

MAY 2016 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

More Than One
s I write this, I’ve not long returned home from
the ACCU Conference. If you were there, I
hope you had a productive and fun time of

it. As ever, it’s been a full-steam-ahead
schedule of fascinating talks, interesting people
and insufficient sleep, not to mention the annual
agonising over which talks to miss and which to
attend.

There is often a recurring theme at the conference,
and this year was no exception. I don’t think anyone
who attended would disagree that the theme was
‘diversity’. The human diversity issues raised, however,
are mirrored in technological diversity: to accept and
embrace many different forms. The ACCU conference is
often a rich environment for raising awareness of new
and exciting technologies, finding new and exciting ways
of using existing technologies and attempting to shine
a light on the modern with insights from classic
techniques.

There were talks specifically about using multiple
languages to achieve the same, or similar, goals. It’s
a fairly well-known tip from The Pragmatic
Programmers and others that learning new programming
languages informs our understanding of the languages
we already know, whilst simultaneously broadening our
perspectives on different styles, techniques and technologies. This is valuable because
it can help prevent us from becoming stagnant in our views and philosophy.

I’m aware that I risk extending the metaphor too far by making the comparison with
human diversity and acceptance; however, there are parallels that are worth
considering. We pride ourselves as technologists in welcoming and accepting
technological change for the positives it brings to us. We should not ignore human
diversity for much the same reasons – it enriches our world and our outlook.

A
Volume 28 Issue 2
May 2016

Editor
Steve Love
cvu@accu.org

Contributors
Baron M, Pete Goodliffe,
Alan Griffiths, Kevin Highley,
Roger Orr, Mrs Trellis

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAY 2016

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
11 Standards Report

Jonathan Wakely
reports from the
latest C and C++
meetings.

13 Code Critique Competition
Competition 99 and
the answer to 98.

16 Regional Meeting Report
A report from the
March 2016 London
meeting.

REGULARS
16 Books

From the bookshelf.

SUBMISSION DATES
C Vu 28.3 1st June 2016
C Vu 28.4: 1st August 2016

Overload 134:1st July 2016
Overload 135:1st September 2016

FEATURES
3 Encryption

Kevin Highley implements a common technique
for secure communication.

6 Come Code With Me
Alan Griffiths outlines an Open Source project and
invites contributions.

9 On Fifteen Love
A student demystifies the Baron’s game of cards.

10 Organised Chaos
Pete Goodliffe explains why organisation is so
important.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

KEVIN HIGHLIEY
Kevin Highley started programming at IBM in the early
1970s. He has degrees in Maths and Music, likes
programming in assembler, C and C++, and plays the
bass clarinet, and the concertina. He can be contacted
at tokamak@outlook.com

Encryption
Kevin Highley implements a common

technique for secure communication.

eeping secrets has been important for thousands of years. Modern
communication systems and computers have given us new ways to
store and exchange information, and new ways for the wrong people

to read it. Encryption is a tool to tackle such problems, but what is it, and
as a programmer, how do I do it?

Conventional encryption is about securing communications. A message is
converted to a form that only the intended recipient can read. Often this
depends on information that only the sender and recipient know, used as
a key to ‘unlock’ the message.

It is assumed that any intercepting party knows about the encrypting
methods. Obviously, if an enemy doesn’t know a message exists they
won’t be looking for it. Even if they catch a message, we hope they won’t
recognize it as such, or know how to read it. The only safe assumption,
however, is that the enemy knows everything they could possibly know.
Security through obscurity sometimes works, but you never know if
someone even more obscure is watching you.

Simple systems
A message is a series of symbols, for our purposes a string of characters.
Their meaning can be disguised by re-arranging their order and/or by
substituting for individual characters with other characters.

For example, let us take the message “What shall we do tonight?” A
simple re-ordering is achieved by arranging the letters in an array
horizontally, and reading them out vertically. 25 characters, so a 5x5
array.

 W h a t
 s h a l l
 w e d
 o t o n
 i g h t ?

Coded, the message becomes “Ws oihhw gaaethtl ot ldn?”

Replacing each character with a letter from a certain distance further
along in the alphabet (or for us, the ascii code) gives a code reputedly used
by Julius Caesar. If the offset is +1:

“What shall we do tonight?”

becomes

“Xibu!tibmm!xf!ep!upojhiu@”

Both types were used in ancient times. The Greeks supposedly spirally
wrapped a strip of leather round a stick, and wrote along the stick. The
message could only be read if wrapped around the same diameter stick.
This gives a version of the re-ordering code above. The stick diameter key
corresponding to the dimensions of the array. In Julius Caesar’s code, the
key is how many letters to shift along.

These approaches yield exciting looking messages, but would be easy to
unravel.

I can see that ‘!’ Is probably space and ‘@’ a punctuation mark. On a
longer message, and with some idea about what the message might be
about, and what language it is in analysing letter frequencies will soon
reveal all. A more elaborate character substitution system than to just shift
n characters along would not help. The commonest character in the output
still represents the commonest character in the input.

We can make the code look much more exotic by using strange fonts,
Egyptian hieroglyphs or made up special symbols. So long as each letter

in our plain text is always represented by the same symbol it is relatively
simple to break the code. In normal English text ‘ ’ and ‘e’ occur much
more often than ‘x’ and ‘q’. Count the number of times each symbol in the
encoded text appears, and replace each symbol with the letter that occurs
with the most similar frequency in English (or whatever language you
think the message is in). This will often immediately give you something
that is almost readable, needing only a few letter allocations to be
swapped about. This gets easier with larger messages, and messages in
which you can guess that certain words or people’s names are likely.

A less obviously structured re-ordering of the characters would be better,
and we need a substitution system in which the same character might be
represented by different characters each time it appears.

Computers and keys
Those older systems had keys of only a few letters or digits, there are only
26 letters in the alphabet, and only a limited number of practical stick
sizes. In current terms they are 4 or 5 bit codes, they have only 24 or 25

possible keys. Such small key encryption systems can be broken by a
sufficiently powerful modern computer. Simply run a version of the
decrypting algorithm with every possible key. We can devise systems
with more complex keys, but while a human codebreaker might be
daunted by a system that required thousands of tries to find the right key,
computers thrive on big numbers. WWII code crackers would have been
delighted with the power of a modern laptop, but would have reminded
you: if you’ve got this, what have the big boys got? A coding system that
would take, even with the world’s top computers, years to break seems
secure enough, very little intelligence stays useful for more than months.
However – are you sure you know just how fast those top machines are?
Are you sure there is no easier back-door way to unpick your encryption,
which could improve decryption rates by orders of magnitude?

How big does a key need to be? Current super computers are chasing
100 petaflops (1017) and there are about 108 seconds in three years. A
reasonably lucky code breaker might find the right value after trying 10%
of all the possible values. Perhaps a secret, clever, dedicated code
breaking system can test a key value in the time the machines we do
know about take to do a floating point operation (note how fast colossus
was compared with general purpose machines of the late 40s). We need
keys giving more than 1026 possibilities, more still if we suspect there
may be any cracks in the encryption method. 1026 ~= 287. Even with the
more reasonable assumptions, that it might take 1000 operations to test
a key, and that results are needed within a day, we still need a key with
> 1020 possibilities, that’s about 267. The argument about 64 bit versus
128 bit encryption becomes clear. Even a perfect code system with no
flaws and back doors might be breakable by brute force if it uses 64 bit
or smaller keys. For the brute force decoder, as the key size goes up
the problem becomes selecting probable messages (e.g. ones with
recognizable words in them) from the vast number of possibles
generated.

A large key makes brute force (try everything) approaches expensive in
computer time and thus impractical. We need an algorithm that makes it

 K
MAY 2016 | | 3{cvu}

hard work to test each key. We don’t want the breaker to be able to reject
a key after just a few characters, we want no output until they have
decoded most of the message. We also need to avoid anything that lets
them home in on a solution. Trying to find our way to a particular level on
a smooth slope is much easier than trying to find a stone of a particular
weight from a pile of similar stones by weighing one at a time. If we were
trying to find the zeroes of a function it is much easier if the function has
smooth derivatives, and much harder if it seems to be a random step
function.

One time pads
One way of defeating the frequency analysis attack is to use Julius
Caesar’s substitution method, but have a different offset for each
character in the message. The key is now a list of numbers the same size
as the message, each number indicating the amount to shift the
corresponding character in the message. The large key size is a problem:
it is too big for people to remember, and if written down and passed
around, it is possible for an enemy to learn it. Another weakness is that the
same pattern is used for every message. If many messages have the same
format (e.g. starting with the sender’s name and the date) the same pattern
will appear at the start of each coded message, providing something for
the code breaker to attack. Adding a re-ordering step makes patterns
harder to spot, but not impossible. A solution is to change the list of offset
numbers frequently, although this leads to problems of how you distribute
the large and numerous keys. If a new table of numbers is used for every
message this becomes a ‘one time pad’ system, somewhat cumbersome,
but completely secure so long as the particular table used has no pattern
and stays secret.

The one time pad system was widely used, despite the problems of key
distribution. Many tables of numbers were prepared, all different and
serial numbered. A field agent would be issued with some. When
contacting base they would use a table to encode their message, and then
destroy the sheet containing that table. The only copy of that particular
table, identified by it’s serial number, now exists at base, so only they can
decode the message.

The Enigma
Another way of changing the coding for each character was enigma type
machines. They had a series of wheels, each of which generated a
substitute for whichever letter you fed to it. Several wheels in series
providing a more elaborate pathway. Pressing a key on the machine
caused a letter to light up on the output. The clever bit was that the wheels
were moved on after each letter had been pressed, generating a new
sequence of connections, and a new coding for the next letter. The key for
this system involved knowing the wiring patterns of all the wheels, which
wheel was in each slot in the machine, and where each wheel has been
rotated to at the start of the message. There were also jumpers that
controlled other variables. All in all a fiendishly complicated device. The
story of how these codes were broken at Bletchley Park is well worth a
read and visit if you don’t already know it.

Other methods
There are other ways of sending secret messages. Some are variations on
the substitution and re-arrangement types. Public key encryption is a
system where the key used to encrypt is different to the one needed to
decrypt. It is important for much of web security. As far as I know it
depends upon being able to find the prime factors of very large numbers,
which is a difficult problem on it’s own. Code systems where symbols
stand for concepts rather than characters are hard to break. They overlap
with the problems of trying to understand ancient languages. The code
talkers of WW2 and the book code, as used in a Sherlock Holmes story,
did not need a computer, nor do slang, jargon and the ever evolving
languages of youth, designed to keep parents in the dark. These I can
ignore in the next section, on using a computer for encryption. As for
quantum methods, well, I just don’t know how they work.

Book code: Message is sent as a series of number triads, each
representing a word from a book selected by page:line:word. If needed,
number quads can represent individual letters. The key here is the book
to be used.

Code talkers: Messages were sent as conversations between members
of a native American tribe in their own language. There were only a few
speakers of the language left, and it was not available in a written form,
so there was little chance of an enemy understanding it.

To be pedantic most of what we have been looking at should be referred
to as ciphers rather than codes. Ciphers tend to have a 1:1 relationship
between plaintext character counts and disguised text counts, codes
can have complex ideas represented by short sets of symbols.

Programmers do it with a computer
Fortunately for the code writer (if not for big brother) it is simple to
implement, scrambling, one time pad, and enigma type codes on almost
any computer.

My programs frequently do the same thing to all the elements of an array.
All the arrays are the same size, 256 bytes. To save writing the same code
repeatedly:

 #define Ri for(i=0;i<=255;i++)

Table (aka wheel) of size 256, and contains one each of each possible
value. Why?

I am assuming the enemy knows everything, so I might as well use sizes
that are convenient for computing. In assembler, I used 8 bit characters,
pointers, and arithmetic. 256 eliminates the need for range checking, an 8
bit pointer can’t get out of a 256 array. All different values reduces the key
size from 256256 ~= 10616 to a mere 256! ~= 10506 – still a big number.
By keeping all the numbers and merely re-arranging each pass I hope to
avoid a wheel ever collapsing to all zeros, or other problem pattern. An all
different 256 array can be used as a scrambling tool as well as a one time
pad tool.

Characters are often stored on computer as 8 bit values. Those 8 bit values
could also be thought of as numbers in the range 0–255. Using 8 bit
unsigned arithmetic, if I add numbers in the range 0–255 to the numbers
representing each character in my message I will get a new collection of
numbers in the range 0–255. With 8 bit arithmetic, overflows are
discarded.

If the plain text is in an array uint8_t a[256]
and our random numbers key in uint8_t x[256]
then Ri a[i] += x[i];
provides the encryption step, a[] now contains the encrypted message.
a[] and x[] need to be unsigned char or uint8_t to get the right
overflow behaviour. That's it! unbreakable encryption in one statement.

Part of the security problem is to ensure that the machines you are using
are not already infested with some key grabber or screen shot program
that records the plain text before you encrypt it. This is easier to check
with less software layers between you and the hardware. The code
examples were first imagined in assembler, to run on very minimal
machines. This was changed because A, My friends no longer use such
machines, and B, few find assembler easy to read, and the point of
writing the code was to illustrate an idea. The current program in minimal
C running on the console (stdin/stdout) should run on many
machines. I want you to modify and compile for yourself, at this level of
security code, don’t trust anything where you haven’t seen and
understood the source. For better security... am I paranoid, or is that
Windows 10 watching me? Run your encrypt and decrypt programs on
a small machine that is not connected to any network or other machines,
and transfer the encrypted file via a memory stick to the machine that
sends it.

If I later subtract the same numbers, I will get back my original character
values, underflows are also discarded. If all the numbers added had been
the same we would have had Julius Caesar’s code, but as the numbers
added are all different, and nearly random (no patterns to find and
exploit), we have a strong code. The key is now a table of nearly random
numbers the same size as the message.
4 | | MAY 2016{cvu}

Decrypt is just Ri a[i] -= x[i];

The random number table approach is good, but the table must change
frequently. If we make our table of random numbers completely new for
each message we have a ‘one time pad’ system. If we were to move to a
different place in the table after each character we have an enigma-like
system.

We need random number tables. Assuming the random generator has been
seeded, the code in Listing 1 generates one.

It might be better to restrict rand() to produce only numbers in the
range 0–255, here it seems to work, presumably by taking only the
bottom 8 bits. There are probably many better ways, but it is important
to be your own carpenter when making random number tables. The only
way to read a one time pad system is to know the tables, if you copy
some else’s tables or their generating code that might just be
discoverable. It is also unwise to rely on the system supplied random
number generator, some are flawed. Using the random number
indirectly as here may insulate you from some generator foibles.

With this sort of random number table containing one each of the numbers
0–255 an order scrambling routine is very simple to implement.

With x[] the random table, o[] the plain text, and a[] the scrambled
text:

To scramble, Ri a[i] = o[x[i]];
and to unscramble again, Ri o[x[i]] = a[i];

The tools we have so far would enable us to produce a secure email
encrypting program. Generate a few million random number tables, store
them on your machine, copy onto a flash drive or DVD and give it to the
intended recipient. Convert your message to an 8 bit unsigned character
string, add a random number table, then use the same table to scramble.
Send the encrypted array, and tell recipient which random table to use to
decrypt it.

Potential problem?

If we re use the random numbers, even if changed daily, a repeatedly
sent message that was all one character, such as blank, would be
converted to an offset version of the table. That may not seem to be a
problem, the enemy doesn’t know that you have sent an image of today’s
pattern. But, imagine something resting on a keyboard generating
twenty pages of white space, even a dumb cracker might notice twenty
consecutive identical messages, and figure out what had happened.
Such mishaps have been the clue that cracks a code.

So far so good, but the receiver may fall into the wrong hands, and the
enemy obtain the random number flash drive, and details of your encrypt/
decrypt algorithm.

We can dispense with the flash drive by making our machines scramble
the random number array after each message. We need to do exactly the
same scrambling at both transmitter and receiver. This has the advantage
that even if a machine is captured it can only decode the next message, the
tables used for previous messages are gone. The one thing that transmitter
and receiver have in common is the message, so use that to scramble the
table.

Random table in x[] encrypted message in a[] temporary z, all
uint8_t (see Listing 2). The same code is used at both ends after
encrypting or decrypting a message.

The system now changes the random table every message. A single stage
provides fairly solid encryption, the system is behaving almost as a one
time pad. An attacker with access to the receiver, all the encoded and
some decoded messages would still be able to work out the current
settings, and, knowing the scramble algorithm, ‘unzip’ the whole chain of
messages. The next stage makes that more difficult.

It would be useful to re-introduce small keys, something the user can
remember, which stops an enemy immediately using a captured machine.
We also need to make the decrypt more clock cycle hungry so that a
captured machine cannot be quickly put back into action with brute force
discovered small keys. To this end I now introduce multiple random
number tables, and a more complicated encryption algorithm. Our small
keys select the order in which the tables are used, and where in each table
we start.

The main encryption stage uses ideas from the enigma code machine
(that’s why I start calling random number tables wheels). As a character
is encoded by a wheel it also moves that wheel to a new position. The
process is repeated 5 times with five different wheels.

We now have 6 wheels, they are implemented as the arrays x[256][6],
and 6 keys, stored in array k[6], each holding a value 0–255. The array
w[6] represents the slots in our imaginary enigma machine, so w[n]
contains the number of the wheel in slot n. k[n] contains the starting
position for the wheel in slot n. Slot 0 has already been used with the
initial encode and scramble. We count along the slots with j and have 6
working arrays a[~][6]. The already partly encrypted message starts in
a[~][0], and ends up in a[~][5].

 for(j=1; j<=5; j++) { // Main enigma loop
 k = key[j]; // Wheel to start position
 Ri {
 a[i][j] = // Value from wheel added
 a[i][j-1] + x[k][w[j]];
 k = [a[i][j-1]][w[j]]; // Wheel moved to
 } // new position
 } // according to character just read

Finally the code wheels are scrambled using the intermediate stages of the
above encryption, (which being ephemeral are not available to a code
breaker), to control the scramble. Temporary swap value z is again
uint8_t.

 for(j=0; j<=5; j++) {
 Ri {
 z = x[i][w[j]];
 x[i][w[j]] = x[a[i][j]][w[j]];
 x[a[i][j]][w[j]] = z;
 }
 }

The main encrypt loop and the code wheel scrambling are separate here
to make it easier to see what is happening. They could be combined into
one loop to reduce memory use.

The decrypt routines are almost a mirror image of the encrypt.

I notice that the encoded message looks very different to the plain text
– lots of unprintable characters. If messages are mostly printable
characters then perhaps we should convert the encoded text to mainly
printables. We will have to do that any way in order to use some
communication channels. Or perhaps a first pass which assigns several
of the 0–255 symbols to ‘e’ and ‘space’ and fewer to ‘q’ to make
messages look more like noise across the whole 0-255. Anything which
gives a breaker program less of a entry point is to be encouraged.

The demonstration program, available from https://github.com/
KevinHighley/CryptoEntanglement, is deliberately minimal, I want it to
run on almost any machine with a C compiler. Because I rely on 8 bit

uint8_t a,b,z;
int i;

Ri x[i] = i; // Fill x array with values 0 - 255
for (i=0; i<2000; i++) { // Swap random pairs
 // of values 2000 times
 a = rand(); b = rand(); // to give all possible
 z = x[a]; // 8 bit numbers, but in a random
 x[a] = x[b]; // order. Like Eric Morecombe's
 x[b] = z; // music "All the right notes, but
} // not necessarily in the right
 // order."

Li
st

in
g

1 Ri {
 z = x[i];
 x[i] = x[a[i]];
 x[a[i]] = z;
}

Listing 2
MAY 2016 | | 5{cvu}

https://github.com/KevinHighley/CryptoEntanglement
https://github.com/KevinHighley/CryptoEntanglement

Encryption (continued)
unsigned arithmetic overflow behaviour, be careful if you change
anything, not to mix uint8_t values with int counters. The 8 bit
variables get promoted to 16 or 32, and ‘interesting’ things happen. The
demo uses two sets of x[] arrays, xs[] are the arrays on the source
machine, xd[] on the destination. I have a more elaborate version of the
demo written using Qt widgets and C++. It works on my Linux mint
setup, but I have not yet worked out how to port it to Apple, Windows and
Android, which is supposed to be straight forward with Qt. This will
probably have been done by the time this sees print – although I am being
distracted by the classic travelling salesman problem at the moment.

Conclusion
Secure communication between devices can be achieved by the one time
pad system. In the past this was restricted by the need to distribute coding
pads with suitable sets of random number tables, more data than all the
messages to be sent put together. The current price of memory sticks

makes 16GB of random number tables generated, and physically passed
between stations practical. No wonder the authorities say they only want
to store information about messages, not content. The content of e-mails
is potentially pretty secure anyway.

I suggest an alternative approach which doesn’t need big random number
tables. Set up a few random number tables, matched on transmitter and
receiver, and mutate them as part of the process of sending and receiving
each message keeping Tx and Rx in step. This also has the effect of
making the receiving machine capable of decoding only the current
message, even with the right user keys. A captured machine cannot
decode past or future messages.

The old assumption was that the enemy has access to all message traffic,
but not to either end. A safer assumption is that either end may be
compromised at any time, and to restrict potential damage in that event as
much as possible.
Come Code With Me
Alan Griffiths outlines an Open Source project

and invites contributions.

ne of the advantages of working on Open Source projects is that is
possible to talk about them and the code involved with few
restrictions. In this case I’m working on a project that would greatly

benefit from wider input and I would especially welcome contributions
from ACCU members.

This is a C++ 14 project, with a lot of potential features that are not
important to my immediate goals, so I’m unlikely to get to them any time
soon. There’s a range of work available varying from entry level
programmer to domain expert, so if people want to use it as a context for
trying C++ 14 features (or even C++17 features) that’s great.

I’ve not heard anything about ACCU ‘mentored’ projects recently, but if
any ACCU members want to use this project as a basis for this, then I’d
be very happy. And I’m willing to provide support for this.

The project is about developing a ‘Desktop Environment’ or ‘Shell’.
There are a lot of these in the Linux world; a few examples (in no
particular order): KDE, Gnome, Unity7, Cinnamon, LXDE, and
Awesome. Canonical’s interest lies in Unity8 – which is the ‘convergent’
shell currently being used on phones and tablets and in preparation for
desktop use.

Introducing the Mir Abstraction Layer
The principle Open Source project I’ve been working on for the last few
years is Mir. Mir is a library for writing Linux display servers and shells
that are independent of the underlying graphics stack. It fits into a similar
role as an X server or Weston (a Wayland server) but was initially
motivated by Canonical’s vision of ‘convergent’ computing.

The Mir project has had some success in meeting Canonical’s immediate
needs – it is running in the Ubuntu Touch phones and tablets, and as an
experimental option for running the Unity8 shell on the desktop. But
because of the concentration of effort on delivering the features needed
for this internal use, it hasn’t really addressed the needs of potential users
outside of Canonical.

Mir provides two APIs for users: the ‘client’ API is for applications that
run on Mir and that is largely used by toolkits. There is support for Mir in
the GTK and Qt toolkits, and in SDL. This works pretty well and the Mir

client API has remained backwards compatible for a couple of years and
can do so for the foreseeable future.

The problem is that the server-side ABI compatibility is broken by almost
every release of Mir. This isn’t a big problem for Canonical, as the API is
fairly stable and both Mir and Unity8 are in rapid development: rebuilding
Unity8 every time Mir is released is a small overhead. But for independent
developers the lack of a stable ABI is problematic as they cannot easily
synchronize their releases to updates of Mir.

My answer to this is to provide a stable ‘abstraction layer’ written over the
top of the current Mir server API that will provide a stable ABI. There are
a number of other goals that can be addressed at the same time:

 The API can be considerably narrowed as a lot of things can be
customized that are of no interest to shell development;

 A more declarative design style can be followed than the
implementation focused approach that the Mir server API follows;
and,

 Common facilities can be provided that don’t belong in the Mir
libraries.

At the time of writing the Mir Abstraction Layer (miral) is both a proof-
of-concept and a work-in-progress but may be of interest as a modern C++
codebase to experiment with.

Building and using MirAL
These instructions assume that you’re using Ubuntu 16.04LTS; I’ve not
tried earlier Ubuntu versions or other distributions.

You’ll need a few development and utility packages installed, along with
the mir development packages (if you’re working on a phone or tablet use
mir-graphics-drivers-android in place of mir-graphics-drivers-desktop):

 O

ALAN GRIFFITHS
Alan Griffiths has delivered working software and development
processes to a range of organizations, written for a number of
magazines, spoken at several conferences, and made many friends.
He can be contacted at alan@octopull.co.uk
6 | | MAY 2016{cvu}

 $ sudo apt-get install cmake g++ make bzr python-
 imaging
 $ sudo apt-get install mir-graphics-drivers-
 desktop libmirserver-dev libmirclient-dev

With these installed you can checkout and build miral:

 $ bzr branch lp:miral
 $ mkdir miral/build
 $ cd miral/build
 $ cmake ..
 $ make

This creates libmiral.so in the lib directory and an example shell
(miral-shell) in the bin directory. This can be run directly:

 $ bin/miral-shell

With the default options this runs in a window on your X11 desktop
(which is convenient for development). To run independently of X you
need to grant access to the graphics hardware and specify a VT to run in.
For example:

 $ sudo bin/miral-shell --vt 4 --arw-file --file
 $XDG_RUNTIME_DIR/mir_socket

The miral-shell example is simple, don’t expect to see a sophisticated
launcher by default. You can start mir apps from the command-line. For
example:

 $ bin/miral-run gnome-terminal

That’s right, many standard GTK+ applications ‘just work’ on Mir (as
GDK has a Mir backend). Not all ‘GTK’ applications work however:
those that assume the existence of an X11 server will have problems.

miral-shell supports a lot of the familiar commands of a desktop
environment. For example:

 Alt-Tab to switch applications;

 Alt-Grave to switch windows in an application;

 Alt-F4 to close;

 Alt+F11 to toggle fullscreen;

 Alt+left-button-drag (or three-finger-drag) to move; and,

 Alt+middle-button-drag (two-finger-drag) to resize.

To exit from miral-shell press Ctrl-Alt-BkSp.

Starting applications in miral-shell
If you have a terminal session running in the MirAL desktop (as described
above) you can start programs from it. GTK, Qt and SDL applications will
‘just work’ provided that they don’t bypass the toolkit and attempt to
make X11 protocol calls that are not available.

 $ gedit
 $ 7kaa

From outside the MirAL session the ‘miral-run’ script sets a few
environment variables to configure the Mir support in the various toolkits.

(There’s some special treatment for gnome-terminal as starting that can
conflict with the desktop default.)

 $ bin/miral-run gnome-calculator
 $ bin/miral-run 7kaa

There are also some examples of native Mir client applications in the mir-
demos package. These are typically basic graphics demos:

 $ sudo apt-get install mir-demos
 $ mir_demo_client_egltriangle

What does using the MirAL API look like?
The main() program from miral-shell looks like Listing 1.

The shell is providing CanonicalWindowManagerPolicy ,
TilingWindowManagerPolicy , spinner_splash and
spinner_server_notification. The rest is from MirAL.

If you look for the corresponding code in lp:qtmir and lp:mir you’ll
find it less clear, more verbose and scattered over multiple files.

A WindowManagerPolicy needs to implement an interface for
handling a set of events (see Listing 2).

The way these events are handled define the behaviour of the shell. This
interface is going to change as part of my ABI stabilization work as it
mentions some Mir server API types directly (for example,
mir::scene::SurfaceCreationParameters) and an interface
like this is a risk to long term ABI stability as adding new functions would
break client code.

The principle interface for controlling Mir is similar (see Listing 3).

Again this still mentions a few Mir server API types and that needs fixing
before miral is ready for release, but as this is implemented by the library
(and not the client) there is less of an issue in using an interface for this
purpose.

Exercises for the reader
As I said in the introduction, my focus is the MiraAL ABI and making it
one that can maintain compatibility into the future. But there are also a lot
of interesting possibilities for using that ABI and extending the miral-
she l l . I ’ ve t r i e d t o pu t some o f t he se i n t o a
tasks_for_the_interested_reader.md file in the project (but
I’m sure there are more).

It doesn’t take long using miral-shell to realize that it is lacking such
things as a ‘launcher’ and a ‘status bar’ and that the ‘titlebars’ are little
more than a placeholder for the functionality that one would expect. Much
of that will have no effect on the Miral API and I’m unlikely to get around
to it. Other features (like animated transitions) will need additional
support from the API and I’m hoping to get that right with the input of
people trying to use it ‘in anger’.

Canonical are committed to providing Mir on a range of platforms
including phones, tablets and desktops. There is also work to provide it as
a ‘snap’ in the ‘internet of things’. The miral-shell already works in all

Li
st

in
g

1 int main(int argc, char const* argv[])
{
 using namespace miral;
 return MirRunner{argc, argv}.run_with(
 {
 WindowManagerOptions
 {
 add_window_manager_policy<CanonicalWindowManagerPolicy>("canonical"),
 add_window_manager_policy<TilingWindowManagerPolicy>("tiling"),
 },
 display_configuration_options,
 QuitOnCtrlAltBkSp{},
 InternalClient{"Intro", spinner_splash, spinner_server_notification}
 });
}

MAY 2016 | | 7{cvu}

these environments (for a suitably forgiving value of ‘works’) and is an
early opportunity to learn about this alternative to X11.

Acknowledgements
Thanks to Sam Spilsbury for his comments on an early draft and to Steve
Love for dealing efficiently with a late submission.

Listing 3

class WindowManagerTools
{
public:
 virtual auto build_window(
 std::shared_ptr<mir::scene::Session> const& session,
 mir::scene::SurfaceCreationParameters const& parameters)
 -> WindowInfo& = 0;
 virtual auto count_applications() const -> unsigned int = 0;
 virtual void for_each_application(
 std::function<void(ApplicationInfo& info)> const& functor) = 0;
 virtual auto find_application(
 std::function<bool(ApplicationInfo const& info)> const& predicate)
 -> Application = 0;
 virtual auto info_for(std::weak_ptr<mir::scene::Session> const& session) const
 -> ApplicationInfo& = 0;
 virtual auto info_for(std::weak_ptr<mir::scene::Surface> const& surface) const
 -> WindowInfo& = 0;
 virtual auto info_for(Window const& window) const -> WindowInfo& = 0;
 virtual auto focused_application() const -> Application = 0;
 virtual auto focused_window() const -> Window = 0;
 virtual void focus_next_application() = 0;
 virtual void set_focus_to(Window const& window) = 0;
 virtual auto window_at(mir::geometry::Point cursor) const -> Window = 0;
 virtual auto active_display() -> mir::geometry::Rectangle const = 0;
 virtual void forget(Window const& window) = 0;
 virtual void raise_tree(Window const& root) = 0;
 virtual void size_to_output(mir::geometry::Rectangle& rect) = 0;
 virtual bool place_in_output(mir::graphics::DisplayConfigurationOutputId id,
 mir::geometry::Rectangle& rect) = 0;
 virtual ~WindowManagerTools() = default;
 WindowManagerTools() = default;
 WindowManagerTools(WindowManagerTools const&) = delete;
 WindowManagerTools& operator=(WindowManagerTools const&) = delete;
};

Listing 2

class WindowManagementPolicy
{
public:
 virtual void handle_app_info_updated(mir::geometry::Rectangles const& displays) = 0;
 virtual void handle_displays_updated(mir::geometry::Rectangles const& displays) = 0;
 virtual auto handle_place_new_surface(
 ApplicationInfo const& app_info,
 mir::scene::SurfaceCreationParameters const& request_parameters)
 -> mir::scene::SurfaceCreationParameters = 0;
 virtual void handle_new_window(WindowInfo& window_info) = 0;
 virtual void handle_window_ready(WindowInfo& window_info) = 0;
 virtual void handle_modify_window(WindowInfo& window_info,
 mir::shell::SurfaceSpecification const& modifications) = 0;
 virtual void handle_delete_window(WindowInfo& window_info) = 0;
 virtual auto handle_set_state(WindowInfo& window_info, MirSurfaceState value)
 -> MirSurfaceState = 0;
 virtual void generate_decorations_for(WindowInfo& window_info) = 0;
 virtual bool handle_keyboard_event(MirKeyboardEvent const* event) = 0;
 virtual bool handle_touch_event(MirTouchEvent const* event) = 0;
 virtual bool handle_pointer_event(MirPointerEvent const* event) = 0;
 virtual void handle_raise_window(WindowInfo& window_info) = 0;
 virtual ~WindowManagementPolicy() = default;

 WindowManagementPolicy() = default;
 WindowManagementPolicy(WindowManagementPolicy const&) = delete;
 WindowManagementPolicy& operator=(WindowManagementPolicy const&) = delete;
};
8 | | MAY 2016{cvu}

MAY 2016 | | 9{cvu}

On Fifteen Love
A student demystifies the Baron’s game of cards.

n their most recent game, Sir R----- was challenged to pick cards from
the ace to nine of hearts so as to play a trick of three cards that summed
to fifteen, counting the ace as a one, taking turns so picking with the

Baron. If Sir R----- were to manage to do so before the Baron and before
the cards were exhausted, he should have had a prize of one coin, forfeiting
one if he weren’t.

The simplest way to figure whether Sir R----- should have taken on the
Baron is to arrange the cards in a magic square.

As can be plainly seen, every row and column sum to fifteen, as do the
diagonals, and so if Sir R----- could have picked all of the cards from any
of these before the Baron, he should have won the game.

Unfortunately, this is exactly the same as a game of noughts and crosses,
which every schoolchild knows cannot be won if the opposing player has
their wits about them. Indeed, I explained as much to the Baron but I fear
that he may not have entirely grasped its significance.

Given that a draw should have counted as a win for the Baron, I would
most certainly have advised Sir R----- to decline the wager!

Courtesy of www.thusspakeak.com

 I

BARON M
In the service of the Russian military the Baron has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

Write for us!
C Vu and Overload rely on article contributions from members.
That’s you! Without articles there are no magazines. We need
articles at all levels of software development experience; you
don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or
overload@accu.org

www.thusspakeak.com

Becoming a Better Programmer # 98
Organised Chaos
Pete Goodliffe explains why organisation is so important.

The secret of all victory lies in the
organisation of the non-obvious.

~ Marcus Aurelius

ood software is like crime; it’s more effective when it’s organised.

I joke with my team that we need to maintain the ‘illusion of
progress’. Every day as we work together to craft awesome software,

we all need to see that we are progressing. It’s important, and
motivational, to understand that we’re achieving what we intend. Both so
we know we’ll deliver on schedule, and so we
can feel proud of the new value we’re adding.

We feel better about our work, and more
motivated to continue when we see that we are
making progress. In order to genuinely gauge that
we are progressing, we must have a series of
achievable, measurable tasks that can be ‘ticked
off’ when done.

This is why the Pomodoro technique [1] works, a
simple micro-level system which time boxes
your effort. It helps you to focus on small steps
with clear goals and clearly measured results.
When each 25 minute pomodoro finishes you
know whether you’ve achieved your goal or not.
On a grander scale this is also why processes like
Scrum and XP work so well.

These stepwise approaches fulfil a basic human need – to achieve, to
move forward, to make useful progress, and to be rewarded for doing so.
(Usually sufficient reward is just the joy of seeing that you have achieved
your goal! Any more ‘serious’ rewards may actually be detrimental to the
development process.)

We do these stepwise software shuffles at the grand ceremonial, macro,
level. We need to organise our large scale development plans. And we do
it daily at the micro level. We need to organise our minuscule day-to-day
tasks, focusing our effort in the right direction.

How do you keep yourself organised each day?

Organisation is key
The most effective programmers are not just technical geniuses, but are
also well organised. They can reason about complex technical problems,
and can also reason about the complexities of organising how to construct
the solution.

To be an effective programmer you must be able to organise
yourself well.

I can trust you to build me a great software system if I can hand you a list
of requirements and I know that you will turn that into a reliable set of
software construction tasks, and then arrange to execute them all to a
schedule that we agree.

Honestly, That’s all there is to software development!

So why do we make it so hard? Because breaking things up into
achievable, manageable chunks is part science and part art. It relies on
taste and experience. And because being organised enough to arrange
those into a realistic schedule is a real skill, and one that most boffins
seriously lack. (Along with common sense.) Daily we are distracted by a
plethora of other tasks that need to be done, with other projects and
interests vying for our attention.

Good managers can help mitigate this, and will empower their team to
organise well . As do good development
processes. We can set ourselves up to succeed by
fostering an environment and a set of working
practices that naturally lead to good organisation
and naturally help to track progress, like the ones
already discussed.

This is true in the macro level when we look at
the concert of tasks we need to coordinate to
deliver a software project, and also at the micro
level when I consider how I, as a programmer,
will deliver the right value today.

This is something I am increasingly finding
myself doing: working out better ways to stay
organised so that I can fulfil the myriad demands
placed upon me each day.

As increasing numbers of things crop up that I have to do, I find myself
more and more often writing lists to keep track of those things and help to
prioritise them. Yes, I’ve discovered to-do lists! Once you start seeing
them, you realise that most everything you do is on a list in some form or
other.

So let’s look at this most simple, and effective, technique to remain
organised: the humble to do list.

TODO: Write a list
t might seem obvious (even trivial) how to use such a list. But let’s look
at these things in detail to gain mastery over them.

What is it?

A list. Of things to do. Simple as that.

In this context, a list of things you intend to do. Usually a single list holds
one category of things, for example ‘things to do today’. If technology
permits, it may be arranged in priority order.

Why?

To stay organised. To make sure you keep on top of what you need to do,
and don’t forget anything.

To help you become a better programmer.

How do you do it?

Whichever way causes you the least friction and hassle. There are plenty
of 21st century digital mechanisms, but often the simplest and most
effective is still to use good old fashioned pen and paper. An advantage of
paper is that it’s always there and doesn’t need to be switched on. It never
runs out of batteries (although occasionally a pen will run out of ink! (And
I admit that I lose my pen more often than I lose my computer.) Also,
there’s a lot to be said for the tangible experience of writing things down;
it helps you remember and consider each item a little more.

 G

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

We can set ourselves
up to succeed by

fostering an
environment and a set
of working practices
that naturally lead to

good organisation
10 | | MAY 2016{cvu}

Organised chaos (continued)

However, there are plenty of apps and tools that you may find more
convenient. Digital versions offer a number of advantages – you can
maintain a history of all your lists, make it easier to keep multiple lists
(perhaps separated by topic, date, priority, frequency, etc), sync your lists
between multiple devices, and more.

Popular Apps include: Apple’s Reminders (and Notes), Google Keep, and
a plethora of third party apps like Evernote and Wunderlist. This is a
popular category so there’s plenty to choose from. Find something that
works for you. I’d recommend avoiding too many gimmicks, and
selecting an app that is not distracting but offers goods functionality.

Personally, I use more than one medium. I use simple pen and paper when
I want to make notes quickly and consume them as quickly (often when
in meetings), and Apple Notes for longer lived tasks that are useful to
keep synced between my phone and computer. As my daily to do list is
digital, then things I failed to achieve (heaven forfend!) can easily roll
over to the next day.

When?

I refer to my lists frequently throughout the day to determine what to do
next. I keep lists of short-term goals as well as list for my longer-running
missions.

At the start of each day I compile a todo list for the day: starting with the
tasks I want to get done and the code I want to write. Then I read my
email, and adjust it with any new work items that occur. Then I check my
calendar and see if I’ve forgotten any appointments. If so, I’ll add those in
too. (Oh, the curse of meetings!)

Since I compile this in Apple Notes (other list-making apps are available)
I can now prioritise the things that have to be done first. I take a realistic
look at what this should perhaps be considered ‘stretch goals’ and set my
expectations accordingly. I move items up and down in the list to reflect
these priorities.

By now I have built myself a thoughtful plan for my day’s activities.

Throughout the day as I work through these items, I tick them off on the
list. The tick-off ceremony creates a feedback loop, rewarding me for
making progress. Dopamine release!

I’ll know if I’ve achieved my goals at the end of the day by looking at my
list. If most of my list is ticked, I can go home feeling rewarded that I did

what I set out to that day. (Of course, if other things side-tracked me and
I achieve few of my planned tasks, I save to soul-search whether this was
my fault for being easily distracted, or just a Day From Hell.)

You can use to do lists for many other organisational reasons.

They are particularly useful when you’re working on something and want
to capture a thought before it distracts you. The poster child for this is
during TDD: to jot down ideas you can’t focus on now, but you don’t want
to forget (e.g. new tests to write). I usually write a todo list of tests as
comments at the bottom of my test file, rather than in a separate note
taking application.

How to do it most effectively

Keep disciplined making (and reading) lists. Remember to do it.

Craft achievable, granular tasks. Set realistic expectations for what you
can achieve.

Is it a panacea?

No, a to do list is clearly not the perfect planning tool. But as such a
simple, low ceremony way of organising plans and thoughts it really is
something worth considering picking up into your daily routine.

There are plenty of other (more complex) organisational techniques that
might help you keep on top of tasks, for example: Personal Kanban [2]
and GTD [3].

Conclusion
Effective developers are organised developers. You won’t achieve
anything worthwhile without a well-conceived plan. Making a plan
doesn’t have to be super-complicated. Your should employ every simple
planning technique available to ensure you work as well as you can.

Now if only I could use the same techniques to get organised enough to
wrote my column on time... Chance would be a fine thing.

References
[1] The Pomodoro Technique http://pomodorotechnique.com
[2] Personal Kanban http://personalkanban.com
[3] Getting Things Done http://gettingthingsdone.com
Standards Report
Jonathan Wakely reports from the latest C and C++ meetings.

ello, standards fans! For a change this column includes a first-hand
report from the C committee, WG14, as I was able to attend their
recent meeting in person. I’ll start with a summary of the last C++

meeting, as that happened first.

The C++ committee met in Jacksonville, Florida, at the start of March. As
usual it ran for six days (and nights!) with over 100 people attending. One
of the key topics on the agenda was what features are going to be in
C++17. As we get closer to 2017 we need to stop adding new features and
polish what’s already there, so the evolution working groups decided
which proposals should be forwarded for review by the Core and Library
working groups at the next meeting. That means we should be getting
close to feature complete, and can send out a draft for international ballot
later this year.

Some of the big decisions about C++17 content related to the Technical
Specifications (TS) that have been published in the last few years, as

experimental extensions to C++. At the start of the meeting Herb Sutter
asked us to consider five publications for possible inclusion in C++17 (as
well as the other proposals worked on during the week), and at the end of
the week we decided on each one:

 The Mathematical Special Functions standard, which includes most
of the extra maths functions from library TR1 that didn’t get
included in C++11. When we discussed this in Lenexa last year
there were objections to requiring all implementations to support

 H

JONATHAN WAKELY
Jonathan’s interest in C++ and free software began at university and
led to working in the tools team at Red Hat, via the market research and
financial sectors. He works on GCC’s C++ Standard Library and
participates in the C++ standards committee. He can be reached at
accu@kayari.org
MAY 2016 | | 11{cvu}

http://pomodorotechnique.com
http://personalkanban.com
http://gettingthingsdone.com

this, as the functions are not widely used outside of science and
engineering, but in the end there was clear consensus for including
it in C++17.

 The Parallelism TS, which adds new overloads of most of the
algorithms that originally from the STL, allowing them to be
executed in parallel (for example using thread pools, or SIMD
vector instructions). The committee decided to include these in
C++17 as well.

 The first Library Fundamentals TS, which adds lots of utility types
including string_view, optional, any, and polymorphic
allocators. Most of the TS content will be in C++17, but some parts
were left out because they have not yet been implemented anywhere
or because they would have introduced incompatible changes to
existing pieces of the standard library.

 The Filesystem TS, based on Boost.Filesystem, was also voted into
C++17.

 The Concepts TS, which extends the language with one of the
biggest changes to happen in C++ recently (see Andrew Sutton’s
article in Overload 131 for more detail). There were strong opinions
on both sides of the debate, but in the end the consensus was that the
specification in the TS is not yet ready for the standard. There are
some concerns about having multiple different ways to say the same
thing, and that there is only one implementation which hadn’t
shipped yet (GCC 6 includes support for concepts and should have
been released by the time you read this).

The other big feature which wasn’t approved for inclusion in C++17 is
unified call syntax, a proposal to allow f(x, a, b) to be used as an
alternative syntax for x.f(a, b). The main objections to the proposal
were that it introduced a new kind of overloading as a second-class
citizen, and it was felt that it should be better integrated into the existing
overloading rules.

The new features which have been approved for C++17 include changes
to lambdas so they can be used inside constexpr functions, and a new form
of lambda capture to allow capturing *this by value (in C++ today a
lambda defined inside a member function can only capture individual
member variables by value, or capture them all by reference via capturing
this). There are also three new attributes, including one to inform the
compiler you really did mean to fall-through a switch case without a
break, which means you can ask the compiler to warn you about any fall-
through that doesn’t use the attribute. That helps address what I consider
one of the biggest flaws in C and C++, that the default behaviour in
switch statements is to fall-through rather than to break.

Forwarded from the evolution group to be considered at the next meeting
(so likely to be in C++17), are proposals to specify the order of evaluation
in expressions (so that function arguments will be evaluated left-to-right),
allowing operator-dot to be overloaded, and allowing class template
arguments to be deduced from a constructor invocation, so that pair(1,
'2') would be equivalent to pair<int, char>(1, '2').

Although the current focus is getting C++17 feature-complete, work also
continues on ranges, modules, coroutines, contracts and networking,
which are all aiming for their own TS.

So that was C++ in Jacksonville, but in April I also attended the London
meeting of the C committee, which was held at the BSI headquarters in
Chiswick. Much of the time was spent processing recent defect reports,
including several about underspecification of the new multithreading
facilities in C11. If you look closely at the C11 standard you’ll notice that
it supports recursive mutexes, but doesn’t say anything about how they
work! It’s also not clearly stated how mtx_init() behaves if you try to
initialize a mutex more than once, or fail to initialize it at all before trying
to lock it. Resolving defects like that isn’t too hard, as nearly everyone
agrees what the semantics should be, so it’s just a case of writing the
wording to specify it clearly and unambiguously.

Another topic of the meeting was the C memory model, based on attempts
by Peter Sewell and his group at Cambridge who have been trying to come
up with formal models of how the C abstract machine is meant to work

according to the standard, and comparing that with how practising
programmers think the language works. Among the problems they’ve
found when comparing theory and practice are the behaviour of
uninitialized data (what the C standard calls ‘unspecified values’),
whether there are any guarantees about the values of padding bytes
between members of a structure, and the topic of ‘pointer provenance’,
which is a similar issue to the object lifetime rules that the C++ committee
were considering in Kona last year (see my last column).

The committee also looked at proposals for new features, which might be
considered for inclusion in a future C2x revision of the standard. Those
included enhancements to what is valid in an integer constant expression
(which is much more restrictive in C than in C++, even before the addition
of constexpr in C++11), allowing the underlying type of an
enumeration to be fixed (a very useful feature, which C++ allows since
C++11), and a proposal to add a new __VA_OPT__ feature to the
preprocessor, to be used alongside __VA_ARGS__ to solve problems that
arise from using empty argument lists with variadic macros. As I’ve
mentioned previously in this column, the preprocessor specification is
largely the same in C and C++, so that last proposal is being considered
jointly by the C and C++ committees, and so the hope is that they’ll both
agree on the same change, not two incompatible ones!

It’s interesting to see C thinking about adding things that C++ already has
in some form, and the last thing I’ll mention also falls into that category.
There is a proposal to add closures to C, based on the Apple ‘Blocks’
extension supported by C and Objective C compilers for Mac OS X and
iOS. There is considerable overlap with C++ lambda expressions, but
without references, templates, type deduction and other C++ features the
proposal for C is necessarily different, especially the syntax. The feature
would need non-trivial compiler and runtime support, which is not
something typically expected of C compilers, especially those for small
embedded systems, so it was no surprise that not everyone on the
committee was in favour. The proposal wasn’t rejected though, and so is
likely to proceed as a TS.

That’s all for this time, I hope I’ve covered most of the interesting topics.
The next C++ meetings will be in Finland, in June, and near Seattle in
November. The next C meetings will be in Pittsburgh in October, then
Markham, Ontario, next April.
12 | | MAY 2016{cvu}

Code Critique Competition 99
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I am writing a simple program to index written text but it doesn’t quite
work. I want to print out every word in the document with a list of each
line it appears on. I’m only getting the first occurrence listed but can’t
work out why.

Please explain why they have this problem... and suggest some other
possible improvements to the program. The program is in Listing 1.

Critiques

Paul Floyd <m >

At first I thought that this was a fairly simple problem and that there would
be very little to say.

Let’s start with the reason why only the first occurrences are being
detected. This is due to the code that handles the detection of the second
or subsequent occurrence:

 auto iter = index.find(word);
 if (iter == index.end())
 {
 index[word].push_back(lineno);
 }
 else
 {
 auto lines = iter->second;
 if (lines.back() == lineno)
 ; // ignore dups
 else
 lines.push_back(lineno);
 }

Specifically, auto lines infers a vector, so it makes a copy of the
existing vector containing one entry. It then either does nothing or appends
a line number to the end of this copy. The copy goes out of scope at the
end of the closing brace, leaving the original unchanged.

This can be fairly easily fixed by making lines a reference. Simply
declaring it as auto& lines will do the trick, or alternatively using an
explicit declaration:

 using MyMap = std::map<std::string,
 std::vector<int>>;

then

 MyMap::mapped_type& lines = iter->second;

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <iostream>
#include <map>
#include <sstream>
#include <vector>
int main()
{
 using namespace std;
 map<string, vector<int>> index;
 // read and index standard input
 string line;
 int lineno{};
 while (getline(cin, line))
 {
 ++lineno;
 istringstream iss(line);
 string word;

 while (iss >> word)
 {
 auto start =
 word.find_first_not_of(":;.,'\"?!-");
 auto end =
 word.find_last_not_of(":;.,'\"?!-");
 if (start != end)
 word.replace(end + 1, end, "");
 word.replace(0, start, "");
 if (word.empty()) continue;
 auto iter = index.find(word);
 if (iter == index.end())
 {
 index[word].push_back(lineno);
 }
 else
 {
 auto lines = iter->second;
 if (lines.back() == lineno)
 ; // ignore dups
 else
 lines.push_back(lineno);
 }
 }
 }

Li
st

in
g

1

 // print the index
 for (auto entry : index)
 {
 cout << entry.first << ": ";
 string delim;
 for (auto line : entry.second)
 {
 cout << delim << line;
 delim = ", ";
 }
 cout << '\n';
 }
}

Listing 1 (cont’d)
MAY 2016 | | 13{cvu}

I don’t like the use of the variable index. index is so commonly used to
mean loop index that I’d prefer to see something that doesn’t overload the
meaning, like word_index.

The next code smell was the punctuation detection. This looks like it
should be in a function. The choice of punctuation seems fairly arbitrary.
Personally I would use ispunct(), and only use something different if
necessary. There are a couple more things that I would avoid:

 start and end variable names, too confusing when there are
functions and members with the same name in the standard library

 replace with an empty string; erase does the same thing and is
more idiomatic (at least if you think of std::string as being a
container rather than a string)

I would write this as:

 const char* myPunct = ":;.,'\"?!-";
 word.erase(0, word.find_first_not_of(myPunct));
 word.erase(word.find_last_not_of(myPunct)+1);

This avoids the need for local variables for the start and end of the string.

James Holland <James.Holland@babcockinternational.com>

The student has made a fair attempt at the design of this program. However,
there are several problems which prevent the software working as required.

 Braces should surround the two statements following the first if
statement. Both replace() functions need to be dependant on the
if statement, not just the first as is the case with the student’s code.
To avoid this type of error it is best to get into the habit of always
enclosing conditional parts of an if statement in braces even if they
consist of only one statement.

 The first statement of the else block of the third if statement
defines a variable named lines. This should be a reference type so
that the vector within the map can be modified. As it stands,
additional line numbers are added to a local copy of the lines
vector and not the lines vector within index.

 The program does not select words that are separated only by the
delimiting characters (":;.,"\?!-") and not a white space.
Presumably, the program should interpret a line containing
"name::space", for example, as two words. Unfortunately, this
problem requires some fairly major restructuring of the code to
solve and will be discussed later.

In addition, there are some issues that are more to do with style that the
correct working of the program. I consider them worth discussing,
nonetheless.

 The delimiting characters have been defined twice. It would be
better to declare a const string that is initialised to the required
value and used instead of the repeated literal strings. Any required
change to the delimiting characters need then only be done in one
place.

 The student makes use of string’s replace() member function.
This is confusing because it gives the impression that some
characters of the string are being replaced by other characters.
What is really happening is that characters are being erased. It would
be better to use one of the overloaded erase() functions to clarify
the code.

 The variables entry and line that are used to print the index need
not be copies; they need only be const references. This is unlikely
to make a significant speed increase when writing to the console, but
it does make it clear that no modifications are being made to index.

As mentioned above, the student’s program does not isolate words that are
only separated by the delimiting characters. It may well be the case that
there are many such words in a line of text. This suggests that a loop is
required that isolates the words and only exits when there are no more in
the line. Writing the code for a loop (in this case a while loop) can be
tricky but after a little thought and some trial and error, I came up with the
following program.

 #include <iostream>
 #include <map>
 #include <vector>
 int main()
 {
 using namespace std;
 const string delims(" \t:;.,'\"?!-");
 map<string, vector<int>> index;
 string line;
 int line_number{};
 while (getline(cin, line))
 {
 ++line_number;
 auto start_of_word =
 line.find_first_not_of(delims);
 while (start_of_word != string::npos)
 {
 auto end_of_word =
 line.find_first_of(delims,
 start_of_word);
 if (end_of_word == string::npos)
 {
 end_of_word = line.length();
 }
 const string word(line.substr(
 start_of_word,
 end_of_word - start_of_word));
 auto position_of_word = index.find(word);

 if (position_of_word == index.end())
 {
 index[word].push_back(line_number);
 }
 else
 {
 auto & lines = position_of_word->second;
 if (lines.back() != line_number)
 {
 lines.push_back(line_number);
 }
 }
 start_of_word = line.find_first_not_of(
 delims, end_of_word);
 }
 }
 for (const auto & entry : index)
 {
 cout << entry.first << ": ";
 string delim;
 for (const auto & line_number :
 entry.second)
 {
 cout << delim << line_number;
 delim = ", ";
 }
 cout << '\n';
 }
 }

As well as correctly selecting words from the line of text, this program has
the advantage that there is no need to ‘top and tail’ words using
replace() (or erase()). Also, experiments show that the revised
program is about 20% faster that the student’s (ignoring inputting the data
and outputting the results).

Commentary
While it is very nice to have two keen and regular supporters of the code
critique, can I encourage you to have a go even if you’ve never entered the
competition before? You can see your name in print and it is good practice
for real code reviews!
14 | | MAY 2016{cvu}

There were, as Paul noted, a fair number of problems in a relatively simple-
looking piece of code…

I think between them the entrants covered most of the points pretty well.
The original presenting problem was due to naive use of auto. The design
principle to bear in mind is that C++ uses value semantics in very many
places (see for example Andrzej Krzemieński’s blog post at
https://akrzemi1.wordpress.com/2012/02/03/value-semantics/). Hence
the default behaviour of plain auto is to make a new value even when the
original item is a reference. For reasons that are unclear to me, this
behaviour seems unintuitive, at least initially, to many programmers who
assume the compiler will give them the same type they would have written
without the presence of auto.

When I use auto, I find myself writing auto const &, auto *, etc.,
a significant proportion of the time to either enforce or highlight (or both)
the semantics of the generated variable.

The final bug was that the first call to replace uses the wrong value for the
second argument (the number of characters to erase) – the code is currently
written as:

 word.replace(end + 1, end, "");

but the actual number of characters that need to be removed is from
position end+1 to the end of the string. However, passing end to the
replace function will not cause any undefined behaviour, it just may not
remove enough characters in some pathological cases. James’ solution
side-steps this problem completely as using erase means the number of
trailing characters does not need to be supplied.

The winner of CC 98
Both critiques were good but I think James covered a bit more ground, and
also uncovered the design flaw that the original program does not handle
embedded delimiters, so he wins the prize for this issue’s critique.

Code critique 99
(Submissions to scc@accu.org by Jun 1st)

I wanted to learn a bit about C++ threading so I tried writing a thread
pool example. But it sometimes crashes – I’ve managed to get it down
to a small example. Sometimes I get what I expected as output, for
example:

 Worker done
 Worker done
 Ending thread #2
 Ending thread #0
 Worker done
 Ending thread #1
 Worker done
 Ending thread #3
 Worker done
 All done

But other times I get a failure, for example:

 Worker done
 Ending thread #0
 Worker done
 Awaiting thread #1
 Worker done
 W
 <crash>

I’m not sure what to do next – can you help?

The program is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#include <algorithm>
using namespace std;
#include <array>
#include <chrono>
using namespace chrono;
#include <cstdlib>
#include <iostream>
#include <thread>

static const int POOL_SIZE = 4;

// Allow up to 4 active threads
array<thread, POOL_SIZE> pool;

// Example 'worker' -- would in practice
// perform some, potentially slow, calculation
void worker()
{
 this_thread::sleep_for(
 milliseconds(rand() % 1000));

 cout << "Worker done\n";
}
// Launch the thread functoid 't' in a new
// thread, if there's room for one
template <typename T>
bool launch(T t)
{
 auto it = find_if(pool.begin(), pool.end(),
 [](thread const &thr)
 { return thr.get_id() == thread::id(); }
);
 if (it == pool.end())
 {
 // everyone is busy
 return false;
 }
 *it = thread([=]()
 {
 t();
 thread self;
 swap(*it, self);
 self.detach();
 cout << "Ending thread #"
 << (it - pool.begin()) << "\n";
 });
 return true;
}

int main()
{
 while (launch(worker))
 {}
 // And finally run one in this thread as an
 // example of what we do when the pool is full
 worker();

 for (auto & it : pool)
 {
 thread thread;
 swap(thread, it);
 if (thread.joinable())
 {
 cout << "Awaiting thread #"
 << (&it - &*pool.begin()) << "\n";
 thread.join();
 }
 }
 cout << "All done\n";
}

Listing 2
MAY 2016 | | 15{cvu}

https://akrzemi1.wordpress.com/2012/02/03/value-semantics/
http://www.accu.org/journals/

16 | | MAY 2016{cvu}

Ruby Pocket Reference
2nd Edition
By Michael Fitzgerald. (ISBN 978-
1-491-92601-7, £9.99, published
by O'Reilly, 216 pages, Index,
Glossary)

Reviewed by Ian Bruntlett

I bought this book for two
reasons. One, to act as an aide-
mémoire when coming back to Ruby after
programming in other languages. Two, to act as
a concise overview of the language whilst I also
make my way through the more detailed work,
The Ruby Programming Language.

So, what does this book cover? I’ll give a brief
rundown here. It covers using Ruby and
supporting software (Ri, Rake, RubyGems), the
language in general and an introduction to some
key Ruby library references. I found the
glossary to be useful and the list of Ruby
resources (books and websites) to be very
useful as well.

A few things I noticed. In parts it has references
to the ruby-doc website for more information –
quite useful. It would have been helpful if it had
a) mentioned the basics of debugging Ruby
programs b) a separate index for method names
and c) if the Ruby Operator’s table listed the
associativity of the operators as well.

On the whole, this book did what I expected it
to do. This book is essentially a springboard
into Ruby programming but needs to be
complemented by other works.

Cloud Computing
Design Patterns
By Robert Cope, Thomas Erl
and Amin Naserpour.
Hardback. 540pp. Published
by Prentice Hall. ISBN 0-13-
385856-1

Reviewed by Alan Lenton

First a word of
caution. Although it’s not clear from
the book’s ambiguous title, the

patterns in this book relate to solving common
hardware problems in setting up data centres for
providing cloud services, not software design
patterns for programs running in the cloud.

Having said that, the book does cover most of
the basics, although some of the material could
be argued to fall into the category of the
blindingly obvious! As material on patterns
should, it documents best practice in solving
common problems in cloud data centres.
Unfortunately, the technology in this industry is
moving very rapidly, while publishing
continues to move at the same snail’s pace it did
when I was running a bookshop over 30 years
ago. This means there are two major omissions
– containerisation à la Docker and its ilk, and
Software Defined Networking (SDN).

A few years ago I might have recommended
this book for those moving toward what was
then a very embryonic version of dev-ops, but
now the absence of containerisation and SDN
material makes it unsuitable for this role.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Astrid Byro (astrid.byro@gmail.com)

ACCU London
Mrs Trellis reviews the March 16th meeting, without a clue.

ear speaking clock,
I recently attended ACCU London’s meetup “Party Like it
2015 with C# 6” given by Jon Skeet, “The Chuck Norris”

of programming [1]. He neither counted to infinity twice, nor
recited the digits of π backwards, which is for the best since
we therefore managed to go to a local pub afterwards. Instead
he demonstrated various C#6 features, using Noda time [2]
which is no surprise, but decided to use Comics Sans
throughout, which was something of a surprise. Live coding
instead of slides was a refreshing change.
The room was packed, though there were a few chairs left and
Jon Skeet asked why there were so few women. I shall
therefore invite all my female friends next time.
He covered various features (probably all the new features)
include the null-conditional operator “?.”, auto-property

initialisers which tidy up read only-fields, nameof expressions
and various other things. As he talked through string
interpolation C# seems to have decided to try to be more like
perl, though he had a spot of trouble with his colon at this point.
I sympathise. He may have a new version of his In Depth book
out covering C#6 and 7 in the future.
I assume the time will be 16:50 precisely at the next beep?
Yours sincerely,
Mrs Trellis,
North Wales.

References
[1] http://www.bbc.co.uk/news/uk-england-34596634
[2] http://blog.nodatime.org/

 D

http://www.bbc.co.uk/news/uk-england-34596634
http://blog.nodatime.org/

	CVu28-2.pdf
	More Than One
	Encryption
	Come Code With Me
	On Fifteen Love
	Standards Report
	Organised Chaos
	Code Critique Competition 99
	ACCU London
	Bookcase

