
A magazine of ACCU ISSN: 1354-3172

UDB: The undo.io
Time Travel Debugger

Paul Floyd explains how
to use UndoDB to debug code.

Vibe Coding in Rust
Amy Thomason discusses lessons learnt from using
GenAI to code in Rust.

Filters and Wildcards (Shell Globbing)
Ian Bruntlett describes what he learnt when he used
a shell script to automate translation between html
and markdown.

User-Defined Formatting in std::format
Spencer Collyer demonstrates how to provide
formatting for a simple user-defined class.

Afterwood
Chris Oldwood considers the plethora of names he’s been
known by in our profession to be an occupational hazard.

Professional development
World-class conference

Individual membership
Corporate membership

Printed journals
Email discussion groups

Visit accu.org
for details

accu
Professionalism in Programming

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

October 2025 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

October 2025
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Barry Nichols
barrydavidnichols@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Mnimage from
Adobe Stock Photos.

Copy deadlines
All articles intended for publication in Overload 190 should be submitted by
1st November 2025 and those for Overload 191 by 1st January 2026.

	 4	 Vibe Coding in Rust
Amy Thomason discusses lessons learnt
from using GenAI to code in Rust.

	 7	 UDB: The undo.io Time Travel Debugger
Paul Floyd explains how to use UndoDB
to debug code.

	10	 Filters and Wildcards (Shell Globbing)
Ian Bruntlett describes how he used a shell
script to automate translation between html
and markdown, and what he learnt.

	13	 User-Defined Formatting in std::format
Spencer Collyer demonstrates how to provide
formatting for a simple user-defined class.

	20	 Afterwood
Chris Oldwood considers the plethora of
names he’s encountered for our profession:
an occupational hazard.

https://stock.adobe.com/contributor/203694435/mnimage?load_type=author&prev_url=detail

Frances BuontempoEditorial

2 | Overload | October 2025

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning called Genetic Algortithms and Machine Learning
for Programmers, and one to help you catch up with C++ called Learn C++ by Example. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B machine.
She can be contacted at frances.buontempo@gmail.com.

Ignore Rants
Programmers often argue, sometimes based on a
lack of knowledge. Frances Buontempo explores
why people rant, and when it’s OK.

Getting sucked in to a good old rant, either trying to
set the world to rights or simply letting off steam, can
be useful. But off-putting. Possibly even derailing you
from important tasks, like writing an editorial. (Yes,
yet again, another excuse from Yours Truly). Some
people start ranting because they don’t understand

why certain processes or techniques exist. Why would you write code
and put it in version control when you could simply use a strategic
spreadsheet? If you’re not used to collaborating with people, version
control and the like may seem over the top. Such ranting is a sign of
frustration, often borne of ignorance, at having to adopt a new process.

Many people resist change, especially if the current process works for
them. However, some change is worth embracing, for example some of
the changes to C++ over the years. Simple things like range-based for
loops or structured bindings make life easier. Some companies are stuck
on slightly older versions of the standard because an upgrade often takes
time. Even though C++ strives to be backwards compatible, new warnings
often appear if you try a newer compiler. I’ve been involved in some
upgrades to newer language versions and something surprising always
seems to happen. Usually a nasty surprise, which makes everything take
much longer than expected. But sometimes the change helped us find
causes of bugs we had been pondering for a long while. Change can be
difficult, but useful. And we got to use newer features. Worth it in the end.

‘Modern’ C++ is so much better than older versions, but some new and
perhaps over-complicated things have been introduced in C++ too. Can
you write a coroutine without needing to look up what’s needed? I can’t.
But I can now look at my Learn C++ by Example book [Buontempo24],
because I know there’s a chapter in there that will help. Thank you to
everyone who helped me learn how to use coroutines, especially Phil
Nash’s C++ On Sea workshop in 2023 [Nash23]. If you missed that,
his ‘C++ Coroutines: Gods from the machine’ talk is a great resource
too [Nash25]. Change usually means you need to learn a new way to do
stuff. That can be a challenge, but if you can find the right resources, or
better someone to show you how, you’re off to a good start. It’s OK to
have a brief “Oh no, I’m back to knowing nothing” to begin with. We’ve
all been there, and are aware of the Dunning-Kruger effect, I presume
[Wikipedia-1]. If you have limited competence, you might think you
know it all. And the reverse effect notes if you have more competence,
you are more likely to be aware of your weak spots. When faced with
change, ranting and refusing to move with the times might not be the best
option.

Some rants are entirely justified, or manifest
as a silent scream. Has your machine done
an auto-update recently, which failed? Ask
our esteemed CVu editor about his laptop.

Fortunately, he manage to retrieve his product key from bit locker, and
persuade the machine to boot up again. Nobody wants to see a BSD
(blue screen of death). If you don’t let off steam when you are frustrated,
you will likely implode at a later date, possibly over something tiny that
doesn’t really matter. Some things are simply annoying, and maybe result
from a careless update or lack of testing. It’s OK to get angry, as long as
you can move on and find a workaround or Plan B.

So much software is rubbish. There I said it. And I include some code
I have previously written. However, I’m thinking about various retail
websites. How many times do you need to accept cookies if you go to
a certain DIY website to buy some building materials? Clue: more than
once. How many times do address finders fail, especially if like us, you
don’t have a house number? It’s no surprise people tend to go, “Ugh!”
when I tell them I’m writing a book about computers. (I just ‘finished’ my
final chapter of my latest book [Buontempo26]). People like the idea of
a book, but in the main recoil at the mention of computers. Many people
claim they just can’t get the hang of technology. Trying to use a badly
designed website doesn’t mean you are bad at computers. If you design
UIs, just watching someone use your product for a few minutes often
reveals problems you can easily fix. Some people are very good at UIs,
but evidence might suggest they are few and far between. Thank you for
listening. Now I’ve got that rant out, I can move on.

Talking of moving on, people are still hailing Rust as a successor
language to C++. We’re moving with the times, so have an article in this
edition to give you a glimpse of some basics if you’ve not tried Rust yet.
People claim ‘Rust is safer than C++’. If I search that phrase, the first hit
says “Rust eliminates many common bugs that plague C++ development.”
Eliminates? Common? Plagues? Hyperbole?! Maybe. I suspect some of
the anti-C++ diatribes are based on wishful thinking. You can, of course,
write unsafe code in Rust (yes, unsafe is a Rust keyword) [Rust]. I
have nothing against Rust, and have yet to try it properly. I don’t like
it when people tell me C++ is terrible, though. I feel the need to defend
C++. It’s flawed, like any language. It’s hard to learn and teach. But, it’s
powerful and you can use it for almost anything. And yes, you might have
buggy and potentially unsafe code. But I am certain that is true of any
language. I guess I need to ignore rants and try to think straight, no matter
how contentious people are being.

Ignorance means not knowing, so can be fixed with knowledge. I say
‘can be’. Some ignorance is willful, and even has a legal definition
[Wikipedia-2]:

When a person seeks to avoid civil or criminal liability for a wrongful
act by intentionally keeping themselves unaware of facts.

I could rant about people who stick their heads in the sand and choose to
ignore evidence. Such deliberate selective hearing is down-right dangerous

Frances Buontempo Editorial

October 2025 | Overload | 3

at times. Just consider anti-vaxxers and recent measles outbreaks. Nothing
new: anti-vaxxers have existed since the first smallpox vaccine in 1796
[NIH]. You can’t reason with unreasonable people, so I’ll park that train
of thought. You can spot your own ignorance and try to fix it. How do
you find reliable sources for increasing your knowledge? Some might
claim the internet has made the situation worse, but I am certain people
complained from the moment we had a printing press that pamphlets and
the like might contain untruths. Books are sometimes wrong too. That
doesn’t invalidate all books. Likewise, the internet can be useful. In both
cases, you need to develop some discernment, or ask others to guide you
through the vast number of articles, courses, books and the like. You can
see product reviews online, but sometimes these are fake! Shock, horror!!
If you are considering buying a book, do look at the ACCU book reviews
[ACCU]. And note, if you are an ACCU member you can request a copy
of a book to review from our list. You get a free book, which might just
cover the cost of ACCU membership. What’s not to like? Anyway, take a
look at our book reviews.

Some rants are purely to let off steam. Have you ever caught yourself
in a discussion about tabs versus spaces? Or the one true way to place
braces? Or written a language that doesn’t use braces, and kinda forces
one true way of indenting code? Maybe the latter is less common, but hey.
Even Python, which use indentation rather than braces, can still cause
‘holy wars’. Have you ever found a Python script with a mix of tabs
and spaces? Should you use type hints or embrace duck typing? People
are always going to find something to have Opinions (with a capital O),
and those opinions are frequently divided. Such disagreements can be
a good way to explore different viewpoints and understandings. You
should probably be deeply suspicious if everyone agrees. Conflict can
enable discussion and discovery. My Dad was a mathematics teacher,
and went on to teach trainee teachers. He always said arguments and
conflicts facilitate learning. If you can come out with a good example
of surprising behaviour, you have a good teaching example. I recall my
mind being blown by non-transitive dice when I was very young. My Dad
made some: you use three, with six faces, like usual dice, but the numbers
differ. They have three pairs of values each:

	� Die A has sides 2, 2, 4, 4, 9, 9.

	� Die B has sides 1, 1, 6, 6, 8, 8.

	� Die C has sides 3, 3, 5, 5, 7, 7.

Each can beat the other two. You could do some sums on the probabilities
of each die winning against the others [Wikipedia-3]. Not everything has
an ordering. The Pragmatic Programmers are running a series of ‘Brain
teaser’ books [Pragmatic]. I’ve read the Numerical, C++ and C# books in
this series. They are nice and short, and give you plenty to think about,
including some very surprising behaviour, which will improve your
understanding of the topics covered.

If you find yourself faced with people in conflict and can’t manage to
bring everyone to agreement, consider Timur Doumler’s ‘Herding Cats’
talk [Doumler25]. He spoke about trying to get people to agree on
contracts for C++. This has been a work in progress for a very long time,
making the drawn out discussions over concepts look like a walk in the
park. Though the focus of the talk is on contracts themselves, Timur’s
overview says:

Within the C++ standardisation process, we face significant
obstacles: the infamously slow and challenging ISO process,
the absence of a holistic strategy, and the lack of a shared
understanding of what “safety” even means.

He ends,

We also explore the human side of standardisation – the art of
helping fiercely opinionated engineers find common ground – and
what we can learn from it.

Trying to ensure everyone can make their point, but also listen to opposing
views and find a way to agree is a challenge. Listen to his talk: he suggests
some ways to make progress. C++’s design by committee can make the
process slow, but it also means a variety of people can give input. Thank
you committee for all the hard work.

So, ignorance can be fixed, but you need to become aware of your lack of
knowledge. Perhaps you don’t need to know something. I can live with
not knowing Rust, at the moment. If the time comes, I might give it a go.
There are plenty of resources out there that can help you if you want to
learn something new, but be picky. Eyeball the ACCU book reviews, or
chat to someone before you invest time on badly written books or training.
Another good way to learn is by explaining to someone else. Maybe write
an article for us? You will find you need to fill in some details you hadn’t
thought about, or get feedback nudging you to be more precise. If you do
have something to rant about, that could make a good article too. Offer a
proof of concept to get it off your chest or show an alternative.

Notice the Dunning-Kruger Wikipedia [Wikpedia-1] article points out
towards the end:

Ignorance is sometimes bliss. In this sense, optimism can
lead people to experience their situation more positively, and
overconfidence may help them achieve even unrealistic goals

I suspect I would never have embarked on some of
my personal projects if I had realized how difficult
or time consuming they would be. Ignorance isn’t
always bad, but learning and thinking is almost
always good.

References
[ACCU] ACCU book reviews: https://accu.org/menu-overviews/

reviews-overview/
[Buontempo24] Frances Buontempo (2024) Learn C++ by Example

ISBN 9781633438330, available at https://www.manning.com/
books/learn-c-plus-plus-by-example

[Buontempo26] Frances Buontempo Introducing C++ (due
March 2026), see https://www.oreilly.com/library/view/
introducing-c/9781098178130/

[Doumler25] Timur Doumler ‘Contracts, Safety, and the Art of Cat
Herding’ given at C++ on Sea 2025, available at:
https://www.youtube.com/watch?v=gtFFTjQ4eFU

[Nash23] Phil Nash ‘Introduction to C++ Coroutines’, abstract and
relevant links at https://old.cpponsea.uk/2023/sessions/introduction-
to-cpp-coroutines.html

[Nash25] Phil Nash (2025) ‘C++ Coroutines – Gods from the Machine’
presented at ACCU 2025, available at: https://www.youtube.com/
watch?v=b6pYieNd_OY

[NIH] Miguel Gallegos, Viviane de Castro Pecanha and Tomás Caycho-
Rodríguez, ‘Anti-vax: the history of a scientific problem’, published
in Journal of Public Health on 16 April 2022 and available from
National Library of Medicine at https://pmc.ncbi.nlm.nih.gov/
articles/PMC9383768/

[Pragmatic] ‘Brain Teasers’ series of books: https://pragprog.com/
categories/brain-teasers/

[Rust] Rust standard: unsafe keyword: https://doc.rust-lang.org/std/
keyword.unsafe.html

[Wikipedia-1] Dunning-Kruger effect: http://en.wikipedia.org/wiki/
Dunning%E2%80%93Kruger_effect

[Wikipedia-2] Willful ignorance: https://en.wikipedia.org/wiki/Willful_
ignorance

[Wikipedia-3] Intransitive dice: https://en.wikipedia.org/wiki/
Intransitive_dice

https://accu.org/menu-overviews/reviews-overview/
https://accu.org/menu-overviews/reviews-overview/
https://www.manning.com/books/learn-c-plus-plus-by-example
https://www.manning.com/books/learn-c-plus-plus-by-example
https://www.oreilly.com/library/view/introducing-c/9781098178130/
https://www.oreilly.com/library/view/introducing-c/9781098178130/
https://www.youtube.com/watch?v=gtFFTjQ4eFU
https://old.cpponsea.uk/2023/sessions/introduction-to-cpp-coroutines.html
https://old.cpponsea.uk/2023/sessions/introduction-to-cpp-coroutines.html
https://www.youtube.com/watch?v=b6pYieNd_OY
https://www.youtube.com/watch?v=b6pYieNd_OY
https://pmc.ncbi.nlm.nih.gov/articles/PMC9383768/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9383768/
https://pragprog.com/categories/brain-teasers/
https://pragprog.com/categories/brain-teasers/
https://doc.rust-lang.org/std/keyword.unsafe.html
https://doc.rust-lang.org/std/keyword.unsafe.html
http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect
http://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect
https://en.wikipedia.org/wiki/Willful_ignorance
https://en.wikipedia.org/wiki/Willful_ignorance
https://en.wikipedia.org/wiki/Intransitive_dice
https://en.wikipedia.org/wiki/Intransitive_dice

Amy ThomasonFeature

4 | Overload | October 2025

Vibe Coding in Rust
Many people are learning how to herd LLMs right
now. Amy Thomason discusses lessons learnt
from using GenAI to code in Rust.

I’ve been writing code since the ’70s and things have gone through a
number of changes since then, to say the least. From machine code
to assembly to early compilers, coding standards and practices up to

the present day where a new paradigm is emerging in the form of LLM
models focused on generating and analysing code.

All of this has been change, relentless change, and you probably should
not be in the software business if you are not quick to adapt to the pace
of technology.

As a certified old fart, I was very sceptical of the idea of LLMs generating
code and to a degree I remain so. Computational linguistics was very
definitely a thing when I started my career, we founded the Manchester
Aristotelian Society in the ‘80s to discuss philosophy with a group of
computational linguists who were using Prolog to translate to and from
Japanese.

Using Prolog for language was a highly Asimovian aproach to the
problem. Like the positronic brain, every detail needed to be worked out
by hand, every rule of grammar raked over and converted to statements.
The idea of doing this with neural networks would have seemed crazy as
the memory and computational requirements would have been impossible
with the hardware of the day and the text required to train the networks
was not available.

These days we have a huge number of language models to choose from
for every situation from text-to-image to biological paper scanning. I’m
going to do a little experiment using the default settings of the copilot
extension to VS Code to see if we can actually write something that
works.

Note that I’m not an expert at this, not doubt there will be others who have
done little else for the last few years who can speak more confidently
about how to do this. There are also a myriad of YouTube videos to help
you on your way.

We’re using Rust for this as it is the language that I teach and is
increasingly the choice for startups and new projects and even a few
legacy ones like Linux. If you are looking to book a training course in
Rust for your existing C++ teams then this is a shameless plug.

This article is based on a workshop we held at Oxford ACCU/Rust the
first wednesday of July. Come to our sessions if you want to learn more!

Step 1, plan what we are going to do.
As with all coding projects, we need to plan what we are doing and decide
on the end goal we are going to reach. We are going to have to proceed
in steps and use our existing knowledge of programming to guide us on
the way.

Our goal is to write a simple chess board visualisation where two players
take it in turn to move pieces on the board. For a stretch goal, we could
check the moves.

As with all Rust programs we start with cargo new to create a hello
world program and then edit with VS Code.
 $ cargo new overload-vibe-coding
 $ code overload-vibe-coding

This generates our start point:
 fn main() {
 println!(“Hello, world!”);
 }

We have pre-installed the rust-analyser and copilot extensions to VS
Code and are using the default language model, GPT 4. You have a choice
of several language models, so have a play with them all.

We can now use Ctrl-I to open the Copilot prompt.

I asked it:

> Write a plan for a two player chess program as a module comment

I’m told that creating a plan first is a good first step as it give you a chance
to review what you are about to do.

Of course, we could just write

> Write me a two player chess program

And I did try this, but the results were quite disappointing and no doubt
just cribbed from something on the internet.

The plan it generated looks like Listing 1 (next page).

This sounds credible, so let’s proceed. We should be cautious of the
origins of such text as it may be subject to copyright, however.

Step 2, A chess piece and board square
Let’s define an enum for a chess square. We will include a blank square so
that we don’t need to use an Option for blank squares.

The query

> define an enum for chess pieces with colour and a blank square

was disappointing and the answer was quite verbose.

A few more queries produced a very similar result and I had to repeat
the query a few times until I had a similar result to what I expected. This
enum should occupy two bytes, one for the discriminator and one for the
colour. (See Listing 2, next page.)

Amy Thomason After reverse engineering the Namco console in the
’70s, Amy went on to develop typesetting systems and GUI operating
systems in the ’80s and game engines in C++ in the ’90s, switching
to developing the PS3 compiler in the 2000s. She’s been teaching
C++ game engine development at Goldsmiths, moving to Genetics
in Oxford where she runs the ACCU meetups today.

Amy has a Rust training business and can help you with your
conversion from C++ to Rust and loves complex technical projects
like blockchain nodes and procedural geometry for 3D printing – get
in touch on LinkedIn.

Amy Thomason Feature

October 2025 | Overload | 5

I would imagine that the source weights had a few variants that it was
cycling through.

I tried to add an extra element Blank to the enum, but manually editing
worked better. I also corrected the spelling to European English.

Next:
 // > make a struct GameState with an 8x8 board
 // and a player colour.
 #[derive(Debug)]
 struct GameState {
 board: [[ChessPiece; 8]; 8],
 current_player: Colour,
 }

From now on I’ll show just the final result of each query. I would imagine
that the queries would be better with a more experienced ‘vibe’ coder.

Step 3, The game state
The local use items here is not in common usage in Rust, but I find it
reduces the source code a great deal so I edited the result. Very few Rust
examples use local use to reduce code bloat like this. (See Listing 3.)

A general observation is that I’m being steered in the direction of the
original coder of this problem and making the code yours would be more
challenging for a less experienced coder.

But on the whole, it has made something that seems to work with very
few edits.
 // > implement a method to convert Square to a
 // row and column
 impl Square {
 fn to_row_col(self) -> (usize, usize) {
 let index = self as usize;
 let row = index / 8;
 let col = index % 8;
 (row, col)
 }
 }

And now let’s show the board and next player (see Listing 4).

//! # Two-Player Chess Program
//!
//! This module provides the foundation for
implementing a two-player chess game in Rust.
//! The program will include the following key
components:
//!
//! ## Features
//! - **Game Board Representation**: A data
structure to represent an 8x8 chessboard,
including pieces and their positions.
//! - **Piece Movement Rules**: Logic to validate
legal moves for each type of chess piece (pawn,
knight, bishop, rook, queen, king).
//! - **Turn-Based Gameplay**: Alternating turns
between two players, enforcing the rules of
chess.
//! - **Check and Checkmate Detection**:
Mechanisms to detect when a king is in check or
checkmate.
//! - **Stalemate and Draw Conditions**: Logic
to handle stalemates, insufficient material, and
other draw scenarios.
//! - **Move History**: A record of all moves
made during the game for undo functionality or
analysis.
//!
//! ## Plan
//! 1. **Define Data Structures**:
 - Create enums for `PieceType` (pawn,
knight, etc.) and `Color` (white, black).
//! - Define a `Piece` struct to represent a
chess piece with its type and color.
//! - Implement a `Board` struct to represent
the chessboard as an 8x8 grid.
//!
//! 2. **Implement Movement Logic**:
//! - Write functions to validate moves for
each piece type based on chess rules.
//! - Ensure moves respect the board
boundaries and piece interactions (e.g.,
capturing, blocking).
//!
//! etc.

Listing 1

// > make an enum ChessPiece
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum ChessPiece {
 Pawn(Color),
 Knight(Color),
 Bishop(Color),
 Rook(Color),
 Queen(Color),
 King(Color),
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Color {
 White,
 Black,
}

Listing 2

// > add a constructor to GameState using an 8x8
// const array
fn new() -> Self {
 use ChessPiece::*; // These were manual edits
 // to make the code shorter.
 use Colour::*;
 const INITIAL_BOARD: [[ChessPiece; 8]; 8] = [
 [Rook(White), Knight(White), Bishop(White),
 Queen(White), King(White), Bishop(White),
 Knight(White), Rook(White)],
 [Pawn(White); 8],
 [Blank; 8],
 [Blank; 8],
 [Blank; 8],
 [Blank; 8],
 [Pawn(Black); 8],
 [Rook(Black), Knight(Black), Bishop(Black),
 Queen(Black), King(Black), Bishop(Black),
 Knight(Black), Rook(Black)],
];
 GameState {
 board: INITIAL_BOARD,
 current_player: Colour::White,
 }
}

Listing 3

// > implement Display for GameState with labeled
// rows and columns
impl fmt::Display for GameState {
 fn fmt(&self, f: &mut fmt::Formatter<'_>)
 -> fmt::Result {
 writeln!(f, " A B C D E F G H")?;
 for (i, row) in self.board.iter().enumerate()
{
 write!(f, "{} ", 8 - i)?; // Row labels
 // (8 to 1)
 for piece in row.iter() {
 let symbol = match piece {
 ChessPiece::Pawn(Colour::White) => "♙",
 ChessPiece::Knight(Colour::White)
 => "♘",
 // ...
 ChessPiece::King(Colour::Black) => "♚",
 ChessPiece::Blank => ".",
 };
 write!(f, "{} ", symbol)?;
 }
 writeln!(f)?;
 }
 writeln!(f, " A B C D E F G H")?;
 writeln!(f, "Current Player: {:?}",
 self.current_player)
 }
}

Listing 4

Amy ThomasonFeature

6 | Overload | October 2025

Let’s convert strings into squares. This is a bit of a hacky solution as we
could have parsed the chars and to_uppercase() allocates memory
which is a no-no in system languages. (See Listing 5.)

Test generation did a lot more work than I asked and made a number of
tests for Square. (See Listing 6.)

Finally, we add a game loop (Listing 7), and we’re now ready to run a
system test (see Figure 1).

Clearly something is wrong.

� What seem to be white pieces are actually black.

� The board is drawn upside down.

� from.to_row_col swaps rows for columns.

Interestingly, these are all mistakes that humans would make. The code
looked good but was rotten at its core.

Fixing these problems (manually, because for me it is easier) gives a
better result where the moves actually work correctly. (See Figure 2.)

Clearly we can continue to develop the plan, but we will run out of paper.

Conclusions
Yes. It is possible to write code with LLMs but it does need some looking
after. It will try to push you towards the program it was trained on. No doubt
this will improve with more training as more examples become available.

The quality of code generated by LLMs is highly dependent on the quality
of the code of the training set. For example, the use of to_uppercase()
shown above isn’t ideal. A junior coder would not know why this is a bad
idea having not spent hours on Godbolt checking the codegen.

The LLM is very useful for looking things up, like ANSI escape codes
or unicode characters. It is also useful for completion, although rust-
analyser’s completion is very often more targeted.

LLMs are very useful for teaching you a new programming language.
For learners of Rust, they must be a great help. I’ve learned most of my
programming languages from reference manuals, and I would not wish

that on a new generation, especially one with hundreds of programming
languages to learn.

For tests, LLMs take a lot of the pain out of the process and seem to be
able to get good coverage. You should review the results, however.

On the whole, I think that LLMs are here to stay. For CRUD farming
and front-end development it will become a necessary tool and even
more eclectic things such as compiler development can benefit from the
completion and lookup LLMs offer. We do need to take care and review
the generated code, however, as what looks convincing may not actually
work. n

// > implement FromStr for square
impl FromStr for Square {
 type Err = String;
 fn from_str(s: &str) -> Result<Self, Self::Err>
 {
 match s.to_uppercase().as_str() {
 "A1" => Ok(Square::A1),
 "A2" => Ok(Square::A2),
 "A3" => Ok(Square::A3),
 "A4" => Ok(Square::A4),
 // ...
 "H5" => Ok(Square::H5),
 "H6" => Ok(Square::H6),
 "H7" => Ok(Square::H7),
 "H8" => Ok(Square::H8),
 _ => Err(format!("Invalid square: {}", s)),
 }
 }
}

Listing 5

// > test that to_row_col returns (0,0) for A1
#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn test_to_row_col_a1() {
 let square = Square::A1;
 let (row, col) = square.to_row_col();
 assert_eq!((row, col), (0, 0));

}
// ...

}

Listing 6

// > add a loop to display the board and accept
// moves
fn main() {
 let mut game_state = GameState::new();
 loop {
 println!("{}", game_state);
 println!("Enter your move (e.g., 'e2 e4') or"
 " 'quit' to exit:");
 let mut input = String::new();
 std::io::stdin().read_line(&mut input)
 .expect("Failed to read input");
 let input = input.trim();
 // ...
 if let Err(err) = game_state.make_move(
 from_square, to_square) {
 println!("Invalid move: {}", err);
 continue;
 }
 }
}
// > implement make_move
fn make_move(&mut self, from: Square, to: Square)
-> Result<(), String> {
 let (from_row, from_col) = from.to_row_col();
 let (to_row, to_col) = to.to_row_col();
 // ...
}

Listing 7

$ cargo run
 Finished 'dev' profile [unoptimized +
debuginfo] target(s) in 0.01s
 Running 'target/debug/overload-vibe-coding'
 A B C D E F G H
8 ♖ ♘ ♗ ♕ ♔ ♗ ♘ ♖
7 ♙ ♙ ♙ ♙ ♙ ♙ ♙ ♙
6
5
4
3
2 ♟ ♟ ♟ ♟ ♟ ♟ ♟ ♟
1 ♜ ♞ ♝ ♛ ♚ ♝ ♞ ♜
 A B C D E F G H
Current Player: White

Enter your move (e.g., 'e2 e4') or 'quit' to
exit:
E2 E4
Invalid move: No piece at the source square.

Figure 1
Enter your move (e.g., 'e2 e4') or 'quit' to
exit:
e2 e4
 A B C D E F G H
8 ♖ ♘ ♗ ♕ ♔ ♗ ♘ ♖
7 ♙ ♙ ♙ ♙ ♙ ♙ ♙ ♙
6
5
4 ♟ . . .
3
2 ♟ ♟ ♟ ♟ . ♟ ♟ ♟
1 ♜ ♞ ♝ ♛ ♚ ♝ ♞ ♜
 A B C D E F G H
Current Player: Black

Figure 2

Paul Floyd Feature

October 2025 | Overload | 7

UDB: The undo.io
Time Travel Debugger
Finding problems in code can be difficult and time consuming.
Paul Floyd explains how to use UndoDB to debug code.

Introduction

UDB is a Linux interactive debugger sold by undo [undo-1]. It uses the
same command interface as GDB. Like GDB you can use it either in
a text terminal or integrated with an IDE such as VS Code or CLion.

Integration means that you will get extra buttons/keyboard shortcuts to
access some of the additional UDB features. I’m not going to describe
using UDB with a kind of GUI. There is plenty of value in using GUIs
(in particular, having automatically refreshed views of local variables
and the call stack). That said, if you know the UDB command line then
using a GUI will be easy. Personally, I use UDB and GDB mainly in TUI
mode1 (text user interface) which presents a split text screen with panes
for source code, assembler and debugger commands.

I’ll start with a quick overview of how the GDB command line works and
then I’ll go on to describe some of the things that you can go with UDB.

GDB basics
GDB is the GNU debugger [GDB-1]. With it you can debug executables
(the ‘inferior’ in GDB lingo). GDB controls
the inferior using the ptrace system call
[ptrace]. Effectively this means that GDB is
going via the kernel to start/stop/step/read
registers and memory in the inferior process.

Normally you will have prepared your
executable by building it with DWARF debug
information [DWARF] (adding the -g or -g3
flag to GCC or LLVM compiler). You can still
debug without debug information, but you
won’t have the source code so you will have
to work at the assembly code level.

Once your executable is prepared you can
debug it
 gdb --args your_executable
 [options for your_executable]

This will give you the gdb prompt
 (gdb)

The inferior isn’t running at this point. Unless you need to debug the
startup code that runs before main(), you can use the start command
which does the equivalent of setting a temporary breakpoint on main(),
running and then stopping at the start of main(). If you are using a
modern Linux and GDB, it will then ask you if you want to download
any missing debuginfo for libraries like libc and libstdc++. This is a great
feature, saving you from having to install endless debuginfo packages.

GDB then prints the first line of source and the prompt. This isn’t a
tutorial on GDB, so I’ll just add a table of frequently used commands

1	 In GDB, there are often 3 or 4 ways of doing the same thing (command
line options, keyboard shortcuts, GDB commands and python code).
Personally, I use keyboard shortcuts like Ctrl+x then a. There is a
15-minute video introduction to TUI [Law15].

related to executing code. Commands can be abbreviated as long as the
abbreviation is not ambiguous.

Command Action Comments
help
[command]

Show help for the
given command.

‘help’ on its own will print a
list of the main subjects.

<enter> Repeat previous
command.

Just the <enter> key.

r[un] Run the executable
from the start.

You can interrupt with ctrl-c.

b[reak]
[location]

Set a breakpoint. GDB will run until the location
is reached.

wa[tch] Set a watchpoint. GDB will run until the
expression in the watchpoint
changes.

c[ontinue] Continue running.

n[ext] Execute the next C++
statement.

Passes through functions.
Sometimes called ‘step over’.
Also ni for next assembler
instruction.

s[tep] Execute the next C++
statement.

Steps into functions.
Sometimes called ‘step in’.
Also si for step assembler
instruction.

fin[ish] Execute until the
current function ends.

Sometimes called ‘step out’.

bt or backtrace
or where.

Prints the current
callstack.

info Many suboptions,
gets info on some
GDB state.

Examples: b[reakpoints] to
list active breakpoints, frame
to see the current active call
frame

There is one thing that is missing. Those commands are c[ontinue]
forwards, n[ext] statement forwards, s[tep] statement forwards and
fin[ish] function forwards. What if you could do all those backwards as
well? That is where UDB comes in.

Before I launch into some details, why would you want to do that?
Quite often, when you are debugging, the problem is something ‘nice’
(from a debugging perspective) like a segmentation fault. You run your
executable, it crashes and the debugger stops. You look at the line of code
where it crashed, check the variables and see that something is NULL and
you can see the problem. Life isn’t always so easy.

Paul Floyd has been writing software, mostly in C++ and C, for about
35 years. He lives near Grenoble, on the edge of the French Alps,
and works for Siemens EDA developing tools for analogue electronic
circuit simulation. In his spare time, he maintains Valgrind. He can be
contacted at pjfloyd@wanadoo.fr

Paul FloydFeature

8 | Overload | October 2025

The kind of problem for which UDB excels is when you have a problem
where:

1. It is not obvious where things are going wrong (the NULL pointer
comes from far, far away, in extreme cases via JITed code that your
IDE can’t follow).

2. It takes a long time – maybe hours – to reach the code and condition
where the problem is.

3. You don’t know enough about the problem to set a breakpoint just
before it happens. An example of that could be when you know
which function to debug but the function gets called thousands
of times and it’s only when the arguments and class state have a
particular combination of values that the error gets triggered. Even
worse, that state condition could be non-deterministic so you can’t
even methodically note the steps to reach the error and redo them
every time you need to restart a debug session.

We’ve all had that sinking feeling when you have just spent all afternoon
debugging to reach an error and you accidentally hit ‘next’ one time too
many. That is very easy to do when you have been stepping for a long
time and stepping has become an automatic reflex. If you are using UDB,
that is no longer a problem.

UDB prompt and recording
The first thing that you need to know about UDB is that it needs to
record events in order to be able to replay them. Recording is turned
on by default. When you start the debugging session the prompt will be
not running>. Then, when you run and stop somehow, it will show
the recording status. With recording on that might be something like
recording 128,774>. The number after recording is the number
of events recorded. The events correspond to basic blocks (blocks of
linear machine code ending with a branch statement). If you time travel
backwards, the prompt will show you a percentage of the record buffer
and the event number, such as 99% 128,773> That can be useful when
you want to pinpoint exactly where a change occurs. Just keep a note
of the event count before and after and then you can just keep going
backwards and forwards until you find the change. In addition to the
event count, UDB has commands that let you set a bookmark in the event
history that you can return to later. UDB can also go back to a given event
or wallclock time.

Since recording does have an overhead, you can turn it off with the
–defer-recording command line option. You could then run to some
breakpoint and avoid needlessly recording events that aren’t of interest.
When you know that you are getting close to the code that you want to
analyse you can turn recording on with urecord.

Additional UDB commands
UDB adds a set of reverse and undo commands to GDB. I’ll get to the
undo commands in a moment. The reverse commands just do what the
forward commands do but in the opposite direction.

Command Action
rs, reverse-step Step backwards, going into function calls.

rn, reverse-next Next backwards, going back to function call
points.

rf, rfin, reverse-finish Go backwards to calling function.

rc, reverse-continue Execute continuously backwards.

Let’s take a small example:
 1 int a, b, c, d;
 2
 3 void g()
 4 {
 5 c = 3;
 6 }
 7
 8 void f(void)
 9 {
 10 b = 2;
 11 c = 3;
 12 g();
 13 }
 14
 15 int main()
 16 {
 17 a = 1;
 18 f();
 19 d = 4;
 20 }

If you debug this with UDB and do the following

� start – advances to line 17

� n (for next) – advances to line 18

� <enter> (repeat next) – steps over f() and advances to line 19

At this point if you enter rn (reverse-next) it will take you back to line 18
before f() is called. At the same point, if you enter rs (reverse-step), it
will take you back into function f() to line 12.

Now if you do the following after starting UDB:

� b 6 – set a breakpoint on line 12

� r – runs to the breakpoint at line 12

At this point the debugger is stopped near the end of function f(). This
time, if you enter rfin (reverse-finish) then it will take you back to line
18 where f() is called.

In addition to the reverse commands, there are also more generic undo
commands. The main two commands are uu (ugo undo), which is a
generic ‘undo last command that changed your debug time’. That has a
mirror command ur (ugo redo) which redoes the last command that
changed the debug time. An example of when you might want to use uu
is when you have just just done a continue to a breakpoint and you then

We’ve all had that sinking feeling
when you have just spent all afternoon
debugging to reach an error and you
accidentally hit ‘next’ one time too many.

Paul Floyd Feature

October 2025 | Overload | 9

realise that the breakpoint is too late. You you just use uu to go back to the
point where you did the continue.

I have only covered the basics of using UDB. A couple of commands that
I’ve never used yet are usave and uload, which allow you to save and
reload the execution history. I imagine that can be a a great time saver
when you are debugging large executables that take a long time to reach
the problem code. There are numerous commands for getting information
about the recorded history. I’m a bit fascinated by the ublame command,
for debugging POSIX shared memory. That seems to me like a very niche
thing to debug. There must have been a quite specific user request to
develop such a feature.

How does it all work? UDB is a commercial product so the internals aren’t
documented. As I understand it, the key things are to only record the
strict minimum of things to keep the size of the recording history down.
When going backwards and forwards PTRACE syscalls can be used to
restore the registers and memory. In some cases, where UDB needs to
make something that is non-deterministic repeatable, it has to fake the
non-deterministic call. For instance, if you call clock_gettime then
reverse and redo the same call to clock_gettime then the second call
will get the same time value even though the physical clock will have
changed. UDB does some magic in the background.

UDB in practice
A few months ago I was working on a problem in a large executable which
was giving different behaviour when running in two different modes.
The expectation was that they should both be very similar. In the second
mode, there was an error which was occurring a long time (in terms of
statements) after the real cause of the problem. The code involved was
developed by several teams and I only had moderate familiarity with
some parts. I did try ‘printf debugging’ using our log files. That was
intractable as the log files were hundreds of megabytes in size and any
kind of diff tool either took forever to work out the diffs or got completely
lost synchronising the two logs. It took me several hours of parallel
debugging to narrow down the place in the code where the two exes were
diverging in behaviour. I could have done that with just GDB, setting
breakpoints that slowly advance through the execution, restarting every
time that I overshot the problem zone. With each restart of the debug
session taking a few minutes that would have added a few more hours.
With UDB I would just go backwards whenever I overshot. The final step
in that debugging marathon did require extra work to compare some large
structs containing many option flags. The source of the problem seemed
obvious when I had isolated the correct flag.

More information
Undo.io has a YouTube channel [undo-2] I’ve watched a good few of
the videos and they are of a good level technical quality. Greg Law, a
co-founder of undo.io, is active on the conference circuit (Meeting C++,
CppCon, ACCU, C++ on Sea). Mostly these talks are about GDB and
debugging in general . There is one particular ACCU conference where
he presented UDB that I recommend that you watch if you’d like to find
out a bit more of what UDB does and how it works [Law24]. I did enter
the raffle and got a 1 year licence which is part of the reason that I’m
writing this (we also use it at work). undo.io is the main contributor to a
Reddit community, r/cpp_debugging [Reddit], which is mainly links to
the YouTube videos.

Last but not least, there is the undo.io documentation [undo-3]. I found
the Quick Reference [undo-4] the best way to get familiar with the
commands that UDB adds to the GDB interface.

UDB isn’t the only debugger with time travel ability. Wikipedia
[Wikipedia-1] lists several. If you don’t have access to a licence for UDB
then you could look at rr [Wikipedia-2] (developed by Mozilla) or the
reverse debugging capabilities of GDB itself [GDB-2] (also a tutorial
[Redhat]). I’ve never used these myself but I have heard that UDB has
better performance and is more reliable.

Conclusion
UDB is great. I’ve had a few niggles with it like reverse debugging multi-
threaded applications (this has been improved according to the release
notes for more recent versions). I sometimes had issues with our licence
server – it didn’t seem to like UDB going back in time. Otherwise, it just
works. I do have a vague idea of the gymnastics that it must be doing
under the hood like JITting little bits of code so that it can patch up what
you see executing with the recorded history. Getting all that to work is an
amazing technical achievement. And to use it, most of the time all that is
needed is type an extra ‘r’. n

References
[DWARF] https://dwarfstd.org/
[GDB-1] https://sourceware.org/gdb/
[GDB-2] Reverse debugging capabilities: https://sourceware.org/gdb/

wiki/ReverseDebug
[Law] Greg Law, YouTube channel: https://www.youtube.com/

results?search_query=%22Greg+Law%22
[Law15] Greg Law ‘Give me 15 minutes and I’ll change your view of

GDB’, presented at CppCon 2025 and available at:
https://www.youtube.com/watch?v=PorfLSr3DDI

[Law24] Greg Law, ‘Time Travel Debugging’, presented at ACCU 2024
and available at https://www.youtube.com/watch?v=n3OCQ35Xhco

[ptrace] https://www.man7.org/linux/man-pages/man2/ptrace.2.html
[Reddit] Debugging community:

https://www.reddit.com/r/cpp_debugging/
[Redhat] ‘Using GDB to time travel’, published 8 August 2024 at

https://developers.redhat.com/articles/2024/08/08/using-gdb-time-
travel#

[undo-1] https://undo.io/
[undo-2] YouTube channel: https://www.youtube.com/@Undo-io
[undo-3] Documentation: https://docs.undo.io/
[undo-4] Quick reference: https://docs.undo.io/UDB-quickref.pdf
[Wikipedia-1] Time travel debugging: https://en.wikipedia.org/wiki/

Time_travel_debugging
[Wikipedia-2] rr (debugging): https://en.wikipedia.org/wiki/Rr_

(debugging)

https://dwarfstd.org/
https://sourceware.org/gdb/
https://sourceware.org/gdb/wiki/ReverseDebug
https://sourceware.org/gdb/wiki/ReverseDebug
https://www.youtube.com/results?search_query=%22Greg+Law%22
https://www.youtube.com/results?search_query=%22Greg+Law%22
https://www.youtube.com/watch?v=PorfLSr3DDI
https://www.youtube.com/watch?v=n3OCQ35Xhco
https://www.man7.org/linux/man-pages/man2/ptrace.2.html
https://www.reddit.com/r/cpp_debugging/
https://developers.redhat.com/articles/2024/08/08/using-gdb-time-travel#
https://developers.redhat.com/articles/2024/08/08/using-gdb-time-travel#
https://undo.io/
mailto:https://www.youtube.com/@Undo-io
https://docs.undo.io/
https://docs.undo.io/UDB-quickref.pdf
https://en.wikipedia.org/wiki/Time_travel_debugging
https://en.wikipedia.org/wiki/Time_travel_debugging
https://en.wikipedia.org/wiki/Rr_(debugging)
https://en.wikipedia.org/wiki/Rr_(debugging)

Ian BruntlettFeature

10 | Overload | October 2025

Filters and Wildcards
(Shell Globbing)
If you have documentation in html but want to provide markdown
too, what can you do? Ian Bruntlett describes how he used a shell
script to automate the translation and what he learnt.

A filter is a programme that reads its input stream (file descriptor 0 aka
stdin aka cin), modifies it, then writes the results to its output
stream (file descriptor 1 aka stdout aka cout). Errors get written

to the error stream (file descriptor 2 aka stderr aka cerr).

I have been maintaining some HTML pages on I.T. related sources of
information, ‘TECH-Manuals’, for personal use for quite some time. I
wanted to put one of those pages online. Github seemed like a good idea
and I uploaded it to GitHub [Bruntlett-1]. Unfortunately when you look
at HTML pages on GitHub, you see the raw HTML. Apparently you have
to upload MarkDown (.md) files instead. After searching the Ubuntu
package repositories with Synaptic Package Manager, I discovered that
the html2markdown command would do what I wanted. With some
caution I performed this command to create tm-free-software.md
ready to upload to GitHub [Bruntlett-2]:
 $ html2markdown < tm-free-software.html \

> tm-free-software.md

That is all well and good but it relies on me not getting the input and
output filenames wrong. As a filter, it works on one file only. That is OK
but I also wanted the ability to use wildcards (shell globbing) to save
typing and to make it easier to use with the find command.

The resulting shell script is modular – and, as a bonus, if you have another
filter that you want to work on multiple files, all you have to do is rename
the shell script, edit and rename function perform_html2markdown
and edit strip_extension’s code to accept the new input filename
extension(s).

The first bit of executable code checks that at least one parameter has
been passed:
 if [$# -lt 1]; then
 Usage >&2
 exit 11
 fi

As I thought was conventional, the error message got sent to stderr (it
turns out I was wrong) and then the script exits with a status code of 11
so as not to collide with return values of html2markdown itself. See
[Cooper14] for more information.

The next bit of script loops over the shell script’s parameters.
As long as the script has parameters, it invokes my function
perform_html2markdown with a single input filename. I had to
name it something different to html2markdown so, in an obscure
reference to COBOL’s PERFORM statement, I named the function
perform_html2markdown.

The for loop is used to execute perform_html2markdown until it
fails or all input files have been processed.

So, how does perform_html2markdown work? (Listing 1.)

In the interests of modularity and ease of development and maintenance,
I use functions in bash, making sure that I declare working variables as
local. Unlike in C++, variables used in a function are global. That has
caused me problems in the past.

The function perform_html2markdown knows it has been passed a
parameter and declares two local variables – input_html_file, and
output_markdown_file. The input_html_file variable is, as to be
expected, the name of the input file. I could have used $1 instead but I
decided to name it to make future maintenance work that little bit nicer.
The output_markdown_file variable invokes another function:
 function strip_extension
 {
 local destination_file
 # cater for .html source
 destination_file=$(basename "$1" .html)
 # cater for HTML source
 destination_file=
 $(basename "$destination_file" .HTML)
 echo "$destination_file"
 }

This version contained a bug – this strip_extension also strips
preceding leading directory components! So, I paused writing this article
to learn more, referring to [Newham05] and [GNU].

Aided by the power of functions and help from accu-general [ACCU] I
came up with Listing 2 (next page).

Confident that I had fixed the problem, I asked on accu-general for
comments. I received some very interesting implementations of the
function strip_extension.

Sven opted for two approaches – one using basename (Listing 3, next
page). This works… after a fashion. If the user had provided a directory
name, that directory name would be lost. So basename dir-of-html/
blank.html became blank.html. The script was in use by me for
quite some time before I discovered the bug and consequently stopped
writing this article.

function perform_html2markdown()
{
 local input_html_file output_markdown_file
 input_html_file="$1"

 if ! output_markdown_file=$(strip_extension \
 "$input_html_file").md ; then
 echo "Bad HTML filename: $input_html_file";
 return 10; # unsupported or bad filename

extension
 fi

 echo Translating "$input_html_file" to \
 "$output_markdown_file"
 html2markdown --no-skip-internal-links < \
 "$input_html_file" > "$output_markdown_file"
}

Listing 1

Ian Bruntlett is a keen reader of software development books. He
has promised himself a long stint at dealing with C++, once he has
got to grips with Git.

Ian Bruntlett Feature

October 2025 | Overload | 11

Sven came up with an approach that uses sed – a stream editing tool
that I have a little bit of experience with. See Listing 4. This works. By
running sed, an external command, it is slower but it has the benefit of
being correct!

Hans Vredeveld came up with another solution (see Listing 5). This
uses bash’s pattern-matching operators and is minimally documented by
[Newham05] and [GNU]. To quote the former:

${variable%pattern} If the pattern matches the end of the variable’s
value, delete the shortest part that matches and return the rest.

As with other aspects of shell usage, I had to experiment with this to get
a better idea of it. The pattern looks at the environment variable specified
(note the absence of a preceding $), separated by a % sign to tell bash what
to do and pattern is the thing to delete. In this case, strip_extension
is using a pattern of .* which means match a dot followed by any number
of following characters. So, not only does it work for .html or .HTML, it
works for .odt etc. The filename does not have to exist, bash is working
with characters. Here are some examples:
 $ filename=dir.html/blank.html
 $ echo ${filename%.*}
 dir.html/blank
 $ filename=dir.html/blank2.html
 $ echo ${filename%tml}
 dir.html/blank2.h

This was then further refined by Sven to avoid using echo:
 > stub=$(echo "${filename%.*")

You don’t need command substitution here: the following should be
enough:
 > stub="${filename%.*}"

Also discussed by Sven, was my use of a while loop to iterate over the
command line parameters:
 while ["$1" != ""]; do
 if ! perform_html2markdown "$1" ; then
 exit $?
 fi
 shift
 done

This is a hang-over from my MS-DOS days, where to access more than 9
(I think) parameters, you had to use the shift command. Another quirk
is that exit $? can be replaced with exit.

He proposed:
 for f in "$@"; do
 if ! perform_html2markdown "$f" ; then
 exit $?
 fi
 done

Which does the same job without making processed parameters
unavailable. The use of $@ and * are… subtle. To quote Cameron
Newham and Bill Rosenblatt [Newham05]:

“$*” is a single string that consists of all of the positional parameters,
separated by the first character in the value of the environment
variable IFS (internal field separator), which is a space, TAB, and
NEWLINE by default. On the other hand, “$@” is equal to “$1” “$2”...
“$N”, where N is the number of positional parameters. That is, it’s
equal to N separate double-quoted strings, which are separated
by spaces. If there are no positional parameters, “$@” expands to
nothing. We’ll explore the ramifications of this difference in a little
while.

Dabbling further, I used Newham and Rosenblatt’s [Newham05] function
countargs (see Listing 6, next page).

When run, this illustrates the difference between $* and @.
 $./countargs Hello World
 $* : 1 args.
 Hello,World
 $@ : 2 args.
 Hello World

remove .HTML or .html from parameter 1 and then
output/return that result.
function strip_extension
{
 declare -i length
 local length filename \
 filename_stub dot_extension
 filename=$1
 length=${#filename}

 if [$length -lt 6]; then
 return 2 # given filename too short
 fi
 dot_extension=${filename:$length-5:5}
 if ["$dot_extension" == ".html"] ||
 ["$dot_extension" == ".HTML"]; then
 filename_stub=${filename:0:-5}
 echo "$filename_stub"
 else
 echo
 return 1; # unsupported or bad filename
 # extension
 fi
}

Listing 2

function strip_extension
{
 filename=$1
 case "$filename" in
 *.html)
 stub=$(basename "$filename" .html)
 ;;
 *.HTML)
 stub=$(basename "$filename" .HTML)
 ;;
 *)
 echo "Not an HTML file name."
 return 1
 ;;
 esac
 echo "$stub"
}

Listing 3

function strip_extension
{
 filename=$1
 case "$filename" in
 *.html | *.HTML)
 stub=$(echo "$filename" \
 | sed -e 's/\.[^.]*$//')
 ;;
 *)
 echo "Not an HTML file name."
 return 1
 ;;
 esac
 echo "$stub"
}

Listing 4

function strip_extension
{
 filename=$1
 case "$filename" in
 *.html | *.HTML)
 stub=$(echo "${filename%.*")
 ;;
 *)
 echo "Not an HTML file name."
 return 1
 ;;
 esac
 echo "$stub"
}

Listing 5

Ian BruntlettFeature

12 | Overload | October 2025

Note I set the IFS global variable to a single comma. This is to illustrate
the usefulness of $* using the first character of IFS (which defaults to a
space) when outputting parameters.

The main loop which iterated over the HTML filenames looked like this:
 while ["$1" != ""]; do
 if ! perform_html2markdown "$1" ; then
 exit $?
 fi
 shift
 done

which did not preserve the return code of (aka $?)
perform_html2markdown. It was possible to immediately copy the
value of $? into a variable and return that – I felt that was clunky. Taking
into account Sven’s recommendation to use for rather than while and
fixing the bug, I came up with this:
 for f in "$@"; do
 perform_html2markdown "$f" || exit
 done

The current version of the code looks like Listing 7. n

References
[ACCU] https://accu.org/faq/mailing-lists-faq/accu-general – in

particular, Mathias, Hans, and Sven.
[Bruntlett-1] Github repository: https://github.com/ian-bruntlett/studies/

tree/main/bash
[Bruntlett-2] TechManuals: https://github.com/ian-bruntlett/TECH-

Manuals
[Cooper14] Mendel Cooper (2014) Advanced Bash Scripting Guide:

Appenidx E, ‘Exit codes with special meanings’, available at:
https://tldp.org/LDP/abs/html/exitcodes.html

[GNU] The GNU Bash Reference Manual, for Bash, Version 5.3, last
updated 18 May 2025, available at: https://www.gnu.org/software/
bash/manual/bash.html

[Newham05] Cameron Newham and Bill Rosenblatt (2005) Learning
the bash Shell, published by O’Reilly.

#!/usr/bin/env bash
experimenting from Learning the bash shell,
chapter 4, page 90

function countargs
{
 echo "$# args."
}
IFS=,
echo -n '$* : '
countargs "$*"
echo "$*"

echo -n '$@ : '
countargs "$@"
echo "$@"

Listing 6

change being the results filename has .md at the
end and not .html
Note:
Because this utility removes the HTML suffix from
filenames, you can use globbing to specify input
files.

Return codes:
0 Success
1 Input file does not exist
10 Input filename not a .html or .HTML file
11 No parameters passed on command line
END-OF-USAGE-MESSAGE
}

remove .HTML or .html from parameter 1 and then
output/return that result.
With thanks to accu-general posters: Mathias
Gaunard and Hans Vredeveld and Sven
See https://www.gnu.org/software/bash/manual/
bash.html#Shell-Parameter-Expansion
10 - Input filename not an html or HTML file
name
function strip_extension
{
 local filename stub
 filename=$1
 case "$filename" in
 *.html | *.HTML)
 stub="${filename%.*}"
 ;;
 *)
 echo "Not an HTML file name."
 return 10
 ;;
 esac
 echo "$stub"
}

function perform_html2markdown()
{
 local input_html_file output_markdown_file

 input_html_file="$1"

 if ! output_markdown_file=$(strip_extension \
 "$input_html_file").md ; then
 echo "Bad HTML filename: $input_html_file";
 return 10; # unsupported or bad filename
 # extension
 fi

 echo Translating "$input_html_file" to \
 "$output_markdown_file"

 html2markdown --no-skip-internal-links < \
 "$input_html_file" > "$output_markdown_file"
}

main code here

if [$# -lt 1]; then
 Usage >&2
 exit 11 # error. need at least 1 parameter
fi

for f in "$@"; do
 perform_html2markdown "$f" || exit
done

Listing 7 (cont’d)

#!/usr/bin/env bash
Name : irb-html2markdown
Purpose : To run the html2markdown command with
less chance of making a silly typing mistake
(c) Ian Bruntlett
#
Changelog removed for brevity. See
[Bruntlett-1] for complete version...
function Usage
{
cat <<END-OF-USAGE-MESSAGE
Usage: $0 name-of-html-file-1 name-of-html-file-2
name-of-html-file-etc

For each given html filename, convert the HTML
file into markdown, writing the results to a file
with a similar name of the origin - the only

Listing 7

https://accu.org/faq/mailing-lists-faq/accu-general
https://github.com/ian-bruntlett/studies/tree/main/bash
https://github.com/ian-bruntlett/studies/tree/main/bash
https://github.com/ian-bruntlett/TECH-Manuals
https://github.com/ian-bruntlett/TECH-Manuals
https://tldp.org/LDP/abs/html/exitcodes.html
https://www.gnu.org/software/bash/manual/bash.html
https://www.gnu.org/software/bash/manual/bash.html

Spencer Collyer Feature

October 2025 | Overload | 13

User-Defined Formatting
in std::format
std::format allows us to format values quickly and safely.
Spencer Collyer demonstrates how to provide formatting
for a simple user-defined class.

In a previous article [Collyer21], [I gave an introduction to the
std::format library, which brings modern text formatting
capabilities to C++.

That article concentrated on the output functions in the library and how
they could be used to write the fundamental types and the various string
types that the standard provides.

Being a modern C++ library, std::format also makes it relatively easy
to output user-defined types, and this series of articles will show you how
to write the code that does this.

There are three articles in this series. This article describes the basics
of setting up the formatting for a simple user-defined class. The second
article will describe how this can be extended to classes that hold objects
whose type is specified by the user of your class, such as containers.
The third article will show you how to create format wrappers, special
purpose classes that allow you to apply specific formatting to objects of
existing classes.

A note on the code listings: The code listings in this article have lines
labelled with comments like // 1. Where these lines are referred to in
the text of this article, it will be as ‘line 1’ for instance, rather than ‘the
line labelled // 1’.

Interface changes
Since my previous article was first published, based on the draft C++20
standard, the paper [P2216] was published which changes the interface
of the format, format_to, format_to_n, and formatted_size
functions. They no longer take a std::string_view as the format
string, but instead a std::format_string (or, for the wide-character
overloads std::wformat_string). This forces the format string to
be a constant at compile time. This has the major advantage that compile
time checks can be carried out to ensure it is valid.

The interfaces of the equivalent functions prefixed with v (e.g. vformat)
has not changed and they can still take runtime-defined format specs.

One effect of this is that if you need to determine the format spec
at runtime then you have to use the v-prefixed functions and pass the
arguments as an argument pack created with make_format_args or
make_wformat_args. This will impact you if, for instance, you want
to make your program available in multiple languages, where you would
read the format spec from some kind of localization database.

Another effect is on error reporting in the functions that parse the format
spec. We will deal with this when describing the parse function of the
formatter classes described in this article.

C++26 and runtime_format
Forcing the use of the v-prefixed functions for non-constant format
specs is not ideal, and can introduce some problems. The original
P2216 paper mentioned possible use of a runtime_format to allow
non-constant format specs but did not add any changes to enable that.
A new proposal [P2918] does add such a function, and once again

allows non-constant format specs in the various format functions. This
paper has been accepted into C++26, and the libstdc++ library that
comes with GCC should have it implemented by the time you read this
article, if you want to try it out.

Creating a formatter for a user-defined type
To enable formatting for a user-defined type, you need to create a
specialization of the struct template formatter. The standard defines
this as:
 template<class T, class charT = char>
 struct formatter;

where T is the type you are defining formatting for, and charT is the
character type your formatter will be writing.

Each formatter needs to declare two functions, parse and format,
that are called by the formatting functions in std::format. The purpose
and design of each function is described briefly in the following sections.

Inheriting existing behaviour
Before we dive into the details of the parse and format functions, it is
worth noting that in many cases you can get away with re-using existing
formatters by inheriting from them. Normally, you would do this if the
standard format spec does everything you want, so you can just use the
inherited parse function and write your own format function that
ultimately calls the one on the parent class to do the actual formatting.

For instance, you may have a class that wraps an int to provide
some special facilities, like clamping the value to be between min and
max values, but when outputting the value you are happy to have the
standard formatting for int. In this case you can just inherit from
std::formatter<int> and simply override the format function to
call the one on that formatter, passing the appropriate values to it. An
example of doing this is given in Listing 1 on the next page.

Or you may be happy for your formatter to produce a string representation
of your class and use the standard string formatting to output that string.
You would inherit from std::formatter<std::string> and just
override the format function to generate your string representation and
then call the parent format function to actually output the value.

The parse function
The parse function does the work of reading the format specification
(format-spec) for the type.

Spencer Collyer Spencer has been programming for more years
than he cares to remember, mostly in the financial sector, although
in his younger years he worked on projects as diverse as monitoring
water treatment works on the one hand, and television programme
scheduling on the other.

Spencer CollyerFeature

14 | Overload | October 2025

It should store any formatting information from the format-spec in the
formatter object itself1.

As a reminder of what is actually being parsed, my previous article had
the following for the general format of a replacement field:

‘{’ [arg-id] [‘:’ format-spec] ‘}’

so the format-spec is everything after the : character, up to but not
including the terminating }.

Assume we have a typedef PC defined as follows:
 using PC = basic_format_parse_context<charT>;

where charT is the template argument passed to the formatter
template. Then the parse function prototype looks like the following:
 constexpr PC::iterator parse(PC& pc);

The function is declared constexpr so it can be called at compile time.

The standard defines specialisations of the basic_format_parse_
context template called format_parse_context and wformat_
parse_context, with charT being char and wchar_t respectively.
1	 There is nothing stopping you storing the formatting information in a

class variable or even a global variable, but the standard specifies that
the output of the format function in the formatter should only
depend on the input value, the locale, and the format-spec as parsed by
the last call to parse. Given these constraints, it is simpler to just store
the formatting information in the formatter object itself.

On entry to the function, pc.begin() points to the start of the format-
spec for the replacement field being formatted. The value of pc.end() is
such as to allow the parse function to read the entire format-spec. Note
that the standard specifies that an empty format-spec can be indicated by
either pc.begin() == pc.end() or *pc_begin() == '}', so
your code needs to check for both conditions.

The parse function should process the whole format-spec. If it
encounters a character it doesn’t understand, other than the } character
that indicates the format-spec is complete, it should report an error. The
way to do this is complicated by the need to allow the function to be
called at compile time. Before that change was made, it would be normal
to throw a std::format_error exception. You can still do this, with
the proviso that the compiler will report an error, as throw cannot be
used when evaluating the function at compile time. Until such time as
a workaround has been found for this problem, it is probably best to
just throw the exception and allow the compiler to complain. That is the
solution used in the code presented in this article.

If the whole format-spec is processed with no errors, the function should
return an iterator pointing to the terminating } character. This is an
important point – the } is not part of the format-spec and should not be
consumed, otherwise the formatting functions themselves will throw an
error.

Format specification mini-language
The format-spec for your type is written in a mini-language which you
design. It does not have to look like the one for the standard format-specs
defined by std::format. There are no rules for the mini-language, as
long as you can write a parse function that will process it.

An example of a specialist mini-language is that defined by std::chrono
or its formatters, given for instance at [CppRef]. Further examples are
given in the code samples that make up the bulk of this series of articles.
There are some simple guidelines to creating a mini-language in the
appendix at the end of this article: ‘Simple Mini-Language Guidelines’.

The format function
The format function does the work of actually outputting the value of
the argument for the replacement field, taking account of the format-spec
that the parse function has processed.

Assume we have a typedef FC defined as follows:
 using FC = basic_format_context<Out, charT>;

where Out is an output iterator and charT is the template argument
passed to the formatter template. Then the format function prototype
looks like the following:
 FC::iterator format(const T& t, FC& fc) const;

where T is the template argument passed to the formatter template.

Note that the format function should be const-qualified. This is
because the standard specifies that it can be called on a const object.

#include <format>
#include <iostream>
#include <type_traits>

class MyInt
{
public:
 MyInt(int i) : m_i(i) {};
 int value() const { return m_i; };
private:
 int m_i;
};
template<>
struct std::formatter<MyInt>
 : public std::formatter<int>
{
 using Parent = std::formatter<int>;
 auto format(const MyInt& mi,
 std::format_context& format_ctx) const
 {
 return Parent::format(mi.value(),
 format_ctx);
 }
};
int main()
{
 MyInt mi{1};
 std::cout << std::format(“{0} [{0}]\n”, mi);
}

Listing 1

The format-spec for your type is written in a
mini-language which you design …there are no
rules for the mini-language, as long as you can
write a parse function that will process it

Spencer Collyer Feature

October 2025 | Overload | 15

The standard defines specialisations of the basic_format_context
template called format_context and wformat_context, with
charT being char and wchar_t respectively.

The function should format the value t passed to it, using the formatting
information stored by parse, and the locale returned by fc.locale()
if it is locale-dependent. The output should be written starting at
fc.out(), and on return the function should return the iterator just past
the last output character.

If you just want to output a single character, the easiest way is to write
something like the following, assuming iter is the output iterator and c
is the character you want to write:
 *iter++ = c;

If you need more complex formatting than just writing one or two
characters, the easiest way to create the output is to use the formatting
functions already defined by std::format, as they correctly maintain
the output iterator.

The most useful function to use is std::format_to, as that takes the
iterator returned by fc.out() and writes directly to it, returning the
updated iterator as its result. Or if you want to limit the amount of data
written, you can use std::format_to_n.

Using the std::format function itself has a couple of disadvantages.
Firstly it returns a string which you would then have to send to the
output. And secondly, because it has the same name as the function in
formatter, you have to use a std namespace qualifier on it, even if
you have a using namespace std; line in your code, as otherwise
function name resolution will pick up the format function from the
formatter rather than the std::format one.

Formatting a simple object
For our first example we are going to create a formatter for a simple
Point class, defined in Listing 2.

Default formatting
Listing 3 shows the first iteration of the formatter for Point. This just
allows default formatting of the object.

In the parse function, the lambda get_char defined in line 1 acts as
a convenience function for getting either the next character from the
format-spec, or else indicating the format-spec has no more characters
by returning zero. It is not strictly necessary in this function as it is only
called once, but will be useful as we extend the format-spec later.

The if-statement in line 2 checks that we have no format-spec defined.
The value 0 will be returned from the call to get_char if the begin and
end calls on parse_ctx return the same value.

The format function has very little to do – it just returns the result of
calling format_to with the appropriate output iterator, format string,
and details from the Point object. The only notable thing to point out is
that we wrap the format_ctx.out() call which gets the output iterator

class Point
{
public:
 Point() {}
 Point(int x, int y) : m_x(x), m_y(y) {}

 const int x() const { return m_x; }
 const int y() const { return m_y; }

private:
 int m_x = 0;
 int m_y = 0;
};

Listing 2

#include "Point.hpp"
#include <format>
#include <iostream>
#include <type_traits>

template<>
struct std::formatter<Point>
{
 constexpr auto parse(
 std::format_parse_context& parse_ctx)
 {
 auto iter = parse_ctx.begin();
 auto get_char = [&]() { return iter
 != parse_ctx.end() ? *iter : 0; }; // 1
 char c = get_char();
 if (c != 0 && c != '}') // 2
 {
 throw std::format_error(
 "Point only allows default formatting");
 }
 return iter;
 }
 auto format(const Point& p,
 std::format_context& format_ctx) const
 {
 return std::format_to(std::move(
 format_ctx.out()), "{},{}", p.x(), p.y());
 }
};
int main()
{
 Point p;
 std::cout << std::format("{0} [{0}]\n", p);
 try
 {
 std::cout << std::vformat("{0:s}\n",
 std::make_format_args(p));
 }
 catch (std::format_error& fe)
 {
 std::cout << "Caught format_error : "
 << fe.what() << "\n";
 }
}

Listing 3

If you need more complex formatting than just
writing one or two characters, the easiest way

to create the output is to use the formatting
functions already defined by std::format

Spencer CollyerFeature

16 | Overload | October 2025

in std::move. This is in case the user is using an output that has move-
only iterators.

Adding a separator character and width specification
Now we have seen how easy it is to add default formatting for a class,
let’s extend the format specification to allow some customisation of the
output.

The format specification we will use has the following form:

[sep] [width]

where sep is a single character to be used as the separator between the two
values in the Point output, and width is the minimum width of each of
the two values. Both elements are optional. The sep character can be any
character other than } or a decimal digit.

The code for this example is in Listing 4.

Member variables
The first point to note is that we now have to store information derived
from the format-spec by the parse function so the format function
can do its job. So we have a set of member variables in the formatter
defined from line 10 onwards.

The default values of these member variables are set so that if no format-
spec is given, a valid default output will still be generated. It is a good
idea to follow the same principle when defining your own formatters.

The parse function
The parse function has expanded somewhat to allow parsing of the
new format-spec. Line 1 gives a short-circuit if there is no format-spec
defined, leaving the formatting as the default.

#include "Point.hpp"
#include <format>
#include <iostream>

using namespace std;

template<>
struct std::formatter<Point>
{
 constexpr auto parse(
 format_parse_context& parse_ctx)
 {
 auto iter = parse_ctx.begin();
 auto get_char = [&]() { return iter
 != parse_ctx.end() ? *iter : 0; };
 char c = get_char();
 if (c == 0 || c == '}') // 1
 {
 return iter;
 }
 auto IsDigit = [](unsigned char uc) { return
 isdigit(uc); }; // 2
 if (!IsDigit(c)) // 3
 {
 m_sep = c;
 ++iter;
 if ((c = get_char()) == 0 || c == '}') //4
 {
 return iter;
 }
 }
 auto get_int = [&]() { // 5
 int val = 0;
 char c;
 while (IsDigit(c = get_char())) // 6
 {
 val = val*10 + c-'0';
 ++iter;
 }
 return val;
 };

Listing 4

 if (!IsDigit(c)) // 7
 {
 throw format_error("Invalid format "
 "specification for Point");
 }
 m_width = get_int(); // 8
 m_width_type = WidthType::Literal;
 if ((c = get_char()) != '}') // 9
 {
 throw format_error("Invalid format "
 "specification for Point");
 }
 return iter;
 }
 auto format(const Point& p,
 format_context& format_ctx) const
 {
 if (m_width_type == WidthType::None)
 {
 return
 format_to(std::move(format_ctx.out()),
 "{0}{2}{1}", p.x(), p.y(), m_sep);
 }
 return format_to(std::move(format_ctx.out()),
 "{0:{2}}{3}{1:{2}}", p.x(), p.y(), m_width,
 m_sep);
 }
private:
 char m_sep = ‘,’; // 10
 enum WidthType { None, Literal };
 WidthType m_width_type = WidthType::None;
 int m_width = 0;
};
int main()
{
 Point p1(1, 2);
 cout << format("[{0}] [{0:/}] [{0:4}]"
 "[{0:/4}]\n", p1);
}

Listing 4 (cont’d)

we now have to store information derived
from the format-spec by the parse function
so the format function can do its job

Spencer Collyer Feature

October 2025 | Overload | 17

In the code following the check above we need to check if the
character we have is a decimal digit. The normal way to do this is to
use std::isdigit, but because this function has undefined behaviour
if the value passed cannot be represented as an unsigned char, we
define lambda IsDigit at line 2 as a wrapper which ensures the value
passed to isdigit is an unsigned char.

As mentioned above, any character that is not } or a decimal digit is taken
as being the separator. The case of } has been dealt with by line 1 already.
The if-statement at line 3 checks for the second case. If we don’t have
a decimal digit character, the value in c is stored in the member variable.
We need to increment iter before calling get_char in line 4 because
get_char itself doesn’t touch the value of iter.

Line 4 checks to see if we have reached the end of the format-spec after
reading the separator character. Note that we check for the case where
get_char returns 0, which indicates we have reached the end of the
format string, as well as the } character that indicates the end of the
format-spec. This copes with any problems where the user forgets to
terminate the replacement field correctly. The std::format functions
will detect such an invalid condition and throw a std::format_error
exception.

The get_int lambda function defined starting at line 5 attempts to
read a decimal number from the format-spec. On entry iter should be
pointing to the start of the number. The while-loop controlled by line 6
keeps reading characters until a non-decimal digit is found. In the normal
case this would be the } that terminates the format-spec. We don’t check
in this function for which character it was, as that is done later. Note that
as written, the get_int function has undefined behaviour if a user uses
a value that overflows an int – a more robust version could be written if
you want to check against users trying to define width values greater than
the maximum value of an int.

The check in line 7 ensures we have a width value. Note that the checks
in lines 3 and 4 will have caused the function to return if we just have a
sep element.

The width is read and stored in line 8, with the following line indicating
we have a width given.

Finally, line 9 checks that we have correctly read all the format-spec. This
is not strictly necessary, as the std::format functions will detect any
failure to do so and throw a std::format_error exception, but doing
it here allows us to provide a more informative error message.

The format function
The format function has changed to use the sep and width elements
specified. It should be obvious what is going on, so we won’t go into it
in any detail.

Specifying width at runtime
In this final example we will allow the width element to be specified at
runtime. We do this by allowing a nested replacement field to be used,

specified as in the standard format specification with either {} or {n},
where n is an argument index.

The format specification for this example is identical to the one above,
with the addition of allowing the width to be specified at runtime.

The code for this example is in Listing 5. When labelling the lines in this
listing, corresponding lines in Listing 4 and Listing 5 have had the same
labels applied. This does mean that some labels are not used in Listing 5
if there is nothing additional to say about those lines compared to Listing
4. We use uppercase letters for new labels introduced in Listing 5.

#include "Point.hpp"
#include <format>
#include <iostream>
using namespace std;
template<>

struct std::formatter<Point>
{
 constexpr auto
 parse(format_parse_context& parse_ctx)
 {
 auto iter = parse_ctx.begin();
 auto get_char = [&]() { return iter
 != parse_ctx.end() ? *iter : 0; };
 char c = get_char();
 if (c == 0 || c == '}')
 {
 return iter;
 }
 auto IsDigit = [](unsigned char uc)
 { return isdigit(uc); };
 if (c != '{' && !IsDigit(c)) // 3
 {
 m_sep = c;
 ++iter;
 if ((c = get_char()) == 0 || c == '}')
 {
 return iter;
 }
 }
 auto get_int = [&]() {
 int val = 0;
 char c;
 while (IsDigit(c = get_char()))
 {
 val = val*10 + c-'0';
 ++iter;
 }
 return val
 };
 if (!IsDigit(c) && c != '{') // 7
 {
 throw format_error("Invalid format "
 "specification for Point");
 }

Listing 5

Avoid having complicated constructions or
interactions between different elements in
your mini-language … it should be possible

to parse it in a single pass

Spencer CollyerFeature

18 | Overload | October 2025

Nested replacement fields
The standard format-spec allows you to use nested replacement fields
for thewidth and prec fields. If your format-spec also allows nested
replacement fields, the basic_format_parse_context class has a
couple of functions to support their use: next_arg_id and check_
arg_id. They are used in the parse function for Listing 5, and a
description of what they do will be given in that section.

The parse function
The first change in the parse function is on line 3. As can be seen, in
the new version, it has to check for the { character as well as for a digit
when checking if a width has been specified. This is because the dynamic
width is specified using a nested replacement field, which starts with a {
character.

The next difference is in line 7, where we again need to check for a {
character as well as a digit to make sure we have a width specified.

The major change to this function starts at line A. This if-statement
checks if the next character is a {, which indicates we have a nested
replacement field. If the test passes, line B marks that we need to read
the width from an argument, and then we proceed to work out what the
argument index is.

The if-statement in line C checks if the next character is a }, which
means we are using automatic indexing mode. If the test passes, we call
the next_arg_id function on parse_ctx to get the argument number.
That function first checks if manual indexing mode is in effect, and if
it is it throws a format_error exception, as you cannot mix manual
and automatic indexing. Otherwise, it enters automatic indexing mode
and returns the next argument index, which in this case is assigned to
the m_width variable.

If the check in line C fails, we enter the else-block at line D to do manual
indexing. We get the argument number by calling get_int, and then
we call the check_arg_id function on parse_ctx. The function
checks if automatic indexing mode is in effect, and if so it throws a
format_error exception. If automatic indexing mode is not in effect
then check_arg_id enters manual indexing mode.

The else-block starting at line E just handles the case where we have
literal width specified in the format-spec, and is identical to the code
starting at line 8 in Listing 4.

Note that when used at compile time, next_arg_id or check_arg_id
check that the argument id returned (for next_arg_id) or supplied (for

 if (c == '{') // A
 {
 m_width_type = WidthType::Arg; // B
 ++iter;
 if ((c = get_char()) == '}') // C
 {
 m_width = parse_ctx.next_arg_id();
 }
 else // D
 {
 m_width = get_int();
 parse_ctx.check_arg_id(m_width);
 }
 ++iter;
 }
 else // E
 {
 m_width = get_int(); // 8
 m_width_type = WidthType::Literal;
 }
 if ((c = get_char()) != '}')
 {
 throw format_error("Invalid format "
 "specification for Point");
 }
 return iter;
 }
 auto format(const Point& p,
 format_context& format_ctx) const
 {
 if (m_width_type == WidthType::None)
 {
 return
 format_to(std::move(format_ctx.out()),
 "{0}{2}{1}", p.x(), p.y(), m_sep);
 }
 if (m_width_type == WidthType::Arg) // F
 {
 m_width = get_arg_value(format_ctx,
 m_width);
 }
 return format_to(std::move(format_ctx.out()),
 "{0:{2}}{3}{1:{2}}", p.x(), p.y(), m_width,
 m_sep);
 }
private:
 int get_arg_value(format_context& format_ctx,
 int arg_num) const // G
 {
 auto arg = format_ctx.arg(arg_num); // H
 if (!arg)
 {
 string err;
 back_insert_iterator<string> out(err);
 format_to(out, "Argument with id {} not "
 "found for Point", arg_num);
 throw format_error(err);
 }
 int width = visit_format_arg([]
 (auto value) -> int { // I
 if constexpr (
 !is_integral_v<decltype(value)>)
 {
 throw format_error("Width is not "
 "integral for Point”);
 }
 else if (value < 0
 || value > numeric_limits<int>::max())
 {
 throw format_error("Invalid width for "
 Point");
 }
 else
 {
 return value;
 }
 }, arg);
 return width;
 }

Listing 5 (cont’d)

private:
 mutable char m_sep = ',';
 enum WidthType { None, Literal, Arg };
 mutable WidthType m_width_type
 = WidthType::None;
 mutable int m_width = 0;
};
int main()
{
 Point p1(1, 2);
 cout << format(
 "[{0}] [{0:-}] [{0:4}] [{0:{1}}]\n", p1, 4);
 cout << format(
 "With automatic indexing: [{:{}}]\n", p1, 4);
 try
 {
 cout << vformat("[{0:{2}}]\n",
 std::make_format_args(p1, 4));
 }
 catch (format_error& fe)
 {
 cout << format("Caught exception: {}\n",
 fe.what());
 }
}

Listing 5 (cont’d)

Spencer Collyer Feature

October 2025 | Overload | 19

check_arg_id) is within the range of the arguments, and if not will fail
to compile. However, this is not done when called at runtime.

The format function
The changes to the format function are just the addition of the if-
statement starting at line F. This checks if we need to read the width value
from an argument, and if so it calls the get_arg_value function to get
the value and assign it to the m_width variable, so the format_to call
following can use it.

The get_arg_value function
The get_arg_value function, defined starting at line G, does the work
of actually fetching the width value from the argument list.

Line H tries to fetch the argument from the argument list. If the argument
number does not represent an argument in the list, it returns a default
constructed value. The following if-statement checks for this, and
reports the error if required. Note that in your own code you might want
to disable or remove any such checks from production builds, but have
them in debug/testing builds.

If the argument is picked up correctly, line I uses the function
visit_format_arg to apply the lambda function to the argument
value picked up in line H. The visit_format_arg function is part
of the std::format API. The lambda function checks that the value
passed is of the correct type – in this case, an integral type – and that its
value is in the allowed range. Failure in either case results in a format_
error exception. Otherwise, the lambda returns the value passed in,
which is used as the width.

Summary
We have seen how to add a formatter for a user-defined class, and
gone as far as allowing the user to specify certain behaviour (in our case
the width) at runtime. We will stop at this point as we’ve demonstrated
what is required, but there is no reason why a real-life Point class couldn’t
have further formatting abilities added.

In the next article in the series, we will explain how you can write a
formatter for a container class, or any other class where the types of some
elements of the class can be specified by the user. n

Appendix: Simple mini-language guidelines
As noted when initially describing the parse function of the formatters,
the format-spec you parse is created using a mini-language, the design
of which you have full control over. This appendix offers some simple
guidelines to the design of your mini-language.

Before giving the guidelines, I’d like to introduce some terminology.
These are not ‘official’ terms but hopefully will make sense.

	� An element of a mini-language is a self-contained set of characters
that perform a single function. In the standard format-spec most
elements are single characters, except for the width and prec values,
and the combination of fill and align.

	� An introducer is a character that says the following characters make
up a particular element. In the standard format-spec the ‘.’ at the
start of the prec element is an introducer.

Remember, the following are guidelines, not rules. Feel free to bend or
break them if you think you have a good reason for doing so.

Enable a sensible default
It should be possible to use an empty format-spec and obtain sensible
output for your type. Then the user can just write {} in the format string
and get valid output. Effectively this means that every element of your
mini-language should be optional, and have a sensible default.

Shorter is better
Your users are going to be using the mini-language each time they want
to do non-default outputting of your type. Using single characters for the
elements of the language is going to be a lot easier to use than having to
type whole words.

Keep it simple
Similar to the above, avoid having complicated constructions or
interactions between different elements in your mini-language. A simple
interaction, like in the standard format-spec where giving an align element
causes any subsequent ‘0’ to be ignored, is fine, but having multiple
elements interacting or controlling others is going to lead to confusion.

Make it single pass
It should be possible to parse the mini-language in a single pass. Don’t
have any constructions which necessitate going over the format-spec
more than once. This should be helped by following the guideline above
to ‘Keep it simple’. This is as much for ease of programming the parse
function as it is for ease of writing format-specs.

Avoid ambiguity
If it is possible for two elements in your mini-language to look alike then
you have an ambiguity. If you cannot avoid this, you need a way to make
the second element distinguishable from the first.

For instance, in the standard format-spec, the width and prec elements are
both integer numbers, but the prec element has ‘.’ as an introducer so you
can always tell what it is, even if no width is specified.

Use nested-replacement fields like the standard ones
If it makes sense to allow some elements (or parts of elements) to be
specified at run-time, use nested replacement fields that look like the
ones in the standard format-spec to specify them, i.e. { and } around an
optional number.

Avoid braces
Other than in nested replacement fields, avoid using braces (`{` and `}`)
in your mini-language, except in special circumstances.

References
[Collyer21] Spencer Collyer (2021) ‘C++20 Text Formatting – An

Introduction’ in Overload 166, December 2021, available at:
https://accu.org/journals/overload/29/166/collyer/

[CppRef] std::formatter<std::chrono::systime>:
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter

[P2216] P2216R3 – std::format improvements, Victor Zverovich, 5 Feb
2021, https://wg21.link/P2216

[P2918] P2918R2 – Runtime format strings II, Victor Zverovich, 7 Nov
2023, https://wg21.link/P2918

This article was previously published in Overload 180, in April 2024.

https://accu.org/journals/overload/29/166/collyer/
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter
https://wg21.link/P2216
https://wg21.link/P2918

Chris OldwoodFeature

20 | Overload | October 2025

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He also commentates
on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and @chrisoldwood

Afterwood
The plethora of names for our profession
is an occupational hazard. Chris Oldwood
considers those he’s encountered.

A recurring (though some may say repetitive) theme of this column,
and the software industry in general, is that of naming, and nowhere
is this more apparent than in how we refer to ourselves on a

professional level. For the most part it doesn’t cross my mind, but every
ten years in the UK we have a census and so are faced with struggling to
fill in the box marked ‘occupation’. It also used to be a perennial question
from family and friends, but I think they all settled on ‘something to do
with computers’ and just moved on. This latest test comes from looking
for a new contract and being faced with the onslaught of questions from
LinkedIn as I update my profile once again. It seems that despite the
industry’s newfound ability to create electricity guzzling machines which
can write poetry, it’s also lost the ability to do simple pattern recognition
on free text and now I need to manually select any (and all) relevant
matching job titles from a humungous list of seemingly similar entries.
Do I really need to add both ‘programmer’ and ‘computer programmer’?
Have we also lost the ability to do fuzzy matching too?

Before I went to university back in the late 80’s, I didn’t really know that
the messing around on my home computer I had done in my teens was
even a career option I could explore. (I only found out after getting my
first programming job that my late uncle had been a programmer in the
70’s.) It felt natural at that time that someone who programs a computer
would be known as a ‘programmer’, and I was happy to go with that until
I met my (now) father-in-law. He informed me that a programmer was
a lowly job and that I should be looking at the more superior position
of analyst/programmer (which was the level he had obtained). In his
experience (at a huge aerospace company) a programmer just typed in
code provided by someone else, whereas he also did the thinking and
design too! Luckily, he had someone else to do the testing though…

During that conversation, I began to see why the title of Software Engineer
had probably come about and why I might need to be more careful about
how I referred to a role on my CV. At that time, the list of responsibilities
for a Software Engineer appeared to be more encompassing than for the
traditional programmer roles, though in retrospect it was likely more due
to the differences in environment – shrink-wrapped desktop applications
versus in-house mainframe programs. Either way, being a Software
Engineer got my father-in-law off my back by appearing more honourable.

In some countries you can only call yourself an engineer if you have
an official qualification or recognition from a formal body. I do have a
degree in an engineering subject, so I felt a little justified in adopting
that title, but I can also see why Software Developer might have sprung
up because of the backlash against the use of engineer for what is an
incredibly young industry by comparison, despite it being used at the
NATO conference back in 1968.

Once I became established as a freelancer and was freed from the
shackles of HR I went with the flow and adopted the developer moniker

because I liked the terseness of ‘dev’ in direct contrast to the rise of
‘title inflation’ that seemed to be taking hold, at least in financial circles.
I once remember interviewing a candidate who was Vice President of
Some American Bank. In my head, a vice-president was second only to
a president, and, like the Highlander, there can be only one. Apparently
not: the bank had a gazillion vice-presidents, directors, chiefs, etc. This
departure from traditional titles means a Property Developer now sounds
like someone who only writes getters-and-setters.

In the intervening years the variation in job titles has increased, which
shouldn’t be surprising as the nature of the job itself has changed
substantially over time. We write code for so many different reasons now,
which are not necessary part of any product or service delivered to an end
user – programming is quite often a means to another end. I recently spent
a couple of years largely working on the build pipeline for an in-house
programming language and quipped on my socials that I should change
my job title to ‘Software Plumber’ on account of the time I was spending
fixing pipelines of various kinds. I also suggested growing a moustache
and wearing dungarees into the office. I was quickly informed that ‘Build
Engineer’ was the correct term for that particular role.

Some jobs might have had engineer or developer in the job advert but
when you get there you can find that it’s largely about shifting data from
one place to another. I was tempted to use Data Hygienist to describe one
role as I spent so much time trying to clean up the data from a bunch of
legacy back-end systems to avoid polluting the internals of our codebase
with special case logic. It was on the same project that our illustrious CVu
editor coined the term Data Marshaller to reflect his role of shepherding
data to/from the database. I suggested he probably needed to wear a high-
viz jacket and hard hat too, though falling asleep at the keyboard was the
only real hazard.

I’ve always liked Chris O’Dell’s notion of a Software Gardener as it felt
like it really captured the organic nature of modern systems development.
When you get in early and can let the design emerge and blossom, it’s
incredibly satisfying, plus there is always some pruning to be done.
Gardener would also be a suitable name for those people who just seem
to spread crap all over the codebase.

And that metaphor provides the perfect segue into the world of AI-based
tooling. Programming was never just about writing code – despite where
the job market might once have positioned it – it was always about solving
problems, typically by producing software, and that includes a whole
bunch of other skills. Although I might have to jump on the bandwagon
at some point to remain competitive, I never want to lose the ability to
handcraft code the old-fashioned way. I look forward
to the day when I can update my LinkedIn profile to
Artisan Programmer.

accu
professionalism in programming

To find out more, visit accu.org

Monthly journals

Annual conference

Discussion lists

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	Editorial: Ignore Rants
	Vibe Coding in Rust
	UDB: The undo.io Time Travel Debugger
	Filters and Wildcards (Shell Globbing)
	User-Defined Formatting in std::format
	Afterwood

