

Software Design, Space, and Visuality (continued)

a good reason. Things are visible because they are opaque, which means
that they represent a solid structure capable of blocking flows.

For example, stakeholders tend to perceive Gantt charts as the true image
of resource allocation. However, any non-trivial project has too much
uncertainty and simply does not flow exactly according to the plan. Gantt
charts misrepresent the project and introduce milestones or deliveries at
the wrong places.

Over-engineered applications or over-structured teams require
visualizations exactly because they are opaque, blocking flows and lines
of sight too easily. (One almost could consider visual design as a kind of
negative space, a system of points of blockage and failure – and effectively
that is what test-driven development is a remedy for.)

Software artifacts and the design process are functional and flow-oriented.
Therefore, non-obstructing flow (in any sense: code flow, data flow, flow
of design activities, human communication flow) is more essential than
structural visibility. Also, they have close affinity to change and time, not
only its linear axis, but also its qualitative, transformational structure,
which is not necessary linear. Take ‘software life-cycle’ as a colloquial

example of cyclic time structures in software design; or ‘time-to-market’
expressing not just linear time, but a finite strongly structured segment of
it. Spatial representation of qualitative aspects of time is doubtful, while
languages (natural or artificial) have been developing exactly to reflect and
express such temporal qualities.

Of course, everything changes, when pictures and diagrams are used as
transient, disposable, molecular, optional elements of collaboration, much
like words of the spoken, written, or programming language. 

References
[1] Christopher Alexander, A City Is Not a Tree. Architectural Forum,

Vol 122. 1965 http://www.rudi.net/pages/8755
[2] Jack W. Reeves, ‘What Is Software Design: 13 Years Later’

Developer.* Magazine. 23 February 2005.
http://www.developerdotstar.com/mag/articles/
reeves_13yearslater.html

[3] Christopher Alexander et al, A Pattern Language: Towns, Buildings,
Construction. 1977
Passionate About Programming or
Passionate About Life?

Chris Oldwood takes up the baton in the Passionate debate.

Life moves pretty fast. If you don’t stop and look
around once in a while, you could miss it.

~ Ferris Bueller.

here is a recurring topic that crops up at the ACCU Conference during
the lightning talks and this year was no exception. In the first round
of lightning talks Björn Fahller asked the question ‘Why Are (Only)

We Here?’ And in the second set, Mike Long continued the trend with a
talk entitled ‘Passionate vs. Professional’.

Interestingly the use of the term ‘passionate’ was itself questioned by Seb
Rose in his own 12" edition of the lightning talks
with ‘Are You Passionate?’ For those who weren’t
there I suggest you look the word up in the
dictionary and draw your own conclusions. For
what it’s worth I agree with Seb’s sentiment, but
I’m still going to stick to what I believe we mean
by the word as it adds fuel to this particular fire…

So, let me ignite it now by suggesting that not
everyone who works as a computer programmer
does it because they are passionate about it. Yes,
some of us cut our teeth on a home computer and
are still bemused how we ended up getting paid to do what was essentially
our hobby before entering employment. But that only applies to some of
us. That’s right; lots of people actually do a job for reasons other than the
love of it.

Many of the people I have worked with in the past do enjoy what they do.
To go back to Seb’s point about the word ‘passionate’, let me suggest (after
clicking Shift+F7 to bring up the Thesaurus) the slightly watered down
‘enthusiastic’ instead. Programming is a career that they have chosen
because they are genuinely interested in the subject. But I have also worked
with others for whom programming was never really the end goal – they
do it because it pays reasonably well (very well in certain industries) and
perhaps they’re better at it than other careers they originally had in mind.

They are not, and never expect to be, The Best of the Best, but does every
programmer have to aspire to be that?

When I went to university back in the late ’80s I studied Electronic Systems
Engineering. My choice was based on my dream of working in the Audio
industry because I loved music and I loved my hi-fi. It turned out that I
sucked really badly at analogue electronics! However I had slightly more
success in the digital realm and eventually discovered that writing software
was an actual profession, and one that I might be a little better (and
therefore more successful) at.

I am one of the lucky ones who managed to make
a course correction early in life and end up doing
what I had already been doing for the 7 years prior
to university, but hopefully in a somewhat more
‘professional’ manner. Of course not everyone is
fortunate enough to have their path laid out clearly
before them and so instead they fall into a job that
pays the bills and then see where it goes. And so,
if the mortgage is covered and it’s not detestable,
then why shouldn’t that be enough for some?

There’s that word ‘professional’ this time. What
does that mean exactly? I can tell you I believe it doesn’t include
committing a load of changes that haven’t even been compiled just before
going off on a week’s holiday. But what about some of the practices that
many of us feel are beneficial to a sustainable system, say, test-first versus
test-later or continuous integration? What’s the penance

T

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s C++ and C# on Windows in big
plush corporate offices. He is also the commentator for
the Godmanchester Gala Day Duck Race and can be
contacted via gort@cix.co.uk or @chrisoldwood

each of us has a right to
devote as much or as

little time ... to our
career progression as

we see fit
4 | | JUL 2013{cvu}

std::terminate. We should therefore wrap the attempt to send the
message in a try-catch block (Listing 3).

We can now set up a pair of actors that play ping-pong (Listing 4).

This will give output along the lines of the following:

 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 Partner quit

The sleep in the player’s message handler is to slow everything down – if
you take it out then messages will go back and forth as fast as the system
can handle, and you’ll get thousands of lines of output. However, even at
full speed the pings and pongs will be interleaved, because sending a
message synchronizes with the receive() call that receives it.

That’s essentially all there is to it – the rest is just application design. As
an example of how it can all be put together, let’s look at an implementation
of the classic sleeping barber problem.

The Lazy Barber
For those who haven’t met it before, the problem goes like this: Mr Todd
runs a barber shop, but he’s very lazy. If there are no customers in the shop
then he likes to go to sleep. When a customer comes in they have to wake
him up if he’s asleep, take a seat if there is one, or come back later if there
are no free seats. When Mr Todd has cut someone’s hair, he must move
on to the next customer if there is one, otherwise he can go back to sleep.

Let’s start with the barber. He sleeps in his chair until a customer comes
in, then wakes up and cuts the customer’s hair. When he’s done, if there
is a waiting customer he cuts that customer’s hair. If there are no customers,
he goes back to sleep, and finally at closing time he goes home. This is
shown as a state machine in Figure 1.

This translates into code as shown in Listing 5.The wait loops for
‘sleeping’ and ‘cutting hair’ have been combined, since almost the same
set of messages is being handled in each case – the only difference is that
the ‘cutting hair’ state also has the option of ‘no customers’, which cannot
be received in the ‘sleeping’ state, and would be a no-op if it was. This

allows the action associated with the ‘cutting hair’ state to be entirely
handled in the lambda associated with the customer_waiting message;
splitting the wait loops would require that the code was extracted out to a
separate function, which would make it harder to keep count of the
haircuts. Of course, if you don’t have a compiler with lambda support then
you’ll need to do that anyway. The logger is a global actor that receives
std::strings as messages and writes the to std::cout. This avoids
any synchronization issues with multiple threads trying to write out at
once, but it does mean that you have to pre-format the strings, such as when
logging the number of haircuts done in the day. The code for this is shown
in Listing 6.

Let’s look at things from the other side: the customer. The customer goes
to town, and does some shopping. Each customer periodically goes into
the barber shop to try and get a hair cut. If they manage, or the shop is
closed, then they go home, otherwise they do some more shopping and go
back to the barber shop later. This is shown in the state machine in Figure 2.

This translates into the code in Listing 7. Note that the customer interacts
with a ‘shop’ actor that I haven’t mentioned yet. It is often convenient to

Fi
gu

re
 1

void barber_func()
{
 bool go_home=false;
 unsigned haircuts=0;
 while(!go_home)
 {
 logger<<std::string("barber is sleeping");
 bool can_sleep=false;
 do
 {
 jss::actor::receive()
 .match<customer_waiting>(
 [&](customer_waiting c){
 logger<<std::string
 ("barber is cutting hair");
 c.customer<<start_haircut();
 std::this_thread::sleep_for
 (std::chrono::milliseconds
 (1000*(1+(rand()%5))));
 c.customer<<done_haircut();
 ++haircuts;
 })
 .match<no_customers>(
 [&](no_customers){
 can_sleep=true;
 })
 .match<closing_time>(
 [&](closing_time){
 go_home=true;
 });
 }
 while(!can_sleep && !go_home);
 }
 std::ostringstream os;
 os<<"barber is going home. He did
 "<<haircuts<<" haircuts today";
 logger<<os.str();
}

Listing 5

void logger_func(){
 for(;;){
 jss::actor::receive()
 .match<std::string>([](std::string s){
 std::cout<<s<<std::endl;
 });
 }
}
jss::actor logger(logger_func);

Listing 6
8 | | JUL 2013{cvu}

have an actor that represents shared state, since this allows access to the
shared state from other actors to be serialized without needing an explicit
mutex. In this case, the shop holds the number of waiting customers, which
must be shared with any customers that come in, so they know whether
there is a free chair or not. Rather than have the barber have to deal with
messages from new customers while he is cutting hair, the shop acts as an
intermediary. The customer also has to handle the case that the shop has
already closed, so the shop reference might refer to an actor that has

finished executing, and thus get a jss::no_actor exception when
trying to send messages.

The message handlers for the shop are short, and just send out further
messages to the barber or the customer, which is ideal for a simple state-
manager – you don’t want other actors waiting to perform simple state
checks because the state manager is performing a lengthy operation; this
is why we separated the shop from the barber. The shop has 2 states: open,
where new customers are accepted provided there are fewer than the
remaining spaces, and closed, where new customers are turned away, and
the shop is just waiting for the last customer to leave. If a customer comes
in, and there is a free chair then a message is sent to the barber that there
is a customer waiting; if there is no space then a message is sent back to
the customer to say so. When it’s closing time then we switch to the
‘closing’ state – in the code we exit the first while loop and enter the
second. This is all shown in listing 8.

Fi
gu

re
 2

enum class haircut_status{
 had_haircut,no_room,shop_closed
};
haircut_status try_and_get_hair_cut
 (unsigned customer,jss::actor_ref shop){
 std::ostringstream os;
 os<<"customer "<<customer<<
 " goes into barber shop";
 logger<<os.str();
 try{
 shop<<customer_enters{
 jss::actor::self()};
 }
 catch(jss::no_actor){
 os.str("");
 os<<"customer "<<customer<<
 " finds barber shop is closed";
 logger<<os.str();
 return haircut_status::shop_closed;
 }
 haircut_status status=haircut_status::no_room;
 jss::actor::receive()
 .match<start_haircut>(
 [&](start_haircut)
 {
 os.str("");
 os<<"customer "<<customer<<
 " is having a haircut";
 logger<<os.str();
 jss::actor::receive()
 .match<done_haircut>(
 [&](done_haircut)
 {
 os.str("");
 os<<"customer "<<customer<<
 " is done having a haircut";
 logger<<os.str();
 }
);
 status=haircut_status::had_haircut;
 }
)

Li
st

in
g

7

 .match<no_room>(
 [&](no_room)
 {
 os.str("");
 os<<"customer "<<customer<<
 " leaves because there is no room";
 logger<<os.str();
 status=haircut_status::no_room;
 }
)
 .match<shop_closed>(
 [&](shop_closed)
 {
 os.str("");
 os<<"customer "<<customer<<
 " finds barber shop is closed";
 logger<<os.str();
 status=haircut_status::shop_closed;
 }
);
 os.str("");
 os<<"customer "<<customer<<
 " leaves barber shop";
 logger<<os.str();
 try{
 shop<<customer_leaves();
 }
 catch(jss::no_actor){
 }
 return status;
}
void customer_func(unsigned i,
 jss::actor_ref shop)
{
 std::ostringstream os;
 os<<"customer "<<i<<" goes to town";
 logger<<os.str();
 haircut_status status;
 do{
 os.str("");
 os<<"customer "<<i<<" is shopping";
 logger<<os.str();
 std::this_thread::sleep_for
 (std::chrono::milliseconds
 (500*(rand()%20)));
 }
 while((status=try_and_get_hair_cut(i,shop))
 ==haircut_status::no_room);
 os.str("");
 os<<"customer "<<i<<" is going home";
 logger<<os.str();
}

Listing 7 (cont’d)
JUL 2013 | | 9{cvu}

The messages are shown in listing 9, and the main() function that drives
it all is in listing 10.

Exit stage left
There are of course other ways of writing code to deal with any particular
scenario, even if you stick to using actors. This article has shown some of
the issues that you need to think about when using an actor-based approach,
as well as demonstrating how it all fits together with the Just::Thread Pro
actors library. Though the details will be different, the larger issues will
be common to any implementation of the actor model. 

References
[1] Communicating Sequential Processes, C.A.R Hoare, 1985.

http://www.usingcsp.com/
[2] Just::Thread Pro: Actors Edition, http://www.stdthread.co.uk/pro/

void shop_func(jss::actor_ref barber)
{
 bool closed=false;
 unsigned waiting_customers=0;
 unsigned const max_waiting_customers=3;

 std::ostringstream os;
 logger<<std::string("shop opens");

 while(!closed)
 {
 jss::actor::receive()
 .match<customer_enters>(
 [&](customer_enters c){
 ++waiting_customers;
 os.str("");
 os<<"shop has "<<waiting_customers<<"
 customers";
 logger<<os.str();
 if(waiting_customers<=
 max_waiting_customers){
 barber<<customer_waiting{c.customer};
 } else
 c.customer<<no_room();
 })
 .match<customer_leaves>(
 [&](customer_leaves){
 if(!--waiting_customers)
 {
 logger<<"last customer left shop";
 barber<<no_customers();
 } else{
 os.str("");
 os<<"shop has
 "<<waiting_customers<<" customers";
 logger<<os.str();
 }
 })
 .match<closing_time>(
 [&](closing_time c){
 logger<<std::string("shop closing");
 closed=true;
 barber<<c;
 });
 }

 while(waiting_customers){
 os.str("");
 os<<"shop has "<<waiting_customers<<"
 customers";
 logger<<os.str();
 jss::actor::receive()
 .match<customer_enters>(
 [&](customer_enters c){
 ++waiting_customers;
 logger<<"customer turned away
 because shop closed";
 c.customer<<shop_closed();
 })
 .match<customer_leaves>(
 [&](customer_leaves){
 if(!--waiting_customers)
 {
 logger<<"last customer left shop";
 }
 });
 }
 logger<<std::string("shop closed");
}

Li
st

in
g

8 struct customer_waiting
{
 jss::actor_ref customer;
};
struct customer_enters
{
 jss::actor_ref customer;
};
struct customer_leaves
{};
struct start_haircut
{};
struct done_haircut
{};
struct closing_time
{};
struct no_room
{};
struct shop_closed
{};
struct no_customers
{};

Listing 9

int main()
{
 {
 jss::actor barber(barber_func);
 jss::actor barbershop
 (shop_func,jss::actor_ref(barber));
 unsigned const count=20;
 jss::actor customers[count];

 for(unsigned i=0;i<count;++i)
 {
 std::ostringstream os;
 os<<"Starting customer "<<i;
 logger<<os.str();
 customers[i]=jss::actor(customer_func,i,
 jss::actor_ref(barbershop));
 }

 std::this_thread::sleep_for
 (std::chrono::seconds(20));
 barbershop<<closing_time();
 }

 logger.stop();
}

Listing 10
10 | | JUL 2013{cvu}

http://www.usingcsp.com/
http://www.stdthread.co.uk/pro/

JUL 2013 | | 11{cvu}

How I Wrote My First Technical Presentation
Becky Grenier shares her preparations for giving a tech talk.

This was a letter to the DevChix (www.devchix.org) mailing list, a
technical community for and by women in software development. My
thanks to Becky Grenier for agreeing to share it with ACCU, where I
hope it’ll inspire people in our community, too.

ust write a great description for your talk, send it in, and then you’ll have
no choice but to pull it together sometime before the conference.” As
I gave this advice to a friend, I saw that this could be the answer to my

own public speaking aversion as well. If I waited until after I had put
together a great presentation it was just never going to happen.

So, a few weeks later I sent an email to a local user group suggesting a
topic I had recently learned quite a bit about and implemented for work,
the Apache Solr Search Server. They were very receptive and we set a date
about one month away, on which I would give the presentation.

The panic set in two weeks from the presentation date. I thought I should
learn more about Apache Solr and tried to read the book I had, but it was
more like desperate scanning since I didn’t really have enough time for that
anymore. Then, when I saw the date of my talk was a little over a week
away I began on the slides. It was the first time I had used PowerPoint in
over a decade. I had no idea how to start so I just forced myself to keep
making slides until I had about 15, which I thought was a good start for a
30-minute presentation. This took quite a few hours and quite a few beers.
They were terrible slides and I knew it, basically just lists of bullet-points.
And my self-doubt kept walloping me over the head after each one saying,
“this sucks, your topic sucks and so do you”. Which is hard to get past when
the work you are doing does actually suck. And so it was with great
difficulty that I finished my first draft.

A couple of saintly friends of mine were willing to sit through my first
practice. Not only were they terrible slides, but it was a boring topic as well
and I was not a good presenter. They stopped me shortly after I had begun
and said they were having trouble following. I hadn’t defined several
terms. I hadn’t really said what Apache Solr was. I hadn’t explained why
someone might want to use it. It was hard for them to pay attention when
they didn’t know the relevance. It was just me talking about configuration
files. Instead, they said, I should tell a story. (I thought, ‘Once upon a time
there was this software program...’) They were right, and I had to start the
whole thing over again, which I did that very night, with a few less beers
this time.

Thus began my endless rounds of practising, and then tearing apart my
slides. I practised in front of both technical and non-technical people. I
ended up defining every technical term I used, even things I was pretty sure
my audience would know, such as ‘API’. As my sister told me, it takes
10 seconds to offer a quick definition and it is a kindness to anyone who
might not know. Slowly my presentation took on a shape with an
introduction, middle, and conclusion, and with all necessary pieces such
as ‘About Me’ and ‘Questions’. I allowed the rising panic I felt as the date
approached to drive me to keep practising. I got pretty good at explaining
my slides. I had even put in a few that made people laugh. I practised six
times in all.

On the day of my presentation, I was nervous still (maybe the panic had
just become habit by then) but felt more confident due to all the time I had
put in. If I didn’t do well, at least I had given it my best shot, but I was
pretty sure I had beat that presentation into something decent. Finally it
was time to speak, and it went pretty well. The audience laughed at the
appropriate spots. A few times I felt like my knees were trembling but the
feedback I got was that I didn’t seem nervous (evidence that nobody can
tell). At the last minute I had decided to demo an app made with that
technology so they could see it in action, and that ended up not working,

but I was able to skip over that pretty quickly. It was just an extra anyway,
not fundamental to understanding my topic. I told my audience I was a new
public speaker and asked for any feedback they might have (something I
read in ‘Lean In’), and everyone said I did great and there was nothing
negative.

Then I was so relieved to be done and have this monkey of a presentation
off my back. I was proud of myself for doing something that scared me so
much, and I had created a pretty good talk that I could give again. It was
surprising, not only to me but to those friends who had watched my initial
efforts, how much improved my final presentation was – almost
unbelievable. And I have volunteered to give it again already, to a different
group in a few weeks, and I’m not that nervous about it anymore.

So the moral to this story is that all you have to do to become a public
speaker is just find somewhere to start and keep going. 

BECKY GRENIER
Rebecca Grenier is a Software Developer for EatingWell
Magazine in Vermont, USA. She began programming at
age 12, when she and her twin sister created infinite
loops in GW BASIC to insult each other repeatedly. She
can be reached at rebeccagrenier@gmail.com

“J

In The Toolbox # 3
Wrapper Scripts
Chris Oldwood automates his toolkit for an easier

and more predictable life.

t the ACCU conference this year, Pete Goodliffe
hosted a session titled ‘Becoming a Better
Programmer’. Part of it involved a number of

people (that Pete had invited) spending a few minutes
describing what they believe has helped make them a
better programmer. One such person was the editor of
this very journal – Steve Love – who picked Automation
as his topic. If you read his editorial from a few issues back you’ll know
that, like Pete and Steve, I too prefer to simplify things when I find myself
doing the same task over and over. The full subjects of both automation
and scripting are huge in themselves, but there is a particular intersection
that at first might seem almost trivial and yet can quickly grow into
something more useful – wrapper scripts.

Simplifying existing tools
If you’ve ever worked with SQL Server from the command line you’ll have
come across the bundled SQLCMD.EXE tool. This, along with its
forerunner OSQL.EXE, is the traditional tool for executing SQL
statements (and script files) against a SQL Server instance. Like many
mature command line tools, it’s a bit of a Swiss-Army knife and has
sprouted a myriad of options and switches to control how you feed SQL
text into it and how the results and errors are handled after execution. For
example the following command will fetch the current time on a local
instance using the current user credentials:

 C:\> SQLCMD -E -S .\SQLEXPRESS -d master-b -m 10
 -Q "select getdate();"

The -b and -m switches are technically unnecessary when running
interactively, but the moment you start running SQL batches from scripts
you’ll likely add them if you want anything out of the ordinary to cause
execution to stop and SQLCMD to return an error code. Then there is the
annoyance factor of just getting the command line slightly wrong. If you
forget the -E you’ll get a weird login failure, or if you use -q instead of
-Q it won’t terminate after executing the SQL. Case-sensitive command
line tools do nothing to help ensure a calm, quiet working environment
either.

One tried and trusted solution to these ‘problems’ is to turn to the venerable
Wiki and document lots of command lines as snippets that you can just
cut-and-paste directly into your shell. Anyone who has ever tried that from
a Word document where Word has been ‘smart’ and converted the simple
dashes to ‘smart’ dashes will know how fraught with danger this idea is.
That’s before you consider what happens when the wiki becomes
unavailable (and I can guarantee a development server has an SLA
measured in months) or you begin to appreciate the shear tediousness of
what it is you’re actually doing.

Another more personal alternative is to use your shell or some 3rd party
tool to create little macros for your favourite commands. However, I feel
this is a bit like writing your own tests – if it’s good enough for you, then
why not the rest of the team? After all, when a new team member joins

they’re probably going to have to go through the same process. So, you
can give them a leg-up by storing a set of project-specific pre-canned
scripts that help with the most common scenarios.

In a sense it’s a bit like Partial Function Application because, whereas a
tool like SQLCMD has to allow for the different modes of operation in
general, your development environment will almost certainly be far more
specific. This means you can exploit that knowledge by first cutting down
on any superfluous arguments. The command below, for example, creates
a new database on a local instance:

 C:\> SQLCMD -E -S .\SQLEXPRESS -d master -Q
 "create database MyTestDb;"

The only real variables in the command are the instance (.\SQLEXPRESS)
and the database name (MyTestDb), the rest is boilerplate stuff. So, let’s
create a batch file that accepts just those two parameters, and more
importantly has a memorable name (CreateDatabase.cmd):

 @SQLCMD -E -S %1 -d master -Q "create database
 %2;"

Now we can just use this simple script to create a test database in future:

 C:\> CreateDatabase .\SQLEXPRESS MyTestDb

Error handling
Of course just like any other code we write we have to consider the
handling of errors and so we should add a sprinkling of that too – first to
check we have the required number of arguments, then to pass back any
error returned by the actual tool:

 @echo off
 if /i "%1" == "" call :usage & exit /b 1
 if /i "%2" == "" call :usage & exit /b 1

 SQLCMD -E -S %1 -d master -Q "create database %2;"
 if errorlevel 1 exit /b %errorlevel%

 :usage
 echo Usage: %~n0 ^<instance^> ^<database^>
 goto :eof

If you have bothered to write a usage message, then you could also choose
to add a couple of extra lines to provide a consistent and modern way to
query it (although this somewhat starts to defeat the original purpose of
the exercise – simplification!):

 if /i "%1" == "-?" call :usage & exit /b 0
 if /i "%1" == "--help" call :usage & exit /b 0

Now, at this point I’m sure you’re beginning to question whether the script
is starting to get so complicated that you’ll be spending more time writing
it than what you (and hopefully your colleagues) will eventually save by
using it. To decide that I suggest you consult the recent XKCD titled ‘Is
It Worth the Time?’ [1].

A

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s C++ and C# on Windows in big
plush corporate offices. He is also the commentator for
the Godmanchester Gala Day Duck Race and can be
contacted via gort@cix.co.uk or @chrisoldwood

One tried and trusted solution to these
‘problems’ is to turn to the venerable Wiki and
document lots of command lines as snippets
12 | | JUL 2013{cvu}

However it should also be fairly obvious that this is just boilerplate code
that can be copied from a template. One such template (for batch files) can
be found in my blog post ‘Windows Batch File Template’ [2].
Consequently I’ve found putting these kind of scripts together quite trivial
and it also allows for some other common simple scenarios to be easily
accommodated.

Personalisation
As a rule of thumb the point of these sorts of scripts is to allow a more
unified development experience through the use of some common tools.
Also the development environment should allow for the redundancy to be
hidden or removed as we saw above. But there are times when each
developer (and the build machine itself counts as another developer) needs
to provide some personal configuration data.

Once again the database example fits the bill nicely. In many organisations
you can install a database locally, but not everywhere allows this (you can
thank an overreaction to the 2003 Slammer virus for that). Although not
ideal, you may also have to deal with minor differences in development
machine configuration such as where the instance is installed (a fresh
install and an upgrade can be different). For example nearly every
developer may have a local copy of SQL Server Express and be quite happy
calling their unit test database ‘UnitTest’, in which case you might as well
save them a bit more typing and just default to those values:

 set instance=%1
 set database=%2

 if /i "%instance%" ==
 "" set instance=.\SQLEXPRESS
 if /i "%database%" == "" set database=UnitTest

An alternative approach is to use optional environment variables to specify
the default values so that you never need to pass any arguments if you
decide to tow the party line:

 set instance=%personal_instance%
 set database=%personal_database%

 if /i "%instance%" == "" set instance=%1
 if /i "%database%" == "" set database=%2

 if /i "%instance%" == "" call :usage & exit /b 0
 if /i "%database%" == "" call :usage & exit /b 0

Ultimate flexibility comes from combining the two approaches so that you
can keep things really simple for the vast majority of use cases, but you
still have the ability to override things at any point by supplying different
values on the command line. In my experience database development is
the one place where this has actually proved to be quite useful.

Developer sandbox set-up
If you’re going to allow (or need to accommodate) some element of
personalised configuration then make sure it is optional. There is nothing
more soul-destroying on your first day of a new job than being presented
with a 30-page manual on what steps you need to take to configure your
development machine so that you can actually do your job. And if you
think I’m exaggerating by recounting a 30-page document – I’m not!

For me the steps required to get up and running on a new project should
be as simple as:

1. Install version control software

2. Fetch development branch codebase

3. Build code and run tests

Step 3 might look like it should be split into two, but it’s not because that’s
exactly what the build machine will be doing and so whatever it does I
should be able to do, too. At this point I know that I can replicate what the
build machine does and so I’m good to go.

Script composition
After you’ve created a few simple scripts it then becomes easier to see how
you can combine them with other simple scripts to accomplish ever bigger
tasks. Although it was never envisaged it would end up that way, many of
the build processes I’ve been involved with in the past few years have
ended up taking an imperative approach mainly due to the incremental
approach of layering together many simple scripts to create a more
complex process. The same goes for the deployment side as well.

For example the deployment process started out as two simple scripts that
wrapped invoking MSIEXEC.EXE – one to install the package and one to
uninstall it. The wrappers allowed me to handle the common error codes
(e.g. 1605) that occur when the package is already installed/uninstalled.
Once the NT services were written another simple wrapper around
SC.EXE was created to start/stop them. These where then combined into
a larger script that ensured the services were started/stopped before/after
the packages installed/uninstalled. Add in another simple script to ensure
any errant processes are terminated (PSKILL.EXE), another to copy the
files from a known share to the local machine (ROBOCOPY.EXE) and
finally a top-level script to act as the root for a Scheduled Task and you
suddenly have an automated deployment process that even Heath
Robinson would be proud of.

Scripting objects
On Windows there is a slight variation on this theme of driving command
line tools using a very basic language; which is to drive ‘objects’ instead.
If you consider the batch file language as the glue that binds together
disparate console-style processes, then VBScript is the same simple glue
that binds together objects exposed via COM. It might seem an expensive
way to do business, but if your architecture is that classic pairing of a
Visual Basic front-end and a C++ back-end then you’ve already done most
of the heavy lifting. It might sound perverse but I’ve worked on a project
where the entire build process was a library of VBScript files that were
stitched together by using Windows Script Host (.WSF) files. It’s not
something a sane person would consider doing today but 10–15 years ago
it was Microsoft’s answer to the lack of scripting on Windows. That said,
in a locked down production environment with legacy servers it might still
be your only choice.

In a way that ideology still exists today in the guise of PowerShell. COM
has been replaced by its modern heir – .Net – and the PowerShell language
provides a much cleaner binding because .Net itself underpins it. Of course
the pipeline model still exists too although it’s been ‘enhanced’ to flow
objects instead of simple lines of text. Once again, if your core technology
is already .Net you’ve done the heavy lifting and consuming your
components via scripts is pretty easy. PowerShell may be Microsoft’s first
choice, but the model works equally well with both F# and IronPython in
the driving seat, although the latter seems to be sorely neglected these days.

Capturing pipelines
Of course none of this is going to replace the venerable UNIX pipeline
which, despite its simple text based nature, lives on exactly because it’s
simple and an army of programmers have created a wealth of small, well-
focused tools that are designed to be composed to create something bigger
than the sum of its parts.

Oftentimes I’ll need to do a little text processing and it ends up being a
disposable one-liner. But other times I realise it actually might be useful
to my team mates. There is a certain level of personal gratification in
publishing your Byzantine one-liners to your fellow developers and if they
only see the light of day once in a blue moon then the XKCD chart [1] rules.
But if you think it’ll get a frequent work out then you might want to
consider encapsulating it within a script for ease of use.

A few years ago I started work on a new project that sprouted the need to
process line-based text files at every turn. This caused me to reacquaint
myself with SED & AWK as part of a rediscovery of the classic pipeline.
In fact you’ll find my delight documented in this very journal as part of
the ‘Inspirational (P)articles’ series [3].
JUL 2013 | | 13{cvu}

F

D
a
fi
w

D
te
th
m
b

D

D
fa
+
+
+

In one particular case after the system had gone live I started needing to
compare some published CSV files between the development, test and
production environments as part of the testing strategy. The files were not
directly comparable so a little pre-processing was needed to first remove
the noise. Old hands will no doubt recognise that a sprinkling of SED is
one way to replace some variable string patterns with fixed (and therefore
comparable) text:

 SED "s/Timed-Out/ERROR/g" | SED "s/OutOfMemory/
 ERROR/g"

Due to the non-deterministic nature of a SQL SELECT without an ORDER
BY clause (which would have been an unnecessary burden on SQL Server)
the file needed to be sorted. The best key to sort on was not the leftmost
in the file which meant treating the file as having delimited fields:

 SORT -t "|" -k 3,4

Finally, every time the file had new fields appended in a release they
needed to be ignored when doing regression testing:

 CUT -d "|" -f 1-24

The output was always fed directly to a GUI based diff
tool in case there were differences to investigate and so
structurally the script looked like Listing 1.

There was no reason (apart from the usual lack of time and
a suitably privileged account) why that last step couldn’t

have used the normal DIFF tool and been automated to capture the
differences in a report every morning.

Gall’s Law [4] says that a complex system that works is invariably found
to have evolved from a simple system that worked. Build, test and
deployment processes in particular seem to have a habit of growing
organically and judicious use of little scripts can be one way of slowly
piecing together functionality by building on the existing set of tried and
trusted tools. 

References
[1] http://xkcd.com/1205
[2] http://chrisoldwood.blogspot.co.uk/2010/06/windows-batch-file-

template.html
[3] C Vu Journal Vol 23 #1 (March 2011) and

http://chrisoldwood.blogspot.co.uk/2010/11/reacquainting-myself-
with-sed-awk.html

[4] http://en.wikipedia.org/wiki/Gall's_law

SED %1 … | SED … | SED … | SORT … | CUT … > "%TEMP%\lhs.csv"
SED %2 … | SED … | SED … | SORT … | CUT … > "%TEMP%\rhs.csv"
GUIDIFF "%TEMP%\lhs.csv" "%TEMP%\rhs.csv"

Li
st

in
g

1

14 | | JUL 2013{cvu}

Archer Yates Associates Ltd » Tel: +44 (0)1608 659900 » www.archer-yates.co.uk

We are a leading, professionally recognised event
management company. With over 30 years experience
of organising and managing events, from conception
right through to completion, on all scales from an
executive board meeting to large annual conferences.

Let us help you create a memorable event that reflects
and exceeds your targets and expectations. We can
research, plan, deliver and evaluate every element
from travel to destination, hotel and entertainment
to technical production and booking management.

Got an event to plan?
Let Archer Yates Associates

take the strain.

For a no obligation chat and to help you develop your ideas
further, contact our friendly team on 01608 659900 or email
Managing Director Julie Archer at Julie@archer-yates.co.uk

“Today’s Solution to Tomorrow’s Event”

or more information, visit www.coverity.com/development-testing

evelopment testing is an emerging category, including a set of processes and software, such
s static analysis, designed to help developers, management, and the business easily find and
x quality and security problems early in the development cycle, as the code is being written,
ithout impacting time to market, cost, or customer satisfaction.

evelopment testing augments traditional testing, including QA functional and performance
sting and security audits, providing development teams with a quick and easy way to test
eir code for defects in a non-intrusive manner, so development stays focused on innovation,
anagement gets visibility into problems early in the cycle to make better decisions, and the

usiness continues to deliver high quality products to market for competitive advantage.

MANAGEMENT

Increases visibility for better decision
making, creates a predictable release
process (on-schedule, on-budget), reduces
costly support and production issues
downstream, and provides consistent
measurement of teams against common
metrics to track improvement over time.

SECURITY

process by eliminating a portion of security
issues upfront, and helps focus testing and
remediation efforts on the problems that
require their expertise.

QUALITY ASSURANCE

by receiving a higher quality build from the
start, reduces wasted testing time due to
buggy code, and focusses testing efforts on
the problems that require their expertise.

DEVELOPMENT

Finds hard-to-spot defects in code,

fast – without requiring subject-matter
expertise, reduces the time spent on
re-work and de-bugging, and enhances
skills by showing developers where they
are most susceptible to error.

evelopment Testing

Management

Quality Assurance

Development Security

EVELOPMENT TESTING =
ster time to market + reduced cost

 greater customer satisfaction and brand equity
 increased visibility and traceability
 improved cross team collaboration + less risk

http://en.wikipedia.org/wiki/Gall’s_law
http://chrisoldwood.blogspot.co.uk/2010/11/reacquainting-myself-with-sed-awk.html
http://chrisoldwood.blogspot.co.uk/2010/06/windows-batch-file-template.html
http://chrisoldwood.blogspot.co.uk/2010/06/windows-batch-file-template.html
http://xkcd.com/1205

Professionalism in Programming # 81
The Ghost of a Codebase Past
Pete Goodliffe leads us down memory lane.

I will live in the Past, the Present, and the Future.
The Spirits of all Three shall strive within me.
I will not shut out the lessons that they teach!

~ Charles Dickens (A Christmas Carol)

ostalgia isn’t what it used to be. And neither is your old code. Who
knows what functional gremlins and typographical demons lurk in
your ancient handiwork? You thought it was perfect when you wrote

it – but cast a critical eye over your old code and you’ll inevitably bring
to light all manner of code gotchas.

Programmers, as a breed, strive to move onwards. We love to learn new
and exciting techniques, to face fresh challenges, and to solve more
interesting problems. It’s natural. Considering the rapid turnover in the job
market, and the average duration of programming contracts, it’s hardly
surprising that very few software developers stick with the same codebase
for a prolonged period of time.

But what does this do to the code we produce? What kind of attitude does
it foster in our work? I maintain that exceptional programmers are
determined more by their attitude to the code they write and the way they
write it, than by the actual code itself.

The average programmer tends not to maintain their own code for too long.
Rather than roll around in our own filth, we move on to new pastures and
roll around in someone else’s filth. Nice. We even tend to let our own ‘pet
projects’ fall by the wayside as our interests evolve.

Of course, it’s fun to complain about other people’s poor code, but we
easily forget how bad our own work was. And you’d never intentionally
write bad code, would you?

Revisiting your old code can be an enlightening experience. It’s like
visiting an ageing, distant relative you don’t see very often. You soon
discover that you don’t know them as well as you think. You’ve forgotten
things about them, about their funny quirks and irritating ways. And you’re
surprised at how they’ve changed since you last saw them (perhaps, for
the worse).

Looking back at old code you’ve produced, you might shudder for a
number of reasons...

Presentation
Many languages permit artistic interpretation in the indentation layout of
code. Even though some languages have a de-facto presentation style,
there are still large gamut of layout issues which you may find yourself
exploring over time. Which ones stick tends to depend on the conventions
of your current project, or on your experiences after years of
experimentation.

A classic example from the C++ programmer camp: many developers
follow standard library layout:

 class standard_style
 {
 int variable_name;
 bool method_name();
 };

and some have more Java-esque leanings:

 class JavaStyle
 {
 int variableName;
 bool methodName();
 };

A simple difference, but it profoundly affects the code you work on in
several ways.

Another example that, pertinent to my current workplace, is the layout of
C++ member initialiser lists. We used to write something like this:

 Foo::Foo(int param)
 : member_one(1),
 member_two(param),
 member_three(42)
 {
 }

That’s not too unfamiliar a style. However, we have recently switched to
a style that places the comma separators at the beginning of the following
line, thus:

 Foo::Foo(int param)
 : member_one(1)
 , member_two(param)
 , member_three(42)
 {
 }

There are a number of advantages to this style (it’s easier to ‘knock out’
parts in the middle via preprocessor macros, or comments, for example).
This scheme can be employed in a number of layout points (e.g. lists of
all sorts of things: members, enumerations, lists of base classes, and more),
providing a nice consistent style. There are also disadvantages: one of the
major cited issues being that it’s not as ‘common’ as the former layout
style. IDEs’ default auto-layout also tends to fight with this scheme.

I know over the years that my own presentation style has changed wildly,
depending on the company I’m working for at the time.

As long as a style is employed consistently in your codebase, this is really
a trivial concern and nothing to be embarrassed about.

The state of the art
Most languages have rapidly developed their in-built libraries. Over the
years the Java libraries have grown from a few hundred helpful classes to
a veritable plethora of classes, with different skews of the library
depending on the Java deployment target. Over the many C# revisions the
standard library has burgeoned. As languages grow their libraries accrete
more features.

And as those libraries grow, some of the older parts become deprecated.

Such evolution (which is especially rapid early in a language’s life) can
unfortunately render your code anachronistic. Anyone reading your code
for the first time might presume that you didn’t understand the newer
language/library features, when those features simply did not exist when
the code was written.

For example, when C# added generics, the code you would have written
like this:

 ArrayList list = new ArrayList(); // untyped
 list.Add("Foo");
 list.Add(Int(3)); // oops!

 N

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe
JUL 2013 | | 15{cvu}

with its inherent potential for bugs, would have become:

 List<string> list = new List<string>();
 list.Add("Foo");
 list.Add("Bar");

There is a very similar Java example with surprisingly similar class names!

The state of the art moves much faster than your code. Especially your old,
untended code.

The splendid new C++11 language features and library support has made
much old C++ code look questionable. The introduction of a language-
supported threading model and library renders third-party thread libraries
(often implemented with rather questionable APIs) redundant. The
introduction of lambdas removes the need for a lot of verbose hand-
written ‘trampoline’ code. The range-based for helps remove a lot
of syntactical trees so you can see the code’s design ‘wood’. Once
you start using these facilities, returning to older code without them
feels like a marked retrograde step.

Idioms
Each language, with its unique set of language constructs and library
facilities, has a particular ‘best practice’ method of use. These are the
idioms that experienced users adopt, the modes of use that have become
honed and preferred over time.

These idioms are important. They are what experienced programmers
expect to read; they are familiar shapes that enable you to focus on the
overall code design rather than get bogged down in macro-level code lines.
And they usually formalise patterns that avoid common mistakes or bugs.

It’s perhaps most embarrassing to look back at old code, and see how un-
idiomatic it is. If you now know more of the accepted idioms for the
language you’re working with, your old non-idiomatic code can look quite,
quite wrong.

Many years ago, I worked with a team of C programmers moving (well,
shuffling slowly) towards the (then) brave new world of C++. One of their
initial additions to a new codebase was a max helper macro, shown below
(do you know why we have the brackets in there?):

 #define max(a,b) ((a)>(b)) ? (a) : (b))

 void example()
 {
 int a = 3, b = 10;
 int c = max(a, b);
 }

After some time, someone revisited that early code and, knowing more
about C++, realised how bad it was. They re-wrote it in the more idiomatic
C++ below. This fixed some very subtle lurking bugs, as shown in
Listing 1.

The original version also had another problem: the macro name clobbers
a function name in the C++ standard library, with all sorts of unpleasant
side-effects. This hints at a further problem: wheel reinvention. The best

solution is to just use the built-in std::max function that always existed.
It’s obvious in hindsight:

 // don't declare any max function

 void even_better_example()
 {
 int a = 3, b = 10;
 int c = std::max(a,b);
 }

This is the kind of thing you’d cringe about now, if you came back to code
like this. But you had no idea about it back in the day.

Design decisions
Did I really write that in Perl? Did I really use such a simplistic sorting
algorithm? Did I really write that by hand, rather than just using a built-in
library function?

As you learn more, you realise that there are better ways of formulating
your design in code. This is the voice of experience.

Bugs
Perhaps this is the reason that drags you back to an old codebase.
Sometimes coming back with fresh eyes uncovers obvious problems that
you missed at the time. After you’ve been bitten by certain classes of bug
(often those that the common idioms steer you away from) you begin to
naturally see potential bugs in the code. It’s the programmer’s sixth sense.

Conclusion
Looking back over your old code is like a code review for yourself. It’s a
valuable exercise to do; perhaps you should take a quick tour through some
of your old work. Do you like the way you used to program? How much
have you learnt?

Does this kind of thing actually matter? If your old code’s not perfect but
it works, should you do anything about it? Should you go back and ‘adjust’
the code? Probably not – if it ain’t broke don’t fix it. Often the code does
not rot, unless the world changes around it (compiler versions break your
old code, or the latest library version no longer let you compile).

It’s important to appreciate how times have changed, how the
programming world has moved on, and how your personal skills have
improved over time. Finding old code that no longer feels ‘right’ to you is
actually a Good Thing: it shows that you have learnt and improved.
Perhaps you don’t have the opportunity to revise it now, but knowing
where you’ve come from helps to shape where you’re going in your coding
career.

Like the ghost of Christmas past, there are interesting cautionary lessons
to be learnt from our old code if you take the time to look at it. 

Questions
1. How does your old code shape up in the modern world? If it doesn’t

look too bad, does that mean that you haven’t learnt anything new
recently?

2. How long have you been working in your primary language? How
many revisions of the language standard or built-in library have
been introduced in that time? What languages features have been
introduced that have shaped the style of the code you write?

3. Consider some of the common idioms you now naturally employ.
How do they help you avoid errors?

template <typename T>
inline max(const T &a, const T&b)
{
 // Look mum! No brackets needed!
 return a > b ? a : b;
}

void better_example()
{
 int a = 3, b = 10;

 // this would have failed using the macro
 // because ++a would be evaluated twice
 int c = max(++a, b);
}

Li
st

in
g

1

exceptional programmers are
determined more by their attitude to the
code they write and the way they write it,

than by the actual code itself
16 | | JUL 2013{cvu}

Code Critique Competition 82
Set and collated by Roger Orr. A book prize is

awarded for the best entry

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last Issue's Code
“I am new to C++ and trying to write some objects to disk and read them
back in. How can I get the pointer to the objects that are read back in?”

Where would you start with trying to help this newcomer?

The code is in Listings 1, 2, 3 and 4.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

/*
 * Bike.h
 */

#ifndef BIKE_H_
#define BIKE_H_

#include <iostream>
#include <string>
#include <vector>
#include <iterator>
#include <algorithm>
#include <iomanip>
#include <ios>

class Bike {
 Bike* address; // Pointer to Bike object
 std::string name;
 double price;
 std::string make;

public:
 //Bike(); // eliminate to avoid ambiguity
 Bike(Bike* a, const std::string& n =
 "unknown", double p=0.01,
 const std::string& m="garage") :
 address(a), name(n), price(p), make(m){}
 virtual ~Bike();

 inline std::string getName(){return name;}
 inline double getPrice(){return price;}
 inline std::string getMake(){return make;}
 inline Bike* getAddress(){return address;}

 static void writeToDisk(
 std::vector<Bike> &v);
 static void readFromDisk(std::string);
 static void splitSubstring(std::string);
 static void restoreObject(
 std::vector<std::string> &);
};

std::ostream& operator << (std::ostream& os,
 Bike &b);

#endif /* BIKE */

Li
st

in
g

1

/*
 * Bike.cpp
 */
#include "Bike.h"
//Bike::Bike() {} // TODO Auto-generated stub
Bike::~Bike() {} // TODO Auto-generated stub
std::ostream& operator << (std::ostream& os,
 Bike &m){
 os << std::left << std::setw(10)
 << m.getAddress() << "\t"
 << m.getName() << "\t"
 << m.getPrice() << "\t" << m.getMake();
 return os;
}

/*
 * file_io.cpp
 */
#include "Bike.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <vector>
#include <cstring>
#include <sstream>
#include <algorithm>
// Write objects to disk
void Bike::writeToDisk(std::vector<Bike> &v){
std::ofstream out_2("bike_2.dat");
for (auto b:v){
 out_2 << b.getAddress() << ':'
 << b.getName()
 << ':'<< b.getPrice() << ':'
 << b.getMake() << std::endl;
 }
out_2.close();
}
//--
//Read from disk into vector and make objects
void Bike::readFromDisk(
 std::string bdat) // "bike_2.dat"
{
 std::cout << "\nStart reading: \n";
 std::vector<char> v2;
 std::ifstream in(bdat);
 copy(std::istreambuf_iterator<char>(in),
 std::istreambuf_iterator<char>(),
 std::back_inserter(v2));
in.close();

Listing 3
Listing 2
JUL 2013 | | 17{cvu}

Critiques

Paweł Zakrzewski <pawel@zakrzewski.cc>

I would wager that the person asking this question is new to programming
in general. To get a pointer – or any value in fact – from a function, one
should return it, write it to a reference parameter of said function or write
it to a global variable (throwing an exception with that value is also
possible, but that’s plain abuse of language features that are meant for
something else). The most natural way is to return them, so that’s what I
would suggest. That being said, there are numerous things wrong with the
proposed program, and lack of understanding of the way functions work
is but one of them. I’ll try to list the issues in order of their severity,
beginning with program-breaking ones, followed by runtime performance
issues and finishing with some comparatively minor annoyances.

The way serialization is implemented gives away author’s lack of foresight
and experience. Not only the methods deal with non class-specific code,
but also they are too specific. Adding network or database support would
require a pair of methods each and if a class Car was to be created, no code
could be reused. The best way to implement serialization is not
implementing it at all and using an already existing well designed and
tested solution, for example Boost.Serialization from Boost libraries. If
that is impossible, only two methods should be created: one for
serialization, one for deserialization, and they should be medium-agnostic,
most likely reading and writing from/to a stream.

When handling disk I/O the author forgets to check whether the stream is
open af ter construct ion. std::ifstream::is_open and
std::ofstream::is_open should be called for input and output
respectively. From a performance point of view, in case of bigger files, v2
should reserve memory for all of the file contents, otherwise multiple
unnecessary real locat ions wi l l occur . To get the f i le s ize,
std::ifstream::seekg() and std::ifstream::tellg()
functions should be used.

 std::vector<char> v2;
 std::ifstream in(bdat);
 if(!in.is_open()) { /* error handling */ }
 in.seekg(0, std::ios::end);
 v2.reserve(in.tellg());
 in.seekg(0, std::ios::beg);
 copy(...); // as in the example

In the same function, a std::string s2 is created from v2, using a
constructor that takes a null-terminated character string. The parentheses
around v2[0] are superfluous, but don’t change the meaning. If v2
contains null characters, which, given the Bike::writeToDisk()
function, is unlikely, not all data will be copied. Otherwise, v2 will be
accessed outside of its boundaries, which is undefined behaviour. In my
opinion, v2 is unnecessary and the string should be used in its place from
the beginning of the function.

Just a few lines below, there’s another instance of not checking the returned
value.

std::string::find_first_of() returns std::string::npos
when it doesn’t find the required character. The current code doesn’t check
fo r t ha t a nd i f t ha t h a p p e n s , posObj+1 i n s2 =

for(auto a:v2){
 std::cout << a; // Debug output
 }
std::string s2(&(v2[0])); // Vector in String
std::cout << "\nExtract members:\n";
while (!s2.empty()){
 // objects separated by \n
 size_t posObj = s2.find_first_of('\n');
 std::string substr = s2.substr(0,posObj);
 s2=s2.substr(posObj+1);
 splitSubstring(substr);
 }
}
void Bike::splitSubstring (std::string t){
 // Save the address and the members in v3
std::vector<std::string> v3{(4)};
size_t posM; // [in substring]
int i;
for (i=0; i<4; i++){
 posM = t.find_first_of(':');
 v3[i] = t.substr(0,posM);
 if (posM==std::string::npos) break;
 t=t.substr(posM+1);
 }
for(auto member:v3){
 std::cout << std::setw(10) << std::left
 << member << " \t";}
 restoreObject(v3);
 std::cout << std::endl;
 v3.clear();
}
void Bike::restoreObject
 (std::vector<std::string> &v3){
 Bike* target; // I want the object here ...
 double p;
 std::stringstream ss(v3[2]);
 ss >> p;
 Bike dummy{&(dummy),v3[1], p, v3[3]};
 target = &(dummy);
 std::cout << "\nRestore: " << *target
 << std::endl;
}

Li
st

in
g

3
(c

on
t’d

) /*
 * main_program.cpp
 */

#include "Bike.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <vector>
#include <cstring>
#include <sstream>
#include <algorithm>

int main(){
 std::cout << "start\n";
 std::vector<Bike> v;
 Bike thruxton{&(thruxton), "Thruxton",
 100.00 , "Triumph"};
 Bike sanya{&(sanya)};
 Bike camino{&(camino), "Camino ",
 150.00, "Honda"};
 Bike vespa{&(vespa), "Vespa ",
 295.00, "Piaggio"};

 v.push_back(thruxton);
 v.push_back(sanya);
 v.push_back(camino);
 v.push_back(vespa);

 for(Bike b:v) std::cout << b << std::endl;
 // using overloaded << operator

 Bike::writeToDisk(v);
 // restore objects
 Bike::readFromDisk("bike_2.dat");
 // where are the restored objects??
 return 0;
}

Listing 4
18 | | JUL 2013{cvu}

s2.substr(posObj+1) will evaluate to 0 (if two’s complement is
used) or std::numeric_limits<size_t> ::max() (in one’s
complement), which will end with an infinite loop (s2 will never change,
since std::string::substr(0) returns a copy of the string) or
std::out_of_range being thrown respectively.

That loop is also a cause for numerous unnecessary copies. Instead of
assigning s2’s substring to s2, s2.erase(0,posObj) would be more
effective. It’s also possible to iterate over s2’s lines without modifying it
at all:

 for(auto it = std::begin(s2),
 e = std::end(s2); it != e;){
 auto found = std::find(it, e, '\n');
 // returns end of string iterator if nothing
 // is found
 std::string substr{it, found);
 splitSubstring(substr); // this name should
 // be changed
 it = found;
 }

The naming scheme used leaves a lot to be desired. For some reason
function Bike::splitSubstring calls Bike:: restoreObject,
which is supposed to deserialize a single Bike object. This name is
extremely misleading and any code created later may break the program.
What’s more, it’s most likely not supposed to be used outside of the class,
yet it is in its public section.

Another thing worth noting is the Bike::address pointer that is used
to keep address of the instance that owns it. While not strictly wrong from
the language point of view, it only serves as distraction and possible
ambiguity for anyone reading the code, as the same result can be achieved
using operator& or std::addressof on Bike objects and this
pointer in Bike’s methods. What’s more, the implicitly created copy
constructor will copy other instance’s address, which may break the
program and cause undefined behaviour if dereferenced when a vector of
Bikes is reallocated. My suggestion is to remove that pointer and its
getter.

Including commented out declaration and definition of a default
constructor doesn’t eliminate it. In this case, the desired effect is achieved
by supplying a non-default constructor. If the author wants to be really
explicit about removing the default constructor, they can do so in two
ways: compatible with C++98 – declaring a private default constructor
without defining it, and, since C++11, declaring Bike() = delete.
Since C++11 is already used, I would use the latter option, because its
intent is clear to anyone speaking English, while the former solution
requires the reader to know that particular C++ idiom.

The author seems to have copied some code they saw elsewhere without
understanding reasons for using various constructs. A public virtual
destructor, usually in conjunction with the base being abstract, should only
be used when there is dynamic polymorphism involved. Otherwise, the
additional flexibility is not used, but the performance cost doesn't go away.
In this case, it is not necessary.

The next thing to change are getters. I already suggested removing
getAddress, along with the address variable, but the others aren’t
exactly good either. First of all, they shouldn’t require a non-const Bike
instance, as they don’t do anything but read – they should be const.
Secondly, returning std::string – and, in fact, most non built-in types
– by copy is wasteful, const reference should be applied. The rule of
thumb when one doesn’t want to modify the original value is: if the type
is not a keyword or a typedef of a keyword, return it by const reference.

The same thing goes for function parameters that are supposed to be read
only, although, since C++11, it may be a little more complicated. For
example, Bike::writeToDisk (assuming it isn’t scrapped) should take
std::vector<Bike> const& parameter. But, if at any point it copied
from such variable while abandoning the parameter (as often happens in
class constructors, for example), const reference may incur an

unnecessary copy, as it indeed does in Bike’s constructor, that, funnily
enough, takes const references to strings.

Let’s consider what happens to parameter n of class Bike constructor,
w he n ca l l ed l i k e i t ’ s c a l l e d i n main_program.cpp :
Bike(&(thruxton), "Thruxton", 100.00, "Triumph"). First,
a std::string instance is initialized with "Thruxton", then it is
passed by const reference to the constructor, and then the const
reference is passed to Bike::name’s (which is a std::string)
constructor, but since it sees a const reference it has to make a copy,
instead of a move.

C++11 introduced rvalue references, which are guaranteed to be
possible to be moved from, but to avoid copying when not necessary, the
function needs to be overloaded for every parameter that may be taken by
rvalue reference. Unfortunately, the number of overloads rises
exponentially with number of parameters being overloaded on. It is
possible to use perfect forwarding with std::forward, but that has the
unfortunate effect of moving implementation to the header file.

The solution is to take such argument by copy. This may come as a shock
to some people, but let’s consider Bike’s constructor again, assuming that
it takes n by copy and then initializes name with std::move(n). If called
exactly like above, n is initialized with "Thruxton", then it is moved into
Bike::name with no unnecessary copies. On the other hand, if the
constructor was called like this:

 std::string thruxton_name{"Thruxton"};
 Bike thruxton{&(thruxton), thruxton_name,
 100.00, "Triumph"};

thruxton_name would be copied to parameter n, which would then be
moved to Bike::name. That’s exactly one move more expensive (and
moves are very cheap) than the constructor taking const reference to
string, but at the same time much more flexible.

Ranged for loop (introduced in C++11) is used throughout the code. In all
instances, the loop variable is taken by copy. It probably may be excused*
for the debug output in Bike::readFromDisk, but in other cases,
const reference should be taken, for example

 for(Bike const& b: v)

or

 for(auto const& member : v3)

* In that case, taking char by copy is okay, but the whole loop isn’t
necessary, because it produces v2.size() of operator<< calls, when
a simple std::cout.write(&v2[0],v2.size()) would suffice. If
s2 was used as suggested above, this would be as simple as calling
std::cout << s2;

In the main() function, if the Bike::address variable was removed
as sugges t ed above , ve c to r v co u l d be po p u l a t e d u s in g
std::vector<Bike>::emplace_back() initialized with an
initializer list. In this case, the change wouldn’t be noticeable, but it’s a
good habit to avoid premature pessimizations.

Although it won’t matter in such a small program, putting unnecessary
includes is a bad practice, especially in other header files. It slows down
the compilation and, should any of included files change, the including file
is also treated as changed, which forces recompilation. For example,
Bike.h doesn’t seem to need anything but <string>, <iosfwd> and
<vector>.

Stray thoughts:

 Most projects use their own namespaces to avoid name collisions. It
may be more important in libraries, though.

 Most projects I've encountered prepend or append "_", "m_" or
"p_" to class instance variable names in order to make it clear what
they are. It is far from mandatory, but still worth consideration.

 Consider using integral variables for storing price. They differ much
less between platforms and are not susceptible to imperfect
rounding.
JUL 2013 | | 19{cvu}

22 | | JUL 2013{cvu}

Standards Report
Mark Radford examines a knotty issue of lifetime

facing the C++ standards committee.

fter such eager anticipation, the Bristol ISO C++ meeting seems a
long time ago now. The dust has now settled, and the post Bristol
mailing has been published. You can find all the papers here: http:/

/www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/#mailing2013-05.

If you look down the list of papers you might notice that four of them have
the word ‘async’ in their titles. Also, in addition to those four, the word
‘future’ appears in the title of one more paper, and there is a further paper
on shared locking. There may be more, but these six papers are the ones
I’ve noticed looking down the list. Therefore, it doesn’t take a genius to
work out that concurrency is still a hot topic of discussion in the C++
standardisation process!

One specific subject of some controversy, is whether std::future
should be changed so that its destructor never blocks. The way it is
currently specified, a future’s destructor never blocks except when it is
returned from std::async . When a future is returned from
std::async, unless its wait() or get() member functions have
already been called, its destructor will block until the thread behind the
asynchronous operation has joined. In N3630, Herb Sutter et al present
arguments that a future’s destructor should never block. In N3679, Hans
Boehm takes the opposite side of the debate, arguing that a future’s
destructor must wait for the thread to join. The problem is that with a
future’s destructor blocking, surprising behaviour can result. The other
problem is that, if the future’s destructor doesn’t block, it can be very
easy to let undefined behaviour slip into the code.

To illustrate how the behaviour can be surprising, I’ll give a simple
example from N3630:

 {
 async(launch::async, []{ f(); });
 async(launch::async, []{ g(); });
 }

In this example, both calls to async() execute sequentially i.e. there is
no concurrency at all. This is because the future objects returned from
async() are temporaries, and therefore go out of scope at the end of the
statement. Therefore, at the end of each statement the future’s destructor
is executed and blocks until the underlying thread joins.

Another problem is illustrated by another example from N3630:

 void func() {
 future<int> f = start_some_work();
 /*... more code that doesn’t f.get() or
 f.wait(), and performs no other
 synchronization ... */
 }

The question is: does f block when it goes out of scope? The problem here
is that the user would (effectively) have to know if the implementation of
start_some_work() calls async(), or uses some other mechanism to
achieve concurrency (for example, it could just launch a thread using
std::thread). In passing, note also that there is a further encapsulation
issue here: say start_some_work() uses async(), but then is later
changed to use another concurrency mechanism, there would be a silent

change to the behaviour of the client code! More to the point, the options
for changing the implementation are seriously limited.

One of the main arguments for future behaving the way it currently does
is the possibility of the asynchronous operation using out of scope
variables or dangling references. This is the simplest example (based on
one given in N3630):

 {
 int i=0;
 std::future<int> f = async([&]{
 i=42; return i;});
 }

If f’s destructor didn’t wait for the underlying thread to join, the variable
i might not still be in scope by the time i=42 executes. This seems like
a compelling argument for the status quo, except that (as Herb et al point
out) the problem exists anyway:

 std::future<int> f;
 {
 int i=0;
 f = async([&]{ i=42; return i;});
 }

Or even:

 {
 int i=0;
 std::shared_future<int> f = async([&]{
 i=42; return i;});
 }

Because std::shared_future’s destructor doesn’t block.

In light of the above two examples, the argument for changing the
behaviour of future’s destructor does seem quite compelling. However,
it does constitute a silent run time change to the behaviour of existing code
which (arguably) makes the solution worse than the problem. Note that
changing the return type of std::async in the hope that recompiling will
catch the problem doesn’t work: much C++11 code is likely to use auto
to declare the returned future (so the code would recompile and the
problem would still be at run time). Herb Sutter has also submitted a
proposal (N3637) to resolve the problems: N3637 proposes that future’s
destructor (as well as shared_future’s destructor) should not block,
and that waiting_future and shared_waiting_future (which
would block in their destructors) should be added to the standard library.
However this still does not solve the problem of causing existing code to
break silently at run time.

N3637 was rejected at Bristol to allow time for further reflection. 

A

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

