
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 20
June / July 1997

Editorial: Subscriptions:
John Merrells David Hodge
4 Park Mount 2 Clevedon Road
Harpenden Bexhill-on-Sea
Herts East Sussex
AL5 3RA TN39 4EL
John.merrells@octel.com
 101633.1100@compuserve.co
m

£3.50

 Overload – Issue 20 – June/July 1997

 Page 2

Contents
Contents 2
Editorial 3
Software Development in C++ 5
Whence Objects? by Ray Hall 5
The Draft International C++ Standard 7
The Casting Vote by Sean A Corfield 7
Painting the Bicycle Shed by George Wendle 8
C++ Techniques 10
Make a date with C++: Typing Lessons by Kevlin Henney 10
The Pitfall of Being Ignorant by The Harpist 13
Self Assignment? No Problem! by Kevlin Henney 17
Lessons from fixed_vector Part 1 by Jon Jagger 25
Shared experience: a C++ pitfall - By Alan Bellingham 27
Further Thoughts on Inheritance for Reuse by Francis Glassborow 31
Whiteboard Scribbles 35
editor << letters; 36

 Overload – Issue 20 – June/July 1997

 Page 3

Editorial

Hi folks. I’ve been appointed editor for the
next three issues. If this role suits me, and
more importantly suits you, then I hope I’ll
be here for some time.

Traditionally, our Editor has been one of our
principle contributors. Inevitably, this
changes the editing job from a responsible
constructive hobby into a part-time chore.
My stint as Editor may tease out some
authoring tendencies in me, but I don’t
intend to let us to slip back into that old
state.

Editorial Board

To spread the workload Overload is now
‘managed’ by an editorial team, consisting of
an Editor and three Readers. Our Readers
have quite varied technical backgrounds and
interests. Their role is to review all
submissions for technical accuracy, and
correct use of English.

Ray Hall – Did an Artificial Intelligence
degree at Imperial College with a thesis on
‘OO Development’. He has experience in
writing and running a magazine, and will be
concentrating on OO development and
techniques.

Ian Bruntlett – Has been mostly working
with C for the past few years and is now
brushing up his C++ and OO skills.

Einar Nilsen-Nygaard – An Electronic
Engineer by degree. Currently working on
network management software. Has a few
years of C++ experience and is currently
moving into distributed OO technology.

Me? I’ve been programming in C++ for four
years working on games, terminal emulation,
and voice mail servers.

Contributions

There are approximately 500 Overload
subscribers, and yet only half a dozen are
regular contributors. We need to encourage
more of you to make an effort. It’s
rewarding to share your ideas with your
peers, and you only really understand
something if you can effectively
communicate it to somebody else. Have you
noticed that when you approach a colleague
to explain an evil problem how you work out
the answer before they’ve said anything.
Your spiel of frustration is interrupted by the
solution. That’s because you haven’t truly
understood the problem until you needed to
communicate it. So, communicate and learn.

Too Much C++

A problem I perceive, but with which many
others contend, is that there’s too much C++
in Overload. I expect you may be sucking
air through your teeth at this point. I believe
that Overload should be broadened to
include more general OO articles. There are
two reasons for this:

1. There is not enough hard core technical
C++ material being generated.

2. The audience isn’t C++ technicians but
OO programmers who happen to be
crafting their work in C++.

I’d rather have a magazine that promoted
pragmatic ideas about problem solving in an
OO fashion than one that concentrated on the
squiggles of the C++ Standard. I find
advanced articles on the dim and dark
corners of C++ to be of limited use. It
merely points out to me that the brightest
minds find something hard to understand.
So, the feature is unlikely to be
implemented, or implemented correctly. My
code is unlikely to be portable, and I might

 Overload – Issue 20 – June/July 1997

 Page 4

not fully understand all the subtleties of the
problem. During the past four years I’ve
been bitten by various compilers over
multiple inheritance, templates, and
exceptions. These articles are like anti-
idioms or anti-patterns. ‘Ah, best avoid X, Y
and Z for a couple of years whilst it
matures.’

I’d like to encourage more articles on topics
which address applying object oriented
design and C++ implementation to common
problems. Basically, pattern designs, and
pattern implementations.

As ever, this magazine is for the
membership, by the membership. We need
your contributions and feedback.

Want to contribute? Can’t find a topic? –
Mail me.
Need a solution? Explain the problem! –
Mail me.

John Merrells

john.merrells@octel.com

 Overload – Issue 20 – June/July 1997

 Page 5

Software Development in C++

Whence Objects?
by Ray Hall

It seems inevitable that a frequently
discussed topic such as object orientation
will be misunderstood by some of the people
some of the time, and discussed in
buzzword-compliant terms rather than with
understanding. A sequence of articles in
issues 15, 16 and 19 illustrates this well.
Given that the misunderstandings in the
original were addressed by Kevlin in issue
16, it seems appropriate to ignore their
repetition in issue 19, except to take up one
point: “The computer industry seems to have
a sheep-like tendency to rush from one
extreme to the other”. So, just in case
anyone else does not recognise that object-
oriented techniques have been around for 25
years or so, here is a brief sketch of what
happened and of what it was that caught the
attention of many programmers.

Functional decomposition

Presumably, program designers have always
felt that the text of their programs reflected
“the real world” in some way. Nevertheless,
our view of “the real world” is mediated by
the ways in which we can describe it, and in
the early mainframe era, barely 40 years ago,
problems most often deemed suitable for
computation were those whose solutions
could be expressed in FORTRAN or in
COBOL.

The former being expressed in mathematical
notation, it is unremarkable that illustrative
programs are in domains such as complex
numbers, conic sections &c. The obvious
way to solve such problems is to find one or
more functions (sub-routines, procedures
&c) which handle the data, so that at the
bottom of the hierarchy, existing functions
can be used, and functional decomposition
continues to dominate design thinking. In

part, this was reinforced by “top-down”
methodology, which came with block
structured languages (especially Pascal) in
the 1970s.

Business problems such as accounting and
invoicing derived their solutions from
punch-card origins, and the data definition
phase of a COBOL program looked like a set
of punch-card layouts. The prevailing
design thinking here derived from data-flow
diagrams, though, as COBOL acquired
block-structure characteristics, designers
could think about functional decomposition
here too. As an intriguing aside, Admiral
Grace Hopper (one of the principal designers
of COBOL) said, in an interview in Byte
some years ago (just before she died), that
they had assumed that when the library
facility was implemented in COBOL, it
would be followed up by the sale of standard
libraries so that programmers, as such, would
rarely be needed!

Non-procedural languages

Pretty obviously, functional decomposition,
as a design methodology, assumes that
implementation will be in a language which
implements functions. So, what other
languages are there then? Well, the group
discussed so far (which includes C) are often
described as procedural languages; non-
procedural languages include Lisp, Prolog
and (many) others. Lisp is the granddaddy of
them, and belongs to the mainframe
generation (late 50s) with FORTRAN and
COBOL and is particularly important now as
the development language in Autocad.
Prolog comes from the C and Pascal
generation of the early 70s.

These languages were designed initially to
give more intuitive solutions to problems
where functional decomposition seemed
artificial, and the group as a whole includes
many languages which are entirely
experimental. The problem domains in

 Overload – Issue 20 – June/July 1997

 Page 6

which they are important include logic and
symbolic equation solving; understanding
natural language; expert systems; and many
areas of artificial intelligence.

Here is a brief illustration of the way in
which Prolog specifies the solution to a
problem, and leaves the procedure to the
compiler. The problem is to determine if an
object X is a member of a list Y, which can
be expressed as member(X,Y). A list can be
partitioned into a head (the first element) and
tail (the rest of the list) by the notation [H|T],
and there is an “anonymous variable” for
which the notation is ‘_’; the final notation is
‘:-’ which can be read as ‘if’.

A solution exists if X is at the head of the
list, or if X is a member of the tail of the list,
and the program consists of two lines:
member(X, [X|_]).
member(X,[_|Y]) :- member(X,Y).

Readers should at least recognise the
elegance of this, even if it takes some time to
feel that it is intuitive. In a procedural
language the recursion implied by the second
line has to be written out.

Where did OO come from?

Another set of heretical thoughts was being
pursued around 1970 in the Xerox Palo Alto
Research Centre. Indeed most of the
important heresies and innovations in
desktop computing came from there. Firstly
the GUI and, with it, the recognition that a
complete hierarchy controlled by a main
function is not the best way of allowing for
user interactions. The language Smalltalk
evolved to cope with graphic elements and
with event-driven situations (amongst
others).

Smalltalk incorporated earlier ideas, but still
has the power to astonish by the
completeness and integrity of its conception.
You may know that all components of the
system are objects (“an object consists of
some private memory and a set of

operations”) that numbers are examples of
such objects, and that computation is
conducted by passing messages. An object
responds to any of the messages that make
up its interface by carrying out one of its
methods. Thus the message
3 + 4

looks much like an expression in a
procedural language, but it is actually a
message to the object ‘3’ to carry out the
method ‘+’ with argument ‘4’ and return the
result. No big deal really, except that it is
entirely congruent with messages such as
SubTotal sqrt
HouseHoldFinances cashOnHand
HouseHoldFinances totalSpentOn: ‘food’

Commercially, Smalltalk has been
insignificant, by contrast with its huge
influence. Language designers who wished
to try out object-oriented features generally
grafted class/inheritance pre-processors onto
existing languages. Gradually fully-fledged
languages appeared, including one totally
new one, Eiffel from the much-quoted
Bertrand Meyer. OO versions of Pascal,
Lisp and C became established.

Initially the leading C version was Objective
C but, as we know, C++ has proved more
popular (though Objective C now seems
likely to become the development language
in MacOS [Morgan 97]). Much of the rest is
history and the concepts are now embedded
in C++ and other languages, and C++ has all
of the features needed to write fully object-
oriented programs. But it also has other
features which could ensure that an
apparently object-oriented program is
something quite different. Even in a totally
OO language such as Smalltalk it is possible
to write programs in a style appropriate to
FORTRAN. [Kaehler & Patterson 1986]

Swings and roundabouts

Why then do the OO enthusiasts enthuse?
What gets mentioned in such contexts
includes robustness and ease of maintenance.

 Overload – Issue 20 – June/July 1997

 Page 7

One of the earlier enthusiasts (in C++ terms)
spoke of the “software IC” concept so that
program design would be similar to
designing electronic devices [Cox 1986].
The importance of such goals is impossible
to overstate, and the extra effort required to
attain them is generally thought to be a fair
price to pay.

The next thing to note is what reviewers say
about Delphi, Optima, Visual Basic 5 and
C++ Builder, where rapid development is
well to the fore. C++ Builder, and its
Delphi2 ancestor, represent some of what
can be done to make Objects easier.
Nevertheless, Delphi seems attractive to
many of its adherents for its ease-of-use, and
Usenet contributions suggest that knowledge
of OO techniques is thinner on the ground in
Delphi land than amongst C++ users.

Ease-of-use in these systems comes from
having available a good repertoire of classes.
However, the demands made on the designer
and programmer in an object-oriented
system are substantial, especially for
retrieving and understanding classes which
are additional to the base classes provided
with the compiler. Again, this is not a new
problem: “Smalltalk is an environment”;
“Smalltalk is a big system”. [Goldberg &
Robson 1989] In other words, it is the total
development environment that counts and, as
yet, this has not been addressed by available
C++ systems.

If this was remedied then the problem of
knowing whether an appropriate class exists
already would exacerbate an already steep

learning curve. Whatever your perception of
the slope of the C++ object-oriented learning
curve, it is a long slope. Even if not all C++
compilers are being used for OO programs, it
is worth heeding the observation: “To derive
significant benefit from C++ requires a
modification in one’s approach to problem
solving” [Wiener & Pinson 1988], but that is
another story…

Ray Hall
Ray@ashworth.demon.co.uk

Further reading

[Cox 1986] Object-oriented programming,
an evolutionary approach: Addisson Wesley
1986 {Similar sentiments in Byte 11,8 Aug
86 pp161-176}

[Goldberg & Robson 1989] Smalltalk-80,
the language: AddisonWesley 1989
{Smalltalk-80 was the basis of the first
commercial releases of Smalltalk. A
companion volume describes the
development environment; this volume, on
the language, provides an illustration of the
emergence of object-oriented thinking.}

[Kaehler & Patterson 1986] A small taste of
Smalltalk: Byte 11,8 August 1986 pp 145-
159 {Related to the same authors’ book A
taste of Smalltalk: Norton 1986}

[Morgan 97] An introduction to Objective
C: Byte (22,6) June 97

[Wiener & Pinson 1988] An introduction to
object-oriented programming and C++:
Addison Wesley 1988

The Draft International C++ Standard

The Casting Vote
by Sean A Corfield

The Java Study Group is meeting in London
at the end of June for two days to continue
discussions on how and what the standards
process should cover for Java-related

technologies. The progress since my last
column is that Sun Microsystems Inc (SMI)
have applied for PAS Submitter status
(Publicly Available Specification). If
accepted by ISO, this would allow Sun to
submit the Java specification books for
rubber-stamping, effectively. Whilst this is
clearly a step forward, several individuals
and organisations have expressed concern

 Overload – Issue 20 – June/July 1997

 Page 8

about allowing a single, for-profit entity to
become an approved standards originator.
My next column will report on the outcome
of this discussion but personally, whilst I
want to see Java standardised pretty much
as-is and as quickly as possible, I am wary of
approving SMI in this role.

The joint ISO/ANSI C++ committees meet
in London in July to resolve the comments
arising from the ballot on the second
Committee Draft document. One of the
overriding impressions gleaned from the
comments I’ve seen so far is that it’s still
very badly broken and we can only fix a
small number of the more critical problems
before schedule forces us to ‘ship and be
damned’... and we will. Writing exception-
safe code is still horrendously difficult, using
STL in any but the most basic ways is
fraught with difficulty and various
individuals are uncovering outright errors,
contradictions and omissions in the draft
every day. Even as secretary of ANSI
X3J16 I find it hard to jump to the defence of
either C++ or the committee and, like many
others, just look forward to the day we stop
having to work on the blasted thing!

I’m currently using the standard library in
anger – ObjectSpace’s implementation - and
my frustration with compilers simply
increases to the point where I wonder
whether we will ever see validated
products... Java just keeps looking more and
more attractive!

Sean A Corfield, sean@ocsltd.com.

Painting the Bicycle Shed
by George Wendle

Imagine that you are on a board of governors
of a school (or any other organisation). The
agenda of the meeting contains several tough
problems to which there are no obvious
answers. It also contains a number of items
that require painful resolutions. Now
imagine that there is a small item on the
agenda about repainting the bicycle shed.

You might think that such an item would be
passed on the nod. More often than not this
item will generate more heat than all the rest
put together. Everyone will have their own
opinion. What type of paint, what colour
and who should do it may be fairly obvious.
But someone will want to pull the shed
down, someone else will want to prohibit
bicycles. The debate will rage on and on and
on.

The problem is that such an item is simple
and easily solved so it makes an ideal ground
for everyone to work out their frustrations
caused by the painful and/or intractable
problems that make up the rest of the
agenda. Simple problems that just need an
answer are the bane of any committee’s life.
Worse, they often distract effort from the
important things.

A Variation: The Multi-solution
Problem

There is another kind of problem, closely
related to the bicycle shed (which only has
one real answer - just authorise the money to
get it painted) and that is a problem with
three or more perfectly acceptable solutions
(two in a committee that decides by
consensus). Inevitably, each solution will
have its proponents who too often will
become emotionally attached to their choice.
The outsider can see that the problem is that
of making a choice between equally valid
solutions.

When faced with a problem that has several
solutions the first question should be ‘does
the choice matter?’ If not take a vote, select
the majority decision (or that with the largest
number of votes) and close the issue for all
time. Of course there is then the problem of
coming across a superior solution that was
missed from the original set. The sane
answer is to accept that the original choice
was arbitrary and mark the new, better
solution as the primary choice next time.

 Overload – Issue 20 – June/July 1997

 Page 9

Committees do not behave rationally. They
will reject an outstanding solution because
they do not like its proponent. They will
accept a crazy solution or reject a sane one
just because they do want to upset an
authority figure.

What Has This to do with C++?

The problem with C++ is that a Committee
is designing it. C wasn’t. C was
standardised by a committee, because almost
every part of it had already been tried and
tested.

Whilst I am hardly ecstatic about the core of
the C++ language, I am happy that it is good
enough for me, and many like me, to use
profitably. I wish I could say the same about
the Standard C++ Library. There are two
major criteria for judging the quality of a
standard library, usability and portability.

Look at the C Library. The novice C
programmer can easily write programs using
features from stdio.h, stdlib.h, math.h, etc. I
know that each of these has hidden traps for
the unwary, and thought is required before
using them in industrial strength
applications. But, the C Standard Library
also contains many functions that can be
used by skilled programmers to write highly
portable code that is substantially robust.

Now look at the C++ Standard Library.
Even things like I/O have been redesigned,
not just once, but twice. I constantly hear the
cry ‘Cannot change that, it will break
existing code.’ This is foolish in the
extreme, anyone who has tried to write code
to conform to the draft standard library has
had their code broken numerous times.
Worse still, bugs and poor design bedevil the
current library. I keep hearing the claim that
there isn’t time to fix the problems so we
must just ship as is. That sounds more like a
certain well-known software company than a
responsible international standards body.

Now, I do not think that there is anything we
can do to actually fix the current version of
the Library. It is a mess, though many of the
ideas are good, and it has had a largely
beneficial effect on the design of the
language. The concepts of the STL are fine,
though programmers really do need to
understand that STL is a low-level
component library that should largely be
encapsulated in higher level application
components. In other words the ordinary
application programmer should rarely use
STL components though class designers
should consider them as part of their basic
tool kit.

I have seen Francis and others decry the
quality of the MFC and continually drive
home the message that the MFC is not an
object-oriented library. In my opinion the
draft Library is subject to exactly the same
criticisms.

What we need is for the C++ standard to be
shipped with the proviso that the next work
item for WG21/NCITS J16 is to develop a
new set of standard libraries that are entirely
distinct from those shipped with the
language. Fortunately one of the wisest
decisions made about the Library was to
encapsulate it in the std namespace. A
future standard library will not conflict with
the existing one.

Let me be absolutely clear about this. The
C++ community needs a robust and well
designed standard library. The one they will
get with the language is not that.

What has this to do with the PTBSP?

The Standards Committees are locked in a
World-view that requires them to try to fix
little problems while being unable to tackle
the big issues. For example, the concept and
design of ‘string’ is fundamentally flawed. It
is barely usable and I am willing to bet that
no serious application programmer will want
to go near instantiating the basic_string
template with anything other than some

 Overload – Issue 20 – June/July 1997

 Page 10

variety of char. Those that want to use other
strings will also want better targeted designs.
They will write their own, and that is exactly
what we do not want.

Sticking with this example, the string
concept should be implemented by a loose
cluster of template classes. Each should be
slim enough to be attractive, and have an
intuitive interface. We need components
that meet well defined needs. Not a
component that can behave as a screw, a
nail, glue etc. and made from any substance
(value based type) that happens to be to
hand.

If a C++ Standard is not shipped soon then
C++ will die. If the current Library is
shipped without any promise of something
better, C++ will bleed to death before the
next standard. You cannot fix fundamental
design flaws in response to defect reports.

Those that want C++ to survive must grasp
the nettle. They must admit that the current
state of the Library leaves much to be
desired. They must demand that they be

given the chance to design a new
independent standard library that can be
shipped in sections. They must avoid ever
again being overwhelmed by a requirement
for a single monolithic standard.

The STL was the first (widely used) library
that specified performance constraints. This
was a major and courageous step forward.
Now the time is right to recognise the need
for standard component libraries that are
delivered quite distinct from the underlying
language standard. If the C++ community
can persuade ISO to issue a work item to do
this then C++ will live, if not it will die,
strangled by the crowd of non-standard
libraries.

The UK pushed for a normative addendum
when voting for ISO C. Now it should
render the international C++ community a
service by pushing for standardised
component libraries.

George Wendle

C++ Techniques

Make a date with C++:
Typing Lessons

by Kevlin Henney

Introduction

In Overload 19 I introduced some of the
features that distinguish C++ from C. Many
of them might be said to be significant
improvements, i.e. “C++ as a better C” or
“C++ as a safer C” are phrases often used to
describe these changes. The stronger and
slightly more logical type system is one
feature that sticks out. I will continue this
theme, as we look closer at features to
support date representation.

struct your stuff

One possible way of representing a date type
is to use a struct with day in month,
month number and year (4 digit, of course)
fields:

struct date
{
 int day, month, year;
};

On the face of it this seems no different to C.
The difference comes in the use:

date dob = { 14, 3, 1879 }; // C++ not C

The use of the struct keyword to prefix
the tag is redundant. It has always been a
quirk of history that the tags inhabit a
different namespace to type names – it

 Overload – Issue 20 – June/July 1997

 Page 11

should be as simple as “a type is a type is a
type”, and C++ makes this logical
simplification. For backward compatibility,
however, we can still optionally use the
struct keyword although clearly the
principal reason for doing so has been
removed:

/* C or C++ */
struct date dob = { 14, 3, 1879 };

The C idiom of providing a typedef for a
struct is redundant (and given that this is
the case, it is a good way of spotting C
programmers masquerading as C++
programmers):

typedef struct date
{
 int day, month, year;
} date;

C++ automatically provides the typedef
when you define the struct. An
interesting question is what happens to code
like this that already provides a typedef?
Will C code written in the style shown break
when compiled with a C++ compiler? No.
In C++ there is now no harm in providing
the same name for a user defined type as the
one it already has:

typedef date date;

A little pointless, but certainly harmless. A
bit like being able to use your own area code
to dial a local number (at least in the UK).

One arbitrary restriction in C that C++
removed was that a struct need not have
any members. This may seem odd at first,
but it allows you to implement pure opaque
handle objects. However, this does not mean
that it has zero size; you might regard the
non-zero size as “pure padding”.

Comfortable enum

The same rules regarding tags for struct
apply to enums. Another of those oddities
in C that got cleared up in C++ was that

struct tags were not only in a different
namespace to type names, but were also in a
different namespace to enum tags. After the
unification of namespaces in C++ the
following is not possible:

/* C not C++ */
enum date { fields, day_no };
struct date { int day, month, year; };

The most significant change to enumerations
is – yes, you guessed it – they are more
strongly typed than in C. It is good practice
in C to treat each enum type as a distinct
type in its own right, and not as the ordinary
integer type it truly is. This kind of thing is
usually picked up by checking tools and your
colleagues. It is recommended rather than
required.

A C++ enum is more strongly typed – and is
a genuinely distinct type – but not so
strongly typed to be as infuriating as Pascal's
enumerations. enum constants may still be
given compile time constant values:

enum date_option
{
 ordinal_day = 1 << 0,
 month_name = 1 << 1,
 short_year = 1 << 2
};
...
date_option option = short_year;
...
cout << (option == short_year ?
 dob.year % 100 :
 dob.year);

In addition, an enum value may still be used
as an integer value:

enum day
{
 sunday, monday, tuesday, wednesday,
 thursday, friday, saturday
};
const char *const day_name[] =
{
 "Sunday", "Monday",
 "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
};
...
day today;
...
cout << day_name[today] << endl;

 Overload – Issue 20 – June/July 1997

 Page 12

However, a variable of some enum type
cannot be used as an integer lvalue, i.e. you
cannot assign or initialise an enum from an
integer:

/* C not C++ */
today = -1;
today = 2;

This is regardless of the fact that the integer
may in fact have the same value as one of the
enumeration constants. If you want this
conversion to happen, you must do it
explicitly:

today = (day) 2; // required in C++
today = day(2); // alternative syntax

As shown, C++ also supports a function
style cast which is a bit neater than the
traditional cast form. You should prefer this
new form to the old one where possible – it
is not always possible, as types with more
than one specifier in their name must use the
old style, e.g. char * or unsigned
long.

The only areas where C programmers are
likely to find these changes restrictive is in
iteration and bitsets:

/* C not C++ */
++today;
option = ordinal_day | month_name;

I will show a technique for getting around
the first restriction in a future article. I'm not
sure I have a whole load of sympathy with
their use in bitsets as I regard this as a
misuse of enums, and a fundamental
misunderstanding of the relationship
between types: the type is being used both as
the container and the contained type. The
container should be an appropriately sized
unsigned type, and the enum type should be
used only with the values specified for it,
otherwise there is not a lot of point in using
an enum except to save typing (as opposed
to enforcing typing).

That said, you are guaranteed that an enum
can hold values up to the nearest whole
power of 2 above its maximum enumeration
constant value. Although in principle a C
implementation is free to chose an
appropriately sized underlying integer type,
the norm is simply to use int. C++
implementations tend to opt for smaller sizes
where possible. C++ also permits enums
with ranges greater than an int, for instance
where long is larger than int and at least
one of the enumeration constants can only be
represented as a long.

An interesting point of trivia is that a C++
enum type need not have any enumeration
constants:

enum noenum {};

State of the union

Unsurprisingly, the tag rules are the same for
union as they are for enum and struct.
The key extension is the anonymous or
unnamed union. A union defined and
declared inside a struct has always
needed a name for the union as well as a
name for its members. This is in contrast to
variant records in Pascal in which the
members of the variant are in the scope of
the surrounding record. This is now possible
in C++. The following example shows a
more generalised date structure that one
might use for a system in which the date may
be represented either in terms of fields (e.g.
DD/MM/CCYY) or as a day number (e.g. the
Julian Day is the number of days since some
time in 4713 BC):

struct fields { int day, month, year; };
typedef long day_no;
enum format { fields, day_no };
struct date
{
 format type;
 union
 {
 fields as_fields;
 day_no as_day_no;
 };
};
...
switch(dob.type)

 Overload – Issue 20 – June/July 1997

 Page 13

{
case fields:
 cout << dob.as_fields.day << '/'
 << dob.as_fields.month << '/'
 << dob.as_fields.year;
 break;
case day_no:
 cout << '#' << dob.as_day_no;
 break;
}

This simple extension will find its way into
C9X. There is an even more elegant way of
handling this sub-typing relationship in C++,
which I will cover in a future article.

It can also be used to declare free-standing
variables outside of a struct or a union.
The constraint on this is that these variables
must either have no linkage, i.e. they are
auto variables, or internal linkage, i.e. they
must be static. In short, no anonymous
union may have external linkage and be
accessible to other translation units.

C++ also allows a union to have no
members. Hardly a controversial change, but
if you still doubt that this may have any use
consider justifying a comparable state of
affairs in C: a union is entitled to have only
one member....

Summary

• Tag names are type names in C++.

• C++ enum types are distinct types in
C++. They are readable, but not writable,
as integers.

• Function style casts often provide a more
readable alternative to the traditional cast
notation.

• The members of anonymous unions are
members of the enclosing scope.

• C++ supports // line comments.

Kevlin Henney

kevlin@two-sdg.demon.co.uk

The Pitfall of Being Ignorant
by The Harpist

The following article was published in an
Internet Newsletter from a reputedly high
quality start-up company. For various
reasons I have deleted all identifying marks
but otherwise this item is exactly as
published. Read it carefully, then I will
comment.

Note that this was a published article, not a
private email. This is important because
many of us are guilty of silly oversights
when writing just for the benefit of a closed
circle. But, when we write for Joe Public it
behoves us to be much more careful,
particularly if we are publicly criticising the
work of others.

An Obscure Pitfall of C++
 by XXX XXXX

I've been at XX for close to a year now, and
like some of you, my first exposure to C++
was when I started messing around on the
XXX. C++ is without question quite a
confusing monstrosity of a language;
sometimes I wonder what good ol’ Bjarne
and his friends in New Jersey were thinking
when they included some of the more arcane
aspects of the programming language
discipline in C++. At any rate, it can't be
repeated too often that programmers are well
advised to be very careful when using some
of the more unusual features of the language.
This is all the more true in a multithreaded
environment, where what appears to be a
safe way of doing things actually isn't.

Since I'm responsible for maintaining the
core libraries for the XXX, I've gone through
quite a bit of C++ code over the past several
months. Never has reading code been as
daunting a task as when I had to pore
through the implementation of the Standard
Template Library that was at our disposal. It

 Overload – Issue 20 – June/July 1997

 Page 14

was even more daunting when I had to
narrow down some obscure bugs. Based on
this experience, I’d like to discourage a
practice that seems somewhat common in the
C++ community.

Rule: Don't declare member variables of
classes static, if the member variable is of a
nonfundamental type.

This lesson may be hard to understand to
those who don't violate it, so let me present
the following situation. Sometimes you need
a flag or counter that is common to all
instantiations for a particular class; for
example, a flag to indicate that some
common initialization for all objects of this
class has occurred. Often this flag is also a
non-fundamental type, because it has some
sort of mutual exclusion built into it, or some
such thing.

I’ve noticed that many programmers are
tempted to declare these flags and counters
as static, private members of the class, so
that only one such object is instantiated for
all instantiations of this class itself:
class B {
public:
 B();
 ~B();
}

class A {
public:
 A();
 ~A();
 ...
private:
 static B flag;
}

static A::flag = 0;

A obj1, obj2;

A::A()
{
 if (A::flag == 0) {
 do blah;
 }

 A::flag++;
 ...
}

Now this is a perfectly fine idea, except that
it opens one up to all sorts of nasty race
conditions.

What tends to happen is that A::flag will
generally be used in the constructor for A
itself; after all, the purpose of the flag is to
let A's constructor know whether it needs to
do any other initialization.

However, notice the circular dependency --
the constructor for A depends on B.
However, the C++ standard doesn't define an
order in which global objects are
constructed. A therefore depends on an
object that may not yet have been
constructed -- that is, B -- and then all hell
breaks loose.

The value of the flag is unpredictable; it may
or may not be correct at any given time. An
identical problem occurs if there's a
dependency between destructors.

This wouldn't occur if object B was of a
fundamental type, such as int or char, since
fundamental types aren't constructed in the
canonical C++ sense.

In this type of situation, it's likely that this
flag is used in the constructor for the class of
which it is a member. Recall that the flag
was declared static, meaning that it's actually
a global object in its own right.

The solution? Declare the object static and
local to the constructor:
class B {
public:
 B();
 ~B();
}

class A {
public:
 A();
 ~A();
 ...
}

A obj1, obj2;

A::A()
{
 static B flag = 0;

 if (flag == 0) {
 do blah;
 }

 flag++;
 ...
}

 Overload – Issue 20 – June/July 1997

 Page 15

Now everything's fine. And as a side
benefit, the code's even easier to understand.

A Critique

I often hear people claim that we no longer
need edited, printed publications any longer
because it is much simpler to publish
electronically. Well maybe, but the evidence
of the above does not support that
contention. The electronic newsletter in
which this article appeared was not a
hobbyist’s doodles but published by a
company who would like you to be
impressed by their products. Internal
evidence suggests that the author is believed
to be a company expert on C++.

He makes a number of assertions about C++.
Some of us might agree with some of the
things he says. C++ is a very large and
complicated language but a genuine expert
would raise direct examples of problems
rather than putting up a completely bogus
Aunt Sally.

Let me deal with the trivial to start with. His
code is syntactically wrong, he always
forgets to close his class declarations with
semicolons.

Much worse than that, look at the line:
static A::flag=0;

What is the type of A::flag? OK, small
problem. However, what is the meaning of
static? A novice error that you should sort
out on the first day that you declare a static
member. Of course in a global context static
means something quite different and hides
the name in the file where it is defined. That
might cause more than a little problem with
linkage.

I will come back to some other coding
problems in a moment, but before I do let us
look at the design. Under what
circumstances would a flag be anything other
than an integer type?

I am also curious about the flag++
concept. If flag is not an integer type, what
will incrementing do? Also, I note that the
writer uses an identity operator on flag and
compares it with 0. It is clear that the only
conceivable user defined type that would
make sense in this context would be an
enum.

I would have liked to have seen some
genuine code, rather than this patently
contrived example. It seems to me that the
author is concerned with cases where
something needs to be done the first time a
class is instantiated. There are such cases;
for example, you might want to provide a
pool of dynamic memory. But in all such
cases the use of a user-defined type would be
bizarre. This kind of action would be better
encapsulated as a member function called by
the constructor.

Now what about ‘non fundamental’? What
does he mean? What he should mean is a
type that has a non-trivial constructor.

Global instances of any type where the
constructor has nothing to do will be
statically initialised (to zero if not specified).
Note that all this does is to guarantee that
you will not get undefined behaviour. For
example:

FILE1.CPP
extern int j;
int i=j+2;

FILE2.CPP
#include <iostream.h>
extern int i;
int j=i+4;
int main() {
 cout<<i<< " " << j << endl;
 return 0;
}

This might not always result in j=6, but j
will have a defined value (I think) but one
that depends on the order of linkage of the
files. Of course such circularities are stupid
and are an excellent reason for avoiding
global variables.

 Overload – Issue 20 – June/July 1997

 Page 16

OK, C++ is complicated, but the author is
claiming to be expert enough to locate subtle
bugs in the STL implementation. There are
some subtle problems with the STL, but they
are largely in the specification and using it
properly. It is far more likely that there is a
flaw in the user understanding than a bug in
the implementation.

Now let us move on a little. As long as you
define1 your static members in the file where
they are first used and before their first use,
the language requires that initialisation will
happen. The problem is what constitutes a
use? In the example code, is it the
constructor that uses the static? Or, is it the
definition of the global variables? The
answer is, the constructor. This means any
static member used in a member function
should be defined in the same file as the
function definition and precede it. But, that
is exactly what you will have been taught by
any competent trainer. Your class
implementation file starts with definitions of
the static members of the class and continues
with the definitions of the member functions,
constructors and destructor.

The code as written has no order of
initialisation problem. But, there might be a
problem if the writer moves the member
function definitions of class A and class B to
their own files (as he should), but forgets to
move the static data definitions.

This has one small consequence; you must
not use static data members in inline
functions that might be used by constructors.
For safety this should be an absolute rule,
and not just for classes with non-trivial
constructors. The following code has a
potential for nastiness:

1 As opposed to declare, which is what you
will find in the class definition. Confusing I
know, but remember that names can be de-
clared many times and must only be defined
once, which is why we have to define static
members outside the class.

class Nasty {
 static int i;
public:
 static int ival () { return i; }
};

Of course, this will not result in undefined
behaviour, but like the example above it just
might result in unexpected behaviour. Not
the same thing but still embarrassing. Of
course, in order for this problem to surface
you will need to use ival in the dynamic
initialisation of a global object. As inline
functions are always visible to the user of a
class the problem can be spotted and avoided
even if the server class has been carelessly
implemented.

Now let us look at the solution proposed by
the writer. This is fatally flawed. Take a
moment to think about it. Go on, go back
and look. Have you seen it? Exactly! What
happens if class A has another constructor?
His code is a perfectly correct solution for an
entirely different problem

Now let me lead you again through the
correct way to tackle the order of
initialisation problem. Let’s start with
rewriting that unpredictable program above.

FILE1A.CPP
extern int& j();
int & i(){
 static int _i=j()+2;
 return _i;
}

FILE2A.CPP
#include <iostream.h>
extern int & i ();
int & j() {
 static int _j=i()+4;
 return _j;
}

int main() {
 cout<<i()<< " " << j() << endl;
 return 0;
}

Now, by moving the static variables inside a
function we have taken control of the order
of initialisation. A consistent and
predictable ordering has been imposed.

 Overload – Issue 20 – June/July 1997

 Page 17

Now it should fail because of the mutually
recursive initialisation. I believe that C++
has grasped a problem that C has never
clarified by declaring that such code
produces undefined behaviour. Which
means a good code checking tool should spot
the problem. If you want to see how the
problem might surface in C, consider the
following:

FILE1B.C
extern int* j();
int * i(){
 static int _i=*j()+2;
 return &_i;
}

FILE2B.C
#include <stdio.h>
extern int * i ();
int * j() {
 static int _j=*i()+4;
 return &_j;
}

int main() {
 printf("%i %i\n", *i(), *j());
 return 0;
}

Now perhaps one of the C experts can tell us
what the C standard says about such
mutually recursive initialisation of local
statics does.

To Summarise

1. Do not use global variables, wrap them
in functions returning a reference. This
idiom should always be applied to dy-
namically initialised global variables

2. Think very carefully before using static
data members in inline member func-
tions. There is probably a very subtle
problem lurking for those that ignore rule
1.

3. Learn to do it properly before making
unsubstantiated criticism of the work of
others. Sure, I may be wrong in some of
the above, but I have put it out front
where you can tear it to shreds.

4. Work should at least have the more glar-
ing mistakes removed before publication.
Editors of traditional hard copy publica-
tions try to do this. It is rare that the edi-
tor of an electronic publication makes the
effort to polish work before publishing.

5. Do not believe that just because the
writer works for a named company that
they know anything.

6. Companies would be well advised to get
an outside editor to look at the prognosti-
cations of their local experts before let-
ting it loose on an unsuspecting public.

Finally, there are many things wrong with
C++ but the biggest one is a lack of
knowledgeable training. The second biggest
is failure by companies to get their
programmers trained. In the UK, if a
presenter of C++ training is a member of
ACCU the odds are that you will get
reasonable quality, if they are not the odds
are very high that you will not. That is not
speculation but a pragmatic judgement. At
least ACCU members will tell you that they
might be wrong.

The Harpist

Self Assignment? No Problem!
by Kevlin Henney

The First Rule of Optimisation: Don't
do it.

The Second Rule of Optimisation
(For experts only): Don't do it yet.

Michael Jackson

The classic problem of self assignment was
revisited by Francis in the last issue [1]. The
standard form was captured by Coplien as
part of his Orthodox Canonical Class Form
[2]:

type &type::operator=(const type &rhs)
{
 if(this != &rhs)

 Overload – Issue 20 – June/July 1997

 Page 18

 {
 appropriate copy and release actions
 }
 return *this;
}

This is the basic schema that you should
seek to follow for all your assignment
operators. Francis wants to call the general
applicability of this into doubt for reasons of
efficiency, but before I deal with that issue
specifically I think it's important to establish
what we mean by Orthodox Canonical Class
Form and what we hope to achieve by it

Orthodox Canonical Class Form

orthodox adj. conforming with estab-
lished standards, as in religion, behaviour,
or attitudes. [3]

canonical adj. (of an expression, etc.) ex-
pressed in a standard form. [4]

The OCCF is a recommendation, not a rule:

Programming standards must be valid
both for newcomers and for experts. This
is sometimes very difficult to accomplish.
We have solved this problem by differen-
tiating our guidelines into rules and rec-
ommendations. Rules should almost
never be broken by anyone, whereas rec-
ommendations are supposed to be fol-
lowed most of the time, unless there is a
good reason not to. This division allows
experts to break a recommendation, or
even sometimes a rule, if they badly need
to. [5]

It is not something to be followed slavishly,
but it has an important property: it works, it
is safe, and as an idiom, clearly
communicates its purpose to readers. You
can have greater confidence in something
that is written following this form than in
something that has not been.

Confidence and intrinsic quality

Confidence is not something woolly that
should be underestimated or ignored in the
process of software development; it is
essential. I have been presented with a piece
of code that looks like it grew on a spaghetti
tree, greeted it with a perplexed expression,
and then been told chirpily by its author “not
to worry; it works” *. Great. Not.

Not only should a piece of software “work”
(what this means is a whole topic in itself,
but I'm sure you can come up with a number
of plausible consensus definitions) but it
should also look like it works. Commercial
code is not written solely for the benefit of
its author – although clearly the industry
would empty out in the absence of any such
gratification – and the idea that the only
deliverable is a piece of executable code at
the end of a waterfall development process
should be greeted with the derision (as well
as project failure) it deserves.

If you can understand the code by its form it
will be easier for you to both have
confidence in it and to spot any mistakes. If
you cannot see that a piece of code is
correct, how can you have confidence that it
is correct? Executing it is not the answer:
dynamic bug hunting and bashing is a poor
substitute for code that is internally well
structured – like other forms of hunting in a
modern society, it is unnecessary and
barbaric. The concept we are identifying
here is that of intrinsic quality [6].

* I am reminded of an occasion when I was working onsite and
needed some new code from someone back at work. I said that I
didn't expect it to be fully tested as he didn't have the right envi-
ronment in which to do this. I was a little perplexed when the code
arrived and failed to compile. Looking at the code I then understood
why: there were basic syntax errors all over the place, and the code
could never have been compiled. This was confirmed when I rang
him to discover that because I had not expected full testing, he had
taken this to mean that he didn't need to compile it either. In his
vocab "compile" and "test" had somehow ended up as synonyms!
Confidence was not high.

 Overload – Issue 20 – June/July 1997

 Page 19

Orthodoxy and heresy

So there is a great deal of benefit in
following a standard form for something that
could otherwise give rise to obscure and
unsafe behaviour. One of the aims in
programming is to be precise. If you are not
being precise, you are being vague. If you
are being vague, you don't need the help of a
programming language – I often find that
beer is a far better medium for this.

But as I said, this is a recommendation and
not a doctrine or religious law. What to do if
you feel an alternative solution is more
appropriate? Will you be cast out from the
gates of the C++ programming community
and roasted over a code review? Should you
just rebel outright, go off and establish your
own orthodoxy? Nothing quite so dramatic
in fact: a comment will do. Just show that
not having an explicit self check was
considered, but deemed unnecessary as the
code presented is already safe.

The important property of the canonical form
is that it is based on some guarantees of
behaviour; a specification. Whatever code
structure you settle on should satisfy this
specification. To return to the idea of rules
and recommendations, the OCCF is a
recommendation but the spec it is based on is
a rule:

Rule 5.12 Copy assignment operators
should be protected from doing destruc-
tive actions if an object is assigned to it-
self. [5]

The code that Francis presents fulfils this
criteria; although it departs from the standard
form it fulfils the same set of requirements.
In short, it works.

Equivalent Forms

The basic structure of the code offered by
Francis can be summarised as

type &type::operator=(const type &rhs)

{
 take a copy of rhs's resources
 release existing resources
 bind copy to self
 return *this;
}

The ordering of copying and release are
required as it is this control flow that ensures
self assignment is not a problem. In the
event of &rhs being the same as this we
will waste a bit of time making a redundant
copy of the current object, releasing current
resources and then reassigning the copy.
Perhaps the redundancy is not so
aesthetically pleasing, but it is certainly safe
and it will not be executed commonly
enough to make it an issue. Perhaps the only
thing missing is a comment (note:
“comment”, not “essay”) stating that this
code is self copy safe.

The applicability of this is for dynamically
allocated representation, typically a single
pointer to an object, that can be easily copied
(where I mean a copy based on the statically
declared type) or cloned (a copy based on
the dynamic type – giving rise to the concept
of type shallow and type deep copying).

What we have is the idea of behavioural (or
black box) equivalence. Given the basic
requirements we have outlined, this structure
is substitutable for the OCCF.

Don't optimise

So in the name of overall efficiency and
correctness no problems. Francis'
motivation, however, is questionable:

[T]he cost of making the check for self
assignment is some kind of comparison
and branch statement. Branches are bad
news on pipelined architecture. If we can
write code with fewer branches we should
do so. [1]

Where did this sudden concern for efficiency
come from? It certainly wasn't measured
and was not found to be a bottleneck in a

 Overload – Issue 20 – June/July 1997

 Page 20

real application. This misplaced concern for
code level efficiency is the kind of thing that
has been shown time and again as
subordinate to optimisation through effective
data structure and algorithm use. It is
exactly the attitude and approach that is
often held up as poor programming practice.
I'm afraid in this case I am not going to
contradict such received wisdom.

Let's take a look at some code:

type &type::operator=(const type &rhs)
{
 rep_type *new_body =
 new rep_type(*rhs.body);
 delete body;
 body = new_body;
 return *this;
}

In structure this is similar to Francis' code.
No branches? Take a look at a pseudo-
assembler output:

 push sizeof__rep_type
 call __op_new ; operator new
 move new_body, result

 compare new_body, null
 jmpifeq postctor

 push rhs + body
 push new_body
 call rep_type__ctorcp
 ; rep_type::rep_type

postctor:
 compare this + body, null
 jmpifeq postdtor

 push this + body
 call rep_type__dtor
 ; rep_type::~rep_type

postdtor:
 push this + body
 call __op_delete
 ; operator delete

 move this + body, new_body

 move result, this
 return ; return *this

That's right, there are two implicit
conditional branches:

• A null return from a new should not
have a constructor called on it; and

• A null pointer should not have a
destructor called on it before being
handed to delete.

In truth a case of two rather than three
branches, as opposed to zero or one. How
great was this saving? Look at everywhere
there is a call instruction. This means we
are calling four other functions, two of which
we know deal with heap management.
Against that backdrop, the extra couple of
instructions from an explicit self check look
even less clock threatening than normal:

 compare this, rhs
 jmpifeq wayout
 ; if(this != &rhs)
 ...
wayout:
 move result, this
 return
 ; return *this

The level of optimisation we have achieved
is what the phrase “a drop in the ocean” was
intended to describe – if we used the word
“optimise” anywhere near such code we
would be deceiving ourselves.

Don't optimise yet

The next claim to investigate is that of
branches – specifically conditional branches
– on pipelined architectures. Eliminating
them because of some hoped for
optimisation is as rational as not walking
under ladders based on superstition – there
are times when it is unwise to do so, such as
someone already up the ladder with a tin of
paint, but that kind of judgement is not the
same as superstition. So clearly we need to
understand something about both conditional
branching and pipelining before making a
decision.

Some uses of conditional branching are
simply the result of poor basic programming
skills:

if(enabled)
 enabled = false;
else
 enabled = true;

 Overload – Issue 20 – June/July 1997

 Page 21

Illustrates the weak grasp the programmer
has of logic. You don't need to be a Vulcan
to write and comprehend:

enabled = !enabled;

I agree with the basic tenet that we should
write fewer control structures. A well
abstracted system tends to encapsulate
control flow within operations. Examples of
this include polymorphism over explicit
switch code, STL's combination of
iterators and iterator algorithms, and the
Enumeration Method pattern [7].

But many conditional branches are a fact of
life: it is difficult to eliminate them if they
are intrinsic to a problem description. How
many branches are there in the following
code?

if(year % 4 == 0 && (year % 400 == 0 ||
year % 100 != 0))
 cout << "Leap!!!" << endl;

Three. One for every condition: remember,
C++'s built-in conditional operators are short
circuiting.

An instruction pipeline contains instructions
pre-fetched for execution. The many stages
of an effective pipeline might include fetch
instruction, decode instruction, calculate
operands, fetch operands, execute
instruction, and write operand result.
Running these in parallel rather than in
sequence is a very effective processor
optimisation. The only fly in the ointment
appears to be that a branch in the control
flow may invalidate the instructions in the
pipeline: one branch is pre-fetched. What if
the other is taken?

It would be surprising and unfortunate if
such an elegant architecture had not been
fully thought out – and then it would be, as
Francis suggests, “bad news” – but
fortunately the impact of branches is
anything but devastating, and pipelined chips

sell and perform very well. One solution is
to use a multi-stream architecture, i.e. you
can hold more than branch at the same time.
Branch prediction and delayed branching are
more cerebral in their approach. Perhaps the
simplest approach used is that the instruction
stream following the branch instruction is
loaded, i.e. what would have happened in the
pipeline anyway.

How much of an impact does this last
approach have on the code we have
examined so far? None whatsoever. If you
look at how the code is arranged, it is the
common case that immediately follows the
branch, and the uncommon one that must be
branched on. If you wanted a rule
concerning branches that took this into
account it would be a simple one:

Place the commonly executed code near-
est to the condition that tests for it.

Interestingly, this is what many programmers
tend to do already, but for readability rea-
sons:

Given an if else, the if body should
deal with the common case code, and the
else body with the more exceptional oc-
currence. If they are equally valid, i.e.
neither is exceptional, then the order is
best determined by the most positive
phrasing of the condition, i.e. the equiva-
lent expression with the least contorted
logic.

It is often said that cleanly structured code
tends to be more efficient than code whose
guiding philosophy has been one of
successive application of folklore
optimisations. This case seems to vindicate
that.

Relative merits

We have looked at behaviourally equivalent
forms, but there is a stronger equivalence
that is hinted at in the recommendation given
above where I mention “equivalent

 Overload – Issue 20 – June/July 1997

 Page 22

expression” for a condition. For built-in
types (and, one would hope, user defined
types) an example of strong logical
equivalence would be that !(a == b) and
a != b have the same meaning and are
fully interchangeable.

One point that Francis raises in his article is
the amount of time spent by people deciding
on whether:

type &type::operator=(const type &rhs)
{
 if(this != &rhs)
 {
 appropriate copy and release actions
 }
 return *this;
}

Or:

type &type::operator=(const type &rhs)
{
 if(this == &rhs)
 return *this;
 appropriate copy and release actions
 return *this;
}

Is the better alternative. These are
equivalent in the sense that they have
identical meaning, and one can be
transformed into the other by a good
compiler. If you are wondering which way
such a compiler would lean, look back at
some of the points we have discussed. That's
right, the scruffy multiple return version is
less optimal than the version that uses the
structured programming form †.

However, few compilers do that well so you
are left with a separate set of concerns to
balance. The common case is that the left
and right hand side of an assignment are not
the same, so if your interest is either pipeline
efficiency or layout you would chose the
first example. A direct translation of the

† It has been said that in the light of modern optimising techniques
based on data rather than control flow, he wishes he had not in-
cluded any jump statements (a function return statement and a loop
exit) in Oberon (MODULA 2's successor) as the discontinuities in-
troduced into the control flow are not only inelegant, but they
thwart a number of optimisations.

second example into assembler tends to
result in two jumps:

 compare this, rhs
 jmpifne postif ; if(this == &rhs)
 jmp wayout
postif:
 ... ; perform copying, etc.
wayout:
 move result, this
 return ; return *this

For C++ it is important that common
function exit code is shared as this can
involve destructor calls, which, if space is
your concern, you would not wish to have
duplicated at every return point. If you ask
to optimise the second example for speed
you will probably end up with duplicated
code:

 compare this, rhs
 jmpifne postif ; if(this == &rhs)
 move result, this
 return ; return *this
postif:
 ... ; perform copying, etc.
wayout:
 move result, this
 return ; return *this

It is interesting that we can arrive at the same
conclusion from two completely different
approaches; it says something about the
relationship between forms at different
levels. I personally side with those whose
concern is the structure of the written code –
my reasons for this are based on the belief
that software development is an engineering
profession, albeit an immature one. There
are a few people who need to be concerned
with the machine level, but that figure is far
smaller number than the number who
concern themselves with it.

Stable Intermediate Forms

Returning to Francis' proposed code
structure: although arrived at from a faulty
line of logic, it is sound. For those that are
interested in patterns, what we have here is a
language level pattern (better known as an
idiom) that has a well defined context, i.e.
C++ copy assignment operator for an object

 Overload – Issue 20 – June/July 1997

 Page 23

structured using the Handle/Body idiom [2, 8]
(more generally, the Bridge pattern [9]) where
the body is easily copied (either shallow or
deep with respect to its type). The proposed
configuration is something that works,
meeting all the requirements for an
assignment operator.

Exception safety

However, a pattern has three essential parts:
context, forces and configuration [10]. The
conflicting forces that are listed for this
pattern are at fault, and hence it is not a
pattern. But the context is valid and the
configuration seems to have some merit, can
we say something more about it? Alan
Griffiths, in his role as editor, commented on
Francis' solution:

This has the added benefit of leaving the
object in a consistent state if an exception
is thrown during the clone operation. I'd
rate this as more important than worrying
about the different number of processor
cycles required for each version. [1]

My only caveat to this is, as we have shown,
that exception safety is the only benefit of
this approach – as an issue, processor cycles
are not even on the radar. In addition to the
usual forces describing the requirements on a
copy assignment operator, exception safety
is the most important force resolved. Let us
examine the problem solved:

1. release existing resources
2. take a copy of rhs's resources
3. bind copy to self

What if an exception is thrown during step
2? The object remains in existence, but it
now has a chaotic and unstable state: its
resources have been released, but it still
refers to them. What will happen on
destruction of that object? That's right,
destruction of a completely different kind!
Objects in an unstable state cannot be
destroyed without spreading that instability
to the rest of the program. However, there is

no safe and consistent way to stop an object
from reaching the end of its life. To put it
mildly, this is a non-trivial issue.

The solution is to ensure that at every
intermediate step the object has a coherent
state, i.e. not only is the result of every
macro change stable, but each micro change
from which it is composed is also stable.
This principle of Stable Intermediate Forms
underlies successful software development
strategies [11] as well as other disciplines of
thought and movement, e.g. T'ai Chi.

1. take a copy of rhs's resources
2. release existing resources
3. bind copy to self

This sequence resolves the forces. It is also
sufficiently general that it is possible to use
this with the original OCCF – for instance,
when writing a copy assignment for a class
whose objects have a mixed style of
representation.

A pattern

In summary, the many concerns facing a
developer branch into a myriad forces which
fall somewhere between “challenging” and
“daunting” in the software engineer's
dictionary. Compared to other industries,
software development sports a high number
of people that can juggle. In this light it is
perhaps easy to see why.

When it came to branches I believe that
Francis was barking up the wrong tree.
Closer inspection revealed a sound solution
to a different general problem, and a
documentable pattern:

Exception Safe Handle/Body Copy
Assignment

Problem
• Ensuring copy assignment in C++ is ex-

ception safe.

 Overload – Issue 20 – June/July 1997

 Page 24

Context
• A class has been implemented as han-

dle/body pair.

• The body is copyable – type shallow or
deep as appropriate.

Forces
• Any of the steps taken in performing the

assignment may fail, resulting in a
thrown exception. Partial completion of
the steps may leave the handle in an un-
stable state.

• The result of assignment, successful or
otherwise, must result in a stable handle.

• Self assignment must also result in a sta-
ble handle.

• After successful completion of the as-
signment the handle on the left hand side
of the assignment must be behaviourally
equivalent to the handle on the right hand
side.

• Assignment, successful or otherwise,
must be non-lossy, i.e. no memory leaks.

Solution
• Perform the body copy before releasing

the existing body.

• Bind the body copy to the handle after
releasing the existing body.

Resulting Context
• The existing body is not deleted before

the body copy has been attempted.
Therefore, a failed body copy will not re-
sult in an unstable handle.

• Failed body release may still result in an
unstable or lossy handle. However,
throwing exceptions from destructors is a
practice commonly cautioned against.

• The ordering accommodates safe self
assignment at the cost of a redundant
copy.

• If the body copy preserves behaviour
equivalence, a successful assignment will

preserve it for the composite handle/body
object.

• The solution can be used in conjunction
with the schema for copy assignment
from the Orthodox Canonical Class
Form.

The issue of a failed deletion is an
interesting one. It is left, as they say, as an
exercise for the reader to resolve.

Kevlin Henney
kevlin@acm.org

References

1. Francis Glassborow, "The Problem of
Self Assignment", Overload 19.

2. James O Coplien, Advanced C++ Pro-
gramming Styles and Idioms, 1992, Addi-
son-Wesley.

3. The Collins Concise Dictionary, 1988,
Collins.

4. E J Borowski and J M Borwein, Diction-
ary of Mathematics, 1989, Collins.

5. Mats Henricson and Erik Nyquist, Indus-
trial Strength C++: Rules and Recom-
mendations, 1997, Prentice Hall.

6. Les Hatton, Safer C, 1994, McGraw-Hill.

7. Kent Beck, Smalltalk Best Practice Pat-
terns, 1997, Prentice Hall.

8. James O Coplien, Software Patterns,
1996, SIGS.

9. Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, Design Pat-
terns: Elements of Reusable Object-
Oriented Software, 1995, Addison-
Wesley.

10.Christopher Alexander, The Timeless
Way of Building, 1979, Oxford University
Press.

 Overload – Issue 20 – June/July 1997

 Page 25

11.Grady Booch, Object-Oriented Analysis
and Design with Applications, 1994, Ben-
jamin/Cummings.

Ed: For the word of lore on processor
pipeline architectures and branch prediction
statistics see: Hennessey & Patterson.
Computer Architecture: A Quantitative
Approach., 1990, Morgan Kaufmann
Publishers Inc.

Lessons from fixed_vector
Part 1

by Jon Jagger

When I read and think about Overload
articles I always learn new things and am
reminded of things I have already learned.
That’s one of the reasons I subscribe to
Overload. In this article I’m going to recount
some of my thoughts2 as I read about the
excellent fixed_vector class presented
by Kevlin Henney in Overload 12. First, a
quick recap of fixed_vector.

template<typename type, size_t size>
class fixed_vector
{
public:
 iterator begin();
 iterator end();
private: // state
 type base[(size>0) ? size : 1];
};

fixed_vector Implementation

fixed_vector provides a safer form of C
arrays while at the same time being as close
to an STL vector as possible (but no

2 I feel articles like this, ones that recount the
learning process, can make excellent subject
matter for Overload. If you have a favourite
article (not necessarily from Overload!) that
you learned a lot from, why not write an arti-
cle?

closer). An interesting question is ‘How
close should it get?’

fixed_vector is implemented using a
plain old C [array]. This means that the
template type must have a default
constructor, which is not true of a vector.

class ndc // No Default Constructor
{
public:
 ndc(const snafu&);
};

vector<ndc> good;

// COMPILE TIME ERROR
fixed_vector<ndc,16> bad;

fixed_vector also allows the creation of
logically empty instances such as:

fixed_vector<int,0> empty;

A vector can be empty, so from that point
of view it’s desirable that a
fixed_vector can be too. The
mechanism by which Kevlin acheived this
was to change a logically empty
fixed_vector into a physically non-
empty one. Hense:

 (size>0) ? size : 1

A perhaps non-obvious effect of this is that a
logically empty fixed_vector will call
the default constructor once.

You might take the view that a
fixed_vector, while being modelled on
STL, is basically a replacement for raw
[arrays]. In other words:

template<typename type, size_t size>
class fixed_vector
{
public:
 ...
private: // state
 type base[size]; // 3

3 A partial specialisation of this (with
size==0) would provide the best of both

 Overload – Issue 20 – June/July 1997

 Page 26

};

Copying a fixed_vector

I can easily imagine many C++ programmers
writing the copy constructor for
fixed_vector like this:

fixed_vector(
 const fixed_vector<type,size>& rhs
)
{
 for (int i=0; i < size; ++i)
 {
 base[i] = rhs.base[i];
 }
}

Would you? Consider this small fragment of
code:

class accu {};
typedef fixed_vector<accu,1024> forum;
forum rhs;
forum lhs(rhs); // copy construction

The forum copy constructor will call the
accu default constructor 1024 times, and
then the accu copy assignment operator
1024 times. If accu has non-trivial
assignment/constructor semantics this is
serious overkill. 1024 accu copy
constructions would do better. For Instance:

fixed_vector(const
fixed_vector<type,size>& rhs)
 : base(rhs.base) {}

However, this won’t compile since C and
C++ don't allow array assignments.

 : base(rhs.base)

Arrays and member initialisation lists do not
mix. However, there is a better way and it
revolves around this:

worlds. Kevlin was well aware of this when
he wrote his article. However, good articles
remain focused and the focus of his article
was not partial specialisation

typedef struct { int array[32]; }
segment;
segment x,y;
x = y;

Now the assignment is legal. Wrapping the
array in a struct makes all the difference.
Moreover, a class is just a “higher ranking”
struct, which means the C++ compiler
will provide the default copy assignment
operator and copy constructor. What’s more,
they’ll behave exactly as required. For
example, the compiler generated copy
constructor for fixed_vector<foo,32>
will do 32 foo copy constructions rather
than 32 foo default constructions plus 32
foo copy assignments. However, it’s a little
more subtle than that. You have to let the
compiler write the fixed_vector copy
constructor, since you cannot mimic its
action because you cannot copy construct a
plain array in a member initialisation list.

A better [array]

Here’s the well known find function from
STL:

template<typename InputIterator,
 typename Value> InputIterator

find(
 InputIterator first,
 InputIterator last,
 const Value& v)
{
 while (
 first != last && *first != value)
 {
 ++first;
 }
 return first;
}

and a typical use is:

typedef vector<int> container;
container v;
container::iterator iter1 =
 find(v.begin(), v.end(), 23);

STL was carefully designed so that another
use is:

int raw[42];

 Overload – Issue 20 – June/July 1997

 Page 27

int* iter2 = find(raw, raw+42, 23);

Once you’ve been using C++ and STL for a
while, this somehow seems terribly low
level. The fixed_vector solution:

typedef fixed_vector<int,42> segment;
segment cooked;
segment::iterator iter3 =
 find(cooked.begin(), cooked.end(), 23);

fits much more neatly into the STL
framework, and it’s more robust too. In the
raw solution there are two occurrences of the
array size, in the cooked solution only one.
With fixed_vector fully inside the STL
fold, you can write universal helper
functions like:

template<class Container, class Value>
typename Container::iterator
stl_find(Container& c, const Value& v)
{
 return find(c.begin(), c.end(), v);
}

which you can use identically with vector
and fixed_vector:

typedef vector<int> container;
container v;
container::iterator iter1 =
 stl_find(v, 23);

typedef fixed_vector<int,42> segment;
segment cooked;
segment::iterator iter3 =
 stl_find(cooked, 23);

That’s all for part 1 as the copy deadline is
looming. I hope to cover such goodies as
writing a reverse_iterator in part 2.

Jon Jagger
jonj@dmv.co.uk

Shared experience: a C++ pitfall
- By Alan Bellingham

Even in classic C++, without using templates
or exceptions, there are some quite subtle
pitfalls that one may encounter. The
following problem is one I discovered in
some third party library code. I’m thankful

that I had the source, and was able to
discover what was going on.

A class hierarchy using memory
management

Consider the following skeleton class:

class exampleBase
{
 public:
 exampleBase () ;
 virtual ~exampleBase () ;
 void * operator new (size_t) ;
 void operator delete (void*) ;
 . . .
 void FnExtra (void*) ;
} ;

Now, you will notice that, apart from a
constructor and destructor, (the latter
properly being virtual), it has operator
new and operator delete functions.
This would indicate that some form of
memory management is being done on a
class basis, as we can see from their
following implementations:

void *
exampleBase::operator new(
 size_t allocsize)
{
 cout
 << "Base::operator new" << endl ;
 return AllocFromPool(1,allocsize) ;
}

void
exampleBase::operator delete(
 void * deadMem)
{
 cout
 << "Base::operator delete" <<endl;
 FreeToPool(1, deadMem) ;
}

So far, so good. We won’t worry about the
implementation of the AllocFromPool
and FreeToPool functions except to note
that the first parameter is the pool number,
and that memory allocated from a pool needs
to be released to the same pool. For the
purpose of illustration, we’ll just build
versions which tell us which pool we’re
dealing with, and default to the global
allocators:

mailto:jonj@dmv.co.uk

 Overload – Issue 20 – June/July 1997

 Page 28

void *
AllocFromPool(int v, size_t sz)
{
 cout
 << "AllocfromPool:" << v << endl;
 return new char[sz] ;
}

void
FreeToPool(int v, void * ptr)
{
 cout << "FreeToPool:" << v << endl;
 delete [] ptr ;
}

Well, we have a base class which
presumably does something useful. Let’s
now consider a second class:

class exampleDerived : public
exampleBase
{
 public:
 exampleDerived () ;
 virtual ~exampleDerived () ;
 void * operator new (size_t) ;
 void operator delete (void*) ;
 . . .
 void FnExtra (void*) ;
} ;

Again, it appears to be doing its own
memory management:

void *
exampleDerived::operator new(
 size_t allocsize)
{
 cout
 << "Derived::operator new" <<endl;
 return AllocFromPool(2, allocsize);
}

void
exampleDerived::operator delete(
 void * deadMem)
{
 cout
 << "Derived::operator delete"
 << endl ;
 FreeToPool(2, deadMem) ;
}

Not much difference, you’ll note. In fact, the
only difference shown in the implementation
is that we’re allocating from and releasing to
a different memory pool – perhaps because
the elided parts of the class have created a
class with a larger number of data members,
and the second memory pool better suits this
allocation size.

Now the classes as shown shouldn’t cause
too many problems. We have a virtual
destructor (almost mandatory in a case like
this), and if we were being coding this for
real, we’d have covered the usual copy
constructor and assignment operator issues.

So, what happens here?

int
main(int, char **)
{
 exampleBase * eb =
 new exampleBase() ;
 delete eb ;

 cout << "---------------" << endl ;

 eb = new exampleDerived() ;
 delete eb ;

 return 0 ;
}

Well, an exampleBase is allocated from
pool 1, and then released back to it, and an
exampleDerived is allocated from pool
2, and released back there. With suitable
constructor / destructor tracing, we can see
this:

Base::operator new
AllocfromPool:1
Base ctor
Base dtor
Base::operator delete
FreeToPool:1

Derived::operator new
AllocfromPool:2
Base ctor
Derived ctor
Derived dtor
Base dtor
Derived::operator delete
FreeToPool:2

Exactly as it should. You’ll notice that it
doesn’t matter that we delete an
exampleBase pointer pointing to an
exampleDerived – the correct
operator delete() function is called
because we have a virtual destructor. You
can test this by changing the code so that the
destructor isn’t virtual and trying this.

 Overload – Issue 20 – June/July 1997

 Page 29

Gilding the lily

Hmm. Sometimes programmers note
common code, and abstract it into a separate
function. There doesn’t seem to be any
reason why the memory freeing code has to
be called directly from the operator
delete functions. How about the following
small amendment. It should still work,
shouldn’t it?

void
exampleBase::operator delete(
 void * deadMem)
{
 cout
 << "Base::operator delete" <<endl;
 ((exampleBase*)deadMem)->
 FnExtra(deadMem);
}

void
exampleBase::FnExtra(void * deadMem)
{
 cout << "Base::FnExtra" << endl ;
 FreeToPool(1, deadMem) ;
}

void
exampleDerived::operator delete(
 void * deadMem)
{
 cout
 << "Derived::operator delete"
 << endl ;
 ((exampleDerived*)deadMem)->
 FnExtra(deadMem);
}

void
exampleDerived::FnExtra(void * deadMem)
{
 cout << "Derived::FnExtra" <<endl;
 FreeToPool(2, deadMem) ;
}

That’s pretty horrible. Having to do those
casts because we know that the dead
memory pointers are actually pointers to the
relevant classes is yucky, but we know that
the only way to the operator delete
functions is if that is so, we know that the
memory hasn’t been released yet, so it’s OK,
and we don’t make use of any member
variables anyway, so everything is fine.

Isn’t it? I mean, it all works …

Base::operator new
AllocfromPool:1
Base ctor
Base dtor
Base::operator delete

Base::FnExtra
FreeToPool:1

Derived::operator new
AllocfromPool:2
Base ctor
Derived ctor
Derived dtor
Base dtor
Derived::operator delete
Derived::FnExtra
FreeToPool:2

Lost in darkness

And yes, it does work. Unless you do what
our original programmer then did. Noting
that FnExtra has the same signature in
both classes, and not thinking about the
consequences, he made it virtual.

Oops.

Base::operator new
AllocfromPool:1
Base ctor
Base dtor
Base::operator delete
Base::FnExtra
FreeToPool:1

Derived::operator new
AllocfromPool:2
Base ctor
Derived ctor
Derived dtor
Base dtor
Derived::operator delete
Base::FnExtra
FreeToPool:1

Suddenly, the exampleDerived objects
are being allocated from one pool, and
released to a different one. So what’s
happening?

What is happening is that the programmer
has strayed into undefined behaviour.
Although he knows that the memory pointed
to is an exampleDerived, the system
doesn’t. Although he thinks that all the
member variables are still as they were just
before the destructor was called, the system
has it otherwise. What has in fact occurred in
this case (and using this compiler
implementation) is that the compiler’s
construction and destruction of the object in
question has changed the virtual function
table pointer.

 Overload – Issue 20 – June/July 1997

 Page 30

Now the implementation does this on
construction:
1) Allocate sufficient memory for the de-

rived class.
2) Call the derived constructor, which:
2a) Calls the base constructor,
2b) Calls the member constructors, in

member order
2c) Executes the code within the derived

constructor body.

and at destruction, it dies the following:

3) Call the derived destructor, which:
3a) Executes the code within the derived

destructor body
3b) Calls the member destructors, in re-

verse member order
3c) Calls the base destructor
4) Releases the memory for the derived

class

Now, it is a stricture of the language that
within the bodies of the constructor and
destructor for a class, the object in question
must be treatable as an object of that class.
In other words, within
exampleBase::exampleBase, you are
an exampleBase object. This rule has
sometimes been stated as “Don’t call virtual
functions in constructors or destructor”, but
examination of ‘The C++ Programming
Language’, § r.12.7 should make it clear that
a virtual function call within a base class
constructor will be routed to the
implemenation available to that class, not
that available to the derived class. Naturally,
the same virtual function call within the
derived class constructor will route to the
derived class implementation.

So what this states is that, given a virtual
function call between points 2c and 3a
inclusive, we expect the derived class virtual
function to be called. At point 3c, we expect
the base class virtual to be in effect. Our
code is calling it at point 4!

At this point, we’ve really reached the point
of implementation dependence, but what has

happened in this particular case is that the
compiler, at the transition between point 2a
and 2c, inserts code to adjust the virtual
function pointer to point at the virtual
function table for the exampleDerived
class. Similarly, on destruction, between
points 3a and 3c it adjusts the virtual
function pointer to point at the virtual
function table for the exampleBase again.

It never bothers thereafter to adjust the
pointer back again. After all, as far as it’s
concerned, that memory is now raw storage
and its content shouldn’t be addressed by
anyone (§ r.5.3.4). The result in this case
was that the wrong function was called,
memory was returned to the wrong pool
(which rejected it), and a slow memory leak
sapped the program.

The fix

The casts we mentioned should have been
the warning – what it was telling us is that
operator delete is effectively a static
function, having no this pointer. The only
other functions we should call from within a
static function are also static, but in this case,
the programmer knew the type behind the
dead memory pointer, and cast that to the
type. The better solution in the first place
would have been this:

class exampleBase
{
 public:
 static void FnExtra (void*) ;
} ;

void
exampleBase::operator delete(
 void * deadMem)
{
 cout
 << "Base::operator delete" <<endl;
 FnExtra(deadMem);
}

 (with the same adjustments for the derived
class too).

Epilogue

The code shown here isn’t the original code,
but a distillation of the problem: I have no

 Overload – Issue 20 – June/July 1997

 Page 31

particular desire to cast stones at a product
that has been rewritten since without this
code in it. If you are worried that this might
affect you, then I’ll just say the following –
it was version 4.0 of an xBase library, and
this was fixed by version 5.0. I make no
such guarantee for any other library that you
may have.

Alan Bellingham
Alan@lspace.org

Further Thoughts on Inheritance
for Reuse

by Francis Glassborow

In Overload 17/18, and a letter in Overload
19 I presented some thoughts on ‘Inheritance
for reuse’.

To understand what is going on you need a
firm grasp of dynamic versus static binding.
I know that some programmers get very
confused by the terms ‘static’ and ‘dynamic’.
In the simplest form static behaviour is that
which can be fully determined by the
compiler whilst dynamic behaviour is
somehow determined at execution time. We
talk about binding a name (identifier) to a
meaning or behaviour. So a parameter name
is bound to the argument by the process of
calling the function. A function call is
bound to executable code at some stage.
This can be at compile time (the default
behaviour in C++) or it can be through some
mechanism that enables selection at runtime.
The latter behaviour is particularly important
when the required behaviour is for an object
(rather than a value) passed as an argument
to a parameter.

Objects have a static type. This means that
an object has a well-defined existence at
compile time. On the other hand objects that
are handled indirectly via pointers or
references have two types. The static type
provided by the declaration of the pointer or
reference identifier and the dynamic type of
the object that they are referring to. Keep
that in mind and also note that parameters
are declarations of local identifiers that are
initialised by the argument provided at the
time the function is called.

In inheritance hierarchies we talk of a
function over-riding a base class version. By
this we mean that there is a new definition of
a base class function in a derived class. We
also have the possibility that a derived class
function hides a base class one. To try to

mailto:Alan@lspace.org

 Overload – Issue 20 – June/July 1997

 Page 32

make this clear consider the following very
simple hierarchy:
class Base {
public:
 void fn (int);
};

class Derived : public Base {
public:
 void fn (int);
};

This demonstrates public inheritance. Let’s
continue with a slight variation on the theme,
private inheritance.

Privately Inherited Base
class NotBase: Base {
public:
 void fn (int);
};

Note that this is private inheritance so the
only functions that are publicly available are
those declared in the definition of
NotBase.

The first question that may arise in the mind
of an experienced C++ programmer is why I
would choose to use private inheritance
rather than some form of layering or
aggregation.

Let me deal with the major possibilities.

Contained Base Reference by Pointer
class Choice1 {
 Base * base;
public:
 void fn (int);
};

I hope that the problem with this choice is
clear to all, I have to complicate Choice1
with constructors, destructor and a copy
assignment operator. Without the user
providing these the compiler will generate its
own and get it wrong. Replacing ‘Base *
base;’ with ‘Base * const base;’
marginally improves things because now the
compiler cannot generate those functions,
but you would still have to write them if any
were used.

Contained Base Object
class Choice2 {
 Base base;
public:
 void fn (int);
};

Is substantially better but it inhibits one
choice you might wish to make, you cannot
cast a Choice2 object into a Base one.
You might consider that an advantage but
before you come to a final decision consider
what a programmer will write if they decide
that such a cast should be supported. They
will insert something such as:
operator Base () { return base; }

into the definition of Choice2. Worse they
might write:
operator Base & () { return base; }

Why, I hear you mutter, should a
programmer want to do this? Well, knowing
that they have implemented the object as a
revised/reused Base they might also want to
reuse some functions with Base type
parameters. The solution via conversion
operators is a disaster because their affect is
to provide an uncontrolled conversion to
Base (either by value or by reference). On
the other hand a static_cast<> from a
derived object to a base one works (certainly
on the compilers I have tried though I must
confess that I am not certain that it should do
so.)

There is, of course, a better option to that of
providing conversion functions, which
should only be provided if you are sure that
the conversion is both safe and desirable.
Just provide a perfectly normal member
function such as:
Base toBase() {return base;}

Of course this version:
Base & toBaseref() {return base; }

breaks data hiding and makes the data
available to all and sundry. In other words
you cannot do this if you intend writing

 Overload – Issue 20 – June/July 1997

 Page 33

robust OO source code. The programmer
who provides such conversion functions is
the one who has breached the OO principles.
Surely it is preferable to use the
static_cast<> mechanism where the
‘guilt’ is placed firmly on the shoulders of
the programmer who elects to treat a
Derived object as if it were a Base one.
In other words, using a private base enables
a programmer to publicly ‘cheat’ if they
wish to, but they cannot do so by accident.

Importing Overload Sets

Now let me move on to the problem of
providing access to the member functions of
a private (or, as you will see, public ones as
well) base class. Writing pure forwarding
functions can get tedious and the other
mechanisms that were available in earlier
versions of C++ were easy to get wrong.
When the concept of namespace was
introduced to the language the keyword
using was part of the package. The first
thing that you must understand is that using
is about names, it is not about entities or
objects. The second thing is that there are
two distinct uses of using. A using
namespace X directive means that all the
names declared in namespace X are
treated as if they were declared at the point
of directive in the current scope. A using
X::name declaration imports all
declarations of name from X into the current
scope. This is not the place to get into the
details of namespaces, interesting though
they maybe. However, the concept of a
namespace bears a considerable similarity to
the concept of a class scope. The need to
move names from their declarative scope to
another one is similar to that we have when
we want to move names from a base class to
a derived class. There are fundamentally
two reasons that we might want to do this.
The first is the problem of providing access
to a hidden name.

Go back to the first example in this article.
Supposing that I want to add an extra

overload to a set in the base class. For
example:
class Extra: public Base {
public:
 void fn(char);
};

The existence of that extra overload results
in all the original (from Base) functions
being hidden. What we need is a simple way
of ‘over-riding’ the hiding process. In other
words we want to use all the declarations of
fn from Base as if they were declarations
in Extra. We can now use a using
declaration to do just that. So now we can
write:
class Extra1: public Base {
public:
 using Base::fn;
 void fn(char);
};

What we cannot do is to selectively import
some of the ‘meanings’ of fn while leaving
some of them hidden. If you want to be
selective you have no choice but to use
forwarding functions.

The next step is to consider the case where
we want to import an overload set and over-
ride one (or more) of them. The language
fixes that simply by saying you can (well it
gets a bit more technical when you have to
phrase that intent in standardese). So:
class Extra2: public Base {
public:
 using Base::fn;
 void fn(int);
};

The using Base::fn means import all
the versions of fn from Base and then
replace (over-ride) the void fn(int)
version found in Base with a new definition
provided by the implementation of Extra2.

This provides a simple mechanism for
importing overload sets from base classes. If
you always pair a function over-ride with a
using declaration for the name involved
you might avoid that particularly subtle
change of a base class interface —providing
another overload to a member function—

 Overload – Issue 20 – June/July 1997

 Page 34

that can cause havoc with classes that have
been derived to enhance a base class. For
example, suppose that the provision of void
fn(double) in Base was a late extra
added to fix some defect in Base.
Derived does not inherit this extra
behaviour, but Extra1 and Extra2 do. In
other words, if you want to ensure that your
derived class inherits the entire base class
behaviour both now and in the future, you
need to include using declarations for all
functions that you over-ride.

Now let me go back to private
inheritance. You can use using
declarations to import names from the
private base class. If the using declaration
is public, then all the imported names will
have the same access as they do in the base
class.

I think that this is a big bonus, and for me at
least, swings the decision towards using
private inheritance for reuse in C++.

Back to static versus dynamic

All the above is fine, but what has it got to
do with the problems of reuse? Well the first
point is that private inheritance inhibits
derived to base class conversions. You can
still do them via an explicit cast but they will
not happen by accident. As the derived
object is not intended to be a subclass of the
base, you want that restriction. I hope the
first part of this article has shown that
private inheritance has some value for reuse
but the constraint on derived to base
conversions is necessary if the compiler is
going to prevent misuse. To understand why
this is true in C++ but not in Smalltalk (and
Java) we need to look at the way these
languages work.

Let us focus on references (pointers in C++
work in a similar way in so far as semantics
are concerned). When we declare a
reference parameter type for a function we
are specifying the minimum requirement.
When actually executed the parameter may

be bound to any object that is either of the
correct type or that has been publicly derived
from that type. This can cause no problem in
Smalltalk because all functions are
dynamically bound. In other words the
behaviour of an object reference in Smalltalk
must be correct because the decision about
over-rides is always delayed until runtime.
The cost of this is largely that you almost
always pay the performance price for
dynamic binding (not a lot but it is there) and
there is the potential for the detection of
some errors being delayed till execution
time. Of course there are ways of working in
such an environment which come as second
nature to good Smalltalk programmers, but
experts in any language know how to cope
with problem areas.

I do not know about Smalltalk, but Java has
a mechanism by which you can declare a
function as final and hence not over-
ridable. This allows Java to use some static
binding but the onus is on the programmer to
enable this by explicitly marking the relevant
functions as being the final version. This is
of relatively little importance from the
efficiency aspect because you would not be
using Java if you were concerned about such
minor performance issues. The intent of
final is to allow programmers to
determine that some behaviour is an
immutable characteristic of a class and all its
sub-classes. Enabling the static binding
optimisation is a small side effect.

C++ is a rather different language in that the
default behaviour is static binding. The
programmer has to explicitly switch this
behaviour off on a function by function
basis. That is what the keyword virtual
is for. The result is that you will only get
correct behaviour for a derived object if the
object declaration (not a reference
declaration) is in scope or if the behaviour
has been declared virtual in the base
class. Maybe you think C++ should have
had dynamic behaviour by default and used
static to mark member functions that
were to be bound at compile time. Had that

 Overload – Issue 20 – June/July 1997

 Page 35

choice been made, C++ would be an arcane
minority interest because there is no doubt
that the original converts from C wanted
their natural compile time binding to
continue.

Conclusion

In my opinion, private inheritance is one of
the best mechanisms available for reuse at
object specification level. I think that the
provision of using declarations has resulted
in something that is more powerful than the
more traditional route via layering. On the
other hand public inheritance for reuse is ill-
conceived and should be ruthlessly
eliminated from respectable object
based/oriented code. I have no doubt that

the last statement will annoy some of you.
Certainly the technique is better than the cut
and paste of source code that riddled the
work of the last decade, but why settle for
less than the best? Using public inheritance
for anything that does not support the ‘is-a’
relationship is a sure sign that the writer has
not yet crossed the line into OO
programming. However, you should note
that I do not think that the various flavours
of object programming technology are the
only programming paradigms that should be
in use.

Francis Glassborow

francis@robinto.demon.co.uk

Whiteboard

Welcome to a new Overload section. In the
past, the established ones, ‘C++ Software
Development’ and ‘C++ Techniques’, have
tended to contain highly studied and
polished articles. We hope that this new
section will attract shorter discussion pieces,
which will address common programming
problems and solutions. This is to be a
forgiving public forum where praise comes
before criticism and there’s no explicit
guarantee of correctness. So, there’s no
excuse for not writing half a page about the
latest cool thing you’ve done!

Next issue we’ll be launching with a couple
of articles exploring Finite State Machines.

In future issues I’d like to see some ideas for
ensuring high quality software. The tale
below, of my current software troubles, may
trigger some thoughts.

For the past couple of years I’ve been
working on a large complex server system.
There are a couple of hundred thousand lines
of code, with hundreds of concurrent co-
operating threads. It’s a Voice Mail system

that allows you to send and receive voice
messages just like e-mail. Since the server is
connected to the telephone system our
quality requirements have been very
stringent. The emphasis has been on
reliability above functionality, performance,
size, and resource use. It must work for a
couple of weeks at maximum load before the
product can be shipped. Hurdling this final
bar has proved frustratingly difficult. This
has been because the quality of our own
software was too low, and because we’ve
employed many third-party components.

We ran our software within a number of
debugging environments, and pushed the
code through various code checkers. Having
not implemented this regime from day one
we got a lot of noise and little value from the
exercise. We found that our own internal
debugging solutions bore more fruit. What
techniques have you used in your projects to
ensure high quality? How have you reduced
resource leakage, usage, and contention?
How did you increase user responsiveness,
and performance?

 Overload – Issue 20 – June/July 1997

 Page 36

The foreign components we rely on are the
Operating System, Message Store, Message
Transfer Agent, Directory, Text-To-Speech
Engine, Collection Classes, and Database
Drivers. Our software can only be as
reliable as the foundations on which it’s
based. We’ve experienced our threads
entering an API and never returning, API’s
which take minutes to complete, sub-systems
which leak memory, and sub-system threads

which throw an exception once a week.
What strategies have you used to deal with
these sorts of problems?

John Merrells
john.merrells@octel.com

editor << letters;

explicit content
From Kevlin Henney

Referring to the Harpist’s article in Overload
19, the issue about whether or not ‘explicit’
makes sense on a user defined conversion
operator is an interesting, and not quite as
clear cut as it might first appear.

The reasonsing that if you require a
conversion explicitly you can have a named
function to do it, and therefore you do not
need an ‘explicit’ qualified UDC (and
therefore this feature was left out), falls
down on two issues.

One of these is a matter of style and
consistency: there are conversions between
existing built-in types that require explcit
casts, and conversions to user defined types
(inward conversions, if you like) can be
made explicit. Providing no way to support
and enforce this for UDTs breaks this
consistency (an issue in that perpetual
struggle between built-ins and UDTs for first
class citizenship of the language). This kind
of argument by aesthetic and consistency
does not tend to hold a lot of water in the
fierce heat of forging international standards!

The second more compelling reason is that
templates were forgotten. It is remarkable
how many simple rules of thumb disappear
in the light of generic programming—a good
example being the use of throw signatures,
which were considered a good thing until it
was realised that they cannot be used safely

for a number of templated types. We might
write in our template code something like the
following:

f(x.as_int());

Where x has the template parameter type.
The only problem is that none

of the built-in types support the as_int
protocol! So you will end up

writing

f(int(x));

Which is what you would have done anyway
(or (int), or static_cast<int>()). So you are
left with the requirement that to be generic
and support conversions you provide both
as_int and operator int. And then you realise
that you have one implicit form and two
explicit forms, so the chances are that the
spare form goes, ie as_int gets binned.

The realisation of the impact of templates
came too late for the cttee to do anything
about (it’s not exactly a show stopper) --
everyone had previously bought into the
theory that it was superfluous. One of the
issues that apparently caused a bit of a bun
fight in the original discussion of ‘explicit’
UDCs was the interaction with inheritance.
This is not a hard problem (it has many easy
solutions), just one in which many people

 Overload – Issue 20 – June/July 1997

 Page 37

hold many different opinions. This climate
probably helped get the issue dropped!

Kevlin Henney

kevlin@two-sdg.demon.co.uk

auto_ptr query
From Richard Percy

Replied by Jonathan Jagger

Firstly, I am astonished that we will not have
a sensible implementation of a smart pointer
in the standard library. I appreciate that
standardisation and library design are not
trivial, but how can we expect C++ to be
taken seriously if our libraries are broken?

I have a lot of sympathy with this view. You
are not the only one who is astonished. It is
possible that the version of auto_ptr that
ends up in the standard may be slightly
different to the one in CD2.

Secondly, I was disturbed by the reference in
Jon’s article to sections of Stroustrup’s two
books. The sections that he lists are
concerned with what Stroustrup calls
“resource allocation is initialisation”.

This means that resources (in this case, heap
storage) should be acquired in the
constructor of a local object and released in
the destructor. This makes the code
exception-safe, unless there is too much else
going on in the constructor.

Right. And you can use auto_ptr to do this...
void fubar::method()
{
 auto_ptr<snafu> p(new snafu());
}

The problems I was trying to highlight were
those encountered if you go beyond this

basic use, namely if you try and copy an
auto_ptr (either in a constructor or an
assignment).

Jon’s code example, however, does not
follow this idiom because it expects the user
of the smart pointer class to allocate the
memory before calling the constructor or the
reset function.

I'm sorry but I really don't understand what
you're trying to say here. You have to
allocate the resource before you call the
constructor. You can't avoid that. You can
couple them very closely...
auto_ptr<snafu> latest(new snafu());

...but the new still occurs before the
construction of latest.

A few years back I read a book called C++
Strategies and Tactics, which had a very
clear and helpful section on smart pointers,
but I think that the author used reference
counting. Can anyone follow up Jon's
article with an analysis of different
implementations of smart pointers?

Richard Percy

I have a library of smart pointers that I've
written, counted_ptr, cloned_ptr,
etc, etc. I use them primarily to store
polymorphic surrogates in STL containers. I
think that they might indeed make a good
follow up. No promises, but I'll see what I
can do.

Jonathan Jagger
jonj@dmv.co.uk

mailto:kevlin@two-sdg.demon.co.uk

 Overload – Issue 20 – June/July 1997

 Page 38

ACCU and the ’net

ACCU.general
This is an open mailing list for the discussion of C and C++ related issues. It features an unusu-
ally high standard of discussion and several of our regular columnists contribute. The highlights
are serialised in CVu. To subscribe, send any message to:
accu.general-sub@monosys.com
You will receive a welcome message with instructions on how to use the list. The list address is:
accu.general@monosys.com

Demon FTP site
The contents of CVu disks, and hence the code from Overload articles, eventually ends up on
Demon’s main FTP site:
ftp://ftp.demon.co.uk/accu
Files are organised by CVu issue.

ACCU web page
At the moment there are still some problems with the generic URL but you should be able to ac-
cess the current pages at:
http://bach.cis.temple.edu/accu
Please note that a UK-based web site will be operational in the near future and this will become
the “official” ACCU web site. Alex Yuriev has done a great job supporting the ACCU web site
from the US – thanks Alex!

C++ – The UK information site
This site is maintained by Steve Rumsby, long-serving member of the UK delegation to WG21
and nearly always head of delegation.
http://www.maths.warwick.ac.uk/c++

C++ – Beyond the ARM
Sean says he will have updated his pages by the time this is in print.
http://www.ocsltd.com/c++
Any comments on these pages are welcome!

Contacting the ACCU committee
Individual committee members can be contacted at the addresses given above. In addition, the
following generic email addresses exist:
caugers@accu.org
chair@accu.org
cvu@accu.org
info@accu.org
info.deutschland@accu.org
membership@accu.org
overload@accu.org
publicity@accu.org
secretary@accu.org
standards@accu.org
treasurer@accu.org
webmaster@accu.org

 Overload – Issue 20 – June/July 1997

 Page 39

There are actually a few others but I think you’ll find the list above fairly exhaustive!

 Overload – Issue 20 – June/July 1997

 Page 40

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Incoming Editor
John Merrells

4 Park Mount, Harpenden, Herts, AL5 3AR.
john.merrells@octel.com

Readers
Ray Hall

Ray@ashworth.demon.co.uk

Ian Bruntlett
ibruntlett@libris.co.uk

Einar Nilsen-Nygaard

EinarNN@atl.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising
John Washington

Cartchers Farm, Carthouse Lane
Woking, Surrey, GU21 4XS

accuads@wash.demon.co.uk
Subscriptions

David Hodge
2 Clevedon Road

Bexhill-on-Sea
East Sussex TN39 4EL

101633.1100@compuserve.com

Copyrights and Trademarks

Some articles and other contributions use terms which are either registered trademarks or claimed
as such. The use of such terms is intended neither to support nor disparage any trademark claim.
On request, we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU.
An author of an article or column (not a letter or review of software or book) may explicitly offer
single (first serial) publication rights and thereby retain all other rights. Except for licences
granted to (1) Corporate Members to copy solely for internal distribution (2) members to copy
source code for use on their own computers, no material can be copied from Overload without
written permission of the copyright holder.

Copy deadline

All articles intended for inclusion in Overload 21 (August/September) should be submitted to the
editor, John Merrells <john.merrells@octel.com>, by July 21st.

mailto:Ray@ashworth.demon.co.uk
mailto:ibruntlett@libris.co.uk
mailto:EinarNN@atl.co.uk
mailto:john.merrells@octel.com

	Contents
	Editorial
	Editorial Board
	Contributions
	Too Much C++

	Software Development in C++
	Whence Objects? by Ray Hall
	Functional decomposition
	Non-procedural languages
	Where did OO come from?
	Swings and roundabouts
	Further reading

	The Draft International C++ Standard
	The Casting Vote by Sean A Corfield
	Painting the Bicycle Shedby George Wendle
	A Variation: The Multi-solution Problem
	What Has This to do with C++?
	What has this to do with the PTBSP?

	C++ Techniques
	Make a date with C++: Typing Lessons by Kevlin Henney
	Introduction
	struct your stuff
	Comfortable enum
	State of the union
	Summary

	The Pitfall of Being Ignorant by The Harpist
	An Obscure Pitfall of C++ by XXX XXXX
	A Critique

	Self Assignment? No Problem! by Kevlin Henney
	Orthodox Canonical Class Form
	Confidence and intrinsic quality
	Orthodoxy and heresy

	Equivalent Forms
	Don't optimise
	Don't optimise yet
	Relative merits

	Stable Intermediate Forms
	Exception safety
	A pattern
	Exception Safe Handle/Body Copy Assignment
	Problem
	Context
	Forces
	Solution
	Resulting Context
	References

	Lessons from fixed_vectorPart 1by Jon Jagger
	fixed_vector Implementation
	Copying a fixed_vector
	A better [array]

	Shared experience: a C++ pitfall - By Alan Bellingham
	A class hierarchy using memory management
	Gilding the lily
	Lost in darkness
	The fix
	Epilogue

	Further Thoughts on Inheritance for Reuseby Francis Glassborow
	Privately Inherited Base
	Contained Base Reference by Pointer
	Contained Base Object
	Importing Overload Sets
	Back to static versus dynamic
	Conclusion

	Whiteboard
	editor << letters;
	explicit content
	auto_ptr query

	ACCU and the ’net
	ACCU.general
	Demon FTP site
	ACCU web page
	C++ – The UK information site
	C++ – Beyond the ARM
	Contacting the ACCU committee
	Credits
	Copyrights and Trademarks
	Copy deadline

