
A magazine of ACCU ISSN: 1354-3172

Local Reasoning Can
Help Prove Correctness

Lucian Radu Teodorescu
and Sean Parent show how

local reasoning can help
make sense of software.

Simple Compile-Time Dynamic
Programming in C++
Andrew Drakeford demonstrates how to write
efficient chains of matrix multiplication.

UI Development with BDD and
Approval Testing
Seb Rose shows a way to approach UI testing.

AI Powered Healthcare Application
Hassan Farooq describes how he used AI in a
project so you can learn how to build an AI model.

Afterwood
Chris Oldwood ponders typically under-
appreciated tools: debuggers.

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

August 2025 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

August 2025
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Barry Nichols
barrydavidnichols@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Kevlin Henney. Copy deadlines
All articles intended for publication in Overload 189 should be submitted by
1st September 2025 and those for Overload 190 by 1st November 2025.

 4 Local Reasoning Can Help Prove Correctness
Lucian Radu Teodorescu and Sean Parent
show how local reasoning can help make
sense of software.

 9 Simple Compile-Time Dynamic Programming in C++
Andrew Drakeford demonstrates how to write
efficient chains of matrix multiplication.

 12 UI Development with BDD and Approval Testing
Seb Rose shows a way to approach UI testing.

 14 Trip report: C++ On Sea 2025
Sándor Dargó shares what he learned.

 17 AI Powered Healthcare Application
Hassan Farooq describes how he used
AI in a project so you can learn how to
build an AI model.

 20 Afterwood
Chris Oldwood ponders typically under-
appreciated tools: debuggers.

FRAnCES BUOnTEmPOEDITORIAL

2 | Overload | August 2025

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

What’s THIS for?
Sometimes we ignore details to get a task done.
Frances Buontempo considers how much more
there is to programming than just code.

Overload reserves two pages for an editorial, and I
somehow manage to fill them, even though I can never
think of a suitable topic. What are the two pages for?
An opinion piece? Something topical? Maybe I’m just
being a coward and avoiding controversial subjects.
Or maybe it is really hard to write to order on a regular

basis. I have got away with this for a long time, though. I become editor in
2012. My first attempt at an editorial was entitled ‘Allow Me To Introduce
Myself’ [Buontempo12]. I mentioned then it was hard to think of a topic,
or what to do with the two pages. Nothings has changed.

I’m sure we all have examples of being given something we couldn’t figure
out how to use, though maybe not two pages for an editorial. I was given a
stationery tray when I started a previous job, including pens, notepads and
a bottle of Tipp-ex. I’m not sure the Tipp-ex would have been that useful
for correcting incorrect code. I also suspect some readers may never have
seen a bottle of ‘correction fluid’. Arcana slips into various places in IT.
The save icon is still often a floppy disc. Some forms still have a space for
a fax number. Technology changes are very fast paced, so ‘old’ tech might
mean something from a few years or decades ago. How many SCART
cables do you have stored in a cupboard? In other disciplines, change is
slower – so the almost immediate obsolescence doesn’t take hold in the
same way. Historical reasons are still permeate, but in a different way. A
plumber no longer works with lead, though the name has stuck: plumbum
means lead, and a plumbarius works with lead [etymonline]. I’m sure you
can think of other examples.

Historical artefacts are one thing, but often there are more things lurking
than you first realise, no matter what you are trying to do. When you
try to write code, you often find you need to learn extra concepts and
idioms. Just copying code from the internet or using GenAI might get you
somewhere, but at some point you need to engage your brain and think
about what you are doing. Programming jobs themselves can come with
unexpected aspects, like FORTRAN lurking in the stack call, or finding
yourself on-call. Software itself often has surprising elements which can
be hard to figure out. You will either need to learn how to drive an IDE or
an editor and a shell or prompt. You might accidentally learn how to type
a bit. You might end up arguing about whether mechanical keyboards
are the best, or which editor to use. You might have to learn bug tracking
software, or produce a Gantt chart for your final project. (Do people
still make Gantt charts – yes they do!). You might have to learn how to
operator a high tech telephone, or discover how to press + on a numeric
keypad. None of us signed up for this!

Software brings other surprises too. Moving
from working on a project on your own in a
small group as a student to finding your way
around a large software system in your first

job can be overwhelming. Code tends to accrete, erm, ‘unnecessary’
functions and the like over time. There are several ways to start finding
your way around an unfamiliar code base. If you can’t immediately
see what a function or class is for, try deleting it and see if you get
compiler errors. That’s easier with C++ (at the moment) – I tried this
on a C# code base, and various parts were only used via reflection, so
that was confusing. Michael Feathers wrote about scratch refactoring
in his Working Effectively with Legacy Code book [Feathers04]. You
deliberately refactor code, then throw away your changes, allowing you
to discover how the parts hold together. Rolling your sleeves up and
tinkering is often a good way to think systems through and learn. You
are unlikely to figure out how something works by listening to someone
else tell you about it. I have had several contracts where a dev lead took
new hires to a room and told them about the code, pressing short-cut
keys for ‘go to definition’ or ‘go to usage’ in an IDE. Most of us can
manage to press a key ourselves. The best onboarding came from the tech
lead sitting with me and us refactoring a small function. Doing something
together can be so much more informative that talking about it.

Each programming language tends to end up too big to hold fully in your
head. There are many features in C++ I haven’t used often. I was asked
when I had used dynamic_cast at an interview once. My honest answer,
at the time, was I hadn’t. The interviewer was surprised, but talking it
through we decided you could often end up with a cleaner design if you
avoid dynamic casts. In a different interview I was asked if I had used
custom allocators to speed up code, and I hadn’t. I still haven’t used them
often, but have seen them speed up code. I’d need to look up the details
to jog my memory if I wanted to use them again. Having an awareness
of something means you can just about answer the question, “What’s this
for?” However, that is not the same as being able to use the feature easily.

Switching between programing languages can be confusing too.
You might have a mental model of how one thing works, and make
assumptions about similarities when you find something similar in
another language. C++ classes have an implicit this pointer to refer to
the current instance. What’s this for? Many times you don’t need to use
it directly, but implementing copy or move assignments will force your
hand. Python, in contrast has an explicit parameter for instance methods,
usually called self by convention. Each instance method takes a first
parameter referring to the current object. The self isn’t a keyword,
but most people use this. The subtle difference between keyword or not
and implicit versus explicit isn’t too confusing, but might catch you out
for a moment if you switch between the languages a few times. C++23
introduced deduce this, which is a newer C++ feature I have never used
[Brand22]. Sy Brand refers to these as “explicit object parameters”: you
add a function starting with a this parameter, which gives you a way to
write one function for const/non-const, and rlavues/lvalues, rather than

FRAnCES BUOnTEmPO EDITORIAL

August 2025 | Overload | 3

needing four overloads. Maybe I shouldn’t get started on JavaScript’s
this binding quirks. Strict mode makes this switch from some
global object to undefined [Stackoverflow]. Also arrow functions (think
lambdas) don’t have a this themselves but might find one in lexical
scope [Mozilla]. Naming between programming languages differs too:
list or array or vector? It depends.

Aside from language quirks, trying to build code can be a challenge.
If you’re lucky, there’s a CI/CD pipeline with a script that just works.
However, that’s often not the case. And you might need to wait for a
tool licence, or fill in forms to install a package. There’s more. C++ has
several rival package managers, and modules promise ways to speed up
builds. Write up an article about either if you are using them successfully:
some people are, but I’m just watching from the sidelines for now.

Some people exclusively use an IDE and don’t know the details of
how a build works. Which is fine, to a point. I recently read a reddit
post [Reddit] from someone saying they are a hobby programmer and
know how to drive Visual Studio but don’t know where to start on other
platforms. I started my programming career with embedded coding, so
learnt various build tools from the start. I personally like to find out how
to build something from a prompt, just to get a feel for what’s happening.
I should probably learn CMake properly one day, but I am just watching
that from the sidelines too. IDEs can help you be more productive, but
it’s useful to understand a bit of the details. And sometimes upgrades
move your IDE’s button, which is very irritating. Or sprout new buttons
– leaving me wondering what the new buttons are for. I notice my Visual
Studio upgrade is offering me GitHub Copilot. I shall avoid this for now.

Different programming languages and varying build systems may leave
you wondering what various parts are for. Things can get even more
complicated if you also have feature flags. You have probably heard of
the Knight Capital Group feature flag fiasco [Wikipedia-1]. Reusing an
old feature flag without fully understanding what it did, or where it might
be loitering in old code that hadn’t been upgraded, led to an expensive
round of buying stock by mistake. The moral of that story might be
remove feature flags as soon as possible. Such flags are one type of global
state that makes code hard to reason about. Feature flags aren’t the only
way to break code. Locales can cause confusion too. If your build server
has different setting to your machine, you might see flaky tests – ones that
pass with one locale but not another. Global state can also lead to race
conditions in parallel code and further flaky tests that sometimes pass,
but only sometimes, on the same machine. If you find a flaky test, first
ask if you need it, and if you do try figure out why it sometimes fails. If
you leave such a test in a codebase, it will get ignored. Try to nudge it to
something reliable. I traced some confusing behavior to a Singleton once,
another form of global state. By adding a reset method, calls to tests
weren’t affected by the run order. You can sometimes find a small change
that makes your life easier.

The whole ecosystem of programming involves a lot more than just the
code. Coding guidelines vary between companies or even teams, so you
might need to be flexible if, like me, you often contract. Build systems

vary wildly too. Even if you are settled in one role for the long term, or
have full control over your setup because you are a hobby programmer,
tools change and the languages evolve. I suspect as programmers, we
are frequently faced with change in ways that some other professions or
hobbies are not. Maybe this keeps our brains more plastic: I’m no brain
surgeon or psychologist, but neuroplasticity seems to be important for
cognitive function [Wikipedia-2]. Adapt and survive, so the saying goes.
Trying to keep up to date is a challenge. C++, and any programming
language, will always contains features and aspects you don’t fully
understand yet. Feel free to ask “What’s this for?” The accu-general
email list is a friendly place to ask questions. You might even inspire
someone to write an article for us. You will always
have things you don’t fully understand. That’s OK.
You could delegate to someone else, pair with them,
or ask AI. But, whatever you do, stay curious and
keep on learning.

References
[Brand22] Sy Brand, ‘C++23’s Deducing this: what it is, why it is,

how to use it’, June 2022, https://devblogs.microsoft.com/cppblog/
cpp23-deducing-this/

[Buontempo12] Fran Buontempo, ‘Let Me Introduce Myself’ in
Overload, 20(110):2-3, August 2012, https://accu.org/journals/
overload/20/110/buontempo_1904/

[etymonline] Plumber: https://www.etymonline.com/word/plumber
[Feathers04] Michael Feathers, Working Effectively with Legacy Code,

ISBN 10: 0131177052 / ISBN 13: 9780131177055 Published by
Pearson, 2004

[Mozilla] Arrow functions: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Functions/Arrow_functions

[Reddit] ‘I use Visual Studio to write C++ and nothing else. I have no
idea what command lines, CMake, or any of that stuff is - where can
I find information on how to move forward?’: https://www.reddit.
com/r/cpp_questions/comments/1lov0in/i_use_visual_studio_to_
write_c_and_nothing_else_i/

[Stackoverflow] ‘Default binding of the this keyword in strict mode’,
available at http://stackoverflow.com/questions/49023201/default-
binding-of-the-this-keyword-in-strict-mode

[Wikipedia-1] Knight Capital Group: https://en.wikipedia.org/wiki/
Knight_Capital_Group

[Wikipedia-2] Neuroplasticity: https://en.wikipedia.org/wiki/
Neuroplasticity

https://devblogs.microsoft.com/cppblog/cpp23-deducing-this/
https://devblogs.microsoft.com/cppblog/cpp23-deducing-this/
https://accu.org/journals/overload/20/110/buontempo_1904/
https://accu.org/journals/overload/20/110/buontempo_1904/
https://www.etymonline.com/word/plumber
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://www.reddit.com/r/cpp_questions/comments/1lov0in/i_use_visual_studio_to_write_c_and_nothing_else_i/
https://www.reddit.com/r/cpp_questions/comments/1lov0in/i_use_visual_studio_to_write_c_and_nothing_else_i/
https://www.reddit.com/r/cpp_questions/comments/1lov0in/i_use_visual_studio_to_write_c_and_nothing_else_i/
http://stackoverflow.com/questions/49023201/default-binding-of-the-this-keyword-in-strict-mode
http://stackoverflow.com/questions/49023201/default-binding-of-the-this-keyword-in-strict-mode
https://en.wikipedia.org/wiki/Knight_Capital_Group
https://en.wikipedia.org/wiki/Knight_Capital_Group
https://en.wikipedia.org/wiki/Neuroplasticity
https://en.wikipedia.org/wiki/Neuroplasticity

LUCIAn RADU TEODORESCU & SEAn PAREnTFEATURE

4 | Overload | August 2025

Local Reasoning Can
Help Prove Correctness
Making sense of software is challenging. Lucian Radu Teodorescu
and Sean Parent show how local reasoning can help.

Programs are becoming increasingly complex, while our mental
capacities remain constant. We are well past the point where a single
person can understand the entirety of an average-sized software

system. In this context, it is worth revisiting what Dijkstra called “mental
aids” [Dahl72].

One of the most valuable techniques that support our ability to reason
about software is local reasoning. While the term itself does not appear
explicitly in Dijkstra’s writings, it is almost as though he had the concept
in mind when contributing to Structured Programming [Dahl72]. Hoare
also explored the idea of reasoning about the correctness of programs
by analysing small code blocks [Hoare69], which laid the conceptual
groundwork for local reasoning. However, the term local reasoning first
appeared in the literature in 2001, in the article ‘Local Reasoning about
Programs that Alter Data Structures’ [O’Hearn01].

Local reasoning refers to the ability to analyse and verify a defined unit of
code in isolation – without needing to understand all the contexts in which
it is used, or the details of the code it depends on. By “unit of code”, we
typically mean functions or classes (though the concept can be extended
to other organisational constructs, such as namespaces). These units
must have well-defined APIs that separate the code into client-side usage
(e.g., calling a function or instantiating a class) and implementation-side
logic (e.g., the internal details of the function or class). Furthermore, the
implementation-side logic can itself be subdivided into the focal unit of
code and the dependencies it relies upon.

By applying local reasoning, one can more easily understand code, as it
separates the unit being analysed from its clients and its dependencies.
Having code segments that can be reasoned about independently provides
an excellent mental aid, allowing us to incrementally fit code into our
limited cognitive resources.

The aim of this article is to show that local reasoning can also support
proving the correctness of code. This is significant because, unlike safety,
correctness does not compose. Let us explain. If two components, A
and B, are safe, then composing them preserves safety. However, if A
and B are correct, we cannot guarantee that combining them will result
in a correct program. For example, suppose A produces measurements
in imperial units, and B consumes values assuming they are in metric
units. Individually, A and B may be correct, but used together, they yield

incorrect behaviour. This exact type of mismatch contributed to the crash
of NASA’s Mars Climate Orbiter [Wikipedia].

Properties
Let us begin with the notion of correctness. Following Leslie Lamport
[Lamport77], we define correctness as the combination of liveness and
safety properties that describe the behaviour of a program or specification.
Liveness properties assert that something desirable eventually happens;
safety properties assert that something undesirable never happens. For
example, in a program that sorts a list of words, a liveness property might
be that the output is a permutation of the input sequence, while a safety
property might be that the program does not exhibit undefined behaviour.

To use the distinction introduced by Fred Brooks in his well-known ‘No
Silver Bullet’ article [Brooks95] – a distinction inspired by Aristotelian
terminology – we can divide properties into essential and accidental. In
the sorting example, the requirement that the output be a permutation
of the input is an essential property: we cannot imagine the program
being correct without it. In contrast, accidental properties include the
ordering of equivalent elements in a sorted sequence, the number of CPU
instructions executed for a given input, the heat generated on a specific
machine, or the amount of memory used.

Naturally, when we discuss correctness, we are concerned only with the
essential properties; accidental ones can typically be ignored. For the
sorting example, two different algorithms may vary in their accidental
properties, but they share the same essential properties.

Two programs (or specifications) are considered equivalent whenever
they share the same set of essential properties.

When dealing with an entire program specification, the set of essential
properties can be interpreted as the program’s requirements. These
requirements come in two forms: explicit and implicit. Explicit
requirements are those that are clearly stated or documented. Implicit
requirements are not usually written down and are often overlooked,
yet we still recognise them as essential when asked. For instance, “the
program shall not deadlock” is a typical implicit requirement. Other
examples include: “the program shall not exceed the system’s memory”,
“the program shall complete in under one second when sorting 1,000
words”, or “the output file format shall match the input file format”.

A program is typically composed of multiple parts, ideally structured in
some form of hierarchy [Dahl72]. In our simple example, there may be
one part that reads the input file, another that writes the output, one that
performs the sorting, and a smaller component that compares two words
(possibly alongside others). The global properties of the full program
may not be directly attributable to individual components. However, just
as we decompose programs into smaller parts, we assume there exists
a corresponding method to decompose properties into smaller ones
applicable to each part. For example, from the program’s specification,
we could derive what it means for two words to be considered equal or
for one to be ‘less than’ another – key requirements for the comparison
component.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

Sean Parent is a senior principal scientist and software architect
in Adobe’s Software Technology Lab. Sean joined Adobe in 1993,
working on Photoshop, and is one of the creators of Photoshop Web,
Photoshop Mobile, Lightroom Mobile, and Lightroom Web. In 2009,
Sean spent a year at Google working on Chrome OS before returning
to Adobe. From 1988 to 1993, Sean worked at Apple, where he was
part of the system software team that developed the technologies
enabling Apple’s successful transition to PowerPC.

LUCIAn RADU TEODORESCU & SEAn PAREnT FEATURE

August 2025 | Overload | 5

To summarise, we define correctness as the set of essential properties
that apply to both programs and specifications, at both the level of the
entire system and its constituent parts. The essential properties of the full
specification correspond directly to the program’s requirements.

Abstractions
Functions and classes are abstractions. To use Dijkstra’s words, an
abstraction is something for which we can describe “what it does” while
completely disregarding “how it works” [Dahl72]. As mentioned earlier,
abstractions define an API, and this API separates the client-side logic
from the implementation-side logic. The implementation logic can itself
be further divided into the core implementation and the logic it depends
upon.

The API of an abstraction typically consists of:

	� Type information (e.g., function declaration, class definition)

	� Contract specifications: preconditions and postconditions

	� Semantic properties (often documented as comments, or
occasionally expressed in the name of the abstraction)

	� Implicit global assumptions (e.g., non-aliasing of function
parameters, object lifetime guarantees, etc.)

We refer to the abstraction API properties as the set of essential properties
derived from the abstraction’s API.

We say that an abstraction is well defined if its abstraction API properties
are equivalent to the essential properties that can be derived from its
implementation – considering both the core logic and its dependencies.
While it is possible to have correct programs even if some abstractions
are not well defined, we still strive to ensure all abstractions are well
defined, as this simplifies reasoning about the program.

Listing 1 provides a straightforward example of a well-defined abstraction.
In contrast, Listing 2 illustrates two examples of abstractions that are not
well defined:

	� my_sort() fails to perform sorting for a vector with exactly two
elements,

	� my_sort2() exhibits undefined behaviour if the input vector
contains fewer than two elements.

Programs are typically organised hierarchically – more precisely, as
directed acyclic graphs (DAGs). The implementation of one abstraction
may rely on other abstractions. If we take functions as primary examples of
such abstractions, we often encounter functions that call other functions.

For a given abstraction, we refer to the abstractions it directly uses in
its implementation as its child abstractions. In other words, the child
abstractions are those for which the initial abstraction is a direct client.
Using this notion, we can navigate the hierarchical structure of programs
more effectively.

We define the local view of an abstraction as the program or specification
obtained by replacing, within its implementation, all child abstractions
with program fragments or specifications that are equivalent to their APIs.
For example, if a function my_sort() calls std::sort(), the local
view of the my_sort() abstraction is the program obtained by replacing
the call to std::sort() with an abstract representation conforming to
the API of std::sort(), discarding its internal implementation details.

By using local views, we effectively ignore the implementations of child
abstractions – i.e. the dependencies of an abstraction’s implementation –
and focus solely on the core implementation of the abstraction, assuming
that all dependencies behave as specified.

The notion of equivalence in the previous definition is essential. The
theorem we will introduce later relies critically on this equivalence. When
examining the local view of an abstraction, we are effectively assuming
that all of its child abstractions are perfectly implemented. For example,
when reasoning about a function, we assume that all the functions it
calls behave according to their specified contracts – so we do not need to
inspect their implementations directly.

It is worth noting that there may be multiple valid substitutions for each
child abstraction when constructing the local view. However, since all
these substitutions are equivalent with respect to essential properties, the
resulting local views are also equivalent.

Now that we have defined what a local view is, we can define the local
properties of an abstraction as the set consisting of:

	� Properties derived from the type information of the abstraction

	� Properties derived from the preconditions of the abstraction

	� Implicit global assumptions

	� Essential properties of the abstraction’s local view, assuming the
above as preconditions

When comparing the local properties of an abstraction with its API
properties, two key differences arise. First, local properties do not include
the postconditions or the semantic properties defined by the API. Second,
they do include all properties that can be inferred from the local view and
its preconditions.

Whereas API properties allow us to decouple an abstraction’s
implementation from its clients, local properties decouple the
abstraction’s local view from the dependencies of its implementation.
The local properties capture all assertions that can be made by applying
Hoare logic [Hoare69] to the abstraction’s local view.

We say that an abstraction is locally well defined if its local properties form
a superset of its API properties. In other words, all the postconditions and
semantic properties defined by the abstraction’s API can be derived by
analysing its immediate implementation.

In this definition, we allow the set of local properties to be larger than
the set of API properties, rather than requiring them to be equivalent.
This choice is intentional. Applying Hoare logic to the abstraction’s
implementation may yield additional properties, not all of which are
relevant at the abstraction level. For instance, consider a sorting routine
that always handles more than 10 elements. Its API may specify: “the
routine shall not terminate if the input has more than 10 elements”.
However, reasoning about its implementation may yield the stronger
statement: “the routine will never terminate”. The latter includes the former.

Listing 3 (next page) presents two examples of functions that are not
locally well defined.

	� The function times_two() is not locally well defined because its
local view implies that the function returns the input plus 2, while
its semantic intent (as suggested by its name) is to multiply the input
by 2.

	� In the second case, count_primes_below() is not locally
well defined because reasoning over its local view does not
yield the required property. The problem lies in its dependency

//! Adds '2' to 'x'.
//Precondition: x + 2 < INT_MAX
int add_two(int x) {
 return x + 2;
}

Listing 1

//! Sorts inplace `v`.
void my_sort(vector<int>& v) {
 if (v.size() > 2)
 std::sort(v.begin(), v.end());
}

//! Sorts inplace `v`.
void my_sort2(vector<int>& v) {
 std::sort(v.begin(), v.end());
 if (v[0] > v[1]) std::terminate();
}

Listing 2

LUCIAn RADU TEODORESCU & SEAn PAREnTFEATURE

6 | Overload | August 2025

on a function named test(), whose API is underspecified.
There is nothing stating that test() must return true when the
input is a prime number. Without that assumption, we must treat
test() as returning arbitrary values. Consequently, the body
of count_primes_below() cannot be shown to produce the
property that it counts the number of primes below the given input
– a property implied by the function’s name.

There are also cases where a function is (provably) well defined, but not
locally well defined. Listing 4 illustrates such a situation. The function
add_three() behaves correctly: it adds 3 to its input. However, it
does so by relying on a helper function add_one(), whose API does
not match its actual implementation. For add_three() to be locally
well defined, we must either correct the API of add_one() or adjust
the implementation of both functions to be consistent with their declared
behaviour.

Local reasoning
We say that an abstraction has local reasoning if it is locally well defined.
In other words, we can reason about the correctness of the abstraction
by focusing solely on its core implementation – without inspecting the
implementations it depends on.

Lemma. If an abstraction A has local reasoning and all its child
abstractions are well defined, then A is also well defined.

We provide a schematic proof by contradiction.

Assume that there exists an essential property P which belongs to the
API properties of A, but does not hold for the implementation of A.
From the perspective of Hoare logic, there must exist an instruction Q
in the implementation of A which is expected to contribute (directly or
indirectly) to ensuring P, but fails to do so. That is, a fault at Q explains
the discrepancy between the specification and the implementation.

Now, Q must either belong to the core implementation of A, or to its
dependent logic. If Q is in the dependent logic, then the failure lies in one
of the child abstractions. But by assumption, all child abstractions are
well defined – so this case is impossible.

Therefore, Q must be in the core implementation of A. This implies that
P cannot be among the local properties of A, since local properties are
derived by applying Hoare logic to the core implementation (including
Q). But if A has local reasoning, then its local properties are equivalent
to its API properties, and thus P should not appear in the API properties
either. This is a contradiction.

Hence, if A has local reasoning and all of its child abstractions are well
defined, then A is also well defined.

To express the next corollary more conveniently, let us denote by tr(A) the
transitive closure of the child abstractions of A, including A itself.

Corollary. For a given abstraction A, if all abstractions in tr(A) have local
reasoning, and tr(A) forms a DAG (directed acyclic graph), then A is well
defined.

Since the abstractions in tr(A) form a DAG, we can arrange them in a
sequence such that, for any abstraction A₀, all its child abstractions appear
earlier in the sequence (i.e. to the left of A₀). By traversing this sequence
from left to right, we can iteratively prove that each abstraction in the
sequence is well defined.

For any element A₀ in the sequence, its child abstractions appear earlier
and have therefore already been shown to be well defined. Given that A₀
has local reasoning and all its child abstractions are well defined, we can
apply the lemma to deduce that A₀ is also well defined.

Thus, by proceeding through the sequence from left to right, we prove that
all elements are well defined abstractions. Since abstraction A appears as
the final element in the sequence (as per our construction), we conclude
that A is well defined.

Hence, the corollary holds.

The reader should note that the corollary does not apply if the abstractions
do not form a DAG. Listing 5 presents an example of two mutually
dependent functions that are not well defined. According to their API
properties, each function is expected to return the value 2, but in practice,
they call each other endlessly, resulting in non-termination.

Now, let us turn our attention to the entire program. We assume the
program can be represented by a top-level abstraction. In terms of
functions, this typically corresponds to the main() function. We also
assume that the abstractions within the program can be organised
hierarchically as a DAG.

Theorem. If all abstractions in a program support local reasoning, and the
program is composed of hierarchically organised abstractions (i.e. forms
a DAG), then the entire program is correct.

The proof follows directly from the corollary above. Given the existence
of a top-level abstraction for the program, and the assumption that the
abstraction hierarchy forms a DAG, we can apply the corollary to conclude
that the top-level abstraction is well defined. That is, its API properties
match the essential properties derivable from its implementation.

By our definition of correctness – as the equivalence between API-level
properties (requirements) and implementation-level properties – we
conclude that the program is correct.

Thus, we arrive at the desired result.

Discussions
Local reasoning is good
The average programmer spends significantly more time reading code
than writing it – by a factor of more than 10×, according to Robert C.
Martin [Martin09]. Local reasoning is one of the ‘mental aids’ (to borrow
Dijkstra’s terminology) that helps us read code more effectively, and
more broadly, to reason about it.

Much of this article has focused on showing how local reasoning supports
proving that code is correct. Turning the problem around, local reasoning
can also be invaluable for identifying issues. It is far easier to spot problems
when one can analyse a single function or class at a time, checking
whether it conforms to its specification, without constantly examining

// precondition: abs(x) < 1000
int times_two(x) { return x + 2; }

bool test(int n);

// precondition: 2 < n < 2^16.
int count_primes_below(int n) {
 int result = 0;
 for (int i=1; i<n; i++) {
 if (test(i)) result++;
 }
 return result;
}

Listing 3

// precondition: abs(x) < 1000
int add_one(int x) { return x + 2; }
// precondition: abs(x) < 1000
int add_three(int x) { return 1 + add_one(x); }

Listing 4

// Postcondition: returns 2
int f();
// Postcondition: returns 2
int g();

int f() { return g(); }
int g() { return f(); }

Listing 5

LUCIAn RADU TEODORESCU & SEAn PAREnT FEATURE

August 2025 | Overload | 7

its dependent functions. In a way that parallels our earlier corollary, the
process of issue detection becomes linear rather than exponential.

Understanding code also benefits greatly from local reasoning. Rather
than attempting to fit an entire program into one’s mental model, a
developer can focus on understanding smaller pieces of code, and how
those pieces compose into larger abstractions. To draw an analogy:
imagine trying to make sense of a Wikipedia article. Like local reasoning,
the article should include sufficient context to be readable in isolation.
If understanding it required recursively drilling down into every linked
page, reading the article would become a Sisyphean task – well beyond
our cognitive capacity.

Local reasoning also offers a secondary benefit in tooling: most static
analysis tools benefit heavily from it. Code that is easier for humans
to understand and reason about is also easier for machines to analyse
effectively.

Organizing programs hierarchically
One of the widely applied design principles in software engineering is the
Acyclic Dependencies Principle, which states that “the dependency graph
of packages or components should have no cycles” [Martin97]. Cyclic
dependencies in an application typically lead to tight coupling, hinder
reuse, and cause domino effects – where a small change in one module
propagates through others in unintended ways.

This article offers an additional perspective on why cyclic dependencies
are problematic. Cyclic dependencies can make it significantly harder
to reason about correctness when applying local reasoning. Although
this may not be the primary reason to avoid cyclic dependencies, it is a
consideration worth pondering.

Reasonable software and global reasoning
A well-known maxim in our industry is that we should write code for
humans, not for machines. In other words, we should strive to produce
reasonable software. We define reasonable software as software that can
be easily reasoned about by people, and as software that is decent and
fair – meaning that it avoids unexpected surprises.

Local reasoning is perhaps the most effective way to achieve reasonable
software. At the same time, it can be viewed as just one aspect of what
reasonable software entails. In practice, we also need some form of global
reasoning: that is, we expect certain properties to hold across multiple
abstractions of a program – albeit with occasional exceptions.

A good example of such a global property is the applicability of local
reasoning itself. Local reasoning is of limited value unless it is applied
consistently: if one function supports local reasoning but calls other
functions that do not adhere to their contracts, reasoning about correctness
quickly becomes ineffective.

Other examples of global properties that contribute to reasonable software
include:

	� Abstractions are organised hierarchically (no cycles)

	� The program is well structured

	� The Law of Exclusivity [McCall17] is applied consistently

	� The program exhibits no undefined behaviour

	� Consistent conventions for naming and documentation are followed

	� Implicit assumptions across the program are clear and respected

From requirements to abstraction properties
One weakness of the approach presented in this article is the assumption
that we can readily translate complete requirements – both explicit and
implicit – into properties associated with the top-level abstraction (e.g.,
the main() function), and then systematically distribute those properties
to child abstractions. In practice, this rarely occurs in a disciplined or
complete manner.

Explicit requirements are typically the known knowns of a project.
Implicit requirements are often the unknown knowns. Moreover, as
Kevlin Henney has frequently pointed out, most software projects are
also plagued by unknown unknowns [Henney21]. The unfortunate
reality is that we seldom know the full set of requirements. As a result,
it becomes difficult to ensure that all essential properties are properly
assigned across abstractions. This makes the top-down application of the
approach described here hard to carry out rigorously.

However, this is only partially bad news. In practice, having good
abstractions – that is, abstractions with clearly defined and trustworthy
contracts – greatly aids in achieving overall correctness.

In contrast to the top-down approach of distributing requirements
across abstractions, starting from solid abstraction contracts enables
a complementary bottom-up strategy. By applying local reasoning and
examining each abstraction individually, we can incrementally infer the
properties of the entire program. And even if we do not know all the
requirements in advance, we can still verify that the inferred properties
align with our expectations of the program’s behaviour.

There is another important way in which the bottom-up strategy proves
valuable: by applying local reasoning to individual components, we can
improve their correctness in isolation. This, in turn, enhances our ability
to reason about the system as a whole. Dave Abrahams and Sean Parent
refer to this process as “building islands of correctness”. It can be applied
not only to newly developed software but also to existing systems.

Improving local reasoning
There is relatively little literature dedicated to local reasoning. The original
article that introduced the term [O’Hearn01] does not offer practical
guidance on how to create or improve local reasoning in a program.
More recently, the works of Dave Abrahams, Dimi Racordon, and Sean
Parent have explored local reasoning as a useful, applicable technique
in real-world software [Racordon22a, Abrahams22a, Abrahams22b,
Abrahams22c, Racordon22b, Parent23, Parent24].

Local reasoning can be severely impeded by reference semantics in
the presence of mutation. If a function holds a reference to a memory
location, it becomes difficult to reason locally about that function if other
functions can also access and mutate the same memory. For example, the
code in Listing 6 may appear correct to the untrained eye – but a call such
as add_twice(x, x) produces unintuitive results. If x == 2, then x
becomes 8 instead of 6, because the value of y changes between the first
and second additions. This is counter-intuitive: nothing in the body of
add_twice suggests that such behaviour is even possible.

While the example in Listing 6 is intentionally constructed to demonstrate
this point, real-world code often contains many such opportunities for
spooky action at a distance. This can happen any time a function takes
parameters by reference, uses global variables, or accesses shared
ownership (e.g. via shared pointers). In all of these cases, unexpected
side effects may occur, making local reasoning much harder.

The most effective mitigation is to enforce the law of exclusivity
[McCall17], which states that if a piece of code holds a mutable reference
to an object, no other references to that object may exist concurrently.
Conversely, multiple references may coexist as long as they are all read-
only. Languages such as Rust, Swift, and Hylo enforce this rule at the
compiler level. In languages like C++, the law of exclusivity can be
approximated by adopting value semantics instead of reference semantics.

By following the law of exclusivity and using value semantics, we
significantly improve the applicability of local reasoning.

// Adds twice the value of 'y' to 'x'.
void add_twice(int& x, const int& y) {
 x += y;
 x += y;
}

Listing 6

LUCIAn RADU TEODORESCU & SEAn PAREnTFEATURE

8 | Overload | August 2025

Another useful technique for supporting local reasoning is the use
of whole-part relationships [Stepanov09, Parent15]. Two objects
(commonly referred to as parent and child) are said to be in a whole-part
relationship if the following properties hold:

	� Connectedness: one can reach the child from the parent.

	� Non-circularity: an object cannot be its own parent (i.e. an object
cannot be part of itself).

	� Logical disjointness: modifying one object does not affect any
other distinct object (although shared children are permitted).

	� Ownership: it is possible to copy an object, modify the copy, and
destroy it without affecting the original object.

The last two properties are particularly important for enabling local
reasoning. If a function operates on a value of such an object, then
modifications to other objects – including copies – will not affect the
original.

Containers in the C++ Standard Template Library (STL) exemplify this
relationship: they maintain whole-part semantics with respect to the
values they contain. When we build objects through simple composition
(i.e. without pointers or references), and all sub-objects respect the whole-
part relationship, the composed object also preserves this property.

Designing data structures around the whole-part relationship is an
effective way to enhance local reasoning.

The third tip we offer for supporting local reasoning is to craft good
abstractions and assign clear, well-defined contracts to them. As the
saying goes, the devil is in the details – so ensuring that an abstraction’s
contract accurately captures its intended semantics is essential for
enabling local reasoning. For a useful introduction to this topic, the reader
is encouraged to watch the ‘Contracts in C++’ talk by Sean Parent and
Dave Abrahams, presented at CppCon 2023.

As for the art of creating good abstractions, there is a wealth of literature
on the principles of sound software design. We will just leave the reader
with a relevant quote from Edsger W. Dijkstra [Disjkstra72]:

The purpose of abstracting is not to be vague, but to create a new
semantic level in which one can be absolutely precise.

Conclusions
Local reasoning is a powerful tool. Since the 1970s, when structured
programming first emerged, the core idea of local reasoning has served
as a vital mental aid – helping programmers make sense of software, both
when reading existing code and writing new code. This benefit alone
secures local reasoning a place among the most valuable techniques in
software development. But there is more to it. As this article has explored,
local reasoning also plays a crucial role in enabling formal reasoning
about correctness.

Achieving correct software is a long-term effort, but local reasoning
offers a path toward steady, composable progress. By crafting strong
contracts, avoiding cyclic dependencies, enforcing the law of exclusivity,
and favouring value semantics, we can build systems in which reasoning
is tractable – one function, class, or component at a time. This approach
applies equally well to greenfield development and to the modernisation
of legacy code.

In recent years, the software industry – especially the C++ community
– has increasingly focused on safety. Yet, as important as safety is,
correctness is the harder goal. As Alexander Stepanov once said:

Understanding why software fails is important, but the real
challenge is understanding why software works.

Local reasoning gives us that ability.

If there is one takeaway from this article, it is that local reasoning is not
a luxury – it is a necessity for sustainable software. While language and

tooling support for enforcing local reasoning remains limited, we as
engineers can take deliberate steps to design and structure our systems
with this principle in mind. In doing so, we move closer to building
software that is not only powerful, but understandable – and ultimately,
trustworthy. �

References
[Abrahams22a] Dave Abrahams, ‘A Future of Value Semantics and

Generic Programming (part 1)’, C++ Now 2022,
https://www.youtube.com/watch?v=4Ri8bly-dJs.

[Abrahams22b] Dave Abrahams, Dimi Racordon, ‘A Future of Value
Semantics and Generic Programming (part 2)’, C++ Now 2022,
https://www.youtube.com/watch?v=GsxYnEAZoNI&list=WL.

[Abrahams22c] Dave Abrahams, ‘Values: Safety, Regularity,
Independence, and the Future of Programming’, CppCon 2022,
https://www.youtube.com/watch?v=QthAU-t3PQ4.

[Brooks95] Frederick P. Brooks Jr., The Mythical Man-Month
(anniversary ed.), Addison-Wesley Longman Publishing, 1995.

[Dahl72] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured
Programming, Academic Press Ltd., 1972.

[Disjkstra72] Edsger W. Dijkstra, ‘The Humble Programmer’,
ACM Turing Lecture 1972, https://www.cs.utexas.edu/~EWD/
transcriptions/EWD03xx/EWD340.html.

[Henney21] Kevlin Henney, ‘Beyond the Known Knowns’, 2021,
https://www.youtube.com/watch?v=eNeOzOoipQs.

[Hoare69] Hoare, C. A. R., ‘An axiomatic basis for computer
programming’ in Communications of the ACM, 12(10), 1969,
http://sunnyday.mit.edu/16.355/Hoare-CACM-69.pdf.

[Lamport77] Leslie Lamport, ‘Proving the correctness of multiprocess
programs’ in IEEE transactions on software engineering 2, 1977,
https://www.microsoft.com/en-us/research/publication/2016/12/
Proving-the-Correctness-of-Multiprocess-Programs.pdf.

[Martin97] Robert C. Martin, ‘Granularity: The Acyclic Dependencies
Principle (ADP)’, https://web.archive.org/web/20151130032005/
http://www.objectmentor.com/resources/articles/granularity.pdf,
1997.

[Martin09] Robert C. Martin, Clean Code: A handbook of agile software
craftmanship, Prentice Hall, 2009.

[McCall17] John McCall, ‘Swift ownership manifesto’, https://github.
com/apple/swift/blob/main/docs/OwnershipManifesto.md, 2017.

[O’Hearn01] Peter W. O’Hearn, John C. Reynolds, and Hongseok
Yang, ‘Local Reasoning about Programs that Alter Data Structures’,
Lecture Notes in Computer Science, Volume 2142, Springer, 2001,
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/localreasoning.pdf.

[Parent15] Sean Parent, ‘Better Code: Data Structures’, CppCon 2015,
https://www.youtube.com/watch?v=sWgDk-o-6ZE.

[Parent23] Sean Parent, Dave Abrahams, ‘Contracts in C++’, CppCon
2023, https://www.youtube.com/watch?v=OWsepDEh5lQ.

[Parent24] Sean Parent, ‘Local Reasoning in C++’, NDC TechTown
2024, https://www.youtube.com/watch?v=bhizxAXQlWc.

[Racordon22a] Dimi Racordon, Denys Shabalin, Daniel Zheng, Dave
Abrahams and Brennan Saeta, ‘Implementation Strategies for
Mutable Value Semantics’ https://www.jot.fm/issues/issue_2022_02/
article2.pdf.

[Racordon22b] Dim Racordon, ‘Val Wants To Be Your Friend:
The design of a safe, fast, and simple programming
language’, CppCon 2022, https://www.youtube.com/
watch?v=ELeZAKCN4tY&list=WL.

[Stepanov09] Alexander A. Stepanov, Paul McJones, Elements of
programming. Addison-Wesley Professional, 2009.

[Wikipedia] Mars Climate Orbiter: https://en.wikipedia.org/wiki/Mars_
Climate_Orbiter.

https://www.youtube.com/watch?v=4Ri8bly-dJs
https://www.youtube.com/watch?v=GsxYnEAZoNI&list=WL
https://www.youtube.com/watch?v=QthAU-t3PQ4
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://www.youtube.com/watch?v=eNeOzOoipQs.
http://sunnyday.mit.edu/16.355/Hoare-CACM-69.pdf
https://www.microsoft.com/en-us/research/publication/2016/12/Proving-the-Correctness-of-Multiprocess-Programs.pdf
https://www.microsoft.com/en-us/research/publication/2016/12/Proving-the-Correctness-of-Multiprocess-Programs.pdf
https://web.archive.org/web/20151130032005/http://www.objectmentor.com/resources/articles/granularity.pdf
https://web.archive.org/web/20151130032005/http://www.objectmentor.com/resources/articles/granularity.pdf
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md
https://github.com/apple/swift/blob/main/docs/OwnershipManifesto.md
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/localreasoning.pdf
https://www.youtube.com/watch?v=sWgDk-o-6ZE
https://www.youtube.com/watch?v=OWsepDEh5lQ
https://www.youtube.com/watch?v=bhizxAXQlWc
https://www.jot.fm/issues/issue_2022_02/article2.pdf
https://www.jot.fm/issues/issue_2022_02/article2.pdf
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

AnDREW DRAkEFORD FEATURE

August 2025 | Overload | 9

Simple Compile-Time Dynamic
Programming in modern C++
Compile time code can be very efficient. Andrew Drakeford
demonstrates how to write efficient chains of matrix multiplication.

modern C++ enables us to solve mathematical optimisation problems
at compile time. With the expanded constexpr capabilities
[Fertig21, Turner18, Turner19, Wu24], we can now write clear

and efficient optimisation logic that runs during compilation. Fixed-size
containers such as std::array fit naturally into these routines. Even
standard algorithms, such as std::sort and std::lower_bound, are
now constexpr, enabling more straightforward code and more powerful
compile-time computations. Additionally, compile-time optimisation
generates constant results, which enables the compiler to create even
more efficient code. We will use the matrix chain multiplication problem
as our worked example.

matrix chain multiplication
Matrix chain multiplication is a classic dynamic programming problem
[Corman22, Das19, Mount]. It aims to determine the most efficient method
for multiplying a sequence of matrices. Since matrix multiplication is
associative, the order of grouping does not affect the result. However,
the number of scalar multiplications involved can vary depending on the
grouping.

Consider the three matrices A₁ (10×100), A₂ (100×5), and A₃ (5×50),
multiplied in a chain, A₁ × A₂ × A₃.

There are two ways to multiply them:

1. Grouping as (A₁ × A₂) × A₃ first computes a 10×5 matrix, then
multiplies that with A₃. This results in 5,000 operations for the first
multiplication, and another 2,500 for the second – a total of 7,500
scalar multiplications.

2. Grouping as A₁ × (A₂ × A₃) first multiplies A₂ and A₃, then A₁.
This results in 25,000 operations for the first step and 50,000 for the
second – a total of 75,000, which is clearly worse.

Setting up the dynamic programming problem
We define the cost of computing the matrix chain as the total number of
scalar multiplications. To solve the dynamic programming problem, we
need to find the grouping which minimises the cost. Let us consider the
matrix chain shown in Figure 1.

If we split the matrix chain in half, we obtain the two sub-chains as shown
in Figure 2.

On each side of the split, we multiply the matrices together (shown in
blue: the uppers, smaller boxes) to produce the two intermediate matrices
(shown in red, as ‘result’). To complete the chain multiplication, we
multiply the intermediate results together. The total cost for the chain is:

Total cost = left chain cost + right chain cost + split point cost

The split point cost is the cost of multiplying the intermediate (red,
‘result’) matrices together to complete the chain. By pre-calculating the
minimum cost for both left and right chains, we can quickly determine
the lowest cost for the entire chain by evaluating each possible split and
selecting the least expensive option.

Solving it with dynamic programming: the algorithm
We approach this by using bottom-up dynamic programming, i.e., solving
the smallest subproblems first. Consequently, we work over chains of
increasing length, finding their optimal split position and minimum cost.
For each chain, we calculate the cost at each possible split point and then
identify the optimal split point. We store the optimal costs of each chain
(subsequence) in a square matrix, where the row and column indices
define the start and end points of the chain, respectively. This enables us
to retrieve the optimal costs for both left and right chains, avoiding
recalculation. We use an additional array, the split matrix, to store the
optimal split position for each chain. Figure 3 shows the dynamic
programming matrix.

The code
Listing 1 (next page) shows the function matrix_chain_dp. It takes a
fixed-size std::array containing the matrix dimensions of the chain
and returns a square array of the optimal split points for all sub-chains.
The function has two local variables, dp and split, which are square

Figure 1

Figure 2

The line shows the chains of length 2.

Figure 3

Andrew Drakeford holds a PhD in physics and has dedicated the
past few decades to developing high-performance financial libraries
and applications using C++. He has a keen interest in quantitative
finance, machine learning, vectorisation, and high-performance
computing (HPC). Additionally, he is a member of the UK C++ panel
and can be reached at andreedrakeford@hotmail.com.

AnDREW DRAkEFORDFEATURE

10 | Overload | August 2025

arrays used to store the optimal cost and split point for each sub-chain
considered.

The function solves the dynamic programming problem in a bottom-up
manner. The code iterates through chain length, position, and split point
in nested loops. At each split, it evaluates the cost function and stores the
minimum cost and its split point in the dp and split matrices, respectively.
The function then returns the split matrix.

Listing 2 shows an example of running the optimisation at compile time.
The function main establishes an array, dims, which is constexpr. We
initialise it declaratively, with the matrix chain dimensions. It is passed
into the constexpr function matrix_chain_dp, which initialises the
constexpr variable split with the optimisation results.

The result, split, is an array of arrays, representing a square matrix,
which contains the value of a chain’s optimal split point. The rows and
columns index the start and end points of a sub-chain, respectively.

To extract the optimal chain sequence, we recursively unpack the split
matrix, starting from the top-right cell of the first row, which yields the
split point for the entire chain (from 0 to N-1). This point divides the
chain into left and right sub-chains, whose optimal splits can also be
found in the split matrix.

The function print_optimal_parenthesization retrieves the
optimal evaluation order and prints it out to give the result shown below:

 Optimal Parenthesization: ((M1 x M2) x ((M3 x M4) x M5))

This is our first Godbolt example, which is available at
https://godbolt.org/z/9a9TP6aos

However, to use something like this in real code, we
need to execute the matrix chain calculation using the
results given by the split matrix. For this, we use the
split matrix to build a tree structure of expression templates for the matrix
multiplications. Our second Godbolt example illustrates this https://
godbolt.org/z/b3x3ao14K

This example creates a chain of twelve matrices. It
performs both a naïve (in declaration order) matrix chain
evaluation and an optimised multiplication, recording
the times taken to calculate the results.

Figure 4 (next page) compares the run time of a matrix chain multiplication
for naïve and optimal cases.

Conclusion
Modern C++ provides the necessary features to develop concise code that
can solve optimisation problems at compile time. The values resulting
from the optimisation process are constant, which enables the compiler
to generate even more efficient executables. The optimisation results

// Function to compute MCM using Bottom-Up DP
// (constexpr)
template <std::size_t N>
constexpr std::array<std::array<int, N>, N>
 matrix_chain_dp(const std::array<int, N + 1>&
 dims)
{
 std::array<std::array<int, N>, N> dp{};
 std::array<std::array<int, N>, N> split{};

 // Initialize dp table for chains of length
 // 1(have zero cost) since no multiplication
 for (std::size_t i = 0; i < N; ++i)
 {
 dp[i][i] = 0;
 }
 // Bottom-Up DP computation
 for (std::size_t len = 2; len <= N; ++len)
 // iterate over chain length
 { // Chain length
 for (std::size_t i = 0; i < N - len + 1; ++i)
 // iterate over chain start position
 {
 std::size_t j = i + len - 1;
 dp[i][j] = std::numeric_limits<int>::max();
 for (std::size_t k = i; k < j; ++k)
 // iterate over split position
 {
 // optimal cost = cost of left chain
 // + cost of right chain + cost of split
 int cost = dp[i][k] + dp[k + 1][j]
 + dims[i] * dims[k + 1] * dims[j + 1];
 if (cost < dp[i][j])
 {
 dp[i][j] = cost; // store lowest cost
 split[i][j] = k; //store optimal split
 }
 }
 }
 }
 return split;
}

Listing 1

int main()
{
 // Given Matrix Chain: 6 Matrices (DIMENSIONS)
 constexpr std::array<int, 7> dims = {
 10, 100, 5, 50, 10, 100, 5 };
 constexpr std::size_t N = dims.size() - 1;

 // Compute split table at compile time
 constexpr auto split
 = matrix_chain_dp<N>(dims);
 // Print optimal parenthesization
 std::cout << "Optimal Parenthesization: ";
 print_optimal_parenthesization(split, 0,
 N - 2);
 std::cout << "\n";
 return 0;
}

Listing 2

compile-time optimisation generates
constant results, which enables the compiler
to create even more efficient code

https://godbolt.org/z/9a9TP6aos
https://godbolt.org/z/b3x3ao14K
https://godbolt.org/z/b3x3ao14K

AnDREW DRAkEFORD FEATURE

August 2025 | Overload | 11

could even define a structure, such as an expression tree, for the optimal
execution of a custom domain-specific language.

It is not necessary to limit our optimisation approach to dynamic
programming; alternative techniques, such as graph algorithms or linear
programming, may also be employed. The range of potential optimisation
problems that we could tackle at compile time is vast; we need to make
sensible choices about when this sort of mundane wizardry is appropriate. �

References
[Corman22] Thomas Corman, Charles Leiserson, Ronald Rivest and

Clifford Stein. (2022). Introduction to Algorithms. 4th Edition. MIT
Press. ISBN13: 978-0262046305

[Das19] Avik Das (2019). Dynamic programming deep-dive: Chain
Matrix Multiplication. medium.com. Retrieved from
https://medium.com/@avik.das/dynamic-programming-deep-dive-
chain-matrix-multiplication-a3b8e207b201

[Fertig21] Andreas Fertig (2021) Programming with C++20 Concepts,
Coroutines, Ranges, and more Fertig Publications.

[Mount] Dave Mount (n.d.). ‘Dynamic Programming: Chain Matrix
Multiplication’ Retrieved July 2025, from https://www.cs.umd.edu/
class/spring2025/cmsc451-0101/Lects/lect10-dp-mat-mult.pdf

[Turner18] Jason Turner (2018) ‘Practical constexpr’, Meeting C++
Retrieved from https://isocpp.org/blog/2018/02/practical-constexpr-
jason-turner

[Turner19] Jason Turner (2019) ‘Applied constexpr: Doing More Work
At Compile Time’, cppConn2019. Retrieved from https://cppcon.
org/class-2019-constexpr/

Wu Yongwei (2024) ‘C++ Compile-Time Programming’, Overload
183, available at https://accu.org/journals/overload/32/183/wu/

Figure 4

modern C++ provides the necessary features
to develop concise code that can solve
optimisation problems at compile time

mailto:https://medium.com/@avik.das/dynamic-programming-deep-dive-chain-matrix-multiplication-a3b8e207b201
mailto:https://medium.com/@avik.das/dynamic-programming-deep-dive-chain-matrix-multiplication-a3b8e207b201
https://www.cs.umd.edu/class/spring2025/cmsc451-0101/Lects/lect10-dp-mat-mult.pdf
https://www.cs.umd.edu/class/spring2025/cmsc451-0101/Lects/lect10-dp-mat-mult.pdf
https://isocpp.org/blog/2018/02/practical-constexpr-jason-turner
https://isocpp.org/blog/2018/02/practical-constexpr-jason-turner
https://cppcon.org/class-2019-constexpr/
https://cppcon.org/class-2019-constexpr/
https://accu.org/journals/overload/32/183/wu/

SEB ROSEFEATURE

12 | Overload | August 2025

UI Development with BDD
and Approval Testing
Testing with confidence. Seb Rose
shows a way to approach UI testing.

This article explores the challenges of applying a Behaviour-Driven
Development (BDD) approach to UI development. In addition to
giving a high-level introduction to BDD, I’ll describe a technique

called Approval Testing that complements traditional assertion-based
testing to give developers clearer visibility of the correctness of their
implementation.

What is BDD?
BDD is an agile development approach in which three practices are applied
to each story/backlog item: Discovery, Formulation, and Automation.
Much has been written about BDD and there are many good introductory
articles available, but here I’d like to stress that these practices must
be applied in the correct order. Discovery, then Formulation, then
Automation. [Rose24]

In the context of BDD, Automation means the writing of test code before
the code under test has been written. Just like Test-Driven Development
(TDD), the failing automated test drives the development of the
production code. There are two implications of this approach:

	� Every test should be seen to fail when it is written and seen to pass
when the correct production code is implemented. Never trust a test
that you haven’t seen fail.

	� The automation code must be written either by the people who will
write the production code or by someone who is collaborating very
closely with them.

Should automation be end-to-end?
There’s a common misconception that all BDD scenarios will be
automated end to end, exercising the entire application stack. Since each

BDD scenario is only intended to specify a single business behaviour,
using an end-to-end approach for each one would be incredibly wasteful:

	� Runtime – end-to-end tests take longer to run than tests that exercise
specific areas of the code.

	� Noise – the more of the code each test exercises, the more likely it is
that many tests will all hit the same code paths. So, an error in that
code path will cause all the tests that use it to fail, even if that part of
the code has nothing to do with the business behaviour the scenario
was created to illustrate. In the face of multiple failing scenarios, it’s
hard to diagnose which behaviour has deviated from specification.

The ‘Test Automation Pyramid’ [Rose20] is a common metaphor that
suggests most tests should not be end to end. Applying this approach to
BDD automation means that we should consider the most appropriate
automation to ensure that a specific behaviour has been implemented as
specified.

How should the UI be tested?
BDD scenarios that describe how the UI should behave are usually
written using tools such as Selenium. These can be slow and brittle
because the UI is often tightly coupled with the rest of the application.
However, conceptually, the UI is a component that interacts with other
application components. It should therefore be possible to test the UI in
isolation, near the bottom of the Test Automation Pyramid, by providing
test doubles for the application components that it depends on.

Many applications are architected in such a way that the UI can only
be exercised as part of an end-to-end test. Whenever possible, a more
flexible architecture (that allows the UI to be exercised with the rest of the
application ‘stubbed out’) should be preferred.

Is that all?
Even with a flexible architecture and automation that conforms to the
Test Automation Pyramid, there are challenges. Most test frameworks
come with simple assertion libraries that verify if text or numerical values
are set as expected. If you need to validate all the fields in a report, you
will need an assertion for each of them. This approach leads to verbose
automation code that is time consuming to write and difficult to maintain.
Additionally, as soon as one assertion fails, the whole test fails without
checking any subsequent assertions.

Seb Rose Seb has been a consultant, coach, designer, analyst and
developer for over 40 years. Co-author of the BDD Books series
Discovery and Formulation (Leanpub), lead author of The Cucumber
for Java Book (Pragmatic Programmers), and contributing author to
97 Things Every Programmer Should Know (O’Reilly).

SEB ROSE FEATURE

August 2025 | Overload | 13

For many years, a technique called Approval Testing has been used in
these situations, and several tools have been developed to help teams
incorporate approval testing into their software development processes.
The mechanics of how the tools work vary, but their approach is the same:

1. The first time the test is run, the output is checked manually. If
correct, this output is stored as the ‘approved’ output. If not, fix the
software and repeat until the output produced is correct.

2. On subsequent test runs, the tool will compare the output produced
to the ‘approved’ output previously recorded. If they are found to be
the same, then the approval test has passed. If not, the approval test
has failed. [Falco08]

Naturally, it’s not quite as simple as that. For example, if the complex
output that we’re comparing includes timestamps, these will likely be
different each time the test is run. Therefore, approval testing tools
typically include mechanisms to specify parts of the output that should
not be compared. These exclusions will be specified when the approval
test is first created and stored alongside the test.

Does approval testing work for UIs?
Simply specifying areas of the output that should not be compared is
insufficient if we’re trying to automatically verify the correctness of a
visual component. Perhaps a text field is now too close to the border of a
control or one visual element is overlaying/obscuring another one.

In these situations, machine learning (ML) and artificial intelligence
(AI) can deliver huge benefits. Our tests can leverage these technologies
to identify these hard-to-spot issues to a precision that the human eye
cannot. But they take time – and slow feedback from a build is the enemy
of automated testing.

Instead, AI/ML powered visual tests should be run in a separate stage in
the build pipeline, after the faster automated checks have already passed.
This ensures that developers get the fast feedback they require while also
delivering confidence that the UI is free of visual defects.

If the visual tests pass, then all is well. If there’s a failure during the visual
tests, then manual investigation is required – because not all failures
indicate a defect in the code.

When is a failure not a fail?
We normally think of a test as having a binary outcome. It either passes
or fails. Life in software development is rarely that simple. To ensure that
the software we ship satisfies our customers’ needs, we want to minimize
false positives. So, when a test passes, we need to be confident that the
behaviour being verified is implemented correctly.

When a test fails, it doesn’t necessarily mean that the behaviour has been
implemented incorrectly. There are three expected situations that cause a
test to fail:

1. Incorrect implementation: this could be caused by a misunderstanding
of the specification or an error in the implementation.

2. Incorrect specification: the test is performing the wrong check(s) or
the check(s) are being carried out incorrectly.

3. BDD/TDD: the test has been written before the behaviour it’s
designed to check has been implemented.

When any sort of failure happens in a build, investigation is required. If
you find that Situation 1 or 2 has occurred, fix the defect (either in the
implementation or the specification) and run the build again.

Situation 3) is a signal to the development team that the work is
incomplete. Seeing an automated test fail is an important part of all
BDD/TDD workflows. Usually, we would like the failure to be seen in
the developers’ environment and made to pass before being pushed to
CI. However, some workflows may see the tests committed and pushed
before the behaviour being verified is implemented.

AI/mL powered visual approval testing
There are several popular, free, open source approval testing tools available
([TextTest], [ApprovalTests]). Their support for visual comparison is
limited (absent in the case of TextTest), but there are techniques that, used
in conjunction, may be sufficient for your needs (see the Printer section in
this article by Emily Bache [Bache19] for example).

With the increasing availability of AI/ML techniques, a number of
visual testing tools are now available that incorporate AI functionality to
facilitate the validation of complex graphical applications. Applitools is
possibly the most popular commercial offering [Applitools], but there are
many others available with competing functionality and pricing.

Conclusion
The development team need regular, fast feedback to give them visibility
of important aspects of their software’s quality. They need confidence that
they’re developing the right thing in the right way.

BDD and TDD are techniques that give developers that confidence
(among other benefits). Currently, most organisations that adopt these
approaches use popular assertion-based tools to verify that the code being
developed satisfies the specifications. This focus on assertion-based
testing is unsuitable for some of the subtle and complex issues that occur
when developing today’s applications.

Approval testing in all its flavours can help bridge the gap between
automated assertion checking and time-consuming manual testing.
Existing approval testing libraries are excellent when dealing with
complicated textual outputs and simple graphical components. Visual
testing tools are emerging that leverage AI/ML to bring approval testing
for modern UIs within reach of reliable automated testing.

References
[Applitools] Applitools: https://approvaltests.com/
[ApprovalTests] Approval Tests: https://approvaltests.com/
[Bache19] Emily Bache ‘Approval Testing’, published at

https://approvaltests.com/on 23 July 2019.
[Falco08] Llewellyn Faloc ‘Approval Tests (a picture worth a 1000

tests)’ posted at https://llewellynfalco.blogspot.com/2008/10/
approval-tests.html on 13 October 2008.

[Rose20] Seb Rose ‘Eviscerating the Test Automation Pyramid’,
available at https://cucumber.io/blog/bdd/eviscerating-the-test-
automation-pyramid/, posted 7 February 2020.

[Rose24] Seb Rose ‘Behaviour-Driven Development’, available at
https://cucumber.io/docs/bdd, last updated November 2024.

[TextTest] TextTest: https://www.texttest.org/

This article was first publishedon Seb Rose’s blog on 8 February 2023:
https://cucumber.io/blog/bdd/bdd-approval-testing-and-visualtest/. It
has been reviewed and updated for Overload.

https://approvaltests.com/
https://approvaltests.com/
https://approvaltests.com/
https://llewellynfalco.blogspot.com/2008/10/approval-tests.html
https://llewellynfalco.blogspot.com/2008/10/approval-tests.html
https://cucumber.io/blog/bdd/eviscerating-the-test-automation-pyramid/
https://cucumber.io/blog/bdd/eviscerating-the-test-automation-pyramid/
https://cucumber.io/docs/bdd
https://www.texttest.org/
https://cucumber.io/blog/bdd/bdd-approval-testing-and-visualtest/

SánDOR DARgóFEATURE

14 | Overload | August 2025

Trip report: C++ On Sea 2025
Another year, another trip report from C++ On Sea!
Sándor Dargó shares what he learned.

First, a heartfelt thank-you to the organizers for inviting me to speak,
and an equally big thank-you to my wife for taking care of the kids
while I spent three days in Folkestone – plus a few more in London to

visit the Spotify office and catch up with some bandmates.

If you have the chance, try
to arrive early or stay around
Folkestone for an extra day.
It’s a lovely town and it’s worth
exploring it. The conference
program is very busy even in the
evenings, so don’t count on the
after hours. This year, I arrived an half a day in advance and I had a
wonderful hike from Folkestone to Dover. It was totally worth it.

In this article, I’ll share:

	� Thoughts on the conference experience.

	� Highlights from talks and ideas that resonated with me.

	� Personal impressions, including reflections on my own sessions –
both the main talk and the lightning talk.

my favourite talks
Before diving into individual sessions, I want to highlight the overall
mood at the conference – full of enthusiasm and excitement. C++ On Sea
2025 took place just after the WG21 meeting in Sofia, Bulgaria, where
several game-changing proposals were discussed and adopted. Herb
Sutter’s keynote focused entirely on a few features of C++26, and Timur
Doumler’s talk spotlighted an exciting upcoming feature: contracts.

With that context in mind, here are my three favourite talks, presented in
the order they were scheduled.

Three cool things in C++ (26) by Herb Sutter
Herb is part of that rare breed of presenters. He is extremely knowledgeable,
his presentation style is entertaining and if this wouldn’t be enough, he is
also always enthusiastic.

As I mentioned earlier, C++ On Sea 2025 took place right after a
particularly productive committee meeting, which added even more
excitement to the atmosphere – both for Herb and for the audience.

Herb’s keynote focused on three major features coming in C++26:

	� Erroneous behaviour

	� Reflection

	� std::execution

Thanks to the new erroneous behavior, uninitialized variables will no
longer result in undefined behaviour by default. You can still opt in to
keep variables uninitialized, but now, as Herb put it, “the sharp knife is
in a drawer by default”. (If you’re curious to dive deeper, I have written
more about erroneous behaviour on my blog [Dargo-1].)

Now, reflections – this one is huge. We can’t possibly cover it in just a few
paragraphs. But according to Herb and pretty much everyone I’ve talked
to, it’s set to be a real game changer for C++. We don’t yet fully grasp all
the possibilities it will unlock.

In a nutshell, reflections will provide a standardized, generalized API to
a language-level abstract syntax tree (AST). In C++26, we’ll be able to
reflect on types, functions, and parameter lists. The rest will follow in
C++29. What’s especially exciting is that, unlike in many other languages,
C++ reflection will be entirely compile-time, meaning there’s no runtime
overhead.

This article isn’t the right place to go into too much detail, but reflection
is expected to massively simplify things like creating language bindings.
Just as I did for concepts, I plan to dedicate an entire blog series to
reflections – both to learn it myself and to share my insights with you.

Software engineering completeness pyramid: knowing when
you are done and why it matters by Peter muldoon
Peter is another highly energetic speaker, and his talk focused on the
hardcore discipline of software engineering – without touching a single
line of code. He opened with a question we all hear from our managers:

Are you done yet?

But how can we really know? And, once we’re ‘done’, how can we be
sure the software actually delivers value?

Peter argued that software only brings value when it is available, usable,
and reliable – all at the same time. Large and slow releases rarely meet
that standard; small, incremental changes that satisfy all three criteria do
far better.

To clarify what it really takes to deliver valuable software, he introduced
the ‘Software Engineering Completeness Pyramid’ (see Figure 1, next
page), a four-level hierarchy reminiscent of Maslow’s. As with Maslow,
you usually need to satisfy each level before you can meaningfully think
about the next one.

Where do you operate?

	� Are you simply shipping features and squashing bugs?

	� Have you moved up a level to caring about codebase health – an
essential step toward senior-engineer territory?

	� Do you think like a systems engineer, considering how each change
fits the broader architecture and influences system stability?

Sándor Dargó is is a passionate software craftsman focusing on
reducing maintenance costs by applying and enforcing clean code
standards. He loves knowledge sharing, both oral and written. When
not reading or writing, he spends most of his time with his two
children and wife in the kitchen or travelling. Feel free to contact him
at sandor.dargo@gmail.com

SánDOR DARgó FEATURE

August 2025 | Overload | 15

	� Or have you reached the summit, weighing every decision against
business goals and market positioning?

That final tier may seem distant, but we should all keep the business
context in mind. After all, there’s no point in delivering features the
business – and its users – don’t actually need.

Why software engineering interviews are broken – and how to
actually make them better (kristen Shaker)
I was deeply moved by Kristen’s talk. More on that at the end.

Most of us would likely agree that the software engineering interview
process is fundamentally flawed. We’re asked to solve LeetCode-style
problems, analyze runtime and memory complexities – the infamous Big
O – not because they’re part of our daily work, but because that’s how the
industry has standardized hiring.

As Kristen explained, these kinds of interview questions are bad for
both developers and companies. Candidates often need to spend months
preparing just to stand a chance. A full interview process can take up to 8
hours – just for a single position! Yet if we don’t change jobs frequently,
we risk falling behind in compensation.

It’s a bad deal for companies too. They don’t necessarily end up hiring the
engineers who would perform best on the job. And because the interview
process is so exhausting, many people stay in roles they’re unhappy
with – quiet quitting instead of seeking new opportunities. This system
also tends to favor hiring the same kinds of people over and over, while
diverse skill sets would lead to stronger, more balanced teams.

So what can be done instead?
Kristen proposes that we move away from LeetCode-style questions and
ask better ones – questions that signal whether someone will actually
succeed in the role. Questions that have multiple valid answers. That
allow candidates to demonstrate different skill sets. That start simple, but
can go deep. That value real-world experience.

Examples of such questions include:

	� What’s your favorite feature of C++ (or another language)?

	� Review this piece of code.

	� “Yap” about a past project you worked on.

In my view, we do fairly well at Spotify – but that’s clearly not the
industry average.

Why was I so touched by this talk?
When I saw Kristen was speaking, I immediately remembered her
lightning talk at C++ On Sea 2022 [Shaker22] about querying the Clang
AST. Being curious, I googled her name and found a real estate agent
with the same name. She looked familiar, but I thought, “That can’t be
her.”

It is her. She was so fed up with the software industry – especially the
interview process – that she left engineering and became a real estate
agent instead.

Good luck, Kristen.

my favourite ideas
Now let me share three interesting ideas from three different talks.

The embedded world needs more C++ (marcell Juhasz)
Marcell Juhasz gave a talk with the title ‘Balancing Efficiency and
Flexibility: Cost of Abstractions in Embedded Systems’ [Juhasz25]. He
essentially took an embedded project written in good-old C and started
to add layers of abstractions in C++, making the code more readable,
testable and maintainable. Goals that I deeply care about.

But Marcell not only improved the code, he also took measurements after
each step. Mostly about binary size as that’s what mattered to him the
most. If he found any increase, he checked where it comes from and tried
to get rid off the increase while keeping the benefits of the new layer of
abstraction.

The outcome?

One cannot justify using plain C because of worse performance and bigger
binaries. When applied cautiously, modern C++ features are perfect for
the embedded world.

Compile-time debugging (mateusz Pusz)
Mateusz Pusz gave a talk on features that help us write great C++ libraries
– both existing ones and those coming with C++26 or later. While the talk
was informative and full of useful insights, I want to focus on one specific
feature that really stood out to me and that I’d love to explore further:
compile-time debugging, which will be part of C++29.

Debugging constexpr – let alone consteval – functions can be
quite a challenge. Traditional debugging tools are mostly useless in this
domain, making issues hard to trace and fix.

This is where P2758 [P2758R5] comes into play. It introduces new
ways to emit messages at compile time – not just plain output via

Figure 1

In a nutshell, reflections will provide
a standardized, generalized API to a

language-level abstract syntax tree (AST)

SánDOR DARgóFEATURE

16 | Overload | August 2025

std::constexpr_print_str, but also compile-time warnings using
std::constexpr_warning_str and even compile-time errors via
std::constexpr_error_str.

These additions go far beyond simple ‘printf-style’ debugging at
compile time. They allow library authors to:

	� Communicate clearly what’s going wrong (or right) at compile time.

	� Surface warnings proactively before they become runtime issues.

	� Provide error messages that are both specific and user-friendly.

I believe these features have the potential to significantly improve the
developer experience in C++, making compile-time diagnostics clearer
and more actionable than ever before. If used well, they could help
us build libraries with error messages that are both meaningful and
educational – something C++ has long needed.

Difficult test? Think about your design! (Björn Fahller)
Björn gave an excellent talk on software testing. It was both insightful and
educational, covering a big variety of testing strategies – from different
types of tests and their purposes, to comparisons of various unit testing
frameworks.

But there’s one key takeaway I want to highlight from his presentation:

If you find that something is extremely difficult to test, and you just
can’t figure out how to approach it – don’t keep banging your head
against the wall.

Instead, pause and reflect on your API design.

If testing a component is overly complicated, the problem might not lie in
your testing skills or the framework you’re using – it could be a sign that
your design needs improvement. Clean, testable APIs usually indicate
a well-thought-out architecture. On the other hand, if you’re struggling
to test something, it may be tightly coupled, doing too much, or hiding
behavior behind obscure layers of abstraction

my talks
Finally, let me share my contributions to the conference.

My time came very quickly this year. I had my slot on the ‘C++
Fundamentals’ track right after Herb Sutter’s keynote about ‘Three Cool
Things in C++’ [Sutter25]. That’s both terrifying and calming at the same
time!

I was even more surprised – and humbled – to see Jason Turner attending
my talk. I had a brief discussion with him the next day, and he mentioned
that there was some overlap between our topics and he wanted to refresh
his notes on namespaces. What a pleasant and unexpected surprise!

It’s no secret that I talked about namespaces. What they are, how they
work, and what best practices you should follow when using them. I’ve
already covered some of these topics on my blog [Dargo-2], and more
may come. Of course, I’ll share the video once it becomes available.

While I had my talk on the first morning, a lightning talk awaited me later
that evening. I try to grab these opportunities to speak – it’s a great way to
fight stage fright! I presented a technique for designing your workweek,
something I’ve written about on The Dev Ladder [Dargo25].

And finally – no clicker issues this time! After ‘Meeting C++’ last year,
I bought a Logitech Spotlight and it was one of my best conference
decisions. No glitches, just smooth transitions. Same goes for my
presentation overall – though next time, I’ll aim to highlight key points in
code examples more clearly.

Conclusion
C++ On Sea was a great experience in 2025, as well as any other year.
[Dargo-3] Three days packed with inspiring talks about various topics,
including not just C++26, but embedded, testing, engineering interviews
and many more.

The best we can do is to spread the word – share the videos, tweet your
favourite insights, write about what you learned – so that maybe even
more people join next year.

I hope to be back to Folkestone in 2026! �

References
[Dargo-1] Sándor Dargó’s blog posts about erroneous behavior: https://

www.sandordargo.com/blog/2025/02/05/cpp26-erroneous-behaviour
[Dargo-2] Sándor Dargó’s blog posts about namespaces:

https://www.sandordargo.com/tags/namespaces/
[Dargo-3] Sándor Dargó’s blog posts about previous C++ on Sea:

conferences: https://www.sandordargo.com/tags/cpponsea/
[Dargo25] Sándor Dargó ‘Where Pomodor meets a spreadhseet’ (sic),

posted 4 July 2025 at https://devladder.substack.com/p/where-
pomodoro-meets-a-spreadhseet

[Juhasz25] Marcell Juhasz, abstract of ‘Balancing Efficiency and
Flexibility: Cost of Abstractions in Embedded Systems’, at
https://cpponsea.uk/2025/session/balancing-efficiency-and-
flexibility-cost-of-abstractions-in-embedded-systems

[P2758R5] Barry Revzin, ‘P2758R5: Emitting messages at compile
time’, published 2025, available at https://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2025/p2758r5.html

[Shaker22] Kristen Shaker ‘Using Clang Query to Isolate AST
Elements’, a ‘lightning talk’ delivered at C++ on Sea 2022,
available at https://www.youtube.com/watch?v=2LOxsfpCCyI

[Sutter25] Herb Sutter, abstract of ‘Three Cool Things in C++’, at
https://cpponsea.uk/2025/session/three-cool-things-in-cpp

This article was published on Sándor Dargó’s blog in July 2025
and is available at https://www.sandordargo.com/blog/2025/07/02/
cpponsea-trip-report. The blog will be updated with links to videos
when these become available.

Three days packed with inspiring talks
about various topics, including not
just C++26, but embedded, testing,
engineering interviews and many more.

https://www.sandordargo.com/blog/2025/02/05/cpp26-erroneous-behaviour
https://www.sandordargo.com/blog/2025/02/05/cpp26-erroneous-behaviour
https://www.sandordargo.com/tags/namespaces/
https://www.sandordargo.com/tags/cpponsea/
https://devladder.substack.com/p/where-pomodoro-meets-a-spreadhseet
https://devladder.substack.com/p/where-pomodoro-meets-a-spreadhseet
https://cpponsea.uk/2025/session/balancing-efficiency-and-flexibility-cost-of-abstractions-in-embedded-systems
https://cpponsea.uk/2025/session/balancing-efficiency-and-flexibility-cost-of-abstractions-in-embedded-systems
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p2758r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p2758r5.html
https://www.youtube.com/watch?v=2LOxsfpCCyI
https://cpponsea.uk/2025/session/three-cool-things-in-cpp
https://www.sandordargo.com/blog/2025/07/02/cpponsea-trip-report
https://www.sandordargo.com/blog/2025/07/02/cpponsea-trip-report

Hassan Farooq Feature

August 2025 | overload | 17

aI Powered Healthcare application
Many people are raving about AI. Hassan Farooq
describes how he used it in a project so you can
learn how to build an AI model.

Problem

In the healthcare sector, there is a challenge in delivering healthcare
advice that is accessible and personalised to patient’s needs in a timely
manner, especially for individuals who live in areas with limited

medical services. This can lead people to rely on online sources which
may be unreliable. As a result, they may feel anxious because they don’t
know if the information is correct and if they follow incorrect advice,
their health may get worse.

Meanwhile, healthcare professionals are overwhelmed with high
workloads and delivering consultations which are not urgent which could
be handled by digital tools. This puts additional strain on healthcare
systems, shifting critical resources from urgent care needs.

Therefore, there is an increasing need for intelligent systems that provides
users with personalised advice. The key challenge lies in developing a
solution that integrates generative AI to offer accurate, timely and user-
friendly recommendations while adhering to medical standards.

Implementation
This report documents the development of an AI-Powered Healthcare
web application as part of my final year project at University of Bradford
for the Software Engineering BEng Hons. I had around eight months to
complete this project alongside my modules and with limited resources.
Also, I utilised only the tools and technologies within my capacity,
without any external support.

I developed an AI-Powered Healthcare web application that integrates
Generative AI to provide users with personalised medical advice and
support.

To interact with the chatbot, users must securely register and log in. I
built the authentication system using JWT authentication [JWT] and role-
based access control.

When using the chatbot for the first time, users are required to read and
accept a disclaimer. This disclaimer outlines the chatbot’s purpose and
includes consent for the use of personal data. See Figure 1.

The chatbot initially asks for the user’s age and gender. If the input is
invalid or irrelevant, it handles the response gracefully with appropriate
prompts. Once this information is received, the chatbot then asks about
the user’s health concern. If the input provided is too vague, it will ask the
user to provide more detail.

To handle vague inputs, I implemented a vague input detection system.
This works by comparing the user’s input to a set of predefined vague

phrases using the SentenceTransformer model [SBERT]. Both the user
input and the vague phrases are converted into vector embeddings and
the cosine similarity between them is calculated. If the similarity score
exceeds a predefined threshold, the input is considered vague and the
chatbot prompts the user to elaborate. See Figure 2.

Once a clear health concern is provided, the chatbot sends this information
including the age, gender and health issue to the Mistral AI language
model [Mistral]. To improve the accuracy and relevance of the responses,
I enhanced the model using Retrieval-Augmented Generation (RAG),
which incorporates official NHS health articles which were stored as
vector embeddings in the Pinecone database [Pinecone]. RAG was the best
technique to apply because it allowed me to use authoritative NHS articles as
a factual base, improving trust and accuracy. Implementing it involved web
scraping and cleaning NHS pages, converting the content to embeddings
using SentenceTransformers, storing them in Pinecone and querying them
based on the user’s input before sending to the language model.

I applied prompt engineering to the language model to set the context
to healthcare and so it considers the user’s age and gender when

Hassan Farooq is is a Software Engineering BEng (Hons) graduate
from the University of Bradford. He is passionate about building
intelligent systems that solve real-world problems and to drive
digital transformation and help businesses innovate. His interests
include AI, programming languages, cloud computing, healthcare
technology and the ethics of software development. You can contact
him at hassanfarooq105964@outlook.com

Figure 1

Figure 2

Hassan FarooqFeature

18 | overload | August 2025

generating health advice. As a result, the model generates responses in a
conversational tone while referencing information from the NHS database
and it also includes links to the original NHS sources. This promotes user
trust, transparency and allows them to explore their health issues further
on the NHS website. See Figure 3.

The chatbot features a dynamic input button enabling users to interact via
voice recognition or typed text, powered by Google’s Speech Recognition
API [Google].

Users can also review previous conversations as well as start new chats or
delete old ones, giving them full control over their chat history.

Additionally, I implemented a Health Assessment feature on another
page. (Figure 4). Here, users answer a series of yes/no health-related
questions and at the end, their responses are sent to the language model.
The model then provides general health advice and recommendations,
allowing users to benefit from the chatbot’s support even if they don’t
have a specific health issue.

Given the sensitive nature of the application, data protection issues were
key priorities throughout the development of this application.

	� User Consent – Before interacting with the chatbot, users must
accept a disclaimer and consent to the use of their data. This step
ensures informed participation and transparency.

	� Data Minimisation – Only minimal data is collected such as age,
gender and the health concern.

	� Secure Storage – User credentials like password are hashed using
industry-standard hashing algorithms such as bcrypt.

	� Chat history is stored in a secured MySQL database where only
the user has full control over their previous chats. They can view,
delete or start new conversations, this shows privacy of their health
interactions.

	� Role-based access control ensures that only authorised users like
Admins can manage sensitive user data.

Ultimately, the tech stack includes React (front end), Java (back end),
Python (for the chatbot and RAG logic), MySQL for data storage and
Pinecone for storing NHS data as vector embeddings.

Chatbot testing
Testing was conducted to assess the effectiveness of my chatbots response
to real answers. I took 10 random questions from the MedQuad Dataset.

MedQuAD is an abbreviation for Medical Question Answering Dataset
and it consists of pairs of question and answers which are curated from 12
trusted National Institutes of Health (NIH) websites.

I have made a testing file called evaluate_chatbot.py where I
send my predefined medical MedQuAD to my chatbot. The response is
then collected from my chatbot and compared to GPT 4’s (ChatGPT)
[GPT] answers to see which is more semantically similar to the expected
answer. See Figure 5.

Comparison is done using BERT-based sentence embeddings (all-
MiniLM-L6-v2) to calculate cosine similarity. It’s basically like an
Automated Semantic Evaluation and BERT similarity mainly checks
if my chatbot conveys the same idea which is critical in medical and
conversational AI tasks.

results and discussion
Based on the results of the test, ChatGPT which is state of the art,
generated long and nuanced answers, whereas my model which is an
open source using the free tier, generated responses that were truncated.
Nevertheless, the results demonstrate that my chatbot with the support of
RAG and prompt engineering is quite competitive with ChatGPT, even
with its shorter answers. For a couple of questions, my chatbot nailed it
but also felt short for some.

By integrating Retrieval Augmented Generation (RAG) into my chatbot
and using NHS articles as the knowledge base, the chatbot retrieves
factual information directly from NHS resources before responding to
users. This ensures that responses are grounded in reliable data which
reduces the risk of the chatbot hallucinating (generating incorrect
answers) which is particularly critical in the healthcare domain. For
example, if a user’s health concern is expressed as, “I have a headache
due to dehydration,” the model would generate a response that includes
relevant NHS articles, such as https://www.nhs.uk/symptoms/headaches/
along with other related resources.

Although the NHS articles are static, the chatbot interacts with them to
craft responses in a conversational tone by tailoring the information to
suit the user’s queries. Additionally, the chatbot can provide relevant
links to NHS articles which allows users to explore and read more about
their health concerns if they wish. Ultimately, the responses generated by
the chatbot are backed by trusted sources, which may enhance user trust,
satisfaction and it would allow the chatbot to generate better responses
compared to the model itself.

On the other hand, the limitation of the chatbot is that the accuracy of its
advice depends heavily on the quality of user input. If users fail to clarify
their condition or provide enough details, the chatbot’s responses may
lack precision. For example, a user inputting difficulty in breathing must
indicate whether they have been diagnosed with asthma or how long the
pain has been and explain the pain, so the chatbot can tailor its advice
accordingly.

Additionally, the Mistral model was selected as a feasible language model
due to its availability in a free version, but this comes with limitations
because once the free tier has exceeded, payment will be required.Figure 5

Figure 3 Figure 4

https://www.nhs.uk/symptoms/headaches/

Hassan Farooq Feature

August 2025 | overload | 19

Furthermore, there were 170 NHS articles used in my chatbot which
means that my chatbot may not fully have evidence or reliable source for
every single healthcare scenario. More number of NHS and other reliable
sources would allow the chatbot to cover more healthcare scenarios and
maybe improve the results of the chatbot test.

Challenges
My initial plan was to use a language model and fine tune it with datasets
related to healthcare. However, most of the models I came across had
a large number of parameters, required payment and demanded high
memory to run locally. This made it challenging to find a language model
that was both suitable and feasible to run on a laptop with 8GB of RAM.

Eventually, I came across the Mistral AI language model which was
suitable. My next step was to fine-tune it but I discovered that that this
process requires a lot of computational power. Additionally, fine-tuning
is more research oriented and the time required for this task would have
exceeded the timeframe I had for the project.

One of the biggest challenges I faced was figuring out a way to validate the
AI’s responses instead of simply relying on a third party language model
to generate answers. That’s when I discovered Retrieval-Augmented
Generation (RAG). After researching it and assessing its suitability, I
decided to implement it.

To test the accuracy of the chatbot’s advice, I was limited to using 10
questions from the MedQuad dataset. Adding more questions would have
exceeded the free tier limit of the language model.

Whilst searching for a reliable dataset, I discovered that RAG allows you
to store URLs in its knowledge base after cleaning, extracting the content
and converting it into embeddings. Therefore, I chose to use NHS URLs
as the source for the RAG knowledge base.

Future work
For future work, more state-of-the-art tools and models such as the latest
GPT model or DeepSeek [DeepSeek] could be integrated. This process
would be straightforward, involving a simple pick and plug approach
to enhance the system’s capabilities. The dataset could be expanded to
include more NHS articles or other reliable resources could improve the
system’s coverage of healthcare scenarios.

Additionally, prompt tuning could replace prompt engineering to set the
healthcare context of the language model more effectively. By learning
the task’s prefix rather than relying on handcrafted prompts, this approach
has the potential to achieve higher accuracy.

For performance improvement, the model could be running locally on a
GPU if feasible, this would allow the response to be a lot faster. In future,
expert human evaluation would help assess the medical validity of the
chatbot’s responses.

Ultimately, my end goal is to have this project deployed on a cloud
platform. It will always be open for improvements with additional
features in my own time.

If the project were to be a commercial product, medical device approval
will be required, GDPR compliance, clinical safety validation and
transparency in AI usage. This shows that the process can be complex as
it requires consultation with legal, clinical and regulatory experts.

technology overview
Retrieval-Augmented Generation (RAG): RAG is a generative AI
technique which allows you to modify language models with external
data.

Prompt Engineering: Prompt engineering is used to set the context and
guide language models so they can understand the question and give an
appropriate response.

Pinecone: A vector database used for storing embeddings (numerical
representations of text) so the system can retrieve the most relevant health
information.

Cosine Similarity: A mathematical way used to compare the similarity
between two vectors (text embeddings) by calculating the cosine of the
angle between them. It helps determine how similar two pieces of text are
in terms of meaning regardless of their magnitude.

SentenceTransformer: SentenceTransformer is a library (based on
models like BERT) that converts sentences or texts into dense vector
embeddings. These embeddings can then be used for tasks like semantic
search, clustering, and similarity comparison.

Vector Embeddings: These are numerical representations of text, where
semantically similar texts have similar vectors.

state of the art aI health chatbots
There are many different online solutions out there that are designed to
allow patients to manage their health, give them quick and useful advice
after inputting relevant information which they could gain without
booking an appointment.

The Ada Health app [Ada24] was launched in 2011 by a global company
founded by medical experts, it has an AI system which aims to make
healthcare easier and more effective for users allowing them to manage
their health independently. It uses artificial intelligence to help diagnose
symptoms [Singh21]. You input your symptoms, and you are required to
answer some question from the chatbot. The app then analyses your input
and answers to provide possible diagnoses and advice.

The app compares your symptoms with medical dictionaries which it has
been trained and based on that, the app is able to generate a personalised
report. The app may be able to also assist you with different symptoms
such as anxiety, pain, allergies, headache and many more. It’s a useful
tool for getting quick view of your health problems.

The NHS also has a chatbot known as the Limbic Access chatbot and
it’s used to streamline the mental health referral process within the NHS
[NHS22]. It helps services like Mind Matters Surrey NHS (IAPT) by
acting as a digital front door for patients seeking mental health support.

Instead of calling or filling out a long form, you just chat with the bot
online. When someone wants help, the chatbot asks them friendly, step-
by-step questions about how they’re feeling. It collects important details,
like symptoms or if they’re at risk and sends that information to the NHS
team. This helps staff save time because they don’t have to ask those
questions again. Ultimately, it makes the process of asking for mental
health help quicker, easier and less stressful for both patients and staff. �

references
[Ada24] Ada: https://ada.com/about/

[DeepSeek] DeepSeek: https://www.deepseek.com/
[Google] Speech Recognition:

 https://pypi.org/project/SpeechRecognition/
[GPT] Generative Pre-trained Transformer: https://openai.com/index/

introducing-gpt-4-5/
[JWT] ‘Introduction to JSON Web Tokens: https://jwt.io/introduction
[Mistral] Mistral AI: https://mistral.ai
[NHS22] NHS Transformation Directorate (2022), ‘Using an AI chatbot

to streamline mental health referrals’, available at:
https://transform.england.nhs.uk/key-tools-and-info/digital-
playbooks/workforce-digital-playbook/using-an-ai-chatbot-to-
streamline-mental-health-referrals/

[Pinecone] Pinecone Vector Database: https://www.pinecone.io
[SBERT] SentenceTransformers: https://www.sbert.net/
[Singh21] Singh, V., (2021) ‘Benzinga: Artificial intelligence doctor app

Ada Health closes $90M funding led by Bayer, Samsung’, available
at https://www.benzinga.com/m-a/21/05/21322232/artificial-
intelligence-doctor-app-ada-health-closes-90m-funding-led-by-
bayer-samsung

https://ada.com/about/
https://www.deepseek.com/
https://pypi.org/project/SpeechRecognition/
https://openai.com/index/introducing-gpt-4-5/
https://openai.com/index/introducing-gpt-4-5/
https://jwt.io/introduction
https://mistral.ai
https://transform.england.nhs.uk/key-tools-and-info/digital-playbooks/workforce-digital-playbook/using-an-ai-chatbot-to-streamline-mental-health-referrals/
https://transform.england.nhs.uk/key-tools-and-info/digital-playbooks/workforce-digital-playbook/using-an-ai-chatbot-to-streamline-mental-health-referrals/
https://transform.england.nhs.uk/key-tools-and-info/digital-playbooks/workforce-digital-playbook/using-an-ai-chatbot-to-streamline-mental-health-referrals/
https://www.pinecone.io
https://www.sbert.net/
https://www.benzinga.com/m-a/21/05/21322232/artificial-intelligence-doctor-app-ada-health-closes-90m-funding-led-by-bayer-samsung

CHRIS OLDWOODFEATURE

20 | Overload | August 2025

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He also commentates
on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and @chrisoldwood

Afterwood
Debuggers have been around for a long time. Chris Oldwood
ponders these typically under-appreciated tools.

If debugging is the process of removing software bugs, then
programming must be the process of putting them in.

~ Edsger W. Dijkstra

When it comes to most books and technologies I’m typically very
late to the party – the rest of the world has usually moved on
just as I’m getting interested in it. Somewhat unusually for me,

then, I ended up reading the book Coders at Work by Peter Seibel within
the first year of its publication (2009). A natural consequence of always
being late to the party is that most of my books are second-hand, so it was
especially unusual for me to own, and be reading a brand-new book. The
circumstances that led to this seemingly Black Swan like event were my
upcoming birthday, an online bookstore wish-list, and a mother struggling
(yet again) to think of a present for her forty-year-old son.

I must confess that at the time I didn’t know who most of the programmers
were that the author had interviewed – I only recognised four out of the
fifteen names, and one of those had only entered my consciousness a
couple of months earlier at the StackOverflow Dev Day. As someone
who considered themself reasonably well-read this was somewhat of a
surprise. Fifteen years later I can still only tell you who nine of the fifteen
are, despite reading the entire book. It turns out names are hard in the real-
world too – remembering them, that is.

Anyway, what I do remember most about that book was the subject of
debugging. Most of the interviewees made very little use of a debugger,
if at all, print-style debugging appeared to be their default technique.
And yet, based on their biographies and conversations, these people
have clearly all worked on non-trivial codebases so I couldn’t fathom
how they’d manage to live without such an important diagnostic and
exploratory tool.

At that point in time, my programming career had focused entirely on
lower-level programming languages, such as assembly language, C, and
then C++. My first experience with a debugger was with the Pyradev toolset
on the Amstrad CPC6128, although they called it a ‘monitor’ rather than a
debugger, but you could still single-step through machine code. From there
to Devpac on the Atari ST, CodeView under 16-bit Windows (not forgetting
the truly awesome SoftICE when you needed to pull out the big guns), and
eventually to Visual Studio over its many incarnations (with CDB/NTSD/
WinDbg making guest appearances here and there). In essence, from my
mid-teens in the 80’s right up to my forties (and eventually on to my fifties),
a debugger has been a fundamental part of my programming toolkit, even
as I moved into the managed world of C# and .Net.

In contrast, the last five years has seen me working in an in-house
language that has no debugger, and so consequently print-style debugging
has become my only choice. This language is a pure functional language,
so memory-safety is not a source of bugs, and people generally write
small functions which are easy to invoke on a whim via a REPL. It’s a
very different world, and yet I still yearn for a debugger, not necessarily
to help fix bugs, though it would help reduce the time there, but mostly to
help visualise the flows through the 100K+ lines of code.

When my son was very young, he came into the office one day when I was
working from home and stood behind my chair and watched my screen.
Eventually he asked, “What are you doing dad?” I explained that I was
“Debugging some code”. Later he remarked to my wife that all I did all
day was, “Make a yellow line move up and down the screen”. (I was using
an editor colour scheme where the current statement in the debugger was
highlighted with a yellow bar. As an aside, that choice of colour scheme –
blue background with white text – also dates back to Pyradev.)

He wasn’t wrong. Source code is inherently static, and what a debugger
does is to animate it. Suddenly the instruction pointer stops being an
abstract hexadecimal value as the debugger translates that into positions
within source files. Flow control stops being something you have to
mentally picture because the debugger shuffles the code around on
screen as you enter and exit functions and cycle around loop constructs.
Most mainstream programming languages feature closures, which are
simplified by syntactic sugar, but the debugger typically reveals what’s
going on under the hood. (Maybe motion sickness during debugging
could be a proxy for code complexity?)

This idea of using a debugger as a code exploration tool, not just
something you reach for in times of despair, is far from new. In Writing
Solid Code, Steve Maguire proposed you also step through all new code
in the debugger as a way of testing it. In essence, the debugger allows you
to take the same journey as the CPU before it hits production. It’s much
easier to spot an incorrect flow or off-by-one loop error when you’re
watching the code execute in slow motion.

My move away from system programming languages has definitely caused
my skills with a debugger to atrophy. That’s not the only reason though
– Test-Driven Development has also given me confidence in my code in
a way that allows me to avoid firing up the debugger ‘to see it in action’,
more times than not. Even so, old habits die hard, and being able to fire
up the debugger and use a unit test to quickly get into the production code
is simply the icing on the cake and yet another way to unearth further test
scenarios that weren’t obvious from the static viewpoint.

I’ve never really understood the backlash against using a debugger, as
if ‘real programmers’ only need print statements, though maybe Chuck
Norris is probably the exception. I suspect Brian Kernighan’s famous
quote probably hasn’t helped: “The most effective debugging tool is still
careful thought, coupled with judiciously placed print statements.”

Of course, he wrote that way back in 1979 and therefore likely suffers
from the same malaise as that optimisation quote from Sir Tony Hoare.
Debugging Katas are quite a niche exercise too, which doesn’t exactly
help their popularity outside crisis management.

Having someone take my toys away from me has undoubtedly been
a force for good as it’s prompted me to ‘think harder’
(apparently that’s not just for LLMs) and put even more
effort into making my code easier to reason about, but
I’d still prefer to have a debugger in my back pocket for
those Lewis & Clark style expeditions. �

accu

accu.org

Monthly journals, printed and online
Local groups run by ACCU members

Discounted rate for the ACCU Conference
Email discussion lists

To connect with
like-minded people

visit accu.org

accu

	Editorial: What’s THIS for?
	Local Reasoning CanHelp Prove Correctness
	Simple Compile-Time DynamicProgramming in Modern C++
	UI Development with BDDand Approval Testing
	Trip report: C++ On Sea 2025
	AI Powered Healthcare Application
	Afterwood

