ

1 1
2a b a

b
a+

= −
δ

δ

w
w

w
w

a b
a

b
a

a
a

b
a

a b
a

1

2
1

2

1 1
2

2

2
2

1

2

1

2

1 2

2
2

1

1

= ×

= +()× −
⎛

⎝
⎜

⎞

⎠
⎟

= + −
×⎛

⎝

δ δ

⎜⎜
⎞

⎠
⎟δ

w
w

w a
a

b
a

a b
a

a b

a
a

a

1

2
2

1

2

1

2

1 2

2
2 2 2

1

2
2

× = + −
×⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟× +()

= ×

δ δ

++ × −
×⎛

⎝
⎜

⎞

⎠
⎟ + ×

= + −
×⎛

⎝
⎜

⎞

⎠
⎟ +

a b
a

a b
a

a
a

b

a b a b
a

a

2
1

2

1 2

2
2

1

2
2

1 1
1 2

2

1

δ δ

δ
××

= +
=

b
a

a b
w

2

2

1 1

1

δ

δ

Listing 6

surreal &
surreal::operator/=(const surreal &w)
{
 b_ = b_/w.a_ - a_*w.b_/(w.a_*w.a_);
 a_ /= w.a_;
 return *this;
}

d
dx x x

1 2 2
8

1
42

2
3

2

= − = − = −

1
2 2

1
4 4

1
4

0
4

1 4
16

1
4

1
4

+()× +()
=

+()

= + −
×⎛

⎝
⎜

⎞
⎠
⎟

= −

δ δ δ

δ

δ

6 | Overload | April 2012

FEATURERICHARD HARRIS

as we try to compute higher and higher
derivatives we will inevitably be forced into
using complex recursive template trickery
This would take up rather a lot of time, so we shall content ourselves with
a few pertinent examples. Specifically

The first two functions simply require the first order Taylor’s series
expansions

as illustrated in listing 7.
The third is a little less obvious, but we can use the same trick we used for
our expression objects and rewrite it as

as implemented in listing 8.
The remaining arithmetic operations are left as an exercise for the reader.

Higher order derivatives
An immediately obvious problem with our surreal type is that, as it
stands, we cannot use it to compute second and higher order derivatives.

We might be tempted to change the b_ member from a double to a
surreal, allowing us to recover the second derivative from the
infinitesimal part of the infinitesimal part.
However, as we try to compute higher and higher derivatives we will
inevitably be forced into using complex recursive template trickery which
is something I specifically wanted to avoid.
Fortunately, there’s a better way which, as I’m sure you will already
suspect, is based on Taylor’s theorem.
Note that the coefficient of δn in the Taylor series expansion of a function
f about a value a is

If we therefore keep track of the first n+1 terms of the Taylor series rather
than just the first two we can recover the nth derivative by multiplying the
coefficient of δn by n!.
The first change we need to make to our surreal type is to store an array
of coefficients rather than just two, as illustrated in listing 9.
Note that here n represents the order of the Taylor series rather than the
number of terms and we must consequently use an array of length n+1.

e
w

w

w

w

ln

1
2

e e b e

a b a b
a

a b a a+ = + ×

+() = + ×

δ δ

δ δln ln 1

Listing 7

surreal
exp(const surreal &w)
{
 const double exp_a = exp(w.real());
 return surreal(exp_a, exp_a*w.inf());
}

surreal
log(const surreal &w)
{
 return surreal(log(w.real()),
 w.inf()/w.real());
}

w ew w w
1

2 2 1= ×ln

Listing 8

surreal
pow(const surreal &w1, const surreal &w2)
{
 return exp(w2*log(w1));
}

1
n

d
dx

f x
n

n
a!

× ()

Listing 9

template<size_t n>
class surreal
{
public:
 typedef boost::array<double, n+1> coeffs_type;

 surreal();
 surreal(double a);
 surreal(double a, double b);
 explicit surreal(const coeffs_type &coeffs);

 double coeff(size_t i) const;
 const coeffs_type &coeffs() const;

 int compare(const surreal &w) const;
 surreal & negate();

 surreal & operator+=(const surreal &w);
 surreal & operator-=(const surreal &w);
 surreal & operator*=(const surreal &w);
 surreal & operator/=(const surreal &w);

private:
 coeffs_type coeffs_;
};
April 2012 | Overload | 7

FEATURE RICHARD HARRIS
This means that we might run into trouble if n is the maximum value of
size_t so I shall admit one tiny bit of template trickery and specialise
the class to protect against this, as shown in listing 10.
We have kept our original constructors and have added one which
initialises all of the coefficients. Their implementations are given in listing
11.
Note that we shall now access the coefficients by their ordinal position in
the Taylor series and that we shall return a NaN rather than throw when
reading past the end of the coefficients as shown in the definition of coeff
in listing 12.
This might seem a little contrary to the C++ way of doing things but the
reason for this design choice should become clear a little later on.

Next up is the compare member function which operates in much the
same way as std::lexicographical_compare, implemented in
listing 13.
If you think this looks like I’ve made the beginners’ mistake of reading
past the end of the coefficients array, don’t forget that it has n+1 elements.
The negation, addition and subtraction operators are hardly more complex
than the original versions, as shown in listing 14.
Unfortunately we have now effectively introduced a branch which may
harm performance. However, since the bounds of the loop counter are
known at compile time an optimising compiler has an opportunity to unroll
the loops for small n.

Generalised surreal multiplication
Multiplication is a slightly more complicated proposition since there may
be several pairs of terms from the left and right hand side that yield a given
order when multiplied.
The process for multiplying polynomials is known as a discrete
convolution in which each coefficient in the result is equal to the sum

where ai and bi are the coefficients of the ith order terms of the arguments
and ci is the same of the result.

Listing 10

template<>
class surreal<size_t(-1)>
{
};

Listing 11

template<size_t n>
surreal<n>::surreal()
{
 coeffs_.assign(0);
}

template<size_t n>
surreal<n>::surreal(const double a)
{
 coeffs_.assign(0);
 coeffs_[0] = a;
}

template<size_t n>
surreal<n>::surreal(const double a,
 const double b)
{
 coeffs_.assign(0);
 coeffs_[0] = a;
 coeffs_.at(1) = b;
}

template<size_t n>
surreal<n>::surreal(const coeffs_type &coeffs)
 : coeffs_(coeffs)
{
}

Listing 12

template<size_t n>
double
surreal<n>::coeff(const size_t i) const
{
 if(i>n) return
 std::numeric_limits<double>::quiet_NaN();
 return coeffs_[i];
}

template<size_t n>
const typename surreal<n>::coeffs_type &
surreal<n>::coeffs() const
{
 return coeffs_;
}

Listing 13

template<size_t n>
int
surreal<n>::compare(const surreal &w) const
{
 size_t i=0;
 while(i!=n && coeffs_[i]==w.coeffs_[i]) ++i;

 if(coeffs_[i]<w.coeffs_[i]) return -1;
 if(coeffs_[i]>w.coeffs_[i]) return 1;
 return 0;
}

Listing 14

template<size_t n>
surreal<n> &
surreal<n>::negate()
{
 for(size_t i=0;i<=n;++i)
 coeffs_[i] = -coeffs_[i];
 return *this;
}

template<size_t n>
surreal<n> &
surreal<n>::operator+=(const surreal &w)
{
 for(size_t i=0;i<=n;++i)
 coeffs_[i] += w.coeffs_[i];
 return *this;
}

template<size_t n>
surreal<n> &
surreal<n>::operator-=(const surreal &w)
{
 for(size_t i=0;i<=n;++i)
 coeffs_[i] -= w.coeffs_[i];
 return *this;
}

c a bk i k i
i

k

= × −
=
∑

0

8 | Overload | April 2012

FEATURERICHARD HARRIS
This is much like the algorithm we used to multiply bignums, except
without the carry, and as was the case then efficient algorithms exist that
use the Fast Fourier Transform.
We shan’t go to such trouble, but we shall at least arrange to apply the
process in-place by iterating backwards over the coefficients of the result,
as shown in listing 15.
Note that we can only get away with this because we are discarding all
terms above nth order.

Generalised surreal division
As was the case for our first order surreal type, division is trickier still.
Once again we shall multiply the numerator by the reciprocal of the
denominator, but we shall need to work out the Taylor series for the
reciprocal to nth order.
Fortunately, as will often prove the case for arithmetic operations, this isn’t
actually too difficult.

Now, we have the further complication that there may be several terms
with non-zero powers of δ in w. Fortunately, it doesn’t actually matter
since their sum is still an infinitesimal and can consequently take the place
of the δ in any Taylor series expansion.
The easiest way to do this is to use a surreal δ equal to the infinitesimal
part of w and repeatedly multiply 1 by it to generate its integer powers, as
illustrated in listing 16.
Note that the inner loop needn’t use coefficients of di of order less than
i since they must be zero after having multiplied by the 0 valued 0th order
coefficient of d.
This suggests an optimisation in which we replace the multiplicative
update step for di with one which doesn’t update coefficients of order less
than i or use coefficients of order less than i-1, as shown in listing 17.
Note that there are no safeguards against calling this helper function with
invalid values for size and/or i. Instead we shall rely upon the convention
that impl should be read as ‘enter at your own peril’.
That caveat out of the way, we can replace the multiplicative update step
with a call to this function as shown in listing 18.

Generalised arithmetic operations
As before, reciprocation shines a light on how we might go about
implementing other arithmetic operations and, once again, we shall choose
as examples

We shan’t bother with the power this time since, as we have already seen,
we can implement it in terms of these two.
The first step is, of course, to work out the Taylor series expansions of these
functions. Fortunately this isn’t very difficult; the Taylor series of the
exponential is given by

Listing 15

template<size_t n>
surreal<n> &
surreal<n>::operator*=(const surreal &w)
{
 for(size_t i=0;i<=n;++i)
 {
 coeffs_[n-i] *= w.coeffs_[0];

 for(size_t j=1;j<=n-i;++j)
 {
 coeffs_[n-i] += coeffs_[n-i-j]
 * w.coeffs_[j];
 }
 }
 return *this;
}

1 1 1

1 1 2
2

1 2 3
3

1

1

0

2 3
2

4
3

a i
d
dx x

a a a a

a

i

i
a

i

i+
= × ×

= − + −
×

+

= −

≥
∑δ

δ

δ δ δ

!

! !
K

11 1 1

1

2 3
2

4
3

1
0

a a a

a

i

i
i

i

δ δ δ

δ

+ − +

=
−()

×+
≥
∑

K

Listing 16

template<size_t n>
surreal<n> &
surreal<n>::operator/=(const surreal &w)
{
 const double y = w.coeffs_[0];
 double si = 1.0;
 surreal rw(1.0/y);
 surreal di(1.0);
 surreal d(w);
 d[0] = 0.0;

 for(size_t i=1;i<=n;++i)
 {
 si = -si;
 const double yi = si * pow(y, double(i+1));
 di *= d;

 for(size_t j=i;j<=n;++j)
 rw.coeffs_[j] += di.coeffs_[j] / yi;
 }
 return *this *= rw;
}

Listing 17

namespace impl
{
 template<size_t size>
 void
 update_di(const boost::array<double, size> &d,
 const size_t i,
 boost::array<double, size> &di)
 {
 static const size_t n = size-1;

 for(size_t j=0;j<=n-i;++j)
 {
 di[n-j] = 0.0;
 for(size_t k=1;k<=n+1-(i+j);++k)
 di[n-j] += di[n-(j+k)] * d[k];
 }
 }
}

e
w

w

ln

e
i

d
dx

e

e e e e

e

a
i

i
x

a

i

i

a a a a

a

+

≥

= × ×

= + × + × × + × × +

= ×

∑δ δ

δ δ δ

1

1
2

1
3

0

2 3

!

! !
K

11 1
2

1
3

1

2 3

0

+ + × + × +
⎛

⎝
⎜

⎞

⎠
⎟

= × ×
≥
∑

δ δ δ

δ

! !

!

K

e
i

a i

i

April 2012 | Overload | 9

FEATURE RICHARD HARRIS
and that of the logarithm by

With these formulae to hand, implementing the exponential and
logarithmic functions is but a simple matter of programming, as shown in
listings 19 and 20.
Now we are nearly done, but there’s one last use of the surreal type that
I’d like to cover before we conclude.

L’Hôpital’s rule
Consider the function

What is its value when x is equal to 0?
On the face of it that would seem to be a meaningless question. Certainly
calculating it using floating point will yield a NaN.
However, it is in fact 1.
This rather surprising result can be demonstrated using, you guessed it,
Taylor’s theorem!
The Taylor series expansions of the numerator and denominator are

Setting x equal to zero gives

Note that if the first order terms of the numerator and denominator were
also zero we could continue on to the second order terms in the same
fashion.
Since our surreal type keeps track of the coefficients of the Taylor series
we can easily extend division to exploit L’Hôpital’s rule, allowing us to
correctly evaluate such ratios.
We shall do this by first finding the lowest order for which the coefficient
in the Taylor series of either the numerator or denominator is non-zero.
We shall then copy the coefficients of the denominator from that point on
into the lowest order coefficients of our δ, leaving the higher order terms
equal to zero.
Finally we shall shift the coefficients in the numerator to the left and fill
the higher order terms with NaNs before multiplying by the reciprocal, as
shown in listing 21.

Listing 18

template<size_t n>
surreal<n> &
surreal<n>::operator/=(const surreal &w)
{
 const double y = w.coeffs_[0];
 surreal rw(1.0/y);
 double si = -1.0;
 surreal di(w);

 const double y1 = -y*y;
 for(size_t j=1;j<=n;++j)
 rw.coeffs_[j] += di.coeffs_[j] / y1;

 for(size_t i=2;i<=n;++i)
 {
 si = -si;
 const double yi = si * pow(y, double(i+1));
 impl::update_di(w.coeffs_, i, di.coeffs_);

 for(size_t j=i;j<=n;++j)
 rw.coeffs_[j] += di.coeffs_[j] / yi;
 }
 return *this *= rw;
}

ln
!

ln

ln
! !

a
i

d
dx

x

a
a a a

i

i
a

i

i
+() = × () ×

= + × − × × + ×

≥
∑δ δ

δ δ

1

1 1
2

1 1
3

2
0

2
2

3 ×× −

= −
−()
×

×
≥
∑

δ

δ

3

1

1

K

ln a
i a

i

i
i

i

Listing 19

template<size_t n>
surreal<n>
exp(const surreal<n> &w)
{
 double yi = 1.0;
 boost::array<double, n+1> di = w.coeffs();
 boost::array<double, n+1> ew = di;
 ew[0] = 1.0;

 for(size_t i=2;i<=n;++i)
 {
 yi *= double(i);
 impl::update_di(w.coeffs(), i, di);

 for(size_t j=i;j<=n;++j)
 ew[j] += di[j] / yi;
 }

 const double y = exp(w.coeff(0));
 for(size_t i=0;i<=n;++i) ew[i] *= y;
 return surreal<n>(ew);
}

Listing 20

template<size_t n>
surreal<n>

log(const surreal<n> &w)
{
 const double y = w.coeff(0);
 double si = 1.0;
 boost::array<double, n+1> di = w.coeffs();
 boost::array<double, n+1> lnw = {{log(y)}};

 for(size_t j=1;j<=n;++j) lnw[j] += di[j] / y;

 for(size_t i=2;i<=n;++i)
 {
 si = -si;
 const double yi =
 si * double(i) * pow(y, double(i));
 impl::update_di(w.coeffs(), i, di);

 for(size_t j=i;j<=n;++j)
 lnw[j] += di[j] / yi;
 }
 return surreal<n>(lnw);
}

f x x
x

() = sin

sin sin cos sin cosx x x x x
x x
+() = + × − × − × +

+ = +

δ δ δ δ

δ δ

2 3 K

f 0 0 0 0 0
0

1

2 3

3

2

+() = + × − × − × +
+

=
− +

= − +

δ
δ δ δ

δ
δ δ

δ
δ

sin cos sin cos K

K

K

10 | Overload | April 2012

FEATURERICHARD HARRIS
This final padding with NaNs is the reason why we could leave zeros in
our δ; it doesn’t matter what value they have since any terms they effect
will eventually be multiplied by NaN.
We might improve the efficiency of division by making update_di and
the final multiplication aware of the truncation of the terms, but since this
is likely to be a relatively rare occurrence it hardly seems worth it.
Now, at last, I can justify the design choice of returning NaNs when reading
past the end of the coefficients rather than throwing exceptions. The
application of L’Hôpital’s rule means that we have less information for
computing coefficients, so some high order coefficients in the array may
be undefined and, in floating point arithmetic, undefined is spelt NaN.
Making a distinction between coefficients undefined because we didn’t
choose a high enough order surreal and coefficients undefined because
of L’Hôpital’s rule doesn’t make a great deal of sense to me; both are a
consequence of a lack of information1.
One change that will almost certainly be necessary is to replace the equality
comparisons when computing off with one that checks whether the terms
are very small.

Unfortunately the meaning of very small is rather determined by the
problem at hand; it needs to be relative to the order of magnitude of the
variables in the calculation.
We should therefore need to add some facility for the user to provide this
information, preferably as a template argument so that we cannot perform
arithmetic with numbers that disagree on the matter. Since we cannot use
floating point values as template arguments we should probably have to
content ourselves with an integer representing a power of 10.

The Holy Grail?
So we finally have an algorithm for computer differentiation that is as
accurate as possible without a computer algebra system and parsimonious
with memory to boot.
I must admit that I have something of a soft spot for this approach having
independently discovered it a few years ago. Even though I subsequently
discovered that I wasn’t the first, I still find it to be more satisfying than
symbolic differentiation and it is my weapon of choice for difficult, by
which I mean extremely lengthy, differentiation calculations.

Cancellation error
Unfortunately automatic differentiation suffers from cancellation error in
the derivative just as much as symbolic differentiation does. Indeed, it is
doubly cursed since, unlike symbolic differentiation, we couldn’t
automatically manipulate the form of the calculation to try to reduce its
effect even if we wanted to, although we could at least again use interval
arithmetic to monitor its effect.

Numerical approximation
As with symbolic differentiation we must still take care when combining
automatic differentiation with numerical approximation; the derivative of
an approximation of a function may not be a good approximation of the
derivative of that function.
The solution is more or less the same as that we used for expression objects;
we must simply compute the derivatives explicitly and use them to
calculate the coefficients of the function’s Taylor series.
As with expression objects we can do this either using a general purpose
algorithm such as the polynomial approximation, or with a specific
approximation of the derivative of the function, or, if we’re very fortunate,
with the actual formula for the derivative.
Clearly this is no better or no worse than taking the same approach with
expression objects, but somehow it seems a more natural union to me. With
automatic differentiation we are not trying to maintain an exact
representation of the mathematical expression so resorting to
approximation doesn’t seem quite so jarring.
Although, as I have already admitted, I am a little biased.
In conclusion, I declare that automatic differentiation is a rock star duck;
hardly perfect, but damn cool!

References and further reading
[Knuth74] Knuth, D., Surreal Numbers; How Two Ex-Students Turned

on to Pure Mathematics and Found Total Happiness, Addison-
Wesley, 1974.

[Ridders82] Ridders, C.J.F., Advances in Engineering Software, Volume
4, Number 2., Elsevier, 1982.

[Robinson74] Robinson, A., Non-Standard Analysis, Elsevier, 1974.

1. Note that the compare member function will consequently work at the
known, rather than the declared, order since the final less than and
greater than comparisons will be false.

Listing 21

template<size_t n>
surreal<n> &
surreal<n>::operator/=(const surreal &w)
{
 static const double nan =
 std::numeric_limits<double>::quiet_NaN();

 size_t off=0;
 while(coeffs_[off]==0.0 && w.coeffs_[off]==
 0.0 && off!=n) ++off;

 const double y = w.coeffs_[off];
 surreal rw(1.0/y);
 double si = -1.0;
 surreal d, di;

 for(size_t i=0;i<=n-off;++i) d[i]
 = di[i] = w[i+off];

 const double y1 = -y*y;
 for(size_t j=1;j<=n-off;++j) rw.coeffs_[j]
 += di.coeffs_[j] / y1;

 for(size_t i=2;i<=n-off;++i)
 {
 si = -si;
 const double yi = si * pow(y, double(i+1));
 impl::update_di(d.coeffs_, i, di.coeffs_);

 for(size_t j=i;j<=n;++j) rw.coeffs_[j]
 += di.coeffs_[j] / yi;
 }

 if(off!=0)
 {
 for(size_t i=0;i<=off;++i)
 coeffs_[i] = coeffs_[i+off];
 for(size_t i=off+1;i<=n;++i) coeffs_[i] =
nan;
 }
 return *this *= rw;
}

April 2012 | Overload | 11

FEATURE ANDY THOMAS
Back to School
The Sinclair ZX Spectrum will be 30 years old in
April 2012. Andy Thomas recalls how this plucky
little home computer shaped his childhood.
o... can you actually talk to it and just tell it what to do?’, I asked a
kid at school.
The year was 1983, and my friend had just got a home computer, a

Tandy TRS80. I had never seen a computer and was absolutely fascinated.
 I visualized sitting in front of this thing and speaking out instructions such
as, ‘Please calculate 6 times 7.’
‘Oh no,’ he said. ‘You use menus.’
‘Menus?’ Now I really was confused, and I visualized sitting in a restaurant
and reading out a menu to a box on the table. It didn’t make any sense!
At school, I was pretty much in bottom classes in everything – except, that
was, for art. ‘Well, he’s good at drawing,’ I recall a teacher once telling
my parents. I was 12 years old, and I didn’t know it then, but a plucky little
British home computer was about to change my life.
That computer was no other the Sinclair ZX Spectrum, which I got for
Christmas that year. In fact, I had already found where my parents were
hiding it and had pilfered the instruction manuals, which I read cover-to-
cover, several times, before Christmas day.
The Spectrum came in 16K and 48K flavours, and I was lucky enough to
get the 48K one. I can remember standing in the computer shop with my
Dad while the salesmen emphasized what a massive amount of memory
it had!
‘No matter what you do, you will never be able to fill up 48K of RAM,’
he said.
Yeah right! Good job I didn’t end up with the 16K one is all I can say now.
The Spectrum, or Speccy to its fans, had an unusual rubber keyboard
which, as bad as it was, represented an improvement over the membrane
keypad of its predecessor – the ZX81. Like most home computers in the
UK at that time, the Speccy had its own built-in BASIC programming
language. Programming it using the weird keyboard took some getting
used to though, as each BASIC keyword had its own key, and there were
weird input modes which allowed you to access the shifted keywords.
Programs were loaded and saved onto audio tapes using a cassette player.
It could take up to five minutes to load a program, and the loading process
often failed four and a half minutes in. But this really made the whole
experience worthwhile – if a game was worth loading, then it had to be
worth playing. It added value to the whole experience. In any case, while
I played games occasionally, it wasn’t playing games that really did it for
me – it was writing them. Or at least trying to, I should say.
I primarily saw the Spectrum as a kind of creativity tool – a blank canvas
on which I could digitally paint interesting stuff, whether it be games,

scientific programs or whatever. It was my introduction to computers, and
it taught me at a young age that computers should be fun and that
programming can be a creative and rewarding enterprise. I have never let
go of that and, in later life, I guess it helped me not to be succumb to the
notion that software development can also be a bureaucratic and soul
destroying experience.
Anyway, back to my childhood and the Speccy...
I soon picked up Spectrum BASIC from the user manual, and before long,
I was writing games. I wrote quite a few horizontal scrolling games, to
which I gave names such as Shuttle Defender and Sea Harrier Attack.
Unfortunately, no one told me that the age of games written in Spectrum
BASIC had begun and ended in 1982 with the Horizons cassette that came
free with every Speccy. So I soldiered on, oblivious, and sent off demo
cassettes containing games written in BASIC to the likes of Atari and Artic
Computing.
Although I once received a courtesy reply, no publishing deals were
forthcoming. Eventually I decided there was only one thing for it – to set
up my own software house. I called my business venture Saturn Software,
and spent a whole week’s wages from my paper round on a pack of five
audio cassettes. Would five be enough? I wasn’t sure, but it was all that I
could afford. If the orders came flooding in, then I decided I could always
buy some more with the money I would be making.
I put a hand-written advertisement for Saturn Software in the local paper
shop and, while I waited for the telephone orders to roll in, I loaded the
cassettes with my Shuttle Defender game. I painstakingly drew the artwork
for each cassette inlay by hand, and for that professional touch, I coloured
them in with felt-tip pen.
Tragically, the one and only telephone phone call I got in response to my
ad was answered by my Mum...
While I never learned exactly what was said, apparently the caller was
rather menacing and threatened to have me prosecuted for software piracy.
I was duly made to remove my advertisement from the local shop, and that
put paid to my first-ever business venture.
It didn’t put me off though, and I carried on writing games and other
programs. I had a creative urge, an internal spark, that kept me awake at
night dreaming up new projects.
Finally, however, I came to realize that Spectrum BASIC just wasn’t going
to cut it. If I was ever going to get a game published, then I had to learn
machine code. Unfortunately, coming from a small town in Northern
England, I didn’t know how to access the kind of information and learning
resources for this. The Internet would have been really useful to me then,
but this was before the Web, or even the Information Super Highway for
that matter.
At least back in those days computing was safe, however. There was no
danger of me coming into contact with chatroom paedophiles or getting
myself extradited to the US because I had clicked on something I shouldn’t
have. There’s a part of me which bemoans the day my personal computer
became connected to the rest of the world, or more specifically, when the

S

Andy Thomas has interests in software development, physics,
mathematics, space technology and machine intelligence.
Professionally, he works in the telecomms arena where he drinks a lot
of coffee and occasionally produces something that works. He can be
contacted at andyt@bigangrydog.com.
12 | Overload | April 2012

FEATUREANDY THOMAS

I could understand and interact with a
computer quite easily, so I used it as an

outlet for my creativity
rest of the world became connected to my computer. I guess I’m a little
nostalgic for a time when your computer was your own.
I did, however, get my hands on some computer books from the local
library – both of them. I recall that one was about Expert Systems, and while
I was fascinated, I could not quite grasp what they were actually for. To
be honest, I still don’t. Did anybody?
There was one person I could ask. My best friend was an electronics genius,
and while I spent my evenings writing Speccy BASIC, he spent his with
a soldering iron and an assortment of circuit boards with 555 timers on
them. He also knew machine code, and I begged him to teach me. I recall
him giving me a verbal crash course in Z80 assembler while we stood on
his parent’s doorstep. I remember it all had something to do with shift
registers and interrupts, but it all went over my head and I didn’t understand
it.
In fact, I never did have much luck with publishing a game for Spectrum.
All my games were written in BASIC and were, well, to be honest, a bit
rubbish really. But my efforts were not in vain, and the Spectrum did
indeed have a profound affect on my childhood and, I suspect also, on my
later life.
When I was given a home computer as a Christmas present at the age of
12, I was pretty much written off at school. Over the next two years,
however, my school work dramatically improved and I was lifted out of
the bottom classes, and in the end, I did very well. The truth was that, as
a child, I didn’t really understand how to interact with people and found
the whole experience confusing and uncomfortable. So I would just
disengage sometimes. But I could understand and interact with a computer
quite easily, so I used it as an outlet for my creativity, which otherwise,
may have remained locked up inside. In the process, I learned a great deal
and became interested in many things.
Undoubtedly the ZX Spectrum helped to shape my childhood for the better,
and I wonder sometimes just how my life would have turned out without
Sir Clive Sinclair’s marvellous little machine. Not as well I think.

Afterthought
Although I never managed to publish a game for the Spectrum, I did do
slightly better with the Tatung Einstein and a little outfit called Bell
Software who were sympathetic enough to publish a couple of my games.
I suspect, however, this was largely due to the lack of competition in the
Einstein games market more than anything else. (I recall that I made around
£15 in total – just don’t tell the taxman!)
In any case, I’m kinda hoping that someone from Bell Software will
Google this one day, and that by some miracle, they will still have a disc
of my old games because I’d sure would love to see them again, even if
they were a bit rubbish.
April 2012 | Overload | 13

FEATURE PAUL FLOYD
Valgrind Part 1 – Introduction
Good analysis tools can really help track
down problems. Paul Floyd investigates
the facilities from a suite of tools.
algrind is a dynamic analysis tool for compiled executables. It
performs an analysis of an application at run time. Valgrind can
perform several different types of analysis (though not at the same

time): memcheck (memory checking), cachegrind/callgrind (time
profiling), massif (memory profiling), helgrind/drd (thread hazard
detection). In addition there are some experimental tools: sgcheck (global/
stack overrun detection, prior to Valgrind 3.7.0 this was called ptrcheck),
dhat (heap use analysis) and bbv (extrapolating longer executions from
smaller samples). There is also nulgrind, which does nothing other than
execute your application.
Valgrind can be found at http://www.valgrind.org.

How it works
Unlike some other tools, Valgrind does not require the application under
test (AUT) to be instrumented. You don’t have to perform a special
compile or link, and it will even work with optimized builds, though
obviously that makes it more difficult to correlate to source lines.
At the core of Valgrind is a virtual machine, VEX. When Valgrind runs
your AUT, it doesn’t run it on the underlying OS, it runs it in the virtual
machine. This allows it to intercept system calls and memory accesses
required for the analysis it is performing. VEX performs on the fly
translation of the AUT machine code to an Intermediate Representation
(IR), which is RISC like and common to all architectures that Valgrind
supports. This IR is more like a compiler IR than machine code.
Running your AUT in a virtual machine does of course have some
disadvantages. The most obvious one is that there is a significant time
penalty. The same AUT running directly on the OS will typically run about
10 times faster than under Valgrind. In addition to taking more time, the
combination of Valgrind and the AUT will use more memory. In some
cases, in particular on 32bit OSes, you might find that the AUT alone will
fit in memory but that Valgrind+AUT doesn’t. In this case, if you can, the
answer may be to recompile and test in 64bits. There are some
discrepancies between Valgrind’s virtual machine and your real machine.
In practice, I haven’t noticed anything significant other than small
differences in floating point calculations. This is most noticeable with
32bit executables using the x87 FPU. Valgrind emulates floating point
with 64bit doubles, whilst the x87 uses 80 bits for intermediate
calculations.
The worst case problem with the virtual machine is an unhandled op-code.
In this case you will get a message like
 ==[pid]== valgrind: Unrecognised instruction at
 address [address].

and then Valgrind will terminate. Fortunately, unless you are using some
exotic/bleeding edge OS or hardware, this is unlikely to happen. Somewhat

more likely, in particilar on 32bit OSes, is that you will run out of memory.
Unfortunately, Valgrind may not produce any output in that case.
You can’t run the AUT directly in a debugger while it is running under
Valgrind. It is possible to have Valgrind attach a debugger to the AUT
when an error occurs, which gives you a snapshot of the executable rather
like loading a core file. There is a second, better alternative that is now
possible with Valgrind 3.7.0. This is to attach gdb to the embedded
gdbserver within Valgrind. If you do this then you will be able to control
the AUT much like a normal AUT under gdb, and also perform some
control and querying of Valgrind. It is also possible to compile Valgrind
tracing in the AUT which can output information on a specific region of
memory. I'll cover these topics in more detail in a later article.

Availability
Valgrind started out on Linux, but it is now available on FreeBSD and Mac
OS X. It is also available for some embedded systems. I’ve read of patches
that support Windows, but it isn’t officially supported. If you are using
Linux, then the easiest thing to do is to install it using your package
manager. If you want to have the very latest version, then you can
download the current package from the Valgrind website and build it
yourself. Generally just running ./configure, make and make
install are sufficient. If you want to be able to use gdb, make sure that
the version that you want to use when running Valgrind is in your PATH
when you build Valgrind. If you want the very latest version, then you can
get it from the Subversion server. Building is a little more involved, but
the Valgrind website gives clear instructions.

Running Valgrind
So you’ve installed Valgrind. Next, how do you run it? Valgrind has a large
number of options. There are 4 ways of passing options: a resource file
(.valgrindrc) in your home directory, in an environment variable
(VALGRIND_OPTS), in a resource file in the working directory and on the
command line, in that order. If an option is repeated, the last appearance
overrides any earlier ones. This means that the resource file in your home
directory has the lowest priority and the command line has the highest
priority.
The options can be broken down into two groups: core options and tool
options. The core options are for Valgrind itself, like --help. The most
important of these is --tool, used to select the tool to use, which must
be passed on the command line. However, if --tool is omitted, the
default will be memcheck.
You can specify options for more than one tool at a time by using the prefix
<toolname>: before the option. For instance, to have memcheck report
memory that is still reachable (but not leaked) when the AUT terminates,
you can use --memcheck:show-reachable=yes. If you then use
massif as the tool, this option will be ignored.
In my experience, it is best to put options that are independent of the test
in the .valgrindrc and to pass options that may change on the command
line.

V

Paul Floyd has been writing software, mostly in C++ and C, for over
20 years. He lives near Grenoble, on the edge of the French Alps, and
works for Mentor Graphics developing a mixed signal circuit simulator.
He can be contacted at pjfloyd@wanadoo.fr.
14 | Overload | April 2012

http://www.valgrind.org

FEATUREPAUL FLOYD
Processes and output
Some of the tools default to sending their output to the console (e.g.,
memcheck). Others default to a file (e.g., massif). You can specify that the
output go to a file with the --log-file=<filename> option. In either
case, the output lines are prefixed with ==<pid>== or --<pid>--
showing the pid (process id) of the AUT. The <filename> can contain
%p which will be expanded to the PID of the AUT. This is particularly
useful if you will be running the same AUT more than once. For instance,
say you have two AUTs, ‘parent’ and ‘child’, both of which you want to
run under Valgrind. ‘parent’ runs ‘child’ more than once when it executes.
If you let all of the output go to the console, then it might get all mixed up.
Instead you could launch
 valgrind --tool=memcheck --log-file=parent.%p.log
 parent

and arrange it so that ‘parent’ launches ‘child’ in a similar fashion
 system("valgrind --tool=memcheck
 --log-file=child.%p.log child");

On completion, you would have something like parent.1234.log and
child.1245.log, child.1255.log.
There is also the --trace-children=yes option. Whilst it is simpler
than the above technique, it will cause all child processes to be traced. This
is less useful if your application launches a lot of child processes, and you
only want to test a small subset of them.
I’ll finish with a quick demonstration using Nulgrind. Here are my two test
executables.
 //parent.c
 #include <stdlib.h>
 int main(void)
 {
 system("./child");
 }

and
 // child.c
 #include <stdio.h>
 int main(void)
 {
 printf("Hello, child!\n");
 }

Let’s compile them
 gcc -o child -g -Wextra -Wall child.c -std=c99
 -pedantic
 gcc -o parent -g -Wextra -Wall parent.c -std=c99
 -pedantic

If I run ‘parent’ alone, I see the expected output. Now let’s try that with a
minimum of options (Listing 1) and with the option to follow children
(Listing 2).
So you can see the two PIDs, 9356 and 9357. 9356 spawns then execs sh,
which in turn execs child.
Now if I run
 valgrind --tool=none --trace-children=yes
 --log-file=nulgrind.%p.log ./parent

then I get two log files, nulgrind.10092.log and nulgrind.10091.log which
basically contain the same information as the parent and child sections
above.
Lastly, if I change the ‘system’ call to
 system("valgrind --tool=none
 --log-file=child.%p.log ./child");

and I then run parent without the –follow-children option, like this
 valgrind --tool=none --log-file=parent.%p.log
 ./parent

then I get two log files, parent.12191.log and child.12209.log,
again with the content more or less as above.
That wraps it up for part 1. In part 2 I’ll cover the basics of memcheck.
April 2012 | Overload | 15

Listing 2

valgrind --tool=none ./parent –follow-children
==9356== Nulgrind, the minimal Valgrind tool
==9356== Copyright (C) 2002-2010, and GNU GPL'd, by Nicholas Nethercote.
==9356== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==9356== Command: ./parent
==9356==
==9357== Nulgrind, the minimal Valgrind tool
==9357== Copyright (C) 2002-2010, and GNU GPL'd, by Nicholas Nethercote.
==9357== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==9357== Command: /bin/sh -c ./child
==9357==
==9357== Nulgrind, the minimal Valgrind tool
==9357== Copyright (C) 2002-2010, and GNU GPL'd, by Nicholas Nethercote.
==9357== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==9357== Command: ./child
==9357==
Hello, child!
==9357==
==9356==

Listing 1

valgrind --tool=none ./parent
==9131== Nulgrind, the minimal Valgrind tool
==9131== Copyright (C) 2002-2010, and GNU GPL'd, by Nicholas Nethercote.
==9131== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==9131== Command: ./parent
==9131==
Hello, child!
==9131==

FEATURE FILIP VAN LAENEN
Mutation Testing
We all know that testing improves our code,
guarding against errors. Filip van Laenen asks
how we know that the tests are comprehensive?
Quis custodiet ipsos custodes?
Who is guarding the guards?

Juvenal (Satire VI, lines 347-8)

nit tests guard the source code, verifying that the behaviour of the
system is correct. But how do we know that the unit tests cover all
the lines of the source code, all the branches, let alone all the paths

through the source code? And how do we know that the unit tests test the
important aspects of the source code? Indeed, it could very well be that
the unit tests cover all lines, branches and even paths of the source code,
but never test anything that really matters. Mutation testing can help
provide an answer to all these questions.

What is mutation testing?
Mutation testing starts with source code and unit tests. At some place in
the source code, it makes a small change, which we’ll call the ‘mutation’.
Typical mutations include replacing an addition with a subtraction,
negating or short-cutting conditions, changing the values of constants and
literals, commenting out a line, and many more. The result of the mutation
is a new system, which we’ll call the ‘mutant’. What mutation testing then
does is that it runs the original unit tests on the mutant, and checks whether
any of them fail. Depending on the mutation and the quality of the unit
tests, different things can happen. Sometimes only one or two unit tests
fail. Other times, almost all the unit tests fail. And in some cases, none of
the unit tests fail.
Let’s go through the different scenarios that can occur. The most
straightforward case is the one in which only one, or perhaps two or three
unit tests fail. This means that the mutation happened in a place that’s
tested by the now failing unit tests, and that the change in behaviour due
to the mutation is detected by the unit tests. In general, this should indicate
that the unit tests test an important and relevant aspect of the system’s
behaviour, and that the part of the source code where the mutation occurred
matters for the system’s behaviour. We can therefore conclude that
everything is in order with this mutant, and generate the next mutant to be
tested by the unit tests.
Alternatively, many, or in some cases almost all the unit tests could start
to fail as a result of the mutation. This often happens when the mutation
occurs in one of the fundamental and heavily reused parts of the system,
like e.g. the core engine or a project-specific framework. Again, many
failing unit tests is a good sign, because it means that the part of the source
code where the mutation occurred matters for the behaviour of the system.
It’s also possible that all the unit tests pass when they’re run against the
mutant. This would obviously be the case when the mutation occurs in a
part of the system that isn’t covered at all by the unit tests. But it could

also be that the line where the mutation occurred is covered by unit tests,
but that the behaviour of that particular part of the code isn’t tested by any
of the unit tests. Imagine, for example, that the mutation happened in a log
message. Although correct logging is important, it’s often only
informative and seldom critical to a project. It’s therefore not unusual that
a system’s unit tests don’t test the content of the log messages, and any
mutations to the content in log messages will therefore remain undetected.
There may, however, be something else going on. There are cases where
a change to the source code doesn’t change the behaviour of the system.
Obviously, we’re not talking about changes like renaming variables or
extracting small functions from larger functions. This sort of refactoring
can hardly be called a mutation, and certainly doesn’t belong to the same
category as replacing a multiplication with a division or switching the
order of parameters in a function call. But what about replacing a less-than
sign (<) with a less-than-or-equal-to sign (≤)?
Let’s consider two simple cases. Listing 1 illustrates the first case, where
a less-than-or-equal-to sign in a function’s loop is replaced with a less-than
sign. Clearly, this changes the behaviour of the system, and a simple unit
test verifying that sum(1) = 1 would already detect the mutation. Listing
2 however illustrates another case, where the same type of mutation in a
condition doesn’t change the behaviour of the system at all. (We assume
that we’re dealing with immutable objects like e.g. simple integers, and
not objects where there may be a difference between equality and identity.)
Notice that for certain input values, the execution path through the system
may be different between the original system and the mutant, but the end
result is still same.
In general, a case like the one described in Listing 2 is called an equivalent
mutation, since it results in a mutant that’s equivalent to the original
system. For certain types of mutations, it’s not always easy to establish
whether a specific mutation to a system is an equivalent mutation or not.
Therefore, most mutation testing tools simply don’t include these types of
mutation, but some do allow it if the user wants it.

U

Listing 1

def sum(n) {
 s ← 0;
 for (i ← 1; i ≤ n; i++) {
 s ← s + n;
 }
 return s;
}

def sum_mutant(n) {
 s ← 0;
 for (i ← 1; i < n; i++) {
 s ← s + n;
 }
 return s;
}

Filip van Laenen works as a chief technologist at the Norwegian
software company Computas, which he joined in 1997. He has a
special interest in software engineering, security, Java and Ruby, and
tries to inspire his colleagues and help them improve their software
quality skills. He can be contacted at f.a.vanlaenen@ieee.org.
16 | Overload | April 2012

FEATUREFILIP VAN LAENEN

If you have good mutation test coverage of
your source code, chances are you’re

close to 100% test coverage anyway
Does mutation testing work?
It may sound like a strange concept to make changes to the source code of
a system, and then running the original unit tests on the resulting mutant.
It seems so obvious that some of the unit tests should start to fail when we
do that, yet we already mentioned a few reasons why it doesn’t always
happen. So does it improve the quality of our software, and if so, how?
As Walsh noted in this Ph.D. Thesis in 1985, ‘mutation testing is more
powerful than statement or branch coverage’. [Walsh85] Many years later,
Frankl, Weiss and Hu stated that ‘mutation testing is superior to data flow
coverage criteria’ [Frankl97]. My personal experience with mutation
testing is in line with these two statements. In fact, if I’m able to use
mutation testing in a project, I usually don’t care that much any more about
what my test coverage tool may be reporting. If you have good mutation
test coverage of your source code, chances are you’re close to 100% test
coverage anyway. Actually, mutation testing can often give you an
impression of a ‘more than 100% test coverage’, as a small example that
we’ll dig into shortly will show.
But why does it work? Andrews, Briand and Labiche give us a first clue
about why this is so: ‘Generated mutants are similar to real faults’
[Andrews05]. Geist et. al. provides us a with a longer explanation, saying
that ‘in practice, if the software contains a fault, there will usually be a set
of mutants that can only be killed by a test case that also detects that fault’
[Geist92]. Could this be because in some cases, one of the mutants would
actually be the correct system, but we simply haven’t written the correct
unit tests yet to differentiate between the incorrect original system, and the
correct mutant? Finally, Wah adds to this that ‘complex faults are coupled
to simple faults in such a way that a test data set that detects all simple faults
in a program will detect most complex faults’ [Wah95]. Replace ‘test data
set’ with ‘unit test’, and it becomes clear that if you apply many simple
mutations to your original source code, and your unit tests can detect all
the mutants, the unit tests will be able to detect complex mutations too. Or
in other words, if you’ve done the little things right, you have a good
chance that you got the big things right too.

A practical example
Let’s walk through a simple, practical example, to show how mutation
testing works in practice. Actually, the example is not just an academic
exercise I made up for this article, but distilled from an eye-opening
experience I had a couple of years ago while working on a similar piece
of code.
Assume we would want to implement a function that returns the maximum
of a vector of integers. (In reality you should of course use the functions
that are already available in your language or the standard libraries.) For
simplicity, we ignore the case where the input vector could be null or an
empty vector, and concentrate on vectors that have actual content. Listing
3 shows the first unit test, represented as an assertion, and the
corresponding source code, a trivial implementation.
Listing 4 adds a second unit test, and a simple implementation that would
make both unit tests pass. Things get more interesting when we add a third
unit test, as shown in Listing 5. In order to make all three unit tests pass,
we add what could be the final implementation for our function. But the
question is: are we really done yet? And did we really follow the TDD
principle that we should always aim for the simplest possible
implementation that could work?
Let’s have a closer look at the code in Listing 5. First of all, we have three
unit tests. Second, test coverage is 100%, both in number of lines and
branches, even including the implicit else clause of the if statement. One
could wonder whether there’s really more to be wished for. But when we
run mutation testing against the source code, we find out that there’s still
something wrong. In fact, it complains that the mutant shown in Listing 6

Listing 2

def max(a, b) {
 return (a ≤ b) ? b : a;
}

def max_mutant(a, b) {
 return (a < b) ? b : a;
}

Listing 4

Assertion: max([0]) = 0
Assertion: max([1]) = 1

def max(a) {
 return a.first;
}

Listing 5

Assertion: max([0]) = 0
Assertion: max([1]) = 1
Assertion: max([1, 2]) = 2

def max(a) {
 m ← a.first;
 foreach (e ∈ a)
 if (e > m)
 m ← e;
 return m;
}

Listing 3

Assertion: max([0]) = 0

def max(a) {
 return 0;
}

April 2012 | Overload | 17

FEATURE FILIP VAN LAENEN

follow the TDD principle that we always
should aim for the simplest possible
implementation that could work
survived all unit tests. This mutant is the result of short-cutting the
condition of the if statement, or in other words, removing the condition
and keeping only the positive branch of the if statement. Practically, this
is done by replacing the content of the if statement’s condition with a
simple true. But can it really be true that the mutant of Listing 6 survived
all unit tests? After all, the unit tests did have 100% test coverage, both
for lines and branches!
If we run the unit tests by hand on Listing 5, we find quickly that all the
unit tests enter the loop of the function. Since we allocated the value of
the first element in the vector to the local variable m, we pass into the
implicit else clause during the first round. Only during the second
iteration in the third unit test do we enter the positive branch of the if
statement, since 2 is greater than 1. However, if we do the same exercise
for the source code in Listing 6, we find that the three unit tests still pass.
The only difference is that we allocate the value of the first element of the
vector twice to m, once at the beginning of the loop, and once inside the
if statement’s positive branch. It turns out that with these three unit tests,
there’s no real need to ever enter the else clause of the if statement.
Actually, if you think it a bit through, the source code of Listing 6 is
equivalent to the source code of Listing 7. In fact, if we really wanted to
follow the TDD principle that we always should aim for the simplest
possible implementation that could work, we should have gone from
Listing 4 to Listing 7, not Listing 5. We were probably still too eager to
start programming, even though we tried to do our best to follow the
principles of TDD, and jumped into implementing the full function one
unit test too early.
So where do we go from Listing 7? We add a new unit test, just like TDD
says we should do. Listing 8 shows the fourth unit test – we just pick a

vector where the last element isn’t the largest one – and we can finally
finish the implementation of this function.
So where did things really go wrong? There is, in fact, a subtlety in Listing
5 (and Listing 8) that tricked our test coverage tool into believing that we
really had 100% branch coverage. Take a look at Listing 9, which is
basically the same as Listing 5, but with a small yet important difference
in the first line of the loop. Instead of using the value of the first element
of the vector as the initial value for the local variable m, it uses -∞. This
may look like a detail, but it does make a huge difference. The most
important difference is that with the three unit tests from Listing 5 only,
the implicit else clause of the if statement can’t be reached. Indeed, the
condition of the if statement will evaluate to true in every iteration of
every unit test. As a result, if we had chosen to implement the function as
shown in Listing 9, and then run and checked the test coverage, we would
never have said that we had 100% branch coverage, and we would have
known that there was still missing at least one test case.
This simple example taught us that even when our test coverage tool
reports that we have 100% test coverage both in terms of lines and
branches, mutation testing may still find problems. This is the reason why
I wrote earlier that mutation testing sometimes gives the impression that
it leads to a ‘more than 100% test coverage’, as if 100% test coverage isn’t
enough. Fundamentally, the mutant of Listing 6 warned us that there was
something wrong with the unit tests – in this case that there was at least
one unit test still missing.

Listing 6

Assertion: max([0]) = 0
Assertion: max([1]) = 1
Assertion: max([1, 2]) = 2

def max(a) {
 m ← a.first;
 foreach (e ∈ a)
 if (true)
 m ← e;
 return m;
}

Listing 7

Assertion: max([0]) = 0
Assertion: max([1]) = 1
Assertion: max([1, 2]) = 2

def max(a) {
 return a.last;
}

Listing 8

Assertion: max([0]) = 0
Assertion: max([1]) = 1
Assertion: max([1, 2]) = 2
Assertion: max([2, 1]) = 2
def max(a) {
 m ← a.first;
 foreach (e ∈ a)
 if (e > m)
 m ← e;
 return m;
}

Listing 9

Assertion: max([0]) = 0
Assertion: max([1]) = 1
Assertion: max([1, 2]) = 2

def max(a) {
 m ← -∞;
 foreach (e ∈ a)
 if (e > m)
 m ← e;
 return m;
}

18 | Overload | April 2012

FEATUREFILIP VAN LAENEN

mutation testing can quickly become very
time-consuming if we don’t have a good

strategy to select the right unit tests
As a side-effect, this example also showed that it’s all too easy to break
TDD’s principle that you should write only the simplest possible source
code to make the unit tests pass. When I do presentations about mutation
testing, the audience usually understands that something must be wrong
in Listing 5, but only because otherwise it would just make a silly example.
Of course, the presentation ‘tricks’ the audience into the wrong track, just
like this article did with you (or at least tried to), but I’m convinced that
most developers would never bother to write more than the first three unit
tests if they had to implement a function like this. In fact, it’s not easy to
explain to people that they really need a fourth unit test for this type of
function when they’re not familiar with the concept of mutation testing. I
consider it one of the main benefits of mutation testing that it sometimes
‘disturbs’ me when it throws a mutant like the one from Listing 6 at me.
By now I’ve learned that when a mutant refuses to disappear, mutation
testing is trying to tell me something, and I’m probably going to learn
something new.

Relation to other testing techniques
Before we dive into the techniques used by mutation testing and the tools
that exist, how does mutation testing relate to other testing techniques?
Obviously, mutation testing depends on unit testing, because it needs the
unit tests to run against the mutants. But in order to create good unit testing,
I think Test-Driven Development (TDD) is absolutely necessary too.
We already discussed the relation with test coverage, i.e. that mutation
testing is superior to test coverage and even can give an impression of a
‘more than 100% test coverage’. But that doesn’t mean mutation testing
eliminates the need to run test coverage as part of your build cycle. As we’ll
see later, mutation testing can consume a lot of resources, and it’s therefore
usually a good idea to run test coverage before mutation testing as a sort
of smoke test. If test coverage is low, mutation testing will almost certainly
find lots of mutants that will pass the unit tests.
As far as I know, there’s no relation or overlap between mutation testing
and static code analysis. One could imagine though that some of the
mutants produced by mutation testing will be caught by static code
analysis, e.g. when the mutation removed a statement closing a resource.
It would therefore make sense to run some sort of static code analysis on
the mutants, but I’m not aware of any mutation testing tools that do that
actively. It should be noted though that many compilers include some static
code analysis, and therefore run it implicitly as part of the compilation.
A lot of people confuse mutation testing with fuzz testing, but the two
testing techniques are quite different. Fuzz testing produces random sets
of input data, feeds them to the system, and then detects whether the system
crashes as a consequence of the input data. Traditionally, it has been used
a lot as part of the security testing of programmes, but it has other
applications too. The main differences between the two techniques are that
fuzz testing operates on the input data, whereas mutation testing mutates
the source code, and that fuzz testing often is a random process while
mutation testing is a deterministic process.
That last aspect – the deterministic nature of mutation testing – often
surprises people too. Most people connect the term ‘mutation’ almost

always with cosmic rays, radioactivity, Chernobyl, chickens with three
legs, and therefore random processes. But what really happens during
mutation testing is that a tool goes through all the code in the system, tries
to apply a fixed set of mutations on every piece of code, and then runs the
unit tests on the resulting mutants. There’s no randomness in where the
mutations are applied, and there’s no randomness in what sort of mutations
are applied.

Is mutation testing new?
The answer to the question is a simple no. The technique was already
described in the seventies [Lipton71, Lipton78] but didn’t gain much
success at that time. The problem was that many obstacles had to be
overcome for it to become practical to run in real-life projects. First of all,
unit testing didn’t break through until the turn of the century, and even then
we had to wait a few years before TDD started to become mainstream. But
as we’ll see, mutation testing can quickly become very time-consuming if
we don’t have a good strategy to select the right unit tests, and therefore
it remained mostly an academic tool until a few years ago. As a
consequence of that, nobody ever tried to integrate mutation testing into
an IDE, and even today that’s a part that’s still missing. This means that
even though mutation testing was described more than forty years ago, it
hasn’t been until very recently that it has become possible to actually use
it in real projects.

Mutation testing techniques
If you want to build a mutation testing tool, there are three aspects that you
have to consider. First of all, you need a way to inject mutations into the
original source code in order to create mutants. You also have to consider
which types of mutations you want to use. Not all types are useful, and
especially the ones that can create equivalent mutations can be
problematic. Finally, you need to find a strategy to select the unit tests to
be run against the mutants. As we’ll see, without a good unit test selection
strategy mutation testing quickly becomes infeasible for real systems. The
key properties for any mutation testing tool are its efficiency and
performance: how good is it at creating mutants, and how fast is it at
processing all these mutants?
Starting with the injection of the mutations, there are basically two
alternatives available: source code and binary code mutation. Source code
mutation makes the changes in the source code, and then compiles the
mutated code. The big advantage of source code mutation is that it can be
done using text manipulation, but the big disadvantage is that compilation
takes time, even if it could be done as an incremental compilation on top
of the original compiled code. Source code mutation has also the advantage
that it’s easy to output the generated mutant, e.g. when it survives all the
unit tests. On the other hand, with source code mutation the mutation
testing tool has to be able to handle the compilation round, including
compilation errors that may occur.
Binary code mutation is faster, because it operates directly on the already
available original compiled source code, but it requires that you know how
to manipulate the binary code correctly. And even then, it’s possible a
April 2012 | Overload | 19

FEATURE FILIP VAN LAENEN

find an order in which to run the unit
tests such that those that fail are run as
early as possible
20 | Overload | April 2012

mutation leads to invalid binary code, which has to be handled by the
mutation testing tool. Outputting the source code for the mutant isn’t a
straightforward job, but requires a decompilation round. This
decompilation can be as simple as knowing how to map a binary code
mutation to a source code mutation though.
But how about those compilation errors, or the invalid binary code? A
problem like this can occur when a mutation in the source code leads to
lines that can’t be reached, and the compiler detects such situations. Also,
binary code can become invalid, e.g. due to a mutation such that a literal
falls outside its legal range. Both cases are good cases though, because just
like a failing unit test, they indicate that the mutated source code mattered
for the system’s behaviour. In fact, since compilation errors or the
invalidity of binary code will be detected long before the first unit test is
run against the mutant, they’re probably the best thing you can hope for
when you’re generating a mutant.
It should also be mentioned that there is a middle road between source code
and binary code mutation which is particularly relevant for interpreted
languages. For these languages, there is no real binary code, but it’s often
possible to access the parsed code as an abstract syntax tree (AST). This
can be very useful in a language like Ruby, which allows in its syntax many
ways to express what’s fundamentally the same thing in the parsed code.
This makes it easier to write the mutation testing tool, while at the same
time speeding up the generation of mutants.
The next thing we have to consider when we want to build a mutation
testing tool, is what types of mutations we want to inject. Basically,
mutations fall into three categories. Some mutations never change a
system’s behaviour, like e.g. changing the value of an internal constant or
flag that’s only used for flow control. We don’t really care whether we used
0, 1 or any other integer value, as long as it’s unique within its context.
Your unit tests shouldn’t care about this either.
Other mutations can change the system’s behaviour, but do not always do
so. Switching between the less-than (<) and less-than-or-equal-to sign (≤)
is an example of that, as we already showed in the beginning of this article.
The problem with these types of mutations is that it’s hard to find out when
they do change the system’s behaviour, and when they don’t. In general,
one has to do it manually, and therefore this type of mutations isn’t very
useful when we want to automate mutation testing.
Finally there are mutations that always change the system’s behaviour –
or should we say: should always change the system’s behaviour. We
already mentioned switching between the less-than (<) and greater-than-
or-equal sign (≥). Here’s a short list with mutation types that are guaranteed
to change a system’s behaviour, that is, if the code can be reached and
actually matters:

Negation of comparisons, like switching between = and ≠, < and ≥,
and > and ≤.
Negation of boolean conditions (¬)
Short-cutting boolean conditions by replacing them with True or
False

Switching between addition and subtraction, and multiplication and
division
Switching between the increment and decrement operator

Simply removing a line should work too, but not every mutation testing
tool tries to do that. Mind though that you have to watch out that you’re
not removing a variable declaration and therefore simply generating a
compilation error. On the other hand, removing a whole line of code is
often such a big change to the source code that you’re almost guaranteed
to find a unit test that will fail. It’s therefore usually better to save the effort
and rather concentrate on mutations that have a better chance of producing
mutants passing all unit tests.
Finally, we have to find a good strategy to select the unit tests that we’re
going to run against the mutant. For every generated mutant, the strategy
should find an order in which to run the unit tests such that those that fail
are run as early as possible. This is crucial in order for the mutation testing
tool to be useful, because a brute-force approach, i.e. just running all unit
tests against all mutants in a random order will quickly become very time
and resource consuming.
Let’s illustrate the complexity of the unit test selection problem with a
simple example. Assume our system consists of 50 classes, with 20 unit
tests per class, and each unit test taking 1 ms on average. It’s easy to verify
that each full round with unit tests will take 1 s to complete. Now imagine
that for every class, 10 mutants can be generated. If we use the brute-force
strategy, i.e. we run all unit tests against all mutants, we’ll need up to
6 m 20 s to complete the mutation testing round.
A smarter strategy to run the mutation testing round would be to run only
those unit tests that are relevant for the class that was mutated in order to
generate the mutant. In that case, we run only 20 unit tests of 1 ms for the
50 classes with 10 mutants, and that will take only 10 s in total.
Now let’s scale the system up from 50 to 500 classes to make things a bit
more realistic. When we do the same exercise as above, we find out that
the brute-force strategy will need up to 14 hours to complete one round of
mutation testing, whereas the second strategy will use less than 2 minutes.
Clearly, just running all unit tests on all mutants isn’t a good strategy. Even
for a relatively small system with relatively fast unit tests, running a round
of mutation testing becomes quickly infeasible.
We can estimate the complexity of mutation testing in the following
manner. Assume the system has c classes, and that there are f function
points per class. Clearly, f must be equal to or larger than 1. Assume further
that we have t unit test per function point, and can generate µ mutants per
function point. Again, both t and µ will be equal to or larger than 1. In fact,
in contrast to f, which can be arbitrarily large, t and µ will in general be
rather small numbers. There are normally not that many unit tests to be
written for a single function point, and in the same way there won’t be that
many mutants that can be generated per function point.
Using the symbols from above, it is easy to see that there are c·f·t unit tests
in the system, and c·f·µ mutants. This means that for the brute-force
strategy, there are potentially c·f·t × c·f·µ = c²·f²·t·µ unit tests to be run in
a single mutation testing round. Notice that this result is quadratic both in

FEATUREFILIP VAN LAENEN

This gives exact information about which unit tests are
relevant for mutations in a given source code line, and

this in a completely automated manner
terms of the number of classes and the number of function points per class,
i.e. the total number of function points. This explains the explosion in the
time required to run mutation testing in the example above: multiplying
the system’s functionality by a factor of 10 multiplies the resources needed
to run mutation testing by a factor of 100.
Now consider the smarter strategy from above. It runs only those unit tests
that are related to the class that has been mutated, and therefore the number
of unit tests is reduced to f·t × c·f·µ = c·f²·t·µ. This number is still quadratic
in the number of function points per class, but only linear in the number
of classes. The ideal strategy would of course be to run only those unit tests
that are related to the function point that has been mutated, and in that case
the number is even further reduced to t × c·f·µ = c·f·t·µ. The lesson to be
learned from these two results is that it’s important to narrow down the
number of unit tests that have to be run per mutation as much as possible
if we want to keep mutation testing a feasible task even for realistically
large systems.
As an aside-note, these results also suggest that it’s a good idea to keep f,
the number of function points per class, as small as possible in the per-class
strategy. This is basically the same thing as saying that your classes should
be small, which is a recommendation that shouldn’t be too unfamiliar to
the reader. It’s nice to see that what’s considered a good practice anyway
can help improve the performance of mutation testing too.
Luckily, there are a number of strategies that can be used to find those unit
tests for a mutant that have a reasonable chance of failing, and some of
these strategies work quite well. First of all, one can use hints, e.g. in the
form of annotations provided by the developer, as to which unit tests relate
to which classes, parts of classes, or even modules. This can also be
automated, e.g. by package and class name matching. If there’s a
convention that all unit tests reside in the same package as the source code
that they’re supposed to test, this can limit the number of unit tests per
mutant drastically in an automated manner. If there’s a convention that the
unit tests for a class named Foo reside in a class named FooUnitTest,
or perhaps in classes with names following the pattern Foo*Test, this will
limit the number of unit tests per mutant even further down.
Another way to reduce the number of unit tests per mutant is to use a code
coverage tool, and record which lines of source code are covered by which
unit test. This gives exact information about which unit tests are relevant
for mutations in a given source code line, and this in a completely
automated manner. On the other side, this requires interaction with a code
coverage tool, or if that’s not possible, the implementation of a code
coverage tool that is part of the mutation testing tool. Usually, the effort
required to do this is a good investment, because it will improve the
performance of the mutation testing tool dramatically.
One can also use automated learning to record which unit test failed for
which mutant. Every time a mutant is generated, the tool looks up which
unit test failed in the previous round, and tries to run that unit test again
as the first one. Of course, this requires some bookkeeping, but if it works,
the number of unit tests to be run in a single mutation round can be reduced
to the absolute minimum c·f·µ, i.e. simply the number of mutants.

So far we’ve dealt with how we can inject mutations, what kind of
mutations we can inject and how we select the unit tests that we want to
run against the mutant. In order to do this, we’ve had to deal with
compilation errors, invalid binary code, equivalent mutations and the
quadratically growing complexity of the problem. Could there be even
more problems that we have to handle in order to build a good mutation
testing tool?
Actually, there’s still one problem left. Have a look at an implementation
of the factorial function in Listing 10, together with one of its more
interesting mutants. The mutant is generated by short-cutting the condition
of the while-loop.
At first glance, this mutant has an infinite loop. However, when you think
of it, there are a number of things that can happen, and not only does it
depend on the programming language, but sometimes also on the compiler
or the interpreter. If we’re really lucky, the compiler spots the infinite loop,
throws a compilation error, and we don’t even have to run a unit test at all.
Otherwise, we might get an exception when the multiplication hits the
upper limit of the range of integers. Or it could be that the programming
language allows arbitrarily long integers, and that the system continues to
run until the multiplication generates such a large number that it doesn’t
fit into memory any more. Alternatively, the multiplication overflows, and
the function continues to run forever. This means that there is indeed a
potential for a real infinite loop in this mutant, but even if it’s not
completely infinite in the programming language, the compiler or the
interpreter of your choice, it may take a long time before the final exception
is thrown.
This means that we have to be able to detect infinite (or pseudo-infinite)
loops. Luckily, that’s not so difficult: we just have to measure the time a
unit test normally takes, and decide how much longer it can take when we
run it against a mutant before we interrupt it, and assume that the mutant

Listing 10

def factorial(n) {
 i ← 0;
 f ← 1;
 while (i < n) {
 i++;
 f ← f × i;
 }
 return f;
}
def factorial_mutant(n) {
 i ← 0;
 f ← 1;
 while (true) {
 i++;
 f ← f × i;
 }
 return f;
}

April 2012 | Overload | 21

FEATURE FILIP VAN LAENEN
contained a (pseudo-)infinite loop. A time factor of three may be
reasonable, but we should also take care that we measure actual CPU time,
and not just time elapsed. We don’t want to interrupt a unit test that took
a long time just because the operating system decided to allocate the CPU
to another process with a higher priority.
Once we’ve detected a (pseudo-)infinite loop, we should be happy though.
Sure, it takes some extra time compared to a unit test that passes, but again
we discovered that the mutation at hand changed something in the system
that mattered, and we can move on to the next mutant.

Mutation testing tools
Unfortunately, there aren’t so many good tools available to run mutation
testing, but the situation has been getting better and better these last years.
If you’re a Ruby programmer, you should check out Heckle [Ruby]. It
integrates with Test::Unit and rSpec, and is usually run from the command
line to run a set of unit tests on a method or a class. Mutations include
booleans, numbers, string, symbols, ranges, regular expressions and
branches. It has good to-the-point reporting and writes out the first mutant
it can find that passes all the unit tests in a clear manner, with good
performance. There is, however, virtually no documentation available.
I’ve been able to write a manually configurable Rake task for Heckle, but
only by letting Ruby call out to the command-line and catching and parsing
whatever is output by Heckle. It’s possible there’s a better way to do this,
but getting it right can be a difficult job without any real documentation.
Boo_hiss [BooHiss] is another mutation testing tool for Ruby, but since it
hasn’t had a single check-in for the last three years now, the project doesn’t
look like it’s very much alive.
I’ve recently started to experiment with PIT [Pitest], a Java tool that
integrates with both JUnit and TestNG. It can be run from the command-
line, but it also has a plug-in for Maven. It’s highly configurable, has some
good defaults, and a website with clear documentation. PIT operates on
the byte code and runs pretty fast thanks to a pre-round with a test coverage
tool in order to map out which unit tests are relevant for mutations in which
parts of the source code. Mutations include conditionals boundary, the
negation of conditions, mathematical operators, increment operators,
constants, return values, void and non-void method calls, and constructor
calls. If you’re a Java programmer and want to have a try at mutation
testing, this is the tool I recommend for you. And since the project started
not so long ago, there’s still a lot of activity going on and many chances
to get involved in the development of the tool.
Other mutation testing tools for Java include Jester [Jester], Jumble
[Jumble], Javalanche [Javalanche] and µJava [Mujava]. None of the
projects seem to be alive any more, and I wouldn’t say they’re an
alternative for PIT. Jester integrates only with JUnit, and operates on the
source code, which means that it’s rather slow. Jumble is faster than Jester
because it manipulates the Java byte code, but since it has no plug-in for
Maven yet, it has to be run from the command-line. Javalanche and µJava
have always seemed cumbersome to me, and seem mainly to be two
academic exercises.
Jester has two ports to other languages: Nester [Nester] for C# and Pester
for Python. A colleague of mine tested out Nester, and found quickly out
that it works only for an older version of .Net. It’s therefore probably not
very relevant for any ongoing project, but could be a nice to play with and
a good start if you want to create a new mutation testing tool for C#.
Mutagenesis [Mutagenesis] is a mutation testing tool for PHP, but since
I’m not familiar with PHP, I don’t know whether it’s any good.
I’m not a C++ programmer either, so I can only point the readers to
CREAM [Cream] and PlexTest [Plextest] and encourage them to try the
two tools out. If anybody does, or finds another tool for C++, I’m pretty
sure the editor of Overload would be happy to receive an article with an
experience report.

Improvements
As the reader may have guessed, I’m already glad there are mutation
testing tools available that are usable at all. Indeed, these last years the
evolution has been huge. Not so long ago, even the best mutation testing

tools could not be considered as much more than proofs of concept,
whereas today it is fully possible to use mutation testing tools in real-life
projects. But there is still lots of room for improvement. Integration with
common development environments is high on the list, together with better
reporting on the mutants that don't make any of the unit tests fail. Unit test
selection strategies seem to be becoming better and better. Parallellisation
is certainly an issue that will be addressed in upcoming versions and future
tools, since mutation testing is such a CPU intensive process.

Personal experiences and recommendations
So how can you get started with mutation testing? First of all, select a good
tool. If you’re a Java programmer, try PIT, and if you’re a Ruby
programmer, try Heckle. It’s important that the tool is easily configurable
and flexible, and that it can output mutants that survive the unit tests in a
clear and meaningful manner. Start on a small code base, and ideally, start
using mutation testing from day 1 in the project. If you start using it on an
on-going project, you’ll have the same problem as when you run static code
analysis for the first time in the middle of the project: the tool will find an
overwhelmingly long list of problems.
Once you’ve started using mutation testing, believe the tool when it reports
that a mutant passed all the unit tests. And if you don’t believe it, try to
prove that it’s wrong before you dismiss the mutant. It has happened to
me a couple of times that the tool presented me with a mutant that I simply
couldn’t believe passed all the unit tests, but these have also been the
occasions where I learned something new about programming and code
quality.
As with other code quality techniques, when the tool finds a problem, fix
the problem. And embrace the ‘more than 100% test coverage’. Mutation
testing leads to path coverage, more than simple line or branch coverage.
When you use it, you’ll notice that you’ll write less, but more condensed
code, with more and better unit tests. The reason for this is simple: if you
write an extra line of code, there will be a couple of extra mutants, and some
of them may pass the unit tests. Mutation testing will also influence your
coding style, such that even when you work on a project where you can’t
use mutation testing, you’ll write better code. I’ve used mutation testing
for a couple of years now, mostly Heckle in Ruby, but recently also PIT
in Java, and I feel it has helped me become a much better programmer than
otherwise would have been the case.

References
[Andrews05] Andrews, Briand, Labiche, ICSE 2005
[BooHiss] See https://github.com/halorgium/boo_hiss
[Cream] See http://galera.ii.pw.edu.pl/~adr/CREAM/index.php
[Frankl97] Frankl, Weiss, Hu, Journal of Systems and Software, 1997
[Geist92] Geist et. al., ‘Estimation and Enhancement of Real-time

Software Reliability through Mutation Analysis’, 1992
[Javalanche] See http://www.st.cs.uni-saarland.de/~schuler/javalanche/
[Jester] See http://jester.sourceforge.net/ and http://sourceforge.net/

projects/grester/
[Jumble] See http://jumble.sourceforge.net/index.html
[Lipton71] R. Lipton, Fault Diagnosis of Computer Programs, 1971
[Lipton78] R. Lipton et. al., Hints on Test Data Selection: Help for the

Practicing Programmer, 1978
[Mujava] See http://cs.gmu.edu/~offutt/mujava/
[Mutagenesis] See https://github.com/padraic/mutagenesis
[Nester] See http://nester.sourceforge.net/
[Pitest] See http://pitest.org/
[Plextest] See http://www.itregister.com.au/products/plextest_detail.htm
[Ruby] See http://rubyforge.org/projects/seattlerb/ and

http://docs.seattlerb.org/heckle/
[Wah95] K. Wah, ‘Fault Coupling in Finite Bijective Functions’, 1995
[Walsh85] Walsh, Ph.D. Thesis, State University of New York at

Binghampton, 1985
22 | Overload | April 2012

http://www.st.cs.uni-saarland.de/~schuler/javalanche/
https://github.com/halorgium/boo_hiss
http://jester.sourceforge.net/ and http://sourceforge.net/projects/grester/
http://jester.sourceforge.net/ and http://sourceforge.net/projects/grester/
http://jumble.sourceforge.net/index.html
http://galera.ii.pw.edu.pl/~adr/CREAM/index.php
http://cs.gmu.edu/~offutt/mujava/
https://github.com/padraic/mutagenesis
http://nester.sourceforge.net/
http://pitest.org/
http://www.itregister.com.au/products/plextest_detail.htm
http://rubyforge.org/projects/seattlerb/
http://docs.seattlerb.org/heckle/

FEATUREPETE BARBER
Unit Testing Compilation Failure
We usually test that our code does
what we expect. Pete Barber tries
to prove that his code fails to compile.
here is an issue with the use of Window’s COM types being used with
STL containers in versions of Visual Studio prior to 2010. The crux
of the matter is that various COM types define the address-of

operator and instead of returning the real address of the object they return
a logical address. If the STL container re-arranges its contents this can lead
to corruption as it can unwittingly manipulate an object at the incorrect
address.
The prescribed solution to this problem is to not place the COM types
directly into the STL container but instead wrap them with the ATL
CAdapt1 class. The merit or not of this approach is not the subject of this
article. Instead, assuming this path is being followed, there are two
important aspects to address:

Firstly, is there a way to prevent incorrect usage of the containers?
Secondly, assuming this is possible, is there a way to make sure it
covers the various permutations of STL containers and COM types
that are being used?

It turns out that the first issue is easily solved using template specialization.
As shall be shown, this works very well to the extent that it prevents
compilation. This is fine except that to write a set of unit tests for this
requires them to handle the success case which is compilation failure!
The particular issue required finding uses of the following classes of which
all but the first are class templates:

CComBSTR
CComPtr<>
CComQIPtr<>
_com_ptr_t<>

When used with the following STL containers:
std::vector
std::deque
std::list
std::map
std::multimap
std::set
std::multiset

It wasn’t necessary to explicitly handle std::stack, std::queue and
std::priority_queue as these are implemented in terms of the
previous classes.
In order to simplify the explanation the scope of the problem will be
reduced to the use of the following custom type:
 class Foo {};

used in std::vector , i.e.2

 std::vector<Foo> vecOfFoo;

Part 1 – Detecting the problem
Preventing usage of std::vector<Foo> is fairly simple. All that’s
required is to provide a specialization of std::vector for Foo that
contains a private constructor so it can’t be constructed (for example, see
Listing 1).
This now causes a compilation error, e.g.
 error C2248: 'std::vector<_Ty>::vector' : cannot
 access private member declared in class
 'std::vector<_Ty>'

The specialization needs to be present before any usage. This is achieved
by creating a new file containing the specialization called prevent.h that
also includes vector. It also contains the declaration class Foo; to avoid
circular dependencies. Foo.h is then modified to include prevent.h.
The specialization is in fact a partial specialization as the type parameter
for the allocator remains. If it were fully specialized then the specialization
would be
 std::vector<Foo, std::allocator<Foo> >

This would not be sufficient to catch an instantiation that uses a custom
allocator or, bizarrely, std::allocator instantiated with a type
different to Foo.
In the real world situation prevent.h would be extended to include all
of the specified containers and contain specializations for all the
combinations of container and payload. This has the downside that every
inclusion of prevent.h pulls in the headers for all the STL containers
and requires parsing all the specializations.
This isn’t a complete solution. The Foo class is equivalent to CComBSTR
above as they’re both concrete classes. Preventing the use of a class
template in a container which is also a template is a little more complex.
The scope of the example problem can be extended to a class template, e.g.
 template<typename T> class Bar {};

To prevent this being used as a type parameter to std::vector the
partial specialization in Listing 2 can be used. This will detect the use of
any type used with Bar (for example, as shown in Listing 3).

1. http://msdn.microsoft.com/en-us/library/bs6acf5x(v=VS.90).aspx
2. This class does not exhibit the address-of problem of the COM

classes. This doesn’t matter as the techniques to be shown do not
detect the presence of the address-of operator but instead detect
named classes.

T
Listing 1

template<typename A> class std::vector<Foo, A>
{
private:
 vector();
};

Pete Barber has been programming in C++ since before templates
and exceptions, C# since V1 & BASIC on a ZX Spectrum before then.
He currently writes software for a living but mainly for fun.
Occasionally hye writes about it too at petebarber.blogspot.com and
CodeProject.com. He can be contacted at pete.barber@gmail.com.
April 2012 | Overload | 23

FEATURE PETE BARBER

various COM types define the address-of
operator and instead of returning the
real address of the object they return a
logical address instead
Part 2 – Testing the detection mechanism
Some basic manual testing with the previous samples (well, the real types
in question) gives a general feeling that the mechanism is working, i.e. any
use causes a compilation failure. However, when all the different
combinations are considered there are too many to test manually. This is
very true if a test program is written that contains examples of each, as
compilation will fail at the first usage: a manual cycle of compile, fail,
comment-out failed code and move onto the next failure is required.
This calls for some form of automated testing. At this level the most
familiar and applicable is Unit Testing. Unit Testing is generally
considered to be automatic testing, which causes a problem as automating
the manual tests is not just a case of creating a set of fixtures. This is
because a successful test results in a compilation failure!
Using various template based mechanisms and techniques, it is possible
to check that the detection mechanism does indeed capture all of the
combinations without explicitly compiling – well, failing to compile –
each combination.
As it seems impossible at the normal compilation level to detect code that
will not compile, the next best thing is to attempt to detect the presence of
code that will prevent compilation. In this case it means testing for the
presence of the specializations.

SFINAE
The first mechanism required is Substitution Failure Is Not An Error
(SFINAE) [Wikipedia]; a concept introduced by Davide Vandevoorde
[Vandevoorde02]. To facilitate this, a line of code must be added to the
partial specialization. Any other specialization (full or partial) would also
require this line adding (see Listing 4).

A class is created with an overloaded method which returns true if a
specialized version of std::vector is detected and false otherwise
(see Listing 5).
Its use is as follows:
 typedef std::vector<Bar<int>> BarInt_t;

 const bool detectVectorOfBarInt =
 DetectPreventionWithSFINAE::Detect<BarInt_t>(
 BarInt_t());

If the type passed to DetectPreventionWithSFINAE does not contain
the typedef self_t then the first version of Detect is invalid code.
Rather than this being an error, the compiler just removes this overload
from the available overload set and the method is not instantiated. This
leaves the other overload, which as it has ellipses for its argument will
match anything, but only if nothing more specific is available. In this case
it is the only method, meaning it will be used and when invoked it will
return false. The removal of the invalid code rather than a compilation
error is SFINAE.
In the case where the type passed does contain the typedef self_t,
i.e. it is one of the specializations, then both overloads will be valid but as
the first one is the better match it will be chosen. When this method is
invoked it will return true.

Listing 2

template<typename T, typename A>
class std::vector<Bar<T>, A>
{
private:
 vector();
};

Listing 3

class Dummy {};

void OtherUsesOfBar()
{
 std::vector<Bar<int*> > vecOfBarIntPtr;
 std::vector<Bar<Dummy> > vecOfBarDummy;
 std::vector<Bar<const Dummy*> >
 vecOfBarDummyConstPtr;
}

Listing 4

template<typename A>
class std::vector<Foo, A>
{
private:
 vector();
public:
 typedef std::vector<Foo, A> self_t;
};

Listing 5

class DetectPreventionWithSFINAE
{
public:
 template<typename U>
 static bool Detect(const typename U::self_t)
 {
 return true;
 }

 template<typename U>
 static bool Detect(...)
 {
 return false;
 }
};
24 | Overload | April 2012

FEATUREPETE BARBER

Some of these techniques, despite being
fairly old, are still relatively unknown and

their use somewhat obscure
NOTE: The use of self_t is not fool proof. If its definition is neglected
from a specialization then an instance of that specialization will not match
that case. Conversely if an altogether different specialization of
std::vector is created which contains the same named typedef to
itself this will also match.

sizeof
Using SFINAE the presence of the specialization can be detected, but
unfortunately this requires creating an instance of it, which of course can’t
be done. In fact the example above is misleading as the code will not
compile. Additionally, assuming the code could compile, passing an object
to a method with ellipses as its argument has undefined results so this code
couldn’t be reliably used.
This seems to be almost back at square one: the presence of the prevention
code can be detected but it requires an instance of the specialization that
can’t be compiled in order to do so! However, examining the use of the
instance it becomes clear that the instance isn’t actually used. It’s only
needed in order to interrogate its type. This is the realm of Template Meta
Programming (TMP). A fair amount of TMP can be performed without
creating instances of types but in this case – as SFINAE is being used,
which is tied to the overloading of function templates – an instance that
can be passed as a parameter to a function template is required.
Fortunately the innovative use of sizeof as introduced by Andrei
Alexandrescu [Alexandrescu01] in his seminal work Modern C++ Design
can be used.3 ,4 This is shown in an updated version of the
DetectPrevention class (see Listing 6).
The key point is that if a type is used within the sizeof operator then the
compiler does not have to actually create an instance of it in order to
determine its size. As shown by Alexandrescu, the real magic is that
sizeof is not just limited to taking a type. It can be given an entire
expression which, as long as it results in a type (so a type name, a function
invocation, i.e. calling not just referencing a method that returns a value,
so non-void or a logical expression resulting in a Boolean), works.
Another essential bit of magic is the MakeT method. Even though an
instance is required for the overloaded DetectImpl methods, as these are
only ever referenced within the sizeof operator the instance doesn’t
actually need creating. If T() rather than the call to MakeT were specified
in the definition of Detect, e.g.
 static bool Detect()
 {
 return sizeof(DetectImpl<T>(T())) ==
 sizeof(Small);
 }

then this won’t compile as the compiler checks that a constructor is
available, and this is not the case as the specialization deliberately makes

it private. However, as sizeof only needs to calculate the size as opposed
to constructing an instance of T, the MakeT method provides the potential
to create one, which is sufficient. This is demonstrated by the fact there is
no definition.
The ‘no definition’ theme is extended to the DetectImpl methods, as
these too are never executed but purely evaluated at compile time. This is
important given the earlier statement that passing an object, in this case T,
to a method taking ellipses could lead to undefined results.
In the previous non-working example, the Detect methods return a
Boolean to indicate whether the specialization was detected or not. As the
DetectImpl methods have no implementation and are not invoked, it is
not possible for them to return a value. Instead, another technique from
Alexandrescu is used. This again returns to the use of sizeof, which in
this case evaluates the size of the return type of whichever overload of
DetectImpl was chosen. This is then compared to the size of the type
returned by the chosen method. If these are equal then it means the
overload of DetectImpl that requires the specialization was chosen; if
not, the other method was chosen. This use of the size comparison then
converts the application of SFINAE into a Boolean result, which can be
used at compile time.
Any differently sized types could have been used for return values;
however, as some can vary on a platform basis explicitly defining them
avoids any future problems, hence the use of Big and Small.5

At this point the presence or lack of the specialization can be detected as
shown in Listing 7.3. The explanation of how sizeof works in this context is derived from

this book, quite possibly almost verbatim. The application is different.
4. The combination of SFINAE and sizeof as used here was first

discovered by Paul Mensonides. 5. Typedefs of yes and no are also common.

Listing 6

template<typename T> class DetectPrevention
{
 typedef char Small;
 class Big { char dummy[2]; };

public:
 static bool Detect()
 {
 return sizeof(DetectImpl<T>(MakeT())) ==
 sizeof(Small);
 }

private:
 template<typename U> static
 Small DetectImpl(const typename U::self_t);
 template<typename U> static
 Big DetectImpl (...);

 static T MakeT();
};
April 2012 | Overload | 25

FEATURE PETE BARBER
Part 3 – What about the other STL Containers and
types?
The problem faced was the prevention and detection of a limited number
of types against a limited number of STL Containers. For the purposes of
the example the types to be placed in the containers are:

Foo
Bar<>

The partial specialization will catch every use of Bar<T> in production
code. As the set of T is effectively infinite, testing the detection of Bar<T>
used within the containers is limited to a representative set of types. In the
real world scenario, as the problematic template types were all wrappers
for COM objects, just using them with IUnknown sufficed. For this
example int will continue to be used. If a warmer feeling is required that
different instantiations are being caught then the examples can be extended
to use additional types.
At the moment, the use of Foo and Bar<> can be prevented and detected
in std::vector. This can be easily extended to the remaining applicable
STL Containers: deque, list, map, multimap, set and multiset, by
creating specializations for Foo and Bar<> in a similar manner to that of
std::vector.
The source is too long to show here for all the containers but is included
in the example code. In Listing 8 are the partial specializations for
std::vector and std::map to handle Foo and Bar<>.
To avoid repeating lots of test code another template mechanism is used.
This is template-templates. The code sample in Listing 9 shows a reduced
set of tests for detecting the prevention of Foo and Bar<int> when used
to instantiate a vector, deque, list, map and multimap.
The tests for the vector, deque and list are identical so rather than
repeating the code for each container type the container type is a template
parameter. This requires the use of template-template parameters as rather
than passing an instantiated template, i.e. a concrete type, a container to
test is passed instead. This is then instantiated with different types within
the test method, e.g. Foo and Bar<int>.

Conclusion
Attempting to create a Unit Test (well some form of automated test) to
determine if code wouldn’t compile without actually stopping it from
compiling was a daunting task. The application of various template
techniques showed that in combination this problem could be addressed.
Some of these techniques, despite being fairly old, are still relatively
unknown and their use somewhat obscure. This article shows just the
simple application of them can be used to solve practical problems.

Listing 7

#include <iostream>
#include <vector>
#include "prevent.h"
#include "bar.h"
#include "DetectPrevention.h"

int main()
{

 bool isPreventer =
 DetectPrevention<std::vector<Bar<int>>>
 ::Detect();

 std::cout << "isPreventer:" << isPreventer
 << std::endl;
}

Listing 8

// Prevent use of std::vector with Foo
template<typename A>
class std::vector<Foo, A>
{
private:
 vector();

public:
 typedef std::vector<Foo, A> self_t;
};

// Prevent use of std::vector with Bar<T>
template<typename T, typename A>
class std::vector<Bar<T>, A>
{
private:
 vector();

public:
 typedef std::vector<Bar<T>, A> self_t;
};

// Prevent use of std::map with Foo
template<typename T1, typename T2, typename T3>
class std::map<Foo, T1, T2, T3>
{
private:
 map();

public:
 typedef std::map<Foo, T1, T2, T3> self_t;
};

template<typename T, typename T2, typename T3>
class std::map<T, Foo, T2, T3>
{
private:
 map();

public:
 typedef std::map<T, Foo, T2, T3> self_t;
};

template<typename T2, typename T3>
class std::map<Foo, Foo, T2, T3>
{
private:
 map();

public:
 typedef std::map<Foo, Foo, T2, T3> self_t;
};

// Prevent use of std::map with Bar<T>
template<typename T, typename T1,
 typename T2, typename T3>
class std::map<Bar<T>, T1, T2, T3>
{
private:
 map();

public:
 typedef std::map<Bar<T>, T1, T2, T3> self_t;
};
26 | Overload | April 2012

FEATUREPETE BARBER
References
[Alexandrescu01] Alexandrescu, Andrei. Modern C++ Design: Generic

Programming and Design Patterns Applied. 2001.
[Vandevoorde02] Vandevoorde, David & Nicolai M. Josuttis. C++

Templates: The Complete Guide. 2002.
[Wikipedia] ‘Substitution failure is not an error.’ Wikipedia.

http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error

Listing 9

#include <iostream>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include "prevent.h"
#include "foo.h"
#include "bar.h"
#include "DetectPrevention.h"

using namespace std;

template<template<typename, typename> class CONT>
bool TestSimpleContainer()
{
 const bool detectFoo =
 DetectPrevention<CONT<Foo,
 allocator<Foo> > >::Detect();
 const bool detectBarT =
 DetectPrevention<CONT<Bar<int>,
 allocator<Bar<int> > > >::Detect();
 return detectFoo && detectBarT;
}

template<template<typename, typename,
 typename, typename> class MAP>
bool TestMap()
{
 typedef int Placeholder_t;

 typedef MAP<Foo, Placeholder_t, less<Foo>,
 allocator<pair<Foo,
 Placeholder_t> > > FooAsKey_t;
 typedef MAP<Placeholder_t, Foo,
 less<Placeholder_t>,
 allocator<pair<Placeholder_t,
 Foo> > > FooAsValue_t;
 typedef MAP<Foo, Foo, less<Foo>,
 allocator<pair<Foo,
 Foo> > > FooAsKeyAndValue_t;

Listing 8 (cont’d)

template<typename T, typename T1,
 typename T2, typename T3>
class std::map<T, Bar<T1>, T2, T3>
{
private:
 map();

public:
 typedef std::map<T, Bar<T1>, T2, T3> self_t;
};

template<typename T, typename T1,
 typename T2, typename T3>
class std::map<Bar<T>, Bar<T1>, T2, T3>
{
private:
 map();

public:
 typedef std::map<Bar<T>, Bar<T1>, T2, T3>
self_t;
};

Listing 9 (cont’d)

 const bool detectFooAsKey =
 DetectPrevention<FooAsKey_t>::Detect();

 const bool detectFooAsValue =
 DetectPrevention<FooAsValue_t>::Detect();

 const bool detectFooAsKeyAndValue =
 DetectPrevention<FooAsKeyAndValue_t>
 ::Detect();

 // Bar<int>
 typedef MAP<Bar<int>, Placeholder_t,
 less<Bar<int> >, allocator<pair<Bar<int>,
 Placeholder_t> > > BarAsKey_t;

 typedef MAP<Placeholder_t, Bar<int>,
 less<Placeholder_t>,
 allocator<pair<Placeholder_t,
 Bar<int> > > > BarAsValue_t;

 typedef MAP<Bar<int>, Bar<int>, less<Bar<int>>,
 allocator<pair<Bar<int>,
 Bar<int> > > > BarAsKeyAndValue_t;

 const bool detectBarAsKey =
 DetectPrevention<BarAsKey_t>::Detect();

 const bool detectBarAsValue =
 DetectPrevention<BarAsValue_t>::Detect();

 const bool detectBarAsKeyAndValue =
 DetectPrevention<BarAsKeyAndValue_t>
 ::Detect();

 return detectFooAsKey &&
 detectFooAsValue &&
 detectFooAsKeyAndValue &&
 detectBarAsKey &&
 detectBarAsValue &&
 detectBarAsKeyAndValue;
}

int main()
{
 cout << "vector:"
 << TestSimpleContainer<vector>() << endl;
 cout << "deque:"
 << TestSimpleContainer<deque>() << endl;
 cout << "list:"
 << TestSimpleContainer<list>() << endl;
 cout << "map:"
 << TestMap<map>() << endl;
 cout << "multimap:"
 << TestMap<multimap>() << endl;
}

April 2012 | Overload | 27

http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error

FEATURE MICHAEL RÜEGG
Refactoring Towards
Seams in C++
Breaking dependencies in existing code is hard. Michael
Rüegg explains how seams can help and provides new
automated refactorings for C++ to achieve them.
nwanted dependencies are a critical problem in software
development. We often have to break existing dependencies before
we can change some piece of code. Breaking existing dependencies

is also an important preliminary to introduce unit tests for legacy code —
according to Feathers definition code without unit tests [Feathers04].
Feathers’ seams help in reasoning about the opportunities that exist when
we have to break dependencies. The goal is to have a place where we can
alter the behaviour of a program without modifying it in that place. This
is important because editing the source code is often not an option (e. g.,
when a function the code depends on is provided by a system library).
C++ offers a wide variety of language mechanisms to create seams. Beside
the classic way of using subtype polymorphism which relies on
inheritance, C++ also provides static polymorphism through template
parameters. With the help of the preprocessor or the linker we have
additional ways of creating seams.
Once we have broken dependencies in our legacy code base by introducing
seams, our code is not relying on fixed dependencies anymore, but instead
asks for collaborators through dependency injection.
Not only has our design improved much, but we are now also able to write
unit tests for our code.
The seam types discussed in this article are often hard and time-consuming
to achieve by hand. This is why automated refactorings and IDE support
would be beneficial. The problem is that current C++ IDE’s do not offer
this in the extent we describe it here. Therefore, we will explain how to
create these seam types by applying refactorings which we have
implemented for our IDE of choice, Eclipse C/C++ Development Tooling
(CDT).

The classic way: object seam
Object seams are probably the most common seam type. To start with an
example, consider Listing 1 where the class GameFourWins has a hard
coded dependency to Die. According to Feathers’ definition, the call to
play is not a seam because it is missing an enabling point. We cannot alter
the behaviour of the member function play without changing its function
body because the used member variable die is based on the concrete class
Die. Furthermore, we cannot subclass GameFourWins and override
play because play is monomorphic (not virtual).
This fixed dependency also makes it hard to test GameFourWins in
isolation because Die uses C’s standard library pseudo-random number
generator function rand. Although rand is a deterministic function since
calls to it will return the same sequence of numbers for any given seed, it
is hard and cumbersome to setup a specific seed for our purposes.

The classic way to alter the behaviour of GameFourWins is to inject the
dependency from outside. The injected class inherits from a base class,
thus enabling subtype polymorphism. To achieve that, we first apply the
refactoring Extract Interface [Fowler99]. Then we provide a constructor
to pass the dependency from outside (we could also have passed an
instance of Die to play directly). The resulting code is shown in Listing 2.
This way we can now inject a different kind of Die depending on the
context we need. This is a seam because we now have an enabling point:
the instance of Die that is passed to the constructor of GameFourWins.

Leverage your compiler: compile seam
Although object seams are the classic way of injecting dependencies, we
think there is often a better solution to achieve the same goals. C++ has a
tool for this job providing static polymorphism: template parameters. With
template parameters, we can inject dependencies at compile-time. We
therefore call this seam compile seam.

U

Listing 1

// Die.h
struct Die {
int roll () const ;
};
// Die.cpp
int Die :: roll () const {
 return rand () % 6 + 1;
}
// GameFourWins .h
struct GameFourWins {
 void play (std :: ostream & os);
private :
 Die die;
};
// GameFourWins .cpp
void GameFourWins :: play (std :: ostream & os
 = std :: cout) {
 if (die. roll () == 4) {
 os << "You won !" << std :: endl ;
 } else {
 os << "You lost !" << std :: endl ;
 }
}

Michael Rüegg is a scientific assistant at the Institute for Software of
University of Applied Sciences Rapperswil. He is currently doing his
Master Thesis under the supervision of Prof. Peter Sommerlad. The
outcome of this thesis is Mockator.

Feathers characterises a seam as a place in our code base where we
can alter behaviour without being forced to edit it in that place. This has
the advantage that we can inject the dependencies from outside, which
leads to both an improved design and better testability. Every seam has
one important property: an enabling point. This is the place where we
can choose between one or another. There are different kinds of seam
types. We focus on object, compile, preprocessor and link seams in this

What is a seam?
28 | Overload | April 2012

FEATUREMICHAEL RÜEGG

The goal is to have a place where we can
alter the behaviour of a program without

modifying it in that place
The essential step for this seam type is the application of a new refactoring
we named Extract Template Parameter [Thrier10]. The result of this
refactoring can be seen in Listing 3. The enabling point of this seam is the
place where the template class GameFourWinsT is instantiated.
One might argue that we ignore the intrusion of testability into our
production code: we have to template a class in order to inject a
dependency, where this might only be an issue during testing. The
approach taken by our refactoring is to create a typedef which
instantiates the template with the concrete type that has been used before
applying the refactoring. This has the advantage that we do not break
existing code.
The use of static polymorphism with template parameters has several
advantages over object seams with subtype polymorphism. It does not
incur the run-time overhead of calling virtual member functions that can
be unacceptable for certain systems. This overhead results due to pointer
indirection, the necessary initialisation of the vtable (the table of pointers

to its member functions) and because virtual functions usually cannot be
inlined by compilers. Beside performance considerations, there is also an
increased space-cost due to the additional pointer per object that has to be
stored for the vtable [Driesen96].
Beside performance and space considerations, inheritance brings all the
well-known software engineering problems like tight coupling, enhanced
complexity and fragility with it [Sutter04, Meyers05]. Most of these
disadvantages can be avoided with the use of templates. Probably the most
important advantage of using templates is that a template argument only
needs to define the members that are actually used by the instantiation of
the template (providing compile-time duck typing). This can ease the
burden of an otherwise wide interface that one might need to implement
in case of an object seam.
Of course, there are also drawbacks of using templates in C++. They can
lead to increased compiletimes, code bloat when used naively and
(sometimes) reduced clarity. The latter is because of the missing support
for concepts even with C++11, therefore solely relying on naming and
documentation of template parameters. A further disadvantage is that we
have to expose our implementation (template definition) to the clients of
our code which is sometimes problematic.
Apart from these objections, we are convinced that this seam type should
be preferred wherever possible over object seams.

In case of emergency only: preprocessing seam
C and C++ offer another possibility to alter the behaviour of code without
touching it in that place using the preprocessor. Although we are able to
change the behaviour of existing code as shown with object and compile
seams before, we think preprocessor seams are especially useful for
debugging purposes like tracing function calls. An example of this is
shown in Listing 4 where we exhibit how calls to C’s malloc function
can be traced for statistical purposes.
The enabling point for this seam are the options of our compiler to choose
between the real and our tracing implementation. We use the option
-include of the GNU compiler here to include the header file malloc.h
into every translation unit. With #undef we are still able to call the
original implementation of malloc.
We strongly suggest to not using the preprocessor excessively in C++. The
preprocessor is just a limited text-replacement tool lacking type safety that

Listing 2

struct IDie {
 virtual ~ IDie () {}
 virtual int roll () const =0;
};
struct Die : IDie {
 int roll () const {
 return rand () % 6 + 1;
 }
};
struct GameFourWins {
 GameFourWins (IDie & die) : die(die) {}
 void play (std :: ostream & os = std :: cout) {
 // as before
 }
private :
 IDie & die;
};

Listing 3

template <typename Dice =Die >
struct GameFourWinsT {
 void play (std :: ostream &os = std :: cout){
 if (die. roll () == 4) {
 os << "You won !" << std :: endl ;
 } else {
 os << "You lost !" << std :: endl ;
 }
 }
private :
 Dice die;
};
typedef GameFourWinsT <Die > GameFourWins ;

Duck typing is the name of a concept that can be shortly described as
follows:

If something quacks like a duck and walks like a duck, then we
treat it as a duck, without verifying if it is of type duck.

Although duck typing is mainly used in the context of dynamically typed
programming languages, C++ offers duck typing at compile-time with
templates. Instead of explicitly specifying an interface our type has to
inherit from, our duck (the template argument) just has to provide the
features that are used in the template definition.

What is compile-time duck typing?
April 2012 | Overload | 29

FEATURE MICHAEL RÜEGG

Although from the language standpoint
the order in which the linker processes
the files given is undefined, it has to be
specified by the tool chain
causes hard to track bugs. Nevertheless, it comes in handy for this task.
Note that a disadvantage of this seam type is that we cannot trace member
functions. Furthermore, if a member function has the same name as the
macro the substitution takes place inadvertently.

Tweak your build scripts: link seam
Beside the separate preprocessing step that occurs before compilation, we
also have a post-compilation step called linking in C and C++ that is used
to combine the results the compiler has emitted. The linker gives us another
kind of seam called link seam [Feathers04].
Myers and Bazinet discussed how to intercept functions with the linker for
the programming language C [Myers04]. Our contribution is to show how
link seams can be accomplished in C++ where name mangling comes into
play. We present three possibilities of using the linker to intercept or
shadow function calls.
Although all of them are specific to the used tool chain and platform, they
have one property in common: their enabling point lies outside of the code,
i.e., in our build scripts. When doing link seams, we create separate
libraries for code we want as a replacement. This allows us to adapt our
build scripts to either link to those for testing rather than to the production
ones [Feathers04].

Shadow functions through linking order
In this type of link seam we make use of the linking order. Although from
the language standpoint the order in which the linker processes the files
given is undefined, it has to be specified by the tool chain [Gough04]: ‘The
traditional behaviour of linkers is to search for external functions from left to
right in the libraries specified on the command line. This means that a library
containing the definition of a function should appear after any source files
or object files which use it.’

The linker incorporates any undefined symbols from libraries which have
not been defined in the given object files. If we pass the object files first
before the libraries with the functions we want to replace, the GNU linker
prefers them over those provided by the libraries. Note that this would not
work if we placed the library before the object files. In this case, the linker
would take the symbol from the library and yield a duplicate definition
error when considering the object file.
As an example, consider these commands for the code shown in Listing 5.
 $ ar -r libGame.a Die.o GameFourWins.o
 $ g++ -Ldir /to/ GameLib -o Test test.o
 shadow_roll.o -lGame

The order given to the linker is exactly as we need it to prefer the symbol
in the object file since the library comes at the end of the list. This list is
the enabling point of this kind of link seam. If we leave shadow_roll.o
out, the original version of roll is called as defined in the static library
libGame.a.
We have noticed that the GNU linker for Mac OS X (tested with GCC
4.6.3) needs the shadowed function to be defined as a weak symbol;
otherwise the linker always takes the symbol from the library. Weak
symbols are one of the many function attributes the GNU tool chain offers.
If the linker comes across a strong symbol (the default) with the same name
as the weak one, the latter will be overwritten. In general, the linker uses
the following rules [Bryant10]:

1. Not allowed are multiple strong symbols.
2. Choose the strong symbol if given a strong and multiple weak

symbols.
3. Choose any of the weak symbols if given multiple weak symbols.

With the to be shadowed function defined as a weak symbol, the GNU
linker for Mac OS X prefers the strong symbol with our replacement code.
The following shows the function declaration with the weak attribute.
 struct Die {
 __attribute__ ((weak)) int roll () const ;
 };

This type of link seam has one big disadvantage: it is not possible to call
the original function anymore. This would be valuable if we just want to
wrap the call for logging or analysis purposes or do something additional
with the result of the function call.

Listing 4

// malloc .h
ifndef MALLOC_H_
define MALLOC_H_
void * my_malloc (size_t size ,
 const char * fileName , int lineNumber);
define malloc (size) my_malloc ((size),
 __FILE__ , __LINE__)
endif
// malloc .cpp
include " malloc .h"
undef malloc
void * my_malloc (size_t size ,
 const char * fileName , int lineNumber) {
 // remember allocation in statistics
 return malloc (size);
}

Listing 5

// GameFourWins .cpp and Die.cpp as in Listing 1
// shadow_roll .cpp
include " Die.h"
int Die :: roll () const {
 return 4;
}
// test .cpp
void testGameFourWins () {
 // ...
}

30 | Overload | April 2012

FEATUREMICHAEL RÜEGG

we try to achieve a generic solution and do
not want to specify a specific library here
Wrapping functions with GNU’s linker
The GNU linker ld provides a lesser-known feature which helps us to call
the original function. This feature is available as a command line option
called wrap. The man page of ld describes its functionality as follows:
‘Use a wrapper function for symbol. Any undefined reference to symbol
will be resolved to __wrap_symbol. Any undefined reference to
__real_symbol will be resolved to symbol.’
As an example, we compile GameFourWins.cpp from Listing 1. If we
study the symbols of the object file, we see that the call to Die::roll –
mangled as _ZNK3Die4rollEv according to Itanium’s Application
Binary Interface (ABI) that is used by GCC v4.x – is undefined (nm yields
U for undefined symbols).
 $ gcc -c GameFourWins.cpp -o GameFourWins.o
 $ nm GameFourWins.o | grep roll
 U _ZNK3Die4rollEv

This satisfies the condition of an undefined reference to a symbol. Thus
we can apply a wrapper function here. Note that this would not be true if
the definition of the function Die::roll would be in the same translation
unit as its calling origin. If we now define a function according to the
specified naming schema __wrap_symbol and use the linker flag
-wrap, our function gets called instead of the original one. Listing 6
presents the definition of the wrapper function. To prevent the compiler
from mangling the mangled name again, we need to define it in a C code
block.
Note that we also have to declare the function __real_symbol which
we delegate to in order to satisfy the compiler. The linker will resolve this
symbol to the original implementation of Die::roll. The following
demonstrates the command line options necessary for this kind of link
seam.
$ g++ -Xlinker -wrap = _ZNK3Die4rollEv -o Test
test.o GameFourWins.o Die.o

Alas, this feature is only available with the GNU tool chain on Linux. GCC
for Mac OS X does not offer the linker flag -wrap. A further constraint
is that it does not work with inline functions but this is the case with all
link seams presented in this article. Additionally, when the function to be
wrapped is part of a shared library, we cannot use this option. Finally,
because of the mangled names, this type of link seam is much harder to
achieve by hand compared to shadowing functions.

Run-time function interception
If we have to intercept functions from shared libraries, we can use this kind
of link seam. It is based on the fact that it is possible to alter the run-time
linking behaviour of the loader ld.so in a way that it considers libraries
that would otherwise not be loaded. This can be accomplished by the
environment variable LD_PRELOAD that the loader ld.so interprets. Its
functionality is described in the man page of ld.so as follows: ‘A white
space-separated list of additional, user-specified, ELF shared libraries to be
loaded before all others. This can be used to selectively override functions
in other shared libraries.’1 With this we can instruct the loader to prefer our
function instead of the ones provided by libraries normally resolved
through the environment variable LD_LIBRARY_PATH or the system
library directories.
Consider we want to intercept a function foo which is defined in a shared
library. We have to put the code for our intercepting function into its own
shared library (e. g., libFoo.so). If we call our program by appending
this library to LD_PRELOAD as shown below, our definition of foo is
called instead of the original one.
 $ LD_PRELOAD = path /to/ libFoo .so; executable

Of course this solution is not perfect yet because it would not allow us to
call the original function. This task can be achieved with the function
dlsym the dynamic linking loader provides. dlsym takes a handle of a
dynamic library we normally get by calling dlopen. Because we try to
achieve a generic solution and do not want to specify a specific library here,
we can use a pseudo-handle that is offered by the loader called
RTLD_NEXT. With this, the loader will find the next occurrence of a
symbol in the search order after the library the call resides.
As an example, consider Listing 7 which shows the definition of the
intercepting function foo and the code necessary to call the original
function. Note that we cache the result of the symbol resolution to avoid
the process being made with every function call. Because we call a C++
function, we have to use the mangled name _Z3fooi for the symbol name.
Furthermore, as it is not possible in C++ to implicitly cast the void pointer
returned by dlsym to a function pointer, we have to use an explicit cast.

Listing 6

extern "C" {
 extern int __real__ZNK3Die4rollEv ();
 int __wrap__ZNK3Die4rollEv () {
 // your intercepting functionality here
 // ...
 return __real__ZNK3Die4rollEv ();
 }
}

1. This indeed sounds like a security hole; but the man page says that
LD_PRELOAD is ignored if the executable is a setuid or setgid binary.

Listing 7

include <dlfcn .h>
int foo(int i) {
 typedef int (* funPtr)(int);
 static funPtr orig = nullptr ;
 if (! orig) {
 void *tmp = dlsym (RTLD_NEXT , " _Z3fooi ");
 orig = reinterpret_cast <funPtr >(tmp);
 }
 // your intercepting functionality here
 return orig (i);
}

April 2012 | Overload | 31

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://gnuwin32.sourceforge.net/packages/sed.htm

	Overload108.pdf
	The Computing Revolution Will Be Televised (Again)
	Why Automatic Differentiation Won’t Cure Your Calculus Blues
	Back to School
	Valgrind Part 1 - Introduction
	Mutation Testing
	Unit Testing Compilation Failure
	Refactoring Towards Seams in C++
	Compiling a Static Web Site Using the C Preprocessor
	A Position on Running Interference in Languages

	Overload108_final.pdf
	The Computing Revolution Will Be Televised (Again)
	Why Automatic Differentiation Won’t Cure Your Calculus Blues
	Back to School
	Valgrind Part 1 - Introduction
	Mutation Testing
	Unit Testing Compilation Failure
	Refactoring Towards Seams in C++
	Compiling a Static Web Site Using the C Preprocessor
	A Position on Running Interference in Languages

