
A magazine of ACCU ISSN: 1354-3172

Static Reflection
in C++

Wu Yongwei demonstrates how to achieve
reflection now and shows some examples of

what C++26 might make possible.

Senders/Receivers: An Introduction
Lucian Radu Teodorescu explains the idea
and how to use these in detail.

User Stories and BDD – Part 4,
Features Are Not Stories
Seb Rose finishes his BDD series by
encouraging us to be mindful of the difference.

Replacing 'bool' values
Spencer Collyer considers when
they can cause a world of pain.

Afterwood
Chris Oldwood gives software
development a seasonal twist.

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

December 2024 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

December 2024
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Barry Nichols
barrydavidnichols@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Michael Persson
(an Adobe Stock photo) of a
gravel road in Dalby Söderkog (a
national park), Sweden.

Copy deadlines
All articles intended for publication in Overload 185 should be submitted by
1st January 2025 and those for Overload 186 by 1st March 2025.

	 4	 User Stories and BDD – Part 4, Features Are Not
Stories
Seb Rose finishes off his BDD series by
encouraging us to be mindful of the difference.

	 6	 Static Reflection in C++
Wu Yongwei demonstrates how to achieve
reflection now and shows some examples of
what C++26 might make possible.

	11	 Senders/Receivers: An Introduction
Lucian Radu Teodorescu explains the idea and
how to use these in detail.

	17	 Replacing ‘bool’ Values
Booleans seem simple to use. Spencer Collyer
considers when they can actually cause a
world of pain.

	24	 Afterwood
Bar. Hmmmm. Bug?! Chris Oldwood gives
software development a seasonal twist.

Frances BuontempoEditorial

2 | Overload | December 2024

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

Counting Quails
We are taught to count as children. Frances Buontempo
wonders: how hard can it be?

I’ve been somewhat distracted by various goings on
recently. I attended the SoCraTes UK Unconference
and the inaugural ‘AI for the rest of us’ conference.
I’ve blogged about these if you’re interested
[Buontempo24a, Buontempo24b]. We’ve also been
looking after some neighbour’s animals while they are

on holiday. All of which means I have, of course, not written an editorial.

The neighbours have chickens and guinea pigs, which we have looked
after before. They now have several quails too. We were told there are
11, but counting quails turns out to be difficult. For starters, I have never
seen a quail in real life before. When we first went round, I could see one
and thought it was near three light coloured stones. But the stones then
opened their eyes and moved. Quails come in different colours. By the
end of the week, I had started to get the hang of counting small animals
I don’t know much about, and believe I spotted 11. Hard to be sure. Had
we spotted more than 11 that would have been a surprise. Counting small
birds isn’t easy, even when you’ve got the hang of the shapes and colours
to look for. They also move very quickly. Fortunately, we didn’t spot any
outside the run. We might be invited back.

Counting quails is difficult, but counting anything can be problematic.
How many unfixed bugs does a software system have? Hopefully, they
are in a bug tracking system, and you can query to get an answer. As with
the quails though, are some reported twice, which means you are double
counting? Or have some been marked as ‘won’t fix’, so they are no
longer open? They are still bugs, surely? Needing to qualify ‘how many’
might not be your first thought, but it’s important. Knowing an absolute
number might not be that useful, but a trend might be informative. Does
the number of bugs go up over time? On the face of it, an increasing
number of bugs sounds dreadful. However, this might mean more people
are using the software, rather than new bugs being added to the system on
a regular basis. A raw number isn’t always helpful.

BBC Radio 4 sometimes runs a programme called More or Less by Tim
Harford [BBC]. The latest episode unpacked a claim that 50 million
leaves will be removed from railway tracks in the South East UK this
year. He asked if this was a big number, or a small number, or a silly one.
I’m not sure what a silly number is: perhaps I should make up a definition.
A biodiversity strategy manager at network rail was interviewed to try to
understand where the number had come from. If you’re not from the UK,
you may not know that we frequently have news in the autumn telling
us about too many or even the wrong sort of leaves blocking train lines.

There are myriad other excuses for our trains not
running on time, so it’s a bit of a joke. Anyway,

Network Rail counted trees (using LiDAR), 13
million in total on the UK train network (or
nearby), with 1.5 million in the South East.

So, how many leaves are there per tree? It depends. Apple trees apparently
have 50,000. Harford didn’t explain how that figure was arrived at, but
that’s estimates for you. South Eastern Rail used 50,000 leaves per tree to
arrive at their total figure of 75 billion leaves. This number was “pruned
back to 50 billion for reasons unknown”. They then said 99.9% of these
might not need to be cleared, but the others might. And there you have
50 million. All of which begs the question, how useful is this number?
Harford suggested this is what he thinks of as a silly number. It might
be more informative to state how much time or money might be spent
clearing leaves.

Estimation is, by definition, usually inaccurate. It can be useful, though.
I’ve written a couple of books, and have started a third recently. The
proposal requires an expected number of pages. How do you guess? I
prefer shorter books, so I can manage to read them over a few days or
weeks without forgetting earlier details. I wrote about book lengths a long
time ago, in ‘Too Much Information’ [Buontempo12]. I weighed K&R
(The C Programming Language) and discovered it was 375 grammes,
which makes it suitable for carrying in a bag on a journey. The exact
number of pages varies depending on where you look, but it’s around
250. Yes, I know, the weight probably varies too. It’s a ball-park figure.

How did I estimate the number of pages I would write? Badly, certainly.
But sketching out the potential chapter titles and having in mind 250
pages is ideal, meant I could claim each chapter would be about 20 pages,
and bosh, a total page count somewhere around 250. I suspect what is
more important than the actual number is using that as a guide, so you
can tell if you are going into more detail than you planned, or haven’t
written as much. An estimate isn’t a commitment, but it can be a guide.
Sergey Ignatchenko wrote about ‘The Importance of Back-of-Envelope
Estimates’ [Ignatchenko17]. I used a strapline starting “Guestimate
questions make many people grumble.” I have been asked to guestimate
the number of petrol stations in the UK so many times at interviews that I
hit a point where I had to make an effort not to groan out loud when asked.
The article emphasized finding an order of magnitude, which could show
something would be impossible. This could stop you wasting hours trying
to code up something that could never work. Both providing a page count
and doing a back of the envelope calculation can provide some helpful
input to a process from the start, potentially avoiding problems later on.
Another simple example might be walking somewhere unfamiliar. If you
know approximately how far you need to go, you can track how long you
walk for as a hint about whether you are probably going in the wrong
direction. If somewhere ought to be a 20 minute walk and you aren’t there
within half an hour, you may need to retrace your steps.

Estimates are used in various contexts. Agile teams usually come out with
story point estimates for code requirements. As I am sure you know, the
story points are meant to indicate effort rather than a time commitment.

Frances Buontempo Editorial

December 2024 | Overload | 3

Whether they are always used like that is another story. Maybe you have
seen Lunar Logic’s ‘1/TFB/NFC’ estimation cards? [LunarLogic]. The
letters on the estimation deck are a bit sweary in full, but your options
are 1 point, too big or no chance. I like the idea of deciding if something
is plausible, giving it one point, or too big, so able to be broken into
smaller chunks, or downright impossible. You may not agree, which is
fine. A recent LinkedIn post [Ottinger24] talked about product owners
thinking developers tend to seem obstinate and reluctant. Surely they just
need to type in the code? The product owners then spent a day pairing up
with developers, and saw what they actually needed to do. Imagining how
something works and actually doing it can be miles apart. Walking a day
in another person’s shoes, as the phrase goes, can be illuminating. By the
same score, counting quails might sound easy, until you try it yourself.
They blend in with the background and move. It’s complicated.

To answer questions such as “How many quails?” or “How much effort?”,
you clearly need a definition of ‘quails’ or ‘effort’. You also need a way
to qualify the ‘how much/many’ as well. Obviously, with numbers? Well,
maybe not, as the estimation cards just mentioned show. However, we
are usually fundamentally counting when we answer these questions.
ChatGPT tells me:

Counting is a basic mathematical process used to determine
the quantity or number of items in a set. It involves incrementally
assigning numbers to items, either one-by-one or in groups, until
reaching a total count.

It has sneaked the word set in there, perhaps to avoid double counting,
as I am sure I did with the quails. Ignoring the AI for now, you count
by mapping items to the natural numbers, giving you labels 1, 2, 3,…
n for each quail, or whatever you are counting. This is also called an
enumeration and neatly avoids defining numbers, which is a whole other
topic. There are several different kinds of numbers. How many, I wonder.
The AI listed 7:

1.	 Natural numbers: 1, 2, 3, …
2.	 Whole numbers: 0, 1, 2, 3, …
3.	 Integers: … -3, -2, -1, 0, 1, 2, 3, …
4.	 Rational numbers like ½ -¾
5.	 Irrational numbers like √2, π
6.	 Real numbers (no examples given)
7.	 Complex numbers like 3 + 4i.

The rational numbers were not put in order because that’s slightly
difficult. The AI failed to mention transcendental numbers, and left out
Hamilton’s quaternions. I could have made the list myself, but hey. If
you’ve not come across quaternions before, go have a read [Wikipedia-1].
They are lots of fun. They extend complex numbers, using a j and k as
well, with the property

	� i2 = j2 = k2 = −1

	� ij = k, -ji = k; jk = -kj=i and ki = -ik = j.

I recall a classmate during a mathematics lesson at school going off
on a rant when complex nuwmbers were introduced, based on them
being obviously made up. They are, but they are interesting in and of
themselves. They also have practical uses, including connections with
sine and cosine, making them useful for cycles such as sinusoidal
currents and voltages [ECStudio]. (Beware that electrical engineers use
j for imaginary numbers, rather than i, which is obviously reserved for
current.) We didn’t cover quaternions at school, which would probably
have upset my classmate even more.

I wonder if you can enumerate all the types of numbers. To enumerate,
you must be able to order the elements, and I don’t know if you can
really do that. Some types of numbers are subsets of others. The natural
numbers are included in the integers, and so on. This gives you some
kind of partial ordering. Weirdly, the set of whole numbers and integers
contain the same number of elements. Map 0 to 0, odd whole numbers
to 1, 2, 3, … and even whole numbers to -1, -2 , -3, … and you have a

one-to-one mapping, so they must be the same size. There are more real
numbers though. The proof is left as an exercise for the reader, or go
read about Cantor’s diagonal argument [Wikipedia-2]. The real numbers
are therefore an example of an uncountable set. The quails were almost
uncountable, but for different reasons.

Part of the difficulty with the quails was their movement. Counting or,
more generally, measuring is difficult when things move. Heisenberg’s
uncertainty principle immediately springs to mind [Wikipedia-3], which
states that we cannot measure the position and momentum of subatomic
particles. To be fair, the movement itself might not be the problem,
though you don’t get much momentum without movement. Trying to
measure software does run into similar problems. Instrumenting code for
profiling changes the code itself. The numbers will be wrong, but can still
be informative.

Now, I’m sure I double-counted some quails, as I mentioned. The
approximate figure was close, though. Doing the same thing twice isn’t
the end of the world, but can be slightly annoying. If you have come
across the Lunar estimation cards before, I notice I mentioned them in
‘I am not a number’ [Buontempo17]. I suspect what I have written now
is a slight overlap, rather than a complete clone. Writing an editorial is
impossible! Counting is also rather difficult, so don’t
be too hard on yourself if you have an off-by-one
error, or get a number wrong. Spotting the inaccuracy
is brilliant, and the order of magnitude approximation
might be good enough.

References
[BBC] ‘More or Less’ on BBC Radio 4: https://www.bbc.co.uk/

programmes/b006qshd
[Buontempo12] Frances Buontempo, ‘Too Much Information’

(editorial), Overload 111, published October 2012, available at
https://accu.org/journals/overload/20/111/buontempo_1885/

[Buontempo17] Frances Buontempo, ‘I Am Not a Number’ (editorial),
Overload 139, published June 2017, available at https://accu.org/
journals/overload/25/139/buontempo_2377/

[Buontempo24a] Frances Buontempo, ‘SoCraTesUK 2024’ on
BuontempoConsulting, posted 24 September 2024 at https://
buontempoconsulting.blogspot.com/2024/09/socratesuk-2024.html

[Buontempo24b] Frances Buontempo, ‘AI for the Rest of Us’
on BuontempoConsulting, posted 29 October 2024 at https://
buontempoconsulting.blogspot.com/2024/10/ai-for-rest-of-us.html

[ECStudio] ‘Complex Numbers in Electronics’, ECStudio, available at
https://ecstudiosystems.com/discover/textbooks/basic-electronics/
ac-circuits/complex-numbers-in-electronics/

[Ignatchenko17] Sergey Ignatchenko, ‘The Importance of Back-of
Envelope Estimates’ in Overload 137, available at https://accu.org/
journals/overload/25/137/ignatchenko_2341/

[LunarLogic] Lunar Logic estimation cards: https://estimation.
lunarlogic.io/

[Ottinger24] LinkedIn post (original poster, Tim Ottinger, but many
contributors), iniitally posted during November 2024 at
https://www.linkedin.com/posts/agileotter_ive-had-pos-tell-me-that-
they-didnt-know-activity-7257067028925108224-Stxo

[Wikipedia-1] Quaternion: https://en.wikipedia.org/wiki/Quaternion
[Wikipedia-2] ‘Cantor’s diagonal argument’: https://en.wikipedia.org/

wiki/Cantor%27s_diagonal_argument
[Wikipedia-3] ‘Uncertainty principle’: https://en.wikipedia.org/wiki/

Uncertainty_principle

https://www.bbc.co.uk/programmes/b006qshd
https://www.bbc.co.uk/programmes/b006qshd
https://accu.org/journals/overload/20/111/buontempo_1885/
https://accu.org/journals/overload/25/139/buontempo_2377/
https://accu.org/journals/overload/25/139/buontempo_2377/
https://buontempoconsulting.blogspot.com/2024/09/socratesuk-2024.html
https://buontempoconsulting.blogspot.com/2024/09/socratesuk-2024.html
https://buontempoconsulting.blogspot.com/2024/10/ai-for-rest-of-us.html
https://buontempoconsulting.blogspot.com/2024/10/ai-for-rest-of-us.html
https://ecstudiosystems.com/discover/textbooks/basic-electronics/ac-circuits/complex-numbers-in-electronics/
https://ecstudiosystems.com/discover/textbooks/basic-electronics/ac-circuits/complex-numbers-in-electronics/
https://accu.org/journals/overload/25/137/ignatchenko_2341/
https://accu.org/journals/overload/25/137/ignatchenko_2341/
https://estimation.lunarlogic.io/
https://estimation.lunarlogic.io/
https://www.linkedin.com/posts/agileotter_ive-had-pos-tell-me-that-they-didnt-know-activity-7257067028925108224-Stxo
https://www.linkedin.com/posts/agileotter_ive-had-pos-tell-me-that-they-didnt-know-activity-7257067028925108224-Stxo
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
https://en.wikipedia.org/wiki/Uncertainty_principle
https://en.wikipedia.org/wiki/Uncertainty_principle

Seb RoseFeature

4 | Overload | December 2024

User Stories and BDD – Part 4,
Features Are Not Stories
Features and stories serve different purposes in
software delivery. Seb Rose finishes off his BDD series
by encouraging us to be mindful of the difference.

This is the fourth in a series of articles digging into user stories, what
they’re used for, and how they interact with a BDD approach to
software development. This is the last in this series, but certainly not

the last time I’ll be talking about user stories. However, since it brings
the current narrative arc to a close, it is perhaps the end of the beginning
[Churchill42].

Lifecycle of a story – revisited
User Stories start off as placeholders for a conversation [Rose22].
They’re ideas, often large, not fully formed. They could be valuable, but
they’re not ready for development just yet.

As we refine them (through discovery [Rose23]) they become better
understood. Collaboration ensures that they make sense to the whole
team. The business requirements that limit their scope are negotiated and
agreed.

Now it’s possible to see what’s involved in delivering the story, we can
split them into smaller chunks. Smaller chunks mean faster feedback,
smoother flow, and less waste [Rose24]. They’re no longer placeholders.
Now they’re detailed small increments, each one carrying a small
payload of valuable functionality (see Figure 1).

As the stories get plucked off the backlog, they deliver enhancements and
brand new features. Not in a big bang, but incrementally and iteratively.
Many stories contribute to each feature. Some stories contribute to many
features. No feature is ever finished – it’s just done for now.

No further value
Just because something has been useful doesn’t mean that it will continue
to be useful. On the contrary, once you have used something its value
usually diminishes. Consider a tube of toothpaste or a pack of stickies.

The story never was a requirement. It starts as a placeholder and is
then transformed, first into a narrative and then into several detailed small
increments of functionality. That process is important, because it enables
the team to learn about the problem and the solution. It’s important,
because it allows us to discover the requirements. However, it is the
feature files (and ancillary documentation) that capture the requirements,
not the stories.

Have you ever tried to make sense of a team’s system by reading the
completed stories from their issue tracker? It’s impossible.

Stories only make sense when seen as a sequence of events, playing out
over time. Like one of those flip book animations that you made at school.
Useful documentation, on the other hand, describes how the system
behaves now – not the history of how it evolved to behave like it does.

Back in the mists of time, when stories were written on index cards, XP
teams used to indulge in a confetti party at the end of each iteration. The
story cards in the ‘done’ column were torn into small pieces and thrown
into the air, to rain down as the team danced around, celebrating their
success. Most teams have moved on to electronic story tracking systems,
which saves paper, but makes the disposal of stories problematic and
much less fun.

Stories, once delivered, have no further value. Certainly not as
documentation of the system’s behaviour.

Souvenirs
So if we don’t want to capture stories in our living documentation, what
do we want in there?

Well, there are many useful things you can capture in a feature file.
Written prose that explains the context and need for a feature is still useful
for people reading the documentation for the first time. You can add links
out to other sources of information like UX wireframes or user research
data. But probably the most important thing to document alongside your
scenarios are the rules.

If you cast your mind back to our earlier discussion of example mapping
[Rose23], you’ll remember that requirements are also known as
acceptance criteria or rules [Keogh11].

Modern versions of Gherkin provide a defined way to capture rules – the
Rule keyword. All scenarios that follow a Rule statement are expected
to illustrate that rule. The Rule statement is in scope until either the next
Rule statement is encountered or the end of the feature file.
 Feature: Hear Shout
 Rule: Shouts have a range of 1000m
 Scenario: In range, shout is heard
 …
 Scenario: Out of range, shout is not heard
 …
 Rule: Shouts must not be empty
 Scenario: Zero length, not valid
 …
 Scenario: Only whitespace, not valid
 …
 Scenario: Single character, valid
 …

Seb Rose Seb has been a consultant, coach, designer, analyst and
developer for over 40 years. Co-author of the BDD Books series
Discovery and Formulation (Leanpub), lead author of The Cucumber
for Java Book (Pragmatic Programmers), and contributing author to
97 Things Every Programmer Should Know (O’Reilly).

Figure 1

Seb Rose Feature

December 2024 | Overload | 5

The bottom line is:

	� Stories helped us decide what we want (and how to deliver it).

	� Features document what we’ve got.

By all means keep the story index cards in your drawer as a souvenir
(although I guarantee you’ll never look at them). Please don’t pollute
your feature files with them.

Traceability
There are processes and organisations that value historical stories. The
word I hear most often in this regard is ‘traceability’, so I’d like to write
a few words about the challenges.

In regulated industries (health, defence, finance) there is a need to
demonstrate a rigorous end-to-end development process, from inception
to delivery. Since stories are a visible, tangible artefact, often stored in
electronic data management systems, they are easy to include in the web
of traceability.

The trouble is that stories are neither definitive nor independent. Their
lifecycle makes them no more suitable for traceability purposes than
conversations around a watercooler or notes scribbled on your tablet. If
you use stories for traceability, one of these days you’re sure of a big
surprise [Wohlrab20].

Following a link from a story through to the commit(s) that delivered the
code and test scripts might give you confidence that the necessary work
has been done. And since feature files will be part of those commits, the
resulting behaviour is also documented. However, since subsequent
stories may have been delivered, this means that you cannot infer anything
about the current behaviour of the system by traversing links from a story
through to commits.

Tools are currently being developed that will make it simpler to trace
from a specific version of a scenario through to the stories that caused it
to be written, which will help with some compliance needs. Nonetheless,

it is important to remember that stories are neither requirements nor
deliverables. They are transient artefacts that facilitate delivery, not
persistent artefacts that document behaviour.

Continue the conversation
In this article, I hope that I’ve demonstrated why there’s no place for
stories inside your feature files. If you have any feedback or questions,
I’d be happy to hear it. n

References
[Churchill42] Winston Churchill, 1942, uploaded on 15 May 2010 at

https://www.youtube.com/watch?v=pdRH5wzCQQw
[Keogh11] Liz Keogh ‘Acceptance Criteria vs. Scenarios’, posted on 20

June 2011 at https://lizkeogh.com/2011/06/20/acceptance-criteria-
vs-scenarios/

[Rose22] Seb Rose ‘User Stories and BDD – Part 1’ in Overload 171,
October 2022, available at https://accu.org/journals/overload/30/171/
rose/

[Rose23] Seb Rose ‘User Stories and BDD – Part 2, Discovery’ in
Overload 178, December 2023, available at https://accu.org/
journals/overload/31/178/rose/

[Rose24] Seb Rose ‘User Stories and BDD – Part 3, Small or Far
Away?’ in Overload 179, February 2024, available at https://accu.
org/journals/overload/32/179/rose/

[Wohlrab20] R Wohlrab, E Knauss, JP Steghöfer et al. (2020)
‘Collaborative traceability management: a multiple case study from
the perspectives of organization, process, and culture’, Requirements
Eng 25, 21–45, available at https://doi.org/10.1007/s00766-018-
0306-1

This article was first publishedon Seb Rose’s blog on 30 January 2020:
https://cucumber.io/blog/bdd/user-stories-and-bdd-features-are-not-
stories/ It has been reviewed and updated for Overload.

Best Articles 2024
Vote for your favourite articles from the 2024 journals.
Which did you enjoy? Which did you learn most from?
Which made you think?

Voting is open online at:
https://rb4l84fk57g.typeform.com/to/PVJA6AWU

Select up to 3 ‘favourites’ from each journal.

Past issues of both journals are available on
ACCU’s website: accu.org

	�Overload is available to everyone

	�You can only read CVu if you’re a member

If you’re not a member, you’re missing out.
Why not join now? See website for details.

https://www.youtube.com/watch?v=pdRH5wzCQQw
https://lizkeogh.com/2011/06/20/acceptance-criteria-vs-scenarios/
https://lizkeogh.com/2011/06/20/acceptance-criteria-vs-scenarios/
https://accu.org/journals/overload/30/171/rose/
https://accu.org/journals/overload/30/171/rose/
https://accu.org/journals/overload/31/178/rose/
https://accu.org/journals/overload/31/178/rose/
https://accu.org/journals/overload/32/179/rose/
https://accu.org/journals/overload/32/179/rose/
https://doi.org/10.1007/s00766-018-0306-1
https://doi.org/10.1007/s00766-018-0306-1
https://cucumber.io/blog/bdd/user-stories-and-bdd-features-are-not-stories/
https://cucumber.io/blog/bdd/user-stories-and-bdd-features-are-not-stories/
https://rb4l84fk57g.typeform.com/to/PVJA6AWU

Wu YongweiFeature

6 | Overload | December 2024

Static Reflection in C++
Static reflection is under consideration for C++26. Wu Yongwei
demonstrates how to achieve reflection now and shows some
examples of what C++26 might make possible.

Static reflection will be an important part of C++ compile-time
programming, as I discussed in the October issue of Overload
[Wu24]. This time I will discuss static reflection in detail, including

how to emulate it right now, before it’s been added to the standard.

Background
Many programming languages support reflection (Python and Java, for
example). C++ is lagging behind.

While this is the case, things are probably going to change in C++26.
Also, what will be available in C++ will be very different from what is
available in languages like Java or Python. The keyword is ‘static’.

Andrew Sutton defined ‘static reflection’ as follows [Sutton21]:

Static reflection is the integral ability for a metaprogram to observe
its own code and, to a limited extent, generate new code at compile
time.

‘Compile-time’ is the special sauce in C++, and it allows us to do things
impossible in other languages:

	� Zero-overhead abstraction. As Bjarne Stroustrup famously put
it, ‘What you don’t use, you don’t pay for. What you do use, you
couldn’t hand-code any better.’ If you do not need static reflection,
it will not make your program fatter or slower. But it will be at your
hand when you do need it.

	� High performance. Due to the nature of compile-time reflection,
it is possible to achieve unparalleled performance, when compared
with languages like Java or Python.

	� Versatility at both compile time and run time. The information
available at compile time can be used at run time, but not vice versa.
C++ static reflection can do things that are possible in languages like
Java, but there are things that C++ can do but are simply impossible
in other languages.

What we want from reflection
When we talk about static reflection, what do we really want? We really
want to see what a compiler can see, and we want to be able to use the
relevant information in the code. The most prominent cases are enum and
struct. We want to be able to iterate over all the enumerators, and know
their names and values. We want to be able to iterate over all the data
members of a struct, and know their names and types. Obviously, when
a data member is an aggregate, we also want to be able to recurse into it
during reflection. And so on.

Regretfully, we cannot do all these things today with ‘standard’
definitions. Yes, in some implementations it is possible to hack out some
of the information with various tricks. I would prefer to use macros and
template techniques to achieve the same purpose, as the code is somewhat
neater, more portable, and more maintainable – at the cost of using non-
standard definition syntaxes. Of course, nothing beats direct support from
the future C++ standard.

A few words on macro techniques
I have accumulated some macro code along the years, starting from the
work of Netcan [Netcan]. The key facilities are:

	� GET_ARG_COUNT: Get the count of variadic arguments, so that
GET_ARG_COUNT(a, b, c) becomes 3.

	� REPEAT_ON: Apply the variadic arguments to the main function
macro (with a count), so that REPEAT_ON(func, a, b, c)
becomes func(0, a) func(1, b) func(2, c).

	� PAIR: Remove the first pair of parentheses from the argument, so
that PAIR((long)v1) becomes long v1.

	� STRIP: Remove the first part in parentheses, so that
STRIP((long)v1) becomes v1.

	� …

Some of the ideas were around at least as early as 2012 [Fultz12a], but
Paul Fultz’s code was not suitable for real software projects. My current
code should be considered production-ready, and its variant has already
been used in some large applications. It has also been tested under all
mainstream compilers, including the pre-standard MSVC (supporting old
MSVC did take some efforts). You can find my definitions in the Mozi
open-source project [mozi].

Some consider macros evil, and macros should really be avoided where
we can find better alternatives, but I personally find macros easier to
understand and maintain than some template hacks.

A taste of enum reflection
Oftentimes we want to know how many enumerators are defined in an
enumeration, what their underlying values are, and what their string
forms are. The last need is especially important for debugging/logging
purposes.

Existing implementations
There are existing libraries that provide such capabilities, like Magic
Enum C++ [magic_enum] and Better Enums [better-enums].

Magic Enum C++ requires a recent C++17-conformant compiler, and
it works with the standard form of enumeration definition. However,
since it uses compile-time counting techniques to find out the values
of enumerators, the range of enumerators are limited. Also, it does
not live well with enumeration values that are not declared in the
enumeration definition (say, something like Color{100}) – invoking

Wu Yongwei Having been a programmer and software architect,
Yongwei is currently a consultant and trainer on modern C++.
He has nearly 30 years’ experience in systems programming and
architecture in C and C++. His focus is on the C++ language, software
architecture, performance tuning, design patterns, and code reuse.
He has a programming page at http://wyw.dcweb.cn/, and he can be
reached at wuyongwei@gmail.com.

Wu Yongwei Feature

December 2024 | Overload | 7

magic_enum::enum_name on such a value will get an empty
string_view. This said, I recommend using it, if it satisfies your needs.

Better Enums works with basically any compiler, even old C++98 ones.
However, it requires you to use a special form for enumeration definition.
That alone is ugly but acceptable. What is uglier is that the result is not an
enum, and it cannot get along with values not declared in the enumeration
definition at all – stringifying such a value will cause a segmentation
fault…

My handmade implementation
Mainly to understand the problem better, I tried enum reflection myself.
Basically, I did the following things:

	� Make sure the result of code generation was still an enum

	� Provide the mapping from enumerators to their string forms via
inline constexpr variables

	� Support necessary operations using function overloads such as
to_string

An example of an enum class definition:
 DEFINE_ENUM_CLASS(Color, int,
 red = 1, green, blue);

Then I can use it as follows:
 cout << to_string(Color::red) << '\n';
 cout << to_string(Color{9}) << '\n';

And I will get the following output:
 red
 (Color)9

Some implementation details
While you can check the implementation details in the Mozi project, I
would like to give an overview of what DEFINE_ENUM_CLASS does. Its
definition is in Listing 1.

You can see clearly that it does three things:

	� Define a standard enum class

	� Define an inline constexpr array that contains pairs of underlying
integer values and the string forms of enumerators, which are
generated by applying the ENUM_ITEM macro on the enumerators

	� Declare utility functions for the new enum type

With the definition of Color above, it will expand to Listing 2 (at first
level). The full expansion results in something like Listing 3.

This should be enough for you to see the basic ideas. And you can check
out the implementation details in the Mozi project, if interested.

Example of enum reflection in C++26
The code in Listing 4 (overleaf) should supposedly work as per P2996
[P2996r7], the current static reflection proposal for C++26. It uses the
following reflection features:

	� ^E generates the reflection information for the enum type E.

	� [:e:] ‘splices’ the reflection object back into a source entity,
which is an enumerator here.

#define DEFINE_ENUM_CLASS(e, u, ...) \
 enum class e : u { __VA_ARGS__ }; \
 inline constexpr std::array< \
 std::pair<u, std::string_view>, \
 GET_ARG_COUNT(__VA_ARGS__)> \
 e##_enum_map_{REPEAT_FIRST_ON(\
 ENUM_ITEM, e, __VA_ARGS__)}; \
 ENUM_FUNCTIONS(e, u)

Listing 1

enum class Color : int { red = 1, green, blue };
inline constexpr std::array<
 std::pair<int, std::string_view>, 3>
 Color_enum_map_{
 ENUM_ITEM(0, Color, red = 1),
 ENUM_ITEM(1, Color, green),
 ENUM_ITEM(2, Color, blue),
 };
ENUM_FUNCTIONS(Color, int)

Listing 2

enum class Color : int { red = 1, green, blue };
inline constexpr std::array<
 std::pair<int, std::string_view>, 3>
 Color_enum_map_{
 std::pair{
 to_underlying(Color(
 (eat_assign<Color>)Color::red = 1)),
 remove_equals("red = 1")},
 std::pair{
 to_underlying(
 Color((eat_assign<Color>)Color::green)),
 remove_equals("green")},
 std::pair{to_underlying(Color((
 eat_assign<Color>)Color::blue)),
 remove_equals("blue")},
 };

inline std::string to_string(Color value)
{
 return enum_to_string(to_underlying(value),
 "Color",
 Color_enum_map_.begin(),
 Color_enum_map_.end());
}

Listing 3

We really want to see what a compiler
can see, and we want to be able to use the

relevant information in the code

Wu YongweiFeature

8 | Overload | December 2024

	� The template for loop (expansion statement) allows iteration
over heterogeneous objects at compile time.

	� std::meta::enumerators_of gets all enumerators of the
enumeration.

	� std::meta::identifier_of gets the identifier/name of a
reflected object. Here we use it once for the name of the enumerator,
and once for the name of the enumeration.

It does the same thing as my handmade to_string without the manual
scaffolding: no macros are needed any more.

The online implementation of an early proposal, P2320 [P2320r0],
available in Compiler Explorer, is convenient for demonstration purposes.
The obvious differences between P2996r7 and P2320 are function names:
enumerators_of was members_of, and identifier_of was
name_of. There are some other reflection-supporting Godbolt compilers,
which are not yet capable enough, mainly due to the lack of support for
expansion statements. I have written two different versions of the enum
reflection code that work under P2320:

	� https://cppx.godbolt.org/z/8rWTcf1KP: A simple version that does
linear search as shown above

	� https://cppx.godbolt.org/z/P5Ycdv3xj: A more complex version
that collects the string forms of enumerators and sorts them, so that
we can use binary search later on (similar to what I did in Mozi)

As you can see, while it is still not trivial to implement the full logic,
the major advantage is that we can use the standard enum definition
form, without the current limitations of Magic Enum C++. The reflection
information can be accessed at compile time, but we can save it so that we
can access it later at run time.

Reflection on structs
The need for reflection of structs is even stronger than enums.
Reflection is very helpful in debugging/logging, and serialization and
deserialization become easy when reflection is available.

Existing implementations
I know two existing implementations for reflection purposes.

Boost.PFR [pfr] is:
…a C++14 library for very basic reflection that gives you access to
structure elements by index and provides other std::tuple like
methods for user defined types without any macro or boilerplate code.

It is easy to use. It supports common operations like iteration, comparison,
and output. However, due to the lack of static reflection, it has no way to
access the names of fields.

Struct_pack [struct_pack] is a “very easy to use, high performance
serialization library”. It requires C++17 and focuses on serialization/
deserialization. It is not designed for generic reflection purposes, and you
cannot really use it for your own serialization scenarios (without some
serious hacking).

While not a real implementation, the earliest code I am aware of about
struct reflection is from Paul Fultz [Fultz12b]. Modern compile-time
techniques were not ready in 2012, so while the basic ideas were similar,
Netcan and I did not borrow much code from him.

My handmade implementation
I have my own struct reflection method, which does not have the limitations
of Boost.PFR but under the hood requires macro use. However, once
static reflection is standardized, much of the code and techniques can be
adapted to standard C++.

The basic approach is:

	� Use macros to generate code so that the resulting type is really a
struct of the supposed size (no fatter!)

	� Generate nested types and static constexpr data members which
provide the needed information

	� Provide stand-alone function templates for the common operations

Here is an example. Suppose we have the following definitions:
 DEFINE_STRUCT(
 Point,
 (double)x,
 (double)y
);
 DEFINE_STRUCT(
 Rect,
 (Point)p1,
 (Point)p2,
 (uint32_t)color
);

Then we can initialize such structs as usual:
 Rect rect{
 {1.2, 3.4},
 {5.6, 7.8},
 12345678
 };

template <typename E>
 requires std::is_enum_v<E>
std::string to_string(E value)
{
 template for (constexpr auto e :
 std::meta::enumerators_of(^E)) {
 if (value == [:e:]) {
 return std::string(
 std::meta::identifier_of(e));
 }
 }
 return std::string("(") +
 std::meta::identifier_of(^E) + ")" +
 std::to_string(to_underlying(value));
}

Listing 4

Some consider macros evil, and macros
should really be avoided where we can
find better alternatives

https://cppx.godbolt.org/z/8rWTcf1KP
https://cppx.godbolt.org/z/P5Ycdv3xj

Wu Yongwei Feature

December 2024 | Overload | 9

We can print it easily:
 print(data);

And we will get:
 {
 p1: {
 x: 1.2,
 y: 3.4
 },
 p2: {
 x: 5.6,
 y: 7.8
 },
 color: 12345678
 }

Usage scenario: copy same-name fields
The implementation details may not be very interesting, but we do have
more interesting usage scenarios. One thing I implemented was copying
fields of interest.

Suppose the following definitions (please notice that v2 and v4 have
different types in S1 and S2):
 DEFINE_STRUCT(S1,
 (uint16_t)v1,
 (uint16_t)v2,
 (uint32_t)v3,
 (uint32_t)v4,
 (string)msg
);

 DEFINE_STRUCT(S2,
 (int)v2,
 (long)v4
);

 S1 s1{…};
 …
 S2 s2;

Then the following statement will do the right thing:
 copy_same_name_fields(s1, s2);

And it is done with the highest possible efficiency, equivalent to
s2.v2 = s1.v2; s2.v4 = s1.v4;. I have checked its compiler-
generated x86-64 assembly code, which is:
 movzx eax, WORD PTR s1[rip+2]
 mov DWORD PTR s2[rip], eax
 mov eax, DWORD PTR s1[rip+8]
 mov QWORD PTR s2[rip+8], rax

I do not think Java or Python can ever do anything similar!

If this does not look useful, just think about big database records.
Imagine we have a container of big BookInfo objects, and we want to
do something like the SQL SELECT name, publish_year WHERE
author_id = …. The code would be that in Listing 5.

Isn’t the code much simpler than, while as efficient as, manually copying
the needed fields? The advantage is especially obvious when there are
many such fields.

I have seen copying tens of fields in real code, often followed by
serialization (to send the information over the network), which is a topic
I will discuss separately.

Under the hood
DEFINE_STRUCT is defined as follows:
 #define DEFINE_STRUCT(st, ...) \
 struct st { \
 using is_reflected = void; \
 template <typename, size_t> \
 struct _field; \
 static constexpr size_t _size = \
 GET_ARG_COUNT(__VA_ARGS__); \
 REPEAT_ON(FIELD, __VA_ARGS__) \
 }

The S2 above will first expand to something like:
 struct S2 {
 using is_reflected = void;
 template <typename, size_t>
 struct _field;
 static constexpr size_t _size = 2;
 FIELD(0, (int)v2)
 FIELD(1, (long)v4)
 };

And FIELD(0, (int)v2) will expand to:
 int v2;
 template <typename T>
 struct _field<T, 0> {
 using type = decltype(decay_t<T>::v2);
 static constexpr auto name = CTS_STRING(v2);
 constexpr explicit _field(T&& obj)
 : obj_(std::forward<T>(obj)) {}
 constexpr decltype(auto) value()
 { return (std::forward<T>(obj_).v2); }
 T&& obj_;
 };

DEFINE_STRUCT(
 BookInfoNameYear,
 (string)name,
 (int)publish_year
);

BookInfoNameYear record{};
vector<BookInfoNameYear> result;
Container<BookInfo> container;
while (…) {
 auto it = container.find(…);
 …
 copy_same_name_fields(*it, record);
 result.push_back(record);
}

Listing 5

What is currently possible with macro
techniques will be possible with the C++26
static reflection, only that it will be simpler

Wu YongweiFeature

10 | Overload | December 2024

I leave CTS_STRING(v2) unexpanded, as it has two possible definitions,
depending on the environment [Wu22]. For now, you can think of it as just
"v2", with some additional magic (which copy_same_name_fields
requires).

When you have an obj of type S2, you can access its members using their
field numbers: _field<S2&, 0>(obj).value() is exactly obj.v2
(with the correct value category), and S2::_field<S2&,0>::type
is the type of obj.v2 (which is int). With the help of fold expressions,
more complex things like compile-time field iteration is now possible, as
shown in Listing 6.

Now, a function call like for_each(obj, f) will be equivalent to:
 f(0, S2::_field<S2&, 0>::name, get<0>(obj));
 f(1, S2::_field<S2&, 1>::name, get<1>(obj));

Facilities like for_each is essential in implementing user-visible tools
like print and serialization.

Example of struct reflection in C++26
As in the case of enum reflection, we will be able to dispense with the
macro use when C++26 static reflection arrives. Listing 7 is a demo
implementation of print (slightly changed from [Wu24] in order to
conform to the updated version of P2996).

Given what we have known about ^ and [:…:], the code is pretty
straightforward.

We can verify it actually works under P2320 (https://cppx.godbolt.org/z/
G3EcvhKxK) and P2996, with an expansion statement workaround
(https://godbolt.org/z/77PYjzcW8).

A few more words on Mozi
Mozi is an open-source project I started in late 2023, mostly for the purpose
of experimenting with macro-based static reflection. I have implemented

generic comparison, copying, printing, and serialization/deserialization. A
serialization scenario called net_pack is implemented, which includes
fully automatic byte-order swap and is suitable for coping with network
datagrams. A special bit_field type is provided to provide bit-field
support over the network.

I regard it as a demonstration of some interesting things that are possible
with static reflection. What is currently possible with macro techniques
will be possible with the C++26 static reflection, only it will be simpler,
for both the implementer and the user. n

References
[better-enums] https://github.com/aantron/better-enums
[Fultz12a] Paul Fultz II, ‘Is the C preprocessor Turing complete?’, May

2012, https://pfultz2.com/blog/2012/05/10/turing
[Fultz12b] Paul. Fultz II, ‘C++ Reflection in under 100 lines of code’,

July 2012, https://pfultz2.com/blog/2012/07/31/reflection-in-under-
100-lines

[magic_enum] https://github.com/Neargye/magic_enum
[mozi] https://github.com/adah1972/mozi
[Netcan] https://github.com/netcan/recipes/tree/master/cpp/

metaproggramming
[P2320r0] Andrew Sutton et al., ‘The Syntax of Static Reflection’, 2021,

http://wg21.link/p2320r0
[P2996r7] Wyatt Childers et al., ‘Reflection for C++26’ (revision 7),

October 2024, http://wg21.link/p2996r7
[pfr] https://github.com/boostorg/pfr
[struct_pack] https://github.com/alibaba/yalantinglibs
[Sutton21] Andrew Sutton, ‘Reflection: Compile-Time Introspection of

C++’, ACCU 2021, https://www.youtube.com/watch?v=60ECEc-
URP8

[Wu22] Yongwei Wu, ‘Compile-Time Strings’, Overload, 30(172):4-7,
December 2022, https://accu.org/journals/overload/30/172/wu/

[Wu24] Yongwei Wu, ‘C++ Compile-Time Programming’,
Overload, 32(183):7-13, October 2022, https://accu.org/journals/
overload/32/183/wu/>

template <size_t I, typename T>
constexpr decltype(auto) get(T&& obj)
{
 using DT = decay_t<T>;
 static_assert(I < DT::_size,
 "Index to get is out of range");
 return typename DT::template _field<T, I>(
 std::forward<T>(obj))
 .value();
}

template <typename T, typename F, size_t... Is>
constexpr void
for_each_impl(T&& obj, F&& f,
 std::index_sequence<Is...>)
{
 using DT = decay_t<T>;
 (void(std::forward<F>(f)(
 index_t<Is>{},
 DT::template _field<T, Is>::name,
 get<Is>(std::forward<T>(obj)))),
 ...);
}

template <typename T, typename F>
constexpr void for_each(T&& obj, F&& f)
{
 using DT = decay_t<T>;
 for_each_impl(
 std::forward<T>(obj), std::forward<F>(f),
 std::make_index_sequence<DT::_size>{});
}

Listing 6

template <typename T>
void print(const T& obj, ostream& os = cout,
 std::string_view name = "",
 int depth = 0)
{
 if constexpr (is_class_v<T>) {
 os << indent(depth) << name
 << (name != "" ? ": {\n" : "{\n");
 template for (constexpr meta::info member :
 meta::nonstatic_data_members_of(^T)) {
 print(obj.[:member:], os,
 meta::identifier_of(member),
 depth + 1);
 }
 os << indent(depth) << "}"
 << (depth == 0 ? "\n" : ",\n");
 } else {
 os << indent(depth) << name << ": " << obj
 << ",\n";
 }
}

Listing 7

https://cppx.godbolt.org/z/G3EcvhKxK
https://cppx.godbolt.org/z/G3EcvhKxK
https://godbolt.org/z/77PYjzcW8
https://github.com/aantron/better-enums
https://pfultz2.com/blog/2012/05/10/turing
https://pfultz2.com/blog/2012/07/31/reflection-in-under-100-lines
https://pfultz2.com/blog/2012/07/31/reflection-in-under-100-lines
https://github.com/Neargye/magic_enum
https://github.com/adah1972/mozi
https://github.com/netcan/recipes/tree/master/cpp/metaproggramming
https://github.com/netcan/recipes/tree/master/cpp/metaproggramming
http://wg21.link/p2320r0
http://wg21.link/p2996r7
https://github.com/boostorg/pfr
https://github.com/alibaba/yalantinglibs
https://www.youtube.com/watch?v=60ECEc-URP8
https://www.youtube.com/watch?v=60ECEc-URP8
https://accu.org/journals/overload/30/172/wu/
https://accu.org/journals/overload/32/183/wu/
https://accu.org/journals/overload/32/183/wu/

Lucian Radu Teodorescu Feature

December 2024 | Overload | 11

Senders/Receivers:
An Introduction
C++26 will introduce a new concurrency feature called
std::execution, or senders/receivers. Lucian Radu Teodorescu
explains the idea and how to use these in detail.

In June 2024, at the WG21 plenary held in St. Louis, the P2300R10:
std::execution paper [P2300R10], also known as senders/
receivers, was formally adopted for inclusion in C++ 26. The content

of the paper quickly found its way into the working draft for the C++
standard [WG21]. You can find more about the highlights of the St. Louis
meeting in Herb Sutter’s trip report [Sutter24].

Senders/receivers represent one of the major additions to C++, as they
provide an underlying model for expressing computations, adding support
for concurrency, parallelism, and asynchrony. By using senders/receivers,
one can write programs that heavily and efficiently exploit concurrenc
y, all while maintaining thread safety (no deadlocks, race conditions,
etc.). This is applicable not only to a few classes of concurrent problems
but, at least in theory, to all types of concurrency problems. Senders/
receivers provide a cost-free way of expressing computations that can run
on different hardware with different constraints. They support creating
computation chains that execute work on the CPU, GPU, and also enable
non-blocking I/O.

Although the proposal has many advantages, there are still people who see
the addition of this feature to the C++ standard at this point as a mistake.
Some of the cited reasons are the complexity of the feature, compilation
times, immaturity, and teachability. The last one caught my attention.

In this article, I plan to provide an introduction to senders/receivers as
described in P2300 (and some related papers). The goal is not necessarily
to showcase the many advantages of this model or delve into the details
of complex topics. Rather, it is to offer a gentle introduction for those who
have never read the paper or watched a talk on senders/receivers. We want
the reader to understand the basic concepts of using senders/receivers
without needing to grasp the intricate details of their implementation.

The hope is that, by the end of the article, the reader will be able to
write some programs that use senders/receivers. The examples here are
written as if the reader is coding with the feature already included in the
standard library. Currently, no standard library provider ships senders/
receivers; however, the reader can use the reference implementation of
the feature [stdexec].

Starting example
Listing 1 shows a simple example that prints Hello, world! using senders/
receivers. Receivers don’t typically appear in the user code (they appear
in the implementation of the algorithms that deal with senders), so we can
also say that Listing 1 shows an example of using basic senders.

The example is equivalent (up to a point) to the code in Listing 2. We
describe the action of printing Hello, world! to standard output; this
description is stored in the variable computation. Then, we execute the
action described by computation, producing the actual printing of the
message. The action itself is composed of two parts: one that describes
a string value and one that describes an action that takes the string and
prints it out.

The code just(X) | then(f) describes work that is equivalent
to f(X). Adding another then, we have the work described by
just(X) | then(f) | then(g) as equivalent to g(f(X)). If f and
g don’t produce any values, then just(X) | then(f) | then(g)
describes work equivalent to f(X); g(). Senders are designed with
composability in mind; they allow expressing complex computations in
terms of simpler ones.

The actual execution of the work described by computation occurs
when sync_wait is invoked; if sync_wait were not present, no work
would be executed.

Although simple, Listing 1 demonstrates a few important characteristics
of working with senders:

	� senders describe computations;

	� senders are designed to compose well;

	� senders are executed lazily; in our example, nothing happens until
sync_wait is invoked.

In addition to these, there are two more important aspects of senders, both
of which will be explored later in this article:

	� senders can be used to describe concurrent/asynchronous work;

	� senders enable structured concurrency.

Let’s look into the first point.

Representing concurrency
The code in Listing 3 shows a simple example of executing code on a
different thread. In the senders/receivers world, we don’t operate with

using stdexec = std::execution;

stdexec::sender auto computation
 = stdexec::just("Hello, world!")
 | stdexec::then([](std::string_view s) {
 std::print(s);
 });
std::this_thread::sync_wait(
 std::move(computation));

Listing 1

std::function<void()> computation = []{
 std::string_view s = "Hello, world!";
 std::print(s);
};
computation();

Listing 2

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

Lucian Radu TeodorescuFeature

12 | Overload | December 2024

threads; we operate with schedulers. Schedulers are handles to execution
contexts; that is, schedulers provide access to one or more threads.
Schedulers dictate where particular work needs to be executed.

In our example, we obtain the system scheduler. This is not part of
the original P2300 [P2300R10] proposal, but it has been added as an
extension through P2079: System execution context [P2079R5]; the
idea of a system scheduler was deemed very important for inclusion
in senders/receivers [P3109R0]. The system scheduler describes an
execution context intended to be shared by all parts of the application or
even across applications.

The call to schedule(sch) returns a sender. This sender represents
work that starts on a thread belonging to the system execution context.
It doesn’t send any value to the next sender but ensures that the work
described by the next sender occurs on this thread.

The work described by schedule(sch) | then(f) is, to a point,
equivalent to std::thread([]{ f() }), with the difference that the
new thread is part of an execution context for which sch is a handle.

We use schedule() to start new work in an execution context, but
sometimes we need to transfer execution from one context to another. For
this, we can use the continue_on() algorithm. If we have a computation
executed in one execution context and another computation that needs to
be executed in a different context, we might use continue_on() to
connect the two computations. For example, this chain describes work
that executes f on the original thread and executes g on a (most likely)
different thread represented by the scheduler sch:
 just() | then(f) | continue_on(sch) | then(g)

With schedule() and continues_on() algorithms, one can
implement any type of movement of work between threads. To make
things easier to express in some cases, the senders/receivers proposal
provides another algorithm: starts_on(). This can be used when
we want to start a chain of work on a specific scheduler, but without
specifying the scheduler in the work itself.

Listing 4 gives an example of starts_on() and of continues_on().
We have a sender that describes the work of reading data from a socket.
In this description, we haven’t specified on which scheduler this needs
to be executed. However, in the overall computation, the expression
starts_on(io_sched, std::move(read_data_snd)) ensures
that the work is actually started in the context of the given I/O scheduler.

The example shows also a usage for continues_on(). The part that
reads data from a socket (i.e., the work represented by read_data_snd)
will be executed on the I/O scheduler. As we want the processing to happen
on a ‘work scheduler’, we have to specify that the execution should switch
threads. This is done by the continues_on(work_sched) expression.
Similarly, after processing the data on the work scheduler, we want to go
back to the I/O scheduler to write back the response. To do this, we call
continues_on() again, passing the handle to the I/O scheduler.

One can see that moving between execution contexts is pretty easy, if we
arrange the work so thatsuch as it can be described by a chain of senders.

Waiting for multiple senders
So far, we’ve seen examples in which different work items run on
different threads, but all the examples assumed a sequenced execution of
work items. We did not have an example in which two functions would
run concurrently. Let’s correct that.

Listing 5 shows an example in which two functions f and g are run
concurrently. To make this possible, we use the when_all() algorithm.
This receives multiple senders and ensures that the results from all the
senders are combined together before printing the results.

Both branches of work that go into the when_all() sender are started
at the same time, but they are independent. Sometimes, we want to have

stdexec::scheduler auto sch
 = get_system_scheduler()
stdexec::sender auto computation
 = stdexec::schedule(sch)
 | stdexec::then([] {
 std::print("Hello, from a different thread");
 });
std::this_thread::sync_wait(
 std::move(computation));

Listing 3
stdexec::sender auto read_data_snd
 = stdexec::just(connection, buffer)
 | stdexec::then(read_data);

stdexec::sender auto process_all_snd
 = stdexec::starts_on(io_sched,
 std::move(read_data_snd))
 | stdexec::continues_on(work_sched)
 | stdexec::then(process_data)
 | stdexec::continues_on(io_sched)
 | stdexec::then(write_result);

std::this_thread::sync_wait(
 std::move(process_all_snd));

Listing 4

stdexec::sender auto s1 =
 stdexec::schedule(sch) | stdexec::then(f);
stdexec::sender auto s2 =
 stdexec::schedule(sch) | stdexec::then(g);
stdexec::sender auto both_results =
stdexec::when_all(s1, s2);
stdexec::sender auto print_results
 = std::move(both_results)
 | stdexec::then([](auto... args) {
 std::print("Results: {}, {}", args...);
 });

Listing 5

moving between execution contexts is
pretty easy, if we arrange the work so that it
can be described by a chain of senders

Lucian Radu Teodorescu Feature

December 2024 | Overload | 13

some common processing, then execute two (or more) things concurrently,
and then join the work chain together. This can be accomplished using the
split() algorithm. Listing 6 (on the following page) shows an example
of this. Here, when the work is started, function p is called first, and then
f and g are called concurrently after p is finished.

Executing in bulk
The senders we’ve seen so far can only work on a single item at a given
time. But what if we have many items that we need to work on? If one
has N elements to process, one can use the bulk() algorithm to describe
computations that process these elements.

Listing 7 presents an example of implementing the basic linear algebra
axpy operation (from ‘a x plus y’) [Wikipedia-1]. For each index i in the
range [0, x.size()), we invoke the given lambda function.

If the sender prior to applying bulk() produces a value, that value is
passed to the functor given to bulk(); naturally, if the previous sender
completes with multiple values, they are all passed to the functor. The
same example can thus be written as in Listing 8.

Shape of senders and structuredness
One important characteristic of senders that we haven’t discussed before
is their shape. This allows senders to compose well, be extensible, and
achieve structured concurrency.

Similar to a traditional function, the work represented by a sender has one
entry point and one exit point, usually called completion (or completion
signal). A function can either complete with a value or throw an exception
– there are two ways a function can complete. A sender has a third type of
completion indicating cancellation. In the world of senders/receivers, we
name them as follows:

	� set_value(auto... values) – used when the sender’s work
successfully produces the output values;

	� set_error(auto err) – used when the sender’s work completes
with an error err;

	� set_stopped() – used when the work represented by the sender
is cancelled.

A traditional function can produce only one value. A sender, on the
other hand, can produce multiple values; this is why the signature
of set_value() allows multiple arguments. A traditional function
can signal errors (that are different from return values) only through
exceptions; a sender can represent work that can complete with an error
of any type – std::exception_ptr, std::error_code, or any
user-defined error type. When the work of a sender is cancelled, there is
no value to produce, and thus, there is no argument to set_stopped().

A regular function has one return type and can additionally produce
exceptions. Thus, a function T f(...) can either complete with T or
with an std::exception_ptr. There isn’t much variance possible
with regular functions. The work of a sender, on the other hand, can
complete with multiple types of values or multiple types of errors. More
precisely, a sender can support any combination of completion signals.
Some senders might complete with different sets of value types, while
others might complete with different types of errors, and so on.

For example, we can have a sender that has the following completion
signals:

	� set_value(int),

	� set_value(std::string),

	� set_value(int, std::string),

	� set_error(std::exception_ptr),

	� set_error(std::error_code),

	� set_stopped().

We can also have senders that complete with just a subset of these
types of completion signals. For example, the sender returned
by just() will only complete with set_value(), and the
sender returned by just(2, 3.14) will only complete with

sender auto common =
 schedule(sch) | then(p) | split();
sender auto s1 = common | then(f);
sender auto s2 = common | then(g);
sender auto both_results = when_all(s1, s2);
sender auto print_results
 = std::move(both_results)
 | then([](auto... args) {
 std::print("Results: {}, {}", args...);
 });

Listing 6

double a;
std::vector<double> x;
std::vector<double> y;
sender auto process_elements
 = just()
 | bulk(x.size(), [&](size_t i) {
 y[i] = a * x[i] + y[i]
 });

Listing 7

double some_value;
std::vector<double> x;
std::vector<double> y;
sender auto process_elements
 = just(some_value)
 | bulk(x.size(), [&](size_t i, double a) {
 y[i] = a * x[i] + y[i]
 });

Listing 8

The work of a sender can complete with
multiple types of values or multiple types of

errors. More precisely, a sender can support
any combination of completion signals

Lucian Radu TeodorescuFeature

14 | Overload | December 2024

set_value(int, double). Similarly, the sender returned by
just_error("some error string"s) will only complete
with set_error(std::string), and the sender returned by
just_stopped() will only complete with set_stopped().

These points suggest that senders are generalisations of functions, in the
sense that they support multiple types of completion.

The choice of representing the completion signals as function calls is not
accidental. This is how the work described by the senders actually calls
the receivers. In P2300, a receiver is defined as “a callback that supports
more than one channel” [P2300R10]. The end user does not need to be
concerned with receivers; they serve merely as glue between senders.
This is why, so far, we haven’t introduced them and have only discussed
senders. We will continue to do so, as senders are the main focus.

There is another important aspect that needs to be addressed for senders.
In a regular function, the completion happens on the same thread as the
entry point. For the work represented by senders, this is not required.
We can start on one thread and complete on another. For example, the
schedule(sch) algorithm describes work that starts on a thread and
moves control to a thread governed by sch. Another good example is the
continue_on() algorithm.

From this perspective too, senders are a generalisation of functions. I
can’t emphasise enough the importance of this. In non-concurrent code,
structured programming taught us to work with functions. This means that
with senders we can perform the same type of breakdown we were doing
with functions. We can represent all parts of a program with senders, and
we can even compose the entire program from senders. I’ve shown an
example in the ‘Structured Concurrency’ ACCU talk [Teodorescu22].

As a consequence of senders describing work that behaves like functions,
senders inherit structuredness properties. A sender contained within
another sender must complete before its parent completes. We can have
senders hide implementation details, thereby providing abstraction points.
As mentioned above, we can decompose the program using senders.

In the end, all these structuredness properties make it easier to reason
about the code. We can write good concurrent code without the fear of
deadlocks and data races, simply by composing senders.

Senders can abstract work, so they can serve as an abstraction for any
type of concurrent or asynchronous work. Here are a few examples:

	� A sender can encapsulate a concurrent sort algorithm (which may
run on the GPU or on the CPU) – an example of using senders to
speed up programs.

	� A sender can encapsulate the processing of an image; the processing
can be done on a single thread, on multiple threads, or on GPUs – an
example showing that concurrency concerns are hidden.

	� A sender can encapsulate a sleep operation; the sender completes
when the sleep period ends but doesn’t keep any thread busy – an
example of asynchrony.

	� A sender can encapsulate the wait for the results of a remote
procedure call over the network, while not keeping the local threads
busy – another example of asynchrony.

Sender algorithms in the standard
The P2300 proposal [P2300R10], which was merged into the working
draft for C++ 26, contains a set of algorithms that operate on senders.
Because of their structuredness properties, senders compose well, so we
should be able to build larger senders from smaller ones.

The C++ 26 standard will include several sender algorithms to be used
as primitives for building more complex senders. These are grouped into
three categories:

	� Sender factories: They produce senders without requiring any
other senders. Algorithms in the standard: schedule(), just(),
just_error(), just_stopped(), read_env().

	� Sender adaptors: Given one or more senders, they return senders
based on the provided senders. Algorithms in the standard:
starts_on(), continues_on(), schedule_from(), on(),
then(), upon_error(), upon_stopped(), let_value(),
let_error(), let_stopped(), bulk(), split(),
when_all(), into_variant(), stopped_as_optional(),
stopped_as_error().

	� Sender consumers: They consume senders but don’t produce
any senders. Algorithms in the standard: sync_wait(),
sync_wait_with_variant().

All the sender factories and adaptors are defined in the std::execution
namespace. The sender consumer algorithms are defined in the
std::this_thread namespace.

We will briefly go through each of these algorithms.

Sender factories
We’ve already seen examples of the just() algorithm. This is used to
create a sender that completes with the given values. We’ve also seen
the just_error() algorithm, which creates a sender that completes
with the given error. We’ve mentioned the just_stopped() algorithm
as well; this algorithm produces a sender that completes with a
set_stopped() signal.

The read_env() algorithm is more advanced. Given a tag, it tries to
retrieve the property for that tag from the execution environment. That is,
if we have a child sender inside a parent sender, the child sender can use
read_env() to obtain various properties from the parent sender.

Sender adaptors
Before describing the actual sender adaptor algorithms, it’s worth
highlighting an important aspect of the syntax for most of these adaptors:
there are two forms for the algorithm. We have a canonical form and a

We can write good concurrent code
without the fear of deadlocks and data
races, simply by composing senders.

Lucian Radu Teodorescu Feature

December 2024 | Overload | 15

pipeable form. The best way to explain this is with an example, and the
then() algorithm is likely the best choice for illustrating this.

The canonical form of then() is: then(sndr, ftor). When this
is used, it returns a sender that, when sndr completes, applies ftor to
its produced values and completes with the transformed values (function
composition).

The piped form of then() is then(ftor). This form should only be
used in a piped context. An expression of the form sndr | then(ftor)
is equivalent to calling then(sndr, ftor). Usually, the piped form is
easier to write, so many people prefer it.

Technically, then(ftor) is a sender adaptor closure, not a sender. The
then sender also includes the previous sender, i.e., what comes before the
pipe operator. However, colloquially we often refer to it as a sender, for
simplicity.

Similar to the then() algorithm, we have upon_error() and
upon_stopped(). They function in the same way as then(),
but are applied to the error or stop completion channels, respectively.
upon_error() applies the given functor to the incoming error and
completes with the result of the function application. upon_stopped()
calls the given functor and completes with set_stopped().

We’ve already seen examples of starts_on() and continues_on().
The on() algorithm is a combination of these two: it executes work on
a given scheduler (similar to starts_on()) but returns to the original
scheduler upon completion (resembling continues_on()).

The schedule_from() algorithm is a foundational operation for
continues_on(). It’s not meant to be called directly by users but can
be useful for specialising some of the transitions between schedulers.

We’ve also briefly described above the algorithms bulk() (used to
execute the same function multiple times for a range of indices), split()
(used to ensure that the same sender can be contained in the same chain of
computation without executing the same work twice), and when_all()
(used to combine the results of multiple senders).

The let_*() family of algorithms is important, yet they are often
misunderstood. The let_value() algorithm is similar to the then()
algorithm, but the given functor is expected to return a sender. This is the
monadic bind operation for senders, i.e., a fundamental building block
for senders. It is similar to the optional<T>::and_then() function
(part of the so-called std::optional monadic operations).

Instead of this abstract explanation, let’s illustrate with an example.
Suppose we have a pipeline for performing image transformations
(e.g., automatically enhancing an image). We want to abstract this
pipeline, so we encapsulate the pipeline building into a function
enhance_image_sndr() that takes an image as an argument and
returns a sender that knows how to enhance the image. Using a pseudo-
syntax, we would say that the type of enhance_image_sndr()
is Image -> Sender<Image>. Now, we want to put this pipeline
inside another pipeline that first loads the image, enhances it, and then
writes it to the destination storage (disk, network, etc.). We cannot
inject this function into our flow with then(); that would produce a
Sender<Sender<Image>> instead of Sender<Image>. For that, we
have let_value(). Listing 9 shows how the code may look.

Similar to let_value(), the let_error() algorithm performs the
same job, but applies the given functor to the error produced by the
previous sender. Additionally, let_stopped() applies the given
functor when a stopped signal is received.

The remaining three sender adaptor algorithms (into_variant(),
stopped_as_optional(), and stopped_as_error()) are
designed to make it easier to work with different types of completion
signals.

The first one, into_variant(), adapts a sender that might have multiple
value completion signatures into a sender with a single completion
signature consisting of an std::variant of std::tuples. It doesn’t

change any error or stopped completions. For example, if snd can complete
with set_value(std::string) or set_value(int, double),
then into_variant(snd) is a sender that can complete with:
 set_value(std::variant<std::tuple<std::string>,
 std::tuple<int, double>>)

The stopped_as_optional() algorithm removes the need for a
stopped completion by transforming it into an empty optional value.
Additionally, it transforms the value completion from a type T to an
std::optional<T>. Thus, if snd is a sender that completes with either
a value of int or a stopped signal, then stopped_as_optional(snd)
will complete only with a value of std::optional<int>.

The stopped_as_error() algorithm behaves similarly but transforms
a stopped completion signal into an error completion. Thus, if snd is a
sender that completes with either a value of int or a stopped signal, then
stopped_as_error(snd, err) will complete only with a value of
type int or the error err.

Sender consumers
The main sender consumer algorithm defined by the proposal is
sync_wait(). We’ve seen this in our examples above. This algorithm
takes one sender as input and performs the following actions:

	� submits the work described by the given sender;

	� blocks the current thread until the sender’s work is finished;

	� returns the result of the sender’s work in the appropriate form to
the caller:

	� returns an optional tuple of values – those that the given sender
completes with – if the sender completes with set_value();

	� throws the received error if the sender completes with
set_error();

	� returns an empty optional if the given sender completes with a
stopped signal.

For a sender snd that completes with set_value(int, double), the
resulting type of sync_wait(snd) is:
 std::optional<std::tuple<int, double>>

If snd completes with a value of type int, then sync_wait(snd)
returns std::optional<std::tuple<int>> (not dropping the
tuple part). If the given sender doesn’t send a stopped completion signal,
the return type will still contain the optional part, even if there will always
be a value present.

An interesting restriction of this algorithm is that the given sender cannot
complete with more than one set_value() signal. This is because the
return type, as defined, cannot accommodate multiple value completion
types.

If we have a sender that completes with multiple types of value signals,
we can use the sync_wait_with_variant() algorithm. This is
similar to sync_wait(), but its return type is an std::optional
of an std::variant of std::tuples. For example, for a sender
snd that can complete with set_value(std::string) and

// Returns a sender that produces 'Image' values
auto enhance_image_sndr(Image img) {...}
Image load();
void save(Image);

sender auto complete_pipeline
 = just()
 | then(load)
 | let_value([](Image img) {
 return enhance_image_sndr(img); })
 | then(save);

Listing 9

Lucian Radu TeodorescuFeature

16 | Overload | December 2024

set_value(int, double), sync_wait_with_variant(snd)
returns:
 std::optional<std::variant<std::tuple
 <std::string>, std::tuple<int, double>>>

It may sound a bit complex, but it’s straightforward with a bit of practice.
After all, this is the most logical conclusion when considering the possible
completion types for a sender.

Beyond P2300
The above section may have made it seem like P2300 proposes numerous
algorithms to fully cover the needs of concurrency and asynchrony, but
this is far from the truth. It simply lays the foundation for building basic
senders. In fact, there is a paper, P3109R0: ‘A plan for std::execution
for C++26’ [P3109], adopted by the standard committee, which details
work we aim to include in the C++ standard and which is not part of
P2300. This paper mentions three important facilities that would have a
significant impact on end-users:

	� system execution context;

	� async scope;

	� coroutine task type.

The current senders/receiver proposal, as merged into the standard, doesn’t
define any scheduler, so users may need to write their own schedulers to
describe concurrent work. Previous versions of senders/receivers defined
a thread pool scheduler, but this was later removed due to numerous issues.
The system execution context proposal [P2079R5] introduces a scheduler
type that makes use of the system’s execution context. On Windows, it
should use the Windows Thread Pool [Microsoft] to schedule work, and
on macOS, it should use Grand Central Dispatch [GCD]. Aiming to
reduce CPU oversubscription [Wikipedia-2], the system scheduler is a
good default for spawning CPU-intensive work. We’ve already seen an
example of this in Listing 3.

Until recently, the P2300 proposal, which introduced senders/
receivers, included two algorithms called start_detached() and
ensure_started() that would submit the work for a sender eagerly,
without a way to join the work. These two algorithms would allow the
user to implement unstructured concurrency, as the work spawned by
these two algorithms outlives the work that spawned them. (Currently,
the only way to submit work is through sync_wait(), which is fully
structured.) While unstructured concurrency can lead to various issues, it
is often useful to have a way to spawn large work from a narrow scope.

The async scope proposal [P3149R6] allows the user to have a weakly-
structured way of launching work. It defines an async scope in which we
can dynamically launch work that outlives the scope from which it was
spawned. The key point is that all work spawned within this async scope
must be joined before the scope is destroyed. This means that we allow
some unstructuredness, but we contain it within a defined scope.

In addition to enabling some unstructuredness, async scope is also useful
for launching a dynamic number of work items and then joining that work
within a fully structured context.

The third major feature is a coroutine task type. This would essentially
mean writing an std::execution::task<T> coroutine that can
seamlessly interoperate with senders. Using this, one can co_await a
sender or consider such a coroutine to be a sender. Thus, this task type
can freely interoperate with a sender. This would allow users to write
coroutines to handle concurrency and asynchrony instead of using
compositions of sender algorithms to build them. While there may be
some performance penalties involved with using such a task type, users
may prefer it for certain types of programs, as the code is more readable.

Other senders/receivers features that would be highly desirable in C++
but were not part of P3109 include:

	� C++ parallel algorithms (synchronous) (P2500)

	� C++ asynchronous parallel algorithms (P3300)

	� I/O and time-based schedulers

	� networking on top of senders/receivers

Conclusions
Senders/Receivers is a new C++ feature that provides a model for
expressing computations, supporting concurrency, parallelism, and
asynchrony. It allows for structured concurrency, making it easier to
reason about concurrent code and avoid common pitfalls. Senders/
Receivers has already been voted into C++ and is expected to land in
C++ 26.

This article provides an introduction to the subject of senders/receivers
so that people can start using it as soon as it’s available. Although this
feature is used for concurrency, we presented it organically, starting with
building computations and touching on the concurrency aspects without
needing to explain too much about threading and execution contexts.
This is one of the beauties of the model: it abstracts away concurrency
concerns without compromising performance or safety.

We’ve spent a fair amount of time explaining the idea behind senders
so that readers can easily grasp the key aspects of the proposal and start
writing programs using senders/receivers.

The article didn’t go into detail on how to use senders/receivers to
implement complex problems. Some of these examples can be found on
the Internet, in various talks and examples. And perhaps that’s a good
topic for a follow-up article. n

References
[GCD] Apple, Grand Central Dispatch, 2016, https://swiftlang.github.io/

swift-corelibs-libdispatch/.
[Microsoft] Microsoft, ‘Thread Pools’, 2021, https://learn.microsoft.

com/en-us/windows/win32/procthread/thread-pools.
[P2300R10] Michał Dominiak, Georgy Evtushenko, Lewis Baker,

Lucian Radu Teodorescu, Lee Howes, Kirk Shoop, Michael
Garland, Eric Niebler, Bryce Adelstein Lelbach, P2300R10:
‘std::execution’, 2024, https://wg21.link/P2300R10.

[P2079R5] Lucian Radu Teodorescu, Ruslan Arutyunyan, Lee Howes,
Michael Voss, P2079R5: ‘System execution context’, 2024,
https://wg21.link/P2079R5.

[P3109R0] Lewis Baker, Eric Niebler, Kirk Shoop, Lucian Radu
Teodorescu, P3109R0: ‘A plan for std::execution for C++26’,
2024, https://wg21.link/P3109R0.

[P3149R6] Ian Petersen, Jessica Wong, Ján Ondrušek, Kirk Shoop,
Lee Howes, Lucian Radu Teodorescu, P3149R6: ‘async_scope –
Creating scopes for non-sequential concurrency’,
https://wg21.link/P3149R6.

[stdexec] NVIDIA, ‘Senders – A Standard Model for Asynchronous
Execution in C++’, https://github.com/NVIDIA/stdexec.

[Sutter24] Herb Sutter, Trip report: Summer ISO C++ standards
meeting (St Louis, MO, USA), 2024, https://herbsutter.com/2024/07
/02/trip-report-summer-iso-c-standards-meeting-st-louis-mo-usa/.

[Teodorescu22] Lucian Radu Teodorescu, Structured Concurrency,
ACCU Conference, 2022, https://www.youtube.com/
watch?v=Xq2IMOPjPs0.

[WG21] WG21, ‘Execution control library’ in Working Draft
Programming Languages – C++ https://eel.is/c++draft/#exec.

[Wikipedia-1] Wikipedia, Basic Linear Algebra Subprograms,
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_
Subprograms#Level_1.

[Wikipedia-2] Wikipedia, Resource contention,
https://en.wikipedia.org/wiki/Resource_contention.

https://swiftlang.github.io/swift-corelibs-libdispatch/
https://swiftlang.github.io/swift-corelibs-libdispatch/
https://learn.microsoft.com/en-us/windows/win32/procthread/thread-pools
https://learn.microsoft.com/en-us/windows/win32/procthread/thread-pools
https://wg21.link/P2300R10
https://wg21.link/P2079R5
https://wg21.link/P3109R0
https://wg21.link/P3149R6
https://github.com/NVIDIA/stdexec
https://herbsutter.com/2024/07/02/trip-report-summer-iso-c-standards-meeting-st-louis-mo-usa/
https://herbsutter.com/2024/07/02/trip-report-summer-iso-c-standards-meeting-st-louis-mo-usa/
https://www.youtube.com/watch?v=Xq2IMOPjPs0
https://www.youtube.com/watch?v=Xq2IMOPjPs0
https://eel.is/c++draft/#exec
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_1
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_1
https://en.wikipedia.org/wiki/Resource_contention

Spencer Collyer Feature

December 2024 | Overload | 17

Replacing ‘bool’ Values
Booleans seem simple to use.
Spencer Collyer considers when they
can actually cause a world of pain.

When used in the context of programming, the term Dimensional
Analysis refers to the technique of defining types to represent
the kinds of values used in the program. With the appropriate

operations between objects of those types defined the compiler can
check the expressions in the code to make sure they are valid. This is not
generally possible if you rely on using the fundamental types like int or
double.

For instance, say you have a program that deals with distances, durations,
and speeds. It should be obvious that adding or subtracting a distance and
a speed are invalid operations, but the compiler would not be able to tell
you that this code is incorrect:
 double distance = 10;
 double speed = 2;
 double duration = distance - speed;

However, if you have types Distance, Duration, and Speed, with
only the valid operations between them defined, the compiler can issue
an error for this code:
 Distance distance = 10;
 Speed speed = 2;
 Duration duration = distance - speed;

To be useable, when using this technique most types need to be defined
as classes or structures. There are libraries available for many languages
that make this task easier – a 2018 survey of them for many languages can
be found in [Preussner].

However, if you would normally think of using a bool variable to hold
the value, there are several mechanisms available in the C++ language
that can be used instead, with no need for library support. We will outline
some of them in this article, as well as try to explain why you might
choose to do so.

When reading the problem descriptions and suggested solutions below,
and wondering if you want to use them, it is worth applying what I call
the TLAMP principle. Pronounced ‘tee lamp’, it stands for Think Like
A Maintenance Programmer. What may seem obvious to you when first
writing a piece of code can look completely opaque to someone doing
maintenance work on that code in the future. They want the code to be as
clear as possible on first reading. That later programmer could be yourself
in six months – when you haven’t looked at the code for that length of
time what seemed obvious when you were writing it may not be so later.

Why bother when bools are so simple?
You might ask why we would bother replacing a bool value with some
other mechanism when bools are so simple to use. In this section, we will
outline some of the problems with using bools that make it worthwhile to
at least consider doing so.

Many of these problems arise because programmers decide to use bool
variables or parameters just because the value being represented can only
take two values. If you get into the habit of only using bool for values

that are going to be used in boolean expressions, you can avoid them to
a large extent.

To illustrate some of the problems we will use the following example1.

Imagine a water company wants a system written to monitor and control
its water network. There is a large amount of equipment on the network,
such as sensors for measuring things like flow rate, temperature, chemical
concentrations, and also control equipment such as valves and pumps to
allow the flows in the network to be controlled. This network has evolved
over many years, and the equipment is from different manufacturers and
of different ages, with a variety of protocols used to talk to it.

The initial analysis leads to a design in which the connections to this
equipment are handled by a Connection base class which provides a
standard interface, with a set of classes derived from Connection that
handle the details of each protocol. There is a factory function, called
CreateConnection, which returns an object of the correct class for
each connection. Each class is designed to handle either input or output
on the connection. The initial design for the CreateConnection
function interface looks like the following:
 ConnectionPtr CreateConnection(
 std::string_view id
 , bool is_output);

The is_output parameter determines whether an output (true) or
input (false) connection is being created.

An additional requirement is for some users to have elevated permissions
on some connections. This allows for operations like controlling pump
speeds to alter flow rates, for instance. To handle this, a second bool
parameter is added to indicate if the user is privileged or not.

During testing of the system, it is found that some parts of the network
are so old that they only support 7-bit data. As a result, communications
over these connections have to be encoded from binary to ASCII. To
indicate this a further bool parameter is added to the function, called
is_encoded, to indicate if this encoding is required or not.

Finally, a security review of the system raises concerns that some of the
connections go over public networks, and a requirement is made that
those connections need to be encrypted. A final parameter is added to the
function called is_encrypted which indicates if the connection needs
to be encrypted or not.

1	 This example may seem contrived, but I once worked on a system that
had many functions with three or four bool parameters. A lot of the calls
were done using literal values for some or all of the parameters, and only
checking the surrounding code could confirm whether the values were
correct.

Spencer Collyer Spencer has been programming for more years
than he cares to remember, mostly in the financial sector, although
in his younger years he worked on projects as diverse as monitoring
water treatment works on the one hand, and television programme
scheduling on the other.

Spencer CollyerFeature

18 | Overload | December 2024

The final prototype for the function now looks like Listing 1.

The meaning of true
Or rather, the meaning of true. And, indeed, false. In many cases
where a variable can take just two values, and so at first looks like a good
candidate to use a bool, it is not obvious which value should map to
true and which to false.

The is_output parameter in the CreateConnection function is a
perfect example of this. The parameter allows the caller of the function
to determine if an outgoing or incoming connection is required, but other
than the name of the parameter there is nothing that indicates which of
those is selected by passing true and which by passing false.

You could argue that the name of the parameter shows how it is used,
but that relies on anyone reading the code either knowing the prototype
because they have seen if before, or else are willing to look it up. Neither
of which is guaranteed to be done by a maintenance programmer who is
under pressure to get a fix out quickly.

All bools look the same
In many cases, the bool values do match what we would expect for a
given parameter, but they can still be problematic, especially if you have
more than one bool in the parameter list. This is because all bools look
the same to the compiler.

The CreateConnection function illustrates this problem. If we ignore
the problem with it outlined above, it is reasonable that the is_output
parameter is the first bool in the list, as the direction of the connection is
the most important property it has.

Good arguments could be made for any order of the other three bool
parameters however – the one chosen here has arisen simply because of the
order the requirement for them came up in the development process. For
instance, it could be argued that the is_encoded and is_encrypted
parameters are the wrong way around for an outbound connection, as
encryption occurs before encoding when sending a message.

Unless a programmer knows the function prototype off by heart, it would
be easy for them to get the parameter order wrong, and the compiler won’t
warn about it. Only extensive testing will ensure all calls are correct.

What can be even more confusing for someone reading the code later is
if it uses named variables for the parameters, but gets them in the wrong
order. For instance, consider the code in Listing 2.

This will work, in the sense of giving the expected result, because the
is_encoded and is_encrypted variables have the same value.
However, if one of those values needs to change later, or someone copies
the code elsewhere and changed one of the values, the result would be
incorrect, but it wouldn’t be obvious why unless the person reading the
code recognises that the last two parameters are in the wrong order.

The compiler cannot report this problem because it just sees the types
of parameters passed in. The names of the variables are relevant only to
tell it where to read the parameter value from – it doesn’t check that they
match the names in the function prototype.

Note: This problem doesn’t just apply to the bool type, of course – lists
of parameters all with the same type can be problematic when trying to
work out what each parameter means. This article doesn’t deal with that
situation but it is worth being aware of it.

Conversions to and from bool
The built-in C++ scalar types all implicitly convert to and from the bool
type. This implicit conversion is useful when writing code that tests that
a value is not zero or a null pointer.

Some classes in the standard library also provide an operator bool to
test that an object is in a valid state – for instance, the std::basic_ios
class that is the base of many iostreams classes class provides one to
check if an error has occurred on the stream.

Another use for this implicit conversion is in the !! pseudo-operator,
which can be used to return the bool equivalent of an expression2 in any
cases where automatic conversion doesn’t happen.

However, this implicit conversion can cause problems if it happens when
you are not expecting it. For instance when calling a function, if you pass
a scalar value in a parameter that expects a bool, it will be converted.

Consider the code in Listing 3. The two PrintArgs functions simply
output their prototype and the values they have been called with. The
second one allows the bool parameter to be defaulted, hence why the
short is placed before it in the parameter list.

2	 I have seen this pseudo-operator referred to as the ‘normalise operator’.
The way it works is by relying on the right-to-left binding of the !
operator. The right-hand ! applies to the operand, forcing it to the bool
equivalent and then negating the result. The left-hand ! then applies
to the resulting value and negates it again, giving us back the bool
equivalent of the original operand.

ConnectionPtr CreateConnection(
std::string_view id
, bool is_output
, bool is_authorised
, bool is_encoded
, bool is_encrypted);

Listing 1

bool is_encoded =
 /* code that sets value to true */;
bool is_encrypted =
 /* code that sets value to true */;
...
auto connptr = CreateConnection(id, is_output,
 is_authorised, is_encrypted, is_encoded)

Listing 2

Unless a programmer knows the function prototype off
by heart, it would be easy for them to get the parameter
order wrong, and the compiler won’t warn about it

Spencer Collyer Feature

December 2024 | Overload | 19

Unfortunately, when this program is compiled, the line labelled // 3
fails to compile. The output in Listing 4 shows the errors when the code
is compiled with the GCC on my Linux system.

The problem arises during the overload resolution process to decide
which function should be called. The full details of overload resolution
are complex (see [CppRef1]) but the case here is relatively simple. An
important point is that an integer with no suffix in the code has type int
so the 2 in the problematic call has type int.

When the compiler sees the call in the line labelled // 3, it first finds all
the declared functions named PrintArgs and adds them to the overload
set. It then checks each one to see if it matches the arguments given. This
proceeds as follows:

	� For the two-parameter function, the "Abc" can be converted to a
std::string, so the first argument matches the first parameter.
The 2 is an int, and it can be implicitly converted to the bool

type of the second parameter. Both arguments match the function
parameters, so the function is a candidate.

	� For the three-parameter function, the "Abc" is a match as above.
The 2 is an int, and that can be implicitly converted to a short
using a narrowing conversion. The third argument is missing but the
parameter has a default value, so it is ignored in the matching. The
arguments match the parameter list for this function, so it is also a
candidate.

At this point, the overload resolution process is done, and we still have
two candidates with no way to pick between them, and hence the call is
ambiguous.

To solve the ambiguity the programmer changes the second definition
so it looks like the one in Listing 5. Unfortunately, the default value for
the bool parameter can no longer be used, but the ambiguity no longer
occurs.

#include <iostream>
#include <string_view>

void PrintArgs(const std::string& s,
 bool to_uc = false)
{
 std::cout
 << "Called PrintArgs(string, bool) with ("
 << s << ", " << to_uc << ")\n";
}
void PrintArgs(const std::string& s, short len,
 bool to_uc = false)
{
 std::cout << "Called PrintArgs(string, short,
 bool) with (" << s << ", " << len << ",
 " << to_uc << ")\n";
}

int main()
{
 std::cout << std::boolalpha;
 PrintArgs("Abc"); // 1
 PrintArgs("Abc", true); // 2
 PrintArgs("Abc", 2); // 3
 PrintArgs("Abc", 2, true); // 4
}

Listing 3

conversion-1.cpp: In function 'int main()':
conversion-1.cpp:19:23: error: call of overloaded ‘PrintArgs(const char [4], int)’ is ambiguous
 19 | PrintArgs("Abc", 2); // 3
 | ^
conversion-1.cpp:4:6: note: candidate: 'void PrintArgs(const string&, bool)'
 4 | void PrintArgs(const std::string& s, bool to_uc = false)
 | ^~~~~~~~~
conversion-1.cpp:9:6: note: candidate: 'void PrintArgs(const string&, short int, bool)'
 9 | void PrintArgs(const std::string& s, short len, bool to_uc = false)
 | ^~~~~~~~~

Listing 4

#include <iostream>
#include <string_view>

void PrintArgs(const std::string& s,
 bool to_uc = false)
{
 std::cout
 << "Called PrintArgs(string, bool) with
 (" << s << ", " << to_uc << ")\n";
}
void PrintArgs(const std::string& s, bool to_uc,
 short len)
{
 std::cout << "Called PrintArgs(string, bool,
 short) with (" << s << ", " << to_uc << ",
 " << len << ")\n";
}
int main()
{
 std::cout << std::boolalpha;
 PrintArgs("Abc"); // 1
 PrintArgs("Abc", true); // 2
 PrintArgs("Abc", 2); // 3
 PrintArgs("Abc", 2, true); // 4
}

Listing 5

the overload resolution process is done, and we still
have two candidates with no way to pick between

them, and hence the call is ambiguous

Spencer CollyerFeature

20 | Overload | December 2024

The program now compiles without any problems and appears to run fine
as well, producing the output in Listing 6. However, looking closely at
the output shows that the output from the lines labelled // 3 and // 4
do not match the arguments in the code. This is again because of implicit
conversions.

In the case of the call in line // 3, the 2 is converted from int to bool,
ending up with the value true.

In the case of the call in line // 4, the 2 in the second argument is again
converted from int to the bool value true, and the true in the third
argument is converted from bool to short, ending up with the value 1.

This kind of bug can arise if you change the interface of a function and
rely on the compiler to catch any calls with incorrect arguments. As can
be seen in this example, it does not always issue warnings or errors for
calls that you should have changed. A refactoring tool may be able to find
them, or you might simply have to check each call by hand.

This kind of problem with implicit conversions can arise in other cases,
but the one going to or from a bool is more insidious because the values
of a bool are fundamentally different from the values of a scalar type, in
that they are logical truth values, not numbers. The fact that the C++ spec
dictates that false maps to a value of 0 and true maps to a value of 1
when converted to a number is just a convention to allow the conversion
to occur. Other languages don’t allow such conversion, or if they do they
use different mappings3.

It may not matter to you if an int gets converted to a short as long as
the value doesn’t change, but with a bool you are going from a logical
value to a number or from a number to a logical value, which is a more
fundamental change, and one that may well make no sense in the context
of the code.

More than two values
It might sound trite to say it, but a bool value can only hold two different
values. This may become a problem if you realise that a parameter needs
to hold more than two values.

For instance, in our water company example, the binary-to-ASCII
encoding on some connections might need doing using UUencoding
[Wikipedia-1], while others might use Base64 [Wikipedia-2].

3	 Anyone old enough to have used one of the microcomputers released
during the 1980s home computer boom might remember that the BASIC
built into many of them used -1 for the ‘true’ value, presumably because
the representation of that value has all bits set to 1. Sinclair Basic, as
used on the ZX81 and Spectrum, went its own way and used 1 for the
‘true’ value.

With just two values for is_encoded and one of those used to indicate
no encoding is required, you cannot represent those two different types
of encoding in the parameter. You have two options in this case – either
add another parameter to give the encoding or else convert the bool
parameter to some other kind that can represent three (or more) values.
The first extends the function interface even more, and the second has all
the possible problems associated with conversion to/from bool given
above.

Alternatives to bool
We have seen why you might want to avoid using bool variables and
parameters, now we will show some methods that you can use to do so. As
mentioned previously, all of these are available from the core language,
with no library support required.

Some of these methods are designed primarily for replacing function
parameters, while the others are more general and can be used to replace
variables as well.

Split one function into two (or more)
Rather than having a single function with different functionality selected
by passing a bool parameter, split the functionality into two different
functions, with their names indicating what is being done. Any common
functionality can be split off into a third function that the two new
functions call.

This is particularly useful for the case where it is not obvious what the
mapping from the true or false values to the selected functionality is.

In our water company example, rather than passing the
is_output parameter, you would instead create functions called
CreateOutboundConnection and CreateInboundConnection, where
the names indicate what type of connection is being created.

This method is fine for replacing one or maybe two parameters. The
problem with doing more than that is that each additional parameter
replaced doubles the number of new functions required. Also, with
descriptive function names, they can get unmanageably long very quickly.

Using a flags variable
This method involves replacing one or more bool values with a variable
holding a collection of single-bit fields. This will generally be an integer
value or a std::bitset.

An example of a flags variable in the standard library is the mode
parameter of the std::ifstream and std::ofstream constructors,
which uses the std::ios_base::openmode type.

When using this method with an integer, you would normally define a set
of constants, one for each flag value. The value of each constant has its
particular flag bit set to 1, all other bits set to 0, so the constant represents
the flag being turned on. You then use normal binary operations to turn on
the flags and to test if they are turned on or not.

Called PrintArgs(string, bool) with (Abc, false)
Called PrintArgs(string, bool) with (Abc, true)
Called PrintArgs(string, bool) with (Abc, true)
Called PrintArgs(string, bool, short) with (Abc,
 true, 1)

Listing 6

each additional parameter replaced doubles the
number of new functions required

Spencer Collyer Feature

December 2024 | Overload | 21

You can do the same when using a std::bitset, but you also have the
option of accessing individual bits using the [] operator or the test()
function, which take the position of the bit in the bitset to check and
return true if it is set to 1, else false.

One advantage of using a flag variable is that the user just has to turn on
the flags they want, and all the others default to off. On the other hand,
it is awkward to explicitly say that a flag is turned off, should you wish
to do so.

If you find a flag needs more than two values, you just need to increase
the size of the field and adjust the constants appropriately. If you are using
a bitset, the direct bit access through [] or test() could not be used
in this case.

A useful trick in case this might happen is to not make bitfields adjacent
to each other when they are first defined. For instance with four flags in a
four byte integer, set the fields up as the lowest bit in each byte. That way
if you do need to increase the number of values represented by a flag, you
won’t have to change any of the constants that don’t relate to that flag.

Using a flags structure
This method uses a structure to hold the flags. The structure members can
be either bools or single-bit bitfields.

If using this method, you can directly set the individual fields to turn the
flag on or off. For the bitfields version you would usually use 0 for off
and 1 for on.

If using the bitfield version you need to define them as unsigned, as they
are just one bit wide. If they are defined as signed then setting the value to
1 will end up with it being treated as -1. Listing 7 illustrates this. Checking
the output, you can see that structure with int fields outputs -1 for each
one, while the structure with unsigned int values outputs 1 for them:
 -1 -1 -1
 1 1 1

If you don’t want to create a variable of the structure type to pass to a
function you can use an initializer-list as the parameter and the structure
will be created for you. Listing 8 shows examples of both types.

The advantage of setting up a variable before passing it to the function is
that someone reading the code later can see exactly which flags are being
set, whereas when using an initializer list they have to know what the
structure looks like to know which flags are being set.

When using the bitfield version, if you need to extend a field to hold more
than two fields you can just extend its width. For the bool version, you
can just replace the bool with a different type.

Using enums
This method simply uses enums with two enumerators defined. Using
appropriate names means the values can be self-documenting. Either
scoped or unscoped enums can be used.

Unscoped enums have the disadvantage that the enumerators are defined
in the scope enclosing the enum, so you cannot have the same enumerator
name in two enums that will be used at the same time. On the other hand,
it does mean that the enumerators can be used with no qualification.

For scoped enums the enumerators are defined in the scope of the enum,
so two enums can have enumerators with the same name if that makes
sense. This does mean that they have to be qualified with the enum name
when used.

If an unscoped enum is passed as a function parameter that expects an
integer, the value in the enum variable will be converted to an integer.
This does not happen for a scoped enum – no conversion takes place.

Listing 9 (overleaf) is the scoped enum equivalent of Listing 3. This
version compiles with no ambiguous function calls detected, and if you
run the resulting program you will see that the PrintArgs functions
called in each case are the correct ones. The output for the program is
shown in Listing 10.

C++20 and using enum
The point was made above that when using scoped enums you need need
to precede the enumeration name with the scoped enum name. This has
been addressed in C++20 with the addition of the using enum construct
to pull all the names in the named enum into the current scope.

A brief description of this facility can be found at [CppRef2] – look for
Using-enum-declaration. The facility was added by P1099r5 [P1099r5],
and a fuller description of it can be found by reading that (brief) paper.

#include <iostream>

struct A
{
 int a1 : 1;
 int a2 : 1;
 int a3 : 1;
};
struct B
{
 unsigned int b1 : 1;
 unsigned int b2 : 1;
 unsigned int b3 : 1;
};
int main()
{
 A a; a.a1 = 1; a.a2 = 1; a.a3 = 1;
 std::cout << a.a1 << " " << a.a2 << " "
 << a.a3 << "\n";
 B b; b.b1 = 1; b.b2 = 1; b.b3 = 1;
 std::cout << b.b1 << " " << b.b2 << " "
 << b.b3 << "\n";
}

Listing 7

#include <iostream>

struct BitFlags
{
 unsigned int flag1 : 1;
 unsigned int flag2 : 1;
 unsigned int flag3 : 1;
};
struct BoolFlags
{
 bool flag1;
 bool flag2;
 bool flag3;
};
void fbit(BitFlags flags)
{
 std::cout << flags.flag1 << " " << flags.flag2
 << " " << flags.flag3 << "\n";
}
void fbool(BoolFlags flags)
{
 std::cout << std::boolalpha << flags.flag1
 << " " << flags.flag2 << " "
 << flags.flag3 << "\n";
}
int main()
{
 BitFlags bitflags;
 bitflags.flag1 = 0;
 bitflags.flag2 = 1;
 bitflags.flag3 = 0;
 fbit(bitflags);
 fbit({1, 0, 1});

 BoolFlags boolflags;
 boolflags.flag1 = false;
 boolflags.flag2 = true;
 boolflags.flag3 = false;
 fbool(boolflags);
 fbool({true, false, true});
}

Listing 8

Spencer CollyerFeature

22 | Overload | December 2024

As of the time of writing (April 2021), the C++20 language features pages
for GCC (at version 11) and MSVC (at VS 2019 16.4) show this feature
as being implemented. The equivalent Clang page shows this feature has
not yet implemented.

Problems versus suggested alternatives
In this section, we will check if the suggested alternatives solve any of
the problems outlined.

The meaning of true
Splitting into two functions works, as long as you use sensible names for
the new functions.

Using a flags variable mostly works, as long as you use sensible names
for the constants representing the flags. As noted in the description it is
not as simple to explicitly indicate the flag is turned off.

Using a flags structure works as long as the structure members have
sensible names. Unlike the case above, it is also simple to set the correct
member to indicate the flag is turned off.

Using enums works as long as the enumerators have sensible names.

All bools look alike
Splitting into two functions can work if you only have two bool
parameters, but any more than that and it becomes impractical.

Using a flags variable or a flags structure works as we no longer have
multiple variables.

Using enums works because all enums are distinct from each other.

Conversions to and from bool
Splitting into two functions works for the parameter that has been
removed, although any remaining bool parameters being passed could
still suffer from conversion.

Using a flags variable held in an integer can undergo all the normal
integer conversions, so it does not solve this problem.

Using a flags variable held in a std::bitset is better because you
cannot assign an integer to a bitset or vice versa. Note however that
you can initialize a bitset with an integer, so passing an integer to a
function when it expects a bitset will use the integer to initialize the
bitset.

Using a flags structure works as structs do not implicitly convert to
anything else.

Using unscoped enums partially solves the conversion problem. An
integer or floating-point type cannot be converted to the enum type
implicitly4. On the other hand, values of the enum type are implicitly
convertible to integral types.

Using scoped enums solves the implicit conversion problem completely 5.

More than two values
Splitting into two functions could solve this problem as you just need
to add a function for each new value. If your functions are handling
two conditions then you’ll need a new function for each possible new
combination, so it may be worth redesigning at this point to stop the
number of functions from exploding.

Using a flags variable works as you can just increase the number of bits
each flag uses to represent its value. You do have to be careful that the
constants for different flags don’t overlap each other.

Using a flags structure works by allowing you to easily determine the size
of each member of the structure. Unlike for the flags variable above you
do not need to keep fields separated manually.

Using enum types works as you just need to add new enumerators for
the new values. If using unscoped enums you have to be careful not to
create any name clashes with enumerators belonging to other unscoped
enum types.

Potential disadvantages with suggested alternatives
This section will discuss some potential disadvantages with the suggested
alternatives, and hopefully show that they are either not a problem or else
the pros outweigh the cons.

More verbose code
All of the alternatives suggested make the code more verbose. For most
of them this is simply a case of replacing code like
 if (x) { ... }

with an explicit test like
 if (x == value) { ... }

It could be argued that making the test explicit does make the code more
self-documenting, so should not be seen as a disadvantage.

The alternative using constants to define flag bits, either in an integer or
a std::bitset, does have code that looks more complicated, as you
have to use a binary ‘and’ to isolate the flag bit and test if it is set, like
 if ((x & flagbit) == flagbit)

4	 Although you can use an explicit cast, such as a static_cast, to
convert integer, floating-point, or enumeration values to an enum type,
whether unscoped or scoped.

5	 Scoped enum values can be converted to integer values using a
static_cast, though.

#include <iostream>
#include <string_view>

enum class RedBlue { Red, Blue };
std::ostream& operator<<(std::ostream& ostr,
 const RedBlue conv)
{
 ostr
 << (conv == RedBlue::Red ? "Red" : "Blue");
 return ostr;
}
void PrintArgs(const std::string& s,
 RedBlue to_uc = RedBlue::Red)
{
 std::cout << "Called PrintArgs(string, RedBlue)
 with (" << s << ", " << to_uc << ")\n";
}
void PrintArgs(const std::string& s, short len,
 RedBlue to_uc = RedBlue::Red)
{
 std::cout
 << "Called PrintArgs(string, short, RedBlue)
 with (" << s << ", " << len << ",
 " << to_uc << ")\n";
}
int main()
{
 std::cout << std::boolalpha;
 PrintArgs("Abc"); // 1
 PrintArgs("Abc", RedBlue::Blue); // 2
 PrintArgs("Abc", 2); // 3
 PrintArgs("Abc", 2, RedBlue::Blue); // 4
}

Listing 9

Called PrintArgs(string, RedBlue) with (Abc, Red)
Called PrintArgs(string, RedBlue) with
 (Abc, Blue)
Called PrintArgs(string, short, RedBlue) with
 (Abc, 2, Red)
Called PrintArgs(string, short, RedBlue) with
 (Abc, 2, Blue)

Listing 10

Spencer Collyer Feature

December 2024 | Overload | 23

or if you are happy to rely on the implicit conversion to bool you can use
 if (x & flagbit)

instead. Neither is as clear as the simple test against a value. On the other
hand, with the std::bitset you can use the [] operator or test
function to check a bit at a position.

Namespace pollution
All of the suggested alternatives insert new entities into the current
namespace, whether functions, constants, or types. All of those entities
introduce new names into the current namespace which wouldn’t need to
exist if you just used bool values. This will cause problems if they clash
with any names already in that namespace.

Of course, this isn’t specific to this case – it occurs whenever you add new
entities to a scope, so do whatever you normally would to get around it.

An easy solution is to add the new entities in their own namespace.
This does mean that the names need the namespace as an extra qualifier,
but you can use a using declaration to bring the name into the current
namespace. If the new entities are only used in a single *.cpp file you
can put them in an anonymous namespace in that file and you won’t even
need the extra qualifier.

Size and speed of compiled programs
A common concern when using the alternatives is that the code will be
larger and/or slower than when using bools. This should not be a concern
as modern compilers are intelligent enough to recognise what the code is
doing and optimizing it appropriately.

Sample code to show this can be found on [BitBucket], [GitHub], or
[GitLab], depending on your preferred supplier. The various *.cpp
files each demonstrate one alternative, except the bools.cpp one which
shows the original form with bool variables.

The find-medians.sh shell script in that directory runs all the programs
and captures the runtimes, then works out the median and mode runtimes
for each one. Running this script on my main machine gives the runtimes
shown in Table 1 for code optimized with -O3.

As can be seen, the runtimes for the optimized programs are virtually
identical for all the programs. This shows that you don’t lose much if any
speed when using the alternatives.

As far as code size is concerned, for the optimized code the program
sizes range from 17160 bytes for functions.opt to 17320 for

bitsetconsts.opt. The bools.cpp file is 17272 bytes. So there is
little difference in code size either.

So no more bools then?
It might seem that this article is saying that you shouldn’t use bool
values in your programs at all. This is not the intention.

One target is the use of bools in what might be termed long-range code.
What do we mean by long-range code?

Calling a function is long-range, as you are leaving the current function’s
scope and entering the called one. You should think carefully before using
bools as parameters of functions. As this article has tried to show, there
are alternatives which can be both safer and clearer, with little or no loss
of program speed.

Code in a single function could also be considered long-range if the
whole usage cannot be seen on a single screenful of code6. Using a bool
to store the result of a logical operation which is used in the immediately
following code is fine, as it’s obvious what is going on. Even if the value
is only used once, if it simplifies a condition expression it can still be
valid to do so.

Another target is the use of bool for class member variables. This is an
ideal case for using one of the alternatives, especially enums. Classes
provide their own scope, so the potential for namespace pollution is
immediately reduced. And if the member variable is private (as they
should normally be), all the code using it will be written by the class
maintainer, so the users of the class won’t have to handle it at all.

So in summary, if the use of the bool would be obvious from the immediate
context of the code, it is fine to use it. In all other cases, consider using
an alternative. This article provides several such alternatives as a starting
point. 

References
[BitBucket] https://bitbucket.org/dustycorner/articles/src/master/

replacing-bool-values/testcode
[CppRef1] https://en.cppreference.com/w/cpp/language/overload_

resolution
[CppRef2] https://en.cppreference.com/w/cpp/language/enum
[GitHub] https://github.com/dustycorner/articles/tree/master/replacing-

bool-values/testcode
[GitLab] https://gitlab.com/dustycorner/articles/-/tree/master/

replacingbool-values/testcode
[P1099r5] Gašper Ažman and Jonathan Müller, ‘Using Enum’, http://

www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1099r5.html
[Preussner] ‘Dimensional Analysis in Programming Languages’, https://

gmpreussner.com/research/dimensional-analysis-in-programming-
languages

[Wikipedia-1] UUencode: https://en.wikipedia.org/wiki/Uuencoding
[Wikipedia-2] Base64: https://en.wikipedia.org/wiki/Base64

6	 And by a single screenful of code I don’t mean using huge monitors and
small fonts to get 150+ lines of code on a screen at a time. Think more
like 40 to 50 lines maximum, so a quick scan up and down is easy to do.

Test Case Median Mode
Bools 387 387

Bitset with constants 387 388

Bitset with indexing 387 388

Scoped enum 387 387

Unscoped enum 387 387

Functions 382 382

Integer flags 387 387

Struct with bitfields 387 386

Struct with bools 387 387

Table 1

This article was first published in Overload 163 in June 2021.

https://bitbucket.org/dustycorner/articles/src/master/replacing-bool-values/testcode
https://bitbucket.org/dustycorner/articles/src/master/replacing-bool-values/testcode
https://en.cppreference.com/w/cpp/language/overload_resolution
https://en.cppreference.com/w/cpp/language/overload_resolution
https://en.cppreference.com/w/cpp/language/enum
https://github.com/dustycorner/articles/tree/master/replacing-bool-values/testcode
https://github.com/dustycorner/articles/tree/master/replacing-bool-values/testcode
https://gitlab.com/dustycorner/articles/-/tree/master/replacingbool-values/testcode
https://gitlab.com/dustycorner/articles/-/tree/master/replacingbool-values/testcode
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1099r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1099r5.html
https://gmpreussner.com/research/dimensional-analysis-in-programming-languages
https://gmpreussner.com/research/dimensional-analysis-in-programming-languages
https://gmpreussner.com/research/dimensional-analysis-in-programming-languages
https://en.wikipedia.org/wiki/Uuencoding
https://en.wikipedia.org/wiki/Base64

Chris OldwoodFeature

24 | Overload | December 2024

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He also commentates
on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and @chrisoldwood

Afterwood
Bar. Hmmmm. Bug?! Chris Oldwood gives
software development a seasonal twist.

Quality was dead: to begin with.

Okay, that’s not the real opening to Charles Dicken’s popular yuletide
novella A Christmas Carol, set in 19th century England long before
the appearance of software development as an industry, but Marley’s

warning can easily be seen as an allegory for technical debt. Despite
what George Box once said about all metaphors being wrong, but some
being useful – see what I did there – I reckon we can look to Marley for
inspiration about how we should treat our code, and the ramifications of
not giving it enough TLC. Marley confesses that he now wears the chain
he forged in life, made link-by-link, and yard-by-yard of his own free
will. He could equally be talking about not bothering to refactor, with
every link being a missed opportunity to rename a variable or function,
extract logic to a separate method, write an automated test, etc.

Back in 2008, Thom Holwerda proposed that the only real measurement
of code quality was WTFs per minute. The fallout from Marley’s decision
to continually cut corners emerges verbally, later, as his successor tries to
make sense of that code. This being a family friendly publication though
I can’t spell out WTF in full and propose instead that just for the festive
season we switch to the far more old-fashioned form of WTDs (What the
Dickens!) per minute.

I should note though that the ‘Dickens’ in that expression of surprise
is entirely unrelated to the author in question, having been used by
Shakespeare a few hundred years before Charles was even born. The
etymology suggests it’s a euphemism for the Devil, also known as Old
Nick – not to be confused with the more lovable Saint Nick, who also
enters our consciousness this time of year. It’s an easy mistake to make,
especially when you consider that Satan and Santa are anagrams of each
other. Marley was also trying to tell us that naming is hard, and typos can
lead to a lot of confusion if left unchecked. (I once ran across a variable
named ‘NoErrors’ where ‘no’ was actually an abbreviation of ‘number’,
in a programming language that allowed an implicit conversion from an
integer to boolean – convince me that’s not the Devil at work.)

In the Oldwood household, the favoured adaption is A Muppet Christmas
Carol, with Albert Finney’s Scrooge coming in a close second, at least
for the parents. Jim Henson’s decision to cast both Statler and Waldorf
as the Marley brothers was genius. Their modus operandi is to sit on
the sidelines and make snarky comments about the various goings-on,
but never actually make any sensible suggestions on how to genuinely
improve the state of affairs. If you’ve never had to work with a Statler
or a Waldorf, then I envy you. Code reviews often feel like an interview
with those grumpy old men as I’ve found it quite rare for people to point
out the positive aspects of a code change and only focus on the bits we
disagree with. We should all strive to ‘be more Kermit’.

Despite being one of the more faithful adaptions, A Muppet Christmas
Carol glosses over the same time paradox as many others. In the book,
Scrooge is told that he will be visited on three consecutive nights, and yet
the tale starts on Christmas Eve but he still wakes up on Christmas Day
after the three visits, exclaiming “The Spirits have done it all in one night!”
Clearly this is a classic case of management not liking the estimate that

Marley proposed. Knowing how poor the codebase had become, Marley
estimates three days but somebody upstairs decides Christmas Day is a
hard deadline and the ghosts need to work overtime and get redemption
delivered in one night. Releasing on Christmas Day is fraught with danger
unless you’re part of a well-oiled machine, mostly because pretty much
everyone else apart from the skeleton support crew will be on holiday.

What of the three ghosts though? Even though our industry is still in its
infancy in comparison to many others, we still have plenty to reflect on.
Also, the ghosts are with us permanently now in the guise of blog posts,
journals, books, videos, talks, etc. We only have to remember to learn
from the past to avoid repeating it. How hard can that be?

As I write, the legendary Fred Brooks passed away exactly two years
ago to the day. (This also gives you an insight into my inability to meet
publishing deadlines and turns the irony level of writing about learning
from the past right up to eleven and beyond.) Of his most famous works
the ‘no silver bullet’ statement – about there being no single development
in technology or management that can provide even an order of magnitude
improvement to productivity within a decade – is probably the one which
many would love to prove wrong.

There have definitely been some excellent advances over the years, like
the introduction of structured programming and the continued efforts to
avoid so many of the traps and pitfalls of our forefathers. Incremental
software delivery, the one technique which Brooks conceded in the mid-
90s might come close, has also paid dividends and helped us to focus more
on the essential complexity. Likewise automated testing and refactoring
help us tackle the accidental complexity.

My current fear is the Ghost of Christmas Future showing us a world
where we have put all our efforts into AGI in the mistaken belief that
writing code is the hard part of software development and we end up
repeating the foolish promises of 4GLs and UML. In this picture, Tiny
Tim – the sick child of Scrooge’s bookkeeper Bob Cratchit – is not just
a single codebase or company but the entire software industry as we fail
to comprehend what ‘describing a solution in unambiguous detail’ really
means.

Hopefully, this charade will be exposed for the pantomime that it currently
is and those working on LLM based tools which provide valuable, direct
assistance to Bob Cratchits at every level of their career can get on with
improving their tools, undistracted by the Scrooge’s of this world who see
many programmers as ‘the surplus population’ that just want to ‘pick their
pocket every December 25th day’. Seriously, what the actual Dickens!

Blimey, that took a bleak turn, I reckon my text editor must have enabled
dark mode. It’s Christmas, a time for festive cheer, and we should
remember that the book ends on a high note with Scrooge achieving
redemption and Dickens revealing that “Tiny Tim, who did not die”,
providing us with hope for the future. So, in the immortal
words of Tiny Tim: “$Deity bless us, every one!”

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

ACCU is a not-for-profit organisation.

Become a member and support your
programming community.

www.ACCU.org

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

Visit www.ACCU.org to find out more

	Editorial: Counting Quails
	User Stories and BDD – Part 4,Features Are Not Stories
	Survey: Best Articles 2024
	Static Reflection in C++
	Senders/Receivers:An Introduction
	Replacing ‘bool’ Values
	Afterwood

