
A magazine of ACCU ISSN: 1354-3172

Fat API Bindings of
C++ Objects into

Scripting Languages
Russell Standish demonstrates using an

 API that is scripting-language independent

User-Defined Formatting
in std::format – Part 2
Spencer Collyer shows how to write a
formatter for more complicated types

Reverse-Engineering cuBlas
Fabian Schuetze helps us achieve
cuBLAS performance with tensor cores

Concurrency: From Theory
to Practice
Lucian Radu Teodorescu provides
a simply theory that is easy
to reason about and apply

Afterwood
Chris Oldwood discusses designing
for supportability

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

Visit www.ACCU.org to find out more

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

June 2024 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

June 2024
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Fran Buontempo:
taken outside the Internationales
Congress Center München when
attending the OOP Conference in
February 2024.

Copy deadlines
All articles intended for publication in Overload 182 should be submitted by 1st July and
those for Overload 183 by 1st September 2024.

	 4	 User-Defined Formatting in std::format – Part 2
Spencer Collyer builds on his previous article,
showing how to write a formatter for more
complicated types.

	 9	 Reverse-Engineering cuBLAS
Fabian Schuetze guides us through the
process of achieving cuBLAS performance
with tensor cores.

	16	 Fat API Bindings of C++ Objects into
Scripting Languages
Russell Standish demonstrates an approach
using a RESTService API that is scripting-
language independent.

21		 Concurrency: From Theory to Practice
Lucian Radu Teodorescu provides a
simple theory of concurrency which is
easy to reason about and apply.

	28	 Afterwood
Chris Oldwood discusses designing
for supportability.

Frances BuontempoEditorial

2 | Overload | June 2024

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

Breaking Bad (Habits)
Trying to make a change can be difficult.
Frances Buontempo considers how to
start forming new, better, habits.

As you may have noticed, I have fallen into a pattern
of never writing an editorial for Overload and always
making excuses. This time is no different. However,
I have been contemplating my usual approaches
to tasks, and more besides. Breaking bad habits is
difficult, but the first step is usually spotting them.

Pause for a moment, and ask yourself if you have any tendencies you
to fall into on autopilot? Some of these might be useful, like brushing
your teeth or going to bed at a specific time. Some may be relatively
harmless, for example glancing at Stack Overflow or Reddit when a build
or similar is taking a while. Both are possibly better than sitting doing
nothing, though it might be more sensible to stand up and stretch for a
bit, or having a sword fight [xkcd]. Sitting still for too long doesn’t do us
any good. Bad posture is a horrible habit, as we all know, and even using
a mouse for too long or typing badly can set off repetitive strain injury.
Many people have opinions on potential fixes [reddit], but a standing
desk, track ball, or some form of mixed martial arts might not solve all
your problems. Changing how you do things might help though.

Waking up on time may or may not be a habit for you. I do wake up,
but my preferred time is about half eight or so. Setting an alarm helps. I
noticed recent news saying that people’s iPhones are failing to ring when
the morning alarm is supposed to go off [Vigliarolo24]. Oops. I remember
getting a swanky new alarm clock which plugged straight into the wall
socket when I was young. I was paranoid about potential power cuts
stopping it working, so always had a back-up hand wound clock. I now
rely on my husband as back up, because he’s definitely a morning person,
so is usually awake a couple of hours before me. It’s odd to think back and
notice how my day-to-day habits have changed over time. This probably
means I am getting old(er).

Do you have any good habits? Maybe focus on programming related
areas, rather than everything. Do you practice? Read books or articles?
Listen to podcasts? Do you always write tests first? Or, like me, do you
claim to do TDD, but know full well you have a few ‘scripts’ dotted
around that you never tested. Or shovel lots of code in main, which has
no tests? Another bad habit I have fallen into is not bothering to use a
library to parse arguments in a C++ project. I spent time learning to do
this properly in Python, but never got around to picking and learning a
C++ approach. I have tried several, so my excuse is too much choice, but
not enough time. A very poor excuse, I know. I usually resort to a small
hack to try to parse numbers or strings I pass in, but can never remember
the order I set up. So, now I have confessed in public, I really must do
something about this. Perhaps you can own up to something too, and

use that as motivation to change. Acknowledging
a problem is the first step to fixing it, after all.

I suspect my argument-parsing laziness is
based on feeling it’s a small thing and I don’t

have time to do it properly. I feel like my small hack will be quicker.
However, we all know the quick workaround often turns out to be a time
sink in the long run. Sometimes, I notice other problematic approaches,
and after a few times limping along with a ‘bodge’ I created, I get annoyed
enough to re-create something better. Annoyance can be a motivating
factor, but there are other ways to help yourself change track. I attended
Phil Nash’s session ‘Rewiring your brain – with Test Driven Thinking’
at MeetingCpp last year. [Nash23]. He’s given several variations of this
talk; do take time to listen to one. He talked about the reward of seeing
the green of passing tests being habit forming. If you know you will get a
reward for something, you might be more likely to do it. Eventually, you
no longer need the reward itself, hence his title ‘rewiring your brain’. His
abstract [ACCU24] addresses the idea of spending time doing the right
thing seeming wasteful:

We all say we should write tests, or at least we should write more
of them.

But we never seem to have the time, and our focus is on the actual
problems we’re trying to solve. Nobody wants to be bogged down
by busy work.

What if all of that was wrong?

What if tests could save you time, improve your focus – and even
be fun!

Maybe the thing to do is promise yourself you will start with just one
test first next time you have code to write. Once you have one in place,
it’s easier to add others. I have added a single test to a few projects in
previous jobs, and it never takes long for others to add more. One small
change is all you need to get started.

Now, you might notice something isn’t ideal, but not be sure what to
do instead. I don’t know the solution to this, but often talking to others
helps. Don’t suffer in silence. Or perhaps, you don’t realise you have a
problem. An example might be accidently relying on undefined behavior.
If the code appears to behave on one machine, you may never notice.
As soon as you switch or upgrade compilers, things blow up. It’s worth
throwing an undefined behavior sanitizer at your code once in a while
[Clang]. Sometimes code does work, but may be confusing for someone
else to read. Code reviews can pick out potential areas for improvement
like this. If you have been deep in something for a while, managing to get
it working seems like success. However, as we know, code might need to
be read at some point in the future, so ensuring it is readable is sensible.
This often requires someone else to look with fresh eyes. If you don’t
have anyone to hand, for example if this is a personal project, don’t be shy
about asking the accu-general email group, or other community.

In general, if you don’t notice something is a bit broken, you are unlikely
to fix it. Stepping back might help you notice the bigger picture though.
That’s why I enjoy the conferences. Even if I go to a talk that I think I know

Frances Buontempo Editorial

June 2024 | Overload | 3

a lot about, I always come away with new things to think about, or realise
I have slightly misunderstood or forgotten something. Not everyone is
fortunate enough to be able to attend a conference, but several now seem
to be hybrid, allowing people who can’t afford to travel or even take all
the time off the chance to join in. I’m pleased to see some conferences
have offered free online tickets to anyone who has a poster submission
accepted. Many students have to prepare a poster for a final year project.
All we need now is to let Universities know about this opportunity. Let’s
change the world, one step at a time.

Change can be unnerving. Once you find a way to do something, it can be
very difficult to adopt a new approach. They say you can’t teach an old
dog new tricks. However, if the dog is willing to change, then anything
might be possible. If someone tries to force you to drop old habits, you
might be more likely to defiantly stick to your current ways. However,
as Phil’s talk points out, if there is a reward for changing, ranging from a
treat, to a warm fuzzy feeling from a notification saying “Tests passed”,
even all the way through to saved time or confusion, change can happen.
I am experimenting with a small handful of personal mantras to help
motivate myself and do the ‘right thing’. For example, I enjoy going to
the gym, but keep allowing other jobs to crowd in and stop me. I tell
myself, “Go to the gym first, you’ll feel better.” I’m right, but often argue
with myself for a bit first. “But, this task needs doing today”… “So, do it
later, after the gym.” I’m gradually ending up just needing to say “Go to
the gym.” Whether I can talk myself round from all bad habits this way
remains to be seen.

Programmers are often caricatured as arguing over silly things, such as
brace placement, or tabs versus spaces. We do often end up disagreeing
over seemingly simple things, but coming to an agreement with others
who have different experiences to you can be hard. I tend to give my
variables full names, but if I spend time reading maths code or books, I
often fall back to single letter variable names. If I have just read up on a
model, and the paper or book uses an x for a variable name, then you will
often find x in my code. Don’t at me… I don’t think this is actually bad, or
a habit. It just illustrates that current context often influences behaviour.
I have to consciously swivel my head back to a fuller variable name,
say horizontal_distance, if I am collaborating with others who
don’t like the more terse approach. Trying to be consistent and respect
conventions when appropriate is sensible. If you find a particular coding
style really difficult, maybe you can find an automatic code formatter
that will do this for you? Save the arguments for important issues, like
potential production crashes or incorrectly implemented algorithms. And
of course, automating compliance with rules, so you don’t have to do it
yourself, is what might be expected of a proper programmer 

Now, automation and AI might not be the solution to every problem out
there. And sometimes, you just can’t manage to change what you are
doing at the moment. Yes, this might be personal issues like your posture
or similar, as well as writing hacky arg parsing code. If you can’t manage
to make that change now, don’t beat yourself up over it. I have taken
the first step, by acknowledging my terrible code. Next time I need to
read arguments to main, I will say “I don’t know how to do better, Yet.
But I will one day.” And one day I will make the change. If you have a

similar problem, be kind to yourself. Another approach might be finding
someone to pair with, or even simply delegating the task. If you can’t do
differently, let go. Maybe try an actual person rather than AI though? Just
a suggestion.

It seems appropriate to end with the relatively well-known Serenity
prayer:

God, grant me the serenity to accept the things I cannot change,
the courage to change the things I can,
and the wisdom to know the difference.

However, I was going to find a reference in case a reader hasn’t come
across this before. I now have yet another tab open [Buontempo24], and
notice Wikipedia says it needs help. The page for the Serenity prayer
[Wikipedia] has a banner at the top saying in bold it needs “attention
from an expert in history”. Apparently, the specific problem is “internally
discrepant conclusions”, among other problems. I am not sure a history
expert can fix that. Maybe a logician or programmer is required? Another
section possibly contains “original research”. Shocking. I thought I got a
PhD because I had undertaken original research. I suppose my thesis did
have a literature review first, sharing references for the state of the art at
the time, and when I tried to do something original, I did have references
at least to the maths and machine learning techniques I was using.
Perhaps I have just owned up to another bad habit – getting distracted by
being very literal when I read something. If anyone
out there does know the history of this prayer, please
go fix the internet for me. I don’t have time, I need to
learn an arg parsing library.

References
[ACCU24] Phil Nash ‘Rewiring your brain – with Test Driven Thinking’

(abstract) available at https://accuconference.org/session/rewiring-
your-brain-with-test-driven-thinking

[Buontempo24] Frances Buontempo ‘Editorial: I Don’t Believe
It’, in Overload 180, available at https://accu.org/journals/
overload/32/180/buontempo/

[Clang] UndefinedBehaviorSanitizer: https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html

[Nash23] Phil Nash ‘Rewiring your brain with test driven thinking in
C++’, presented at Meeting C++ 2023, available at:
https://www.youtube.com/watch?v=Hx-1Wtvhvgw

[reddit] ‘Fixing the Developer Posture’ (comments on the document,
although the link to the original PDF no longer works):
 https://www.reddit.com/r/programming/comments/6dcs7s/fixing_
the_developer_posture_pdf/

[Vigliarolo24] Brandon Vigliarolo, ‘Miss your morning iPhone alarm?
It’s not just you, and Apple is looking into it’, The Register, posted
1 May 2024, https://www.theregister.com/2024/05/01/miss_your_
morning_iphone_alarm/

[Wikipedia] Serenity prayer: https://en.wikipedia.org/wiki/Serenity_
Prayer

[xkcd] ‘Compiling’: https://xkcd.com/303/

https://accuconference.org/session/rewiring-your-brain-with-test-driven-thinking
https://accuconference.org/session/rewiring-your-brain-with-test-driven-thinking
https://accu.org/journals/overload/32/180/buontempo/
https://accu.org/journals/overload/32/180/buontempo/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.youtube.com/watch?v=Hx-1Wtvhvgw
https://www.reddit.com/r/programming/comments/6dcs7s/fixing_the_developer_posture_pdf/
https://www.reddit.com/r/programming/comments/6dcs7s/fixing_the_developer_posture_pdf/
https://www.theregister.com/2024/05/01/miss_your_morning_iphone_alarm/
https://www.theregister.com/2024/05/01/miss_your_morning_iphone_alarm/
https://en.wikipedia.org/wiki/Serenity_Prayer
https://en.wikipedia.org/wiki/Serenity_Prayer
https://xkcd.com/303/

Spencer CollyerFeature

4 | Overload | June 2024

User-Defined Formatting in
std::format – Part 2
Last time, we saw how to provide formatting for a simple
user-defined class. Spencer Collyer builds on this, showing
how to write a formatter for more complicated types.

In the previous article in this series [Collyer24], I showed how to write
a class to format user-defined classes using the std::format library.
In this article I will describe how this can be extended to container

classes or any other class that holds objects whose type is specified by the
user of your class.

A note on the code listings: The code listings in this article have lines
labelled with comments like // 1. Where these lines are referred to in
the text of this article, it will be as ‘line 1’ for instance, rather than ‘the
line labelled // 1’.

Nested formatter objects
The objects created from the formatter template structs are just
ordinary C++ objects – there is nothing special about them1. In particular,
there is nothing to stop you including an object of a formatter template
type inside one of your user-defined formatter structs.

You might wonder why you would want to do that. One simple case is if
you have a templated container class, and want to create a formatter
that can output the container in one go, rather than having to write code to
iterate over the container and output each value in turn. Having a nested
formatter for the contained value type allows you to do this and allow the
values to be formatted differently to the default, as the following examples
will show. Other uses will no doubt come to mind for your own classes.

A formatter for std::vector
The first example we will look at is a simple formatter for
std::vector. The code is given in Listing 1, and sample output is in
Listing 2.

The format specification we will use has the following form:
 ['w' lc rc] ['s' sep] ['/'
 [value-fmt-spec]]

The element starting with w allows the user to specify characters to wrap
the vector values in the output. The w must be followed by exactly two
characters. The first character, lc, is written before the value, and the
second, rc, is written after the value. If not given, no wrapper characters
are output.

The element starting with s allows the user to specify a single character to
act as a separator between the individual vector element values. If given,
the s must be followed by exactly one character, which will be used as
the separator. If not given, it defaults to the space character. If a separator
is given it will be followed by a space in the output.

1	 Other than being called automatically by the various std::format
functions that is, obviously.

Spencer Collyer Spencer has been programming for more years
than he cares to remember, mostly in the financial sector, although
in his younger years he worked on projects as diverse as monitoring
water treatment works on the one hand, and television programme
scheduling on the other.

#include <format>
#include <iostream>
#include <vector>

using namespace std;

template<typename T>
struct std::formatter<vector<T>>
{
 constexpr auto
 parse(format_parse_context& parse_ctx)
 {
 auto iter = parse_ctx.begin();
 auto get_char = [&]() { return iter
 != parse_ctx.end() ? *iter : 0; };
 char c = get_char();
 if (c == 0 || c == '}') // 1
 {
 m_val_fmt.parse(parse_ctx); // 2
 return iter;
 }
 auto get_next_char = [&]() { // 3
 ++iter;
 char vc = get_char();
 if (vc == 0)
 {
 throw format_error(
 "Invalid vector format specification");
 }
 return vc;
 };
 if (c == 'w') // 4
 {
 m_lc = get_next_char();
 m_rc = get_next_char();
 ++iter;
 }
 if ((c = get_char()) == 's') // 5
 {
 m_sep = get_next_char();
 ++iter;
 }
 if ((c = get_char()) == '/' || c == '}') // 6
 {
 if (c == '/') // 7
 {
 ++iter;
 }
 parse_ctx.advance_to(iter); // 8
 iter = m_val_fmt.parse(parse_ctx); // 9
 }
 if ((c = get_char()) != 0 && c != '}') // 10
 {
 throw format_error(
 "Invalid vector format specification");
 }
 return iter;
 }
 auto format(const vector<T>& vec,
 format_context& format_ctx) const

Listing 1

Spencer Collyer Feature

June 2024 | Overload | 5

The / delimits the start of the format-spec for the vector’s value type.
This will be read by the member variable m_val_fmt, defined in line 17,
to set up the formatting for the vector values. If not given, it will use the
default formatting for the value type. It is allowable – although not really
useful – to give a / character with no following format-spec.

The parse function
The first few lines of the parse function, up to line 1, are the same as the
ones for the Point class described in my previous article.

The first notable change is line 2. This calls the parse function on the
nested m_val_fmt object, which is the formatter for the vector’s
value type. Doing this allows the m_val_fmt object to set up its
formatting for the default case where no format-spec is given.

The get_next_char function defined starting at line 3 is used to read
the next character from the format-spec. It throws an exception if there
are no more characters to read, as indicated by getting 0 back from the
get_char function. As with the get_char function, when this function
is done it leaves the iter variable pointing at the character read.

The if-statement starting at line 4 simply processes any w element
to read the wrapper characters. It should be obvious what it is doing.
Similarly, the code starting at line 5 just processes any s element to read
the separator character.

The if-statement starting at line 6 holds the code to initialise the
m_val_fmt object when we don’t have an empty format-spec. The
if-statement condition has to check for both the / character that
indicates the value type has a format-spec, and also for the } character
that indicates the end of the format-spec, i.e. the case where there is no
specific format-spec for the value type.

Line 7 checks for the / character and, if present, increments iter. This
is because the / character is not part of the value type’s format-spec so
seeing it would confuse the m_val_fmt.parse function.

Line 8 is important because, by calling the advance_to function on
parse_ctx, it resets parse_ctx’s idea of where in the format-spec the
start point is located. When line 9 then calls m_val_fmt.parse, it will
start the processing at the correct position, i.e. the start of the value type’s
embedded format-spec, not the vector’s format-spec.

When the m_val_fmt.parse function returns, it should have processed
everything up to the } that terminates the format-spec. Note that in this
case the } is doing double duty, as it terminates both the vector format-
spec and the embedded value type format-spec. Line 10 carries out our
normal check for correct termination of the format-spec.

 {
 auto pos = format_ctx.out(); // 11
 bool need_sep = false;
 for (const auto& val : vec)
 {
 if (need_sep) // 12
 {
 *pos++ = m_sep;
 if (m_sep != ' ')
 {
 *pos++ = ' ';
 }
 }
 if (m_lc != '\0') // 13
 {
 *pos++ = m_lc;
 }
 format_ctx.advance_to(pos); // 14
 pos = m_val_fmt.format(val,
 format_ctx); // 15
 if (m_rc != '\0') // 16
 {
 *pos++ = m_rc;
 }
 need_sep = true;
 }
 return pos;
 }

private:
 char m_lc = '\0';
 char m_rc = '\0';
 char m_sep = ' ';
 formatter<T> m_val_fmt; // 17
};

int main()
{
 vector<int> vec{1, 2, 4, 8, 16, 32};
 cout << format("{}\n", vec); // a
 cout << format("{:w[]}\n", vec); // b
 cout << format("{:s,}\n", vec); // c
 cout << format("{:w[]s,}\n", vec); // d
 cout << format("{:w[]/3}\n", vec); // e
 cout << format("{:s;/+0{}}\n", vec, 5); // f
 vector<vector<int>> vec2{ {1, 2, 3},
 {40, 50, 60}, {700, 800, 900} };
 cout << format("{}\n", vec2); // g
 cout << format("{:w[]}\n", vec2); // h
 cout << format("{:s,}\n", vec2); // i
 cout << format("{:w[]s,}\n", vec2); // j
 cout << format("{:w[]/s,}\n", vec2); // k
 cout << format("{:s;/s,/03}\n", vec2); // l
}

Listing 1 (cont’d)

a: 1 2 4 8 16 32
b: [1] [2] [4] [8] [16] [32]
c: 1, 2, 4, 8, 16, 32
d: [1], [2], [4], [8], [16], [32]
e: [1] [2] [4] [8] [16] [32]
f: +0001; +0002; +0004; +0008; +0016; +0032
g: 1 2 3 40 50 60 700 800 900
h: [1 2 3] [40 50 60] [700 800 900]
i: 1 2 3, 40 50 60, 700 800 900
j: [1 2 3], [40 50 60], [700 800 900]
k: [1, 2, 3] [40, 50, 60] [700, 800, 900]
l: 001, 002, 003; 040, 050, 060; 700, 800, 900

Listing 2

The objects created from the formatter
template structs are just ordinary C++

objects – there is nothing special about them

Spencer CollyerFeature

6 | Overload | June 2024

The format function
Line 11 puts the current output iterator from format_ctx into the pos
variable. This indicates where the next data is written to in the output.

The majority of the function is just a loop over the vector’s values. The
interesting parts are described below.

Line 12 checks if we need to output a separator character. The first time
through the loop this will be false, but on subsequent iterations it will be
true. The body of the if-statement just outputs the separator character,
then if it is not a space it outputs a space character as well. As we are just
outputting single characters each time we can use the *pos++ = c form
to write them to the output.

Lines 13 and 16 write the wrapper characters, if they are defined.

Line 14 sets up the format_ctx variable correctly for the output in the
next line. By calling advance_to on format_ctx we set its output
iterator to match the position we have reached up to this point in the
function.

Line 15 outputs the current value by calling the format function on
the m_val_fmt object. Because we have updated the output iterator on
format_ctx in the line above, the value will be written to the correct
position in the output. The format function returns the new value of the
output iterator.

Test cases
The first set of test cases in the main function use a simple vector-of-ints
as the value to output.

Test case a checks that the default formatting works for the vector and
its contained values.

Test cases b, c, and d just check that the various parts of the vector
format-spec work, but with no value format-spec, so the values will just
use the default output.

Test case e checks that using a format-spec for the value works correctly.
Using wrapper characters lets us check that the output values are indeed
all output in fields three characters wide.

Test case f shows that you can use nested format specifiers in the value
format-spec, in this case picking up the width from the argument list.

The second set of test cases use a vector-of-vectors-of-ints as the value
to output.

Test case g checks that the default formatting works.

Note that in the output for case g, there is no way to tell where one nested
vector ends and the next one starts. Test cases h, i, and j use the various
parts of the vector format-spec to delimit the nested vectors in various
ways.

Test case k checks that the nested vectors are output using the value
format-spec, as can be seen from each value in them being separated by
the comma specified by the format-spec.

Test case l checks that the nested vector’s format-spec can handle a
format-spec for their values – in this case indicating a three character
wide, zero-padded field.

A formatter for std::map
The next example we will look at is a formatter for std::map. This
is more complicated because we want to allow format-specs for both the
key type and value type of the map. The code is given in Listing 3, and
sample output is in Listing 4.

The format specification we will use has the following form:
 ['w' lc rc] ['c' conn] ['s' sep]
 ['/' '{' key-fmt-spec '}' '{' value-fmt-spec '}'
]

The elements starting with w and s have identical purposes and default to
the ones we used for std::vector.

The element starting with c allows you to specify the connecting character
that is output between the key and the value. The c must be followed by
exactly one character. If not specified, the default value is =.

The / character introduces the format-specs for the key and value types
of the map. Unlike the case for std::vector, these format-specs are
mandatory if you have a / character. Unsurprisingly, key-fmt-spec is the
one for the key type, and the value-fmt-spec is the one for the value type.
You can use a default {} for either of these if you don’t want to change
that particular item’s format.

Note that these two nested format-specs are surrounded by { and }
characters. This breaks one of the guidelines I gave in the previous article
for format specification mini-languages (see the appendix ‘Simple Mini-
Language Guidelines’ in that article). The reason for this is as follows. The
parse functions in formatters need to see a } character terminating
the format-spec they are processing. This means when processing the key-
fmt-spec, we need a } character at the end of the key-fmt-spec, before the
value-fmt-spec starts. This could be confusing as it might look like it is
the } that terminates the std::map’s format-spec. Using a { at the start
of the key-fmt-spec helps to make it clear it is a single unit. As for the
value-fmt-spec, that could use the } at the end of the std::map format-
spec as its terminator, just like we do for std::vector above, but for
consistency between the two format-specs it made more sense to also
surround it with { and } characters.

The parse function
Much of the parse function is similar to the one for std::vector
shown previously. Lines 1 and 2 handle the case where we have a default
format-spec, calling the respective parse functions on the nested
formatters for the key and value types. Note that we assume here that
the m_key_fmt.parse function doesn’t alter the parse_ctx value
passed to it. If you are concerned that it might do, you can take a copy
of parse_ctx and pass that copy to the m_val_fmt.parse function
instead.

The majority of the function is just a loop
over the vector’s values

Spencer Collyer Feature

June 2024 | Overload | 7

 if ((c = get_char()) != '}') // 10
 {
 throw format_error(
 "Invalid map format specification");
 }
 // Next char must be '{' at start of value
 // format spec
 if ((c = get_next_char()) != '{') // 11
 {
 throw format_error(
 "Invalid map format specification");
 }
 parse_ctx.advance_to(++iter);
 iter = m_val_fmt.parse(parse_ctx);
 // Iter should point to '}' at end of
 // value format spec
 if ((c = get_char()) != '}')
 {
 throw format_error(
 "Invalid map format specification");
 }
 // Advance past the '}' at end of value
 // format spec
 ++iter;
 }
 else if (c == '}') // 12
 {
 parse_ctx.advance_to(iter);
 m_key_fmt.parse(parse_ctx);
 m_val_fmt.parse(parse_ctx);
 }
 if ((c = get_char()) != 0 && c != '}') // 13
 {
 throw format_error(
 "Invalid map format specification");
 }
 return iter;
 }
 auto format(const map<K,V>& vals,
 format_context& format_ctx) const
 {
 auto pos = format_ctx.out(); // 14
 bool need_sep = false;
 for (auto val : vals)
 {
 if (need_sep) // 15
 {
 *pos++ = m_sep;
 if (m_sep != ' ')
 {
 *pos++ = ' ';
 }
 }
 if (m_lc != '\0') // 16
 {
 *pos++ = m_lc;
 }
 format_ctx.advance_to(pos); // 17
 pos = m_key_fmt.format(val.first,
 format_ctx);

Listing 3 (cont’d)

#include <format>
#include <iostream>
#include <map>
using namespace std;

template<typename K, typename V>
struct formatter<map<K,V>>
{
 constexpr auto
 parse(format_parse_context& parse_ctx)
 {
 auto iter = parse_ctx.begin();
 auto get_char = [&]() { return
 iter != parse_ctx.end() ? *iter : 0; };
 char c = get_char();
 if (c == 0 || c == ‘}’)
 {
 m_key_fmt.parse(parse_ctx); // 1
 m_val_fmt.parse(parse_ctx); // 2
 return iter;
 }
 auto get_next_char = [&]() {
 ++iter;
 char vc = get_char();
 if (vc == 0)
 {
 throw format_error(
 "Invalid map format specification");
 }
 return vc;
 };
 if (c == 'w') // 3
 {
 m_lc = get_next_char();
 m_rc = get_next_char();
 ++iter;
 }
 if ((c = get_char()) == 'c') // 4
 {
 m_con = get_next_char();
 ++iter;
 }
 if ((c = get_char()) == 's') // 5
 {
 m_sep = get_next_char();
 ++iter;
 }
 if ((c = get_char()) == '/') // 6
 {
 // Next char must be '{' at start of key
 // format spec
 if ((c = get_next_char()) != '{') // 7
 {
 throw format_error(
 "Invalid map format specification");
 }
 parse_ctx.advance_to(++iter); // 8
 iter = m_key_fmt.parse(parse_ctx); // 9
 // Iter should point to '}' at end of key
 // format spec

Listing 3

these two nested format-specs are surrounded
by { and } characters… breaks one of the

guidelines I gave in the previous article for
format specification mini-languages

Spencer CollyerFeature

8 | Overload | June 2024

The if-statements starting at lines 3 and 5 read the w and s elements,
just as the corresponding lines do for std::vector. The if-statement
starting at line 4 reads the c element, which must have a single character
following it.

The if-statement starting at line 6 handles any nested format-specs
defined. As mentioned previously, they are mandatory if the / character
is present.

Line 7 checks for the { that indicates the start of the key-fmt-spec, and if
not present throws a format_error. We just report a generic error text
here, but obviously a more expressive text would help the user find the
error quicker.

Line 8 uses the advance_to function to set up the iterator in parse_
ctx. Note that we increment the value passed in as we need to skip the {
detected in the previous line, which is not part of the key-fmt-spec. Line 9
then calls m_key_fmt.parse so the formatter for the key type can
parse the key-fmt-spec. Finally, line 10 checks that the key-fmt-spec is
correctly terminated with a } character.

The code starting at line 11 then does the same work, but for the value
type, using the m_val_fmt member variable.

If the condition in line 6 is false it means we don’t have format
specifications for the key or value types. Line 12 checks if we have
reached the end of the format-spec for the map, and if so the controlled
lines call the parse functions on m_key_fmt and m_val_fmt to set
them to their defaults.

Finally, line 13 does the usual check to make sure we have reached the
end of the format-spec.

The format function
The format function for std::map is similar to the one for
std::vector given previously.

Line 14 picks up the current output iterator from format_ctx. The
function then enters a loop over all the values in the map.

Line 15 checks if we need to output a separator character, and if so the
controlled block does that work. Line 16 then does the same for the left-
hand wrapper character.

Line 17 then sets the output iterator in format_ctx to the now-current
value, and the following line uses m_key_fmt.format to output the
key, returning the new value of the output iterator. Line 18 then outputs
the onnector character.

Line 19 updates the format_ctx output iterator again so the following
line can output the value using m_val_fmt.format.

Line 20 then outputs the right-hand wrapper character, if required.

Test cases
Test case a checks that the default formatting works for map and its
contained key-value pairs.

Test cases b, c, d, and e check that the various parts of the map’s
format-spec work correctly, singly and in combination.

Test cases f, g, and h test that using format-specs for the key and value
parts works, including that using default format-specs is allowed.

Summary
In this article we have shown how you can write a formatter for a container
type, or any other class where the types of some elements are unknown
to you when writing the formatter because they are specified by the user
of the class.

In the next and final article of this series I will show you how to create
format wrappers, special purpose classes that allow you to apply specific
formatting to existing classes. n

References
[Collyer24] Spencer Collyer ‘User-Defined Formatting in

std::format: Part 1’, Overload 180, April 2024, available at
https://accu.org/journals/overload/32/180/collyer/

 *pos++ = m_con; // 18
 format_ctx.advance_to(pos); // 19
 pos = m_val_fmt.format(val.second,
 format_ctx);
 if (m_rc != '\0') // 20
 {
 *pos++ = m_rc;
 }
 need_sep = true;
 }
 return pos;
 }

private:
 char m_lc = '\0';
 char m_rc = '\0';
 char m_sep = ' ';
 char m_con = '=';
 formatter<K> m_key_fmt;
 formatter<V> m_val_fmt;
};

int main()
{
 map<int, string> map1{ {1, "a"}, {2, "bc"},
 {3, "def"} };
 cout << format("{}\n", map1); // a
 cout << format("{:w[]}\n", map1); // b
 cout << format("{:s,}\n", map1); // c
 cout << format("{:c:}\n", map1); // d
 cout << format("{:w[]c:s,}\n", map1); // e
 cout << format("{:w[]/{}{5}}\n", map1); // f
 cout << format("{:s;/{3}{5}}\n", map1); // g
 cout << format("{:s;/{3}{}}\n", map1); // h
}

Listing 3 (cont’d)

a: 1=a 2=bc 3=def
b: [1=a] [2=bc] [3=def]
c: 1=a, 2=bc, 3=def
d: 1:a 2:bc 3:def
e: [1:a], [2:bc], [3:def]
f: [1=a] [2=bc] [3=def]
g: 1=a ; 2=bc ; 3=def
h: 1=a; 2=bc; 3=def

Listing 4

https://accu.org/journals/overload/32/180/collyer/

Fabian Schuetze Feature

June 2024 | Overload | 9

Reverse-Engineering cuBLAS
It’s possible to achieve cuBLAS performance with
tensor cores by mimicking SASS instructions.
Fabian Schuetze guides us through the process.

Importance of GEMM and GPUs

Matrix multiplication is at the heart of linear algebra and the core of
scientific, engineering, and statistical computation. Many variants
of matrix multiplication can be expressed to interface with the

Basic Linear Algebra Subprograms (BLAS). The BLAS is the de facto
standard low-level interface for matrix multiplications, and its influence
is hard to overstate. For example, Nature named the BLAS one of ten
computer codes that transformed science [Perkel21]. Moreover, Jack J.
Dongarra received the Turing Award in 2021 [ACM21] as:

the primary implementor or principal investigator for [...] BLAS. [...]
The libraries are used, practically universally, for high performance
scientific and engineering computation on machines ranging from
laptops to the world’s fastest supercomputers.

Finally, with C++26, programmers can interface with the BLAS directly
from C++ (under the std::linalg namespace), thanks to P1637.

Because the low-level interface for matrix multiplication adheres to a
de facto standard and its importance, hardware vendors offer dedicated
implementations. These libraries are highly optimized, but their source
code is often undisclosed. Matrix multiplications comprise many small and
independent computations and are well-suited for GPUs. Consequently,
AMD, ARM, Nvidia, and Intel offer libraries for their GPUs. GPUs are,
in essence, vector processors. They have simple (compared to modern

CPUs) but enormous numbers of cores. Their memory units are also
simple but provide huge throughput. To attain maximum performance,
programmers commonly explicitly control data loading into caches.

This article extracts the essence of such computations by reverse-
engineering a matrix multiplication with Nvidia’s BLAS library
(cuBLAS). The implementation is simple yet instructive and attains
performance almost on par with the cuBLAS variant. Re-engineering
the cuBLAS kernel is not too difficult when using good abstractions as
building blocks. The kernels provided with cuBLAS are heavily tuned, and
the best-performing kernel gets selected at runtime. The runtime chooses
among many kernels. One can count ~5000 kernels containing GEMM
in its name, and cuBLAS ships a whopping 100MB. In comparison, the
BLAS library provided by Ubuntu, libblas, ships 600KB.

The performance of three different handwritten CUDA kernels and the
cuBLAS version is shown in Figure 1.

The three versions differ in their use of PTX (which can be understood as
a mid-level IR for Nvidia GPUs) primitives and the degree of instruction-
level parallelism (ILP) attained. A high ILP can be achieved by writing
efficient abstractions and placing them well in the code to permit
prefetching and avoiding pipeline stalls. PTX Modern PTX instructions
need to be used to permit asynchronous and highly efficient loading of
global memory. This efficiency is documented by the kernels ILP, which
is shown in Figure 2 (overleaf).

Note, for users used to CPU optimization, the ILP is extremely high,
which is explained by the extensive parallelism GPUs offer.

This article proceeds in the following stages: First, the basic GEMM
implementation using Tensor cores is shown. Second, the SASS (CUDA
assembly) code for the highly optimized CUDA kernel is analyzed, and

Glossary
A5000 (GPU): A GPU produced by Nvidia. The A5000 is based on the
Ampere microarchitecture. The article uses specialized instructions
introduced with Ampere. The subsequent microarchitecture (Hopper)
introduced new instructions to attain maximum performance on these
types of GPUs.

BLAS (and GEMM): GEMM stands for General Matrix Multiplication.
Refers to a group of operations (called Level 3) of the Basic Linear
Algebra Subprograms (BLAS) too. A standardized interface to BLAS
will become part of C++ 26 (std::linalg) as proposed by P1673.

cuBLAS: Nvidia’s variant of the BLAS library. It contains highly
optimized and specialized code for all GPU variants and matrix sizes.
Its source code is not publicly accessible.

CUDA: An extension of the C language to write programs for Nvidia
GPUs. CUDA affords programmers the ability to control the L1 cache
of such GPUs.

PTX: PTX (Parallel Thread Execution) describes an idealized virtual
machine depicting an archetypical Nvidia GPU and its corresponding
instruction set architecture (ISA). Cuda code also compiles to
PTX, which gets further translated to (undocumented) SASS code.
Programmers can also write PTX code.

SASS: An undocumented assembly language for Nvidia GPUs. It
translates to binary microcode that gets executed on an actual target.

Fabian Schuetze Fabian works on computer vision and AI in the
automotive and robotics industry. When not working, he’s enjoying
running or drinking wine, though not at the same time. Fabian can be
contacted at fschuetze0@gmail.com

Figure 1

Fabian SchuetzeFeature

10 | Overload | June 2024

differences between the instructions of the basic implementation are
identified. The basic implementation is refined in two steps to reach
performance parity with cuBLAS.

Basic GEMM Implementation
The main loop of the basic implementation of a GEMM kernel with
tensor cores is in Listing 1. This documents the basic structure of a decent
GEMM kernel with tensor cores: Looping along the K (inner) dimension
of the matrix product in blocks, the kernel loads blocks of the matrices A
and B into shared memory. The load function is named load_blocking
(which already provides a glimpse at future optimizations). The kernel
then uses a nested loop to compute the matrix product over these blocks.
Smaller blocks of the shared memory get loaded into local register
files, and their matrix product gets calculated. The kernel reaches about
60TFLOPS on an A5000, or ⅔ of the GPU limit.

The code in Listing 1 gets compiled to the following SASS assembly:
 ...
 LDG.E.128.CONSTANT R72, [R72.64]
 ...
 WARPSYNC 0xffffffff
 ...
 STS.128 [R143], R52
 ...
 BAR.SYNC 0x0
 LDSM.16.M88.4 R80, [R80]
 ...
 HMMA.16816.F16 R18, R80, R68, R18
 ...
 BAR.SYNC 0x0

The assembly reveals the inner workings of the code above: First,
load_blocking stores 128 bits from global memory into thread-local
registers. After the global loads, all threads in the warp wait at a barrier.
Then, the threads store the loaded data in shared memory, and all threads
in a block sync. Furthermore, data from shared memory is loaded as a
matrix for processing by the tensor cores. Then, a tensor core matrix
multiplication with half-floats ensues. Finally, all threads in the block

wait at a barrier before the loop starts again. The way data is loaded is
pictured in the graph in Figure 3 (overleaf).

From the very right, 255MB are loaded from device memory to the L2
Cache before landing in the L1 Cache. As can be seen in the top left of
the figure, there are 3.41M instructions used to load data into the local
registers. From the local registers, the data is stored again in the shared
memory (a portion of the L1 cache) in 3.15M requests. From the shared
memory, the data gets accessed in 11.53M requests.

SASS code for cuBLAS assembly code
The SASS code for the cuBLAS kernel is interesting. An abbreviated
version reads as follows:
 HMMA.16816.F32 R0, R152, R184, R0
 LDSM.16.MT88.4 R168, [R137+UR8+0x800]
 LDGSTS.E.BYPASS.LTC128B.128.CONSTANT
 [R129+UR4+0x3000], [R130.64+0x180]
 ...
 HMMA.16816.F32 R4, R152, R186, R4
 HMMA.16816.F32 R8, R152, R188, R8
 ...
 HMMA.16816.F32 R120, R164, R196, R120
 DEPBAR.LE SB0, 0x1
 ...

The assembly code highlights several aspects: The main loop starts
with a matrix multiplication instead of a memory load. The global load
LDGSTS.E.BYPASS.LTC128B.128.CONSTANT differs from the load
in the basic GEMM implementation, LDG.E.128.CONSTANT R72:
Firstly, it bypasses the register and stores the data directly in shared
memory. Furthermore, it is an asynchronous load and does not block the
threads. Non-blocking requires a separate memory fence to signal when
the data is ready. Such a barrier is the dependency barrier DEPBAR.LE.

Figure 2

for (size_t block = 0; block < K; block +=
Threadblock::kK) {
 LoaderA.load_blocking();
 LoaderB.load_blocking();
 LoaderA.next(Threadblock::kK);
 LoaderB.next(Threadblock::kK * N);
 __syncthreads();
 constexpr size_t wmma_steps
 = Threadblock::kK / WMMAblock::kK;
 for (size_t wmma_step = 0;
 wmma_step < wmma_steps; wmma_step++) {
 RegisterLoaderA.load();
 RegisterLoaderB.load();
 RegisterLoaderA.step(WMMAblock::kK);
 RegisterLoaderB.step
 (Bs.cols_ * WMMAblock::kN);
 matmul.compute();
 }
 RegisterLoaderA.reset(0);
 RegisterLoaderB.reset(0);
 __syncthreads();
}

Listing 1

Re-engineering the cuBLAS kernel
is not too difficult when using good
abstractions as building blocks

Fabian Schuetze Feature

June 2024 | Overload | 11

Finally, the instructions are interleaved: There is no linear separation
between loading data and operating on it, but a heavy mixture of
instructions. The cuBLAS kernel achieves ~90TFLOPS. The following
two kernels describe how to write code that produces similar SASS and
attains the same performance.

Improvement I: buffering
Asynchronous load instructions
Starting with PTX Version 7.0 [PTX-1], CUDA provides instructions
to copy data asynchronously from global to shared memory. The copy
bypasses local registers and stores data directly to the shared memory
(L1 cache). As identified above, asynchronous loading is one of the
differences between the simple GEMM code and the cuBLAS version.

Two changes are necessary for asynchronous loading. First, the new
load function is in Listing 2. What is was before is shown in Listing 3
(overleaf).

The load_blocking function loads 128bit by casting eight half floats
as an int4 and loads it. In contrast, the load function uses the macro
CP_ASTNC_CG comprising the PTX instructions in Listing 4 (also
overleaf).

The compiler converts it into the same SASS instruction as can be seen
in the cuBLAS code:
 LDGSTS.E.BYPASS.LTC128B.128 [R11], [R2.64]

Because the load is non-blocking, a separate memory fence is needed
to synchronize the threads. As stated in the PTX manual [PTX-2],

Figure 3

__device__ void load(size_t counter) {
 const size_t global_idx =
 offset_.row * ld_ + offset_.col;
 for (size_t row = 0; row < rows;
 row += stride_) {
 const T *src =
 global_ptr_ + row * ld_ + global_idx;
 T *dst =
 &shmem_(counter * rows + offset_.row + row,
 offset_.col); // + row * cols;
 constexpr size_t load_bytes = 16;
 uint32_t pos_in_ss = __cvta_generic_to_shared
 (reinterpret_cast<int4 *>(dst));
 CP_ASYNC_CG(pos_in_ss, src, load_bytes);
 }
}

Listing 2

The gift of asynchronous copy operations
is that one can overlay computation with

memory transfers and avoid pipeline stalls

Fabian SchuetzeFeature

12 | Overload | June 2024

asynchronous copies need to be committed to a group and waited for.
The following two macros, comprising PTX instructions, do exactly that:
 CP_ASYNC_COMMIT_GROUP();
 CP_ASYNC_WAIT_GROUP(0);

These two macros get compiled into the following SASS code:
 LDGDEPBAR
 DEPBAR.LE SB0, 0x0

These two SASS instructions are found in the cuBLAS code too. The slight
difference between the two is covered in the next section. Visualizing
the new load instruction LDGSTS.E.BYPASS.LTC128B.128 is very
instructive (see Figure 4). The data goes directly from the L2 Cache
through the shared memory (a portion of the L1 cache).

Overlapping memory loads with computation
The gift of asynchronous copy operations is that one can overlay
computation with memory transfers and avoid pipeline stalls. The kernel
can be expressed as shown in Listing 5 (overleaf).

The computation starts by loading data from global to shared memory. The
class loading data from shared to global memory manages two buffers.
Data gets read from one buffer and stored in the other buffer. The main
loop begins by initiating a global memory load. The matrix elements are
then computed. Afterward, the threads block until the previously fetched
memory has been loaded. In the loop’s epilogue, the last outstanding
matrix computation is conducted.

This kernel attains 73 TFLOPS, a 20 percent increase to the first kernel.

Improvement II: double buffering
The code above already improves the throughput of the kernel. However,
it is still below the cuBLAS version, and the assembly instructions
do not match. In particular, the memory barrier in the code above is
DEPBAR.LE SB0, 0x0, but the memory barrier in the cuBLAS code
is DEPBAR.LE SB0, 0x1. The SASS instructions are undocumented,
but one can assume that LE stands for less or equal. Furthermore, the
PTX docs for the memory barrier [PTX-3] state that the PTX instruction
cp.async.wait_group N is:

cp.async.wait_group instruction will cause the executing thread
to wait till only N or fewer of the most recent cp.async-groups
are pending and all the prior cp.async-groups committed by the
executing threads are complete.

Besides the difference in instructions, the kernel above also regularly
stalled because data was unavailable. The warps stalled for almost two
cycles for each issued instruction because data was unavailable (long
scoreboard stall). To avoid such stalls and replicate the SASS code for the
cuBLAS kernel, the kernel below does “double buffering”: Always have
two shared memory operations in flight and await only the oldest one.
Register loads are buffered too. The kernel has one register file loaded,
loads the next one, and computes the matrix operation on the previous
register file. The code for the kernel is in Listing 6 (opposite).

Figure 4

#define CP_ASYNC_CG(dst, src, Bytes) \
 asm volatile(\
 "cp.async.cg.shared.global.L2::128B [%0]," \
 "[%1], %2;\n" ::"r"(dst), "l"(src), \
 "n"(Bytes))

Listing 4

__device__ void load_blocking() {
 const size_t global_idx =
 offset_.row * ld_ + offset_.col;
 for (size_t row = 0; row < rows;
 row += stride_) {
 const T *src =
 global_ptr_ + row * ld_ + global_idx;
 T *dst = &shmem_(offset_.row + row,
 offset_.col); // + row * cols;
 const int4 t =
 reinterpret_cast<const int4 *>(src)[0];
 reinterpret_cast<int4 *>(dst)[0] = t;
 }
}

Listing 3

Fabian Schuetze Feature

June 2024 | Overload | 13

The prologue to the main loop begins by issuing two shared memory
loads. The threads block until the first load is completed, while the second
one remains in flight. Then, the first register file is loaded. The main loop
begins by loading a further fragment of shared memory, and the tensor
cores operate on the previous fragment. When all local registers are filled,
the shared memory of the first block has been exhausted. No computation
can be overlaid over the memory copies anymore. Another load is issued,
and the warps wait until the previous load is completed.

With these advances, the throughput of the kernel advances to 89
TFLOPS and reaches within 95% of cuBLAS performance. Further gains
can be reaped by writing the result of the multiplication through shared
memory back to global memory. The kernel throughput then advances to
91 TFLOPS, 1 TFLOP behind the cuBLAS kernel. n

References
[ACM21] ACM Turing Award 2021: available at https://awards.acm.org/

about/2021-turing
[Perkel21] Jeffrey M. Perkel ‘Ten computer codes that transformed

science’, published on Nature website 20 January 2021 (last updated
8 April 2021), available at https://www.nature.com/articles/d41586-
021-00075-2.

[PTX-1] PTX Version 7.0 documentation, ‘Changes in PTX ISA Version
7.0’, published by NVIDIA, available at https://docs.nvidia.com/
cuda/parallel-thread-execution/index.html#changes-in-ptx-isa-
version-7-0

[PTX-2] PTX Version 7.0 documentation, ‘Data Movement and
Conversion Instructions: Asynchronous copy’, published by
NVIDIA, available at https://docs.nvidia.com/cuda/parallel-thread-
execution/index.html?highlight=async#data-movement-and-
conversion-instructions-asynchronous-copy

[PTX-3] PTX Version 7.0 documentation, ‘Data Movement and
Conversion Instructions: cpl.async.wait_group/cp.async.wait_all‘,
published by NVIDIA, available at https://docs.nvidia.com/cuda/
parallel-thread-execution/index.html?highlight=async#data-
movement-and-conversion-instructions-cp-async-wait-group-cp-
async-wait-all

size_t counter = 0;
LoaderA.load(counter);
LoaderB.load(counter);
LoaderA.next(Threadblock::kK);
LoaderB.next(Threadblock::kK * N);
CP_ASYNC_COMMIT_GROUP();
CP_ASYNC_WAIT_GROUP(0);
__syncthreads();
for (size_t block = 0;
 block < K - Threadblock::kK;
 block += Threadblock::kK) {
 LoaderA.load(counter ^ 1);
 LoaderB.load(counter ^ 1);
 LoaderA.next(Threadblock::kK);
 LoaderB.next(Threadblock::kK * N);
 constexpr size_t wmma_steps =
 Threadblock::kK / WMMAblock::kK;
 for (size_t wmma_step = 0;
 wmma_step < wmma_steps; ++wmma_step) {
 RegisterLoaderA.load();
 RegisterLoaderB.load();
 RegisterLoaderA.step(WMMAblock::kK);
 RegisterLoaderB.step
 (Bs.cols_ * WMMAblock::kN);
 matmul.compute();
 }
 counter ^= 1;
 RegisterLoaderA.reset(counter *
 Threadblock::kM * (Threadblock::kK + skew));
 RegisterLoaderB.reset(counter *
 Threadblock::kK * (Threadblock::kN + skew));
 CP_ASYNC_COMMIT_GROUP();
 CP_ASYNC_WAIT_GROUP(0);
 __syncthreads();
}
for (size_t bk = 0; bk < Threadblock::kK;
 bk += WMMAblock::kK) {
 RegisterLoaderA.load();
 RegisterLoaderB.load();
 RegisterLoaderA.step(WMMAblock::kK);
 RegisterLoaderB.step(Bs.cols_ * WMMAblock::kN);
 matmul.compute();
}

Listing 5

LoaderA.load(0);
LoaderB.load(0);
LoaderA.next(Threadblock::kK);
LoaderB.next(Threadblock::kK * N);
CP_ASYNC_COMMIT_GROUP();
LoaderA.load(1);
LoaderB.load(1);
LoaderA.next(Threadblock::kK);
LoaderB.next(Threadblock::kK * N);
CP_ASYNC_COMMIT_GROUP();
CP_ASYNC_WAIT_GROUP(1); // 1 = Wait until 1
 // recent async groups are pending
__syncthreads();
RegisterLoaderA.load(0);
RegisterLoaderB.load(0);
RegisterLoaderA.step(WMMAblock::kK);
RegisterLoaderB.step
 (SpanTypeB::cols_ * WMMAblock::kN);
size_t counter = 1;
for (size_t block = 0; block < K - 2 *
Threadblock::kK;
 block += Threadblock::kK) {
 constexpr size_t wmma_steps =
 Threadblock::kK / WMMAblock::kK;
 for (size_t i = 0; i < wmma_steps; ++i) {
 size_t current = i % 2;
 size_t next = (i + 1) % 2;
 RegisterLoaderA.load(next);
 RegisterLoaderB.load(next);
 RegisterLoaderA.step(WMMAblock::kK);
 RegisterLoaderB.step
 (SpanTypeB::cols_ * WMMAblock::kN);
 matmul.compute(current);
 if (i == 0) {
 LoaderA.load(counter ^ 1);
 LoaderB.load(counter ^ 1);
 LoaderA.next(Threadblock::kK);
 LoaderB.next(Threadblock::kK * N);
 CP_ASYNC_COMMIT_GROUP();
 CP_ASYNC_WAIT_GROUP(1);
 __syncthreads();
 RegisterLoaderA.reset
 (counter * MemLoaderA::size_);
 RegisterLoaderB.reset
 (counter * MemLoaderB::size_);
 counter ^= 1;
 }
 }
 __syncthreads();
}

Listing 6

This article was previously published on github by Fabian on 14 March
2024, and is available at https://fabianschuetze.github.io/category/
articles.html

https://awards.acm.org/about/2021-turing
https://awards.acm.org/about/2021-turing
https://www.nature.com/articles/d41586-021-00075-2
https://www.nature.com/articles/d41586-021-00075-2
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#changes-in-ptx-isa-version-7-0
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#changes-in-ptx-isa-version-7-0
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#changes-in-ptx-isa-version-7-0
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=async#data-movement-and-conversion-instructions-asynchronous-copy
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=async#data-movement-and-conversion-instructions-asynchronous-copy
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=async#data-movement-and-conversion-instructions-asynchronous-copy
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=async#data-movement-and-conversion-instructions-cp-async-wait-group-cp-async-wait-all
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=async#data-movement-and-conversion-instructions-cp-async-wait-group-cp-async-wait-all
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=async#data-movement-and-conversion-instructions-cp-async-wait-group-cp-async-wait-all
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html?highlight=async#data-movement-and-conversion-instructions-cp-async-wait-group-cp-async-wait-all
https://fabianschuetze.github.io/category/articles.html
https://fabianschuetze.github.io/category/articles.html

World-class conference
Professional development
Printed journals
Local groups
Email discussion groups
Reviews of technical books

ac

accu

Corporate membership from £175

Individual membership from £35

Visit accu.org for details

Russell K. StandishFeature

16 | Overload | May 2024

Fat API Bindings of C++ Objects
into Scripting Languages
How do you expose a C++ object to a TypeScript layer or other
scripting language? Russell K. Standish demonstrates an approach
using a RESTService API that is scripting-language independent.

A fat API exposes nearly all of a C++ object’s public attributes and
methods to a consuming environment, such as a scripting language,
or web client. This can be contrasted with a conventional, or thin

API, where the API is defined up front, and the C++ object provides the
implementation, most of which is private to the C++ layer.

Obviously, reflection is required to expose C++ objects to a consuming
layer like this – this paper explores using the Classdesc system to
implement reflection of C++ objects into a JavaScript/TypeScript
environment via a REST service, and also via a Node.js API module.

Introduction
Minsky [Standish] is a systems dynamics [Forrester07] simulation
package, with an orientation towards economics, that has been under
continual development since 2011. It is implemented in C++, and
historically the user interface was implemented using the TCL/Tk toolkit
[Ousterhout94], with C++ bindings provided by the EcoLab [Standish01,
EcoLab] library.

From 2019–2021, the TCL/Tk layer was completely reimplemented in
TypeScript [Cherny19, Goldberg22], on top of the Angular [Green13]
and Electron [Kredpattanakul19] toolkits, running in the Node.js
[Ihrig14] interpreter. The advantages to doing this include accessing a
much larger ecosystem of 3rd party components, a much larger pool of
programmers (JavaScript is consistently in the top 10 of programming
languages according to the Tiobe index [Tiobe]), and potentially longer
term an in-browser version of the code could be enabled via technologies
such as WebASM [Haas17].

This paper reports on the subtask of exposing the Minsky’s C++ core
to the TypeScript layer, allowing C++ objects to be manipulated in a
seamless manner in TypeScript code. The approach is quite general, and
could be readily adapted to other language binding APIs, or even without
an explicit binding API by means of a REST service that can be accessed
with an HTTP client implementation.

REST service
REST (REpresentational State Transfer) [Fielding00] is based on web
technologies. The part of a URL after the domain, such as

http://www.somewhere.com/path/to/page

is called the URL’s pathinfo. In REST terminology, it is called an
endpoint, and represents a resource. What to do with the resource is given
by the HTTP verb of the request. A web browser typically performs a
GET request when you type a URL into its address bar, but there are verbs
covering all of the CRUD operations (create, read, update and delete):

	� POST create an object at the resource location
	� GET read an object at the resource location
	� PUT update the object
	� DELETE destroy the object

In something like an EcoLab model, or the Minsky project, there is a
global static object that holds the state of the model. In the C++ code, this
is accessible via a Meyer singleton pattern, ie the minsky() function.
So for example, a REST GET call on /minsky/t returns the value of
the current timestep of the Minsky model, and performing a PUT, with
floating point data in the HTTP request body, updates the timestep to
the supplied value. For convenience, the Minsky REST service ignores
whether a PUT or GET is used, using the presence or absence of HTTP
body data to determine whether the operation is an update or a read.

One can also map method calls into the same schema. For example
/minsky/reset calls the reset method, which has no arguments. The
above schema for reading or updating an attribute could be considered
an example of calling an implied overloaded getter/setter method, with
overload resolution determined by the presence or absence of data in the
request body. Since we’re targeting the JavaScript ecosystem, it is natural
to use JSON [ECMA13] to encode the parameters being passed, and the
return value. Compound objects can be serialised to/from JSON using
Classdesc’s existing JSON serialiser into a JSON object (delimited by
braces). Calling a method with more than one parameter can be achieved
by placing the JSON representation of the arguments in a JSON array,
which conveniently are allowed to be of different types. So the command
to export a LATEX document describing the model’s differential equation,
which has signature
 void latex(const std::string& fileName,
 bool wrapLaTeXLines)

can be called through the REST service as
 /minsky/latex ["foo.tex", true]

where the first space delineates the pathinfo and request body.

Whilst JSON is used for data encoding in this example, it is perfectly
possible to use alternate encodings. The RESTProcess_t1 descriptor2
object has a method:
 REST_PROCESS_BUFFER RESTProcess_t::process
 (const std::string& pathinfo,
 const REST_PROCESS_BUFFER& body);

where REST_PROCESS_BUFFER is a macro representing the ‘buffer’
concept, which defaults to json_pack_t. A buffer implements:
	� REST_PROCESS_BUFFER::operator>>(T&)

for deserialisation to an arbitrary type

1	 Released in Classdesc 3.43, available from https://classdesc.
sourceforge.net, or https://github.com/highperformancecoder/classdesc.

2	 In the Classdesc reflection system [Madina01], a descriptor is an
overloaded set of function definitions that is mostly automatically
generated by the Classdesc processor for each type used in the
program.

Russell K. Standish Russell gained a PhD in Theoretical Physics,
and has had a long career in computational science and high
performance computing. Currently, he operates a consultancy
specialising in computational science and HPC, with a range of
clients from academia and the private sector. You can contact him at
hpcoder@hpcoders.com.au

https://classdesc.sourceforge.net,
https://classdesc.sourceforge.net,
https://github.com/highperformancecoder/classdesc.

Russell K. Standish Feature

May 2024 | Overload | 17

	� REST_PROCESS_BUFFER::operator<<(const T&)
for serialisation of an arbitrary type
	� RESTProcessType REST_PROCESS_BUFFER::type()

which refers to the type of the object serialised in the buffer
	� REST_PROCESS_BUFFER::Array
 REST_PROCESS_BUFFER::array() const
returns a sequence concept object (eg std::vector or
std::deque) if called on a REST_PROCESS_BUFFER that is an
array, or usually an empty sequence if not.
REST_PROCESS_BUFFER::Array::operator[](size_t)
returns a REST_PROCESS_BUFFER.

The RESTProcess_t type is a map, where the keys are the endpoints of
the fat API, and the values are wrappers around the C++ object, or
method. These wrappers are polymorphic, with different implementations
depending on whether it is an object or a method, smart pointer or
container type. The interface is shown in Listing 1.

The reason REST_PROCESS_BUFFER is a macro rather than a template
argument, is because RESTProcessBase is polymorphic, and C++ does
not allow templated virtual functions.

The methods signature, list and type provide a modicum of
introspection to allow exploration of the fat API from the calling side.
signature returns an array containing the return type and types of all
arguments.

Node.js API
Minsky’s C++ layer renders directly to a native window for performance
reasons. Electron’s BrowserWindow class has a native window handle
getter method that can be used to pass the native window to the C++
layer. The strategy described in the previous section of making the
C++ implementation a REST service worked well for Windows, where
the native window handles are system wide, and X-Windows system,
which is distributed by design, but unfortunately failed for the MacOSX
architecture. It turns out that Mac native window handles are actually

pointers which are, of course, only meaningful within the same process
address space.

So the C++ layer needed to be implemented as a dynamic library, and
linked within the Node.js process using the Node.js API. Conceptually,
this is quite simple, implementing a single Node.js API endpoint (call)
that takes the pathinfo and body arguments as above. Of course, it hasn’t
stayed simple – the Node.js API allows for callbacks into the JavaScript
world from C++, which is important for some interactive functionality; as
well as also allowing offloading of C++ processing to a separate thread,
and returning the results via a JavaScript promise, which is important for
not blocking the user interface during long-running backend operations.

Attributes and methods
We map C++ public attributes to an implied pair of overloaded setter/
getter methods. If an argument is provided to the method, a setter is called,
and the argument assigned to the attribute. For the Minsky project, JSON
encoding of the attribute is performed, using the existing json_pack
and json_unpack descriptors.

This is a very simple example of a method overload. However, C++
provides for overload resolution based on types as well as number of
arguments. JavaScript does not provide for overloaded functions at all,
but with type introspection built into the language, it is possible to write
a method that can dispatch to different implementations based on types
and number of arguments. However, with an impoverished set of types
compared with C++, this leaves us with the problem of how to match a
particular JavaScript call with a C++ method.

The approach taken in this work is to walk the C++ argument list for
each overloaded C++ method (Classdesc has been able to address
overloaded methods since version 3.37 [Standish19]), and add a penalty
for each argument that doesn’t quite match. For instance, if the JavaScript
environment passes a number with a non-zero fractional part, then an
integer argument C++ will receive a small penalty, but a float or double
parameter does not. If there are fewer arguments passed than the arity
of the function, or no meaningful conversion is possible, then an infinite
penalty is applied. Default C++ arguments are not supported as is, but a
default argument can be reimplemented as an overloaded method with
fewer argument calls, delegating to the method with the full number of
arguments.

Finally, the method with lowest finite penalty is called, if it is unique.
Otherwise, an exception is thrown back to the JavaScript environment.

Modern C++ variadic templates are used to walk the C++ type arguments
to determine the penalty values. Then to call the C++ method, currying is
used. The JSON arguments are converted to the relevant C++ type, starting
from the last argument, currying the bound method to an n-1 argument
functor, where the last argument has been fixed by the converted JSON
argument. It takes one walk through the C++ argument list to generate
the curry functors, then the final zero argument curried functor is called,
which in turn calls the curried functors up into the final bound method.
The technique works well, except that each of these curried functors need

class RESTProcessBase
{
public:
virtual ~RESTProcessBase() {}
/// perform the REST operation, with \a remainder
being the
/// query string and \a arguments as body text
virtual REST_PROCESS_BUFFER process(const string&
remainder,
const REST_PROCESS_BUFFER& arguments)=0;
/// return signature(s) of the operations
virtual REST_PROCESS_BUFFER signature() const=0;
/// return list of subcommands to this
virtual REST_PROCESS_BUFFER list() const=0;
/// return type name of this
virtual REST_PROCESS_BUFFER type() const=0;
};

Listing 1

C++ provides for overload resolution
based on types as well as number of

arguments; JavaScript does not provide
for overloaded functions at all

Russell K. StandishFeature

18 | Overload | May 2024

to be linked, blowing up the build time. In ‘Build time optimisation’ on
page 18, I describe a number of techniques to reduce the build times.

TypeScript
JavaScript, being a dynamic language, only checks numbers and types of
arguments at runtime. TypeScript [Cherny19, Goldberg22] is an extension
of JavaScript with type annotations that are checked at compile time. For
larger more complex projects like Minsky, the TypeScript compile step is
an invaluable means of eliminating logic errors.

The JavaScript interface to C++ is of the form
 call("method.name", args...);

which performs type checking at runtime. For Minsky, we created another
descriptor that outputs a series of TypeScript definitions. This is not the
only viable method. The REST API has sufficient introspection built in
that it should be possible to build a TypeScript script that queries the
REST API and emits the TypeScript definitions. However, doing it as a
C++ process for the Minsky project was chosen due to greater familiarity
with that environment.

For example, the Minsky class has a t double precision attribute, a
complex attribute model of type Group and classifyOp method,
amongst others. The custom TypeScript descriptor outputs a definition
like that shown in Listing 2.

The TypeScript class CppClass provides a number of features, including
the $prefix() accessor and the $callMethod() method that arranges
for the named C++ method to be called on a separate thread, and returns a
promise that is resolved or rejected with the return value or exception from
the C++ method. Calling into C++ asynchronously in this way prevents
the C++ code from blocking the GUI interface if the C++ method takes
a long time to run (as some do). There is also a $callMethodSync()
which calls into C++ directly on the Node.js thread, which is useful when
you need to call C++ from a non-asynchronous function – such as at
application startup. Note the use of the $ character in the identifier, which
is a valid character in JavaScript identifiers, but not C++, so preventing
any possibility of a name clash with C++ identifiers.

To use the class definition for any object, you just have to declare:
 let minsky=new Minsky("minsky");

Then you can access the time attribute via minsky.t() or set the time
attribute via minsky.t(10.2). For the complex object model above,
because one can call methods on it (eg minsky.model.numItems()),
and in TypeScript identifiers cannot be both attributes and methods at the
same time, setting and getting that object has to be done via the special
$properties() method, ie minsky.model.$properties()
returns a JavaScript object containing the public attributes of
minsky.model, and minsky.model.$properties(object)
sets the public attributes of minsky.model using the data contained in
object.

Since minsky is a global object, this definition is already provided in the
backend module. But for example, the attribute minsky.canvas.item
is a polymorphic type with base type Item – it can be cast to the correct
type in TypeScript via (eg)

 let variable=
 new VariableBase(minsky.canvas.item);

then variable gets all of the additional attributes and methods of the
VariableBase subclass.

Python
A Python API descriptor already exists [Standish19]. However, it has a
couple of serious downsides. The first is that it requires the boost-python
library, which is not available currently for the MXE cross compiler
[MXE], and may never be, as it depends on the Python library being
available, the codebase of which is not friendly towards cross compilation.

The second issue is just calling the Python descriptor on the minsky
global object was not sufficient to create all the types required, and that
additional explicit descriptor calls were required to generate all the types.
This is not insurmountable – something like this approach was done
with the TypeScript descriptor, but given the full fat API was available
through the RESTService descriptor, it was decided to use the existing
RESTService API descriptor, and write a Python interface using the low
level Python C API. That way, we should be able to load the built Python
module dynamic library into an unmodified running Python interpreter on
Windows. As well as that, there would be no inconsistencies between the
TypeScript API and the Python API.

It was relatively straightforward, following online tutorials, to implement
a ‘call’ function that takes one or two arguments, the first being the REST
function name, and the second being a JSON5 string for arguments.
The second step involved creating a REST_PROCESS_BUFFER object
(called a PythonBuffer) that directly marshals Python objects into their
C++ counterparts without going via JSON serialisation. Of course, for
simplicity, and to avoid creating yet another descriptor, complex objects
(structs, classes etc) will always go via JSON serialisation. Unfortunately,
this exposed a weakness in the macro approach outlined above, and
the explicit instantiation of templates, which meant that at link time
there was a definitional conflict between REST_PROCESS_BUFFER
being a JSONBuffer and a PythonBuffer. So for now, the PythonBuffer
containing the arguments is serialised to JSON before being passed to
the RESTProcess, and the returned JSON string used to instantiate a
PythonBuffer. Another attempt at implementing a template solution of
the RESTProcess descriptor is planned.

Finally, for return values, the PythonBuffer stores the value as an
appropriate Python object (PyObject) for the type, whether number,
string, array or so on. For objects, a custom object is returned that has
the JSON string returned by the RESTProcess stored as the attribute
_properties ($ is not a valid character in Python identifiers), and also
new callable attributes for each method, allowing usage like:
 r=container._elem(2).method()

within Python code.

Build time optimisation
As previously alluded, extensive use of variadic templates for processing
overloaded functions caused a dramatic impact on compile times for the
Minsky project, which went from circa 2 minutes for the TCL/Tk version
(which doesn’t support overloaded methods) to around 20 minutes for the
JavaScript build. Profiling the build times indicated a massive increase
in the time taken to link the ‘executable’ – in this case a dynamic library
with a .node extension that Node.js loads as an ‘add on’.

One of the identified reasons for the slowdown in linking speeds is
the large number of generated template helper functions to handle
introspection of functional objects. The number grows as the square of
the number of arguments of the method, and linking objects is O(n2), so
the link time grows as the 4th power of the number of method arguments.
As noted later, the link times for standard Linux linkers is not actually
too bad – in the few years since this work was started, Linux linkers have
improved remarkably.

export class Minsky extends CppClass {
 model: Group;
 constructor(prefix: string){
 super(prefix);
 this.model
 =new Group(this.$prefix()+'.model');
 ...
 }
 async classifyOp(a1: string): Promise<string>
 {return this.$callMethod('classifyOp',a1);}
 async t(...args: number[]): Promise<number>
 {return this.$callMethod('t',...args);}
 ...
}

Listing 2

Russell K. Standish Feature

May 2024 | Overload | 19

In some way, the link strategy is quite stupid, as these helper functions
only need to be used on one place in one object file, and so resolved at
compile time. This suggested a strategy of privately declaring the variadic
templates and explicitly instantiating them within just a single object file
where they were used – unfortunately, the compiler still emitted symbols
for each and every helper template, even if they’re not linked to from
other object files, and this technique didn’t help.

So the next thing was to remove the RESTProcess .rcd definition files
from the include headers, and include them in just one compilation unit,
and explicitly instantiate the template within that compilation unit. This
improved the build time quite significantly.

The next strategy tried was to do things the old-fashioned way. Instead
of recursively defined variadic templates, explicit templates created by
means of a shell script that creates explicit support functions for 0, 1, 2
etc arity functions up to some predefined maximum value (6 was found to
be the maximum arity function present, with the renderWindow method
being one of the biggest).

The final strategy was to reduce the maximum arity of the exposed
methods. The simplest way to do this, given that one could pass a
Javascript object which is packed and then unpacked into the C++ object
via JSON, is to rollup several of the arguments into a compound object.
In this way, the maximum arity was reduced to 4.

Finally, it turned out that the clang ecosystem had a much more performant
compiler and linker for these purposes than the GCC ecosystem, and that
template unrolling gave negligible benefit in the clang case.

Table 1 shows the build times for the various build time optimisations
described in the text above, displayed graphically in figure 1. The
optimisations were applied consecutively from top to bottom, so that the

unrolled template method was applied to explicitly instantiated code, and
so on.

The final test was to try the extremely performant mold linker [Ueyama].
As per Mold’s README, adding the flag -fuse_ld=mold is sufficient
to delegate the link step to mold. Link times were measured by building
the target (minskyRESTService.node), removing just the target, leaving
all the object files present, and timing how long it takes to build the target
again.

As can be seen from table 2, for Linux builds, the linking time is
inconsequential, well within noise, so even though Mold is blazingly fast,
there is no particular advantage for this project. What isn’t inconsequential
is the link time for generating Windows versions of the Node.js addon,
which takes over 13 minutes. Just quite why the linker is so slow for
Windows is unclear, however a neat trick discovered whilst doing this
benchmarking is to symbolically link the LLVM linker ld.lld to the
MXE linker x86_64-w64-mingw32.shared-ld. It works just as
well, and only takes around 4 seconds.

Methods
Build times were recorded using the inbuilt time command, running on a
quad-core Intel(R) Core(TM) i5-1135G7, at 3.8GHz, with a Samsung 970
EVO 500GB NVMe M.2 SSD. The operating system was OpenSUSE
Leap 15.5, and the compilers used: GCC 13.2.1 and Clang 15.0.7.

The codebase used was Minsky 3.3.23, except for the ‘none’ strategy
above.

In explicitly instantiating the templates that define the descriptor, it is not
feasible to put the code change behind a feature flag. Going back to the

3	 Available from https://minsky.sourceforge.net, or https://github.com/
highperformancecoder/minsky

Strategy GCC Clang
None 1048 377

Explicit instantiation 445 287

Unrolled templates 427 291

Arity reduction 409 284

Build times for the different build time optimisations for the two
different compiler toolchains.

Table 1

Build times for the different build time optimisations for the two different compiler toolchains.

Figure 1

Linker Version Time (seconds)
GNU ld 2.41 4

LLVM ld (lld) 15.07 3.9

Mold 2.3 0.7

MXE ld.bfd 2.37 791

Link times for various linkers tested.

Table 2

https://minsky.sourceforge.net
https://github.com/highperformancecoder/minsky
https://github.com/highperformancecoder/minsky

Russell K. StandishFeature

20 | Overload | May 2024

earlier version of the code will not be comparing
apples with apples, as about a year’s worth of
development has occurred since that change. So the
particular optimisations were backed out from the
3.3.2 codebase: the explicit instantiations removed
(they were implemented in a macro, so this was
easy), then the inlined descriptor definitions
included back in the header files. The code
changes were committed to the branch compile-
optimisations-undone4.

Particular optimisation feature flags can be turned
on via Makefile flags, as shown in table 3. The
command was run after an initial make -j9
to ensure all prerequisites were built, to avoid
including the prerequisites’ build time. One can
measure the overhead time required for make to
start up via make -n, which proved to be about 1.3
seconds, so well within experimental noise.

Conclusion
The RESTService API descriptor provides a
scripting-language-independent fat API interface to
C++ code. Method arguments and return values can be marshaled using
a custom native type ‘buffer’ object, or using JSON5 encoding with the
preexisting Classdesc json descriptor. In practice, JSON5 encoding tends
to be sufficiently performant. Both a Javascript and Python bindings were
generated automatically for the Minsky systems dynamics simulator, and
furthermore, TypeScript binding were generated automatically though a
custom descriptor, leading to easier-to-read scripting code, and relatively
more type-safe use in Minsky’s front end code.

Using the RESTService descriptor comes at additional build cost,
compared with the original TCL bindings used for the EcoLab package,
which is ameliorated via a number of C++ coding techniques, the use
of the Clang toolchain over the GCC one, and the use of modern Linux
linkers. n

References
[Cherny19] Boris Cherny. Programming TypeScript: making your

JavaScript applications scale. O’Reilly, 2019.
[ECMA13] ECMA. ‘The JSON data interchange format. Technical

Report ECMA-404’, ECMA International, 2013. https://ecma-
international.org/publications-and-standards/standards/ecma-404/
accessed March 2024.

[EcoLab] EcoLab. https://ecolab.sourceforge.net accessed March 2024.
[Fielding00] Roy Thomas Fielding. Architectural styles and the design

of network-based software architectures. PhD thesis, University of
California, Irvine, 2000.

[Forrester07] Jay W Forrester. ‘System dynamics|a personal view of the
first fifty years’ System Dynamics Review: The Journal of the System
Dynamics Society, 23(2-3):345–358, 2007.

[Goldberg22] Josh Goldberg. Learning TypeScript. O’Reilly, 2022.

4	 compile-optimisations-undone branch, available from https://github.
com/highperformancecoder/minsky

[Green13] Brad Green and Shyam Seshadri. AngularJS. O’Reilly, 2013.
[Haas17] Andreas Haas, Andreas Rossberg, Derek L Schu, Ben L Titzer,

Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. ‘Bringing the web up to speed with WebAssembly’.
In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
185–200, 2017.

[Ihrig14] Colin J Ihrig. Pro Node.js for developers. Apress, 2014.
[Kredpattanakul19] Kitti Kredpattanakul and Yachai Limpiyakorn.

‘Transforming JavaScript-based web application to cross-platform
desktop with Electron’. In Information Science and Applications
2018: ICISA 2018, pages 571–579. Springer, 2019.

[Madina01] Duraid Madina and Russell K. Standish. ‘A system for
reflection in C++’. In Proceedings of AUUG2001: Always on and
Everywhere, page 207. Australian Unix Users Group, 2001.

[MXE] MXE (M cross environment). https://mxe.cc/, accessed March
2024.

[Ousterhout94] J. K. Ousterhout. TCL and the Tk Toolkit. Addison-
Wesley, 1994.

[Standish] Russell K. Standish and Steven L. Keen. Minsky. https://
sourceforge.net/projects/minsky/, accessed March 2024.

[Standish01] Russell K. Standish. Ecolab4. Complexity International, 8,
2001.

[Standish19] Russell K. Standish. ‘C++ reflection for Python binding’
in Overload, 27(152):11–18, 2019, available at https://accu.org/
journals/overload/27/152/standish_2682/.

[Tiobe] Tiobe index. https://www.tiobe.com/tiobe-index/, accessed
March 2024.

[Ueyama] Rui Ueyama. Mold: A modern linker. https://github.com/
rui314/mold accessed March 2024.

Toolchain,
Strategy

Command

GCC,none4 rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=

Clang,none4 rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=

GCC,explicit rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=

Clang,explicit rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=

GCC,unrolled rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=0xffff

Clang,unrolled rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=0xffff

GCC,arity reduction rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=0xf

Clang,arity reduction rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=0xf

Link time rm gui-js/node-addons/minskyRESTService.node; \

GCC link time time make -j9 GCC=1

Clang link time time make -j9 GCC=

Mold link time time make -j9 OPT=-fuse_ld=mold

Commands for timing different optimisation strategies.

Table 3

https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://ecolab.sourceforge.net
https://github.com/highperformancecoder/minsky
https://github.com/highperformancecoder/minsky
https://mxe.cc/
https://sourceforge.net/projects/minsky/
https://sourceforge.net/projects/minsky/
https://accu.org/journals/overload/27/152/standish_2682/
https://accu.org/journals/overload/27/152/standish_2682/
https://www.tiobe.com/tiobe-index/
https://github.com/rui314/mold
https://github.com/rui314/mold

Lucian Radu Teodorescu Feature

June 2024 | Overload | 21

Concurrency: From Theory
to Practice
Concurrency is a complicated topic.
Lucian Radu Teodorescu provides a simple theory of
concurrency which is easy to reason about and apply.

One of the big challenges with concurrency is the misalignment
between theory and practice. This includes the goals of concurrency
(e.g., improving the performance of the application) and the means

we use to achieve that goal (e.g., blocking primitives that slow down the
program). The theory of concurrency is simple and elegant. In practice,
concurrency is often messy and strays from the good practices of enabling
local reasoning and using structured programming.

We present a concurrency model that starts from the theory of
concurrency, enables local reasoning, and adheres to the ideas of
structured programming. We show that the model can be put into practice
and that it yields good results.

Most of the ideas presented here are implemented in a C++ library called
concore2full [concore2full]. The library is still a work in progress. The
original goal for this model and for this library was its inclusion in the
Hylo programming language [Hylo]. For Hylo, we want a concurrency
model that allows local reasoning and adheres to the structured
programming paradigm. We also wanted a model in which there is no
function colouring [Nystrom15], in which concurrency doesn’t require a
different programming paradigm.

This article is based on a talk I gave at the ACCU 2024 conference
[Teodorescu24]. The conference was great! The programme selection
was great; there was always something of interest to me. With many
passionate C++ engineers and speakers, the exchange of information
between participants was excellent; as they say, the best track was the
hallway track. I highly encourage all C++ enthusiasts (and not just C++)
to participate in future ACCU conferences.

What is concurrency?
Before we actually define concurrency, it’s important to draw a
distinction between what the program expresses at design-time and its
run-time behaviour. There might be subtle differences between the two.
For example, even though the program expresses instruction A before
instruction B, at run-time, the two instructions might be executed in
reverse order (if there is no dependency between them) [Wikipedia-2].
In this respect, at program design-time we express a range of run-time
possibilities, without prescribing a precise run-time behaviour.

Another example, more appropriate to our article: the code may specify
that there needs to be two threads that execute some work, but we don’t
know at run-time if the two work items are executed in parallel or whether
the execution hardware somehow sequences them. It may happen that at
run-time we have only one core available to execute the two work items,
and thus we execute them serially. The original program expresses more
possibilities than the actual execution.

More formally, we say that the execution of the program is a refinement
of the program description written in the code. The execution is more
determinate than the original program; it is more predictable and more
controllable, and adds further decisions compared to the original program.
See [Hoare14] for a more formal description of refinement, and how this
can be applied to concurrency.

From a run-time perspective, we can define concurrent execution as the
partial ordering of work execution (as opposed to non-concurrent
execution, which is a total ordering of work execution). If we denote this
ordering relation with ≤, then the following rules apply:

This means that, for two work items A ≠ B, there are only three ways in
which execution can happen:

	� A < B

	� B < A

	� neither A < B, nor B < A; we donate this by A ∥ B.

I urge the reader to pause for a moment and reflect on the significance of
this. There is no other way in which concurrent execution can happen at
run-time. From a run-time perspective, concurrency is elementary.

From a design-time perspective, things are slightly more involved, but
still simple. At design-time, we want to express constraints that would
limit the behaviour at run-time. There are four simple constraints that
immediately follow from the run-time possibilities:

	� A < B

	� B < A

	� neither A < B, nor B < A; we donate this by A ∥ B,

	� either A < B, or B < A; we call this mutually exclusive and we donate
this by A ∦ B.

Besides these simple constraints, we should also define conditional
concurrency, ℂ (c, A, B), which expands to either A ∥ B or A ∦ B, depending
on the run-time evaluation of the expression c. And, of course, we need to
expand our schema to include more than two work items; this expansion
is trivially achievable.

If we want local reasoning or structured programming, then we should
strive to make the concurrency constraints local to different functions.
In this case, we would use the simple constraints, and conditional
concurrency is not as useful.

In the context of programming languages, the goal of concurrency is to
allow the programmer to express concurrency constraints on how different
work items need to be executed. These constraints just put bounds on the
execution; they still allow a multitude of ways in which work items can
be executed.

,

,

A A

A B B C A C

A B B A A B

&

&

#

#

=

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

Lucian Radu TeodorescuFeature

22 | Overload | June 2024

Expressing concurrency in C++
Let’s now try to express these rules in C++. Let’s assume that A and B are
local work items (i.e., that needs to be executed in the body of a function).
We will encode them by using function calls.

For the first two cases, it’s easy, as we already have support from the
language:
 A() ; B()

or
 B() ; A()

There is nothing special here; we just sequence the work items in the
order we execute them.

Expressing mutual exclusion with local work items is trivial. We choose
which one we want to be before the other, and just code it like that. Thus,
both A() ; B() and B(); A() are good forms of mutual exclusion
between A and B.

To express concurrent execution, we introduce a new abstraction that can
be implemented as a function taking a lambda as an argument. The code
in Listing 1 shows an example.

In this example, we express the following concurrency constraints: A < B,
A < C, B ∥ C, B < D, and C < D.

The code behaves as if we spawn a new thread to execute C, and then join
that thread when awaiting. Of course, we are not doing this, but having
that as a mental model might help.

The spawn function returns a future object that is neither movable
nor copyable. We will discuss this restriction and alternatives later; for
now, it’s important to note that it implies that we only represent local
concurrency constraints.

This spawn/await model is similar to other async/await models
[Wikipedia-1], but the implementation details differ.

This forms the basis of the concurrency we need.

More examples
Let’s start with an example showing that this model can be used to encode
more complex graphs. Please refer to Listing 2 for an implementation of
the graph expressed in Figure 1 (overleaf).

To build a concurrent sort with this spawn primitive, we can write
something similar to Listing 3 (overleaf). In this example, we partition
the array that needs to be sorted into two parts so that all the elements

A();
auto future = spawn([] { C(); });
B();
future.await();
D();

Listing 1

int run_work() {
 auto sum = 0;
 // T1 is run before anything else.
 sum += run_task(1);

 // Flow that executes T2, T6, T13, T17.
 auto f1 = concore2full::spawn([] {
 auto local_sum = 0;
 local_sum += run_task(2);

 // T6 and T7 are run concurrently.
 auto f = concore2full::spawn([] {
 return run_task(7); });
 local_sum += run_task(6);
 local_sum += f.await();

 local_sum += run_task(13);
 local_sum += run_task(17);
 return local_sum;
 });

 // Flow that executes T3, T8.
 auto f2 = concore2full::spawn([] {
 return run_task(3) + run_task(8);
 });

 // Flow that executes T4, T9, T10, T14.
 auto f3 = concore2full::spawn([] {
 auto local_sum = 0;
 local_sum += run_task(4);

 // T9 and T10 are run concurrently.
 auto f = concore2full::spawn([] {
 return run_task(10); });
 local_sum += run_task(9);
 local_sum += f.await();

 local_sum += run_task(14);
 return local_sum;
 });

 // Flow that executes T5, T11, T12, T15, T16.
 auto f4 = concore2full::spawn([] {
 auto local_sum = 0;
 local_sum += run_task(5);

 // T11+T15 and T12+T16 are run concurrently.
 auto f = concore2full::spawn([] {
 return run_task(12) + run_task(16); });
 local_sum += run_task(11) + run_task(15);
 local_sum += f.await();
 return local_sum;
 });

 // Everything must finish before executing T18.
 sum += f1.await() + f2.await() + f3.await()
 + f4.await();
 sum += run_task(18);
 return sum;
}

Listing 2

Before we actually define concurrency,
it’s important to draw a distinction
between what the program expresses at
design-time and its run-time behaviour

Lucian Radu Teodorescu Feature

June 2024 | Overload | 23

on the left side are smaller than the elements on the right side. Then,
we can sort the left side and the right side concurrently. This process is
recursively applied until the array that needs to be sorted is small enough
that a serial sort is more efficient.

Listing 4 shows how one can use bulk_spawn to run the computation
for a Mandelbrot set concurrently. This primitive spawns multiple work
items concurrently, where the number of work items is known at run-
time.

This section shows that, using this model, one can build concurrency into
slightly more complex problems in an intuitive manner.

Structured concurrency
Let us start by reminding the reader about structured programming.
Following the Structured Programming book by Dahl, Dijkstra, and

Hoare [Dahl72], we extract two important characteristics of structured
programming (there are more, but we are just going to focus on these
two).

The first one is the idea that every operation needs to have a single entry
and a single exit point. All the basic operations have this shape; the if,
while, and for blocks all share this as well. Function calls also have this
shape. This makes all the operations in the program have the same shape.

A second significant idea in structured programming is that of recursive
decomposition. Complex functionalities can be decomposed into
smaller functionalities, which may be further divided into even smaller
functionalities. The entire program can be divided into small operations
that will ultimately reach the basic operations of the language (variable
declaration, assignment, arithmetic operations, etc.).

It’s not enough to just be able to decompose programs into smaller
operations; these operations also need to be (to a large degree) independent.
That is, one can look at one function and reason about it independently
without needing to know how other (unrelated) functions in the program
are implemented. Of course, there are interactions between the functions,
but these interactions should be reduced as much as possible.

The purpose of structured programming is to enable local reasoning. As
Dijkstra puts it, the human mind is limited. Having a linear flow in the
program, in which every operation has the same shape, and being able
to recursively decompose the program into smaller, mostly independent
chunks, helps our mind reason about the code.

Let’s now turn our attention to the properties of the future. A future can be
of four types, based on the movability and copyability traits:

	� not movable and not copyable (what we’ve seen above)

	� movable but not copyable

	� movable and copyable

	� not movable but copyable

The last option doesn’t make much sense, and we can drop it. Thus, we
have only three options to analyse. The most restrictive one is for the
future to be not movable and not copyable.

Not being able to move the future implies that the await call (we always
assume that there will be an await call) needs to be in the same scope
as the spawn. This means that the pair spawn/await can behave like a

template <std::random_access_iterator It>
void concurrent_sort(It first, It last) {
 auto size = std::distance(first, last);
 if (size_t(size) < size_threshold) {
 // Use serial sort under a certain threshold.
 std::sort(first, last);
 } else {
 // Partition the data, such as elements
 // [0, mid) < [mid] <= [mid+1, n).
 auto p = sort_partition(first, last);
 auto mid1 = p.first;
 auto mid2 = p.second;

 // Spawn work to sort the right-hand side.
 auto handle = spawn([=] { concurrent_
sort(mid2, last); });
 // Execute the sorting on the left side,
 // on the current thread.
 concurrent_sort(first, mid1);
 // We are done when both sides are done.
 handle.await();
 }
}

Listing 3

void concurrent_mandelbrot(int* vals, int max_x,
 int max_y, int depth) {
 concore2full::bulk_spawn(max_y, [=](int y) {
 for (int x = 0; x < max_x; x++) {
 vals[y * max_x + x] =
 mandelbrot_core(transform(x, y), depth);
 }
 }).await();
}

Listing 4

T2

T3

T1

T6

T13

T4

T5

T7

T8

T9

T10

T11

T12

T14

T15

T16

T17

T18

Figure 1

The purpose of structured programming
is to enable local reasoning. As Dijkstra

puts it, the human mind is limited.

Lucian Radu TeodorescuFeature

24 | Overload | June 2024

block (there are some exceptions, but we can safely ignore those). Such
a block has one entry and one exit point. This means that using spawn/
await blocks follows the idea of structured programming.

With this type of future, we can say that we obtain structured concurrency.
It makes it easy to reason about concurrency, localising the concurrency
concerns, and allowing for their encapsulation.

Now, because the await is in the same scope as spawn, it means that
the stack used at the spawn point is kept alive until await. However,
because the spawned work needs to be completed before await, it
follows that the spawn work can safely access the stack available at the
spawn point. In the example for Listing 1, both B() and C() can access
the stack that was available at the call of A().

Furthermore, we can store directly in the future object all the data needed
to synchronise between the two work items that need to be executed
concurrently. This helps performance, as there is no need for a heap
allocation.

While this future type is more restrictive than the others, it clearly
provides advantages.

Let us now look at the future that is movable (but still not copyable).
Listing 5 provides an example of using such a future.

In this example, we use a different abstraction, called escaping_spawn,
as we need to produce a different type of future. We see that the spawn
point and the await point happen at different points, and for that reason,
the concurrency model is not fully structured. We call this model weakly
structured concurrency.

While the guarantees for this style are weaker, one can still reason about
the concurrency being handled between the two functions. The declaration
of the spawn_work() function indicates that we are escaping a future.
Reasoning about such an escaped function is similar to that needed for
returned functors.

If we look at the stack access, we notice that, in this case, C() cannot
access the stack at point A() (for example, access the data variable). The
spawn_work function might exit before C() gets a chance to execute.
The spawned work can only access stack data that is kept alive by the
await call. However, because we require global reasoning to understand
where the await point is, in most cases the spawned work cannot access
the stack from which it was spawned.

Similarly, we cannot put the data required for the synchronisation on the
stack, as the stack may shortly disappear. Thus, we need to have a heap
allocation for escaping_spawn.

Thus, weakly structured concurrency is less restrictive, but is not as
efficient. This is another example that shows that, sometimes, adding
restrictions in a language may provide additional guarantees, improving
it. In this case, not being able to move a future allows us to use the stack
at the spawn point, and allows improved performance.

The bulk_spawn abstraction that we’ve seen in Listing 4, can work both
in strict structured concurrency but also in weak concurrency cases. For
bulk_spawn we allocate the frame object on the heap, as the size of the
frame depends on run-time parameters.

At the point of writing this article, we haven’t yet implemented copyable
futures; their implementation is more involved, as one spawned work
item can potentially continue multiple flows that await the result of the
original work item.

Implementing spawn
Now that we have described the expectations around using this model, let
us describe how this can be implemented. We are going to focus on the
implementation of spawn, but the implementation of escaping_spawn
and bulk_spawn is similar. We use the code from Listing 1 as our
running example.

First, we are using a task pool to handle the spawned work. This is a
pretty common technique.

Now, if the work B() takes more time than the work C(), then the
execution follows the expected pattern; please see Figure 2. There
would be no blocking wait. The original thread would execute A(), then
B(), then D(), while a worker thread would execute C(). The work
corresponding to C() would finish before the await point, thus all the
concurrent constraints are satisfied. All good.

The problem appears if executing C() takes longer than executing
B(). The original thread arrives at the await point before the work
corresponding to C() is complete. This means that the original thread
cannot continue executing D(); see Figure 3 (overleaf).

auto spawn_work() {
 A();
 std::vector<int> data;

 return escaping_spawn([] {
 C();
 });
}

void weakly_structured_concurrency() {
 auto future = spawn_work();
 B();
 future.await();
 D();
}

Listing 5

A B D

C

pre1 t1 cont

pre2 t2 cont

Figure 2

sometimes, adding restrictions in
a language may provide additional
guarantees, improving it

Lucian Radu Teodorescu Feature

June 2024 | Overload | 25

A common strategy is to block the thread until C() is done. However, this
has negative performance implications. We cannot go this route (at least,
not for the general case).

Another strategy is for the original thread to steal some other work
from the system and execute it while waiting for C() to complete.
However, while this strategy keeps throughput of the application high,
it has negative implications in terms of latency. For example, if C() is
500μs longer than B(), we might start another work item that takes 1s
to execute. So, we introduce a latency of 1s into this thread. This is not a
good strategy either.

A better strategy is to let the worker thread continue executing work
D(), instead of executing it on the original thread. A similar strategy
is employed by the when_all() algorithm from senders/receivers
[P2300R9]. If we do this, a new challenge arises: what can the original
thread do in the meantime?

Well, this may be a bit counterintuitive to the reader, but an adequate
option is to go to the thread pool and continue the work there. That is,
we essentially switch the threads. The original thread will continue to
execute whatever the worker thread has, while the worker thread will
continue to execute everything on the main flow after the await point.
We also call this behaviour thread hopping.

A simplified view of a thread is that it consists of a set of registers (most
importantly an instruction pointer, IP, and a stack pointer, SP) plus a
stack memory region associated with it. During the lifetime of the thread,
the stack pointer register keeps changing within the stack region. Thread
hopping essentially swaps important registers between threads, allowing
a thread to point to the stack region created by another thread.

A good technique to implement thread hopping is to use stackful
coroutines [Moura09]. Indeed, for my implementation, I’ve used the
boost::context library [context]. A stackful coroutine is created to execute
the spawned work; the worker thread doesn’t do much work on its stack,
as it immediately jumps to the coroutine stack.

Figure 4 shows how thread hopping works. On the left side of the figure,
we depict the stack regions; we have three of them: two for the threads
and one for the coroutine that was created. After executing B() thread 1
jumps and continues execution on the stack created for thread 2. After
executing C(), thread 2 continues to execute the continuation on the
stack created for thread 1. At the end of the work, the two threads are
essentially swapped.

There is another case that needs to be discussed. It might happen that,
during the entire execution of the work, there isn’t a worker thread

available to execute the C() work item. If, when reaching the await point,
the task corresponding to C() has not been taken by a worker thread for
execution, we execute it inline, on the original thread.

It is important to note that this execution is consistent with the concurrency
constraints. That is, B < C can be a valid execution of B ∥ C, and we still
have B < D and C < D.

In this case, we don’t create a new coroutine for executing C(). We are
doing the most reasonable thing to do in the case where we don’t have
enough hardware resources.

Allowing thread switching, we ensure that in any scenario, the system
will not block, and we always execute work items as soon as possible,
within the bounds of the given concurrency constraints.

A direct consequence of thread hopping is that a function may enter on
one thread and exit on a different thread. Please note that this still respects
the principles of structured programming.

Similar to spawn, we can implement escaping_spawn (to create
weakly structured futures) and bulk_spawn (to start executing multiple
work items at the same time).

Early measurements
The ideas presented here are still a work-in-progress. But, even in this
case, a few measurements would help to understand whether the direction
in which this is moving is promising or not.

Skynet
Let’s start with the Skynet micro-benchmark [Skynet]. We create a task,
which creates 10 more tasks, each creating 10 more tasks, etc. At the final
level, we would be creating 10 million tasks (original benchmark was
going up to 1 million, but we increased it to 10 million). The tasks at the
final level are returning their ordinal number, while the other tasks are just
summing up the values returned from the children. In total, there are five
quadrillion five trillion tasks created.

The purpose of this micro-benchmark is to check if the task model scales
for a massive number of tasks. We check whether the program deadlocks

thread 1

thread 2

coro

A
B

D

C

thread hopping

Figure 4

A B D

C

pre1 t1 cont

pre2 t2 cont

Figure 3

this may be a bit counterintuitive … but
an adequate option is to go to the thread

pool and continue the work there

Lucian Radu TeodorescuFeature

26 | Overload | June 2024

or we run out of stack or other resources. In terms of performance, this
will measure the overhead of creating and joining tasks, and it’s not very
representative of real-world workloads (where we would do more useful
work, and create fewer tasks).

The results of running this micro-benchmark are presented in Figure 5.
First, we present the ‘reference’ measurements, that is, the implementation
of the micro-benchmark in Go, which uses concurrency with goroutines.

Next, we present the measurements corresponding to three C++
implementations: one that just uses coroutines, one that uses senders/
receivers and coroutines, and one that uses senders/receivers and the
sync_wait algorithm. The coroutine version is single-threaded. The
version that uses senders/receivers with a coroutine task uses a thread
pool and fully utilises all the cores on the machine; it achieves the best
performance from all our measurements. It is important to note that the
version with sync_wait deadlocks as soon as it creates more tasks than
there are threads in the thread pool.

Then we show the measurements made for our concurrency framework
in three different scenarios: using structured concurrency (spawn), using
weakly structured concurrency (escaping_spawn), and spawning 10
items at once (bulk_spawn). All three measurements corresponding
to our implementation are faster than the Go implementation. The
spawn execution is 20% slower than the senders/receivers execution.
As expected, the structured concurrency program is faster than the other
two versions. In the weakly structured concurrency, we are doing a
heap allocation for each work item we spawn, while in the case of bulk
spawning items, we are making a heap allocation for spawning the work
for 10 children.

The results from running this micro-benchmark are overall positive.
Firstly, we did not deadlock (unlike the sync_wait version), and we
did not consume a large amount of stack. In terms of performance, we
are 20% slower than the fastest version measured. This result is not that
bad, considering the overhead is relatively small, and that the number of
spawn/await points in a typical application is relatively small.

Speedup
Another micro-benchmark worth doing is checking the scale-up of a
somewhat more realistic problem (computing the Mandelbrot values for
a 4K image, one task per row). This time, we try to specify the number of
threads that the library can use and measure the total runtime.

Figure 6 shows the speedup results for running this on my Apple MacBook
Pro, M2 Pro, 16 GB, with 12 cores (8 performance, 4 efficiency); the total
execution time for a test is between 868 ms and 9319 ms. The speedup
looks really good; for up to 8 threads, it is really close to the ideal

numbers. Going between 8 and 12 threads, the speedup is not that great,
as we are utilising the efficiency cores for performance tasks. Going past
12, the number of cores on my machine, doesn’t help; there are simply no
extra resources to speed up the computation.

For people familiar with speedup calculations, the numbers are excellent.

Analysis
Expressing concurrency
The concurrency model presented here is very good at expressing
concurrency. With just a few primitives, we are able to represent many
concurrency problems. While we don’t have conditional concurrency
implemented yet, many problems do not need it directly (expressing non-
local concurrency constraints is not best practice).

The model provides a forward progress guarantee. Once a work item
starts executing, it will complete and, eventually, all work items are
started. Thus, all the spawned work items are executed. This means that
the program will always make progress and never be stuck.

Safety
The model assumes that the user ensures proper constraints between
work items. That is, there are no two concurrent tasks that access the
same memory location such that at least one of them is writing to it. This
forms a basic precondition of writing a concurrent relationship between

Figure 6

Figure 5

Lucian Radu Teodorescu Feature

June 2024 | Overload | 27

work items. If this precondition is met, the model doesn’t have any race
conditions.

The model allows directly expressing concurrency constraints, so there
is no need for extra synchronisation; this eliminates an entire category of
safety issues. In particular, there are no deadlocks.

To conclude, if the constraints are correctly set, the model ensures
concurrency safety.

Performance
The concurrency model that we presented doesn’t require blocking waits
at the user level. This is a huge performance advantage compared to
many other models found in practice. The only performance costs that the
model incurs are localised in the calls to spawn and await. As we’ve
seen, early measurements indicate that this makes the model about 20%
slower compared to the implementation on top of senders/receivers. This
is a good number in itself.

In real-world applications, the time spent in spawn/await is tiny
compared to the useful work. This means that this 20% will not affect
the overall performance of these applications. This can be seen from the
speedup measurements we’ve presented.

To conclude, the performance appears to be good, but not necessarily the
best.

Stack usage
In general, there is a concern that models based on stackful coroutines
are bad because of their stack usage. That is, one cannot spawn too many
coroutines as it would require many stack allocations, each coroutine
needing a full stack. The results from the Skynet micro-benchmark
proved that our model doesn’t have this problem.

An important factor that influences stack consumption is the way we
create a coroutine stack for spawning new work: we only do that after
creating a task in our thread pool. This means that the number of coroutine
stacks used for spawning work is limited by the number of threads in the
thread pool.

At this point, the implementation of the model also creates a coroutine
inside await, to be able to swap continuations. The stack requirements
for this one are small, and, with a bit of extra work, can be avoided (e.g.,
by reusing the caller’s stack).

Furthermore, the worker threads don’t need a lot of stack space. They
would only jump to executing on coroutine stacks.

All these, with some extra tuning, can make the stack usage of this
concurrency model to be small. It can be smaller than the stack required
for an application that uses the threads-and-locks model and creates more
threads than necessary.

Interoperability
Here, the model doesn’t fare that well. The main reason is that, with
thread hopping, a function execution can start on one thread and end on
a different one. This may break the assumptions of the surrounding code.

If external code calls into our code that uses thread hopping, it may need
to restore the original thread each time it calls a function into our code.
This potentially involves a blocking wait (the original thread may be
doing something else, and we need to wait for it to finish). This is not
great.

Additionally, the code cannot use thread-local storage in the way people
are accustomed to.

These interoperability challenges are present in all asynchronous models
(senders/receivers, other async/await models). In each of these models,
there needs to be a synchronous-wait operation so that synchronous code
can call asynchronous code.

More to explore
The current implementation of the model is still young. More features
need to be added to it. We need copyable futures, so that multiple
parties can await the completion of a work item. Then, we have to add
cancellation to the entire model.

To be able to easily encode non-local concurrency constraints, we also
need more support for what we call conditional concurrency: that is,
sometimes work items are executed concurrently, sometimes they are
mutually exclusive, depending on some other conditions.

Another important aspect that we should consider is the integration with
I/O, timers, running work on GPUs, and custom execution contexts.

All these are in the plan for the future of the model.

Conclusions
We presented a model for concurrency that starts from the theory and tries
to put it into practice in a simple, easy-to-reason-about, and efficient way.

The theory of concurrency is surprisingly simple: just partial ordering
on the execution of work items. Instead of modelling this concurrency
with mutexes, semaphores, and other synchronisation primitives, we
can directly try to express the possible constraints in the code. We
introduce the spawn/await model, which can model the most common
concurrency constraints.

Using spawn/await will keep us in the realm of structured programming.
The spawn/await block can be considered an operation with one entry
and one exit point, so it has a similar shape to the rest of the operations.
We can still use recursive decomposition, and we can encapsulate
concurrency constraints inside functions. For example, we might add
concurrent execution to a function that previously did not have any,
without the callers being affected by it.

All this makes the model give us reasonable concurrency. That is,
something that we can easily reason about, and something that is not out-
of-ordinary, something that is not unexpected, outrageous, or excessively
costly. One doesn’t need to use dark arts to master concurrency. n

References
[concore2full] Lucian Radu Teodorescu, concore2full library,

https://github.com/hylo-lang/concore2full, accessed April 2024.
[context] Oliver Kowalke, boost::context library, https://www.boost.org/

doc/libs/1_85_0/libs/context/.
[Dahl72] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured

Programming, Academic Press Ltd., 1972.
[Hoare14] Tony Hoare, Stephan van Staden, The laws of programming

unify process calculi, Science of Computer Programming 85, 2014.
[Hylo] The Hylo Programming Language, https://www.hylo-lang.org/.
[Moura09] Ana Lúcia De Moura, Roberto Ierusalimschy, Revisiting

coroutines, ACM Transactions on Programming Languages
and Systems (TOPLAS), 2009, https://dl.acm.org/doi/
pdf/10.1145/1462166.1462167.

[Nystrom15] Bob Nystrom, What Color is Your Function?, https://
journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/.

[P2300R9] Michał Dominiak, Georgy Evtushenko, Lewis Baker, Lucian
Radu Teodorescu, Lee Howes, Kirk Shoop, Michael Garland, Eric
Niebler, Bryce Adelstein Lelbach, std::execution, 2024,
http://wg21.link/P2300R9.

[Skynet] Alexander Temerev, Skynet 1M concurrency microbenchmark,
https://github.com/atemerev/skynet.

[Teodorescu24] Lucian Radu Teodorescu, Concurrency Hylomorphism,
ACCU Conference, April 2024.

[Wikipedia-1] Wikipedia, Async/await, https://en.wikipedia.org/wiki/
Async/await, 2024.

[Wikipedia-2] Wikipedia, Out-of-order execution,
https://en.wikipedia.org/wiki/Async/await, 2024.

https://github.com/hylo-lang/concore2full
https://www.boost.org/doc/libs/1_85_0/libs/context/
https://www.boost.org/doc/libs/1_85_0/libs/context/
https://www.hylo-lang.org/
https://dl.acm.org/doi/pdf/10.1145/1462166.1462167
https://dl.acm.org/doi/pdf/10.1145/1462166.1462167
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
http://wg21.link/P2300R9
https://github.com/atemerev/skynet
https://en.wikipedia.org/wiki/Async/await
https://en.wikipedia.org/wiki/Async/await
https://en.wikipedia.org/wiki/Async/await

Chris OldwoodFeature

28 | Overload | June 2024

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He
also commentates on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and
@chrisoldwood

Afterwood
What do you do when a software system
goes wrong? Chris Oldwood discusses
designing for supportability.

One of the books which had a profound impact on me early on in my
programming career was Writing Solid Code by Steve Maguire. In
Chapter 4 (Step Through Your Code) he introduces the practice of

stepping through any new code you write, in the debugger, to see the code
in action so that you can check the data flow, such as loop variables, to
help avoid the perennial programmer nemesis – the off-by-one error. One
of the side-effects of this practice is that it forces you to think about how
to make it easy to get to that point in code in a debugger. If the code is
many layers deep in the application then you might be tempted to create
an explicit test harness that allows you to invoke the code more easily,
along with the added benefit of giving you more control over the inputs.
In turn, that thought process can have an effect on the design of the code
as you make it more ‘debuggable’ in the first place.

Although he didn’t use the term in his book back in 1993, this notion
of shaping the code to make it easier to test is now known as ‘Design
for Testability’ and has a history in the hardware world that dates back
to at least the early half of the 20th century. Black Box Testing, while
useful, can only get you so far in the hardware world and, as complexity
grew, they started to add additional features to help ensure the product
was working correctly internally. In the software world, White Box
Testing has materialized under the guise of Unit Testing, with Mocking
in particular being a realization of how the desire to make code more
testable can affect the design of components.

I continued to use the practice of stepping through my code in the
debugger as my primary means of testing for the better part of a decade.
What brought it to an end was being introduced to the newfangled practice
of automated unit testing, along with the realization that the computer
was so much more reliable at repetitive tasks like regression testing than
a human. (More details on my eventual fall from grace and subsequent
epiphany can be found in my ACCU 2017 conference talk ‘A Test of
Strength’.)

Being able to easily and reliably test my code was definitely a big win,
but it also had another side-effect that I hadn’t anticipated until I started
working on more complex systems – supportability. I got my first glimpse
of this when I discovered that a test harness I wrote to make development
of a back-end scheduling engine easier was being bundled with the
application, for when bugs in the front-end made it impossible to fix-up
the schedule. My test harness, while very raw from a GUI point of view
(the sea of database IDs felt a bit like staring at The Matrix) allowed
direct access to the back-end code so the schedule could be fixed-up by
manually driving it using the real business logic. This was considered
far safer than hacking about directly in the database as it minimised the
chances of corrupting the state. (Debugging through the front-end, the
default practice up to that point, cost you 8 minutes just waiting for it to
load before you could invoke any back-end logic.)

That experience taught me that there was more value in test harnesses
than simply being able to make a developer’s life easier. As I started
to interact with more support engineers, I began to see how hard their
life was supporting applications and systems because they were so far
removed from the developers building the system. In the intervening
three decades since that episode took place, the industry as a whole
has started to empathise more with those outside the development team
and have recognised that other areas such as InfoSec and Ops are also
valid stakeholders in the system and their needs have to be listened to
and addressed alongside those from the end users. This culminated in
the creation of the DevOps movement and a ‘you build it, you run it’
mentality, although it has since grown so much wider as the realisation
dawned that only a holistic approach to building and running systems
works in practice over the long term.

While perhaps somewhat easier now, in the past I have had to fight for
my belief in what appears to be only informally known today as Design
for Supportability. One project manager back in the late 2000s even
suggested that any time spent creating custom tooling should be my own
time, as it was not part of The Deliverables. When the ‘Business as usual’
(BAU) and Analysis teams discovered a testing tool I wrote to help me
create custom test data sets, they openly thanked me, and then I felt my
approach and time was vindicated.

When I moved to another organization in the same industry to work on
a similar system, I put supportability front and centre, letting it drive the
design and architecture to such an extent that for production it ran as a
bunch of distributed services, but the same code could also be hosted in a
single command line tool using local instead of remote procedure calls. I
called it a ‘gig-in-a-box’ because the entire distributed calculation engine
was essentially running as a monolithic process which allowed us to
easily debug, test, profile, and hence support the majority of the system’s
codebase. We even had a formal database schema called ‘support’ so our
ad hoc SQL snippets could become first class citizens.

For sure, wasting time on speculative requirements and gold-plating are
a concern, but there are ways to make that visible and, more importantly,
discover what is driving that behaviour. Any team probably already has
a bunch of half-baked, stale, duplicated support scripts and tools, so
formalising them by adding them to the codebase can only be a good
thing as then they will get the care and attention they deserve. Production
incidents are stressful enough as it is, having a good toolkit can reduce the
chances of that turning into a full-on disaster. n

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	Editorial: Breaking Bad (Habits)
	User-Defined Formatting in std::format – Part 2
	Reverse-Engineering cuBLAS
	Fat API Bindings of C++ Objects into Scripting Languages
	Concurrency: From Theory to Practice
	Afterwood

