
A magazine of ACCU ISSN: 1354-3172

C++ Compile-Time
Programming

Wu Yongwei considers the past, present and
future of programming at compile time.

Formal Verification
Aurelian Melinte explores this most
ignored area of software engineering.

The Publish Pattern
Lucian Radu Teodorescu describes
a common design pattern.

Modernization of Legacy Arrays
Stuart Bergen explores replacing
CArray with std::vector.

Afterwood
Chris Oldwood shares the joy of re-reading
some classic programming books.

accu
professionalism in programming

To find out more, visit accu.org

Monthly journals

Annual conference

Discussion lists

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

October 2024 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

October 2024
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Barry Nichols
barrydavidnichols@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Tim Peck:
Triton Fountain, Valetta, Malta. Copy deadlines

All articles intended for publication in Overload 184 should be submitted by
1st November 2024 and those for Overload 185 by 1st January 2025.

	 4	 Formal	Verification
Aurelian Melinte explores verification, the most
ignored area of software engineering.

 7 C++ Compile-Time Programming
Wu Yongwei considers its past, present
and future.

 16 The Publish Pattern
Lucian Radu Teodorescu describes a common,
but currently undocumented, design pattern.

 20 Modernization of Legacy Arrays:
Replacing CArray with std::vector
Stuart Bergen explains how and why he moved
to using modern standard C++ tools.

 24 Afterwood
Chris Oldwood shares the joy of re-reading
some older programming classics.

FRAnCEs BuOnTEMPOEdiTORiAL

2 | Overload | October 2024

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

What does it All Mean?
Trying to make sense of things can be a challenge.
Frances Buontempo reminds us something don’t
entirely make sense and that’s OK.

Hello again. I have been very busy trying to think of
editorial ideas. I even spent time looking back at my
previous titles to avoid repeating myself, however
most of them are silly word plays or somewhat
enigmatic, so I can’t tell what I said before. This
time consuming activity has put me off as usual. I

have written more than 70, apparently. My attempt to get ChatGPT to
summarise my previous efforts wasn’t much help. It said, “Her editorial
tone is conversational yet insightful” which was nice, though hasn’t given
me the information I was after. Other forms of “AI” are available. I then
wasted time generating a word cloud of the titles.

We clearly see “Program much first” in the centre.

Many people dislike word clouds, and there are more accurate ways
of displaying frequencies. However, the random orientation makes
you analyse the graphic differently. The Christmas special version of
University Challenge has given word clouds of Christmas carols as clues,
and you can manage to reform the words into a well known song. Are
word clouds meaningful? No, probably not. However, they are one way
to represent something.

People tend to search for patterns in things, and ascribe meaning to what
they see. I suspect our brains are just wired like that. Remembering a
pattern is easier than recalling a full look-up table. The act of summarizing
data into information either as equations, rules or patterns is a fundamental

part of how we think. We can therefore delude
ourselves easily, finding patterns where there

are none. This propensity probably helps to
fuel conspiracy theories and might perhaps be
behind recent riots in the UK. The internet is

littered with various articles about this, but the BBC has a reasonable
write-up [BBC-1].

Riots break out from time to time, and I recall several, including watching
London burn, or at least smolder slightly, from my desk at a bank in Canary
Wharf for a few days. Wikipedia lists several English riots [Wikipedia-1]
in date order: 1715, 1919, 1947, 1958, 1981, 1991, 2001, 2011 and 2024.

I haven’t seen all of these, of course. Now I spot a pattern. 44% end in a 1.
According to Benford’s law, most numbers start with a 1 [Wikipedia-2],
but ending with a 1 is a different matter. Does this mean something?
Probably not.

The starting months are of note too: Oct, June, August, August, April,
possibly Sept (there were various riots starting in 1991 and continuing
sporadically until 1992 [Libcom]), May, August, and July.

Allowing an anomaly of October, these are all when the weather tends
to be better. The recent riots stopped when the rain started. Just saying!

The list is incomplete, missing the Nottingham cheese riot from the start
of October 1766 [Wikipedia-3]. Further worldwide riots are listed on
another page [Wikipedia-4]. Try analyzing that if you have time on your
hands.

Anyway, I am not an expert on socio-political matters but I know full
well my sample size is too small to be statistically significant. If you
find yourself noticing a pattern, do investigate, but hold a cynical thread
in mind too, questioning your assumptions and analyses. Spotting non-
existent patterns isn’t always problematic. Maybe you have looked at
clouds and chatted with a friend about animals or other shapes you can
see. This is an example of pareidolia, which Wikipedia [Wikipedia-5]
describes as:

the tendency for perception to impose a meaningful interpretation
on a nebulous stimulus, usually visual, so that one detects an
object, pattern, or meaning where there is none

If you ever see the face of someone famous on your toast, you probably
aren’t special.

A data visualization technique you might have come across before, uses
faces to display data. These are called Chernoff faces ([Wikipedia-6] or
the original [Chernoff73]), and use the size of various facial features,
eyes, mouth, nose and so on, to graph features in data. You can easily
use these for high dimensional data, and Chernoff used faces because
people could spot similarities very easily. Our brains seemed to be wired
to recognize facial features.

We’ve discussed pareidolia and people finding meaning where there is
none, but we can equally miss meaning and reasons for events or outcomes

words

Tim
e

slo
w

Hard way
number

Everything

Font Test

Bloc
k

Fir
st

Muc
h

dont
Bad

decisions

Program

unc
er

tai
nty

little

Right

Believe

Winners
13

Allow

introduce

information Originally

Overload

didnt
Editorial

Good

discordant

Knitting

needles

Key
bo

ard
s

Learning

Fantasy

Languages

Life

Random

nonsense

small

far

away

sense

perspectiveshop

til

drop

Peer

Reviewed

Finding

muse

Fud

Fear
doubt

conversation
less

action

semiautomatic

Weapons

Failure

option

Reduce

re
us

e

recycle

lucky

Go

Metr
ics

imperialism

Just

minute

Aint

truth

Wisdom

Guidelines

Breadth

depth

interview

Emyr

Willi
am

s

Gnomes

Misnomers
Fast

Hapaxes

singletons

Anomalies

deeds

Automate

things

Le
ad

Exa
mple

nearly

yet

Revolution

Restoration

Revival

Rip

start

meanswar

Reactive

Proactive

Pre
dic

tio
ns

Pre
dil

ec
tio

ns

insideOut

Members

Remembrances
REsPECT

Rainclouds

Olive

Branches

REPurpose

FWdThinking

VirtualReality

deb
t

Thirty

Ye
ars

sub

Ord
ina

te Keep

Back

Geek

nerd

neit
he

r

Typing

Teach

Computer

Tool

Job

normal

optimizing

Becoming

uns
tuc

kHappened

dem
o

Who
du

nn
it doors

sustainability

impossible

dream

ACCu

Conference

Hype

Pre
ss

ur
e

Rise

Fall

Almost

Production

Productivity

As
lee

p

Wheel

Frozen

Buffering

General

Knowledge

selective

ign
or

an
ce

OverPromise

underdeliver

Bre
ak

ing Habits

Humble

Proposal

FRAnCEs BuOnTEMPO EdiTORiAL

October 2024 | Overload | 3

where there is significance. For example, people might blame their
compiler when their code doesn’t work. One case I came across involved
a mysterious bug, where “code ended up in the wrong destructor”. After
a few probing questions from Yours Truly, it became apparent the basics
of virtual destructors and derived classes in C++ were unknown to the
complainant. I am rather pleased with myself for managing to debug
code without even seeing it. Now, it is easy to get deep into a problem
though and miss what’s right under your nose, so maybe the other guy
was tired and forgot the basics, so I might be jumping to conclusions.
Nonetheless, if you go in with bias, you might fail to understand what is
really happening or even see what you expect to see rather than what’s
actually there.

Discussing a bug without the code in front of you can be a challenge.
Furthermore, words are an imprecise way to communicate, which can
make discussion difficult. Some of us are more precise than others. If
asked, “Do you want tea or coffee?” some readers will say “Yes.” I guess
you get used to how people tend to respond and might need to adapt your
language to your target audience. Sometimes you think you are talking
about the same thing, but later find a mismatch between the meanings
or words or phrases. I may have mentioned before running a short
coding practice sessions with colleagues, using the awesome cyberdojo
[cyberdojo]. I paired up with a team mate, and she was very surprised to
see me actually write a test first. I had said I like test-driven development
several times, and used the phrase ‘test first’, but somehow those words
meant something different to her. I learnt something and so did she, so
learning as a team was a win. A much simpler example is someone going
the wrong way. I told my Grandad to go left once, and he went right. The
simplest solution to that problem was saying, “No, the other left.” He
instantly turned the other way without arguing about the ridiculous phrase
I had used. Words are weird.

We use precise notation for mathematics to pin down definitions exactly.
However, such notation can be difficult to read, even if you do know
some maths. One of my 78 browser tabs is a Nature article on fast matrix
multiplication with reinforcement learning [Fawzi22]. It starts with
an abstract, as most academic style papers do, talking about the use of
machine learning for automatic algorithm discovery. All good so far. Then
we get to the main article, which gives an overview of what’s coming up,
as you would expect. Then the trouble starts. The first sentence tells me
matrix multiplication is bilinear so can be represented by a 3D tensor and
offers an illustration to help. It’s taken several attempts to figure out what
the figure means. So, now I will have to go back to the text and try to read
this again. Sometimes pinning things down precisely makes life harder,
and yet it is good to be precise sometimes.

Even if you don’t need to be exact, knowing why things are the way
they are, or a bit of history behind words or ideas can be useful, or at
least interesting. Chris Oldwood shared some of his favourite quotes and
aphorisms, back in 2023, and considered their origins [Oldwood23]. He
began with the phrase “ship-shape and Bristol fashion” which sprouted a
sidebar explaining in more detail, essentially everything being in the right
place and able to deal with Bristol’s tidal river and lots of mud. Francis
Glassborow has also been running a ‘Meaning of Words’ series in CVu,
since 2021, with many disambiguating commonly muddled words like
operator and function, code and cypher and others looking in detail at one
or more ideas. I am on the verge of writing another book, and my new
editor asked me what a compiler is. Fortunately, part 8 of Francis’ series is
about ‘Assemblers, Translators and Compilers Revisited’ where he says
[Glassborow22]:

Fundamentally, a simple compiler converts instructions written in a
high level language (with a high level of abstraction from machine
level code) into a lower level language with less abstraction.

Unfortunately, I would then have to define high and low level, and
abstraction. Sometimes, you have a bootstrap problem. Do your boots
have straps? Some, but not all, of mine do. There’s another odd phrase.
Wikipedia [Wikipedia-7] suggests some possible etymologies, all
referring to impossible tasks. Even if your boots have straps, you won’t
be able to pull yourself out of trouble using them. But you might happily

bootstrap a compiler. Try explaining that to someone who doesn’t know
about computing.

The BBC news website, possibly inspired by Francis, has been running
a series by ‘The Vocabularist’ for a while, and once attempted to explore
the roots of the word ‘computer’ [BBC-2]. The article says ‘Computer’
comes from the Latin ‘putare’ which means both to think and to prune.
It’s a jump to get from gardening to computing, but if you ever prune
shrubs or tidy a garden, you are thinking and planning, and possibly even
counting, buckets of rubbish, how many hours you have spent… Counting
and computing seem to be related words. Of course, a computer is one
who computes, so you have another bootstrap problem. How children
ever learn language amazes me.

I would end by quoting Ecclesiastes; the second verse of the first chapter

“Meaningless! Meaningless!” says the Teacher. “Utterly
meaningless! Everything is meaningless.”

However, that’s not a positive note to end on. Some things in themselves
might be without meaning, but they can still be fun. You can describe
music in technical terms, or via musical notation, but that doesn’t ascribe
it meaning. It’s still fun, beautiful, inspiring or other word of your own
choice. It’s easy to get distracted but allowing your
mind to wander from time to time can be a good
thing. You don’t need to ensure everything you do
is purposeful, but do watch out for seeing patterns
where there are none.

References
[BBC-1] ‘Why are there riots in the UK?’ posted 7 August 2024 and

updated 9 August 2024 at https://www.bbc.co.uk/news/articles/
ckg55we5n3xo

[BBC-2] The Vocabularist, ‘What’s the root of teh word computer?’,
posted 2 February 2016: https://www.bbc.co.uk/news/blogs-
magazine-monitor-35428300

[Chernoff73] Herman Chernoff (1973) ‘The Use of Faces to Represent
Points in K-Dimensional Space Graphically’ (PDF) Journal of the
American Statistical Association 68 (342). American Statistical
Association: 361–368

[Cyberdojo] Cyber-dojo: https://beta.cyber-dojo.org/creator/home
[Fawzi22] A. Fawzi, M. Balog, A. Huang et al. ‘Discovering faster

matrix multiplication algorithms with reinforcement learning’
Nature 610, 47–53 (2022). https://doi.org/10.1038/s41586-022-
05172-4

[Glassborow22] Francis Glassborow (2022) ‘Assemblers, Translators
and Compilers Revisited’ in CVu 34.5, available at https://accu.org/
journals/cvu/34/5/cvu34-5.pdf#Page=9 (You must be a member and
logged in to see editions of CVu)

[Libcom] ‘Hot time: Summer on the estates – Riots in the UK 1991–2’
https://libcom.org/article/hot-time-summer-estates-riots-uk-1991-2

[Oldwood23] Chris Oldwood (2023) ‘Afterwood’ in Overload
31(175):19-20, June 2023. https://accu.org/journals/
overload/31/175/overload175.pdf#page=21

[Wikipedia-1] ‘England riots’: https://en.wikipedia.org/wiki/England_
riots

[Wikipedia-2] ‘Benford’s law’: https://en.wikipedia.org/wiki/
Benford%27s_law

[Wikipedia-3] ‘Nottingham cheese riot’: https://en.wikipedia.org/wiki/
Nottingham_cheese_riot

[Wikipedia-4] ‘List of riots’: https://en.wikipedia.org/wiki/List_of_riots
[Wikipedia-5] ‘Pareidolia’: https://en.wikipedia.org/wiki/Pareidolia
[Wikipedia-6] ‘Chernoff face’: https://en.wikipedia.org/wiki/Chernoff_

face
[Wikipedia-7] ‘Bootstrapping’: https://en.wikipedia.org/wiki/

Bootstrapping

https://www.bbc.co.uk/news/articles/ckg55we5n3xo
https://www.bbc.co.uk/news/articles/ckg55we5n3xo
https://www.bbc.co.uk/news/blogs-magazine-monitor-35428300
https://www.bbc.co.uk/news/blogs-magazine-monitor-35428300
https://beta.cyber-dojo.org/creator/home
https://doi.org/10.1038/s41586-022-05172-4
https://doi.org/10.1038/s41586-022-05172-4
https://accu.org/journals/cvu/34/5/cvu34-5.pdf#Page=9
https://accu.org/journals/cvu/34/5/cvu34-5.pdf#Page=9
https://libcom.org/article/hot-time-summer-estates-riots-uk-1991-2
https://accu.org/journals/overload/31/175/overload175.pdf#page=21
https://accu.org/journals/overload/31/175/overload175.pdf#page=21
https://en.wikipedia.org/wiki/England_riots
https://en.wikipedia.org/wiki/England_riots
https://en.wikipedia.org/wiki/Benford%27s_law
https://en.wikipedia.org/wiki/Benford%27s_law
https://en.wikipedia.org/wiki/Nottingham_cheese_riot
https://en.wikipedia.org/wiki/Nottingham_cheese_riot
https://en.wikipedia.org/wiki/List_of_riots
https://en.wikipedia.org/wiki/Pareidolia
https://en.wikipedia.org/wiki/Chernoff_face
https://en.wikipedia.org/wiki/Chernoff_face
https://en.wikipedia.org/wiki/Bootstrapping
https://en.wikipedia.org/wiki/Bootstrapping

AuRELiAn MELinTEFEATuRE

4 | Overload | October 2024

Formal	Verification
Proving code is correct is challenging.
Aurelian Melinte explores verification, the
most ignored area of software engineering.

When I see code for a state machine or a protocol I know it was
not formally verified (FV); that is it was not proved to operate
correctly via some formal methodology. And I know why: most

engineers are not even aware that FV exists. Few universities offer FV
classes in their software engineering curricula. It is hard to understand
why as FV started in research and academia environments in the 60s and,
by the 80s, FV toolsets usable by the average CS graduate were available.
Since the 80s, hardware design engineers live and die by FV but software
engineers are still generally ignorant of it.

Theoreticians might cringe at this definition: by-and-large FV means
proving that a verification model – an abstraction of the design to be
implemented – is mathematically correct. That is, it does what it is
supposed to do and does not do things it is not supposed to do. What
exactly this ‘does and does not’ set of properties means depends of what
is being modeled. In practice, FV tools will check all possible execution
paths of the model for logical flaws.

Typical designs to be verified are state machines, protocols and algorithms.
But the methodologies are flexible enough to model an 8-queen chess
puzzle or a Fibonacci series, for instance. Accordingly, the properties to
be verified can be anything one decides to be applicable to the model.

Two notes. One, FV verifies the model of a proposed design, not the
actual implementation. If the model is proven to be deadlock-free then the
implementation can still deadlock. But, if the implementation does not
work, at least you know the design behind the implementation is sound.
Two, FV will verify only what it is told to, i.e. if you want to verify it is
starvation-free then you have to subject the model to that property check
lest you miss that important check.

Out of the of dozens FV methodologies [Wikipedia-1], I think two are the
dominant ones: Promela/spin and TLA+/PlusCal. Below is a very high-
level and hopefully still useful overview of each. The overview may not
be very intelligible without further individual homework but the FV topic
is at least book-sized. As for the specifics of Promela or TLA+, these are
also book-size.

Both methodologies share the same theoretical roots, use the same
terminology and even the same linear temporal logic (LTL) [Wikipedia-2]
notation. LTL expresses the desired or undesired behavior the model
should have over its lifetime and allows one to express properties such
as ‘if X happens then Y is guaranteed to happen, and it remains set if Z
does not occur’.

Properties of a model are, by and large, classified in two bins: safety (the
model does not misbehave; does not do ‘bad things’) and liveness (the
model does what is supposed to do).

Typical safety properties are: the model is deadlock-free, does not trip
model-specific assertions (that you have to define) and it does not end
in an invalid end state. Safety is expressed either as plain assertions, as
system invariants, or as LTL properties.

Typical liveness checks are:

	� responsiveness: every request gets a response back.

	� non-progress cycles over model’s lifetime aka starvation: FV checks
for conditions leading into infinite and useless runs. Think livelock
as an example.

	� acceptance: the model is either stuck in an undesirable state or falls
into that state infinitely often. The “acceptance” property naming
makes sense only when thinking of the under-the-hood verification
mechanisms[Spinroot-1].

Promela
Promela/spin [Spinroot-2] originated in the 80s at the Bell Labs. It has
a strong practitioners’ base in academia and in the telecom companies.
Since the telecoms have lost their preeminence in IT these days, that
user base is probably shrinking but research in academia seems to be as
healthy as ever.

By and large, the spin tool will turn the Promela model into a state-
machine which will be verified for the properties you asked for in your
model.

The spin tool will also warn about code that was not reached during
verification: this alone is priceless as it could be a bug in the model.

With spin, some of the built-in checks are free: dead code, deadlocks,
invalid end states; and some are almost-freebies: you may have to do
some minimal work and ask for progress and acceptance.

Atomicity is fine-grained, at the statement level. This makes race
conditions rather trivial to find. Promela is architecture agnostic, on
purpose. Modeling specifically for verification with the C++ memory-
model is feasible but requires specific modeling work on top of modeling
for your design. In particular, the Dekker algorithm as detailed below
was proven to be unsafe on a machine without atomic reads and writes
[Buhr15].

Because of the fine-grained atomicity, Promela models tend to be large in
a relative sense. With the models still being entirely hand-crafted, it is safe
to say that the footprint is orders of magnitude lower than hardware FV
models. The first line of defense is reworking the model (e.g. by reducing
the number of global variables and other artifacts such as processes and
channels). Then there are special model generation options to mitigate the
footprint – this was clearly an issue with 90’s available machines. Finally,
for really large models, there is a best-effort (read: partial) verification
available. I have yet to see a model too large for modern machines – the
largest I know of would complete verification within minutes.

Aurelian Melinte Aurelian acquired his programming addiction in
late 90s as a freshly-minted hardware engineer and is not looking
for a cure. He spends most of his spare time reading and exercising.
Feel free to contact him at ame01@gmx.net

AuRELiAn MELinTE FEATuRE

October 2024 | Overload | 5

There are also a number of tools to extract a Promela model from an
existing codebase but I have not used these [Spinroot-3].

To learn Promela, one must read Prof. Holzmann’s book The Spin Model
Checker [Holzmann03] and follow the short two-hour video class on the
spinroot site. The other book one should read (this is actually another
must) is Prof. Ben-Ari’s book Principles of Spin [Ben-Ari08]. This should
suffice to start the journey.

As an example, Listing 1 is a model of the Dekker algorithm [Wikipedia-3]
to enforce critical sections/mutual exclusion, sourced from the Promela
manual [Spinroot-4].

Easy to read even if you do not know some Promela statements can be
blocking until becoming executable. Here we want to verify that the
critical section is enforcing mutually exclusive access.

The last line of the model instructs the verifier what to look for. It is a
system invariant expressed in the canonical LTL way which states plainly
that both processes cannot be in the critical section at the same time
during the lifetime of the model.

Assertions can also be used to verify various conditions in conjunction
with the LTL or independently of. As shown in the example, the assertions
also verify the critical sections holds.

#define true 1
#define false 0
#define Aturn false
#define Bturn true

bool x, y, t;
byte ghost;

proctype A()
{ x = true;
 t = Bturn;
 (y == false || t == Aturn);
 /* critical section */
 ghost++;
 assert(ghost == 1);
cspa: ghost--;
 x = false
}

proctype B()
{ y = true;
 t = Aturn;
 (x == false || t == Bturn);
 /* critical section */
 ghost++;
 assert(ghost == 1);
cspb: ghost--;
 y = false
}

init{ atomic { run A(); run B(); } }

ltl criticalSection {[]!(A@cspa && B@cspb)}

Listing 1

--------- MODULE criticalsection5dekker ---------
EXTENDS Integers, Sequences

(*
--algorithm criticalsection5dekker
{
 * Global variables
 variables turn = 1; wantp = FALSE;
 wantq = FALSE;

 * The non-critical section.
 * For checking for freedom from starvation, it
 * is important that a process might stay in
 * the non-critical section forever (however,
 * each process must leave the critical
 * section).
 * This procedure covers both cases: finite and
 * infinite execution of the non-critical
 * section.
 procedure NCS()
 variable isEndless;
 {
 * Non-deterministically choose whether the
 * procedure will be endless or finite.
 ncs0: with (x \in {0,1}) {
 isEndless := x;
 };
 ncs1: if (isEndless = 1) {
 ncs2: while (TRUE) {
 ncs3: skip;
 }
 } else {
 ncs4: return;
 }
 }

 * First process (name P, pid 1)
 process(P = 1) {
 p0: while (TRUE) {
 p1: call NCS(); * non-critical section
 p2: wantp := TRUE;
 p3: while (wantq = TRUE) {
 p4: if (turn = 2) {
 p5: wantp := FALSE;
 p6: await turn = 1;
 p7: wantp := TRUE;
 };
 };
 p8: skip; * critical section
 p9: turn := 2;
 p10: wantp := FALSE;
 }
 }

Listing 2

i have yet to see a model too large for
modern machines – the largest i know of

would complete	verification	within	minutes.

AuRELiAn MELinTEFEATuRE

6 | Overload | October 2024

TLA+
TLA+ [Lamport] is pure mathematics describing your model. This is
rarefied air that few can adapt to when models get complex. PlusCal is
an added layer that describes the model in an imperative-like language
that gets translated to TLA+. You will still need to be TLA+ literate but
PlusCal puts you within reach of modelling properly.

TLA+ got adopted by Microsoft and other software companies followed
suit, so I guess the practitioner base is currently expanding.

The curricula here includes Wayne’s book Practical TLA+ [Wayne18],
the training videos on Prof. Lamport’s site and his book Specifying
Systems.

The Dekker algorithm, according to a course at the Stuttgart University
[Duerr15], follows. First the PlusCal (lines 29-99 in the original) that you
have to write is in Listing 2.

Please note every line is labeled. That is because TLA+ has coarse-
grained atomicity: the whole pan of statements between two labels is one
atomic op. Since we check for race conditions here, we have to label
every statement. TLA+ is also architecture agnostic.

Coarse atomicity generates much smaller models (compared to Promela).
The only way I know to further reduce the size of the model is to rework it.

If you go to the full model file on github, you can see he TLA+ translation
of the above PlusCal at lines 102-281 – the ‘real’ verification model you
can write by hand if you feel brave.

Finally, the verification properties are shown in Listing 3, lines 283-306
of the original. There are no freebies with TLA+. You have to state what
deadlock and starvation look like. Another (rather big) minus: no dead
code warnings unless you code model-specific properties checks for it.

summary
This article has given a quick overview of two dominant FV
methodologies, Promela/spin and TLA+/PlusCal. They both have pros
and cons, but can proof a design for issues. Though many programmers
are unfamiliar with FV, companies do use them. For example AWS have
used TLA+ succesfully [Newcombe15] and Promela was used to proof
Plan9 concepts [Plan9] and mission-critical applications [Spinroot-5]. �

References
[Ben-Ari08] Mordechai Ben-Ari (2008) Principles of the Spin Model

Checker, Springer, ISBN-13: 978-1846287695
[Buhr15] Peter Buhr, Dave Dice and Willem Hesselink (2015)

‘Dekker’s mutual exclusion algorithm made RW-safe’, published
in Concurrency and Computation, available at https://onlinelibrary.
wiley.com/doi/10.1002/cpe.3659

[Duerr15] Frank Duerr (2015) criticalsection5dekker.tla (at October
2024), available at: https://github.com/duerrfk/skp/blob/master/
criticalsection5dekker/criticalsection5dekker.tla

[Holzmann03] Gerard J. Holzmann (2003) The Spin Model Checker,
Primer and Reference Manual, Addison Wesley Professional,
ISBN-13: 978-0321228628

[Lamport] Leslie Lamport, the TLA+ website, available at
https://lamport.azurewebsites.net/tla/tla.html

[Newcombe15] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan
Munteanu, Marc Brooker, Michael Deardeuff ‘How Amazon Web
Services uses formal methods’, available at
https://www.amazon.science/publications/how-amazon-web-
services-uses-formal-methods

[Plan9] ‘Spin & Plan 9’, available at: https://swtch.com/spin/
[Spinroot-1] Spinroot manual, ‘accept’: https://spinroot.com/spin/Man/

accept.html
[Spinroot-2] Spinroot website: https://spinroot.com
[Spinroot-3] Modex readme: https://spinroot.com/modex/
[Spinroot-4] Basic Spin Manual:

https://spinroot.com/spin/Man/Manual.html
[Spinroot-5] ‘Inspiring Applications of Spin’, available at:

https://spinroot.com/spin/success.html
[Wayne18] Hillel Wayne (2018) Practical TLA+: Planning Driven

Development, Apress Berkeley, CA, ISBN-13: 978-1-4842-3828-8
(softback)/ 978-1-4842-3829-5 (ebook)

[Wikipedia-1] ‘Formal verification’: https://en.wikipedia.org/wiki/
Formal_verification

[Wikipedia-2] ‘Linear temporal logic’: https://en.wikipedia.org/wiki/
Linear_temporal_logic

[Wikipedia-3] ‘Dekker’s algorithm’: https://en.wikipedia.org/wiki/
Dekker’s_algorithm

 * Second process (name Q, pid 2)
 process(Q = 2) {
 q0: while (TRUE) {
 q1: call NCS(); * non-critical section
 q2: wantq := TRUE;
 q3: while (wantp = TRUE) {
 q4: if (turn = 1) {
 q5: wantq := FALSE;
 q6: await turn = 2;
 q7: wantq := TRUE;
 };
 };
 q8: skip; * critical section
 q9: turn := 1;
 q10: wantq := FALSE;
 }
 }
}
*)

Listing 2 (cont’d)

*** Mutual exclusion
* For mutual exclusion, process 1 and process 2
* must never be in the critical section at the
* same time.
MutualExclusion == [] ~ (pc[1] = "p8" /\ pc[2]
 = "q8")

*** Deadlock free
* If P and Q both want to enter the critical
* section, one of them will eventually enter the
* critical section.
NoDeadlock == /\ pc[1] = "p2"
 /\ pc[2] = "q2"
 ~>
 \/ pc[1] = "p8"
 \/ pc[2] = "q8"

*** Starvation free
* If P wants to enter the critical section, P
* will eventually enter the critical section.
* The same must hold for Q.
NoStarvationP == (pc[1] = "p2") ~> (pc[1] = "p8")
NoStarvationQ == (pc[2] = "q2") ~> (pc[2] = "q8")
NoStarvation == /\ NoStarvationP
 /\ NoStarvationQ

* Assume weakly fair scheduling of all commands
(* PlusCal options (wf) *)

LisTinG 3

https://onlinelibrary.wiley.com/doi/10.1002/cpe.3659
https://onlinelibrary.wiley.com/doi/10.1002/cpe.3659
https://github.com/duerrfk/skp/blob/master/criticalsection5dekker/criticalsection5dekker.tla
https://github.com/duerrfk/skp/blob/master/criticalsection5dekker/criticalsection5dekker.tla
https://lamport.azurewebsites.net/tla/tla.html
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://swtch.com/spin/
https://spinroot.com/spin/Man/accept.html
https://spinroot.com/spin/Man/accept.html
https://spinroot.com
https://spinroot.com/modex/
https://spinroot.com/spin/Man/Manual.html
https://spinroot.com/spin/success.html
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Linear_temporal_logic
https://en.wikipedia.org/wiki/Linear_temporal_logic
https://en.wikipedia.org/wiki/Dekker’s_algorithm
https://en.wikipedia.org/wiki/Dekker’s_algorithm

Wu YOnGWEi FEATuRE

October 2024 | Overload | 7

C++ Compile-Time Programming
Programming at compile time has been
possible in C++ for a long time. Wu Yongwei
considers its past, present and future.

Compile-time programming is a key feature of C++. It enables
writing high-performance code often unattainable in other
languages. This article explores its past, present, and future

applications, highlighting the diverse possibilities in C++. We’ll briefly
cover template metaprogramming, constexpr, variadic templates, static
reflection, and more.1

introduction
Compile-time programming is vastly different from run-time
programming. The code runs during compilation, but the results can be
used at run time.

Some believe compile-time programming is merely a trick, unused in real-
world engineering. To them, I ask: do you use the C++ Standard Library?
The mainstream implementations rely heavily on various programming
techniques, including compile-time programming.

‘I don’t write the standard library’ – this might be a possible response. But
consider this: the standard library is just one tool, a standard weapon. Is it
enough to use only standard tools? That’s the real question.

The abundance of excellent open-source libraries suggests otherwise.
A skilled programmer crafts tools for themselves and their team. If
your work feels tedious, perhaps it’s time to build a bulldozer to tackle
problems.

Compile-time programming offers a way to build such tools.

A bit of history
In traditional C++ programming, source code is compiled into executable
code, which runs when executed. However, code can also be executed at
compile time. This concept dates back over 30 years.

Bjarne Stroustrup proposed templates in 1988 [Stroustrup88]. It was
implemented in 1989 and fully described in the 1990 Annotated C++
Reference Manual [Ellis90]. The initial purpose of template design was to
express parameterized container classes. However, in order to implement
types similar to arrays, non-type template parameters (NTTP) were
introduced:
 template<class E, int size> class buffer;
 buffer<char, 1024> x;

Around the same time, Alex Stepanov and David Musser introduced
generic programming. Alex realized C++ templates perfectly suited his
needs and used them to implement the Standard Template Library (STL),
showcasing their real-world potential.

Alex Stepanov remarked on the capabilities of the C++ language
[Stroustrup94]:

C++ is a powerful enough language – the first such language in
our experience – to allow the construction of generic programming
components that combine mathematical precision, beauty, and
abstractness with the efficiency of non-generic hand-crafted code.

1 Links to godbolt.org are to online examples, supplementing this article.

Please allow me to put STL aside for now, and discuss a side effect
of templates. In 1994, at a C++ committee meeting, the first recorded
instance of templates being ‘abused’ for compile-time programming
occurred. The power of C++ templates exceeded the expectations of both
its creator and the father of the STL. Erwin Unruh demonstrated the code
in Listing 1 [Unruh94]. This is no longer valid C++, and does not work
with today’s compilers.

A ‘modern’ working version is given in Listing 2 (overleaf). This code
fails to compile in an intriguing way. Some compilers produce error
messages like the following (see https://godbolt.org/z/f7zjM6Ysz):

unruh.cpp:20:19: error: no viable conversion from ‘int’ to ‘D<17>’
…
unruh.cpp:20:19: error: no viable conversion from ‘int’ to ‘D<13>’
…
unruh.cpp:20:19: error: no viable conversion from ‘int’ to ‘D<11>’
…
unruh.cpp:20:19: error: no viable conversion from ‘int’ to ‘D<7>’
…
unruh.cpp:20:19: error: no viable conversion from ‘int’ to ‘D<5>’
…
unruh.cpp:20:19: error: no viable conversion from ‘int’ to ‘D<3>’
…
unruh.cpp:20:19: error: no viable conversion from ‘int’ to ‘D<2>’

Wu Yongwei Having been a programmer and software architect,
Yongwei is currently a consultant and trainer on modern C++.
He has nearly 30 years’ experience in systems programming and
architecture in C and C++. His focus is on the C++ language, software
architecture, performance tuning, design patterns, and code reuse.
He has a programming page at http://wyw.dcweb.cn/, and he can be
reached at wuyongwei@gmail.com.

template <int i> struct D {
 D(void*); operator int();
 };
template <int p, int i> struct is_prime {
 enum {
 prim = (p%i) &&
 is_prime<(i > 2 ? p : 0), i -1> :: prim };
 };
template < int i > struct Prime_print {
 Prime_print<i-1> a;
 enum { prim = is_prime<i, i-1>::prim };
 void f() { D<i> d = prim; }
 };
struct is_prime<0,0> { enum {prim=1}; };
struct is_prime<0,1> { enum {prim=1}; };
struct Prime_print<2> { enum {prim = 1};
 void f() { D<2> d = prim; } };
#ifndef LAST
#define LAST 10
#endif

main () {
 Prime_print<LAST> a;
 }

Listing 1

https://godbolt.org/z/f7zjM6Ysz

Wu YOnGWEiFEATuRE

8 | Overload | October 2024

simple examples
Factorial
The previous example was a bit weird and complex. Let’s consider a
simpler one – factorials. The mathematical definition of factorial can be
expressed recursively as:

n! = n ∙ (n – 1)!

0! = 1

It corresponds to the following C++ code:
 template <int N>
 struct factorial {
 static const int value =
 N * factorial<N - 1>::value;
 };

 template <>
 struct factorial<0> {
 static const int value = 1;
 };

This almost aligns perfectly.

Let’s try some numbers.

	� Evaluating factorial<0>::value yields 1.

	� For factorial<1>::value, it computes 1 *
factorial<0>::value, resulting in 1.

	� For factorial<2>::value, it computes 2 *
factorial<1>::value, resulting in 2.

	� For factorial<3>::value, it computes 3 *
factorial<2>::value, resulting in 6.

And so on.

This approach resembles functional programming, which is atypical for
C++:

1. A class template represents a ‘function’.

2. Instantiating a template is akin to a ‘function call’, with a unique
result and no side effects.

3. A ‘variable’ (the static member variable in the class template) can be
assigned once and not modified later.

4. The result of instantiation is remembered during subsequent
compilation, similar to memoization.

5. …

Conditionals and loops
Similarly, we can create a generic compile-time conditional construct
with class templates and specialization (Listing 3). A compile-time loop
is more complex (Listing 4, on opposite page).

When the result of a class template equals a similarly named result on
the right side of an expression, we can express it more succinctly with
inheritance (Listing 5, on opposite page).

In template metaprogramming, using direct recursion typically enhances
readability. Using the loop construct, as shown in Listing 5, might make
the result harder to understand (Listing 6, on opposite page).

Regardless of how it is written, we can obtain the result directly at
compile time. For code like the following:
 printf("%d\n", factorial<10>::value);

The value 3628800 will appear in the assembly code, with no trace of
factorial at all (for details, see https://godbolt.org/z/j59ErdnTj and
https://godbolt.org/z/cxdfn97x6).

template <int p, int i> struct is_prime {
 enum {
 prim = (p==2) ||
 (p%i) && is_prime<(i>2?p:0),
 i-1> :: prim };
};
template<>
struct is_prime<0,0> { enum {prim=1}; };
template<>
struct is_prime<0,1> { enum {prim=1}; };

template <int i> struct D { D(void*); };

template <int i> struct Prime_print {
 Prime_print<i-1> a;
 enum { prim = is_prime<i, i-1>::prim };
 void f() { D<i> d = prim ? 1 : 0; a.f();}
};
template<> struct Prime_print<1> {
 enum {prim=0};
 void f() { D<1> d = prim ? 1 : 0; };
};
int main() {
 Prime_print<18> a;
 a.f();
}

Listing 2

template <bool Condition,
 typename Then, typename Else>
struct conditional;

template <typename Then, typename Else>
struct conditional<true, Then, Else> {
 using type = Then;
};
template <typename Then, typename Else>
struct conditional<false, Then, Else> {
 using type = Else;
};

Listing 3

in 1994, at a C++ committee meeting,
the	first	recorded	instance	of	templates
being ‘abused’ for compile-time
programming occurred.

https://godbolt.org/z/j59ErdnTj
https://godbolt.org/z/cxdfn97x6

Wu YOnGWEi FEATuRE

October 2024 | Overload | 9

In the examples above, we follow a C++ standard library convention:
using a class template’s member type type for a result type and its static
member variable value for a result value.

Prime sieve example
Functional programming in template metaprogramming
Let’s return to prime numbers, without showing the result in error
messages, which is not that interesting. We will compute at compile time
a list of primes, which can be used at run time as well. To do this, we need
some tools.

First, we need a tool to convert between values and types. The standard
library provides this functionality, which looks like this:
 template <typename T, T Val>
 struct integral_constant {
 static const T value = Val;is_nonstatic
 typedef T value_type;
 typedef integral_constant type;
 };

Although templates can have non-type template parameters, having a
fixed type is not flexible. When the value type is not unique, representing
a compile-time constant with a type is common. The class template
above can represent a constant of any integer type, like int, size_t,
or bool. The value member retrieves the template’s value parameter,
value_type retrieves the type parameter, and type points to itself.

Here are some examples:
 // Types
 integral_constant<int, 42>
 integral_constant<bool, true>
 // Values
 integral_constant<int, 42>::value // 42
 integral_constant<bool, true>::value // true

Next, we need a tool similar to a list in functional programming. I’ll use
a functional, C++98-compatible definition:
 struct nil {};
 template <typename Head, typename Tail = nil>
 struct list {};

Those familiar with functional programming will recognize the pattern
immediately. For others, you can think of it as a singly linked list:
 struct list {
 any head;
 list* tail{nullptr};
 };

Our algorithm for finding prime numbers is a simple sieve, represented
in Haskell as:
 primesTo n = sieve [2..n]
 where
 sieve (x:xs) =
 x:(sieve $
 filter (\a -> a 'mod' x /= 0)
 xs)
 sieve [] = []

We aim to generate a list from 2 to n, then perform the following
operations:

1. Take the first element.

2. Filter out elements divisible by it from the remaining list.

template <bool Condition, typename Body>
struct loop_result;

template <typename Body>
struct loop_result<true, Body>
 : loop_result<Body::next_type::condition,
 typename Body::next_type> {};

template <typename Body>
struct loop_result<false, Body> : Body {};

template <typename Body>
struct loop
 : loop_result<Body::condition, Body> {};

Listing 5

template <int N, int Last, int Result>
struct factorial_loop {
 static const bool condition = (N <= Last);
 using type = integral_constant<int, Result>;
 using next_type =
 factorial_loop<N + 1, Last, Result * N>;
};

template <int N>
struct factorial
 : loop<factorial_loop<1, N, 1>>::type {};

Listing 6

in template metaprogramming, using direct
recursion typically enhances readability.
using the loop construct might make the

result harder to understand

template <bool Condition, typename Body>
struct loop_result;

template <typename Body>
struct loop_result<true, Body> {
 using type = typename loop_result<
 Body::next_type::condition,
 typename Body::next_type>::type;
};
template <typename Body>
struct loop_result<false, Body> {
 using type = typename Body::type;
};
template <typename Body>
struct loop {
 using type =
 typename loop_result<Body::condition,
 Body>::type;
};

Listing 4

Wu YOnGWEiFEATuRE

10 | Overload | October 2024

3. Recursively apply the sieve to the rest and combine the result with
the first element.

4. Recursion stops at an empty list, yielding an empty list.

Currently, we don’t have a ‘filter’ in our toolbox. It’s defined in Listing 7.
This template is a bit complex, so let me explain briefly.

In the first section, we declare the ‘prototype’ of this template. It has two
template parameters: the first is a class template used as the ‘predicate’
for filtering, and the second is a normal type representing the list to filter.

In the second section, we implement the main ‘overload’ of this
‘metafunction’ with partial specialization. We require the second
parameter to match the form list<Head, Tail>, naturally separating
the ‘head’ and ‘tail’ of the list. We then apply the predicate to the ‘head’
to check the condition. If the condition is met, our result type is Head
concatenated with the filtered result of Tail; otherwise, Head is
discarded, and the result type is just the filtered result of Tail.

The third section is the recursion termination condition for this
‘metafunction’. When we reach nil, i.e. the list is empty, the result type
is also this nil marker, representing an empty list.

Similarly, we need a tool to generate sequences:
 template <int First, int Last>
 struct range {
 typedef list<
 integral_constant<int, First>,
 typename range<First + 1, Last>::type>
 type;
 };

 template <int Last>
 struct range<Last, Last> {
 typedef nil type;
 };

We can now write down the metaprogramming algorithm to find primes
(Listing 8).

If we want the code to compiler under C++98, the intuitive alias templates
can’t be used. But we can simulate generating the final result type with
inheritance:
 template <int N>
 struct primes_to
 : sieve_prime<
 typename range<2, N + 1>::type>::type {};

You can output or further process this result type as needed. More details
are available in my online code at https://godbolt.org/z/xE7MKca4s.

After seeing the power of template metaprogramming, you might naturally
wonder: How much can be done with template metaprogramming?

The answer, as you might guess, is almost anything. C++ templates are
Turing complete [Veldhuizen03], meaning you can theoretically perform
any computation through template metaprogramming.

Of course, there’s always a difference between theory and practice. There
are things we don’t want or can’t do at compile time. Even if we want to
and can, some tasks aren’t convenient with template metaprogramming.

Template metaprogramming doesn’t allow any side effects. We can’t
have input/output access in template code. It can only handle types
and compile-time constants. Even if you could access input/output, it
wouldn’t make sense: we want to display a user interface, accept user
input, and read/write databases when the program is running – not when
it’s compiled.

As mentioned earlier, template metaprogramming is a form of ‘functional’
programming. I have done a lot just to generate something equivalent to
the Racket/Scheme code in Listing 9 (opposite).

template <template <typename> class Pred,
 typename List>
struct filter;

template <template <typename> class Pred,
 typename Head, typename Tail>
struct filter<Pred, list<Head, Tail>> {
 typedef typename conditional<
 Pred<Head>::value,
 list<Head,
 typename filter<Pred, Tail>::type>,
 typename filter<Pred, Tail>::type>::type
 type;
};

template <template <typename> class Pred>
struct filter<Pred, nil> {
 typedef nil type;
};

Listing 7

template <typename T>
struct sieve_prime;

template <typename Head, typename Tail>
struct sieve_prime<list<Head, Tail>> {
 template <typename T>
 struct is_not_divisible
 : integral_constant<
 bool, (T::value % Head::value) != 0> {};

 typedef list<
 Head,
 typename sieve_prime<typename filter<
 is_not_divisible, Tail>::type>::type>
 type;
};

template <>
struct sieve_prime<nil> {
 typedef nil type;
};

Listing 8

After seeing the power of template
metaprogramming, you might naturally
wonder: How much can be done with
template metaprogramming?

https://godbolt.org/z/xE7MKca4s

Wu YOnGWEi FEATuRE

October 2024 | Overload | 11

Template metaprogramming is a primitive form of functional
programming, and C++ compilers aren’t optimized for it. In fact, the
Haskell and Scheme code I have shown runs faster than compiling the
previous C++ code. Besides the fact that many algorithms are better
suited to imperative styles, template metaprogramming is not ideal for
compile-time tasks. We can easily stress C++ compilers to their limits,
and complicated template metaprograms may work on one compiler
and fail on another. Additionally, poorly written template code can even
crash the compiler or system, as issues that occur at run time may arise
at compile time now. Due to the undecidability of the halting problem,
compilers just can’t catch every issue in compile-time code.

constexpr
Now let’s discuss the new constexpr feature introduced in C++11,
which allows compile-time programming without using template
metaprogramming.

First, while the code I wrote earlier works, there is a minor syntax issue.
In the following code (see https://godbolt.org/z/TW4GTKPYc):
 template <typename T>
 void print_value(const T& value)
 {
 …
 }
 print_value(factorial<10>::value);

the final link step will fail, which can be frustrating. In the era of C++98,
the workaround was to use enum instead of static const int,
an inelegant hack. The proper ‘modern C++’ solution is constexpr.
Apart from the C++17 improvement on definition rules, a constexpr
‘variable’ explicitly indicates a compile-time constant. This is a key use
of constexpr (https://godbolt.org/z/c3Gh13eWb).

Another key use of constexpr is in constexpr functions. Here is a
recursive version that works in C++11:
 constexpr int factorial(int n)
 {
 return n == 0 ? 1 : n * factorial(n - 1);
 }

In C++14, one can write a more conventional iterative version (see
https://godbolt.org/z/3PE43PTn4):
 constexpr int factorial(int n)
 {
 int result = 1;
 for (int i = 2; i <= n; ++i)
 result *= i;
 return result;
 }

C++17 further loosened restrictions, allowing many functions, including
most member functions of array, to be marked constexpr for
compile-time use. I would like to emphasize that array is an important
compile-time tool, as we can get the size of this container and access all
its elements at compile time.

Now we can really try the standard sieve algorithm:
 template <int N>
 constexpr auto sieve_prime()
 {
 array<bool, N + 1> sieve{};
 for (int i = 2; i <= N; ++i)
 sieve[i] = true;
 for (int p = 2; p * p <= N; p++)
 if (sieve[p])
 for (int i = p * p; i <= N; i += p)
 sieve[i] = false;
 return sieve;
 }

This function generates a sieve. To find the number of primes up to N, we
need to count them. In C++20, we can use the standard count algorithm,
but, in earlier versions, we need to implement it ourselves:
 template <size_t N>
 constexpr size_t
 prime_count(const array<bool, N>& sieve)
 {
 size_t count = 0;
 for (size_t i = 2; i < sieve.size(); ++i)
 if (sieve[i])
 ++count;
 return count;
 }

Converting the final result into an array is now simple:
 template <int N>
 constexpr auto get_prime_array()
 {
 constexpr auto sieve = sieve_prime<N>();
 array<int, prime_count(sieve)> result{};
 for (size_t i = 2, j = 0; i < sieve.size();
 ++i)
 if (sieve[i]) {
 result[j] = i;
 ++j;
 }
 return result;
 }

See also https://godbolt.org/z/hjezWEf7v.

(define (sieve-prime lst)
 (cond
 [(null? lst) '()]
 [else (let ([n (car lst)])
 (let ([is-not-divisible
 (lambda (m)
 (not
 (= (remainder m n) 0)))])
 (cons n (sieve-prime
 (filter is-not-divisible
 (cdr lst))))))]))

(define (primes-to n)
 (sieve-prime (range 2 (+ n 1))))

Listing 9

Besides the fact that many algorithms
are better suited to imperative styles,

template metaprogramming is not ideal
for compile-time tasks.

https://godbolt.org/z/TW4GTKPYc
https://godbolt.org/z/c3Gh13eWb
https://godbolt.org/z/3PE43PTn4
https://godbolt.org/z/hjezWEf7v

Wu YOnGWEiFEATuRE

12 | Overload | October 2024

For almost any C++ programmer, this kind of code is likely easier to
understand than template metaprogramming. It is also easier for compilers.
MSVC and Apple Clang failed on my template metaprogramming code
for calculating primes with an N of 1000, while GCC took over a second
to compile it. In contrast, the above code handles N of 10000 happily
across all three compilers. GCC compiles it in just 0.7 seconds for N at
10000. Compiling the template code for N at 10000 with GCC takes over
two minutes and uses several gigabytes of memory. The time complexity
of template metaprogramming is not linear.

The only ‘unnatural’ part is that N cannot be passed as a regular function
parameter, but only as a template parameter. Even in constexpr or
consteval (C++20) functions, function parameters aren’t considered
compile-time constants and can’t be used where compile-time constants
are required.

For compile-time evaluation, the array variable must be initialized
immediately upon declaration to avoid indeterminate values. As of C++20,
this requirement is relaxed; the array still can’t contain indeterminate
values, but you can declare it without {} and initialize it later.

C++20 brings significant improvements for compile-time programming,
such as:

1. Using vector and string at compile time

2. Using strings and custom-type objects as template parameters

These features offer greater flexibility, removing the need to pass lengths
as template parameters. However, there is a big limitation: the vector
or string results can’t be directly used at run time. I won’t go into
detail, but interested readers can check out my online code example at
https://godbolt.org/z/6c833fE4r.

Variadic templates
Another major improvement in compile-time programming is variadic
templates, introduced in C++11 and enhanced in later versions.

Variadic templates have two main uses:

	� Forwarding a variable number of arguments to other functions,
often with forwarding references

	� Iterating over arguments using recursion or fold expressions

The second use is particularly important for compile-time programming.
Here is a simple example to check if any provided arguments are null
pointers:
 template <typename... Args>
 constexpr bool is_any_null(const Args&... args)
 {
 return (... || (args == nullptr));
 }

The significance of this approach is that, regardless of the number or
types of arguments, the compiler can expand and usually inline them.
This simplifies repetitive code and offers new automation possibilities.

By using macro techniques, we can inject metadata into structs.
Then, with fold expressions and compile-time programming, we can
achieve static reflection capabilities (see Mozi [Mozi] for a complete
implementation). For instance, Listing 10 is a generic function to iterate
over struct fields.

With tools like for_each, implementing more features becomes easy.
For example, the function in Listing 11 can be used to print all fields in a
struct. (See https://godbolt.org/z/saejMW6Pq.)

template <typename T, typename F, size_t... Is>
constexpr void
for_each_impl(T&& obj, F&& f,
 std::index_sequence<Is...>)
{
 using DT = std::decay_t<T>;
 (void(std::forward<F>(f)(
 typename DT::template _field<T, Is>(obj)
 .name(),
 typename DT::template _field<T, Is>(obj)
 .value())),
 ...);
}
template <
 typename T, typename F,
 std::enable_if_t<
 is_reflected_struct_v<std::decay_t<T>>,
 int> = 0>
constexpr void for_each(T&& obj, F&& f)
{
 using DT = std::decay_t<T>;
 for_each_impl(
 std::forward<T>(obj), std::forward<F>(f),
 std::make_index_sequence<DT::_size>{});
}

Listing 10

template <typename T>
void print(const T& obj,
 std::ostream& os = std::cout,
 const char* fieldName = "",
 int depth = 0)
{
 if constexpr (is_reflected_struct_v<T>) {
 os << indent(depth) << fieldName
 << (*fieldName ? ": {\n" : "{\n");
 for_each(
 obj, [depth, &os](const char* fieldName,
 const auto& value) {
 print(value, os, fieldName, depth + 1);
 });
 os << indent(depth) << "}"
 << (depth == 0 ? "\n" : ",\n");
 } else {
 os << indent(depth) << fieldName << ": "
 << obj << ",\n";
 }
}

Listing 11

…regardless of the number or types of
arguments, the compiler can expand and
usually inline them. This simplifies	repetitive	
code and offers new automation possibilities…

https://godbolt.org/z/6c833fE4r
https://godbolt.org/z/saejMW6Pq

Wu YOnGWEi FEATuRE

October 2024 | Overload | 13

This function uses the for_each function, generic lambda expressions,
and compile-time conditional statements (if constexpr) to ‘iterate’
over different fields of a reflected struct, which can have different types.
It can correctly handle nested reflected structs.

With a similar method, we can generically implement comparison,
copying, and other functions for reflected structs. Writing such code
isn’t easy, but the result is impressive, with performance far exceeding
reflection features in languages like Java. This is because the compiler can
statically expand the struct when compiling functions like for_each,
making the generated code equivalent to manually written code that
processes each field individually!

Static	reflection	under	standardization
The code works, but we must use special macros to define structs for
it to function. With standardized static reflection, we’d be able to write
a generic print function template (see Listing 12) without special
definition forms or the for_each function (using the syntax from P2996
[P2996r5]).

While there is an experimental implementation for P2996 [clang], an online
implementation of an early proposal, P2320 [P2320r0], is conveniently
available in Compiler Explorer. And I’ll use it to demonstrate print
actually works at https://cppx.godbolt.org/z/c7a4jfo74.

Here are some key points (notice that the syntax is subject to changes):

	� ^T is the proposed reflection syntax to get a compile-time reflection
object.

	� [:expr:] reverses the reflection, converting it back to a C++ type
or expression; [:^T:] gets us back T.

	� template for is a compile-time loop for iterating over objects
during compilation [P1306R2], eliminating the need for generic
lambdas and for_each.

	� The std::meta namespace provides tools for compile-time
processing:

	� info is a general reflection object.

	� members_of retrieves all members of a type.

	� nonstatic_data_members_of extracts non-static data
members.

	� name_of gets the member’s name.

Put together, the outcome is:

	� For class types (including structs), it outputs a left brace,
recursively calls print for all members, and outputs a right brace.

	� Otherwise, it simply outputs the field name and the content of non-
static data members.

Unfortunately, this will only be available in C++26 (if not later). �

References
[clang] clang-p2996: https://github.com/bloomberg/clang-p2996
[Ellis90] Margaret A. Ellis and Bjarne Stroustrup (1990) The Annotated

C++ Reference Manual, Addison-Wesley.
[Mozi] Mozi: https://github.com/adah1972/mozi
[P1306R2] Andrew Sutton et al., ‘Expansion statements (revision 2)’,

May 2024, http://wg21.link/p1306r2
[P2320r0] Andrew Sutton et al., ‘The Syntax of Static Reflection’, 2021,

http://wg21.link/p2320r0
[P2996r5] Wyatt Childers et al., ‘Reflection for C++26’ (revision 5),

August 2024, http://wg21.link/p2996r5
[Stroustrup88] Bjarne Stroustrup, ‘Parameterized Types for C++’,

October 1988, https://www.usenix.org/legacy/publications/
compsystems/1989/win_stroustrup.pdf

[Stroustrup94] Bjarne Stroustrup (1994) The Design and Evolution of
C++, Addison-Wesley.

[Unruh94] Erwin Unruh, ‘Primzahlen’, 1994.
http://www.erwin-unruh.de/primorig.html

[Veldhuizen03] Todd L. Veldhuizen, ‘C++ Templates are
Turing Complete’, 2003, https://www.researchgate.net/
publication/2475343_C_Templates_are_Turing_Complete

template <typename T>
void print(const T& obj,
 ostream& os = cout,
 const char* name = "", int depth = 0)
{
 if constexpr (is_class_v<T>) {
 os << indent(depth) << name
 << (*name ? ": {\n" : "{\n");
 template for (constexpr meta::info member :
 meta::nonstatic_data_members_of(^T)) {
 print(obj.[:member:], os,
 meta::name_of(member),
 depth + 1);
 }
 os << indent(depth) << "}"
 << (depth == 0 ? "\n" : ",\n");
 } else {
 os << indent(depth) << name << ": " << obj
 << ",\n";
 }
}

Listing 12

Writing such code isn’t easy, but the result is
impressive, with performance far exceeding
reflection	features in languages like Java.

https://cppx.godbolt.org/z/c7a4jfo74
https://github.com/bloomberg/clang-p2996
https://github.com/adah1972/mozi
http://wg21.link/p1306r2
http://wg21.link/p2320r0
http://wg21.link/p2996r5
https://www.usenix.org/legacy/publications/compsystems/1989/win_stroustrup.pdf
https://www.usenix.org/legacy/publications/compsystems/1989/win_stroustrup.pdf
http://www.erwin-unruh.de/primorig.html
https://www.researchgate.net/publication/2475343_C_Templates_are_Turing_Complete
https://www.researchgate.net/publication/2475343_C_Templates_are_Turing_Complete

accu.org

accu.org

accu.org

accu.org

accu.org

World-class conference
Professional development
Printed journals
Local groups
Email discussion groups
Reviews of technical books

accu
Professionalism in Programming

Membership rates on our website.

Visit accu.org for details

LuCiAn RAdu TEOdOREsCuFEATuRE

16 | Overload | October 2024

The Publish Pattern
How do you minimise locking between producers and
consumers? Lucian Radu Teodorescu describes a common,
but currently undocumented, design pattern.

design patterns can help us reason about code. They are like
algorithms that are vaguely defined in the code. Once we recognise
a pattern, we can easily draw conclusions about the behaviour of the

code without looking at all the parts. Patterns also help us when designing
software; they are known solutions to common problems.1

In this article, we describe a concurrency pattern that can’t be found
directly in any listing of concurrency patterns, and yet, it appears (in one
way or another) in many codebases. It is useful when we have producers
and consumers that run continuously, and we want to minimise the
locking between them.

Problem description
Let’s say we have an open-world game. As the player walks through the
world, we load the data corresponding to the regions around the player.
We have two types of workloads in our scenario: one for loading the data
and another for displaying the loaded data. For the sake of our discussion,
let’s say that each of these two activities is bound to a thread.

The problem we are trying to solve is how to structure the passing of
data (let’s call this document) from the loading thread (producer) to the
rendering thread (consumer). This is analogous to the classical producer-
consumer problem [Wikipedia-1], but it has some interesting twists. Let’s
try to outline the requirements of the problem:

	� (R1) The producer is constantly producing new versions of the
document.

	� (R2) The consumer is constantly consuming document data.

	� (R3) The consumer will use the latest version of the document.

Please note that we are discussing multiple versions of the document.
In our example, the loading thread will produce different documents
depending on the position of the player, and the rendering thread will
display the latest document, corresponding to the player’s most recent
position.

A naïve implementation for this problem might look like the code in
Listing 1. Here, we have two functions, produce() and consume(),
that are called multiple times from the appropriate threads. They both
work on a shared document, current_document, so they need
something to protect concurrent access to this object. We use a mutex to
ensure that we are not reading the document while modifying it.2

1 When we talk about design patterns, we often emphasise their
importance for design, while not giving enough credit to how we read
and reason about the code. As we reason about the code more often
than we design it, maybe we should shift the focus. Just a thought…

2 Every mutex is a bottleneck; by design, it prevents a thread that has
resources from doing meaningful work.

This implementation meets our requirements, but it likely has performance
issues. If producing the document takes a long time (which is often the
case when loading data from disk), then rendering might be blocked until
the operation completes. This is completely unacceptable for this type of
application. Moreover, considering the potential usage of the data, this is
also suboptimal, as we are often loading data that is far from the player,
thereby blocking rendering for data that we might not even need.

This means we need to add a new requirement:

	� (R4) Consuming the data should not be delayed by delays in
producing the data.

With this new requirement, the naïve implementation from Listing 1 no
longer works. Let’s explore how we can improve it.

The Publish Pattern
We need to find a way to decouple the production and consumption of the
document. The consumer needs to use the latest version of the published
document but doesn’t necessarily need to wait for the producer to complete
if production is currently happening. Similarly, the production of the
document doesn’t need to wait until the latest version of the document is
consumed. This is the essence of what I call the Publish Pattern.

Similar to the mutex implementation, we still have three parts:

	� The latest published document

	� A way to update the published document (without blocking the
consumers)

	� A way to consume the published document (without preventing the
publishing of new versions of the document)

The code that implements this might resemble what is shown in Listing 2
(overleaf), and the definition of the published template may look
like the one in Listing 3. The interaction between the producer and
the consumer occurs through a published_document object that is

struct document_t {...};

void produce_unprotected(document_t& d);
void consume_unprotected(const document_t& d);

document_t current_document;
std::mutex document_bottleneck;

void produce() {
 std::lock_guard<std::mutex>
 lock{document_bottleneck};
 produce_unprotected(current_document);
}
void consume() {
 std::lock_guard<std::mutex>
 lock{document_bottleneck};
 consume_unprotected(current_document);
}

Listing 1

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

LuCiAn RAdu TEOdOREsCu FEATuRE

October 2024 | Overload | 17

thread-safe. The producer takes the current document, makes a copy
of it, and then edits this copy; when the new document is ready, it is
published to the shared published_document object. The consumer
simply takes the latest version from published_document (which
is a std::shared_ptr<const document_t>) and uses the object
freely.

The published template provides two basic thread-safe operations on
an inner std::shared_ptr<const T> object. The first operation is
to update the content of this object, and the second is to simply return a
copy of the shared pointer.

The key element is the internal type: std::shared_ptr<const T>.
Because the inner object of the shared pointer is const, nobody can
change it after it’s created.

This means that copies of the std::shared_ptr<const T> object
can be passed around and safely shared across threads; we don’t have race
conditions on the inner object.

When we want to update the document, we update just the master copy
of the object, the one embedded in the published<T> class; we do this
under a lock to prevent copies being made while we update the master
copy. All the copies we’ve already made are still valid, and they don’t
become invalidated by updating the master copy.

This means that the consumers, on whichever threads they run, can
continue to use their versions of the document regardless of how many
times we publish a new document. Thus, we fulfil all four requirements
we had.

Analysis
Performance
For most problems, using this pattern is relatively cheap. We have just 2,
potentially 3, heavy operations:

	� a memory allocation each time we publish a new document

	� small synchronisation when we publish and when we get the latest
version of the document

	� (potentially) copying of the document

If the producing and the consuming operation are expensive (which is the
main use case for this pattern), then a memory allocation for publishing a
new document should be a very small cost.

Similarly, the contention on accessing the latest published document
inside the published<T> class should be very small. We are doing
very little inside the lock, and the lock is taken infrequently (twice while
producing and once while consuming). Depending on the platform, the
lock can be improved by using a spin-lock, but I would argue that for
most cases, this won’t be necessary; anyways, we should measure first.

Finally, we are making a copy of the document. Depending on the
document type, this may be an expensive operation. If the documents are
hard to copy, there may be ways of improving the copying type. We will
provide some tips later.

Thread safety
An instance of published<T> can be safely shared across
threads and called from multiple threads. The content of the
std::shared_ptr<const T> objects obtained from a
published<T> can also be freely used across different threads. The
inner objects are marked as const, so we can only have read-only access

struct document_t {...};

void produce_unprotected(document_t& d);
void consume_unprotected(const document_t& d);

published<document_t> published_document;

void produce() {
 // Make a copy of the currently published
 // document.
 document_t new_version(
 *published_document.get());
 // Perform the needed updates.
 produce_unprotected(new_version);
 // Publish the new version.
 published_document.publish(
 std::move(new_version));
}
void consume() {
 auto current = published_document.get();
 consume_unprotected(*current);
 // The current document is kept alive until
 // the end of the function.
}

Listing 2

template <typename T>
class published {
public:
 void publish(T&& doc) {
 std::lock_guard<std::mutex>
 lock(small_bottleneck_);
 published_document_ =
 std::make_shared<const T>(std::move(doc));
 }

 std::shared_ptr<const T> get() {
 std::lock_guard<std::mutex>
 lock(small_bottleneck_);
 return published_document_;
 }
private:
 std::shared_ptr<const T> published_document_;
 std::mutex small_bottleneck_;
};

Listing 3

We	need	to	find	a	way	to	decouple the
production and consumption of the

document… This is the essence of what i
call the Publish Pattern.

LuCiAn RAdu TEOdOREsCuFEATuRE

18 | Overload | October 2024

to them. In the absence of a writer to this object, there is no data race
when accessing it.

This immediately implies that we can have multiple consumers running
at the same time. They can all view the same document (i.e., the latest
version), or they may be viewing different versions of the document if there
was at least one publish call during the execution of a consumer job.

Strictly speaking, from a thread safety perspective, it’s also acceptable to
have multiple producers running at the same time. They may overwrite
the documents that the other producers generate, but this doesn’t pose a
thread safety issue.

This approach manages to retain thread safety while dramatically
reducing the scope of the locks.

Functionality
Let’s now analyse the proposed pattern from a functional point of view.
One can easily see that requirements (R1) and (R2) are fulfilled. Nothing
prevents the two threads from continuously producing and consuming
documents. Requirement (R4) is also satisfied, as the consumers are
not affected by the duration of the producer operation. If producing the
document takes longer, consumers will see new versions of the document
less frequently, but they are not prevented from running at the same pace.

Requirement (R3) is slightly more interesting. When a consumer starts
its job, the first thing it does is retrieve the latest published version of the
document. From this perspective, we can say that (R3) is satisfied. But
this is not the complete story. During the consumer’s work, the producer
may publish a new version of the document; it’s even possible for more
than one version of the document to be published. That is, the fact that
when the consumer job started, it had the latest version of the published
document doesn’t mean that by the time the job is finished, it still has the
latest version of the document. This is an important functional aspect that
the user needs to account for.

On the other hand, this technique ensures that once we start consuming
a version of the document, the inner parts of the document don’t change.
We get 100% consistency when consuming the document. This technique
linearises the producer and consumer operations [Wikipedia-2].

From a safety perspective, we can have multiple producers running at
the same time. But from a functional perspective, that would be a bug.
The problem is that one producer may completely overwrite the changes
made by another producer. There are ways to fix this, but this is outside
the pattern laid out by Listing 2.

Memory consumption
One of the things that the user may need to pay attention to is memory
(and, in general, resource) consumption. If we have many long-running
consumers, we may end up with multiple versions of the document. If
the documents consume a significant amount of memory, this might be
a problem.

The Publish pattern doesn’t guarantee an upper bound to the number of
documents that may be in flight at a given time.

This is a downside of having the possibility of multiple independent
consumers, which also run independently from the producer(s). If we had
used locking, we would implicitly guarantee that there is only one version
of the document available.

Variants and improvements
The term the Publish pattern is something I coined to describe a behaviour
that I implemented to solve a problem similar to the one described here
(at that time, I was working on navigation software). The idea seemed
to be applicable in multiple contexts; indeed, since then, I’ve applied it
multiple times in various contexts. I took inspiration for this technique
from a presentation by Herb Sutter on implementing atomic linked lists,
in which he advocated for std::atomic<std::shared_ptr<T>>
[Sutter14].

In essence, this pattern is a form of double-buffering or, more generally,
multiple-buffering [Wikipedia-3]. One can use the Publish pattern to
implement double-buffering; conversely, one can use double-buffering
techniques in places where the Publish pattern could be applied. Compared
to the typical double-buffering technique, I appreciate the simplicity and
generality of the Publish pattern.

From a different perspective, we can consider this to be a variant of the
read-copy-update (RCU) synchronisation mechanism [Wikipedia-4].
While RCU is a low-level technique, the Publish pattern is something
that we can apply to complex documents.

Handling multiple producers
As previously mentioned, the code from Listing 2 doesn’t work if we
have multiple producers running at the same time. One of the producers
might overwrite the data produced by the others.

To solve this, we may employ an optimistic locking scheme [Wikipedia-5].
We publish a new version of the document only if a new version hasn’t
been published while we were computing the new version to publish.
Otherwise, we can retry the publish operation.

This can be implemented with code similar to Listing 4. When trying to
publish, we check if nothing else has been published in the meantime; if
we have the same document, we can publish directly. Otherwise, we get
the latest version of the document, reapply the updates, and retry.

One downside of this algorithm is that we don’t have an upper bound on
how many times we can retry publishing a document. If applying some
updates takes a long time, we may constantly get new versions of the
document published in the meantime, which would keep the retry process
running endlessly. As the reader might have guessed, there are techniques
for detecting long retry chains and failing the entire update after a certain
number of retries. One can imagine more complex strategies for dealing
with these cases, but that is outside the scope of this article.

Merging the latest version of the document with the changes local to the
producer may not be a trivial task, but it’s doable.

The bottom line is that the Publish pattern can be easily adapted to work
in contexts where multiple producers are needed.

Monotonic updates
My friend, Dimi Racordon, wanted to speed up the Hylo compiler [Hylo]
by introducing concurrency into the type checker. Oversimplifying,
the activity of a type checker can be seen as building a graph (for the
most part, it’s a tree) and evaluating the validity of each node. Different
declarations and type evaluations will typically generate different nodes
in the graph. Many nodes in the graph can be processed in parallel, even
if sometimes they need to intersect (e.g., different declarations depend on
the same type).

The implementation that Dimi chose for speeding up the type checker
closely resembles the Publish pattern with multiple producers. A producer
type-checks a set of nodes, and after a while, publishes the results
obtained so far, so that others can see the progress. However, in her case,
the way the document is updated has a special property: all the updates
are monotonic. That is, once we add some information to the document,
we can never remove it.

Having guaranteed monotonic updates may make merging the documents
much easier. All the updates to the documents are additions, so merging
involves placing our additions on top of those in the base document.

This strategy may allow us to break the producer’s job into two parts:
determining additions and committing the additions. This may look like
the code from Listing 5. This approach reduces the lifetime of the current
version of the document; after all, the main activity is producing the
updates. This implies that the chances of other documents being produced
while we apply the updates are reduced. In this way, we reduce the overall
time needed to publish a new version of the document.

LuCiAn RAdu TEOdOREsCu FEATuRE

October 2024 | Overload | 19

Large documents
We mentioned earlier that the Publish pattern may not be very efficient
when dealing with large documents, as producing a new version of the
document requires copying it. The copying process can take significant
time and may lead to high memory consumption.

Two techniques come to mind that we can apply to improve this:

	� Persistent data structures [Wikipedia-6]

	� Using aggregation instead of composition for document subparts
and sharing the subparts between document versions.

In the first case, persistent data structures allow us to reuse the previous
version of the document while adding new information to it (or removing
information from it). For example, adding an element to the front of a
list doesn’t change any of the elements already existing. Thus, we can
make the new list share data with the previous list. The act of copying the
document is cheap, as the subparts of the document are not actually copied.
Tree structures are also good examples of persistent data structures.

The second technique depends on the type of document, so let’s describe
it with an example. Let’s say that the document is defined as
 using document_t =
 std::unordered_map<location_t, tile_data_t>

(we load a tile’s worth of data for the positions around the player). Let’s
also assume that, once tile data is loaded for a location, it will never
change. Copying tile_data_t objects might be expensive, so copying

the entire document is expensive. However, if we change the document
to be
 std::unordered_map<location_t,
 std::shared_ptr<const tile_data_t>>

then copying the document is cheap. We are not copying the tile data; we
are just copying the map. Multiple document versions will share the same
tile data subobjects.

Conclusions
The Publish pattern can be a valuable tool in one’s toolkit. It can be used
in many scenarios where we want to reduce contention between threads
and have a producer-consumer type of problem.

The pattern works well when there are multiple consumers of the
document. In its basic form, the pattern works with only one producer,
but it can be easily extended to accommodate multiple producers.

The pattern is easy to implement and can be very efficient, depending
on the problem. However, like any software solution, it has downsides;
in this case, extra memory allocations and copying the document. Being
aware of these downsides helps users tailor the pattern to the problem at
hand.

I hope you find this pattern as useful as I did. Please let me know about
your experience with it. �

References
[Hylo] The Hylo Programming Language, https://www.hylo-lang.org/
[Sutter14] Herb Sutter, Lock-Free Programming (or, Juggling Razor

Blades), Part II, CppCon 2014, https://youtu.be/CmxkPChOcvw
[Wikipedia-1] ‘Producer–consumer problem’: https://en.wikipedia.org/

wiki/Producer%E2%80%93consumer_problem, accessed August
2024.

[Wikipedia-2] ‘Linearizability’: https://en.wikipedia.org/wiki/
Linearizability, accessed August 2024.

[Wikipedia-3] ‘Multiple buffering’: https://en.wikipedia.org/wiki/
Multiple_buffering, accessed August 2024.

[Wikipedia-4] ‘Read-copy-update’: https://en.wikipedia.org/wiki/Read-
copy-update, accessed August 2024.

[Wikipedia-5] ‘Optimistic concurrency control’:
https://en.wikipedia.org/wiki/Optimistic_concurrency_control,
accessed August 2024.

[Wikipedia-6] ‘Persistent data structure’: https://en.wikipedia.org/wiki/
Persistent_data_structure, accessed August 2024.

template <typename T> class published {
public:
 bool try_publish(std::shared_ptr<const T>& old,
 T&& doc) {
 std::lock_guard<std::mutex>
 lock(small_bottleneck_);
 if (published_document_ != old) {
 // tell the caller which is the current
 // document
 old = published_document_;
 return false;
 }
 published_document_ =
 std::make_shared<const T>(std::move(doc));
 return true;
 }
 ...
};

void apply_updates(const document_t& base,
 document_t& doc);

void produce_with_retry() {
 auto current = published_document.get();
 // Make a copy of the currently published
 // document.
 document_t new_version(*current);
 // Perform the needed updates.
 produce_unprotected(new_version);
 // Publish the new version.
 while (!published_document.try_publish(current,
 std::move(new_version))) {
 // 'current' is now the latest version;
 // reapply the updates, and retry.
 apply_updates(*current, new_version);
 }
}

Listing 4

void produce_monotonic() {
 // Produce the additions
 auto additions = produce_additions();
 // Publish a new version of the document.
 auto current = published_document.get();
 while (true) {
 document_t new_version(*current);
 update_document(new_version, additions);
 if (published_document.try_publish(current,
 std::move(new_version)))
 break;
 }
}

Listing 5

https://www.hylo-lang.org/
https://youtu.be/CmxkPChOcvw
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Multiple_buffering
https://en.wikipedia.org/wiki/Multiple_buffering
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_data_structure

sTuART BERGEnFEATuRE

20 | Overload | October 2024

Modernization of Legacy Arrays:
Replacing CArray with std::vector
Many codebases still use mature libraries, such as Microsoft
Foundation Classes. Stuart Bergen explains how and why
he moved to using modern standard C++ tools instead.

Our scientific desktop application relies on the Microsoft Foundation
Class (MFC) library for both user interface (UI) and computational
tasks. MFC, introduced in 1992, encapsulates portions of the

Windows API within object-oriented C++ classes and is currently
maintained [Wikipedia-1]. Despite its age, our users enjoy the interactive,
straightforward and visually appealing experience that MFC provides. As
a result, there has been little incentive to replace complex UI-related code
with alternatives.

Computational tasks using the MFC library show signs of aging
compared to standard C++ containers. The primary MFC container class,
CArray, closely resembles vector in functionality [MS-1], [CPP-1].
Both offer C-like arrays that dynamically grow and shrink, reserve
contiguous space on the heap, and use zero-based indexing. However,
a key difference is that CArray lacks iterator support. We previously
used boost::iterator_facade [Abrahams06] to supplement basic
iterator support, but this only goes so far. The codebase was updated
to prepare for future development and embrace modern practices,
including the adoption of C++20 ranges. This effort resulted in simpler,
more familiar code, performance and scalability improvements, and an
enhanced debugging experience.

In this article, methods to replace the MFC container class CArray
with vector are proposed. These practical techniques emerged from
a real-world refactoring effort on a commercial software project.
First, we present class method conversion techniques suitable for
direct substitution. In cases where direct substitutions are not feasible,
standalone replacement functions are offered. Next, we consider the array
index, public inheritance of the CArray class, array resize, array length,
and MFC use of CArray. Finally, we suggest further modernizations and
draw conclusions.

Class method conversions
The modernization effort mainly focused on replacing CArray class
methods and operators with their vector equivalents. Table 1 (overleaf)
lists vector replacements for the public CArray class interface. The
table served as a helpful reference during the refactoring effort. Template
arguments are omitted for brevity. Notation: a and b represent CArray/
vector objects, i represents an index, n and m represent array lengths
or element counts, val represents an array value, and italicized text
represents standalone replacement functions. Full method signatures can
be found in the CArray and vector references [MS-1], [CPP-1]. The
CArray class possesses only a default constructor; its copy constructor
and copy assignment operator are deleted.

Standalone replacement functions in Listing 1 (C++17 compiler required)
serve as direct replacements when no vector equivalent is available.

Function ValidAt validates an index of any integral type (signed or
unsigned). All other standalone functions employ unsigned integral types
for indexing, array lengths, and element counts to avoid confusion. If
necessary, these functions could be modified to support signed integral
types similarly to ValidAt. The RemoveAt function does not validate
or assert the array index or element count, so use it with caution.
Conversely, functions InsertAt and SetGrowAt perform index
validation removing the need for assertion checks.

Standalone functions return iterators corresponding to their vector
methods. CArray methods return void, except for CArray::Append,
which returns an index of signed integral type to the first appended

Stuart Bergen Stuart is a software developer with a background in
geophysics, finance, and communications systems. He has a PhD
specializing in signal processing, and enjoys camping and skiing in
the Canadian Rockies. Stuart lives in Calgary, Canada, and can be
contacted at stuartbergen@shaw.ca.

template <typename T, typename I>
bool ValidAt(const std::vector<T>& a, I i) {
 if constexpr (std::is_unsigned_v<I>)
 return i < a.size();
 else if constexpr (std::is_signed_v<I>)
 return i >= 0 && i < a.size();
 else
 return false;
}
template <typename T>
auto Append(std::vector<T>& a,
 const std::vector<T>& b) {
 return a.insert(a.end(), b.begin(), b.end());
}
template <typename T>
auto InsertAt(std::vector<T>& a, std::size_t i,
 const T& val) {
 if (ValidAt(a, i)) return a.insert(a.begin()
 + i, val);
 a.resize(i + 1);
 a.at(i) = val;
 return a.begin() + i;
}
template <typename T>
auto SetAtGrow(std::vector<T>& a, std::size_t i,
 const T& val) {
 if (!ValidAt(a, i)) a.resize(i + 1);
 a.at(i) = val;
 return a.begin() + i;
}
template <typename T>
auto RemoveAt(std::vector<T>& a, std::size_t i,
 std::size_t n = 1) {
 return a.erase(a.begin() + i,
 a.begin() + i + n);
}
template <typename T>
void SetSize(std::vector<T>& a, std::size_t n,
 std::size_t m) {
 a.reserve(m);
 a.resize(n);
}
template <typename T>
__int64 GetSize(const std::vector<T>& a) {
 return static_cast<__int64>(a.size());
}

Listing 1

sTuART BERGEn FEATuRE

October 2024 | Overload | 21

element. Function Append returns an iterator pointing to the first
appended element.

The GetSize function casts the return value of vector::size to a 64-
bit signed integral value. Its primary use case is for arithmetic operations
involving signed integral types. The assumption is that the vector length
will not exceed std::numeric_limits<__int64>::max(), which
equals LLONG_MAX or 9,223,372,036,854,775,807. This is a safe
assumption for our desktop application.

Array index
Both container classes assume that indexes are valid (within bounds).
CArray utilizes a signed integral type for indexes, while vector uses
an unsigned integral type. For our 64-bit builds, this equates to the types
long long (or __int64 on Windows) and vector::size_type/
std::size_t (or unsigned __int64 on Windows), respectively.

Index refactoring involves replacing the signed integral type __int64
with the unsigned integral type unsigned __int64. The value
ranges for these types are [-9.223E18, 9.223E18] and [0, 18.446E18],
respectively [MS-2]. The unsigned type can safely represent signed

integral values that are non-negative. However, it’s essential to handle
values less than 0 carefully to avoid the integer wraparound (or overflow)
phenomenon [Wikipedia-2]. For example, when converting a signed
integral value of -1 (represented by 32 bits) to an unsigned integral value,
we get (2^{32} - 1 = 4,294,967,295).

Array element access without bounds checking is provided by
operator[] for both classes. This method is commonly used, and no
modifications are needed. For access with bounds checking, replace the
CArray::GetAt method with vector::at. Out-of-bounds accesses
with CArray::GetAt assert for Debug builds, while vector::at
throws the std::out_of_range exception. Catch statements for
std::out_of_range can be added in specific areas if needed, e.g.,
error logging.

The CArray::GetUpperBound method is problematic because it
returns -1 for empty arrays. To avoid negative indexes, this functionality
was removed from the codebase. Instead, vector::empty was used
for empty array checks, and vector::size was used for upper bounds
calculations. Statements of the form a[a.GetUpperBound()] were

CArray vector Purpose
a() a() Default constructor

a.Add(val) a.push_back(val) Adds an element to the end of the array; grows the array by 1

a.Append(b) Append(a,b) Appends another array to the array; grows the array if necessary

a.Copy(b) a = b Copies another array to the array; grows the array if necessary

a.ElementAt(i)

a.GetAt(i)

a.at(i) Returns a reference to an array element at the specified index

a.FreeExtra() a.shrink_to_fit() Frees all unused memory above the current index upper bound

a.GetCount()

a.GetSize()

a.size()

GetSize(a)

Returns the number of elements in the array. vector replacements yield unsigned
and signed integral types, respectively

a.GetData() a.data() Provides direct access via pointer to the underlying contiguous storage

a.GetUpperBound() GetSize(a)-1 Returns the largest valid index. Is -1 when array is empty

a.InsertAt(i,val) InsertAt(a,i,val) Inserts an element at the specified index; grows the array as needed

a.IsEmpty() a.empty() Determines whether the array is empty

a.RemoveAll() a.clear() Removes all elements from the array

a.RemoveAt(i,n) RemoveAt(a,i,n) Removes an element (or multiple elements) at the specific index

a.SetAt(i,val) a.at(i) = val Sets the value for a given index; array not allowed to grow

a.SetAtGrow(i,val) SetAtGrow(a,i,val) Sets the value for a given index; grows the array if necessary

a.SetSize(n) a.resize(n) Sets the number of elements in the array; allocates memory if necessary

a.SetSize(n,m) SetSize(a,n,m) Sets the number of elements in the array and storage “grow by” factor; allocates
memory if necessary

a[i] a[i] Returns a reference to an array element at the specified index

vector replacements for the public CArray class interface

Table 1

These practical techniques emerged
from a real-world refactoring effort on a

commercial software project

sTuART BERGEnFEATuRE

22 | Overload | October 2024

replaced with a.back(). Table 1 provides a signed integral return value,
to be used only if absolutely necessary.

When working with indexes, it’s advisable to convert them to an unsigned
integral type whenever possible. Doing so ensures that values remain
non-negative and this helps avoid potential errors that can arise from
mixing different types (which we explore later).

Public inheritance of CArray
The CArray class publicly inherits from the principal MFC base class,
CObject, as follows:
 template <class T, class ARG = const T&>
 class CArray : public CObject

where T specifies the type of objects stored in the array, and ARG specifies
the argument type used to access objects stored in the array. The base
class CObject provides services such as serialization support, run-time
class information, and dump diagnostics output [MS-3]. CArray and
CObject have virtual destructors that permit “is-a” use cases of the form:
 template <class T, class ARG = const T&>
 class CDerived : public CArray<T, ARG>

which were encountered in the codebase. Since vector has a non-
virtual destructor, it’s essential to explore alternative approaches as
recommended by Scott Meyers in Effective C++ [Meyers05].

Our codebase did not use any of the CObject services mentioned above,
permitting a straightforward refactor using public composition of the
form:
 template <class T>
 struct CDerived {
 std::vector<T> v;
 }

Code is modified by adding a v or .v to provide array access depending
on the context. Some use cases arguably provide improved readability,
such as transforming:
 s += (*this)[i].GetString();

into:
 s += v[i].GetString();

The following refactor can be used when CObject services are employed:
 template <class T>
 struct CDerived : public CObject {
 std::vector<T> v;
 }

I would like to mention the StackOverflow post ‘Thou shalt not
inherit from std::vector’ [StackOverflow]. It is worth reading and
considering the various perspectives. There are recommendations for both
public and private inheritance with caveats (no new data members), along
with nuanced discussions about undefined behaviour. Public composition
is a safe choice for our simple use cases [Meyers05].

Array resize
Modernizing the array resizing code involves replacing
CArray::SetSize with vector::resize. From the CArray
reference:

Most methods that resize a CArray object or add elements to it use
memcpy_s to move elements. This is a problem because memcpy_s
is not compatible with any objects that require the constructor
to be called. If the items in the CArray are not compatible with
memcpy_s, you must create a new CArray of the appropriate size.
You must then use CArray::Copy and CArray::SetAt to
populate the new array because those methods use an assignment
operator instead of memcpy_s.

Conversely, when vector reallocates it first attempts to move objects by
calling the object’s move constructor. If the move constructor cannot be
called (as determined by the utility function std::move_if_noexcept),
the copy constructor is invoked [CPP-2]. We encountered compilation
errors when calling vector::resize of the form:
 error C2280: 'BlockFile::BlockFile(const
 BlockFile &)': attempting to reference a deleted
 function

Here BlockFile’s copy constructor is intentionally deleted.
Interestingly, switching to vector exposed a programming flaw in the
original code. CArray::SetSize should not have been making copies
of BlockFile via memcpy_s. We were able to precompute the number
of BlockFile objects needed, enabling the straightforward fix:
 std::vector<BlockFile> bFile(n);

which uses BlockFile’s default constructor and maintains the deleted
copy constructor.

Array length: mixed signedness issues
Modernizing the array length reporting code involves replacing
CArray::GetSize with vector::size or GetSize. It is
recommended to use vector::size and GetSize for unsigned and
signed integral types, respectively.

Many potential pitfalls arise from mixing different integral types in
arithmetic and binary operations, which can result in unexpected behaviour
[Wikipedia-3]. Specifically, the unmodified codebase expects indexes of
signed integral type, while vector::size returns an unsigned integral
type. According to usual arithmetic conversions, operations involving
different integral types are performed using a common type [CPP-3]. In
the case of signed and unsigned integral types, the unsigned integral type
serves as the common type.

In most cases, indexes were always greater than 0, such as in the common
for loop:
 for (int i = 0; i < a.size(); i++)

Here, the subexpression (i < a.size()) works as intended, converting
i to an unsigned integral type with no wraparound.

When working with indexes, it’s advisable to
convert them to an unsigned integral type
whenever possible…values remain non-
negative and this helps avoid potential errors

sTuART BERGEn FEATuRE

October 2024 | Overload | 23

Now let’s examine some modified statements representative of real-
world conditionals found in if, while, and for statements, where i is
a signed integral type that can assume negative values:

1. bool bBelowUpper1 = (i < a.size());

2. bool bBelowUpper2 = (i <= a.size() - 1);

3. bool bAboveLimit = (a.size() > 1);

4. bool bInsideRange = (i >= 0 && i < a.size());

5. bool bOutsideRange = (i < 0 || i >= a.size());

Line 1 fails because it exhibits wraparound when i is negative. The LHS
of operator< is converted to an unsigned integral type to match the
RHS.

Line 2 fails with two problems. First, the subexpression
(a.size() - 1) exhibits wraparound when a.size() is 0. Second,
the LHS of operator<= exhibits wraparound when i is negative for the
same reason as Line 1.

Line 3 appears similar to Line 1, but it’s actually fine. This is mentioned
for awareness purposes, as these cases tend to look similar after a few
hundred instances.

Line 4 works as expected despite wraparound when i is negative;
the subexpression (i >= 0) evaluates false as intended because i is
not converted to an unsigned integral type, while the subexpression
(i < a.size()) evaluates false simultaneously due to wraparound.
However, for positive i both subexpressions works as intended,
functioning correctly for large arrays. In fact, this technique is employed
in the signed integral branch of ValidAt.

Line 5 fails because the subexpression (i >= a.size()) evaluates true
due to wraparound when i is negative, with operator|| propagating
the error. The main point of this discussion is to be extra careful when
mixing types. It’s easy to become confused with seemingly simple
statements.

Switching an index’s type isn’t always straightforward. If you’re dealing
with a math-focused codebase where negative and relative indexes play a
significant role (e.g., in physics simulations, time series, etc.), altering the
type could impact algorithmic calculations. This change might be more
complex and time-consuming than initially anticipated.

For scenarios that must honour the original signed integral intent, it is
recommended to use GetSize:

6. bool bBelowUpper3 = (i32 < GetSize(a));

7. bool bBelowUpper4 = (i64 < GetSize(a));

Line 6 works as expected because the shorter 32-bit signed integral type
on the LHS is upconverted to 64 bits to match the RHS.

Line 7 works as expected because the LHS and RHS types match.

MFC use of CArray
MFC uses CArray in a surprisingly limited capacity. We successfully
eliminated CArray from our math-focused codebase, which employs
standard MFC controls for the UI. Searching the MFC include directory
for CArray yields 128 hits, many of which occur in protected data areas
and appear implementation-specific. Nevertheless, there are some public
use cases in the following classes: CArchive, CBaseTabbedPane,
CD2DGeometrySink, numerous CMFCRibbon* classes, and
CTabbedPane. You might want to reconsider replacing arrays in these
cases. Alternatively, conversion methods between CArray and vector
are straightforward and can be reused in testing code.

Further modernizations
Iterator difference types have potential for modernization. The
difference type of an iterator [CPP-4] is a contemporary alternative to
std::ptrdiff_t [CPP-5], allowing negative offsets. This concept applies
to iterator types with defined equality. The std::incrementable_

traits struct computes a difference type for a given type, if it exists
[CPP-6].

MFC offers several ready-to-use array classes, such as CByteArray,
CDWordArray, CObArray, CPtrArray, CUIntArray, CWordArray,
and CstringArray [MS-4]. These classes have member functions
similar to CArray and should also benefit from the proposed replacement
methods.

Conclusions
The article explores modernizing legacy arrays, specifically proposing
practical techniques to replace the MFC container class CArray with
vector. It begins with class method conversion techniques suitable for
direct substitution. When direct substitutions are not feasible, standalone
replacement functions are provided. The article offers refactoring
guidance for various array operations, including indexing, resizing,
and length reporting. It also addresses handling situations involving the
public inheritance of CArray and provides a description of MFC’s use of
CArray. Additionally, the article discusses working with mixed integral
types (signedness) and highlights potential pitfalls with examples. Finally,
the article suggests further modernizations and draws conclusions. For
those dealing with MFC structures, switching to standard C++ containers
like vector can simplify the codebase, improve performance and
scalability, and enhance the debugging experience. �

Thanks
Thank you to the anonymous reviewers for their interest and invaluable
comments, which greatly improved the quality of this article.

References
[Abrahams06] David Abrahams, Jeremy Siek and Thomas Witt (2003,

updated 2006) boost::iterator_facade: https://www.boost.
org/doc/libs/1_85_0/libs/iterator/doc/iterator_facade.html

[CPP-1] std::vector: https://en.cppreference.com/w/cpp/container/
vector

[CPP-2] std::move_if_noexcept: https://en.cppreference.com/w/
cpp/utility/move_if_noexcept

[CPP-3] Usual arithmetic conversions: https://en.cppreference.com/w/
cpp/language/usual_arithmetic_conversions

[CPP-4] Iterator library: https://en.cppreference.com/w/cpp/iterator
[CPP-5] std::ptrdiff_t: https://en.cppreference.com/w/cpp/types/

ptrdiff_t
[CPP-6] std::incrementable_traits:

https://en.cppreference.com/w/cpp/iterator/incrementable_traits
[Meyers05] Scott Meyers (2005) Effective C++: 55 specific ways to

improve your programs and designs, Third Edition, Addison-Wesley
Professional.

[MS-1] CArray Class: https://learn.microsoft.com/en-us/cpp/mfc/
reference/carray-class

[MS-2] Data Type Ranges: https://learn.microsoft.com/en-us/cpp/cpp/
data-type-ranges

[MS-3] CObject Class: https://learn.microsoft.com/en-us/cpp/mfc/
reference/cobject-class

[MS-4] Ready-to-Use Array Classes: https://learn.microsoft.com/en-us/
cpp/mfc/ready-to-use-array-classes

[StackOverflow] ‘Thou shalt not inherit from std::vector’:
https://stackoverflow.com/questions/4353203/thou-shalt-not-inherit-
from-stdvector

[Wikipedia-1] Microsoft Foundation Class Library:
https://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library

[Wikipedia-2] Integer overflow:
https://en.wikipedia.org/wiki/Integer_overflow

[Wikipedia-3] Signedness: https://en.wikipedia.org/wiki/Signedness

https://www.boost.org/doc/libs/1_85_0/libs/iterator/doc/iterator_facade.html
https://www.boost.org/doc/libs/1_85_0/libs/iterator/doc/iterator_facade.html
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/utility/move_if_noexcept
https://en.cppreference.com/w/cpp/utility/move_if_noexcept
https://en.cppreference.com/w/cpp/language/usual_arithmetic_conversions
https://en.cppreference.com/w/cpp/language/usual_arithmetic_conversions
https://en.cppreference.com/w/cpp/iterator
https://en.cppreference.com/w/cpp/types/ptrdiff_t
https://en.cppreference.com/w/cpp/types/ptrdiff_t
https://en.cppreference.com/w/cpp/iterator/incrementable_traits
https://learn.microsoft.com/en-us/cpp/mfc/reference/carray-class
https://learn.microsoft.com/en-us/cpp/mfc/reference/carray-class
https://learn.microsoft.com/en-us/cpp/cpp/data-type-ranges
https://learn.microsoft.com/en-us/cpp/cpp/data-type-ranges
https://learn.microsoft.com/en-us/cpp/mfc/reference/cobject-class
https://learn.microsoft.com/en-us/cpp/mfc/reference/cobject-class
https://learn.microsoft.com/en-us/cpp/mfc/ready-to-use-array-classes
https://learn.microsoft.com/en-us/cpp/mfc/ready-to-use-array-classes
https://stackoverflow.com/questions/4353203/thou-shalt-not-inherit-from-stdvector
https://stackoverflow.com/questions/4353203/thou-shalt-not-inherit-from-stdvector
https://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Signedness

CHRis OLdWOOdFEATuRE

24 | Overload | October 2024

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He also commentates
on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and @chrisoldwood

Afterwood
Many programming books are regarded as classics.
Chris Oldwood shares the joy of re-reading some of them.

now that people are beginning to venture out again, some of those
meetups which have been in stasis for the past few years are
starting to reappear. I continue to work almost entirely remotely

after thankfully being turfed out of the office back in early 2020, and
as such need to look closer to home for some in-person programming-
related social interaction. Last year, somewhat desperate to get out again
and meet like-minded people in-person, I attended a whole bunch of
programming conferences, and that did turn out to be incredibly soul
filling, but also quite an expensive exercise for a freelancer. (The bar bills
were entirely self-inflicted, though.)

One meetup that resurfaced at the tail end of last year has been doing
several sessions on practising TDD. Many of the attendees haven’t done
it before and so my presence is more for the purposes of networking and
lending an extra pair of hands. Even though I started practising TDD
almost 20 years ago, I wouldn’t want to presume I have nothing to learn
and, as it’s done in pairs, I know I’ll always learn something when pairing
with a new partner.

I hadn’t noticed until a couple of sessions in that there hadn’t been any
mention of books on the topic. Back in the mid-2000s, when I first became
aware of TDD, there were two books which I immediately snapped up –
Test Driven Development: By Example from Kent Beck and Test Driven
Development: A Practical Guide from David Astels. It had been a while
since pulling either book down from the bookshelf but I remember them
both being very useful to me in getting a firm grounding in the practice
and so I wondered if their omission was on purpose: perhaps they hadn’t
stood the test of time?

Hence, before opening my mouth at the next TDD oriented session, I
thought I would go back and at least read Beck’s book again to see if
suggesting it would be useful or not. Many people prefer videos to the
written word these days, so the audience for that format was likely to be
small, but no video tutorials had been suggested either, so maybe there
was a whole conversation about what the modern authoritative sources
are? (At the time of writing there hasn’t been another TDD-based session
to present to, so the answer will have to wait, for now.)

Like many of Beck’s books, TDD by Example is only a couple of hundred
pages long but packed with content. The first part of the book covers the
mechanics – the ‘by example’ bit – while the latter looks at the practice
from a patterns perspective to explore the different approaches to writing
tests, forces on the design, refactoring, etc. Reading through his money
example was an absolute joy, far more than I remember first time around.

What I’ve always enjoyed about Beck’s books is the commentary that goes
alongside the main thread. It’s in this background commentary where the
real meat of the book lives. Even though the example is relatively simple,
he is still forced to make numerous decisions about how to tackle the
problem, such as how to break the problem down – when to go forward,
sideways, or even backwards. He talks about TDD giving you courage
and by seeing many of the micro-decisions he’s making for each test you

get to see how that’s possible. One thing the book makes very clear is
that the practice is not dogmatic; yes, there is a surrounding structure, but
there are different paths depending on whether you already know where
you are heading, e.g. Obvious Implementation vs Triangulation.

So, in summary, yes, I believe it totally stands the test of time and deserves
the status of being regarded ‘a classic’.

In contrast, Dave Astels book tackles the subject in reverse, i.e. concepts
followed by a lengthy example. He has far more tooling-specific sections,
which has dated it somewhat. However, what his book really achieved
was to address the naysayers that exclaimed that you can’t write a GUI
test-first. Even 20 years later, I still hear that argument and modern UI
frameworks are so much more amenable to being test-driven than they
were at the turn of the millennium. It also helped me cement the notion
of seams that Michael Feathers introduced in Working Effectively with
Legacy Code as I tried to apply the same ideas to a legacy C++ GUI
application written using an old-fashioned framework.

Should I be surprised that re-reading Beck’s book was possibly more
enjoyable second time around than the first? Probably not, if we consider
what Italo Calvino proposed in his article ‘Why Read the Classics?’
[Calvino86] The article, which is a precursor to his book of the same
name, lays out what he considers makes a classic text. Of course, he was
talking about real literature, not books on programming, but there are
certainly many parallels. Number 4 on his ever-evolving definition of a
classic is:

A classic is a book which with each re-reading offers as much of a
sense of discovery as the first reading.

Likewise, Number 6 suggests that I can probably look forward to
subsequent readings that will continue to bring pleasure and knowledge:

A classic is a book which has never exhausted all it has to say to
its readers.

To date my attitude to reading generally sees me only make a single
pass through a book. From that point on I may refer to it again, perhaps
numerous times, but usually only to remind myself of specific points,
such as when citing it as part of my own writing. What I never do is go
back and read it again from scratch with the intention of unearthing new
perspectives. Time feels too short, and the corpus of programming works
too large to dwell repeatedly on the same texts, but that approach now
feels decidedly transactional. Even for some technical books I feel I’m
missing out on the opportunity to take the journey again, only older and
wiser, but hopefully not complacent.

References
[Calvino86] Italo Calvino (1986) ‘Why read the classics?’,

republished 12 October 2023 and available at
https://www.penguin.co.uk/articles/2023/10/why-
we-read-classics-italo-calvino

https://www.penguin.co.uk/articles/2023/10/why-we-read-classics-italo-calvino
https://www.penguin.co.uk/articles/2023/10/why-we-read-classics-italo-calvino

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

	Editorial: What Does It All Mean?
	Formal Verification
	C++ Compile-Time Programming
	The Publish Pattern
	Modernization of Legacy Arrays:Replacing CArray with std::vector
	Afterwood

