
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 14

June 1996

Editorial: Subscriptions:
Sean A. Corfield Barry Dorrans
13 Derwent Close 2 Gladstone Avenue
Cove Chester
Farnborough Cheshire
Hants CH1 4JU
GU14 0JT barryd@phonelink.com
overload@corf.demon.co.uk

£3.50

Contents
Editorial 3

Software Development in C++ 3

Concerning values, left, right and converted 3

Real world patterns 7

More on Java 9

The Draft International C++ Standard 11

C++ Techniques 12

The Standard Template Library – first steps auto_ptr 12

Functionoids 15

Return from a member function 16

Time please, ladies and gentlemen 16

editor << letters; 18

Reviews 20

Practical C++ Programming 20

My favourite C/C++ development package 22

News & Product Releases 24

Hypersoft Europe 24

Take Five Software 25

IDE announce Java and Unified Method support 25

Junk Mail
I believe that Capita Recruitment Services have misrepresented their relationship with ACCU in a recent
mailing. They purchased a set of mailing labels from us for C++ SIG members who had not restricted use
of their contact details for this purpose. What Capita seem to have done is to use those labels to produce
mail-merging data. This is strictly contrary to the terms under which we provide such label sets. ACCU
does not provide details of members to other organisations except in the strictly limited form of sets of one
time mailing labels. These are always identifiable because of the style of printing and layout.

I hope that members have not been too inconvenienced by this junk mail. I particularly hope that it will not
cause anyone to restrict use of their address in future because the sale of mailing labels produces finance
that helps us keep membership fees as low as possible.

Francis Glassborow
francis@robinton.demon.co.uk

 Overload – Issue 14 – June 1996

 Page 3

Editorial
Submissions
For this issue, I’d just like to say a couple of
things about submissions for Overload. Firstly,
there simply aren’t enough of them! This issue
does see some new contributors whose presence
is very welcome. You don’t have to be a great
writer and you don’t have to be a C++ expert to
submit articles for Overload.

Secondly, preferred formats. I really do prefer
plain text. It makes my life easier. If you must
send me formatted material because you want me
to see how it should be laid out, RTF is a good
bet. I can accept Word format but the translators
between different versions on different platforms
can cause subtle bugs and formatting problems
(one issue was delayed by a week as I tried to
excise a particularly nasty pagination gremlin
introduced by the Word 2.0 to Word 6.0 conver-
tor!).

Thirdly, email. A couple of folks have sent
printed submissions and these have a habit of

getting lost amongst my other paperwork. If
you’re on CompuServe and want to send me a
binary attachment (e.g., for a Word file), send it
to my CompuServe account 101554,1127 but
otherwise, send email to the address below. If
you don’t have email and want to send me an
article, please enclose a disk with the soft copy
on it. I really am quite allergic to paper and I’m
extremely likely to lose it!

ACCU and the Internet
I get several requests each month to provide all
the useful email and web addresses for ACCU
related sources. Due to problems with Demon
and some ACCU hardware, the email and web
forwarding has been a little unreliable recently
but these problems are being sorted out and from
the next issue onwards I will print a list of useful
email and web addresses in each issue.

Sean A. Corfield
overload@corf.demon.co.uk

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development tools,
the software process and discussions about the good, the bad and the ugly in C++.

Francis Glassborow takes a close look at our terminology for values, Keith Derrick begins a series looking
at implementing well-known patterns and Dave Durbin provides more information about Java after The
Harpist’s introduction in Overload 11.

Concerning values,
left, right and converted

by Francis Glassborow

What sort of things are: 12, 2.3, ‘A’, “Help”?

Well in programming context they are all literals.
In C++ they might be described as: an int, a
float, a char and a string. Using such terminol-
ogy serves to confuse many. Let me take a few
further examples.

What sort of things are returned by: int fn(),
double sqrt(), char* xyz()? The simple answer is
‘values’, the more complicated answer is ‘r-
values’ but more of that in a moment.

Given:
int i;
float f;

double x;

What are i, f and x? The simple answer is: ‘an
int’, ‘a float’ and ‘a double’.

The problem I am getting at is that we use type
to describe two related but distinct concepts,
storage and value (container and contents). Most
of the time we are not even aware that we are
using type names for two different things. C in-
troduced (more precisely, it redefined) two
words, ‘lvalue’ and ‘rvalue’ to denote the two
ways in which a type can be used. In simple
terms an lvalue is a container and an rvalue is
contents. Literals and return values are necessar-
ily rvalues, contents not containers. Variables are
something else as they can be both an rvalue and
an lvalue depending on the context in which they
are used. Mostly this distinction is clear in con-
text and we are not confused. However confusion
arises in two places: iterators and conversions.

 Overload – Issue 14 – June 1996

 Page 4

Iterators
The Harpist suggested that you think of an itera-
tor as a generalised pointer. Fine as far as it goes
but most programmers get confused by pointers.
So let me spend a moment examining the mean-
ing of a pointer in C/C++.

Just as for any other type we can have both
pointer lvalues and pointer rvalues. Just in every
other case, a pointer lvalue is storage for a
pointer rvalue. What confuses is that the term
‘pointer’ suggests that in some way the object
points to something. While sensible, it causes
confusion. A pointer rvalue does indeed point to
something, and we would more naturally call that
an address. A pointer lvalue does not point to
anything, it is storage for a pointer rvalue (ad-
dress).

Think of the number of books that tell you that,
if:
int* ip;

then ip is a pointer to int. That is, indeed, its type
but it is not what it does. As an rvalue its con-
tents point to an int storage location. That is, its
contents are the address of the storage for an int.
We know that is the case because we confidently
write:
int i;
ip = &i;

And call & an ‘address of’ operator not a ‘get
pointer’ operator. I think it is much easier to talk
about pointer variables as pointers and their con-
tents as addresses. My response to ‘what does
char* fn()’ return?’ is ‘address of a char.’ Simi-
larly, ‘If int list[10], what sort of thing is list?’
meets the response ‘address of int’. That is why
we need a pointer parameter to receive an array
argument, the array is passed as an address and
pointers are the things that contain addresses.

Please think about this. The rvalue of a pointer
variable is an address, the lvalue of a pointer
variable is the location where an appropriate ad-
dress can be stored.

By the way, a reference parameter is something
quite different. It does not denote any form of
new storage. It provides an alternative identifier
that can be bound to existing storage. The nearest
analogy that I can come up with is that it is a lit-
tle like:
extern int i;

Which declares i to be the name of storage for an
int that is defined somewhere else. A reference
declares an identifier to be an alternative name of
storage defined by another name elsewhere.

I think C++ made the already confusing pointer
terminology worse by talking about iterators.
The first thing that springs to most people’s
minds when the term iterator occurs is that it
must be something that allows them to iterate
over a collection. It is only those that have a se-
cure grasp of type terminology that recognise
that, if it is a type, it will occur in two flavours,
lvalue and rvalue. A variable of an iterator type
provides storage for something that can be pro-
gressively modified to iterate over a collection of
objects. But in the terminology of C++, that
something is also called an iterator (meaning an
iterator rvalue).

When I first came across the statement that the
begin() and end() member functions of the STL
container classes returned iterators I was com-
pletely bewildered. It took me quite a long time
to understand that what was meant was that these
functions returned iterator values that acted as
starting and finishing values. For example:
int ray[100];
for (int* iter=ray; iter<ray+100;
iter++)
{
 // do something
}

is a simple C-style container with an ‘iterator’. In
standard terminology iter is a pointer to int that
is initialised with a pointer value (ray), then in-
cremented while the value in iter is less than an-
other pointer value (ray + 100). I find it easier to
read that as: iter is a pointer to int that is initial-
ised with the base address of ray, and stepped
through in sizeof(int) steps while the address in
iter is less than the address of one beyond the
end of ray.

Compare this with:
vector<int> vt(100);
for (vector<int>::iterator iter =
 vt.begin(); iter!=vt.end(); iter++)
{
 // do something
}

Even if I know that the iterator type for vectors
in my implementation is a plain C-style pointer, I
would be wrong to use that information because
that is an implementation detail. It is quite possi-
ble that it has been replaced by some other itera-
tor, such as some kind of smart pointer. Note that
the comparison has changed from ‘less than’ to

 Overload – Issue 14 – June 1996

 Page 5

‘not equal to’. That is important because there is
no guarantee that ‘less than’ will be defined for
all iterators, however we do require that opera-
tor== and operator!= are defined for an iterator.
Note that in the case of smart pointers, these will
be defined because there will be a chain of con-
versions that terminate with raw pointers. The
problem with ‘less than’ in these circumstances
is that there is no guarantee that all the converted
intermediate values of the iterator as it steps from
begin() to end() will actually be less than end().
It will work for vector because of the require-
ment for contiguous storage but not for other
STL containers.

I think that the concept of an iterator as some
form of generalised pointer is fine, as long as
you are clear about the terminology that uses
‘pointer’ to refer to both the contents and the
container. Functions such as begin() and end()
return iterator values that can be stored in iterator
objects.

STL specifies five groups of iterators: Input,
Output, Forward, Bidirectional, Random.

After consulting Francis, I have decided to
publish the following explanations unaltered.
In fact, they contain several incorrect as-
sumptions about the iterator categories but,
as I hope I illustrated in “You can’t get there
from here” in Overload 13, iterators are sub-
tle and the requirements on them are complex
and easily misunderstood. I shall run an arti-
cle in Overload 15 on this subject – Ed.

Input/Output:
These can be dereferenced and incre-
mented. The process of dereferencing
is sequential in that each time you use
it the iterator will be incremented so
you can only read (Input) or write
(Output) to a location once through a
specific Input/Output iterator. This
may seem restrictive, but it makes per-
fectly good sense in context.

Forward: Like the previous case, except that
read and write do not increment the it-
erator. That means that a single object
can be used repeatedly until and in-
crement operator moves you on. Clas-
sic single linked lists (where each node
is only linked to the next one) are can-
didates for forward iterators because
you can easily move on, but only seri-

ous contortions allow you to move
back.

Bidirectional:
Like the forward iterator except that
the decrement operators are also sup-
ported. Because STL linked-lists are
doubly linked lists (ones where each
node is linked both to the previous and
the next node) they are suitable candi-
dates for bidirectional iterators.

Random: These support all the operators that
you would associate with raw pointers,
including indexing. In STL, the vector
container is a candidate for random it-
erators. If you want the nth element of
a vector v you can write v.begin()[n-1].
This will also work for deque contain-
ers, though the iterator certainly will
not be a raw pointer.

The average applications programmer will not
generally be creating her own iterator types
though she may do so incidentally when she cre-
ates special smart pointers for debugging tasks.
The task of creating new iterator types is in the
domain of the class implementor. If she gets that
job done correctly it will be an implementation
detail that will be transparent to the application
programmer who is a client of that class.

Applications programmers need to know what to
expect when a class says it has a X type iterator
so that they know how it can be used. Much of
the problem with current C++ programming is
that there is often no division between the appli-
cations domain and the implementation domain.
Even if you are forced to be both, you should
have a clear understanding as to which role you
are occupying at any given moment.

Conversions
I was recently profoundly shocked by a pro-
grammer emailing me about a piece of my code
on the grounds that there was no default opera-
tor<<(ostream&, const T&) defined where T
was an enum so code such as;
#include <iostream.h>
enum X {zero, one, two};
int main(){
 X x=zero;
 cout<<x;
 return;
}

should not compile. This, along with other recent
correspondence made me realise just how tenu-
ous a grasp some programmers have of C++

 Overload – Issue 14 – June 1996

 Page 6

conversions. So I thought that it might be worth
writing a little on the subject (you can all pick
holes in it if you like).

Basically there are three main groups of conver-
sions, implicit (compiler can use without pro-
grammer action), explicit (can be used via a
static_cast<>) and forced (requires a reinter-
pret_cast<>). There are a number of rules that
you need to know.

First, implicit conversions break into two groups.
There are standard conversions and user defined
conversions. The standard conversions include
all the inter-conversion between built-in types
including conversion from a T* (where T is any
data type) to void* but not the reverse. In addi-
tion an enum type can be converted to an int, a
derived type can be converted to a base type. If
you know of any others please write in.

The user defined conversions are all constructors
that can take a single argument and haven’t been
marked as explicit (only possible in the most up-
to-date compilers) together with all conversions
provided by operator T() where T is some type.
It is because these provide implicit conversions
that programmers should be particularly careful
about providing such conversion operators.

Implicit conversions are not just single step con-
versions, the compiler can use any sequence of
conversions that consist of standard conversions
and not more than one user defined conversion.

For example:
enum X;
class T {
 // what ever
public:
 operator X();
 T(X);
 // rest of definition
};

Empowers the compiler to use a T object wher-
ever any built-in numerical type is required. The
constructor does not allow construction from any
numerical type because there is no standard con-
version from a numerical type to an enum.

Next, explicit conversions. The reverse of any
standard conversion is available as an explicit
conversion, this includes standard conversion
sequences. This means that you can, if you insist,
cast a float to an enum type; the compiler cannot
do it off its own bat, but you can if you wish.

In addition, any single argument constructor can
be used for explicit conversion together with all
implicit conversions. Again, any conversion se-

quence can contain at most one user defined
conversion – if you need more than one then you
must make the extra ones explicit as well. In
other words each explicit conversion down the
chain must be made visible.

The correct cast for an explicit conversion is a
static_cast<>. If you want to change
const/volatile qualification as well then you will
need a separate cast to handle that
(const_cast<>).

Note that conversions are carried out on rvalues
even if the result is stored either permanently or
temporarily in an object (lvalue), they do not and
cannot change the original.

What about that last group of conversions,
‘forced’. You may know that a specific bit-
pattern representing a value of type T can also
represent a value of type Q. Under such circum-
stances you can instruct the compiler to use the
bit pattern of an object of type T as the bit pattern
of an object of type Q. This is done with a rein-
terpret_cast<>. I have over-simplified this be-
cause all that reinterpret_cast<> requires is that
the relevant bit patterns are interchangeable in
the sense that reinterpret_cast<> back to the
original type will restore the original value.

I find it difficult to find good examples for using
reinterpret_cast<>, and I am sure that many
others also find it difficult. I would welcome
reading an article about useful uses of this cast. If
you know any please share them with the rest of
us.

WARNING
Throughout this article I have taken liberties with
terminology and much of it would cause gagging
among my fellow standard panel and committee
members. I have tried to write in terms that give
the ordinary working programmer a fair chance
of gaining some insight. Of course my under-
standing may itself be faulty but then those that
write in to correct it will be doing all of us a ser-
vice.

Francis Glassborow
francis@robinton.demon.co.uk

 Overload – Issue 14 – June 1996

 Page 7

Real world patterns
by Keith Derrick

Introduction
Last year, a quiet, unassuming book was pub-
lished by Addison-Wesley with the simple title
“Design Patterns”. It was soon discovered by the
industry and rapidly became a standard reference
for class designers and implementers alike.

The authors (Gamma, Helm, et al) had spent
considerable time talking to heavy duty users of
C++ - both designers and implementers - gradu-
ally building a collection of popular approaches
to resolving common design problems. Then
came the stroke of genius: each approach was
generalised; beaten into shape; named; and fi-
nally described in a standard format. This pro-
duced a cook book of ideas which could be used
by class designers to describe design attributes of
a class in a standard way.

For example, say a class has a cardinality of 1 -
i.e., there must only ever be one instance of the
class in existence at any time. The designer can
simply state that the class should be implemented
as a Singleton. The Singleton pattern will be un-
derstood by both designers and implementers, so
the designer can concentrate on the class-specific
aspects of the design.

You will have seen references to some of the
patterns in other articles in recent issues of Over-
load, and the C++ press in general. I predict this
will become more and more common, which is
of course the aim of the book’s authors - if only
in that respect, they have been hugely successful.

Although I no longer consider myself a complete
novice in C++, I am far from being an expert.
This book has allowed my own attempts at class
design to take a quantum leap forward in both
quality and success. Since buying the book I
have been spending much of my spare time
evaluating the various patterns and now regularly
incorporate some of them into applications being
written for my clients.

In this series of articles, I hope to share the
knowledge and understanding I have gained with
those who are a little behind me in the learning
curve. Hopefully, I will also learn some valuable
lessons from the comments of readers - experts
and novices alike.

Given that many compilers still do not provide
full implementations of language features such as
exceptions and templates, I will try to avoid rely-
ing on these. You should be able to try these pat-
terns out using a compiler as old as Turbo C++
V2, or Visual C++ 1.0.

Now on with the first pattern. True to sod’s law,
considering the last paragraph, this one really
cries out for implementation as a template!

Proxy
One of the more common mistakes made by C++
programmers, expert and novice alike, is failing
to release all dynamically created objects - oth-
erwise known as the memory leak. The following
code fragment shows what I mean:
bool DoSomething(char* filename)
{
 MyClass* object = new
MyClass(filename);
 ...
 if (errorOccurred)
 return false;
 ...
 delete object;
 return true;
 };

Something goes wrong, and ‘object’ is lost for-
ever. We’ve all done it: and if you haven’t yet,
you probably will soon - unless you learn the
lessons of the Proxy pattern. The approach is
simple in concept - let someone else take the
strain of remembering to clean up the mess !

In addition to defining MyClass, also define My-
Class_Proxy as follows:
class MyClass_Proxy
{
public:
 MyClass_Proxy(MyClass* obj = 0)
 : theObject(obj) { }
 ~MyClass_Proxy()
 { delete theObject; }
 MyClass* operator ->() const
 { return theObject; }
private:
 MyClass* theObject;
};

change the allocating line in our function to read:
MyClass_Proxy object(new
MyClass(filename));

and remove the delete object near the end of the
function. The function should re-compile
cleanly, and there have been no changes to its
logic so it should still work the same. But the
memory leak has simply disappeared!

The trick lies in the change of type for object
from a pointer to an instance of one class, into a

 Overload – Issue 14 – June 1996

 Page 8

concrete instance of another. Now, when
DoSomething exits - whether via an exception, or
an early return - objects destructor will always be
called and will delete the dynamically created
MyClass instance.

Cleaning up classes
A common technique with classes is to have a
pointer data member which is initialised some-
time during an object’s lifetime. The destructor
ensures the resource is deleted at the end of it’s
lifetime. The following example shows what I
mean:
class MyClass
{
public:
 MyClass() : m_pObject(0) { }
 virtual ~MyClass()
 { delete m_pObject; }
 void AnOperation ()
 { m_pObject = new AnObject; }
private:
 AnObject* m_pObject;
};

The use of a proxy class for AnObject stream-
lines the implementation and specification of the
client class by “hiding” some of the implementa-
tion aspects of the design decision to use a
pointer.
class MyClass
{
public:
 ...
 void AnOperation()
 { m_object = new AnObject; }
 ...
private:
 AnObjectProxy m_object;
};

You can’t take it with you
Another source of memory leaks are full lifetime
instances which are created when they are first
needed, and then used throughout the life of this
program’s execution. Many programmers either
forget to, or simply choose not to, delete these
instances. Some operating systems and compilers
will clean up behind you - others will crash!

By declaring a Proxy variable at file scope, you
guarantee its destructor will be called before the
program finally exits. You also avoid that un-
sightly mess at the end of main() where you have
a list of delete statements.

Refining the Proxy
By now some of you will be feeling a little wor-
ried about the proxy class I presented above.
Now we need to make it a little more robust.

First, given that a Proxy object will always point
to a dynamic instance of a class, it would make
no sense to try creating a dynamic Proxy. To
avoid this, we want to enforce the condition that
Proxy objects may only be defined as file scope,
automatic, or class member variables. We do so
by overriding the new and delete operators for
the class, and declaring them as private. Now
the only place they can be used is within a mem-
ber function and we’re not going to do that.

Next, we do a similar thing for the copy con-
structor and assignment operators. The last thing
we want is two Proxy objects pointing to the
same dynamic instance!

Most of you will want to be able to use the Proxy
as an lvalue to initialise it as in
Proxy anObject = ...;
...
anObject = new Object;

To achieve this we provide an assignment opera-
tor. I choose to simply delete any current object
to which the Proxy has a pointer; alternatively,
this could be considered worthy of an exception!

And of course, you will want to use it in place of
a normal pointer, so we overload the -> operator
to return a pointer-to-object value. Overloading
the -> operator instead of providing a conversion
operator has the added advantage that delete
proxy will not delete the dynamic object. Any
cases where a pointer-to-object really is needed
can be catered for by an explicit accessor mem-
ber.

Or writing proxy.operator->() – Ed.

We now have something like the following
class Proxy
{
public:
 Proxy(const Object* obj = 0)
 : theObject(obj) { }
 ~Proxy()
 { delete theObject; }
 Proxy& operator=(const Object* obj)
 {
 delete theObject;
 theObject = obj;
 return *this;
 }
 Object* operator->() const
 { return theObject; }
private:
 Object* theObject;
 //
 // Declare the following as private so
 // they are disabled. No
implementation
 // should be provided. That way if it
 // gets past the compiler, then the
 // linker should still complain

 Overload – Issue 14 – June 1996

 Page 9

 //
 void* operator new(size_t);
 void operator delete(void*);
 Proxy(const Proxy&);
 Proxy& operator=(const Proxy&);
 };

One final note, the following shows a problem
with our Proxy implementation. I’ll leave it to
you to find it suggest possible solutions - I know
of only one.
MyClassProxy proxy = new MyClass[10];

Keith Derrick
kderrick@cix.compulink.co.uk

More on Java
by Dave Durbin

This was a letter forwarded to me by Francis
but I felt it contained such a lot of useful in-
formation about Java that it warranted an ar-
ticle of its own! – Ed.

First of all, allow me to introduce myself. My
name is Dave Durbin and I am a recent sub-
scriber to the ACCU.

My background is as a software developer spe-
cialising in client/server and object oriented solu-
tions with particular regard to distributed object
based environments (including the Internet). I
have several years experience with C and some-
what less with C++ (I have recently reached the
level of writing genuine OO code as opposed to
‘C with objects’ style programming). I am em-
ployed by IBM and work in Edinburgh.

I’d like to take this opportunity to thankyou for
your excellent work with Overload. I have found
it particularly helpful in explaining and exploring
some of the idioms employed by experienced
programmers which are an essential part of any
C++ programmer’s repertoire.

That said, the main purpose in my writing is to
raise a few comments regarding The Harpist’s
article on Java in issue 11 of Overload. Like
anyone else, my experience with Java is small
(after all, implementations of the language have
only been available for a few months) but I have
been working hard to familiarise myself with
both the Java language and the architecture of the
Java virtual machine on which Java bytecode
executes. This letter is intended to add a little
additional information to that provided by The
Harpist. Please note that this is a very high level
discussion document and as such I may oversim-

plify somewhat. Please let me know if you re-
quire clarification or more in depth description of
any points which I make.

At the time of writing, Java v1.0 is now available
across several platforms specifically inclding
OS/2, AIX, Windows (NT and 95), Mac OS 7.5
and Solaris.

I always find it unnerving to see computer
languages referred to by version numbers
(“Java v1.0”). Once a standard is available
of course, the document itself can be used,
e.g., C89 or ISO C, but C++ was plagued by
the gross misunderstanding that it was some-
how tied to the version of Cfront, the arche-
typal C++ compiler – Ed.

There are three main technologies which are be-
ing generically referred to as Java. These are the
Java virtual machine, the Java language and the
HotJava web browser.

The JVM is specified by Sun (who have now
implemented a version as an OS on silicon which
they are marketing as a ‘dumb’ Internet termi-
nal). It is a stack based architecture which exec-
tues Java bytecode (the output of Java
compilers). This is where the main strength of
Java lies. Once code is compiled, it can be exe-
cuted unchanged on any implementation of the
JVM. This is true binary level compatibility,
something which we have as yet not seen and
which is fundamental to the open distributed
computing model presented by the Internet.

Binary level compatibility has been achieved
before with virtual machines. I would point
interested readers at both UCSD Pascal
(whose language extensions Borland success-
fully appropriated for Turbo Pascal) and Mi-
crofocus’s COBOL compiler. Both of these
can generate bytecode which is absolutely
portable across all platforms that support an
interpreter (the “virtual machine”) – Ed.

The HotJava browser is a web browser, written
in Java and built around the Java virtual ma-
chine. This means that it functions both as a con-
ventional browser and has the ability to load and
execute Java code (applets) across the Internet
and execute them locally. This effectively means
that the browser is infinitely extensible in terms
of both protocol support and of function. Other
browsers supporting the ability to execute Java
applets include IBM’s Web Explorer (v1.03) and
Netscape Navigator (v2.x).

 Overload – Issue 14 – June 1996

 Page 10

Mac users should note that Netscape Naviga-
tor v2.x does not support Java although v3.0
does. Hurray! I must confess to disappoint-
ment at the number of Java applets that fail
on the Mac due to null pointer dereference. –
Ed.

This obviously raises questions about security
which The Harpist mentions. Who is going to
trust applets imported over the network? They
could contain fatal bugs or worse still, intention-
ally hostile code.

Fortunately the developers of the JVM had con-
sidered this. All code loaded is subject to valida-
tion. This involves verifying that the Java
bytecode is valid and does not attempt to perfom
illegal operations (overflowing or underflowing
the stack, accessing variables as pointers, per-
forming invalid casting operations etc). This is
necessary as although the official Java compiler
generates ‘clean’ bytecode it is possible that an
attacker might tamper with the bytecode or that a
damaged or buggy compiler may generate inva-
lid bytecode.

Additionally, bytecode which is loaded across
the network is subject to even more stringent
security - it is not allowed to read or write to the
local file system, nor to make any form of en-
quiry regarding its host environment. Finally,
although Java supports a rich set of TCP/IP
communications classes, code loaded across a
network may communicate only with the server
from which the code itself came or the server
from which the HTML page in which it was em-
bedded came. These features make running code
from across a network a very safe proposition
indeed.

(As an aside to the above, two flaws with Java
security have been recently uncovered. One has
already been patched, the other will be fixed very
soon)

The basics of the Java language are fairly well
documented by The Harpist. I do however feel
that it is a mistake to compare it with C++. Java
is syntactically similar to C++ but in terms of
semantics has more in common with Smalltalk. It
is far better to approach it as an entirely new lan-
guage.

C/C++ features not supported by Java

These include: preprocessor, templates, operator
overloading, pointers, memory management,

multiple inheritance, destructors, goto, typedefs,
macros, structs, enums, functions, header files.

Non-C++ features available within Java

These include: automatic (asynchronous) gar-
bage collection, built in support for arrays and
strings, interfaces (in its OO meaning), RTTI,
windowing toolkit, TCP/IP networking classes,
thread management.

Being pedantic, I would argue that C++ does
have RTTI and the standard library contains
both arrays (vector<>) and strings – Ed.

As mentioned above, one use for Java is to write
applets which can be distributed via the Internet.
It can also be used to write significant standalone
applications with no network connectivity. In
fact the Java compiler, debugger and the HotJava
browser are all written in Java.

It is possible to link existing C (and via the usual
convolutions C++) DLLs as ‘native methods’
within Java code. There are a lot of caveats re-
garding how (and indeed if) you should do this,
mostly relating to portability issues and garbage
collecting (how does the JVM know if an object
created on the heap in C code is referred to from
within the Java code?)

Finally (and at the risk of making The Harpist
‘profoundly unhappy’) I am not sure that I con-
cur fully with his views that Java will not replace
C++.

I agree with his summary of the strengths and
weaknesses of Java and the likely application of
the language but I think that he has seriously un-
derestimated the percentage of applications
which will be expected to operate as small inter-
acting packages, over a LAN or the Internet and
to be fully portable (at a binary level) across cli-
ent platforms.

The Internet is just beginning to penetrate the
consumer marketplace with companies like Phil-
ips, Sun, Panasonic, Sony etc. vying to get the
first Internet ‘set top boxes’ onto the shelves and
into peoples houses. This will inevitably lead to a
standardisation on an abstract hardware model
for these ‘net connected consumer devices.

The requirements for security and interaction
between these devices will be such that a lan-
guage like Java will be essential for anyone aim-
ing to provide software which will execute on
these platforms. (NB the abilities of the high
level language are constrained by the underlying

 Overload – Issue 14 – June 1996

 Page 11

metal, it is not AFAIK possible to implement a
C++ compiler which generates Java bytecode).

Mainly because C++ language features are
effectively a superset of Java. Implementing a
C compiler for the UCSD p-code system also
requires minor extensions to the bytecode
definition (if my memory serves me correctly)
– Ed.

Anyone who intends to be running more than a
local business after the next 3 years had better be
servicing their clients via the Internet. It will be
simply impossible (and certainly highly undesir-
able) to provide servers which can handle the
number of potential simultaneous connections
from external clients and so I believe that a move
to offloading function from servers to clients is
inevitable. Java or more likely one of it’s de-
scendents will be the language which fills that
role.

The changes I describe above are not purely
speculation, they can be observed happening on
a small scale today. Equally clearly, they will not
occur over night. What I do believe is that a
Java-like (binary portable, simple, small, secure)
language coupled with a massive market for it
will marginalise languages like C++ at some
point in the next few years (certainly within 5
years).

Of course C++ will not disappear and there will
still be areas where it is preferred (much as as-
sembly code is still used today where platform
independence needs to be sacrificed for perform-
ance) but I suspect that it will be used only out of
necessity.

I will be happy to answer further queries on Java
(the language or the technology) to the best of
my limited ability. I would however refer inter-
ested readers to the following sites :
http://www.javasoft.com

The official Java/HotJava website with
language definition, API documenta-
tion, VM specification etc.

http://www.hursley.ibm.com
Download Java for AIX and OS/2.
Also links to other Java sites

http://www.netscape.com
Java enabled versions of Netscape
Navigator for most platforms

I would also recommend following the
comp.lang.java Usenet news group.

This is very high volume! – Ed.

A good introductory text is:

Hooked on Java – van Hoff, Shaio and Stabuck
(members of the original Sun Java
team), ISBN 0-201-48837-X

Dave Durbin
100102.2062@compuserve.com (preferred)

durbind@ibm.net

NB All of the views expressed above are my
own and do not necessarily coincide with those
of my employer.

I’m grateful to Dave for providing more in-
formation on Java. As before, I would be
happy to run a regular series of articles on
Java if there is sufficient interest (and suffi-
cient contributors!). I have interspersed some
comments above where I felt appropriate but
I have one comment I’ve saved for the end.
There’s no doubt that Java is flavour of the
month right now and a very interesting and
practical language. However, it’s dynamic
nature means that it will forever be excluded
from a large segment of the computing world:
embedded systems and, probably, scientific
computing. Both of these areas are showing a
trend from existing favoured languages (typi-
cally C and FORTRAN respectively) towards
C++ which still provides the benefits that
both those arenas require, namely perform-
ance and the ability to control and predict
runtime response (by controlling or restrict-
ing dynamic memory allocation and other
runtime- and resource-critical issues). Ed.

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

Overload 15 will see a report on the Stockholm meeting of WG21/X3J16 which should also see the pro-
duction of the second Committee Draft which will signal the second ANSI public review. The most con-
troversial issue yet to be decided is the template compilation model. If the Stockholm meeting confirms the

 Overload – Issue 14 – June 1996

 Page 12

Santa Cruz resolution (see Overload 13), I will write an article explaining the decision, the background to
the decision and its impact on your code.

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

The Harpist continues his series on templates in the standard library, Jon Jagger looks at some of the issues
involved with encapsulating time and provides some ‘random’ musings on function-like objects and Fran-
cis asks us to question a popular idiom.

The Standard Template
Library – first steps

auto_ptr
by The Harpist

Now, before all the experts shout at me, I know
that auto_ptr is not actually part of the STL, but
it is part of the Standard C++ Library and it is a
template class. In my opinion, like the sequence
containers that I wrote about last time, it is one
of the fundamental components for good C++
programming. Francis describes it as the dim-
mest of ‘smart pointers.’ I am not sure that it
even deserves that much, but in an exception
handling environment it does provide a minimal
tool for restricting loss of dynamic resources
when an exception is thrown over them.

The problem
In your early experience of C++ you were taught
that you could write such things as:
Mytype * mt;
unsigned int size;
cout << “How many Mytype objects?”;
cin >> size;
mt = new Mytype [size];

The problem is that you are now responsible for
the destruction of the array pointed to by mt.
What happens if an exception is thrown during
the lifetime of the dynamic array and is caught
earlier than the scope of mt?

The answer is simply that the program has just
leaked a chunk of memory. Even if you use de-
bugging tools and detect this leakage, you need
more than a pointer to cure the problem. Some
operating systems will recover the lost memory
when the program terminates, some will not
(Windows 3.1 for example). Even the systems
that recover the memory on program termination
do not help with the possible continued leakage
from a long running program.

Have you noticed that systems running Windows
3.x steadily slow down (an have increased disk
activity) during a working day? That is sympto-
matic of memory leakage, the increased disk ac-
tivity is because the shrinkage in available RAM
is causing increased paging to virtual memory.

Somewhere in Bjarne Stroustrup’s The C++
Programming Language he writes about encap-
sulating resource allocation so that a destructor
will be called to clean up. A good example of
this concept is the difference between file han-
dling in C and C++. In C you should be careful
to close files before the file-handle (FILE *) ends
its life. If you do not, you will have to rely on the
clean-up provided by exit() to close open files.
As some systems only allow a limited number of
files to be open at one time, this can cause un-
pleasant problems. The use of C++ fstreams re-
moves this responsibility because the destructor
of an fstream object closes the file.

What we need is a tool to extend this philosophy
to general dynamic allocation of resources. The
Standard C++ Library provides auto_ptr as a
minimal tool to do this.

The definition of auto_ptr
template<typename X> class auto_ptr {
// private implementation details
public:
 explicit auto_ptr(X* p=0);
 template<typename Y>
 auto_ptr(auto_ptr<Y>&);
 template<typename Y>
 auto_ptr operator=
(<auto_ptr<Y>&);
 ~auto_ptr();
 X& operator*() const;
 X* operator->() const;
 X* get() const;
 X* release();
 void reset(X* p=0);
};

When namespace is available, this will be in
namespace std.

I have used the new keyword typename for the
template parameters because I think it is better

 Overload – Issue 14 – June 1996

 Page 13

than the currently overloaded use of class. It was
introduced into the language to allow disam-
biguation of names used in templates where the
parser could not determine if an identifier was
the name of a type or the name of an object. Hav-
ing got it in the language, it was obviously better
to be able to write template<typename X> in-
stead of template<class X>. The standards
committees made the obvious change (it couldn’t
break existing code, and it made new code more
readable - I wish they would follow through and
use it consistently in the C++ working paper).

So do I! It’s been a pet peeve of mine since
we adopted typename and if I’d had the time,
I would have introduced it in the examples in
clause 14 [temp] when I was editing it earlier
this year! – Ed.

There is a second new keyword in the above
code: explicit. This was introduced to obviate
the need to use horrible hacks to stop construc-
tors taking single arguments creating implicit
type conversions. For example, without the ex-
plicit qualification of the auto_ptr constructor,
the compiler could create an auto_ptr from any
raw pointer with disastrous consequences. Con-
sider the following code:
void fn (const auto_ptr<int> & handle){
// do something
}
void call_fn(){
 int * array=new int[1000];
 fn(array);
 // etc.
}

Because the parameter of fn is a const &, the
compiler can try to create a temporary
auto_ptr<int> from array. Without the explicit
qualification on the auto_ptr constructor, it will
succeed. The result will be that the destructor of
the temporary that handle is bound to will delete
the storage pointed to by array. The sooner ex-
plicit is supported by our compilers the better.

Note: the result may be worse than this – see
The Harpist’s comments on auto_ptr and ar-
rays below – Ed.

Note that the default value for an auto_ptr is to
contain a null pointer.

Both the copy constructor and the copy assign-
ment may appear to be a little strange. Your first
reaction may be the same as mine and assume
that someone has got their X’s and Y’s mixed up.
This is not the case. The Y represents either an X

or a class derived from X for which delete(Y*)
works. I am not sure how much burden that
places on the programmer and how much com-
pilers will be able to detect. To some extent this
may depend on the quality of the implementa-
tion.

The member templates will fail to instantiate
unless Y is an appropriate type, i.e., the com-
piler will detect this – Ed.

Before I continue with describing these copy
facilities, I need to explain a little about the se-
mantics of auto_ptr and the way these are sup-
ported.

There must only be one active auto_ptr for any
object, anything else would result in the potential
for multiple attempts to destroy an object.

Until changed by reset() an auto_ptr will hold
the address (pointer) that was specified by the
constructor that created it, or by the most recent
use of reset().

get() returns this held value. In other words get()
always returns the most recent address stored in
auto_ptr by either a constructor or a call to re-
set().

release() is a special case, it returns the remem-
bered value and then overwrites this with the null
pointer. In other words, after calling release() an
auto_ptr will behave as if reset(0) had been
called.

reset() replaces the remembered pointer with the
new one passed as an argument (or to null if
there is no argument in the call).

When an auto_ptr is cloned by copying, the
original is changed by calling release() on it.
That is, the auto_ptr being copied now contains a
null pointer while the copy now contains the
original pointer.

A similar process is carried out for copy assign-
ment, except that if both operands of the assign-
ment hold the same pointer, no change takes
place. In other words, if you have already messed
it up by having two auto_ptrs responsible for a
single object, an assignment will not help.

Think of auto_ptrs as being members of a relay
team, only one can carry the baton at any one
time and anyone crossing the finish line with the
baton causes the baton to go out of use (i.e., de-
letes the contained pointer).

 Overload – Issue 14 – June 1996

 Page 14

The other two member functions (operator*()
and operator->()) are the standard functions re-
quired of any type of smart pointer. They ensure
that auto_ptrs can be used as pointers where ap-
propriate.

Using auto_ptr
As long as you keep a few simple concepts in
mind, it is easy to use auto_ptrs. The main rule is
that you should only use them in three cases:

1. to hold newly created dynamic resources,

2. to pass responsibility for dynamic resources
forward to a function via a parameter (an un-
usual circumstance, but sensible if you do
not intend to use the resource after return
from that function) and

3. to pass ownership back on return from a
function.

Strictly speaking you can pass references to an
auto_ptr but there seems to be little practical rea-
son for doing so. Remember that the primary
reason for auto_ptr is to ensure that memory is
returned when a dynamic object is finished with.

There is one interesting feature of using
auto_ptrs: you will find it tempting to use them
to handle dynamic elements of other objects. For
example instead of writing:
class Name {
 char * name;
public:
 ~Name(){ delete [] name; }
 // rest of public interface
};

You might write:
class Name {
 auto_ptr<char> name;
public:
 ~Name(){}
 // rest of public interface
};

Tempting it may be, but it is wrong because
auto_ptr holds the address of a single object, not
an array. In other words its destructor executes
delete get() and not delete[] get(). Even if your
use does not fall into that trap, you still have
gained little if anything. Using auto_ptr to access
an object will be slightly slower because of the
requirement to convert to a raw pointer when
using it (i.e., by executing the appropriate opera-
tor function). Remembering to release dynamic
resources in a destructor isn’t that much of a
burden.

Or use vector or string – Ed.

You would be much better to confine uses of
auto_ptr to places where nothing else will re-
lease resources when an exception is thrown. I
suppose it is possible that a complicated class
with several dynamic elements might benefit in
the case where the construction of an object fails,
but when you get to that level of C++ program-
ming you will be writing articles instead of read-
ing them.

A typical use of auto_ptr might be:
void fn(size_t size) {
 if (size) {
 try {
 auto_ptr<vector<T> > vt(
 new vector<T>(size)
);
 // code using vt
 }
 catch (bad_alloc) {
 // handle out of memory
 }; // see below for the warning
 // about putting this semicolon
 // here!
 }
}

Note that I have enclosed the actual allocation in
a try block so that I can handle out of memory
directly. Unless I have some specific exception
that I want to handle if thrown by the subsequent
code, I do not need to place it in a try block, nor
do I need to explicitly release the dynamic vector
because vt will be destroyed at exit from the try
block (either normally, or because an exception
is thrown through it) and that will destroy the
dynamic vector.

Also note that the auto_ptr is for a vector<T> not
just a T. There is one other potential catch, the
closing angle brackets of templates must be sepa-
rated by at least one character. If you forget this
you will get an obscure error because the result
will be parsed as a right shift operator.

Another point often missed by those writing their
first catch clauses for a try block is that a semi-
colon closes the set of catches. Get out of the
habit of adding semicolons after closing braces
unless they are needed. Some of the time they
will just be redundant but much of the time they
will have significance.

Well I think that about covers it for this time
round. If you have a compiler that supports
auto_ptr and vector get into the habit of using
them instead of raw pointers and C-style arrays.
Don’t pass auto_ptr by value unless you mean to
pass responsibility for the dynamic resource to

 Overload – Issue 14 – June 1996

 Page 15

the called function. The sooner you develop a
coding style that uses these extra facilities the
more robust your code will be.

The Harpist

An interesting aside on the >> vs > problem:
Bjarne Stroustrup heard many complaints
that it was “obvious” that >> in a nested
template argument list should close both tem-
plates and so he tried to get the committee to
accept a lexical change to allow this – a
“hack”. Various implementors said that users
did indeed complain about it but typically
each user only complained once, i.e., once it
was explained to them that >> was an opera-
tor, they accepted it. The committee decided
overwhelmingly that the problem was user
education not a language “bug” – Ed.

Functionoids
by Jon Jagger

A functionoid is a class pattern which allows you
to create objects that look and behave like func-
tions. For example...
#include <iostream.h>
class Functionoid {
public:
 int operator()() { return 42; }
};

int main() {
 Functionoid func;
 for (int i = 0; i < 8; i++) {
 cout << func() << endl;
 }
 return 0;
}

As an example, consider using rand() in C.
#include <stdio.h>
#include <stdlib.h>
int main() {
 printf(“%d\n”, rand());
 return 0;
}

The problem with this of course is that you ha-
ven’t seeded rand() by calling srand(). To get
round this you can quickly end up with code like
this...
int random() {
 static int firstTime = 1;
 if (firstTime) {
 firstTime = 0;
 srand((unsigned int)time(0));
 }
 return rand();
}

int main() {
 printf(“%d\n”, random());

 return 0;
}

This technique of using a static to run first-time-
only code is not multi-thread safe. C++ can do
better...
#include <stdlib.h>
#include <time.h>

class TRandom {
public:
 int operator()() { return rand(); }
private:
 static unsigned int seed;
};

static int seeder() {
 time_t now = time((time_t*)0);
 struct tm * utc = gmtime(&now);
 unsigned int sec = utc->tm_sec;
 unsigned int min = utc->tm_min;
 unsigned int hour = utc->tm_hour;
 unsigned int seed =
 ((hour * 60) + min) * 60 +
sec;
 srand(seed);
 for (int i = 0; i < 256; i++) {
 (void)rand();
 }
 return 0;
}

int TRandom::seed = seeder();

Note that I do not use srand() in the obvious
manner...
 srand((unsigned long)time(0));

This is because time() returns a time_t, which
Standard C says is an arithmetic type. That
means it could be a float or a double. Unlikely
perhaps, but the very fact that the standard says
it’s legal strongly suggests that at the time the
standard was ratified there was at least one com-
piler that didn’t use an integer type. The cast
could be a float / double to unsigned int which
can be risky. A 100% portable version is more
convoluted...
// first get a plain time_t
time_t now = time((time_t*)0);
// convert it to a struct tm.
struct tm * utc = gmtime(&now);
// convert a few int fields into
unsigned
// ints. these casts are safe because
the
// range of the fields is so small.
unsigned int sec = utc->tm_sec;
unsigned int min = utc->tm_min;
unsigned int hour = utc->tm_hour;
// create a seed. Arithmetic may
overflow,
// but overflow in unsigned integers is
// safe
unsigned int seed =
 ((hour * 60) + min) * 60 +
sec;
// and finally...
srand(seed);

 Overload – Issue 14 – June 1996

 Page 16

You’ll also note that I make a some calls to
rand() to get things underway. I have read that
early values of rand() are “not very random”.

Lastly you can create a convenience function...
int random() {
 TRandom r;
 return r();
}

...since there is no reason for the user to know
what is after all an implementation detail.

Jonathan Jagger
jonj@dmv.co.uk

I look forward to more articles on the subject
of functionoids (although I prefer to call them
functors, which is closer to the Latin “fun-
gor” from which “function” is derived). This
is a very useful technique with many applica-
tions – Ed.

Return from a member
function

by Francis Glassborow

I seem to be in good company by having many
of my member functions (particularly the set /
put functions) return void. It is a short word,
quick to type and follows a common style for
global functions.

However, member functions are not global so
perhaps there is a better choice than that popular
with so many authors.

After giving the matter some thought, I think that
the answer is yes, there is a better choice. Before
I write up my answer I thought I would give the
rest of you a chance to think about it. Put your
ideas on paper and the best reasoned answer
(even if entirely different from mine) will get a
copy of More Effective C++ by Scott Meyers.

Francis Glassborow
francis@robinton.demon.co.uk

Time please,
ladies and gentlemen

by Jon Jagger

I have had the good fortune to use C++ for a
small UNIX project at work for the last couple of
months. Part of this project requires timed
scheduling. I’d like to share what I found, partly
because I’ve never seen much written about what

follows, partly in response to Sean’s and Francis’
request for more “simpler” material, and partly to
see if I get any feedback.

I started by looking at the basic types that time.h
provides. They are of course time_t and struct
tm. These are very different creatures. If you
look at the C standard you’ll see that time_t is an
arithmetic type. That means it could be a float or
double. Unlikely but legal. Also the standard
says that the encoding of the time_t values is un-
specified. That means that strictly speaking you
cannot perform comparisons or arithmetic on
time_t variables. Not looking so good thus far.
Moving on, struct tm looks altogether more ac-
commodating.
struct tm {
 int tm_sec; // 0..62
 int tm_min; // 0..59
 int tm_hour; // 0..23
 int tm_mday; // 1..31
 int tm_mon; // 0..11
 int tm_year; // 0..X == 1900..1900+X
 int tm_wday; // 0..6, days since
sunday
 int tm_yday; // 0..365, day of year
 int tm_isdst; // daylight saving time
};

These can occur in any order, and a struct tm
can contain additional fields. Two things caught
my attention. The first was “why is the tm_sec
range from 0..62?” I found the answer: it’s to
allow for up to two leap seconds. No one realised
that you can’t have two leap seconds in the same
year, let alone the same minute. The other was
the tm_isdst field. Daylight Saving Time, DST is
concerned with the clocks going forward or
backward.

A leap second was added to the end of 1995 –
Ed.

Clocks going forward
In the UK, this year, the clocks went forward one
hour at exactly 1AM on March 31st. This means
that if you were running this program...
#include <iostream.h>
#include <time.h>

int main() {
 for (;;) {
 time_t now = time(0);
 struct tm * loc = localtime(&now);
 cout << now << “ “ << asctime(loc));
 }
 return 0;
}

at that time, you would have seen something like
this...

 Overload – Issue 14 – June 1996

 Page 17

832632600 Sun Mar 31 12:59:59 1996
832632601 Sun Mar 31 02:00:00 1996

As an aside, note that in C you quickly get into a
mess when trying to print out a time_t value.
You don’t know its type, so you have to pick a
cast...
printf(“time_t == %lu\n”,
 (unsigned
long)time(0));

Clocks going backward
In the UK this year, the clocks will go backward
one hour at exactly 2AM on October 27th. Once
again, this means that if you are running the
above program at that time you will see some-
thing like this...
853426100 Mon Oct 27 01:00:00 1996
853426101 Mon Oct 27 01:00:01 1996
......
853429698 Mon Oct 27 01:59:58 1996
853429699 Mon Oct 27 01:59:59 1996
853429700 Mon Oct 27 01:00:00 1996

time_t or not time_t
The point to note from these observations is that
when DST occurs, the struct tm jumps, but the
time_t value increments as normal. The conclu-
sion is that you should schedule based on the
time_t value and not the struct tm contents. Say
you tried to schedule using the struct tm fields.
The dangers are firstly that you might miss a
scheduled time if it occurs during a lost hour
when the clocks go forward, and secondly that
you might repeat a schedule if it occurs during
the duplicated hour when the clocks go back-
ward. I chose to make the constructors take
struct tm like fields however. This is because
humans do not work well with time_ts, and also
so TimeStamps can be created in local time.
#include <time.h>
class TimeStamp {
public:
 TimeStamp(); // now
 TimeStamp(int hour,
 int minute,
 int second); // today
 TimeStamp(int year,
 int month,
 int day,
 int hour,
 int minute,
 int second); // specific
day
 //...

 bool operator == (
 const TimeStamp & rhs)
const;
 bool operator < (
 const TimeStamp & rhs)
const;
 // ...

 bool neverOccurs() const;
 bool occursTwice() const;
 bool hasOccurred() const;

 void setDST(bool dst);
private:
 struct tm m_Local;
};

And a simplified (no schedule sorting) pattern of
use goes like this...
vector<TimeStamp> schedule;
// get constructor parameters (eg from
GUI)
// and construct TimeStamp ts...
if (ts.neverOccurs()) {
 // refuse to accept. Tell user why.
 // suggest “nearest” alternative?
} else if (ts.occursTwice()) {
 // issue message to user...”stamp”
 // occurs during the hour affected
by
 // the clocks going backwards.
 // “stamp” will occur twice! Do you
 // want to schedule before the
clocks
 // go back (the DST time), after the
 // clocks go back (the normal time),
 // or cancel?
 if (response == before) {
 ts.setDST(true);
 schedule.push_back(ts);
 } else if (response == after) {
 ts.setDST(false);
 schedule.push_back(ts);
 }
}
//...
if (!schedule.empty()) {
 TimeStamp & next = schedule.front();
 if (next.hasOccurred()) {
 commit(next);
 schedule.pop_front();
 }
}

I chose to do the TimeStamp comparisons using
non-member comparison operators for struct
tms, which convert the tm into a time_t using
mktime().
static time_t remakeTime(struct tm & st
) {
 time_t l_secs = mktime(&st);
 if (l_secs == (time_t)-1) {
 throw SystemFailure(__FILE__
 “
mktime()”);
 }
 return l_secs;
}

static int tm_compare(
 const struct tm & lhs,
 const struct tm & rhs) {
 // mktime() in remakeTime() can alter
the
 // tm fields, so copies are required
to
 // preserve the constness.
 struct tm copy_lhs = lhs;
 struct tm copy_rhs = rhs;
 // convert tm’s to time_t’s.
 time_t t_lhs = remakeTime(copy_lhs);

 Overload – Issue 14 – June 1996

 Page 18

 time_t t_rhs = remakeTime(copy_rhs);
 // normally its a very bad idea to
 // compare a floating point value to a
 // manifest constant directly.
However,
 // difftime() guarantees to return a
 // whole number.
 double dif = difftime(t_lhs, t_rhs);
 if (diff < 0.0) return -1;
 if (diff > 0.0) return +1;
 return 0;
}

bool operator == (
 const struct tm & lhs,
 const struct tm & rhs) {
 return (tm_compare(lhs,rhs) == 0);
}
bool operator < (
 const struct tm & lhs,
 const struct tm & rhs) {
 return (tm_compare(lhs,rhs) < 0);
}
// etc etc
bool TimeStamp::operator == (
 const TimeStamp & rhs) const {
 return (o_Local == rhs.o_Local);
}
bool TimeStamp::operator < (
 const TimeStamp & rhs) const {
 return (o_Local < rhs.o_Local);
}
// etc etc

Note that mktime() returns a UTC (Universal Co-
ordinated Time, aka GMT). This is important,
since you need to ensure that the following
worst-case is well defined...
int October = 10;
TimeStamp before(1996,October,27,1,0,0);
// 1AM...
before.setDST(true); // before
clocks
 // go back
TimeStamp after(1996,October,27,1,0,0);
// 1AM...
after.setDST(false); // after
clocks

 // go back
assert(before < after);

The only non trivial part is testing for the DST
clock changes. The following worked for me on
a Solaris platform, but I wouldn’t rate its chances
on DOS/Windows very highly.
bool TimeStamp::neverOccurs() const {
 // copy is required to preserve const
 struct tm st = m_Local;
 // assume not in “lost” hour
 st.tm_isdst = -1;
 // remember the hour
 int hour = st.tm_hour;
 (void)remakeTime(st);
 // and if mktime() alters the hour
 // the assumption was false.
 return (st.tm_hour != hour);
}

bool TimeStamp::occursTwice() const {
 // copy is required to preserve const
 struct tm st = m_Local;
 int isdst0;
 int isdst1;
 // remakeTime once with DST off
 st.tm_isdst = 0;
 (void)remakeTime(st);
 isdst0 = st.tm_isdst;
 // remakeTime again with DST on
 st.tm_isdst = 1;
 (void)remakeTime(st);
 isdst1 = st.tm_isdst;
 // are both versions are valid?
 return (isdst0 == 0) && (isdst1 == 1);
}

Jonathan Jagger
jonj@dmv.co.uk

I certainly learnt a few things from Jon’s ar-
ticle! I shall be less cavalier about using
struct tm in future – Ed.

editor << letters;
FOR SALE

I think my (not so) old software may interest an-
other member of the ACCU. I am selling the fol-
lowing for £80.00:

• Borland C++ 4.5 (CD and books)

• Borland PowerPack (32-bit extender for
DOS) and books

• Borland Visual Solutions (v. 1.0) and books

I can deliver if not too far.

Remi Sellem
The Old Coach House

6 Monycrower Drive
Maidenhead

Berkshire SL6 1YQ
tel: 01628 222 51

101611.2501@compuserve.com

I tried Roger Wollett’s code [Overload 13] with
the Salford NT C/C++ compiler and linker. The
same problem: missing

 RList<double>::RLink::#RLink()

Regards

Bryan Colyer
bfc@vector.demon.co.uk

 Overload – Issue 14 – June 1996

 Page 19

Sounds like the Salford compiler is also
broken! Francis passed comment on this
compiler in Overload 6.

My original message [lost by the email ether –
Ed] was supposed to express disgust at Micro-
soft’s “support” for STL in VC4.0 and ask if
anyone knows of a good commercial implemen-
tation of STL for use with VC4 under NT.
Things have moved on a bit since then but, for
the record...

1. With language extensions disabled VC4 does
not compile the STL code supplied with the
compiler.

2. The <bstring.h> file supplied with VC4 re-
quires a <mutex.h> for multi-threaded envi-
ronments, but this is not supplied. (MFC 4.0,
needless to say, has to be compiled for a
multi-threaded environment.)

We have played with a copy of the
STL<ToolKit> from ObjectSpace. It looks good
to me and we will probably use it in-house. Any
comments?

Phil Bass
pbass@rank-taylor-hobson.co.uk

I’ve heard good things about the Object-
Space product but do any of the readers
have hard experience with it?

Sean,

In the article Some pitfalls of class design: a case
study [Overload 13] you (as editor) remark that
const Oid nigelsOid =
 “1.3.6.1.4.1.1503.22.1”;

actually uses the dotted string constructor and the
copy constructor (but that the copy constructor
may be elided).

I always thought that the above was equivalent to
const Oid nigelsOid(
 “1.3.6.1.4.1.1503.22.1”);

and I would be surprised if the copy constructor
was used here.

Am I mistaken? I tried this out using MVC4 and
the copy constructor wasn’t used. I then made
the copy constructor private since this should
mean that if the copy ctor was required (even if

not used) I would get an error message. I didn’t.
Is MVC4 broken here?

Cheers,

Colin Harkness

Unfortunately, Colin’s mailer ate his re-
ply address so I couldn’t reply to this di-
rectly!
const Oid nigelsOid =

“1.3.6.1.4.1.1503.22.1”;

is actually equivalent to:
const Oid nigelsOid(
 Oid(“1.3.6.1.4.1.1503.22.1”)
);

but most compilers optimise this to:
const Oid nigelsOid(

“1.3.6.1.4.1.1503.22.1”);

However, the accessibility of the copy
constructor should still be checked so,
yes, MSVC4 is broken (as are many
compilers in this particular case!).

Hi Sean,

Just reading the latest Overload and Roger
Lever’s article – you say at the end that the
source will be available on our FTP site. Can you
tell me what this is?

Also, I would like to express my appreciation of
the work that goes into Overload by all the con-
tributors. I have just sent my first contribution to
CVu, hopefully one to Overload may follow in
the not too distant future.

Thanks for your help in advance.

Best wishes,

Steve Watson
stevew@wallchart.com

Thankyou for your kind words Steve, I
look forward to receiving your submis-
sion in due course!

The ftp site is at Demon:
ftp://ftp.demon.co.uk/pub/accu

and contains all the CVu source from is-
sue 5.1 to issue 8.3 as well as Overload
material which gets distributed with
CVu’s source material in the fullness of
time.

 Overload – Issue 14 – June 1996

 Page 20

Reviews
Words from Steve Oualline and Francis Glassborow after the unfavourable review of his book in a recent
issue of CVu. Francis also reviews his favourite C++ development environment.

Practical C++ Programming
a response from Steve Oualline

Although this book was reviewed in CVu,
both Francis and I feel the followup discus-
sion belongs in Overload – Ed.

In his review Francis Glassborow states: “I do
not like the author’s approach and style...” I un-
derstand where Mr. Glassborow is coming from.
He has strong opinions as to how things should
be done and unfortunately Practical C++ Pro-
gramming does not do things his way. His way
concentrates on the theoretical and how things
should be done. Practical C++ Programming is
devoted to practical programming, that is getting
things done.

A case in point is his criticism of the book for
not using templates more extensively. The prob-
lem is that in the real world templates are simply
not useful. I have used compilers from 6 differ-
ent manufacturers and I have found 7 different
implementations for templates. (Sun completely
changed their implementation between version
3.0 and 4.0 of their compiler.)

Another example concerns the use of tax forms
to demonstrate how virtual classes are used. The
example was designed to show the reader how
information could be laid out using a rather com-
plex C++ construct. Tax forms provide the user
with a concrete representation of the data.

Mr. Glassborow criticizes the code because
among other things: “form_1040 is clearly nei-
ther a name nor a taxpayer.” Frankly I fail to see
why this class must be a name or a taxpayer.

It is derived from a class name that purports
to represent a taxpayer. Hardly a sensible use
of inheritance and certainly one that does not
model “is-a” – Ed.

It is a class that contains information that must
be filled in to complete a tax form. The other
classes in this example also fall into this cate-
gory. I realize that they do not fall into the cate-
gories set forth by Mr. Glassborow, but I also see
no reason they should.

However, my rules for designing this class were:
1) Does it lay out the information clearly, and 2)
Does it explain the concept of virtual classes
clearly. I feel that it does a good job for both.

There is one problem with this example however.
I tried to pick something that everyone would be
familiar with, paying taxes. Unfortunately I
threw in some form specific to the United States
that do not translate directly to other countries.

Finally, Mr. Glassborow states “Borland have
been supporting the new cast syntax and RTTI
since version 4.0.” For my book I did research
Borland C++ Version 4.5 and found that it did
support these features, but in a non-standard
way. Non-standard don’t count in my book.

I understand where Mr. Glassborow is coming
from. He is concerned with pushing the design
and architecture of the C++ language forward. I
understand how he might be upset if I fail to use
the latest features of the language or the newest
design methodology.

I however, am a practical person. I tend to wait
till a new language features if finished and settles
does before using it. Also I tend to rely on more
traditional programming methods and won’t use
new techniques till they have proven themselves.

There are places for people like Mr. Glassborow
who are pushing the frontier of programming
forward. My book is not designed for these peo-
ple. My book is designed for the people who
must make practical every day use of the C++
language to actually get work done.

I have edited the above to remove nearly a
dozen spelling mistakes, but have left the
original American spelling – Francis. You
missed several which I deliberately left in –
Ed.

Francis Glassborow responds

Steve Oualline wishes to designate my disap-
proval of his book as based on ‘religious’ differ-
ences, that is differences based on belief rather
than fact. He declares he knows where I am com-
ing from. I do not think he does. My primary
concern is raising the quality of code. When I

 Overload – Issue 14 – June 1996

 Page 21

look at a new book, one of the first things I ex-
amine is the quality of the author’s code. If an
author does not write good code based on rea-
sonable analysis and design then it is unlikely
that readers will manage to do so based on read-
ing the book in question.

It is my contention that authors should write
good code for examples that have been carefully
chosen so that they not only show the use of the
technique in question but are also based on good
design. This does not have to be object-oriented
design, though it should be based on some rec-
ognisable approach rather than a simple ad hoc
“let’s write some code.” Sadly, I can find little
indication that the author of this book (Practical
C++ Programming) understands this.

Steve Oualline’s coding style is typically medio-
cre. Of course there is a lot of code around that is
worse than his, but few programmers will write
better code as a result of emulating his examples.
I note that he has the good grace not to try to de-
fend the function that starts on page 471 of his
book. I remind you that that function contains 15
return statements, a switch statement with 11
cases, 5 containing while statements, two of
which have break statements. The function also
contains a dozen if statements – two of which are
inside a while statement nested in an if statement
nested in a case clause of a switch statement.
This is only an extreme example of a coding
style that is the equivalent of badly written Basic
spaghetti code.

On the issue of templates, he cannot even read
what I write. The only sentence about templates
in my review was ‘While I can understand his
reasons for saying very little about exceptions
and templates I have reservations about his use
of old C methods.’ Apparently he does not un-
derstand this. Whether he approves or not, pre-
processor macros are extremely bad news in a
C++ context where their invasive effects on class
scopes etc. are very threatening. Simple template
functions have been available for some years
now and while extra power has been added, the
simplest uses work as well today as they did a
couple of years ago. While major companies
such as Microsoft continue to sell 16-bit compil-
ers that do not support templates it is reasonable
for an author to explain how to achieve similar
ends without templates, but where a programmer
has a choice, the pre-processor option would
rarely be appropriate. That is not just my opinion

but the opinion of almost every professional C++
user and trainer.

At the Blackwell’s meeting, the author admitted
that const is not covered in his book Practical C
Programming because he did not know it was
part of ISO C. This is six years after the Standard
was published. In such circumstances I take his
opinions about Borland’s implementation of
RTTI with a large pinch of salt. Whatever the
non-standard feature is that he is alluding to it
does not justify his statement above and I think
Borland would be deeply annoyed to see such a
statement as they have always done their utmost
to meet the requirements of the developing stan-
dard.

I do not accept Steve Oualline’s rationale for his
coding of the tax problem. The code was the re-
sult of completely inadequate design and is an
example of the worst kind of hack-it-together
coding. If he had looked more carefully he could
have come up with a sensible example of using
virtual base classes that would also have been a
good example of an acceptable C++ coding style.
I do not care what he does when writing code for
himself or his employers, but I do care when he
gives it as an example thereby encouraging oth-
ers to emulate such poor design. This is the
1990’s not the 1970’s.

The tax example was just one of numerous
places where the author has chosen completely
spurious examples. Another is in his choice of an
example for friend functions where he has a
stack class declare a stack_equal global function.
Absolutely wrong. There can be no conceivable
reason for such a function to be anything other
than a member function. Even if he was provid-
ing operator== it should still be a member func-
tion.

Well, many people prefer to make symmetric
operators non-members – Ed.

He completely misses a perfectly acceptable
(even to me, though it is not my preferred
method) use of friend to provide operator func-
tions for complex numbers. Though in this case
he curiously makes the data protected. Leaving
aside the issue of whether data should ever be
anything but private, complex is a value based
concept and, as such a complex class should
never be a base for a hierarchy.

One thing that became clear during the Black-
well’s meeting is that Steve Oualline is abso-

 Overload – Issue 14 – June 1996

 Page 22

lutely fanatical about comments (clearly I wish
he were as fanatical about other aspects of good
coding style). Unfortunately many of his com-
ments are the useless kind that good program-
mers grow out of early in their programming
lives. Let me give you a single example from
page 220:
class int_set {
private:
 // ... whatever
public:
 int_set(void); // Default
constructor
 int_set(const int_set & old_set);
 // copy constructor
 void set(int value);
 // set a value
 void clear(int value);
 // clear an element
 int test(int value)const;
 // see whether an
element
 // is set
};

I do not know what you think, but I do not think
these comments add anything. I’ll accept the first
two as possibly useful to those new to program-
ming classes, but I think the next three are actu-
ally detrimental. set() actually adds an element to
the set, unless it is already there, clear() removes
an element if it is found (by the way, in both
cases I would like to see a return value to indi-
cate whether the function actually changed the
set, but that is a style preference) and test()
checks to see if value is an element of the set.

Also note the C style of declaring a function with
no parameters. If I was being pedantic I would
argue that this is worse in the case of a construc-
tor or destructor because these are nothing like C
functions (at best they are true procedures, some-
thing that does not exist in C).

I could go on for pages, everywhere I look I see
horrible code. On page 221 he discusses const
members, and class-wide constants in particular.
While he correctly gives the provision of these
through an enum as an alternative he also sug-
gests declaring a global constant as an alternative
but never mentions a static const data member
even though this is the topic he tackles in the
next section.

The thing that concerns me is that this book has
been published by O’Reilly & Associates, a pub-
lisher with a deservedly high reputation. The re-
sult will be that many thousands of programmers
will have a very poor introduction to C++ which
will result in much mediocre code. I am not con-
cerned with cutting edge, bleeding edge or any

other edge. I am concerned that programmers are
helped to write solid, robust code. To do so they
need an introduction to C++ that will give them a
boost up the learning curve. I cannot believe that
this book was technically reviewed by competent
C++ programmers because I know that none of
ACCU’s C++ reviewers would have let it out.

If anyone else would like to review this book, I
would be glad to let them have my copy. Please
do not ask for it if you are not already a compe-
tent C++ programmer because it will do you
more harm than good.

Finally, if you think that there is rather more acid
in the above than usual, I deeply resent Steve
Oualline’s final paragraph.

The original review was published in CVu 8.1.

Francis Glassborow
francis@robinton.demon.co.uk

And The Editor says...

I have some additional comments to make on
Steve Oualline’s response:

He states that “in the real world templates are
simply not useful” which shows he clearly has
little understanding of real world programming.
Templates are extensively used in major projects
all around the world – compiler vendors will tes-
tify to this based on the number of user questions
relating to templates!

I have looked at his book – a full review will
appear in a future Overload – and my initial im-
pression coincides with Francis’: poor quality
code illustrating barely thought out design.

Unfortunately for O’Reilly & Associates, their
other recent C++ offering, C++: The Core Lan-
guage, offers equally poor code although the in-
tent of that book is noble – to teach a subset of
the language to get C programmers up and run-
ning quickly. A full review of this book will ap-
pear in Overload 15.

Sean A. Corfield
overload@corf.demon.co.uk

My favourite C/C++
development package

by Francis Glassborow

I am not going to name this product for the mo-
ment. I hope you will understand why when I
finally do so.

 Overload – Issue 14 – June 1996

 Page 23

The XYZ product comes on a CD, requires a 32-
bit operating system such as OS/2 or Windows
NT and, as is increasingly the case, a large
amount of RAM (16Mb+ depending on the oper-
ating system and the features you want to use). A
full Windows NT installation takes nearly 400
Mbytes of disk space (now you know why my
main machine runs twin 4Gb hard drives) and is
only comfortable in 24Mb+ of RAM. However it
will run off CD in which case the hard-drive re-
quirement is small, though you do take a per-
formance hit. When you have finished with the
tutorials (more about those in a minute) you can
trim quite a lot from the installation. Though it
will run on a machine with anything from an
80386 upwards, it definitely needs a very fast
486 or a Pentium based machine for serious use.
Though it is not listed as a requirement, I would
not like to use this product on a 14” or 15” moni-
tor. It makes heavy use of multiple windows,
with large amounts of information, sometimes
visual, in some windows. I think that a 17” moni-
tor is the smallest for regular use of this product.

By now some of you will realise that this isn’t a
product for an amateur dabbler. You would be
right, this is definitely a product for serious us-
ers.

I am only going to write about the Windows
NT/Windows 95 version of the product here, but
there are versions for a number of other plat-
forms including Solaris and MVS. The impor-
tance of this is that the class libraries that
underpin much of your development are largely
portable (I wish I could say completely portable,
but at least the residual problems of moving be-
tween such things as Windows NT and a Motif
application are documented).

When you have installed the product on either
Windows NT or Windows 95 (up to 20 minutes
depending on the amount you install and the per-
formance of your hardware) you should put aside
time to work through the tutorials. These are the
best I have ever experienced for a C/C++ prod-
uct. There are tutorials on all aspects of pro-
gramming with this product. Each leads you
through several sections each divided into a
number of steps. Each step is divided into two
parts, what you should do and what the result
should be. As long as you have a large enough
monitor, you can have both the tutorial and your
work on the examples on the screen at the same
time. The tutorials are not perfect and you may
have to look carefully at what you are getting to

relate it to the specified results. It can be a little
off-putting to get a view directly, when the tuto-
rial assumes that you will get a different view
and will need to press a button to select the one
to be used.

The product supports several development styles.

You can work in a conventional style using a
fairly standard editor. It is described as a parsing
editor, but all that means is that it colour codes
different features of your code. However the edi-
tor has another feature that can be more than a
little useful, it supports some folding features.
For example you can fold away all the bodies of
functions. The editor comes with a range of pre-
set styles so if you are used to using Brief, you
can quickly switch to a familiar feel. You can
also customise the editor in a wide variety of
ways. There is nothing new in this, and a pro-
grammer might expect that such features were
normal – unfortunately you know from experi-
ence that this is not actually the case.

At the other extreme, the product supports a full
visual programming environment. I do not mean
some dialogue based production of an applica-
tion framework, I mean a genuine visual pro-
gramming tool similar in concept to what users
of products such as Visual Basic expect. I say
similar in concept, because the actual mechanics
are quite different. Do not expect to leap into
visual programming after no more than a ten
minute introduction. You will need to climb
quite a long learning curve if you are to get best
advantage from this development method, but
the rewards in Rapid Application Development
will be worth the invested time.

The Visual Builder is underpinned by an excel-
lent open class library that supports a wide range
of things that you may want to use including a
very good set of tools for data access that are
conveniently used from the Data Access Builder
tool.

The product comes with a full range of all the
other things that you expect from a development
environment, debugger, profiler, browser etc.

By now those familiar with OS/2 will suspect
that the product I am describing is IBM’s Visu-
alAge C++. They would be right, specifically
VisualAge C++ 3.5 for Windows. Why, you ask,
didn’t I say so from the beginning? Well for all
the actual publicity that IBM have generated for
this important release, you might think that they
did not want anyone to know about it.

 Overload – Issue 14 – June 1996

 Page 24

Seriously, if you do substantial development in
visual environments (MS Windows, X etc.)
and/or database access programs or if you want
to port applications easily between various 32-bit
platforms you should check this product out.

At first sight you might think that IBM’s release
of this product for MS Windows platforms was a
surrender to the might of MS. Nothing could be
further from the truth. Indeed, if they had re-
leased this product a couple of years back (for
NT) they might be in a stronger position today.
Using VisualAge C++ largely insulates you from
having to decide which platform you are devel-
oping for. It makes it easy to release OS/2, So-
laris and AIX versions of the product that you
develop for MS Windows. Of course it also

works the other way but I suspect that will be
less important.

VisualAge C++ is a good (though not perfect)
product that I enjoy using. It is my first choice
compiler. IBM should be shouting very loudly
about its availability for MS Windows NT and
Windows 95. While their open class library is
not the same as the future C++ Standard Library,
they will find it relatively simple to include that
in a later release.

This is a product that deserves to succeed, but it
needs much better marketing; technical quality is
not enough.

Francis Glassborow
francis@robinton.demon.co.uk

News & Product Releases
This section contains information about new products and is mainly contributed by the vendors them-
selves. If you have an announcement that you feel would be of interest to the readership, please submit it
to the Editor for inclusion here.

Hypersoft Europe

Adrian Lincoln of Hypersoft Europe provided
the following announcements of new products
from Rogue Wave and other library vendors.

Rogue wave’s JFactory for Java
On February 26th Rogue Wave became the first
company to release a visual application builder
and code generator for Java – a key ingredient
for those adopting this new language. This prod-
uct JFactory enables developers to quickly create
Java applications by dragging-and-dropping
typical controls such as buttons, list boxes and
menus.

JFactory provides a single design environment to
manage all aspects of user-interface develop-
ment. It includes a Project Manager, design win-
dows, property sheets, and a palette of drag-and-
drop controls. The developer arranges controls
within the design window, sets the properties for
each control, and associates controls with events
or user-written code in a manner similar to a
4GL.

JFactory also provides the ability to test an ap-
plication’s interface, generate code, compile, and
run the application. Since the environment also
allows for incorporation of an editor, debugger,
and compiler, all aspects of program creation can
occur within JFactory.

Tools.h++ version 7
The latest version of Tools.h++, version 7, is
now shipping. This new version has been en-
hanced to provide an object-oriented interface to
the Standard C++ Library and extends it with
new collection classes that are standard-
compatible. Tools.h++ V7.0 is the latest release
of this widely used class library for cross-
platform development, and gives developers
transparent access to the Standard C++ Library
as a sub-set of its own extensive set of founda-
tion classes.

A technical report called “The Standard C++ Li-
brary and Tools.h++” providing some more in-
sight into the full power of this library
combination is available.

ORBstreams.h++ for C++ CORBA de-
velopers
The good news for developers using IONA’s
Orbix is that they can now pass C++ objects eas-
ily using ORBstream.h++, which, based on the
opaque mechanism in IONA’s Object Request
Broker allows objects to be passed objects by
value in an IDLoperation. Previously, only types
explicitly described in the CORBA IDL could be
passed in an IDL operation.

ORBstreams.h++ makes it easy to pass opaque
types by leveraging the powerful Tools.h++ vir-
tual stream mechanism. All classes that are vir-

 Overload – Issue 14 – June 1996

 Page 25

tual stream aware, including developers own
code, may be passes as opaque types using ORB-
streams.h++.

Objective Grid version 1.1 adds DAO
and UNICODE/MBCS
This update to the Objective Grid MFC exten-
sion library provides support for DAO and
UNICODE. The DAO support will provide de-
velopers with a richer option for Microsoft Ac-
cess development than the ODBC class (note 32-
bit version only). The UNICODE support with
Objective Grid extends the capabilities of the
grid making it easier to deploy MFC applications
internationally.

SEC++ version 1.1 takes the library
from 27 to over 40 classes
This powerful MFC extension class library
SEC++ has been enhanced with the addition of
many new classes. New additions include Dock-
able Document Interface, Floating Document
Interface, Workspace classes, Popup calender
classes, Colorwell classes, Encrypting CFile De-
rivatives, Bitmap Button, Intelligent Edit con-
trols, Filesystem classes, and component gallery
objects for each SEC++ component.

Many of these additions have been as a result of
feedback from customers and hundreds of MFC
developers over the past six months. Stingray
Software plan to add 10-20 new classes per
SEC++ release to give subscribers maximum
value for their subscription.

Hypersoft Europe
adrian@hypersoft.co.uk

Take Five Software

In addition to a new release of the SNiFF+ inte-
grated development environment, v2.2, Take
Five provided the following items of note.

SNiFF+ for Java
Wake up and SNiFF+ the Java!

SNiFF+ provides an open interface for lan-
guages, enabling developers to work with C,
C++ and Java simultaneously. This is an impor-
tant differentiator from other Java development
tools.

This new functionality, combined with the power
of SNiFF+’s tools for code comprehension, team
management and reverse engineering, will make
SNiFF+ the ultimate programming environment

for developing internet applications. In addition
to the tools you are already familiar with,
SNiFF+2 can be used with the Sun Java Devel-
opers Kit.

The new Java parser will be available free of
charge to our current customers. Please call or
email info@takefive.co.at for more information.

New platforms
SNiFF+2 is now available on Linux and Sinix.
You can run SNiFF+2 on the following plat-
forms:

• SunOS und Solaris (Sun SPARC)

• AIX (IBM RS/6000 und Power PC)

• HP/UX (HP RISC)

• Digital Unix (DEC Alpha)

• Irix (SGI)

• Novell UnixWare (PC)

• SCO Unix (PC)

• DEC Ultrix (DEC)

• Linux (PC)

• Sinix (SNI RM)

TakeFive Software is currently working on a
version for Windows NT and Windows 95. Win-
dows NT will be generally available by mid of
June. The addition of new platforms enhances
SNiFF+2’s reputation as the most portable de-
velopment environment.

If you are interested in being a part of our beta
test program for Windows NT or Windows 95,
please email sniff-beta@takefive.co.at for de-
tails.

Http://www.takefive.com

IDE announce Java and
Unified Method support

Interactive Development Environments an-
nounces first OO Analysis & Design tool to gen-
erate and reverse engineer Java code; first to
demo Unified Method v0.8

• Netscape integration enables immediate exe-
cution of generated Java applets

• Most advanced support of emerging Unified
Method demonstrated at Software Develop-
ment West

 Overload – Issue 14 – June 1996

 Page 26

SOFTWARE DEVELOPMENT WEST, SAN
FRANCISCO, March 26, 1996 – IDE, developer
of the only object-oriented analysis and design
(OOA&D) toolsets designed to support large
development teams, today announced the indus-
try’s first support for both generation and reverse
engineering of Java code, the new de facto stan-
dard language for the development of World
Wide Web applications. Here, at Software De-
velopment West, IDE’s StP/OMT-Booch
OOA&D toolset is also the first to demonstrate
complete support for the V0.8 of the Unified
Method – the most advanced support provided to
date by any vendor for the emerging standard
method for OOA&D.

Large-scale Web Development
By keeping OO design models synchronised
with Java code implementations through reverse
engineering, developers can continually analyse
the impact of code modifications. Web develop-
ers can also reverse engineer existing Java appli-
cations and reuse components in future
applications. Because StP/OMT-Booch models
are stored in a common, multi-user repository,
reusable Java applets are available to developers
throughout an organisation.

IDE will also support an integration with Net-
scape Navigator and the Applet Viewer in the
Java Development Environment from Sun Mi-
crosystems, Inc. The Netscape integration takes
Java code generated from StP/OMT-Booch mod-
els, compiles it, and sends a message to load the
HTML page containing the Java applet into Net-
scape Navigator. This make iterative develop-
ment of Java applets faster and easier.

Unified Method Support
StP’s full support for the Unified Method V0.8
required merely incremental development, since
the tool already provides more complete support
for both the OMT and Booch methods, respec-
tively, than any other toolset, and also integrates
Jacobson Use Cases.

StP also enhances the Unified Method with a
fully integrated Requirements Table Editor for
collecting and tracking business rules through
the OO lifecycle. The Requirements Table Editor
lets developers collect business rules during the
process of analysis, refine those rules through the
lifecycle, and allocate and track them to ensure
that they are satisfied completely by the resulting
system. Allocation links enable developers to
instantly navigate between the listing of business

rules and the actual objeet that satisfy those
business rules.

About StP/OMT-Booch
StP/OMT-Booch is a fully-featured, multi-user
analysis and design environment with a shared
central repository that supports entire teams
through the full life cycle of application devel-
opment. Using this repository as an integration
link, StP/OMT-Booch assures the consistency,
completeness and semantic correctness of all
models – even across large project teams. Con-
sistency checking also incorporates models from
StP for Information Modelling (StP/IM), IDE’s
tool for database analysis and design and SQL
code generation. The repository also allows users
to browse model information easily and supports
reuse in other design projects.

StP/OMT-Booch provides the industry’s most
complete automatic source code generation for
C++, Ada83, Ada95, IDL, Forte, Smalltalk and
reverse engineering for C++. Integration with
VisualWorks® from ParcPlace-Digitalk, Inc.
provides users with full forward and reverse en-
gineering of Smalltalk code. In addition,
StP/OMT is integrated with StP/T, a specifica-
tion-based test case tool that automatically gen-
erates test cases from object and functional
models of OMT.

Availability and Pricing
StP/OMT and StP/Booch 3.1 with Ada95 and
Forte code generation is available immediately
on Sun SPARC platforms running Solaris 2.4
and 2.5, and HP 9000’s running HP-UX 9.05 or
10.01. StP/OMT and StP/Booch 3.1 are each
priced at £8,950.00 per licence. The combined
StP/OMT-Booch is available at £11,250.00.
StP/OMT and StP/Booch 3.2 with Java code
generation, reverse engineering and IDL reverse
engineering will be available in June on these
same platforms with the same pricing structure as
version 3.1.

Interactive Development Environments Inc
+44 (0) 1483 579 000

http://www.ide.co.uk

 Overload – Issue 14 – June 1996

 Page 27

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
overload@corf.demon.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising

John Washington
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS
accuads@wash.demon.co.uk

Subscriptions

Barry Dorrans
2, Gladstone Avenue

Chester, Cheshire, CH1 4JU
barryd@phonelink.com

Distribution

Mark Radford
mark@twonine.demon.co.uk

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An author
of an article or column (not a letter or review of software or book) may explicitly offer single (first serial)
publication rights and thereby retain all other rights. Except for licences granted to (1) Corporate Members
to copy solely for internal distribution (2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy deadline
All articles intended for inclusion in Overload 15 (August) should be submitted to the editor by July 22nd.

 Overload – Issue 14 – June 1996

 Page 28

	Editorial
	Submissions
	ACCU and the Internet

	Software Development in C++
	Concerning values,left, right and converted
	Iterators
	Conversions
	WARNING

	Real world patterns
	Introduction
	Proxy
	Cleaning up classes
	You can’t take it with you
	Refining the Proxy

	More on Java

	The Draft International C++ Standard
	C++ Techniques
	The Standard TemplateLibrary – first stepsauto_ptr
	The problem
	The definition of auto_ptr
	Using auto_ptr

	Functionoids
	Return from a memberfunction
	Time please,ladies and gentlemen
	Clocks going forward
	Clocks going backward
	time_t or not time_t

	editor << letters;
	Reviews
	Practical C++ Programming
	My favourite C/C++development package

	News & Product Releases
	Hypersoft Europe
	Rogue wave’s JFactory for Java
	Tools.h++ version 7
	ORBstreams.h++ for C++ CORBA developers
	Objective Grid version 1.1 adds DAO and UNICODE/MBCS
	SEC++ version 1.1 takes the library from 27 to over 40 classes

	Take Five Software
	SNiFF+ for Java
	New platforms

	IDE announce Java andUnified Method support
	Large-scale Web Development
	Unified Method Support
	About StP/OMT-Booch
	Availability and Pricing

