overload

FEBRUARY 2026 £4.50

implementing
vector<T>

Quasar.Chunawala explores
|mplement|ng your own
_ verS|on of std::vector. |,

- %
o

.

#f" F .
Effective Behavior Driven neveln

Seb Rose condenses 15 years ofiBD jﬁgar e it
twoetpages,of practlces beneflts and chaIIenges it e
.
niresponses to the artlple V! hy Rs

X org &5
don‘tiuse Als publishediin:@verload 190:

~Silas S. Brown wrltes |
Restrict Mutahility of State
Kevlin Henney reminds us that\ when'itiis.not.necessary.
to change, it'is'necessary not to .change.

Chris oldwood reminds us that spending time mulling
things over can also be productive.

s

A magazine of ACCU ISSN: 1354-3172

— | -

professionalism in programming

Monthly journals, available printed and online
Discounted rate for the ACCU Conference
Email discussion lists

Technical book reviews

Local groups run by ACCU members

N

Visit www.ACCU.org to find out more

February 2026
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21 @angellane.org
Matthew Dodkins
matthew.dodkins @ gmail.com

Paul Floyd
pjfloyd @wanadoo.fr

Jason Hearne-McGuiness
coder @hussar.me.uk

Mikael Kilpeléainen
mikael.kilpelainen @ kolumbus.fi

Steve Love
steve @arventech.com

Christian Meyenburg
contact@meyenburg.dev

Barry Nichols
barrydavidnichols @ gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero @howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp @yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw @ gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete @ goodliffe.net

Cover photo by Alison Peck.
Near the Levi Ski Resort, Finnish
Lapland.

ACCU

ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in @ good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members —

by programmers, for programmers — and
all have been contributed free of charge.

1 CONTENTS

4 [Effective Behavior Driven Development
Seb Rose has condensed fifteen years of BDD
learning into two pages of practices, benefits,
and challenges.

6 Implementing vector<T>
Quasar Chunawala explores implementing your
own version of std::vector.

16 [Letter to the Editor
Silas S. Brown wrote in following an article in the
previous issue. The editor passed it to the author
of that article (Andy Balaam), who has replied.

18 Restrict Mutability of State
Kevlin Henney reminds us that when it is
not necessary to change, it is necessary
not to change.

20 Afterwood
Chris Oldwood reminds us that spending time
mulling things over can also be productive.

All articles intended for publication in Overload 192 should be submitted by
1st March 2026 and those for Overload 193 by 1st May 2026.

Copyrights and trademarks

Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property

of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

February 2026 | Overload | 1

EDITORIAL =

Everything is Under Gontrol

You can’t always plan every detail in advance.
Frances Buontempo tries to step back and find out

how to respond to change.

When my routine gets disrupted, it takes a while

to get back into the swing of things. For example,

I went to Meeting C++ [MeetingC++] in Berlin

in November last year and gave a keynote. Being

invited to give a talk is a great honour (thank you,

Jens), but trying to get back to various tasks when
I got home was challenging. Fortunately, our last edition had a guest
editor, Quasar Chunawala, who wrote an introduction to coroutines for
us [Chunawala25]. I was off the hook! Of course, I haven’t written an
editorial this time either, as ever. The new year crept up on me and the
break put me off. Furthermore, I’ve been finishing up my new book, an
introduction to C++ for O’Reilly [Buontempo26]. I feel like I can’t read
or write anything, ever again now. I might get over it. We’ll see.

A regular routine helps me feel like I have everything under control.
It’s just a feeling and though it helps me, it might not work for you.
Furthermore, life throws curved balls from time to time. Disruptions can
give you an opportunity to stop and think. Running on your rails frequently
means you are being somewhat mindless. We all need to take a moment
to reflect once in a while, and maybe dream about new possibilities. And
sometimes, we need to stop for a bit. We are not machines. Stopping
and taking stock might help you realise a better approach. Nonetheless,
a routine can provide motivation. You do something because it’s the next
thing to do.

Sometimes sticking with a habit isn’t a good idea. When I write code,
I occasionally follow my nose and end up with a tangled mess. 1 bet
you have done similar: you need code to do something that’s similar
to something you’ve done before so maybe don’t stop and think first.
Trying to find good examples for my introductory C++ book has been
a challenge, too. I was tempted to write short snippets in various places
which I hadn’t even compiled. I did stop myself, you’ll be pleased to
hear. Sometimes sketching out a high level plan, whether functions or
classes or data flow, makes you stop and think. Some basic principles
keep everything under control: version control, tests, maybe even code
reviews and some code sanitizers. Certainly checking that code compiles!
How do you keep everything under control? Write us an article and tell
us your approach ©

No matter how hard we try, problems sneak in. That might be bugs,
or design problems. Even if you think you’ve come out with a clean
architecture, future feature requests can scupper your plans. That said,
there are some high-level heuristics that can diminish the chance of
bad things happening. C++ has many examples of

these, such as ‘almost always auto’ [Sutter13].
Of course, they are heuristics, and there are
b always exceptions. Well, maybe not always:

2 | Overload | February 2026

That’s another story for another time. Every programming language
tends to have heuristics or guidelines. However, things change over time,
so you need to keep up to date. Maybe that’s why you’re reading this
magazine? Hopefully you learn something each time you do.

Let’s consider a heuristic. Years ago, the received wisdom was to pull a
call to a container’s size outside a loop for efficiency. The theory was a
call inside a loop would happen each time around the loop. The following
might therefore fail a code review:

for (size_t index = 0; i< stuff.size(); ++i)

Again, we could start another discussion about old-skool for loops
versus range-based approaches, but won’t. Calling size in the loop used
to be inefficient, but compilers usually optimise this call out of the loop
now. I watched Matt Godbolt’s ‘Advent of Compiler Optimisation’ on
YouTube [Godbolt25a]. Matt called out various ways in which a compiler
might generate code that’s different to what you’ve typed. Hopefully, the
idea isn’t a surprise to you. What is surprising is the various ways in
which optimisations are achieved. The final (actual) episode summed
the numbers from 0 to x, for some number x,using a £or loop. Various
compilers removed the loop and found a quicker way, using x(x-1)/2. You
may recognize the formula as Gauss summation, but Matt has details on
his blog if you’d rather read than listen [Godbolt25b]. You might have
known some tips for making code quicker, but you need to keep your
knowledge up to date. Things change. This means you might not have
everything under control. Seeing a compiler completely remove a loop
and use the closed-form formula for a sum is amazing. Of course, you can
control the level of optimisations. Less aggressive levels are less likely
to completely remove your hand-crafted loops. All of the other advent of
code optimisations are worth watching too. I bet you learn something.

Trying to keep everything under control goes beyond the code itself, as
anyone who has had to support a production system knows. Logging can
be very useful, but sometimes doesn’t provide enough information. Chris
Oldwood wrote an article called ‘Terse Exception Messages’ a while ago
[Oldwood15]. He started with a line from a log:

ERROR: Failed to calibrate currency pair!

If the message also said which currencies were involved, Chris’ life would
have been easier. Thinking through whether the information logged
is useful or not is important. One system I worked on had very chatty
logging. Full sentences and many extraneous details. One of the team
spent time reformulating the logging, to make the lines easier to search
with regex. Many of the lines in the log became shorter, which were
slightly quicker to write out so sped up the process a tiny bit. An added
bonus. More importantly, being able to find relevant lines in one search
with a script made our lives much easier. Sometimes a bit of thought and
planning can give you more control. Just saying.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using Al and
data mining. She’s written a book about machine learning called Genetic Algortithms and Machine Learning
for Programmers, and one to help you catch up with C++ called Learn C++ by Example. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B machine.
She can be contacted at frances.buontempo @ gmail.com.

It can be hard to find a good balance between logging everything or
just a few salient messages. Recently, the news in the UK mentioned an
increase in theft of bicycles from train stations. “So what?” I hear you
cry. Well, many stations have bike racks, and these are often covered by
CCTV. Unfortunately, this means there are many hours of footage which
takes time to watch, so the British Transport Police said they can’t spend
all their time watching the footage because then they won’t be able to
patrol railway stations. It’s likely that a bike theft would be on the footage
but there’s too much to look through, like the chatty logs I mentioned.
The BBC News reported this with the attention grabbing headline: Bike
thefts at stations ‘decriminalised’ [BBC25]. Now, I wonder if you could
get a machine learning system to spot the moment when a bicycle is
removed from a spot — it can’t be that hard. That would at least narrow
down the time period of footage that needed investigating. You just’
need to say which square contains a bike and which doesn’t and clock the
timestamps. You could go the extra step of trying to use Al to recognize
the face of the person taking the bike, but that’s another story — certainly
one that is causing controversy in the UK at the moment. If anyone is
studying computer vision, I may have thought of a research project for
you: ‘Spot the bike’.

Too much information can be overwhelming. A long time ago, I wrote
about drowning in emails (and more besides) [Buontempo12]. My emails
are out of control again. No matter how many lists I unsubscribe from,
I seem to end up on more and more every week. Setting up filters helps,
giving me some control over what I see in my inbox, but it doesn’t entirely
solve the problem. Perhaps I need a machine learning system to filter and
summarise my emails. And reply as well... except now I suspect I am
talking about various attempts at ‘Al’ personal assistants. I don’t really
want GenAl to write a summary for me. One option would be abandoning
email altogether, but that might cause other problems. I guess the trick is
prioritising what needs dealing with and what can wait, in conjunction
with finding a way to remember the things that are waiting. When you
are faced with a wall of noise/information, you need to find a good way
to search through it, or narrow down what you are trying to figure out.
The same goes with internet searches and even reading books. It’s OK to
skip from the table of contents to the index and go straight to the pertinent
parts. You don’t need to read all the things.

OK, so you can use machines to automate tasks, including searching your
logs or emails to find information. However, just because an approach is
trendy or possible, doesn’t make it a good idea. It’s still challenging to
stop GenAl ‘hallucinating” (making stuff up). You can try more specific
prompts, tell the LLM to own up if it doesn’t know or to provide a chain of
reasoning, explaining the steps. This will never give you complete control.
Many suspect we can never stop GenAl making stuff up [O’Brien23], and
to my mind that is how LLMs are designed: precisely to make things
up. In case you missed it, we had an article from Andy Balaam last time
explaining why he doesn’t use (Gen)AI [Balaam25]. He suggested the
results are sometimes dangerously incorrect. We have a follow up letter
to the editor in this edition. I am pleased to see people discussing GenAl
and questioning it. Any new tech can be useful, but that does not mean
you have to fully embrace it and use it for everything.

Another aspect of GenAl people find disconcerting is that the same
prompt can give different replies. This is by design. If you can turn the
temperature parameter down to 0, you’ll get the same response each time.
[Noble], unless the model changes under your feet. If you’ve ever worked
with models using random numbers, this will be familiar. Probabilistic
models use random numbers deliberately, allowing you to explore
expected outcomes or averages. In theory you can record the seed used
for the pseudo-random numbers and repeat the outcome. Of course the
same seed on different compilers might give a different number sequence
[Reddit].

They say the best laid plans of mice and men often go astray. That doesn’t
mean it’s not worth trying to form a plan. You might need to be prepared

= EDITORIAL

to follow a back—up plan or trying something else. Don’t get carried
away trying to plan for every eventuality. You’ll end up catastrophizing
and won’t get anything done. And, if something does go wrong it will
probably be something you didn’t even think of. I was giving a talk at the
ACCU conference once and a power surge fried my laptop live on stage.
I did have the talk itself in bitbucket, but the UI had recently changed and
I struggled to find the right workspace on a friend’s laptop. Everyone in
the room tried to help, and we got there in the end. However, I couldn’t
run my demos. Subsequently, I've tried to embed mp4s into my slides,
but they often won’t play. I just need to learn to ‘roll with the punches’:
like boxing, a side swipe can potentially knock you out. If instead, you
accept things don’t always go to plan, you might get better at coming out
with a plan B just when you need it. Try to take some

control, but not 100%. Let surprises happen too. They

aren’t always bad. And you might learn something.

As the agile manifesto says, we have come to value

‘Responding to change over following a plan’ [Agile].

[Agile] ‘Manifesto for Agile Software Development’, available at
http://agilemanifesto.org/

[Balaam25] Andy Balaam ‘Why I don’t use AI” in Overload 33(190):4—
5, December 2025, available to members only at https://accu.org/
journals/overload/33/190/balaam/

[BBC25] Tom Edwards, ‘Bike thefts at stations ‘decriminalised”,
posted 2 October 2025 at https://www.bbc.co.uk/news/articles/
c8jm3wxvlkjo

[Buontempo12] Frances Buontempo ‘Too Much Information” in
Overload, 20(111):2-3, October 2012, available to members only at
https://accu.org/journals/overload/20/111/buontempo_1885/

[Buontempo26] Frances Buontempo (2026) Introducing C++,
O’Reilly Media, Inc., https://www.oreilly.com/library/view/
introducing-c/9781098178130/

[Chunawala25] Quasar Chunawala ‘A Guest Editorial” in Overload
190, December 2025, available to members only at https://accu.org/
journals/overload/33/190/chunawala-buontempo/

[Godbolt25a] Matt Godbolt ‘Advent of Compiler Optimisations
2025, available at https://www.youtube.com/
playlist?list=PL2HVqY{71f8cY4wLk7JUQ2f0JXY_ xMQm2

[Godbolt25b] Matt Godbolt “When compilers surprise you’, Matt
Godbolt’s blog, posted December 2025, available at
https://xania.org/202512/24-cunning-clang

[MeetingC++] Meeting C++ website: https://meetingcpp.com/

[Noble] Joshua Noble ‘What is LLM Temperature?’ (date unknown),
IBM, available at https://www.ibm.com/think/topics/llm-temperature

[O’Brien23] Matt O’Brien and The Associated Press ‘Tech experts are
starting to doubt that ChatGPT and A.I. ‘hallucintations’ will ever go
away: ‘This isn’t fixable” Fortune, posted 1 August 2023, available
at https://fortune.com/2023/08/01/can-ai-chatgpt-hallucinations-be-
fixed-experts-doubt-altman-openai/

[Oldwood15] Chris Oldwoood ‘Terse Exception Messages’ in Overload
23(127):15-17, June 2015. Available to members only at
https://accu.org/journals/overload/23/127/oldwood 2110/

[Reddit] ‘Inconsistency in C++ random’, discussion held approximately
11 years ago on https://www.reddit.com/r/cpp/comments/30w7cs/
inconsistency in_c_random/

[Sutter13] Herb Sutter, ‘GotW #94 Solution: AAA Style (Almost
Always Auto)’ on Sutter s Mill, posted 12 Aug 2013, available
at https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-
almost-always-auto/

February 2026 | Ouerlead | 3

http://agilemanifesto.org/
https://accu.org/journals/overload/33/190/balaam/
https://accu.org/journals/overload/33/190/balaam/
https://www.bbc.co.uk/news/articles/c8jm3wxvlkjo
https://www.bbc.co.uk/news/articles/c8jm3wxvlkjo
https://accu.org/journals/overload/20/111/buontempo_1885/
https://www.oreilly.com/library/view/introducing-c/9781098178130/
https://www.oreilly.com/library/view/introducing-c/9781098178130/
https://accu.org/journals/overload/33/190/chunawala-buontempo/
https://accu.org/journals/overload/33/190/chunawala-buontempo/
https://www.youtube.com/playlist?list=PL2HVqYf7If8cY4wLk7JUQ2f0JXY_xMQm2
https://www.youtube.com/playlist?list=PL2HVqYf7If8cY4wLk7JUQ2f0JXY_xMQm2
https://xania.org/202512/24-cunning-clang
https://www.ibm.com/think/topics/llm-temperature
https://fortune.com/2023/08/01/can-ai-chatgpt-hallucinations-be-fixed-experts-doubt-altman-openai/
https://fortune.com/2023/08/01/can-ai-chatgpt-hallucinations-be-fixed-experts-doubt-altman-openai/
https://accu.org/journals/overload/23/127/oldwood_2110/
https://www.reddit.com/r/cpp/comments/30w7cs/inconsistency_in_c_random/
https://www.reddit.com/r/cpp/comments/30w7cs/inconsistency_in_c_random/
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/

FEATURE »

Most software development aims to provide solutions to business
problems. Seb Rose has condensed fifteen years of BDD learning
into two pages of practices, benefits, and challenges.

task—writing code to instruct a machine. In reality, software is the

product of an ongoing socio-technical conversation among users,
business stakeholders, and the delivery team. That conversation evolves
over time, and the challenge is to capture it in a form that is precise,
testable, and useful as a guide for building the system. This is the central
goal of Behavior-Driven Development, or BDD.

It’s tempting to think of software development as a purely technical

BDD originated in the mid-2000s as a refinement of Test-Driven
Development (TDD), created to make technical practices more accessible
and closely aligned with business needs. Today, it is supported by a mature
ecosystem of tools and years of hard-earned lessons from practitioners.
From the initial discovery of requirements to the use of automated tests
that ensure applications adapt gracefully to changing needs, BDD offers
a collaborative, sustainable way to bridge the gap between intent and
implementation.

Why is software delivery so hard?

The purpose of most software development is to deliver solutions to
business problems. Despite well over 50 years industry experience,
organizations still regularly experience significant challenges specifying,
delivering and maintaining the software systems on which they rely.

You might be the victim of these challenges if you have struggled to find
answers for some of the following questions:

B What does the customer actually need?
B How should we capture these needs in an unambiguous way?

B How do we make sure that these are understood by everyone
involved in specification and delivery?

B How can we demonstrate that the functionality of what we deliver
meets the customer’s needs and is adequately reliable?

B How can we ensure that the software will be able to adapt over
time?

These questions span the entire software development process, from
requirement analysis to maintainability, but in many cases the underlying
issues are rooted in the following three key problems.

B Incomplete requirements — the requirements do not properly convey
the information about the problem to be solved and the expected
behavior of the solution to the team.

B Unreliable documentation — the maintenance of the system is
hampered by the absence of documentation that reliably links the
stakeholder needs to the functionality that the team delivers.

Seb Rose has been a consultant, coach, designer, analyst and
developer for over 40 years. Lead author of The Cucumber for
Java Book (Pragmatic Programmers), and contributing author to 97
Things Every Programmer Should Know (O’Reilly).

4 | Overload | February 2026

B Slow feedback — delay, unnecessary rework, or context-switching is
required because of the lack of fast, reliable, meaningful feedback
about system behavior.

An overview of BDD

Behavior Driven Development (BDD) is an agile approach to software
development that closes the gap between business people and technical
people. BDD emphasizes the collaboration needed to create and maintain
linkage between requirements, documentation, tests and the system being
developed. It is made up of three practices, shown in Figure 1, which
illustrates the order that the BDD practices should be applied to iteratively
‘drive out’ each small increment of functionality in your application.

1. User stories are lightweight descriptions of a piece of functionality
that will be of value to some user of the system. They are not
requirements but are created in response to an understanding of the
needs of the stakeholders.

2. Discovery is a structured, collaborative activity that uses examples
to discover the detailed requirements of a user story. This practice
helps uncover the ambiguities and misunderstandings that
traditionally derail software projects.

3. Formulation is a creative process that turns the examples produced
during discovery into business-readable scenarios. The subsequent
review of the scenarios delivers the confidence that the team really
has understood what the stakeholders are asking for.

4. Automation is where code is written that turns the scenarios into
tests. Not only do the tests guide the implementation of the system,
but they also transform the scenarios into living documentation.
Every time the system is built, the tests give us feedback that the
scenarios still accurately describe its behavior.

5. Working software is our ultimate result that BDD contributes to.
There are many activities that take place after each scenario is
automated, before the functionality described by the scenario can be
delivered to users. These activities are not directly related to BDD.

User

Story
Shared understanding is established through

Discovery _— collaboration and structured conversations

. Examples of system behaviour are documented ¢
Formulation —

Automation ~~_ Scenarios are automated to be able to verify
the behaviour of the system
Working

Software graphics: https://cucumberio/docs/bdd/

Figure1

User stories

User stories are a widely used agile concept. Each story initially captures
an element of application functionality that might be valuable to the
customer but defers detailed requirements gathering until the story has
been prioritized for development.

Discovery

During discovery, the team participates in requirement workshops
at which they create examples to explore and illustrate the expected
behavior of the story. Focusing on examples makes the intention of the
acceptance criteria and business rules clear — each should be illustrated by
one or more examples. This is important because acceptance criteria and
business rules are often subject to misunderstandings.

Formulation

The examples generated during discovery are the bridge between the
requirements and the software. For this bridge to be useful for both
business and technical people, the examples must be captured in a form
that is accessible and meaningful to both. Formulation is the creative
process that turns each example produced during discovery into a
business-readable scenario that is understandable by all stakeholders, yet
also precise enough to specify the software that needs to be written.

Automation

Once an example has been formulated as a scenario, it can be read by
automation tools that understand the format produced during formulation.
The team can now write automation code that these tools will call in
response to each line in the scenario.

The team starts by writing any new automation code needed by the
scenario they are currently working on. When they run the new scenario,
it should initially fail (red) — because the implementation code that it
specifies has not been written yet. Then they iteratively implement the
application code (possibly using TDD) until the scenario finally passes
(green). After cleaning up the codebase (refactoring), they move on to the
next scenario. See Figure 2.

Automated scenarios also address many of the issues around unreliable
documentation. Since the automation will be run during every build, the
team will be notified whenever the system does not behave in the way a
scenario expects it to. These failures have several possible causes:

B The functionality has not been implemented yet: implement the
functionality.

B There is a defect in the code: fix the defect.
B The specification is incorrect or out of date: correct the scenario.

In this way, automated scenarios preserve a direct connection between the
specification and the system implementation. This type of documentation
is called Living Documentation.

‘ Red Green ‘

Failing
scenario

Passing
scenario

Refactor

Refactor
The BDD cycle is the outer loop — write a failing scenario, get the
scenario to pass, then refactor. We enter the inner, TDD cycle to
implement the code needed to move from a failing scenario to a
passing scenario.

Figure 2

" FERTURE

Testing

BDD itself does not define how testing should be performed. Instead, it
provides a set of practical guidelines that facilitate the agile testing process.
The basic concept of agile testing is to move the responsibilities of testing
from finding and reporting application issues to ensuring that these issues
are never added to the codebase in the first place. When following a BDD
approach, the responsibility for code quality is shouldered by the whole
delivery team, not just dedicated testers.

Bridge

The examples uncovered during discovery are an executable connection
between the behavior required by the stakeholders and the system
implemented by the delivery team for the lifetime of the product:

B They provide the stakeholders with confidence that the team has
implemented their requirements in a verifiable way.

B They provide the delivery team with confidence that they have
correctly understood the stakeholders’ requirements.

B They provide the organization with confidence that side effects and
regressions will be prevented as the system evolves.

B They provide the organization with confidence that there is reliable,
persistent documentation of how the system behaves, ensuring its
ongoing maintainability as the business and team changes over time.

BDD helps to maintain this connection and so acts as a bridge between
the stakeholders and the delivery team, between the organization and the
product, and between the past and the future.

Conclusion

BDD is a collection of practices that, on their own, seem mostly sensible
and beneficial. Each can be described quite succinctly and don’t appear
to be particularly demanding. However simple they sound, adopting them
requires change, and no change is easy.

When done well, in whole or part, BDD practices have delivered
improved outcomes for thousands of organizations globally. However,
the collaborative and technical practices that make up BDD are dependent
on the organization’s willingness to change not just what work is done,
but how the work is done.

BDD is not a free lunch. Discovery will not succeed unless the product
owner is truly available to collaborate with the team. Formulation will not
succeed unless the business stakeholders are truly available to review the
scenarios. Automation will not succeed unless the delivery team is truly
willing to value all aspects of code quality. BDD is simple but not easy —
you will have to work for your lunch.

BDD is not a silver bullet. There are many problems in product design
and delivery. BDD focuses on aspects of software development that range
from business requirements through to delivery and operations, but there
are many aspects that fall outside the scope of BDD practices. There are
problems that BDD cannot solve — you will have to decide if the problems
BDD helps solve are the problems you most need to solve.

All change is hard, but change is possible and often necessary. We have
tried to emphasize that BDD adoption is challenging, not to put you off,
but to give you realistic expectations. The outcomes of successful BDD
adoption — less waste, fewer defects, reduced rework, faster feedback,
living documentation among them — are worth working towards. We have
written a book, Effective Behavior Driven Development, to help you to
adopt BDD practices. H

This article is taken from Chapter 1 of the book Effective Behavior
Driven Development by Géspar Nagy and Seb Rose, published

by Manning and available from https://www.manning.com/books/
effective-behavior-driven-development

Gaspar Nagy is the creator of SpecFlow & Regnroll, brings over 20
years of experience as a coach, trainer, and test automation expert.
He currently leads SpecSync, aiding teams in test traceability with
Azure DevOps and Jira.

February 2026 | Ouerload | 5

https://www.manning.com/books/effective-behavior-driven-development
https://www.manning.com/books/effective-behavior-driven-development

FEATURE »

Implementing vector<T>

Finding out to to implement features from the standard
library can be a useful learning exercise. Quasar Chunawala
explores implementing your own version of std::vector.

If you know std: :vector , you know half of C++.
~ Bjarne Stroustrup

The most fundamental STL data-structure is the
vector. In this article, I am going to explore writing

Stack

Henp

n_,c,npnc'-tr'

a custom implementation of the vector data-structure.

e
[M_.Jnto

m_SiZe

The standard library implementation std: :vector
is a work of art, it is extremely efficient at managing
memory and has been tested ad nauseam. It is much
better, in fact, than a homegrown alternative would be.

Why then write our own custom vector?

B Writing a naive implementation is challenging and rewarding. It is
a lot of fun!

B Coding up these training implementations, thinking about corner
cases, getting your code reviewed, revisiting your design is very
effective at understanding the inner workings of STL data-strucures
and writing good C++ code.

B Its a good opportunity to learn about low-level memory management
algorithms.

We are not aiming for an exhaustive representation or implementation,
but we will write test cases for all basic functionalities expected out of a
vector-like data-structure.

Informally, a std::vector<T> represents a dynamically allocated
array that can grow as needed. As with any array, a std: : vector<T> is
a sequence of elements of type T arranged contigously in memory. We will
put our homegrown version of vector<T> under the dev namespace.

Unit tests for vector<T>

For low-level data-structures such as the vector, let’s write the unit-
tests upfront before the implementation. This will help us think through
the interface and corner cases. Tests will also serve as documentation of
the expected functionality.

The internal representation of a vector-like type has a book-keeping
node (see Figure 1) that consists of:

B A pointer to the raw data (a block of memory that will hold elements
of type T)

B Size of the container(the number of elements in the container)
B Capacity

It’s important to distinguish between size and capacity. size is the
number of elements currently in the container. When size == capacity,
the container becomes full and will need to grow, which means allocating

Quasar Chunawala is a quant-developer. He is deeply passionate
about programming in C++, Rust, concurrency and performance-
related topics. He enjoys long-distance hiking. He regularly discusses
interesting code snippets/language features on his blog and runs a
monthly C++ newsletter at https:/quantdev.blog/newsletter.

6 | Overload | February 2026

Control Block

M_,ﬂnpncita é

fow Data

Figure 1

more member, copying the elements from the old storage to the new
storage and getting rid of the old storage.

Given this background, we assume that the vector is equipped with
basic getters such as:

B std::size_t size()

B std::size_t capacity()
B bool empty ()

B bool is_full()

The vector should support various constructors (see Listing 1).

TEST (VectorTest, DefaultConstructorTest) ({
dev: :vector<int> v;
EXPECT_EQ(v.empty(), true);

}

TEST (VectorTest, InitializerListTest) {
dev: :vector<int> v{1, 2, 3, 4, 5};
EXPECT_EQ(!v.empty(), true);
EXPECT_EQ(v.size(), 5);

EXPECT_TRUE (v.capacity() > 0);
for (auto i{Ouz}; i < v.size(); ++i){
EXPECT EQ(v.at (i), i+l);
}
}

TEST (VectorTest, ParameterizedConstructorTest) {
dev: :vector v (10, 5.5);
EXPECT_EQ(v.size(), 10);
for (auto i{Ouz}; i < v.size(); ++i){
EXPECT EQ(v[i], 5.5);
}
}

TEST (VectorTest, CopyConstructorTest) {
dev: :vector v1i{ 1.0, 2.0, 3.0, 4.0, 5.0 };
dev: :vector v2(vl);
EXPECT_EQ(vl.size() == v2.size(), true);
for (int i{ 0 }; i < vl.size(); ++i)
{
EXPECT EQ(v2[i], i+l);
EXPECT_EQ (v1i[i], v2[i]);
}
}

Listing 1

https://quantdev.blog/newsletter

TEST (VectorTest, MoveConstructorTest) {
dev: :vector<int> v1{ 1, 2, 3 };
dev: :vector<int> v2(std: :move(vl)) ;
EXPECT_EQ(vl.size(), 0);
EXPECT_EQ(vl.capacity(), 0);
EXPECT_EQ(v2.size(), 3);
for (auto i{Ouz}; i<v2.size(); ++ i)

EXPECT_EQ(v2[i], i + 1);
}

TEST (VectorTest, CopyAssignmentTest)
{
dev: :vector<int> v1{ 1, 2, 3 };
dev: :vector<int> v2;
v2 = vl;
EXPECT_EQ(vl.size(), v2.size());
EXPECT EQ(vl.capacity (), v2.capacity()):
for (int i = 0; i < vl.size(); ++i) {
EXPECT EQ(v1[i], i+1);
EXPECT_EQ(v1[i], v2[i]);
}
}

TEST (VectorTest, MoveAssignmentTest)
{
dev: :vector<int> v1{ 1, 2, 3 };
dev: :vector<int> v2;
v2 = std::move (vl) ;
EXPECT _EQ(vl.size(), 0);
EXPECT_EQ(vl.capacity(), 0);
EXPECT EQ(v2.size(), 3);
for (int i = 0; i < vl.size(); ++i) {
EXPECT_EQ(v2[i], i+1);
}
}

Listing 1 (cont'd)

TEST (VectorTest, AtTest)
{
dev: :vector<int> v{ 1, 2, 3 };
EXPECT _EQ(v.at(0), 1);
EXPECT EQ(v.at(l), 2);
EXPECT EQ(v.at(2), 3);
EXPECT_THROW(v.at(3), std::out of range);
}

TEST (VectorTest, SubscriptOperatorTest)
{
dev::vector<int> v{ 1, 2, 3 };
for (int i{Ouz}; i < v.size(); ++i) {
EXPECT_EQ (v[i], i+1);
}
}

Listing 2

TEST (VectorTest, EmptyTest)

{
dev: :vector<int> v;
EXPECT_EQ(v.empty (), true);

v.push_back (42) ;
EXPECT_EQ(v.empty(), false);
}

TEST (VectorTest, SizeAndCapacityTest)
{

dev: :vector<int> v;

EXPECT EQ(v.size(), 0);

EXPECT GE (v.capacity (), 0);

v.push_back (42) ;
EXPECT EQ(v.size(), 1);
EXPECT_GT(v.capacity(), 0);

v.push_back (v.back()) ;

EXPECT_EQ(v.size(), 2);
EXPECT_EQ(v[1], 42);

" FERTURE

TEST (VectorTest, ReserveTest)
{

dev: :vector<int> vl;
vl.reserve (10) ;

EXPECT_GE (vl.capacity(), 10);
EXPECT _EQ(vl.size(), 0);

dev: :vector<int> v2{1, 2, 3, 4, 5, 6, 7};
size_t old_capacity = v2.capacity();
EXPECT_GE (v2.capacity(), 7);
EXPECT_EQ(v2.size(), 7);
size_t new_capacity = 2 * old_capacity;
v2.reserve (new_capacity) ;
EXPECT_GE (v2.capacity () , new_capacity);
EXPECT_EQ(v2.size(), 7);
for(auto i{Ouz}; i < v2.size(); ++i)
EXPECT EQ(v2[i], i + 1);
}
TEST (VectorTest, ResizeTest)

{
dev: :vector<int> v{ 1, 2, 3 };
v.resize(5);

EXPECT_EQ(v.size(), 5);
for (auto i{Ouz}; i<3; ++i)
EXPECT_EQ(v[i], i + 1);

EXPECT _EQ(v[3], 0);
EXPECT_EQ(v[4], 0);

v.resize (2);
EXPECT_EQ(v.size(), 2);
EXPECT_EQ(v[0], 1);
EXPECT_EQ(v[1], 2);

Listing 4

The vector data-structure should support element access through
the array subscript operator [], just like C-style arrays. The
T& at(std::size_t idx) could also be used to access the element
at index idx with bounds checking. (See Listing 2.)

We expect the container to perform the book-keeping of size and capacity
correctly. (See Listing 3.)

We expect the container to support the getter methods front () and
back():

TEST (VectorTest, FrontAndBackTest)

{
dev: :vector<int> v{ 1, 2, 3 };
EXPECT_EQ(v.front(), 1);
EXPECT_EQ(v.back(), 3);

}

The container should support reserve (size_t new_capacity) and
resize(size_t new_size). These are explained at length further
ahead. (See Listing 4.)

The container should support appending elements or removal elements at
the back. (See Listing 5, next page.)

The container should support a . insert method that allows us to insert
elements from a source range to a specified position in the target vector.
You can write a variety tests, like inserting at the beginning, middle, end
of the vector, self-referential insertion etc. For brevity, I skip listing all of
the tests here. The Compiler Explorer online source listing for this entire
article is available in the conclusion section.

vector member data

We start with coding up the vector as a class template. It is templated by
the type T of the elements stored in the container. We also define various
type aliases (Listing 6).

C++ containers usually expose iterators as part of their interface and
ours will be no exception. We define type aliases for the const and non-
const iterator types, as this makes it simpler to implement alternatives.
(See Listing 7).

February 2026 | Ouerload | 7

FEATURE »

TEST (VectorTest, PushBackTest)
{
dev: :vector<int> v;
v.push_back (1) ;
v.push_back(2) ;
v.push_back(3) ;
EXPECT_EQ(v.size(), 3);
for (auto i{Ouz}; i<v.size(); ++i)
EXPECT EQ(v[i], i + 1);
}
TEST (VectorTest, PushBackSelfReferenceTest)
{
// The design of push back/insert is slightly
// hard to get right. If the vector is full, then
// you reallocate (grow) the vector. If the value
// to be added is a reference to an existing
// vector element, then value in
// vec.push back(value) may become a dangling
// reference, if it refers to the old storage (an
// element of the vector itself e.g. vec.back()).
// This test is meant for such an edge case.
dev: :vector<int> vec{ 1 };
for (auto i{Ouz}; i < 64; ++i) {
vec.push_back (vec.back()) ;
EXPECT_EQ(vec.back(), 1);
}
}
TEST (VectorTest, EmplaceBackTest)
{
struct Point
{
int x, y;
Point (int a,
x(a)
; y(b)
{
}
}i
dev: :vector<Point> v;
v.emplace back(l, 2);
v.emplace_back (3, 4);
EXPECT_EQ(v.size(), 2);
EXPECT_EQ(v[0].x, 1);
EXPECT_EQ(v[0].y, 2);
EXPECT_EQ(v[1l].x, 3);
EXPECT_EQ(v[1].y, 4);
}
TEST (VectorTest,
{
dev: :vector<int> v = {1,
EXPECT_EQ(v.size(), 3);
v.pop_back() ;
EXPECT_EQ(v.size(), 2);
EXPECT_EQ (v, dev::vector<int>({1l, 2}));

int b)

PopBackTest)

2, 3};

Listing 9
vector constructors

Alluding to the rule-of-five, we implement a copy constructor, copy-
assignment operator, move constructor, move assignment operator and
a destructor.

template <typename T>
class vector {
using value type = T;
using size_type = std::size_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using iterator = pointer;
using const_iterator = const_pointer;
private:
pointer m data{nullptr};
size type m_size{Ouz};
size type m_capacity{Ouz};
constexpr static unsigned
short growth_factor{2};

Listing 6
8 | Overload | February 2026

template <typename T>

class vector {
/]

public:
iterator begin(){ return m data; }
const_iterator begin() const{ return m _data; }
iterator end(){ return begin() + m_size; }
const_iterator end() const{

return begin() + m_size; }

//
Listing 7

template<typename T>
class vector{

private:

struct init capacity tag { size_type cap; };
};
// If an exception happens after this has been
// called, the destructor will run and deallocate
// the memory.
explicit vector(init_capacity tag cap)

m_data{ allocate helper (cap.cap) .release() }
, m_capacity{ cap.cap }

{}
Listing 8

To simplify things, we first code up a private constructor
(vector (init_capacity_tag)) whose job is to allocate memory
and construct a vector object. (See Listing 8.)

All other constructors delegate to this private
vector (init_capacity_tag) constructor. After that constructor
completes, the object is fully constructed, and if any execution happens
later which throws, the destructor will always be called.

The destructor is called for all fully constructed objects. The object is
considered fully constructed once any constructor has finished, including
the delegated constructor. (See Listing 9.)

vector () noexcept

{}

// If an exception happens after this has been

// called, the destructor will run and deallocate
// the memory.

explicit vector(init_capacity_tag cap)

: m_data{ allocate helper (cap.cap) .release() }

, m_capacity{ cap.cap }

{1

vector (size_t n, const T& initial value)
vector (init_capacity_ tag(n))
{
std::uninitialized fill n(m_data, n,
initial_value);
m_size = n;

}

vector (std::initializer 1list<T> list)
vector (init_capacity tag(list.size())) {
std::uninitialized copy(list.begin(),
list.end(), m_data);
m_size = list.size();

}

vector (const_iterator first, const_iterator last)
vector (init_capacity tag(std::distance (first,

last)))

{

if constexpr (
std::is_nothrow _move constructible v<T>) {
std::uninitialized move (first, last, m_data);
} else {
std::uninitialized copy(first, last, m_data);
}
m_size = std::distance(first, last);

}
Listing 9

vector (const vector& other)
vector (init_capacity tag(other.capacity())) {
// Perform a deep-copy of all the Ts
std: :uninitialized copy (other.m data,
other.m data + other.m size, m _data);
m_size = other.size();
}
vector (vector&& other) noexcept
: m_data{std::exchange (other.m data, nullptr)},
m_size{std::exchange (other.m _size, 0)},
m_capacity{std: :exchange (other.m capacity, 0)}
{}
void swap (vector& other) noexcept {
std: :swap (this->m _data, other.m data);
std: :swap (this->m_size, other.m size);
std: :swap (this->m_capacity, other.m capacity)
}
vector& operator=(const vectoré& other) {
vector (other) . swap (*this) ;
return *this;
}
vectoré& operator=(vectoré&& other) ({
vector (std: :move (other)) . swap (*this) ;
return *this;
}
~vector () {
std: :destroy (begin(), end());
raw_deleter{} (m_data);

}
Listing 9 (cont'd)

If any of the delegating constructors fails in the constructor body —
such as vector(size_t n, const T& initial_value)- the
~vector () destructor has to be run. This makes memory handling
almost entirely automatic.

Basic services of a vector-like class

Implementing front0), back(and operatoril(size_tidx)

There is more to writing a convenient dynamic array type. For example,
member functions that let you access the elements at front or rear-
end of the vector are to be expected. Similarly, an implementation of
operator[] to access the element at a specific index in the array is also
expected. (See Listing 10.)

Comparing two vector<T> objects for equivalence or lack thereof is a
relatively easy matter if we use algorithms:

YR
bool operator==(const vectoré& other) const{
return size() == other.size() &&
std: :equal (begin(), end(), other.begin())

Dynamic memory allocation and deallocation
In general, we want to separate allocation of raw memory from
construction of T objects. operator new(size_t count) attempts

//
reference operator[] (size_type idx) {
return m_data[idx];

}

const_reference operator[] (size_type idx) const({
return m_data[idx];

}

// precondition: !empty ()
reference front(){ return (*this)[0]; }
const_reference front() const {

return (*this) [0]; }
reference back(){ return (*this)[m size - 1]; }
const_reference back() const{

return (*this) [m _size - 1]; }

Listing 10

" FERTURE

struct raw_deleter {
// only frees the memory, doesn't destroy objects
void operator () (T* ptr) noexcept ({
operator delete(ptr,
std::align _val_ t(alignof(value_type)));
}
};
using raw_ptr = std::unique ptr<T, raw_deleter>;
raw_ptr allocate_helper(size_type new_capacity) {
auto ptr = operator new(
sizeof (value_type) * new_capacity,
std::align_val_t(alignof (value_type))
)
return raw_ptr(static_cast<pointer>(ptr));

}
Listing 11

to allocate count bytes on the heap. The newly allocated memory is
uninitialized. This is different from the new expression, new T (Args)
or new T[] (), which performs both allocation and zero initialization
(invokes the default constructor T ()).

The memory subsystem on a modern CPU is restricted to accessing
memory at the granularity and alignment of its word size. The CPU
always reads at its word size (8 bytes on a 16-bit processor), so when
you do an unaligned address access — on a processor that supports it — the
processor is going to have to read multiple words. The CPU will read
each word of memory that your requested address straddles. That’s why
it’s important to always align custom types, when allocating memory.

The regular operator only guarantees alignment upto
alignof (std::max_align_t); it works well for fundamental types.
But, for custom types where

new

alignof (T) > alignof(std::max align_t)

it would fail. C++17 supports an overloaded version of the new operator
with alignment as an additional argument.

We introduce the helper functions allocate_helper and a custom
deleter function object. We also declare a raw_deleter type alias. (See
Listing 11.)

In allocate_helper, I chose to wrap the result of operator new
into a unique pointer before returning to the caller. Again, this makes
memory management automatic at the call-site.

Implementing reserve(l

reserve (size_type new_capacity) increases the capacity of
the vector(the total number of elements that the vector can hold without
requiring reallocation) to a value that’s greater orequal tonew_capacity.
If new_capacity is greater than the current capacity (), new storage
is allocated, otherwise the function does nothing. (See Listing 12, next
page.)

If new_capacity > capacity (), we must:

B Allocate a chunk new_capacity * sizeof (T) bytes large on
the heap dynamically.

B Copy the existing container elements from the old storage area to
the new block of memory.

B Destruct the elements in the old storage and deallocate the memory
occupied.

B Update the vector’sm_data pointer and m_capaci ty field.

After the allocation, we want to copy the elements in the range m
data[0...m_size-1] toptr_new_blk.

copy_old storage_to_new is a helper function to copy
num_elements from the memory Ilocation source_ first to
destination_first.

February 2026 | Ouerload | 9

FEATURE »

// Copies elements from old storage to new
// If T's copy/move ctor throws, the objects
// already constructed are destroyed and the
// exception is propagated to the caller.
void copy old storage_to_new(pointer source first,
size_t num _elements, pointer destination_first)
{
if constexpr (
std::is_nothrow move_constructible v<T>) {
std::uninitialized move (source_ first,
source_ first + num elements,
destination_first);
}
else{
std::uninitialized copy(source_first,
source_first + num_elements,
destination_first);
}
}
void reserve(size_type new_capacity) {
if (new_capacity <= capacity())
return;
raw_ptr mem = allocate helper (new_capacity) ;
copy_old_storage_to _new(m _data, m_size,
mem.get()); // can throw
std: :destroy(m _data, m_data + m_size);
pointer new_ptr = mem.release();
mem.reset (m_data) ;
m_data = new_ptr;
m_capacity = new_capacity;

}
Listing 12

C++17 introduced std: :uninitialized copy and
std::uninitialized_move algorithms. std::uninitialized
copy (first, last, d_first) accepts a source range [first,last)
and copies the elements from the source range to an uninitialized memory
area beginning at d _first. The std::uninitialized move
algorithm uses move semantics.

The beauty of these uninitialized memory algorithms are that they are
exception safe. If one of the T (const T&) constructors invoked by
uninitialized copy ends up throwing, then the objects it managed
to create before the exception was thrown will be destroyed (in an
unspecified order), before the exception leaves the function.

The type-trait std::is_move constructible v<T> is a meta-
function that returns true , if the argument T is move constructible.

If copy_old_storage_to_new throws, mem will go out of scope and,
being a smart pointer, it will automatically release new_capacity on
the heap.

There’s a general trick that you would have seen in all of this. Do not
modify your object until you know you can safely do it. Try to do the
potentially throwing operations first, then do the operations until you
can mutate your object. You will sleep better, and the risks of object
corruption will be alleviated.

Implementing resizel)

The distinction between resize () and reserve () is that reserve ()
only affects the capacity of the container, whereas resize () modifies
the size and capacity both.

The resize (size_type new_size) method (see Listing 13) resizes
the container to contain count elements:

B [fthe new_size is equal to the current size, do nothing.

B If the current size is greater than the new_size, the container is
reduced to its first new_size elements.

B If the current size is less than new_size, then additional default-
constructed elements are appended.

10 | Overload | February 2026

void resize(size_ type new_size) {
size_type current_size = m_size;
if (new_size == current_size)
return;
if (new_size < current_size)

// Reduce the container to count elements
std: :destroy(m_data + new_size,
m_data + m_size);

}

if (new_size > current_size)

{
reserve (new_size) ;
// Default construct elements at indicates
// [current size,...,new size-1]
std::uninitialized value_construct (begin()

+ current size, begin() + new_size);
}
m_size = new_size;

}
Listing 13

How to think about adding elements to our
container?

We will code up a push_back (T&&) member function that accepts a
universal reference T&&. If T is move constructible, then the value will be
moved. If T is copy constructible then the value will be copied.

The emplace_back (Args. . .) will take a variadic pack of constructor
arguments, and then perfectly forward them to the constructor of a
T object, that will be placed at the end of the container. A reference to
the newly constructed object is returned by emplace_back (), for
convenience, in case the user-code would like to use it right away.

We would like to first check whether the container is full. We have a
dichotomy. If the container is full, we take the so-called slow path, else
we take the fast lane.

push_back_slow_pathlvalue)

In this case, we would like to grow our container; we allocate more
memory, than what the container currently holds. We leave the memory
uninitialized. Memory allocation, can of course, fail.

We then add the new value at the index m_size. Appending the new
element may fail.

We copy/move construct the existing elements of the container from the
old storage to the new block of storage.

If all three steps were successful, we deallocate the old storage and return
it back before replacing the values in the member variables m_data,
m_size andm_capacity.

If either of the last couple of steps fail, we free the newly obtained block
of storage.

push_bhack_fast_path(value)
In this case, we simply copy/move construct value at the end of the
container and update the size of the container.

Edge-case
Consider the following edge-case, where the value to be added is an
element of the vector itself. If there is a reallocation, then the elements of
the container are relocated to a new region. So, value might become a
dangling reference.
dev: :vector<int> vec{ 1 };
for (int i = 0; i < 10; ++i) {
vec.push_back (vec.back()) ;
EXPECT_EQ(vec.back(), 1);
}

Our design takes care of this edge case. (See Listing 14, next page.)

Coding up emplace_hack

Similar to push_back, emplace_back also appends an element to the
end of the container. The only difference is, emplace_back constructs
a T element in-place in the vector , using the constructor arguments of
type T.

std: :construct_at(mem.get() + m size,
std: : forward<Args>(args)...);

Implementing pop_hack(
pop_back () should call the destructor of the element at index
m size - 1.std::destroy_at(T* p) calls the destructor of the
object pointed to by p. It is equivalent to p->~T () . We must not forget to
decrement the size of the container.
void pop_back() {

T* ptr to _last = m data + m_size - 1;

std: :destroy_at(ptr_to_last);

——m_81ze;

}

Implementing insertlconst_iterator position, It first, it last)

The insert function inserts the given value into the vector before the
specified position, possibly using move-semantics. Note that, this kind
of operation could be expensive for a vector, and if it is frequently used,
it can trigger reallocation.

Our insert function will be generic enough with the following interface:

template<class It>
iterator insert(const_iterator pos,
It first, It last)

It inserts the range [first, last) at position pos (immediately prior to
element currently at pos).

I spent some time thinking about .insert, and drawing some quick
diagrams helped me generalize the algorithm.

Step 1. We first determine if the elements in the range [first,last) can
fit into the remaining capacity = capacity() - size().If
n exceeds the remaining capacity, the excess_capacity_reqd
we require is std: :max(n - remaining capacity,0). So, we
invoke reserve (capacity () + excess_capacity reqd).

Step 2. Assume that we have sufficient room for the range [first,last).

Source

bes'l"-(:l pes

" FERTURE

template<typename U>
void push_back_slow_path (U&& value) {
// allocate more memory
size_type new_capacity =
capacity() ? growth factor * capacity() : 1;
size_type offset = size();
size_type new_size = m_size + 1;
auto mem = allocate_helper (new_capacity) ;
std: :construct_at(mem.get() + m size,
std: : forward<U> (value)) ;
try{
copy_old storage_to_new(m_data, m_size,
mem.get()) ;
}catch(std: :exceptioné& ex) {
std: :destroy_at (mem.get() + m_size);
}
pointer ptr new = mem.release();
mem.reset (m_data) ;
m data = ptr new;
+:m_size; -
m_capacity = new_capacity;
}
template<typename U>
void push_back_fast_path (U&& value) {
std: :construct_at(m data + m_size,
std: : forward<U> (value)) ;
++m_size;
}
template<typename U>
void push_back (U&& value)
{
if (is_full())
{
push_back_slow_path(std::forward<U>(value)) ;
}
else(
push_back fast_path(std::forward<U>(value)) ;
}
}

Listing 14

How many elements should be copied from the [begin(), end())

sequence to the raw memory block at the end of the container?

Consider the scenario, where the range [first,last) is smaller
than [pos,end) — see Figure 2. In this scenario, the elements
[end()-n, end()) need to be copied or moved to the uninitialized
memory.

If there are elements to copy
or move from [pos,end())
sequence as a replacement
to existing objects in the
container (there could be
none), how many should be
there? Looking at Figure 3
(next page), the subsequence
[pos, end() - n) will be
mappedto [pos + n, end())
upon insertion.

Lopaci 1 . .
- P 'tlf- Consider the scenario where the

D i

A, range [first,last) is larger
A than [pos,end) (Figure 4,

Y

next page).

renntn%ng__capae?tg

-4 =

num_elems_to_shift

Destination
Figure 2

In this case, let’s define
num_tail as the trailing
number of elements from the
source range [first,last)
that would be copied/moved to
uninitialized memory. Clearly,
num_tail = std::max(n
- end() + pos,0). So, the

February 2026 | Overload | 11

FEATURE »

tail [last-num_ tail,last) will be mapped to [end() ,end()+
num_tail) upon insertion.

To make room for the insertion, the elements [pos,end ()) will have to
be movedto [end () + num_tail, end() + num_tail + end()
- pos).

Listing 15 is a possible implementation based on our ideas above.

Implementing a custom vector<T> from scratch is a rewarding exercise
that deepens understanding of

The deepest code review of the simplest data structure, vector: https://
www.youtube.com/watch?v=GfIxO_vpM4g

libstdc++ vector test suite, https://gnu.googlesource.com/gec/+/trunk/
libstde++-v3/testsuite/23_containers/vector

C++ Memory Management, by Patrice Roy, Packt Publishing.

C++ fundamentals. "
The standard library First last
implementation handles —_
additional ~ complexities | s

e
haven’t addressed: custom ’ /

allocator support, small object
optimizations, and numerous
other edge cases discovered
through decades of production
use.

Inserted elements

Instead of pointer/size/
capacity, ~we may use

pointers: m_start , m_end ""‘35‘:“{) pos

——p

postn .u_,-:apant‘tt‘,r—’

While both layouts occupy 3

and m_end of_ storage.
words (24 bytes on a 64-bit [

i —

/.//// A7
5 I
%Y

machine), end () is marginally

faster, does not require pointer ’
arithmetic and generates fewer

assembly instructions. 4

However, the journey of P

LY
Rt

building this container teaches
invaluable lessons. You

learn to think carefully about
exception safety, understand
the tradeoffs between copy and
move operations, appreciate
the elegance of algorithms like std::uninitialized copy, and
recognize why seemingly simple operations like insert() require
careful reasoning about memory

layout and iterator invalidation.

«
If you enjoyed this deep dive, I first

std::inplace_vector, or

recommend exploring deque,
the more complex associative [

containers. Each presents
unique challenges and design
decisions that will further
sharpen your C++ skills. B

You can find the complete source beg‘l n() pos

Source

end() w_capacity-

https://compiler-explorer.

listing and unit tests online at
com/z/Y6q1Tb3GK. {

oy

/) y Py F &
,/. .__/%‘/; _-'_/ /.-__."-. S ",'. /"z.
o f_'./"//_.’f/ 12“1:'?/1/ e ; /'5//”./; // ///-’

#
z’///
P

12 | Overload | February 2026

- L

remnining__caFa.::tlf

-—

num_elems_to_shift

Destination

https://compiler-explorer.com/z/Y6q1Tb3GK
https://compiler-explorer.com/z/Y6q1Tb3GK
https://www.youtube.com/watch?v=GfIxO_vpM4g
https://www.youtube.com/watch?v=GfIxO_vpM4g
https://gnu.googlesource.com/gcc/+/trunk/libstdc++-v3/testsuite/23_containers/vector
https://gnu.googlesource.com/gcc/+/trunk/libstdc++-v3/testsuite/23_containers/vector

template<typename It>
iterator insert(const_iterator pos, It first,

It last){
auto pos_ = const_cast<iterator>(pos) ;
auto first_ = first;
auto last = last;

if (first '= last)
{
size_ type offset = std::distance(begin(),
pos_) ;
size type n = std::distance(first, last);
size_type num_elems_to_shift
= std::distance(pos_, end());
size_type remaining capacity
= capacity() - size();

dev: :vector<T> temp;
// handle self-referential insertion
if ((first_ >= begin() && first < end())
&& last_ > begin() && last_ <= end())
{
for(auto it{first }; it!=last ; ++it)
temp.push _back (*it) ;

first = temp.begin();
last = temp.end();
}
if(n > remaining capacity)
{

size type excess_capacity_reqd
= std::max(n - remaining capacity, Ouz);
reserve (capacity() + excess_capacity_reqd);
// The iterator pos is invalidated. Update
// it.
pos_ = std::next(begin(), offset);
}
// objects to displace (move or copy) from the
// [begin, end()] sequence into raw
// uninitialized memory
if(n < num_elems_to_shift)
{
if constexpr (
std::is_nothrow _move constructible v<T>)

{

std::uninitialized move(end() - n, end(),
end());
}
else
{
std::uninitialized copy(end() - n, end(),
end());
}
}else{

size type num_ tail
= std::max(n - num_elems_to_shift, Ouz);
if constexpr (
dev: :vector<T> temp;
// handle self-referential insertion
if ((first_ >= begin() && first_ < end())
&& last > begin() && last <= end())
{
for(auto it{first }; it!=last ; ++it)
temp.push_back (*it) ;

first = temp.begin();
last_ = temp.end();
}
if(n > remaining_capacity)
{

size_type excess_capacity reqd

= std::max(n - remaining capacity, Ouz);
reserve (capacity () + excess_capacity reqd);
// The iterator pos is invalidated. Update
// it
pos_ = std: :next(begin(), offset);

Listing 19

}

" FERTURE

// objects to displace (move or copy) from the
// [begin, end()] sequence into raw
// uninitialized memory
if(n < num_elems_to_shift)
{
if constexpr (
std::is _nothrow_move constructible v<T>)

{

std::uninitialized move(end() - n, end(),
end());
else
{
std::uninitialized copy(end() - n, end(),
end());
}
}else{

size_type num_tail
= std::max(n - num_elems_to_shift, Ouz);
if constexpr (
std::is _nothrow_move constructible v<T>)
{
std::uninitialized move(pos_, end(),
end() + num_tail);
}
else
{
std: :uninitialized_ copy (pos_, end(),
end() + num_tail);

}
}
// objects to displace (copy or move) from
// [pos,end()] to the end of the container
if(n < num_elems_to_shift)
{

if constexpr (
std::is _nothrow_move constructible v<T>)
{
std: :move_backward(pos_, end() - n,
end());

else
{
std: :copy_backward(pos_, end() - n,
end()) ;
}
}
// objects from [first,last) to insert into
// raw uninitialized memory
const size_ type num tail
= std::max(n - num_elems_to_shift, Ouz);
if(n >= num _elems_to_shift)
{
if constexpr (
std::is _nothrow_move constructible v<T>)
{
std::uninitialized move(last_ - num tail,
last_, end());
}
else
{
std::uninitialized copy(last_ - num_ tail,
last , end()):
}
}
// objects to copy from [first,last) to pos
if(n < num_elems_to_shift)
{
std::copy(first , last_, pos_);
}

else({
std: :copy (first , first + n - num tail,
pos_) ;

}

m size += n;

return pos ;

Listing 15 (cont'd)

February 2026 | Ouerload | 13

S C LU

Professionalism in Programming

CRE e,

Professional -

l.
deveﬁo_:@gaem ': .3

B -

£

O mE @ [0]

i ied a0
< oriline; Jjournals,

@O E0EE _
1Imnlm@@ (0] wmp- n@

-]
o -~ =
SleEEEEE : FCEEL
H- ' TAEBE R0 @0 |
= L]z EE = E O] NoijoEomE @@
, DEBBEDAED w u-l 'm[0]@
[0 ol EnEal | . JaEn [0]m

jﬂ{£l.l!s

0] [O]

m - El"'F"_.h-"El K

o AT

Join us!

, f:ac_ X
Membership rates ﬁq":'-'*‘
on our website.

.t'a.'rl'

Visit accu.org for details

EREE@ECE

- -

- — || oy S

Professionalism in Programming

NS

Where:
\é\/g'::%rglﬁgg ‘e Leas Cliff Rall
2-50 mecemEEogE Folkstone, Kent, UK

T Workshops: +
Jomtly, W|th | 15 & 16 June 2026
C++4)n Sea e Conference:

= a o 17-20 June 2026

Visit accuconference.org
for"details

Early bird tickets, are
still .available but may
run outrsoon!

LETTER »

Letter to the Editor

Silas S. Brown wrote in following an article
in the previous issue. The editor passed it
to the author of that article (Andy Balaam),

who has replied.

The ‘letter

i Andy, thank you for thoughtfully writing an ethical critique of
“LLMS in Overload 190. 1 share your concerns about what I call

‘Al done wrong’ but I also believe we can have ‘Al done right’.
(Analogy: solar power ‘done wrong’ is destroying nature with huge solar
farms that disorient birds; ‘done right’ means using recycled silicon on
roofs.)

Environmental impact

Of interest is a finding in your O’Donnell25 source that an 8 billion
parameter model took less than 2% of the energy of a 405 billion
parameter model. This is encouraging in light of moves toward
architectures that avoid energising the whole model at once, such as the
Chinese Kimi K2 model which, although having a trillion (1000 billion)
parameters, organises them in a Mixture-of-Experts (MoE) architecture
with only 32 billion of them active at any time. Informally, ‘we don’t
need the quantum-physics parts when you’re asking for cookery advice’.
Extrapolating from that source’s figures, inferencing on Kimi K2 should
take under 8% of the power that Llama 3.1 took, and it’s a more advanced
open-source model.

Chinese engineers have also found a way to train their models on a much
tighter budget, although exact figures are hard to find and verify. Much
Chinese Al runs on Aliyun’s cloud, which in 2024 claimed to use 56%
clean energy, aiming for 100% by 2030. O’Donnell25 noted that carbon
intensity varies by exact location and time of day, which could mean
even today’s infrastructure might let us train an LLM in a much more
‘environmentally friendly” way simply by being careful about where and
when loads run. I agree more transparency is needed though.

The same source also comments that:

...average individual users arent responsible for all this power
demand. Much of it is likely going toward startups and tech giants
testing their models, power users exploring every new feature, and
energy-heavy tasks like generating videos.

I’m particularly concerned about videos, with 10 seconds of Al-generated
video being estimated to take over 500 times the energy per query of that
wasteful 405 billion parameter dense (non-MoE) model. If you look at a
text query result on a monitor while thinking about it for 3 minutes, your
monitor has probably taken more energy than the query even at 405B, but
this excuse disappears with video — I hope not everyone will want to do
that. Technically, video is off-topic if we’re restricting our discussion to
LLMs and not other kinds of Al, but several platforms now offer both.

Silas S. Brown is a partially-sighted Computer Science post-doc
in Cambridge who currently works in part-time assistant tuition. He
has been an ACCU member since 1994 and can be contacted at
ssb22 @cam.ac.uk

16 | Overload | February 2026

Exploiting and traumatising training workers

Your Stahl25 source found an instance where an intermediary company
called SAMA absorbed some 85% of OpenAl’s cash instead of passing it
on to the actual workers. This is terrible, but the villain here is clearly not
OpenAl but SAMA and the journalist was doing a good job to expose it
and hopefully bring about change (the source says the projects mentioned
were closed down). If OpenAl is paying much more than workers are
receiving, they simply need to check their supply chain more carefully,
just as the manufacturing industry is increasingly being pushed to do if
it’s the ‘go-betweens’ that are the problem.

Also in Stahl25 is an instance of someone training Meta’s content filter
on awful posts. Yes, that was horrible but sad to say it’s off-topic if we
are limiting ourselves to a discussion of LLMSs, since that vile job was
not for an LLM but for another kind of ‘AI’. From my reading of how
RLHF response-ranking works, I believe LLM training jobs are tedious
but not traumatic. I’1l update that view if a report emerges that specifically
shows people being traumatised by LLM training, which is not the same
as content-filter training.

Danger of using Al results

This is what I’'m most concerned about as humans have huge automation
bias (‘computer says no’), but I believe that, with more research, we
could learn exactly where LLMs are likely to be an asset versus a liability.

The 2024 New York Times article (Roose24) unfortunately fails to make
a strong case that the LLM was the cause of Sewell Setzer 111 tragically
ending his life. If that LLM had not been available, the words quoted in
the article could have been written by any young human player who was
not a professional therapist: it tried to tell him not to proceed, and then
failed to pick up on a later hint that he was seeking validation using other
words. This activity was (according to reports) being conducted against
the specific advice of a real therapist. This is not a comment on their legal
case which may be stronger; I’m simply saying the initial reports didn’t
do a very good job of showing us how the LLM is ‘reponsible’ for this
tragedy. There are other cases (such as that of Juliana Peralta) and the
BBC reported Character. Al made themselves 18+ on 25 November 2025
although it’s unclear how good the enforcement is.

The Hill25a example is far more concerning, firstly because it relates to
a more mainstream LLM (harder to get ChatGPT to make themselves
18+) and secondly it’s a clearer case: ChatGPT became accidentally
stuck in a suicide-reinforcing loop after a long conversation (long
conversations are not so well tested) and that’s why I think vulnerable
people need some supervision when having this kind of conversation with
a probabilistic model. The ‘delusional spiral’ failure mode has reportedly
been significantly reduced in the more recent transition from ChatGPT 4
to ChatGPT 5 but when I say ‘reportedly” here I’m looking at a non-peer-
reviewed study on the shared blog LessWrong: I still want to see more
human supervision of these games.

Unfair use of creative work

Copyright law does allow indexing and lexicography: you may write a
dictionary of words seen in the books you read without it being copyright
infringement, and model training is similarly supposed to ‘average’ its
input so no one source can be reproduced from the model’s ‘knowledge’
of how words and concepts are related to each other over a large collection
of sources. This is also important for accuracy if we assume the training
data has been curated such that the knowledge worth remembering is that
on which many sources agree (which is a big assumption), and is the
reason why LLMs don’t tend to be able to remember your homepage
without looking it up even if you’ve seen their bots crawl it.

But there are concerns of ‘overfitting’ where models memorise sources
too precisely, such as the New York Times example in Carson25, and this
needs to be (and is being) looked into.

Other reasons
Overpromised productivity gains: as has sadly been the case with many
technologies. Pushing ‘Al” just for the sake of it is never good.

Mental atrophy. The Black25 source’s report of doctors forgetting how to
identify cancer makes me think of a design decision in the construction of
Norway’s Laerdal Tunnel: drivers are prevented from becoming drowsy
by placing gentle curves in the road instead of making it completely
straight. If Al assistance is getting things right most of the time, perhaps
we should throw in a few known defects to double-check the human is not
asleep at the switch? This particular example is off-topic for LLMs since
it’s image classification, but we always have needed people to become
more skilled at evaluating ‘search results’.

Excuse to cut jobs: Correct but sadly irrelevant because companies will
use any excuse to cut jobs anyway. Over the years I’ve lost jobs due to
merging and acquisition, outsourcing, random relocation requirements,
service obsolescence, and client cancelling project over unexpected
trivial-patent lawsuit, and I’ve seen friends’ job losses blamed on the
thoughts of the President of the USA, so the fact that my most recent
layoff justification included the words ‘Al strategy’ doesn’t mean much:
if it wasn’t that, it would have been something else.

I’m more concerned about the jobs that are never created: startups trying
to use ‘Al” instead of developers, setting themselves up for problems
later. (Source: informal conversations with young founders at Cambridge
networking events who show me Web platforms they made in Cursor
and confidently say they won’t need developers. Carla’s data shows a
62% drop in startup hiring between January 2022 and January 2025, and
hiring is not rising with funding.) This isn’t to say ‘Al itself is bad, just
it’s badly used. Sad to say this is similar to earlier trends of low-quality
outsourcing. There might be some ‘nonjudgmentally fix the founder’s Al
mess’ jobs in surviving startups. I question business schools’ teaching
‘minimum viable product’ when people fail to catch that middle word
‘viable’.

Thanks again for bringing up this important subject.

Silas

n LETTER

The references that Silas refers to in his letter are from the original
article. For convenience, they are replicated here.

[Black25] ‘Al Eroded Doctors’ Ability to Spot Cancer Within
Months in Study’, Bloomberg, published 12 August 2025 at
https://www.bloomberg.com/news/articles/2025-08-12/ai-
eroded-doctors-ability-to-spot-cancer-within-months-in-study

[Carson25] David Carson, ‘Theft is not fair use’, published 21 April
2025 at https://jskfellows.stanford.edu/theft-is-not-fair-use-
474e1110d063

[Hill25a] Kashmir Hill, ‘A Teen Was Suicidal. ChatGPT Was the
Friend He Confided In’ New York Times, updated 27 August
2025 at
https://www.nytimes.com/2025/08/26/technology/chatgpt-
openai-suicide.html

[O’Donnell25] James O’Donnell and Casey Crownhart, ‘We did
the math on AI’s energy footprint. Here’s the story you haven’t
heard’, MIT Technology Review, published 20 May 2025 at
https://www.technologyreview.com/2025/05/20/1116327/ai-
energy-usage-climate-footprint-big-tech/

[Roose24] Kevin Roose, ‘Can A.I. Be Blamed for a Teen’s
Suicide?’, New York Times, published 23 October 2024 at
https://www.nytimes.com/2024/10/23/technology/characterai-
lawsuit-teen-suicide.html (subscription required)

[Stahl25] Lesley Stahl, ‘Labelers training Al say they’re
overworked, underpaid and exploited by big American tech
companies’ CBS News, updated 29 June 2025 at https://www.
cbsnews.com/news/labelers-training-ai-say-theyre-overworked-
underpaid-and-exploited-60-minutes-transcript/

[No AI was used in the writing of these words. The em-dashes in my
writing probably helped teach the LLMs to do it.]

Andy's reply

Thank you for the thoughtful and detailed response.

I’m sure you are right in several cases, and I’m fairly sure I will have to
soften my approach as this technology becomes more integrated into our
lives. I do hope that the magical thinking around it will reduce as that
happens.

In general I am deeply sceptical about all the activity coming from
the self-obsessed and delusional billionaires who are running the tech
industry. If this were a grass-roots movement I would have more hope
about it being useful without abusing people. As it is, I strongly suspect
its main use case will be to make the existing harmful social media apps
even more addictive.

_—

40

If you read something in Overload that you particularly
enjoyed, you disagreed with or that has just made you
think, why not put pen to paper (or finger to keyboard) and
tell us about it? We'd love to hear from you!

all
February 2026 | Ouerload | 17

https://www.bloomberg.com/news/articles/2025-08-12/ai-eroded-doctors-ability-to-spot-cancer-within-months-in-study
https://www.bloomberg.com/news/articles/2025-08-12/ai-eroded-doctors-ability-to-spot-cancer-within-months-in-study
https://jskfellows.stanford.edu/theft-is-not-fair-use-474e11f0d063
https://jskfellows.stanford.edu/theft-is-not-fair-use-474e11f0d063
https://www.nytimes.com/2025/08/26/technology/chatgpt-openai-suicide.html
https://www.nytimes.com/2025/08/26/technology/chatgpt-openai-suicide.html
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.nytimes.com/2024/10/23/technology/characterai-lawsuit-teen-suicide.html
https://www.nytimes.com/2024/10/23/technology/characterai-lawsuit-teen-suicide.html
https://www.cbsnews.com/news/labelers-training-ai-say-theyre-overworked-underpaid-and-exploited-60-minutes-transcript/
https://www.cbsnews.com/news/labelers-training-ai-say-theyre-overworked-underpaid-and-exploited-60-minutes-transcript/
https://www.cbsnews.com/news/labelers-training-ai-say-theyre-overworked-underpaid-and-exploited-60-minutes-transcript/

FEATURE »

Restrict Mutability of State

Changing state can cause problems in software.
Kevlin Henney reminds us that when it is not necessary
to change, it is necessary not to change.

hat appears at first to be a trivial observation turns out to be a
subtly important one: a great many software defects arise from
the (incorrect) modification of state. It follows from this that if

there is less opportunity for code to change state, there will be fewer
defects that arise from state change!

Perhaps the most obvious example of restricting mutability is its most
complete realization: immutability. A moratorium on state change is an
idea carried to its logical conclusion in languages that embody a pure
expression of the functional paradigm, such as Haskell and Clojure.
But even the modest application of immutability in other programming
languages and paradigms has a simplifying effect with architectural
implications and benefits.

Immutability makes it easier to reason about state. If an object can’t have
its state changed when your back is turned, that’s one less thing to track,
one less thing to worry about, one less thing that needs to be remembered,
and so one less thing that can be forgotten or overlooked. If an object
is immutable it can be shared freely across different parts of a program
without concern for aliasing problems or synchronization surprises.

Programmers often assume thread-safety is necessarily associated with
locking. This assumption comes from focusing on what is being locked
rather than appreciating what locking is supposed to protect something
from. You don’t use locks because you wish to prevent concurrent access
to an object by other threads; you use locks to prevent concurrent access
to an object whose state may change. What matters here is the possibility
of change. Without change, there is no need to lock.

An object that does not change state is, therefore, inherently thread-safe
and free to access — there is no need to synchronize and guard against
state change if there is no state change! An immutable object does not
need locking or any other palliative workaround to achieve safety.

A large fraction of the flaws in software development are due to
programmers not fully understanding all the possible states their
code may execute in. In a multithreaded environment, the lack of
understanding and the resulting problems are greatly amplified,
almost to the point of panic if you are paying attention. [Carmack12]

Depending on the language and the idiom, immutability can be expressed
in the definition of a type or through the declaration of a variable. For
example, Java, JavaScript, and .NET’s String class represents objects
that are essentially immutable — if you want another string value,
you use another string object. Immutability is particularly suitable for

Kevlin Henney is an independent consultant, speaker, writer and
trainer. His development interests include programming languages,
software architecture and programming practices, with a particular
emphasis on unit testing and reasoning about practices at the
team level. He is co-author of A Pattern Language for Distributed
Computing and On Patterns and Pattern Languages. He is also
editor of 97 Things Every Programmer Should Know and co-editor
of 97 Things Every Java Programmer Should Know.

18 | Overload | February 2026

value objects in languages that favour predominantly reference-based
semantics.

By contrast, the const qualifier in C and C++ and, more strictly,
immutable in D and constexpr in C++, constrain mutability through
declaration. Such qualification restricts mutability in terms of compiler-
enforced access rights, typically expressing the notion of read-only access
rather than necessarily full immutability.

Perhaps a little counter-intuitively, copying offers an alternative technique
for restricting mutability. In languages offering a transparent syntax
for passing by copy, such as C#’s struct objects and C++’s default
argument-passing mode, copying value objects can greatly improve
encapsulation and reduce opportunities for unnecessary and unintended
state change. Passing or returning a copy of a value object ensures that
the caller and callee cannot interfere with one another’s view of a value.

But be aware that an approach reliant on copying is not recommended if
the passing syntax is neither easy nor transparent. If programmers have to
make special efforts to remember to make a copy, such as explicitly calling
a clone method, they are also being given the opportunity to forget to make
a copy. Far from being a simplification, it becomes tedious and error-
prone, a complication that is easy to overlook, a bug waiting to happen.

In general, make state and any modification to it as local as possible.
For local variables, declare as late as possible, when a variable can be
sensibly initialized. Try to avoid broadcasting mutability through public
data, global and class static variables (which are essentially globals with
scope etiquette), and modifier methods. Resist the temptation to mirror
every getter with a setter.

Encapsulation is important, but the reason why it is important is
more important. Encapsulation helps us reason about our code. In
well-encapsulated code, there are fewer paths to follow as you try
to understand it. Encapsulation isn’t an end in itself; it is a tool for
understanding. [Feathers04]

The relationship between immutability and encapsulation is often
overlooked. For (counter)example, a common code smell is methods
or properties that return references to collections used as private
representation. Not only does this expose and tie callers into a dependency
on the private representation choice, it also grants them inappropriate —
and often unintended — write-access to state. In addition to traversal and
query, they can now modify the collection content, breaking any invariant
protection that encapsulation was supposed to offer. That no-nulls and no-
duplicates guarantee? No longer a guarantee. Anyone can insert nulls and
duplicates once you’ve invited them in!

Never ever invite a vampire into your house. And why? Because it
renders you powerless. [LostBoys]

Instead of handing out the whole collection, which allows others to
undermine an object’s integrity, consider offering an iterable or streamable
view of the elements. This takes different forms in different languages and
libraries: Iterator or Stream in Java, IEnumerator, IEnumerable,

highwire act

" FERTURE

code that we consider complex is
hecause of the mental
trying to

and LINQ in C#; iterators and ranges in C++; iterators, iterables, and
__iter _ in Python. By restricting callers to views [Bharambe15], they
can look but they can’t touch and, therefore, can’t break.

Much code that we consider complex is considered complex because of
the mental highwire act we perform when trying to understand what (the
hell) is going on. The more that things can change — and the more that
changes depend on one another — the harder it becomes to reason about
them correctly and confidently. Thinking about code should not be a circus
performance. The name for code we can’t reason about? Unreasonable.
Immutability makes code more reasonable.

When it is not necessary to change,
it is necessary not to change.
~ Lucius Cary

Restricting mutability of state is not, however, some kind of silver bullet
you can use to shoot down all defects. The resulting code simplification
and improvements in encapsulation nonetheless make it less likely

you will introduce defects, and more likely you can change code with
confidence rather than trepidation. B

References

[Bharambe15] Ashwin Bharambe, Zack Gomez, Will Ruben ‘Under the
hood: Building Moments’, posted 15 June 2015 on Engineering at
Meta, available at https://engineering.fb.com/2015/06/15/android/
under-the-hood-building-moments/.

[Carmack12] John Carmack, ‘In-depth: Functional programming in
C++, posted 30 April 2012 on Gamasutra, available at
https://web.archive.org/web/20190122134815/http://gamasutra.com/
view/news/169296/Indepth Functional programming in C.php

[Feathers04] Michael Feathers (2004) Working Effectively with Legacy
Code, published Pearson.

[LostBoys] The Lost Boys (film), details at https://www.imdb.com/title/
tt0093437/

In CVu, there is a 4-way tie for 1st place:

B ‘C#’s Unsung Heroes: the Value Tuple’ by Steve Love,
published in CVu 37.2 in May 2025 and available to
members at https://accu.org/journals/cvu/37/2/1ove-2/

B ‘Beginners’ Python on Amazon Alexa’ by Silas S.
Brown, published in CVu 37.3 in July 2025 and
available to members at https://accu.org/journals/
cvu/37/3/brown-1/

B ‘Long-running Actions on GitHub’ by Silas S. Brown,
published in CVu 37.3 in July 2025 and available to
members at https://accu.org/journals/cvu/37/3/brown-2/

B ‘What M3GAN Can Tell Us About Software
Engineering’ by Silas S. Brown, published in CVu 37.4
in September 2025 and available to members at https://
accu.org/journals/cvu/37/4/brown/

:PE‘} 3?:&“9*
N

L%
A

The Results of the 2025 Favourite Articles Suruvey

Congratulations to the winners, and thank you to everyone who took the time to vote!

In Overload, there is a winner and a 3-way tie for 2nd place
The winner:

B ‘Concurrency Flavours’ by Lucian Radu Teodorescu,
published in Overload 190 in December 2025 and
available at https://accu.org/journals/overload/33/190/
teodorescu/

Second place:

B ‘Using Senders/Receivers’ by Lucian Radu
Teodorescu, published in Overload 185 in February
2025 and available at https://accu.org/journals/
overload/33/185/teodorescu/

B ‘Bit Fields, Byte Order and Serialization’ by Wu
Yongwei, published in Overload 185 in February
2025 and available at https://accu.org/journals/
overload/33/185/wu/

B ‘Local Reasoning Can Help Prove Correctness’ by
Lucian Radu Teodorescu and Sean Parent, published in
Overload 188 in August 2025 and available at https://
accu.org/journals/overload/33/188/teodorescu-parent/

February 2026 | Ouerload | 19

https://engineering.fb.com/2015/06/15/android/under-the-hood-building-moments/
https://engineering.fb.com/2015/06/15/android/under-the-hood-building-moments/
https://web.archive.org/web/20190122134815/http://gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://web.archive.org/web/20190122134815/http://gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.imdb.com/title/tt0093437/
https://www.imdb.com/title/tt0093437/
https://accu.org/journals/cvu/37/2/love-2/
https://accu.org/journals/cvu/37/3/brown-1/
https://accu.org/journals/cvu/37/3/brown-1/
https://accu.org/journals/cvu/37/3/brown-2/
https://accu.org/journals/cvu/37/4/brown/
https://accu.org/journals/cvu/37/4/brown/
https://accu.org/journals/overload/33/190/teodorescu/
https://accu.org/journals/overload/33/190/teodorescu/
https://accu.org/journals/overload/33/185/teodorescu/
https://accu.org/journals/overload/33/185/teodorescu/
https://accu.org/journals/overload/33/185/wu/
https://accu.org/journals/overload/33/185/wu/
https://accu.org/journals/overload/33/188/teodorescu-parent/
https://accu.org/journals/overload/33/188/teodorescu-parent/

FEATURE »

We spend a lot of time hammering away.
Chris Oldwood reminds us that spending time
mulling things over can also be productive.

hile on a recent trip to an alternate recycling centre with my
Wdaughter, she noticed they had a bunch of smaller specialist

bins separate from the huge containers used for the main bulk of
waste. There were a couple for CDs but, more interestingly, there was one
filled with books. She started to have a rummage and then called over to
me as she noticed a programming book in amongst the James Pattersons.
As expected, it was one of those ‘Learn to Program in 24 Minutes’ style
books from the *90s. However, as I dug deeper, I noticed a whole bunch
of far more useful programming books, and all in pristine condition.
Although slightly incensed that someone decided to bin them rather than
take them directly to a charity shop, I was grateful they hadn’t disposed
of them in the generic waste containers to be tossed on the landfill or
incinerated. (Hopefully, the recycling centre will ensure they eventually
find another bookshelf to live out their days.)

Anyway, one of the eleven books I liberated was Andy Hunt’s 2008
classic Pragmatic Thinking & Learning — Refactor Your Wetware,
which had been on my ever-growing wish-list for years. Being excited
about yet another non-technical book probably adds further weight to
J.B. Rainsberger’s observation about a programmer’s bookshelf largely
consisting of books on applied psychology once they reach a certain level
of proficiency.

The book uses the model of the brain from Dr Betty Edwards which
introduced the terms L-mode and R-mode as an alternative to the older,
more simplistic left-brain/right-brain version. R-mode is the background
asynchronous mode which chews over problems while you’re doing
more mundane tasks like going for a walk, doing the dishes, or having a
shower. This is the basis for the age-old advice about stepping away from
the keyboard when you have a problem for which there is no immediate
solution. In fact, just this very morning I awoke to discover that I'd
worked out in the night while fast asleep that I could replace 13 lines of
code in my colleague’s PR with just 2. (Something didn’t feel right when
reviewing it yesterday, but I couldn’t put my finger on it.)

Being a contractor it’s not uncommon to be forced to take the two weeks
off at Christmas to save the company money, and because I suspect
we can’t be trusted for some reason. (Maybe they read my previous
Afterwood, where I admitted to Santa that I might have played a bit too
much Doom during Christmas of *93.) This practice hasn’t bothered me
personally as I’'m happy to take the time off and spend it with my own
family, along with taking a welcome break entirely from programming.
That’s not entirely true of course because it just gives my brain’s R-mode a
chance to start chewing over the backlog of less immediate issues instead.
Even when we’re supposedly ‘off the clock’ our brain still manages to
find some background computation to amuse itself.

Consequently, two years ago [found myself thinking about thinking, which
led to my 2024 opening piece ‘Thought Experiments’. Clearly I hadn’t
spent enough time thinking about it because I realised this Christmas

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’'s enterprise grade technology from ptasheerporate-offices the comfort of his breakfast bar. He also commentates
on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and @chrisoldwood e 4

20 | Overload | February 2026

that 1 forgot to cover the ‘when’, which was no doubt asynchronously
triggered by a conversation about the 1987 book Peopleware by Tom
DeMarco & Tim Lister. (The latter of which I got to chat to in the bar at
the ACCU 2012 conference.)

That book is legendary, and contains one of my favourite stories:

One day, while Wendl was staring into space pondering problems
of extreme complexity with his feet propped up on the desk, their
boss came in and asked, “Wendl! What are you doing?” Wendl|
said, “I'm thinking.” And the boss said, “Can’t you do that at home?”

This story immediately resonated with me as I read it not long after
having a conversation with my project manager where he was describing
how ridiculous it was that someone he knew was paid for his ‘thinking
time’. While not as explicit, this opinion was undoubtedly shared by other
project managers I had worked with in the past and who probably felt that
typing was the only true measure of productivity and value.

In the intervening couple of decades, more and more teams I’ve worked
in have adopted an agile way of working where there is a drive to try and
distil every bit of work into tiny units, meaning that any “hammock time’
you might want to think things over is timeboxed and scheduled on the
Scrum board. If Wendl was in a corporate agile team today the Scrum
Master would likely be interrogating him every morning to ask him to
estimate how much longer his thinking was going to take and when he
was going to get back to ‘product work’.

With the focus so firmly on solving ever smaller problems and hoping that
the right design will eventually emerge there is no time to simply stand back
and take in the bigger picture. There is time in the diary for a retrospective
on how the team delivers, but where is the time for reflection on the
architecture and design? Who is watching the evolution of the codebase
and thinking about the direction it’s heading, and whether that really fits in
with the intended direction of travel? Changes shouldn’t be held to ransom
by pure speculation but as plans solidify so does the opportunity to make
smaller course corrections instead of taking sharp turns.

I’ll freely admit that I resent the attitude of that project manager who
scolded Wendl, and those who have propagated the same opinion. With
L-mode constantly engaged during the time in the office, R-mode only
gets a look-in at home — code by day, design by night. Fortunately, with
the rise of remote working in the last 5 years my R-mode is finally getting
the opportunity to see more daylight.

Wandering over to the sink in the office to wash up the cups would likely

be met with awkward questions, but at home my actions are less suspicious

and R-mode can safely engage itself. The danger then is picking the wrong

mundane task — packing the dishwasher might seem trivial

but is effectively a game of Tetris, and pairing socks is

akin to Candy Crush. Maybe it’s best to play it safe and =

just put my feet up, I wouldn’t want to overthink it. B r"g ﬁ)
T]

X

Run by programmers for programmers,
join ACCU to improve your coding skKills

A worldwide non-profit organisation
Journals published alternate months:

— CW in January, March, May,
July, September and November

— Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

Join now!

Visit the website

professionalism in programming

WWwWWw.accu.org

code?

programming?

Join ACCU www.accu.org

	Editorial: Everything is Under Control
	Effective Behavior DrivenDevelopment
	Effective Behavior Driven Development
	Implementing vector<T>
	Letter to the Editor
	Restrict Mutability of State
	The Results of the 2025 Favourite Articles Survey
	Afterwood

