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Breaking Bad (Habits)
Trying to make a change can be difficult. 
Frances Buontempo considers how to 
start forming new, better, habits.

As you may have noticed, I have fallen into a pattern 
of never writing an editorial for Overload and always 
making excuses. This time is no different. However, 
I have been contemplating my usual approaches 
to tasks, and more besides. Breaking bad habits is 
difficult, but the first step is usually spotting them. 

Pause for a moment, and ask yourself if you have any tendencies you 
to fall into on autopilot? Some of these might be useful, like brushing 
your teeth or going to bed at a specific time. Some may be relatively 
harmless, for example glancing at Stack Overflow or Reddit when a build 
or similar is taking a while. Both are possibly better than sitting doing 
nothing, though it might be more sensible to stand up and stretch for a 
bit, or having a sword fight [xkcd]. Sitting still for too long doesn’t do us 
any good. Bad posture is a horrible habit, as we all know, and even using 
a mouse for too long or typing badly can set off repetitive strain injury. 
Many people have opinions on potential fixes [reddit], but a standing 
desk, track ball, or some form of mixed martial arts might not solve all 
your problems. Changing how you do things might help though. 

Waking up on time may or may not be a habit for you. I do wake up, 
but my preferred time is about half eight or so. Setting an alarm helps. I 
noticed recent news saying that people’s iPhones are failing to ring when 
the morning alarm is supposed to go off [Vigliarolo24]. Oops. I remember 
getting a swanky new alarm clock which plugged straight into the wall 
socket when I was young. I was paranoid about potential power cuts 
stopping it working, so always had a back-up hand wound clock. I now 
rely on my husband as back up, because he’s definitely a morning person, 
so is usually awake a couple of hours before me. It’s odd to think back and 
notice how my day-to-day habits have changed over time. This probably 
means I am getting old(er). 

Do you have any good habits? Maybe focus on programming related 
areas, rather than everything. Do you practice? Read books or articles? 
Listen to podcasts? Do you always write tests first? Or, like me, do you 
claim to do TDD, but know full well you have a few ‘scripts’ dotted 
around that you never tested. Or shovel lots of code in main, which has 
no tests? Another bad habit I have fallen into is not bothering to use a 
library to parse arguments in a C++ project. I spent time learning to do 
this properly in Python, but never got around to picking and learning a 
C++ approach. I have tried several, so my excuse is too much choice, but 
not enough time. A very poor excuse, I know. I usually resort to a small 
hack to try to parse numbers or strings I pass in, but can never remember 
the order I set up. So, now I have confessed in public, I really must do 
something about this. Perhaps you can own up to something too, and 

use that as motivation to change. Acknowledging 
a problem is the first step to fixing it, after all. 

I suspect my argument-parsing laziness is 
based on feeling it’s a small thing and I don’t 

have time to do it properly. I feel like my small hack will be quicker. 
However, we all know the quick workaround often turns out to be a time 
sink in the long run. Sometimes, I notice other problematic approaches, 
and after a few times limping along with a ‘bodge’ I created, I get annoyed 
enough to re-create something better. Annoyance can be a motivating 
factor, but there are other ways to help yourself change track. I attended 
Phil Nash’s session ‘Rewiring your brain – with Test Driven Thinking’ 
at MeetingCpp last year. [Nash23]. He’s given several variations of this 
talk; do take time to listen to one. He talked about the reward of seeing 
the green of passing tests being habit forming. If you know you will get a 
reward for something, you might be more likely to do it. Eventually, you 
no longer need the reward itself, hence his title ‘rewiring your brain’. His 
abstract [ACCU24] addresses the idea of spending time doing the right 
thing seeming wasteful:

We all say we should write tests, or at least we should write more 
of them.

But we never seem to have the time, and our focus is on the actual 
problems we’re trying to solve. Nobody wants to be bogged down 
by busy work.

What if all of that was wrong?

What if tests could save you time, improve your focus – and even 
be fun!

Maybe the thing to do is promise yourself you will start with just one 
test first next time you have code to write. Once you have one in place, 
it’s easier to add others. I have added a single test to a few projects in 
previous jobs, and it never takes long for others to add more. One small 
change is all you need to get started.

Now, you might notice something isn’t ideal, but not be sure what to 
do instead. I don’t know the solution to this, but often talking to others 
helps. Don’t suffer in silence. Or perhaps, you don’t realise you have a 
problem. An example might be accidently relying on undefined behavior. 
If the code appears to behave on one machine, you may never notice. 
As soon as you switch or upgrade compilers, things blow up. It’s worth 
throwing an undefined behavior sanitizer at your code once in a while 
[Clang]. Sometimes code does work, but may be confusing for someone 
else to read. Code reviews can pick out potential areas for improvement 
like this. If you have been deep in something for a while, managing to get 
it working seems like success. However, as we know, code might need to 
be read at some point in the future, so ensuring it is readable is sensible. 
This often requires someone else to look with fresh eyes. If you don’t 
have anyone to hand, for example if this is a personal project, don’t be shy 
about asking the accu-general email group, or other community. 

In general, if you don’t notice something is a bit broken, you are unlikely 
to fix it. Stepping back might help you notice the bigger picture though. 
That’s why I enjoy the conferences. Even if I go to a talk that I think I know 
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a lot about, I always come away with new things to think about, or realise 
I have slightly misunderstood or forgotten something. Not everyone is 
fortunate enough to be able to attend a conference, but several now seem 
to be hybrid, allowing people who can’t afford to travel or even take all 
the time off the chance to join in. I’m pleased to see some conferences 
have offered free online tickets to anyone who has a poster submission 
accepted. Many students have to prepare a poster for a final year project. 
All we need now is to let Universities know about this opportunity. Let’s 
change the world, one step at a time. 

Change can be unnerving. Once you find a way to do something, it can be 
very difficult to adopt a new approach. They say you can’t teach an old 
dog new tricks. However, if the dog is willing to change, then anything 
might be possible. If someone tries to force you to drop old habits, you 
might be more likely to defiantly stick to your current ways. However, 
as Phil’s talk points out, if there is a reward for changing, ranging from a 
treat, to a warm fuzzy feeling from a notification saying “Tests passed”, 
even all the way through to saved time or confusion, change can happen. 
I am experimenting with a small handful of personal mantras to help 
motivate myself and do the ‘right thing’. For example, I enjoy going to 
the gym, but keep allowing other jobs to crowd in and stop me. I tell 
myself, “Go to the gym first, you’ll feel better.” I’m right, but often argue 
with myself for a bit first. “But, this task needs doing today”… “So, do it 
later, after the gym.” I’m gradually ending up just needing to say “Go to 
the gym.” Whether I can talk myself round from all bad habits this way 
remains to be seen. 

Programmers are often caricatured as arguing over silly things, such as 
brace placement, or tabs versus spaces. We do often end up disagreeing 
over seemingly simple things, but coming to an agreement with others 
who have different experiences to you can be hard. I tend to give my 
variables full names, but if I spend time reading maths code or books, I 
often fall back to single letter variable names. If I have just read up on a 
model, and the paper or book uses an x for a variable name, then you will 
often find x in my code. Don’t at me… I don’t think this is actually bad, or 
a habit. It just illustrates that current context often influences behaviour. 
I have to consciously swivel my head back to a fuller variable name, 
say horizontal_distance, if I am collaborating with others who 
don’t like the more terse approach. Trying to be consistent and respect 
conventions when appropriate is sensible. If you find a particular coding 
style really difficult, maybe you can find an automatic code formatter 
that will do this for you? Save the arguments for important issues, like 
potential production crashes or incorrectly implemented algorithms. And 
of course, automating compliance with rules, so you don’t have to do it 
yourself, is what might be expected of a proper programmer 

Now, automation and AI might not be the solution to every problem out 
there. And sometimes, you just can’t manage to change what you are 
doing at the moment. Yes, this might be personal issues like your posture 
or similar, as well as writing hacky arg parsing code. If you can’t manage 
to make that change now, don’t beat yourself up over it. I have taken 
the first step, by acknowledging my terrible code. Next time I need to 
read arguments to main, I will say “I don’t know how to do better, Yet. 
But I will one day.” And one day I will make the change. If you have a 

similar problem, be kind to yourself. Another approach might be finding 
someone to pair with, or even simply delegating the task. If you can’t do 
differently, let go. Maybe try an actual person rather than AI though? Just 
a suggestion. 

It seems appropriate to end with the relatively well-known Serenity 
prayer:

God, grant me the serenity to accept the things I cannot change, 
the courage to change the things I can, 
and the wisdom to know the difference.

However, I was going to find a reference in case a reader hasn’t come 
across this before. I now have yet another tab open [Buontempo24], and 
notice Wikipedia says it needs help. The page for the Serenity prayer 
[Wikipedia] has a banner at the top saying in bold it needs “attention 
from an expert in history”. Apparently, the specific problem is “internally 
discrepant conclusions”, among other problems. I am not sure a history 
expert can fix that. Maybe a logician or programmer is required? Another 
section possibly contains “original research”. Shocking. I thought I got a 
PhD because I had undertaken original research. I suppose my thesis did 
have a literature review first, sharing references for the state of the art at 
the time, and when I tried to do something original, I did have references 
at least to the maths and machine learning techniques I was using. 
Perhaps I have just owned up to another bad habit – getting distracted by 
being very literal when I read something. If anyone 
out there does know the history of this prayer, please 
go fix the internet for me. I don’t have time, I need to 
learn an arg parsing library. 
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User-Defined Formatting in 
std::format – Part 2
Last time, we saw how to provide formatting for a simple 
user-defined class. Spencer Collyer builds on this, showing 
how to write a formatter for more complicated types.

In the previous article in this series [Collyer24], I showed how to write 
a class to format user-defined classes using the std::format library. 
In this article I will describe how this can be extended to container 

classes or any other class that holds objects whose type is specified by the 
user of your class.

A note on the code listings: The code listings in this article have lines 
labelled with comments like // 1. Where these lines are referred to in 
the text of this article, it will be as ‘line 1’ for instance, rather than ‘the 
line labelled // 1’.

Nested formatter objects
The objects created from the formatter template structs are just 
ordinary C++ objects – there is nothing special about them1. In particular, 
there is nothing to stop you including an object of a formatter template 
type inside one of your user-defined formatter structs.

You might wonder why you would want to do that. One simple case is if 
you have a templated container class, and want to create a formatter 
that can output the container in one go, rather than having to write code to 
iterate over the container and output each value in turn. Having a nested 
formatter for the contained value type allows you to do this and allow the 
values to be formatted differently to the default, as the following examples 
will show. Other uses will no doubt come to mind for your own classes.

A formatter for std::vector
The first example we will look at is a simple formatter for 
std::vector. The code is given in Listing 1, and sample output is in 
Listing 2.

The format specification we will use has the following form:
  [ 'w' lc rc ] [ 's' sep ] [ '/'  
  [ value-fmt-spec ] ]

The element starting with w allows the user to specify characters to wrap 
the vector values in the output. The w must be followed by exactly two 
characters. The first character, lc, is written before the value, and the 
second, rc, is written after the value. If not given, no wrapper characters 
are output.

The element starting with s allows the user to specify a single character to 
act as a separator between the individual vector element values. If given, 
the s must be followed by exactly one character, which will be used as 
the separator. If not given, it defaults to the space character. If a separator 
is given it will be followed by a space in the output.

1	 Other than being called automatically by the various std::format 
functions that is, obviously.

Spencer Collyer Spencer has been programming for more years 
than he cares to remember, mostly in the financial sector, although 
in his younger years he worked on projects as diverse as monitoring 
water treatment works on the one hand, and television programme 
scheduling on the other.

#include <format>
#include <iostream>
#include <vector>

using namespace std;

template<typename T>
struct std::formatter<vector<T>>
{
  constexpr auto 
    parse(format_parse_context& parse_ctx) 
  {
    auto iter = parse_ctx.begin();
    auto get_char = [&]() { return iter
      != parse_ctx.end() ? *iter : 0; };
    char c = get_char();
    if (c == 0 || c == '}')   // 1
    {
      m_val_fmt.parse(parse_ctx);   // 2
      return iter;
    }
    auto get_next_char = [&]() {   // 3
      ++iter;
      char vc = get_char();
      if (vc == 0)
      {
        throw format_error(
          "Invalid vector format specification");
      }
      return vc;
    };
    if (c == 'w')   // 4
    {
      m_lc = get_next_char();
      m_rc = get_next_char();
      ++iter;
    }
    if ((c = get_char()) == 's')   // 5
    {
       m_sep = get_next_char();
       ++iter;
    }
    if ((c = get_char()) == '/' || c == '}') // 6
    {
      if (c == '/')   // 7
      {
        ++iter;
      }
      parse_ctx.advance_to(iter);   // 8
      iter = m_val_fmt.parse(parse_ctx);   // 9
    }
    if ((c = get_char()) != 0 && c != '}')  // 10
    {
      throw format_error(
        "Invalid vector format specification");
    }
    return iter;
  }
  auto format(const vector<T>& vec, 
    format_context& format_ctx) const

Listing 1



Spencer Collyer Feature

June 2024 | Overload | 5

The / delimits the start of the format-spec for the vector’s value type.  
This will be read by the member variable m_val_fmt, defined in line 17, 
to set up the formatting for the vector values. If not given, it will use the 
default formatting for the value type. It is allowable – although not really 
useful – to give a / character with no following format-spec.

The parse function
The first few lines of the parse function, up to line 1, are the same as the 
ones for the Point class described in my previous article.

The first notable change is line 2. This calls the parse function on the 
nested m_val_fmt object, which is the formatter for the vector’s 
value type. Doing this allows the m_val_fmt object to set up its 
formatting for the default case where no format-spec is given.

The get_next_char function defined starting at line 3 is used to read 
the next character from the format-spec. It throws an exception if there 
are no more characters to read, as indicated by getting 0 back from the 
get_char function. As with the get_char function, when this function 
is done it leaves the iter variable pointing at the character read.

The if-statement starting at line 4 simply processes any w element 
to read the wrapper characters. It should be obvious what it is doing. 
Similarly, the code starting at line 5 just processes any s element to read 
the separator character.

The if-statement starting at line 6 holds the code to initialise the 
m_val_fmt object when we don’t have an empty format-spec. The 
if-statement condition has to check for both the / character that 
indicates the value type has a format-spec, and also for the } character 
that indicates the end of the format-spec, i.e. the case where there is no 
specific format-spec for the value type.

Line 7 checks for the / character and, if present, increments iter. This 
is because the / character is not part of the value type’s format-spec so 
seeing it would confuse the m_val_fmt.parse function.

Line 8 is important because, by calling the advance_to function on 
parse_ctx, it resets parse_ctx’s idea of where in the format-spec the 
start point is located. When line 9 then calls m_val_fmt.parse, it will 
start the processing at the correct position, i.e. the start of the value type’s 
embedded format-spec, not the vector’s format-spec.

When the m_val_fmt.parse function returns, it should have processed 
everything up to the } that terminates the format-spec. Note that in this 
case the } is doing double duty, as it terminates both the vector format-
spec and the embedded value type format-spec. Line 10 carries out our 
normal check for correct termination of the format-spec.

  {
    auto pos = format_ctx.out();    // 11
    bool need_sep = false;
    for (const auto& val : vec)
    {
      if (need_sep)   //  12
      {
        *pos++ = m_sep;
        if (m_sep != ' ')
        {
          *pos++ = ' ';
        }
      }
      if (m_lc != '\0')   //  13
      {
        *pos++ = m_lc;
      }
      format_ctx.advance_to(pos); //  14
      pos = m_val_fmt.format(val,
        format_ctx);   // 15
      if (m_rc != '\0')   //  16
      {
        *pos++ = m_rc;
      }
      need_sep = true;
    }
    return pos;
  }

private:
  char m_lc = '\0';
  char m_rc = '\0';
  char m_sep = ' ';
  formatter<T> m_val_fmt; // 17
};

int main() 
{
  vector<int> vec{1, 2, 4, 8, 16, 32};
  cout << format("{}\n", vec);            // a
  cout << format("{:w[]}\n", vec);        // b
  cout << format("{:s,}\n", vec);         // c
  cout << format("{:w[]s,}\n", vec);      // d
  cout << format("{:w[]/3}\n", vec);      // e
  cout << format("{:s;/+0{}}\n", vec, 5); // f
  vector<vector<int>> vec2{ {1, 2, 3}, 
    {40, 50, 60}, {700, 800, 900} };
  cout << format("{}\n", vec2);           // g
  cout << format("{:w[]}\n", vec2);       // h
  cout << format("{:s,}\n", vec2);        // i
  cout << format("{:w[]s,}\n", vec2);     // j
  cout << format("{:w[]/s,}\n", vec2);    // k
  cout << format("{:s;/s,/03}\n", vec2);  // l
}

Listing 1 (cont’d)

a: 1 2 4 8 16 32 
b: [1] [2] [4] [8] [16] [32] 
c: 1, 2, 4, 8, 16, 32 
d: [1], [2], [4], [8], [16], [32] 
e: [  1] [  2] [  4] [  8] [ 16] [ 32] 
f: +0001; +0002; +0004; +0008; +0016; +0032 
g: 1 2 3 40 50 60 700 800 900 
h: [1 2 3] [40 50 60] [700 800 900] 
i: 1 2 3, 40 50 60, 700 800 900 
j: [1 2 3], [40 50 60], [700 800 900] 
k: [1, 2, 3] [40, 50, 60] [700, 800, 900] 
l: 001, 002, 003; 040, 050, 060; 700, 800, 900

Listing 2

The objects created from the formatter 
template structs are just ordinary C++ 

objects – there is nothing special about them



Spencer CollyerFeature

6 | Overload | June 2024

The format function
Line 11 puts the current output iterator from format_ctx into the pos 
variable. This indicates where the next data is written to in the output.

The majority of the function is just a loop over the vector’s values. The 
interesting parts are described below.

Line 12 checks if we need to output a separator character. The first time 
through the loop this will be false, but on subsequent iterations it will be 
true. The body of the if-statement just outputs the separator character, 
then if it is not a space it outputs a space character as well. As we are just 
outputting single characters each time we can use the *pos++ = c form 
to write them to the output.

Lines 13 and 16 write the wrapper characters, if they are defined.

Line 14 sets up the format_ctx variable correctly for the output in the 
next line. By calling advance_to on format_ctx we set its output 
iterator to match the position we have reached up to this point in the 
function.

Line 15 outputs the current value by calling the format function on 
the m_val_fmt object. Because we have updated the output iterator on 
format_ctx in the line above, the value will be written to the correct 
position in the output. The format function returns the new value of the 
output iterator.

Test cases
The first set of test cases in the main function use a simple vector-of-ints 
as the value to output.

Test case a checks that the default formatting works for the vector and 
its contained values.

Test cases b, c, and d just check that the various parts of the vector 
format-spec work, but with no value format-spec, so the values will just 
use the default output.

Test case e checks that using a format-spec for the value works correctly.  
Using wrapper characters lets us check that the output values are indeed 
all output in fields three characters wide.

Test case f shows that you can use nested format specifiers in the value 
format-spec, in this case picking up the width from the argument list.

The second set of test cases use a vector-of-vectors-of-ints as the value 
to output.

Test case g checks that the default formatting works.

Note that in the output for case g, there is no way to tell where one nested 
vector ends and the next one starts. Test cases h, i, and j use the various 
parts of the vector format-spec to delimit the nested vectors in various 
ways.

Test case k checks that the nested vectors are output using the value 
format-spec, as can be seen from each value in them being separated by 
the comma specified by the format-spec.

Test case l checks that the nested vector’s format-spec can handle a 
format-spec for their values – in this case indicating a three character 
wide, zero-padded field.

A formatter for std::map
The next example we will look at is a formatter for std::map. This 
is more complicated because we want to allow format-specs for both the 
key type and value type of the map. The code is given in Listing 3, and 
sample output is in Listing 4.

The format specification we will use has the following form:
  [ 'w' lc rc ] [ 'c' conn ] [ 's' sep ]
  [ '/' '{' key-fmt-spec '}' '{' value-fmt-spec '}'
  ]

The elements starting with w and s have identical purposes and default to 
the ones we used for std::vector.

The element starting with c allows you to specify the connecting character 
that is output between the key and the value. The c must be followed by 
exactly one character. If not specified, the default value is =.

The / character introduces the format-specs for the key and value types 
of the map. Unlike the case for std::vector, these format-specs are 
mandatory if you have a / character. Unsurprisingly, key-fmt-spec is the 
one for the key type, and the value-fmt-spec is the one for the value type. 
You can use a default {} for either of these if you don’t want to change 
that particular item’s format.

Note that these two nested format-specs are surrounded by { and } 
characters. This breaks one of the guidelines I gave in the previous article 
for format specification mini-languages (see the appendix ‘Simple Mini-
Language Guidelines’ in that article). The reason for this is as follows. The 
parse functions in formatters need to see a } character terminating 
the format-spec they are processing. This means when processing the key-
fmt-spec, we need a } character at the end of the key-fmt-spec, before the 
value-fmt-spec starts. This could be confusing as it might look like it is 
the } that terminates the std::map’s format-spec. Using a { at the start 
of the key-fmt-spec helps to make it clear it is a single unit. As for the 
value-fmt-spec, that could use the } at the end of the std::map format-
spec as its terminator, just like we do for std::vector above, but for 
consistency between the two format-specs it made more sense to also 
surround it with { and } characters.

The parse function
Much of the parse function is similar to the one for std::vector 
shown previously. Lines 1 and 2 handle the case where we have a default 
format-spec, calling the  respective parse functions on the nested 
formatters for the key and value types. Note that we assume here that 
the m_key_fmt.parse function doesn’t alter the parse_ctx value 
passed to it. If you are concerned that it might do, you can take a copy 
of parse_ctx and pass that copy to the m_val_fmt.parse function 
instead.

The majority of the function is just a loop 
over the vector’s values 
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      if ((c = get_char()) != '}')        // 10
      {
        throw format_error(
          "Invalid map format specification");
      }
      // Next char must be '{' at start of value 
      // format spec
      if ((c = get_next_char()) != '{')   // 11
      {
        throw format_error(
          "Invalid map format specification");
      }
      parse_ctx.advance_to(++iter);
      iter = m_val_fmt.parse(parse_ctx);
      // Iter should point to '}' at end of 
      // value format spec
      if ((c = get_char()) != '}')
      {
        throw format_error(
          "Invalid map format specification");
      }
      // Advance past the '}' at end of value 
      // format spec
      ++iter;
    }
    else if (c == '}')  // 12
    {
      parse_ctx.advance_to(iter);
      m_key_fmt.parse(parse_ctx);
      m_val_fmt.parse(parse_ctx);
    }
    if ((c = get_char()) != 0 && c != '}')  // 13
    {
      throw format_error(
        "Invalid map format specification");
    }
    return iter;
  }
  auto format(const map<K,V>& vals, 
    format_context& format_ctx) const
  {
    auto pos = format_ctx.out();    // 14
    bool need_sep = false;
    for (auto val : vals)
    {
      if (need_sep)   // 15
      {
        *pos++ = m_sep;
        if (m_sep != ' ')
        {
          *pos++ = ' ';
        }
      }
      if (m_lc != '\0')   // 16
      {
        *pos++ = m_lc;
      }
      format_ctx.advance_to(pos);     // 17
      pos = m_key_fmt.format(val.first, 
        format_ctx);

Listing 3 (cont’d)

#include <format>
#include <iostream>
#include <map>
using namespace std;

template<typename K, typename V>
struct formatter<map<K,V>>
{
  constexpr auto 
    parse(format_parse_context& parse_ctx)
  {
    auto iter = parse_ctx.begin();
    auto get_char = [&]() { return 
      iter != parse_ctx.end() ? *iter : 0; };
    char c = get_char();
    if (c == 0 || c == ‘}’)
    {
      m_key_fmt.parse(parse_ctx); // 1
      m_val_fmt.parse(parse_ctx); // 2
      return iter;
    }
    auto get_next_char = [&]() {
      ++iter;
      char vc = get_char();
      if (vc == 0)
      {
        throw format_error(
          "Invalid map format specification");
      }
      return vc;
    };
    if (c == 'w')   // 3
    {
      m_lc = get_next_char();
      m_rc = get_next_char();
      ++iter;
    }
    if ((c = get_char()) == 'c')    // 4
    {
      m_con = get_next_char();
      ++iter;
    }
    if ((c = get_char()) == 's')    // 5
    {
      m_sep = get_next_char();
      ++iter;
    }
    if ((c = get_char()) == '/')    // 6
    {
      //  Next char must be '{' at start of key
      // format spec
      if ((c = get_next_char()) != '{')   // 7
      {
        throw format_error(
          "Invalid map format specification");
      }
      parse_ctx.advance_to(++iter);       // 8
      iter = m_key_fmt.parse(parse_ctx);  // 9
      // Iter should point to '}' at end of key
      // format spec

Listing 3

these two nested format-specs are surrounded 
by { and } characters… breaks one of the 

guidelines I gave in the previous article for 
format specification mini-languages
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The if-statements starting at lines 3 and 5 read the w and s elements, 
just as the corresponding lines do for std::vector. The if-statement 
starting at line 4 reads the c element, which must have a single character 
following it.

The if-statement starting at line 6 handles any nested format-specs 
defined. As mentioned previously, they are mandatory if the / character 
is present.

Line 7 checks for the { that indicates the start of the key-fmt-spec, and if 
not present throws a format_error. We just report a generic error text 
here, but obviously a more expressive text would help the user find the 
error quicker.

Line 8 uses the advance_to function to set up the iterator in parse_
ctx. Note that we increment the value passed in as we need to skip the { 
detected in the previous line, which is not part of the key-fmt-spec. Line 9 
then calls m_key_fmt.parse so the formatter for the key type can 
parse the key-fmt-spec. Finally, line 10 checks that the key-fmt-spec is 
correctly terminated with a } character.

The code starting at line 11 then does the same work, but for the value 
type, using the m_val_fmt member variable.

If the condition in line 6 is false it means we don’t have format 
specifications for the key or value types. Line 12 checks if we have 
reached the end of the format-spec for the map, and if so the controlled 
lines call the parse functions on m_key_fmt and m_val_fmt to set 
them to their defaults.

Finally, line 13 does the usual check to make sure we have reached the 
end of the format-spec.

The format function
The format function for std::map is similar to the one for 
std::vector given previously.

Line 14 picks up the current output iterator from format_ctx. The 
function then enters a loop over all the values in the map.

Line 15 checks if we need to output a separator character, and if so the 
controlled block does that work. Line 16 then does the same for the left-
hand wrapper character.

Line 17 then sets the output iterator in format_ctx to the now-current 
value, and the following line uses m_key_fmt.format to output the 
key, returning the new value of the output iterator. Line 18 then outputs 
the onnector character.

Line 19 updates the format_ctx output iterator again so the following 
line can output the value using m_val_fmt.format.

Line 20 then outputs the right-hand wrapper character, if required.

Test cases
Test case a checks that the default formatting works for map and its 
contained key-value pairs.

Test cases b, c, d, and e check that the various parts of the map’s 
format-spec work correctly, singly and in combination.

Test cases f, g, and h test that using format-specs for the key and value 
parts works, including that using default format-specs is allowed.

Summary
In this article we have shown how you can write a formatter for a container 
type, or any other class where the types of some elements are unknown 
to you when writing the formatter because they are specified by the user 
of the class.

In the next and final article of this series I will show you how to create 
format wrappers, special purpose classes that allow you to apply specific 
formatting to existing classes. n
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      *pos++ = m_con;                 // 18
      format_ctx.advance_to(pos);     // 19
      pos = m_val_fmt.format(val.second, 
        format_ctx);
      if (m_rc != '\0')   // 20
      {
        *pos++ = m_rc;
      }
      need_sep = true;
    }
    return pos;
  }

private:
  char m_lc = '\0';
  char m_rc = '\0';
  char m_sep = ' ';
  char m_con = '=';
  formatter<K> m_key_fmt;
  formatter<V> m_val_fmt;
};

int main()
{
  map<int, string> map1{ {1, "a"}, {2, "bc"},
    {3, "def"} };
  cout << format("{}\n", map1);           // a
  cout << format("{:w[]}\n", map1);       // b
  cout << format("{:s,}\n", map1);        // c
  cout << format("{:c:}\n", map1);        // d
  cout << format("{:w[]c:s,}\n", map1);   // e
  cout << format("{:w[]/{}{5}}\n", map1); // f
  cout << format("{:s;/{3}{5}}\n", map1); // g
  cout << format("{:s;/{3}{}}\n", map1);  // h
}

Listing 3 (cont’d)

a: 1=a 2=bc 3=def
b: [1=a] [2=bc] [3=def]
c: 1=a, 2=bc, 3=def
d: 1:a 2:bc 3:def
e: [1:a], [2:bc], [3:def]
f: [1=a    ] [2=bc   ] [3=def  ]
g:   1=a    ;   2=bc   ;   3=def
h:   1=a;   2=bc;   3=def

Listing 4

https://accu.org/journals/overload/32/180/collyer/
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Reverse-Engineering cuBLAS
It’s possible to achieve cuBLAS performance with 
tensor cores by mimicking SASS instructions. 
Fabian Schuetze guides us through the process.

Importance of GEMM and GPUs

Matrix multiplication is at the heart of linear algebra and the core of 
scientific, engineering, and statistical computation. Many variants 
of matrix multiplication can be expressed to interface with the 

Basic Linear Algebra Subprograms (BLAS). The BLAS is the de facto 
standard low-level interface for matrix multiplications, and its influence 
is hard to overstate. For example, Nature named the BLAS one of ten 
computer codes that transformed science [Perkel21]. Moreover, Jack J. 
Dongarra received the Turing Award in 2021 [ACM21] as:

the primary implementor or principal investigator for [...] BLAS. [...] 
The libraries are used, practically universally, for high performance 
scientific and engineering computation on machines ranging from 
laptops to the world’s fastest supercomputers.

Finally, with C++26, programmers can interface with the BLAS directly 
from C++ (under the std::linalg namespace), thanks to P1637.

Because the low-level interface for matrix multiplication adheres to a 
de facto standard and its importance, hardware vendors offer dedicated 
implementations. These libraries are highly optimized, but their source 
code is often undisclosed.  Matrix multiplications comprise many small and 
independent computations and are well-suited for GPUs. Consequently, 
AMD, ARM, Nvidia, and Intel offer libraries for their GPUs. GPUs are, 
in essence, vector processors. They have simple (compared to modern 

CPUs) but enormous numbers of cores. Their memory units are also 
simple but provide huge throughput. To attain maximum performance, 
programmers commonly explicitly control data loading into caches.

This article extracts the essence of such computations by reverse-
engineering a matrix multiplication with Nvidia’s BLAS library 
(cuBLAS). The implementation is simple yet instructive and attains 
performance almost on par with the cuBLAS variant. Re-engineering 
the cuBLAS kernel is not too difficult when using good abstractions as 
building blocks. The kernels provided with cuBLAS are heavily tuned, and 
the best-performing kernel gets selected at runtime. The runtime chooses 
among many kernels. One can count ~5000 kernels containing GEMM 
in its name, and cuBLAS ships a whopping 100MB. In comparison, the 
BLAS library provided by Ubuntu, libblas, ships 600KB.

The performance of three different handwritten CUDA kernels and the 
cuBLAS version is shown in Figure 1.

The three versions differ in their use of PTX (which can be understood as 
a mid-level IR for Nvidia GPUs) primitives and the degree of instruction-
level parallelism (ILP) attained. A high ILP can be achieved by writing 
efficient abstractions and placing them well in the code to permit 
prefetching and avoiding pipeline stalls. PTX Modern PTX instructions 
need to be used to permit asynchronous and highly efficient loading of 
global memory. This efficiency is documented by the kernels ILP, which 
is shown in Figure 2 (overleaf).

Note, for users used to CPU optimization, the ILP is extremely high, 
which is explained by the extensive parallelism GPUs offer.

This article proceeds in the following stages: First, the basic GEMM 
implementation using Tensor cores is shown. Second, the SASS (CUDA 
assembly) code for the highly optimized CUDA kernel is analyzed, and 

Glossary
A5000 (GPU): A GPU produced by Nvidia. The A5000 is based on the 
Ampere microarchitecture. The article uses specialized instructions 
introduced with Ampere. The subsequent microarchitecture (Hopper) 
introduced new instructions to attain maximum performance on these 
types of GPUs.

BLAS (and GEMM): GEMM stands for General Matrix Multiplication. 
Refers to a group of operations (called Level 3) of the Basic Linear 
Algebra Subprograms (BLAS) too. A standardized interface to BLAS 
will become part of C++ 26 (std::linalg) as proposed by P1673. 

cuBLAS: Nvidia’s variant of the BLAS library. It contains highly 
optimized and specialized code for all GPU variants and matrix sizes. 
Its source code is not publicly accessible.

CUDA: An extension of the C language to write programs for Nvidia 
GPUs. CUDA affords programmers the ability to control the L1 cache 
of such GPUs. 

PTX: PTX (Parallel Thread Execution) describes an idealized virtual 
machine depicting an archetypical Nvidia GPU and its corresponding 
instruction set architecture (ISA). Cuda code also compiles to 
PTX, which gets further translated to (undocumented) SASS code. 
Programmers can also write PTX code.

SASS: An undocumented assembly language for Nvidia GPUs. It 
translates to binary microcode that gets executed on an actual target.

Fabian Schuetze Fabian works on computer vision and AI in the 
automotive and robotics industry. When not working, he’s enjoying 
running or drinking wine, though not at the same time. Fabian can be 
contacted at fschuetze0@gmail.com

Figure 1
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differences between the instructions of the basic implementation are 
identified. The basic implementation is refined in two steps to reach 
performance parity with cuBLAS.

Basic GEMM Implementation
The main loop of the basic implementation of a GEMM kernel with 
tensor cores is in Listing 1. This documents the basic structure of a decent 
GEMM kernel with tensor cores: Looping along the K (inner) dimension 
of the matrix product in blocks, the kernel loads blocks of the matrices A 
and B into shared memory. The load function is named load_blocking 
(which already provides a glimpse at future optimizations). The kernel 
then uses a nested loop to compute the matrix product over these blocks. 
Smaller blocks of the shared memory get loaded into local register 
files, and their matrix product gets calculated. The kernel reaches about 
60TFLOPS on an A5000, or ⅔ of the GPU limit.

The code in Listing 1 gets compiled to the following SASS assembly:
  ...
  LDG.E.128.CONSTANT R72, [R72.64]
  ...
  WARPSYNC 0xffffffff
  ...
  STS.128 [R143], R52
  ...
  BAR.SYNC 0x0
  LDSM.16.M88.4 R80, [R80]
  ...
  HMMA.16816.F16 R18, R80, R68, R18
  ...
  BAR.SYNC 0x0

The assembly reveals the inner workings of the code above: First, 
load_blocking stores 128 bits from global memory into thread-local 
registers. After the global loads, all threads in the warp wait at a barrier. 
Then, the threads store the loaded data in shared memory, and all threads 
in a block sync. Furthermore, data from shared memory is loaded as a 
matrix for processing by the tensor cores. Then, a tensor core matrix 
multiplication with half-floats ensues. Finally, all threads in the block 

wait at a barrier before the loop starts again. The way data is loaded is 
pictured in the graph in Figure 3 (overleaf).

From the very right, 255MB are loaded from device memory to the L2 
Cache before landing in the L1 Cache. As can be seen in the top left of 
the figure, there are 3.41M instructions used to load data into the local 
registers. From the local registers, the data is stored again in the shared 
memory (a portion of the L1 cache) in 3.15M requests. From the shared 
memory, the data gets accessed in 11.53M requests.

SASS code for cuBLAS assembly code
The SASS code for the cuBLAS kernel is interesting. An abbreviated 
version reads as follows:
  HMMA.16816.F32 R0, R152, R184, R0
  LDSM.16.MT88.4 R168, [R137+UR8+0x800]
  LDGSTS.E.BYPASS.LTC128B.128.CONSTANT
  [R129+UR4+0x3000], [R130.64+0x180]
  ...
  HMMA.16816.F32 R4, R152, R186, R4
  HMMA.16816.F32 R8, R152, R188, R8
  ...
  HMMA.16816.F32 R120, R164, R196, R120
  DEPBAR.LE SB0, 0x1
  ...

The assembly code highlights several aspects: The main loop starts 
with a matrix multiplication instead of a memory load. The global load 
LDGSTS.E.BYPASS.LTC128B.128.CONSTANT differs from the load 
in the basic GEMM implementation, LDG.E.128.CONSTANT R72: 
Firstly, it bypasses the register and stores the data directly in shared 
memory. Furthermore, it is an asynchronous load and does not block the 
threads. Non-blocking requires a separate memory fence to signal when 
the data is ready. Such a barrier is the dependency barrier DEPBAR.LE. 

Figure 2

for (size_t block = 0; block < K; block += 
Threadblock::kK) {
  LoaderA.load_blocking();
  LoaderB.load_blocking();
  LoaderA.next(Threadblock::kK);
  LoaderB.next(Threadblock::kK * N);
  __syncthreads();
  constexpr size_t wmma_steps 
    = Threadblock::kK / WMMAblock::kK;
  for (size_t wmma_step = 0; 
       wmma_step < wmma_steps; wmma_step++) {
    RegisterLoaderA.load();
    RegisterLoaderB.load();
    RegisterLoaderA.step(WMMAblock::kK);
    RegisterLoaderB.step
      (Bs.cols_ * WMMAblock::kN);
    matmul.compute();
  }
  RegisterLoaderA.reset(0);
  RegisterLoaderB.reset(0);
  __syncthreads();
}

Listing 1

Re-engineering the cuBLAS kernel 
is not too difficult when using good 
abstractions as building blocks
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Finally, the instructions are interleaved: There is no linear separation 
between loading data and operating on it, but a heavy mixture of 
instructions. The cuBLAS kernel achieves ~90TFLOPS. The following 
two kernels describe how to write code that produces similar SASS and 
attains the same performance.

Improvement I: buffering
Asynchronous load instructions
Starting with PTX Version 7.0 [PTX-1], CUDA provides instructions 
to copy data asynchronously from global to shared memory. The copy 
bypasses local registers and stores data directly to the shared memory 
(L1 cache). As identified above, asynchronous loading is one of the 
differences between the simple GEMM code and the cuBLAS version.

Two changes are necessary for asynchronous loading. First, the new 
load function is in Listing 2. What is was before is shown in Listing 3 
(overleaf).

The load_blocking function loads 128bit by casting eight half floats 
as an int4 and loads it. In contrast, the load function uses the macro 
CP_ASTNC_CG comprising the PTX instructions in Listing 4 (also 
overleaf).

The compiler converts it into the same SASS instruction as can be seen 
in the cuBLAS code:
  LDGSTS.E.BYPASS.LTC128B.128 [R11], [R2.64]

Because the load is non-blocking, a separate memory fence is needed 
to synchronize the threads. As stated in the PTX manual [PTX-2], 

Figure 3

__device__ void load(size_t counter) {
  const size_t global_idx = 
    offset_.row * ld_ + offset_.col;
  for (size_t row = 0; row < rows;
       row += stride_) {
    const T *src = 
      global_ptr_ + row * ld_ + global_idx;
    T *dst = 
      &shmem_(counter * rows + offset_.row + row,
              offset_.col); // + row * cols;
    constexpr size_t load_bytes = 16;
    uint32_t pos_in_ss = __cvta_generic_to_shared
      (reinterpret_cast<int4 *>(dst));
    CP_ASYNC_CG(pos_in_ss, src, load_bytes);
  }
}

Listing 2

The gift of asynchronous copy operations 
is that one can overlay computation with 

memory transfers and avoid pipeline stalls
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asynchronous copies need to be committed to a group and waited for. 
The following two macros, comprising PTX instructions, do exactly that:
  CP_ASYNC_COMMIT_GROUP();
  CP_ASYNC_WAIT_GROUP(0);

These two macros get compiled into the following SASS code:
  LDGDEPBAR
  DEPBAR.LE SB0, 0x0

These two SASS instructions are found in the cuBLAS code too. The slight 
difference between the two is covered in the next section. Visualizing 
the new load instruction LDGSTS.E.BYPASS.LTC128B.128 is very 
instructive (see Figure 4). The data goes directly from the L2 Cache 
through the shared memory (a portion of the L1 cache).

Overlapping memory loads with computation
The gift of asynchronous copy operations is that one can overlay 
computation with memory transfers and avoid pipeline stalls. The kernel 
can be expressed as shown in Listing 5 (overleaf).

The computation starts by loading data from global to shared memory. The 
class loading data from shared to global memory manages two buffers. 
Data gets read from one buffer and stored in the other buffer. The main 
loop begins by initiating a global memory load. The matrix elements are 
then computed. Afterward, the threads block until the previously fetched 
memory has been loaded. In the loop’s epilogue, the last outstanding 
matrix computation is conducted.

This kernel attains 73 TFLOPS, a 20 percent increase to the first kernel.

Improvement II: double buffering
The code above already improves the throughput of the kernel. However, 
it is still below the cuBLAS version, and the assembly instructions 
do not match. In particular, the memory barrier in the code above is 
DEPBAR.LE SB0, 0x0, but the memory barrier in the cuBLAS code 
is DEPBAR.LE SB0, 0x1. The SASS instructions are undocumented, 
but one can assume that LE stands for less or equal. Furthermore, the 
PTX docs for the memory barrier [PTX-3] state that the PTX instruction 
cp.async.wait_group N is:

cp.async.wait_group instruction will cause the executing thread 
to wait till only N or fewer of the most recent cp.async-groups 
are pending and all the prior cp.async-groups committed by the 
executing threads are complete.

Besides the difference in instructions, the kernel above also regularly 
stalled because data was unavailable. The warps stalled for almost two 
cycles for each issued instruction because data was unavailable (long 
scoreboard stall). To avoid such stalls and replicate the SASS code for the 
cuBLAS kernel, the kernel below does “double buffering”: Always have 
two shared memory operations in flight and await only the oldest one. 
Register loads are buffered too. The kernel has one register file loaded, 
loads the next one, and computes the matrix operation on the previous 
register file. The code for the kernel is in Listing 6 (opposite).

Figure 4

#define CP_ASYNC_CG(dst, src, Bytes)            \
  asm volatile(                                 \
    "cp.async.cg.shared.global.L2::128B [%0],"  \
    "[%1], %2;\n" ::"r"(dst), "l"(src),         \
    "n"(Bytes))

Listing 4

__device__ void load_blocking() {
  const size_t global_idx = 
    offset_.row * ld_ + offset_.col;
  for (size_t row = 0; row < rows;
       row += stride_) {
    const T *src = 
      global_ptr_ + row * ld_ + global_idx;
    T *dst = &shmem_(offset_.row + row,
      offset_.col); // + row * cols;
    const int4 t = 
      reinterpret_cast<const int4 *>(src)[0];
    reinterpret_cast<int4 *>(dst)[0] = t;
  }
}

Listing 3
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The prologue to the main loop begins by issuing two shared memory 
loads. The threads block until the first load is completed, while the second 
one remains in flight. Then, the first register file is loaded. The main loop 
begins by loading a further fragment of shared memory, and the tensor 
cores operate on the previous fragment. When all local registers are filled, 
the shared memory of the first block has been exhausted. No computation 
can be overlaid over the memory copies anymore. Another load is issued, 
and the warps wait until the previous load is completed.

With these advances, the throughput of the kernel advances to 89 
TFLOPS and reaches within 95% of cuBLAS performance. Further gains 
can be reaped by writing the result of the multiplication through shared 
memory back to global memory. The kernel throughput then advances to 
91 TFLOPS, 1 TFLOP behind the cuBLAS kernel. n
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size_t counter = 0;
LoaderA.load(counter);
LoaderB.load(counter);
LoaderA.next(Threadblock::kK);
LoaderB.next(Threadblock::kK * N);
CP_ASYNC_COMMIT_GROUP();
CP_ASYNC_WAIT_GROUP(0);
__syncthreads();
for (size_t block = 0;
  block < K - Threadblock::kK;
  block += Threadblock::kK) {
  LoaderA.load(counter ^ 1);
  LoaderB.load(counter ^ 1);
  LoaderA.next(Threadblock::kK);
  LoaderB.next(Threadblock::kK * N);
  constexpr size_t wmma_steps = 
    Threadblock::kK / WMMAblock::kK;
  for (size_t wmma_step = 0; 
      wmma_step < wmma_steps; ++wmma_step) {
    RegisterLoaderA.load();
    RegisterLoaderB.load();
    RegisterLoaderA.step(WMMAblock::kK);
    RegisterLoaderB.step
      (Bs.cols_ * WMMAblock::kN);
    matmul.compute();
  }
  counter ^= 1;
  RegisterLoaderA.reset(counter *
    Threadblock::kM * (Threadblock::kK + skew));
  RegisterLoaderB.reset(counter * 
    Threadblock::kK * (Threadblock::kN + skew));
  CP_ASYNC_COMMIT_GROUP();
  CP_ASYNC_WAIT_GROUP(0);
  __syncthreads();
}
for (size_t bk = 0; bk < Threadblock::kK;
     bk += WMMAblock::kK) {
  RegisterLoaderA.load();
  RegisterLoaderB.load();
  RegisterLoaderA.step(WMMAblock::kK);
  RegisterLoaderB.step(Bs.cols_ * WMMAblock::kN);
  matmul.compute();
}

Listing 5

LoaderA.load(0);
LoaderB.load(0);
LoaderA.next(Threadblock::kK);
LoaderB.next(Threadblock::kK * N);
CP_ASYNC_COMMIT_GROUP();
LoaderA.load(1);
LoaderB.load(1);
LoaderA.next(Threadblock::kK);
LoaderB.next(Threadblock::kK * N);
CP_ASYNC_COMMIT_GROUP();
CP_ASYNC_WAIT_GROUP(1); // 1 = Wait until 1 
         // recent async groups are pending
__syncthreads();
RegisterLoaderA.load(0);
RegisterLoaderB.load(0);
RegisterLoaderA.step(WMMAblock::kK);
RegisterLoaderB.step
  (SpanTypeB::cols_ * WMMAblock::kN);
size_t counter = 1;
for (size_t block = 0; block < K - 2 * 
Threadblock::kK;
  block += Threadblock::kK) {
    constexpr size_t wmma_steps =
      Threadblock::kK / WMMAblock::kK;
    for (size_t i = 0; i < wmma_steps; ++i) {
      size_t current = i % 2;
      size_t next = (i + 1) % 2;
      RegisterLoaderA.load(next);
      RegisterLoaderB.load(next);
      RegisterLoaderA.step(WMMAblock::kK);
      RegisterLoaderB.step
        (SpanTypeB::cols_ * WMMAblock::kN);
      matmul.compute(current);
      if (i == 0) {
        LoaderA.load(counter ^ 1);
        LoaderB.load(counter ^ 1);
        LoaderA.next(Threadblock::kK);
        LoaderB.next(Threadblock::kK * N);
        CP_ASYNC_COMMIT_GROUP();
        CP_ASYNC_WAIT_GROUP(1);
        __syncthreads();
        RegisterLoaderA.reset
          (counter * MemLoaderA::size_);
        RegisterLoaderB.reset
          (counter * MemLoaderB::size_);
        counter ^= 1;
      }
    }
  __syncthreads();
}

Listing 6

This article was previously published on github by Fabian on 14 March 
2024, and is available at https://fabianschuetze.github.io/category/
articles.html
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Fat API Bindings of C++ Objects 
into Scripting Languages
How do you expose a C++ object to a TypeScript layer or other 
scripting language? Russell K. Standish demonstrates an approach 
using a RESTService API that is scripting-language independent.

A fat API exposes nearly all of a C++ object’s public attributes and 
methods to a consuming environment, such as a scripting language, 
or web client. This can be contrasted with a conventional, or thin 

API, where the API is defined up front, and the C++ object provides the 
implementation, most of which is private to the C++ layer.

Obviously, reflection is required to expose C++ objects to a consuming 
layer like this – this paper explores using the Classdesc system to 
implement reflection of C++ objects into a JavaScript/TypeScript 
environment via a REST service, and also via a Node.js API module.

Introduction
Minsky [Standish] is a systems dynamics [Forrester07] simulation 
package, with an orientation towards economics, that has been under 
continual development since 2011. It is implemented in C++, and 
historically the user interface was implemented using the TCL/Tk toolkit 
[Ousterhout94], with C++ bindings provided by the EcoLab [Standish01, 
EcoLab] library.

From 2019–2021, the TCL/Tk layer was completely reimplemented in 
TypeScript [Cherny19, Goldberg22], on top of the Angular [Green13] 
and Electron [Kredpattanakul19] toolkits, running in the Node.js 
[Ihrig14] interpreter. The advantages to doing this include accessing a 
much larger ecosystem of 3rd party components, a much larger pool of 
programmers (JavaScript is consistently in the top 10 of programming 
languages according to the Tiobe index [Tiobe]), and potentially longer 
term an in-browser version of the code could be enabled via technologies 
such as WebASM [Haas17].

This paper reports on the subtask of exposing the Minsky’s C++ core 
to the TypeScript layer, allowing C++ objects to be manipulated in a 
seamless manner in TypeScript code. The approach is quite general, and 
could be readily adapted to other language binding APIs, or even without 
an explicit binding API by means of a REST service that can be accessed 
with an HTTP client implementation.

REST service
REST (REpresentational State Transfer) [Fielding00] is based on web 
technologies. The part of a URL after the domain, such as

http://www.somewhere.com/path/to/page

is called the URL’s pathinfo. In REST terminology, it is called an 
endpoint, and represents a resource. What to do with the resource is given 
by the HTTP verb of the request. A web browser typically performs a 
GET request when you type a URL into its address bar, but there are verbs 
covering all of the CRUD operations (create, read, update and delete):

	� POST create an object at the resource location
	� GET read an object at the resource location
	� PUT update the object
	� DELETE destroy the object

In something like an EcoLab model, or the Minsky project, there is a 
global static object that holds the state of the model. In the C++ code, this 
is accessible via a Meyer singleton pattern, ie the minsky() function. 
So for example, a REST GET call on /minsky/t returns the value of 
the current timestep of the Minsky model, and performing a PUT, with 
floating point data in the HTTP request body, updates the timestep to 
the supplied value. For convenience, the Minsky REST service ignores 
whether a PUT or GET is used, using the presence or absence of HTTP 
body data to determine whether the operation is an update or a read.

One can also map method calls into the same schema. For example 
/minsky/reset calls the reset method, which has no arguments. The 
above schema for reading or updating an attribute could be considered 
an example of calling an implied overloaded getter/setter method, with 
overload resolution determined by the presence or absence of data in the 
request body. Since we’re targeting the JavaScript ecosystem, it is natural 
to use JSON [ECMA13] to encode the parameters being passed, and the 
return value. Compound objects can be serialised to/from JSON using 
Classdesc’s existing JSON serialiser into a JSON object (delimited by 
braces). Calling a method with more than one parameter can be achieved 
by placing the JSON representation of the arguments in a JSON array, 
which conveniently are allowed to be of different types. So the command 
to export a LATEX document describing the model’s differential equation, 
which has signature 
  void latex(const std::string& fileName, 
    bool wrapLaTeXLines)

can be called through the REST service as
  /minsky/latex ["foo.tex", true]

where the first space delineates the pathinfo and request body.

Whilst JSON is used for data encoding in this example, it is perfectly 
possible to use alternate encodings. The RESTProcess_t1 descriptor2 
object has a  method:
  REST_PROCESS_BUFFER RESTProcess_t::process
    (const std::string& pathinfo, 
     const REST_PROCESS_BUFFER& body);

where REST_PROCESS_BUFFER is a macro representing the ‘buffer’ 
concept, which defaults to json_pack_t. A buffer implements:
	� REST_PROCESS_BUFFER::operator>>(T&)

for deserialisation to an arbitrary type

1	 Released in Classdesc 3.43, available from https://classdesc.
sourceforge.net, or https://github.com/highperformancecoder/classdesc. 

2	 In the Classdesc reflection system [Madina01], a descriptor is an 
overloaded set of function definitions that is mostly automatically 
generated by the Classdesc processor for each type used in the 
program.

Russell K. Standish Russell gained a PhD in Theoretical Physics, 
and has had a long career in computational science and high 
performance computing. Currently, he operates a consultancy 
specialising in computational science and HPC, with a range of 
clients from academia and the private sector. You can contact him at 
hpcoder@hpcoders.com.au

https://classdesc.sourceforge.net,
https://classdesc.sourceforge.net,
https://github.com/highperformancecoder/classdesc. 
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	� REST_PROCESS_BUFFER::operator<<(const T&)
for serialisation of an arbitrary type
	� RESTProcessType REST_PROCESS_BUFFER::type()

which refers to the type of the object serialised in the buffer
	� REST_PROCESS_BUFFER::Array  
  REST_PROCESS_BUFFER::array() const
returns a sequence concept object (eg std::vector or 
std::deque) if called on a REST_PROCESS_BUFFER that is an 
array, or usually an empty sequence if not.
REST_PROCESS_BUFFER::Array::operator[](size_t) 
returns a REST_PROCESS_BUFFER.

The RESTProcess_t type is a map, where the keys are the endpoints of 
the fat API, and the values are wrappers around the C++ object, or 
method. These wrappers are polymorphic, with different implementations 
depending on whether it is an object or a method, smart pointer or 
container type. The interface is shown in Listing 1.

The reason REST_PROCESS_BUFFER is a macro rather than a template 
argument, is because RESTProcessBase is polymorphic, and C++ does 
not allow templated virtual functions.

The methods signature, list and type provide a modicum of 
introspection to allow exploration of the fat API from the calling side. 
signature returns an array containing the return type and types of all 
arguments.

Node.js API
Minsky’s C++ layer renders directly to a native window for performance 
reasons. Electron’s BrowserWindow class has a native window handle 
getter method that can be used to pass the native window to the C++ 
layer. The strategy described in the previous section of making the 
C++ implementation a REST service worked well for Windows, where 
the native window handles are system wide, and X-Windows system, 
which is distributed by design, but unfortunately failed for the MacOSX 
architecture. It turns out that Mac native window handles are actually 

pointers which are, of course, only meaningful within the same process 
address space.

So the C++ layer needed to be implemented as a dynamic library, and 
linked within the Node.js process using the Node.js API. Conceptually, 
this is quite simple, implementing a single Node.js API endpoint (call) 
that takes the pathinfo and body arguments as above. Of course, it hasn’t 
stayed simple – the Node.js API allows for callbacks into the JavaScript 
world from C++, which is important for some interactive functionality; as 
well as also allowing offloading of C++ processing to a separate thread, 
and returning the results via a JavaScript promise, which is important for 
not blocking the user interface during long-running backend operations.

Attributes and methods
We map C++ public attributes to an implied pair of overloaded setter/
getter methods. If an argument is provided to the method, a setter is called, 
and the argument assigned to the attribute. For the Minsky project, JSON 
encoding of the attribute is performed, using the existing json_pack 
and json_unpack descriptors.

This is a very simple example of a method overload. However, C++ 
provides for overload resolution based on types as well as number of 
arguments. JavaScript does not provide for overloaded functions at all, 
but with type introspection built into the language, it is possible to write 
a method that can dispatch to different implementations based on types 
and number of arguments. However, with an impoverished set of types 
compared with C++, this leaves us with the problem of how to match a 
particular JavaScript call with a C++ method.

The approach taken in this work is to walk the C++ argument list for 
each overloaded C++ method (Classdesc has been able to address 
overloaded methods since version 3.37 [Standish19]), and add a penalty 
for each argument that doesn’t quite match. For instance, if the JavaScript 
environment passes a number with a non-zero fractional part, then an 
integer argument C++ will receive a small penalty, but a float or double 
parameter does not. If there are fewer arguments passed than the arity 
of the function, or no meaningful conversion is possible, then an infinite 
penalty is applied. Default C++ arguments are not supported as is, but a 
default argument can be reimplemented as an overloaded method with 
fewer argument calls, delegating to the method with the full number of 
arguments.

Finally, the method with lowest finite penalty is called, if it is unique. 
Otherwise, an exception is thrown back to the JavaScript environment.

Modern C++ variadic templates are used to walk the C++ type arguments 
to determine the penalty values. Then to call the C++ method, currying is 
used. The JSON arguments are converted to the relevant C++ type, starting 
from the last argument, currying the bound method to an n-1 argument 
functor, where the last argument has been fixed by the converted JSON 
argument. It takes one walk through the C++ argument list to generate 
the curry functors, then the final zero argument curried functor is called, 
which in turn calls the curried functors up into the final bound method. 
The technique works well, except that each of these curried functors need 

class RESTProcessBase
{
public:
virtual ~RESTProcessBase() {}
/// perform the REST operation, with \a remainder 
being the
/// query string and \a arguments as body text
virtual REST_PROCESS_BUFFER process(const string& 
remainder,
const REST_PROCESS_BUFFER& arguments)=0;
/// return signature(s) of the operations
virtual REST_PROCESS_BUFFER signature() const=0;
/// return list of subcommands to this
virtual REST_PROCESS_BUFFER list() const=0;
/// return type name of this
virtual REST_PROCESS_BUFFER type() const=0;
};

Listing 1

C++ provides for overload resolution 
based on types as well as number of 

arguments; JavaScript does not provide 
for overloaded functions at all
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to be linked, blowing up the build time. In ‘Build time optimisation’ on 
page 18, I describe a number of techniques to reduce the build times.

TypeScript
JavaScript, being a dynamic language, only checks numbers and types of 
arguments at runtime. TypeScript [Cherny19, Goldberg22] is an extension 
of JavaScript with type annotations that are checked at compile time. For 
larger more complex projects like Minsky, the TypeScript compile step is 
an invaluable means of eliminating logic errors.

The JavaScript interface to C++ is of the form
  call("method.name", args...);

which performs type checking at runtime. For Minsky, we created another 
descriptor that outputs a series of TypeScript definitions. This is not the 
only viable method. The REST API has sufficient introspection built in 
that it should be possible to build a TypeScript script that queries the 
REST API and emits the TypeScript definitions. However, doing it as a 
C++ process for the Minsky project was chosen due to greater familiarity 
with that environment.

For example, the Minsky class has a t double precision attribute, a 
complex attribute model of type Group and classifyOp method, 
amongst others. The custom TypeScript descriptor outputs a definition 
like that shown in Listing 2.

The TypeScript class CppClass provides a number of features, including 
the $prefix() accessor and the $callMethod() method that arranges 
for the named C++ method to be called on a separate thread, and returns a 
promise that is resolved or rejected with the return value or exception from 
the C++ method. Calling into C++ asynchronously in this way prevents 
the C++ code from blocking the GUI interface if the C++ method takes 
a long time to run (as some do). There is also a $callMethodSync() 
which calls into C++ directly on the Node.js thread, which is useful when 
you need to call C++ from a non-asynchronous function – such as at 
application startup. Note the use of the $ character in the identifier, which 
is a valid character in JavaScript identifiers, but not C++, so preventing 
any possibility of a name clash with C++ identifiers.

To use the class definition for any object, you just have to declare:
  let minsky=new Minsky("minsky");

Then you can access the time attribute via minsky.t() or set the time 
attribute via minsky.t(10.2). For the complex object model above, 
because one can call methods on it (eg minsky.model.numItems()), 
and in TypeScript identifiers cannot be both attributes and methods at the 
same time, setting and getting that object has to be done via the special 
$properties() method, ie minsky.model.$properties() 
returns a JavaScript object containing the public attributes of 
minsky.model, and minsky.model.$properties(object) 
sets the public attributes of minsky.model using the data contained in 
object.

Since minsky is a global object, this definition is already provided in the 
backend module. But for example, the attribute minsky.canvas.item 
is a polymorphic type with base type Item – it can be cast to the correct 
type in TypeScript via (eg)

  let variable=
    new VariableBase(minsky.canvas.item);

then variable gets all of the additional attributes and methods of the 
VariableBase subclass.

Python
A Python API descriptor already exists [Standish19]. However, it has a 
couple of serious downsides. The first is that it requires the boost-python 
library, which is not available currently for the MXE cross compiler 
[MXE], and may never be, as it depends on the Python library being 
available, the codebase of which is not friendly towards cross compilation.

The second issue is just calling the Python descriptor on the minsky 
global object was not sufficient to create all the types required, and that 
additional explicit descriptor calls were required to generate all the types. 
This is not insurmountable – something like this approach was done 
with the TypeScript descriptor, but given the full fat API was available 
through the RESTService descriptor, it was decided to use the existing 
RESTService API descriptor, and write a Python interface using the low 
level Python C API. That way, we should be able to load the built Python 
module dynamic library into an unmodified running Python interpreter on 
Windows. As well as that, there would be no inconsistencies between the 
TypeScript API and the Python API.

It was relatively straightforward, following online tutorials, to implement 
a ‘call’ function that takes one or two arguments, the first being the REST 
function name, and the second being a JSON5 string for arguments. 
The second step involved creating a REST_PROCESS_BUFFER object 
(called a PythonBuffer) that directly marshals Python objects into their 
C++ counterparts without going via JSON serialisation. Of course, for 
simplicity, and to avoid creating yet another descriptor, complex objects 
(structs, classes etc) will always go via JSON serialisation. Unfortunately, 
this exposed a weakness in the macro approach outlined above, and 
the explicit instantiation of templates, which meant that at link time 
there was a definitional conflict between REST_PROCESS_BUFFER 
being a JSONBuffer and a PythonBuffer. So for now, the PythonBuffer 
containing the arguments is serialised to JSON before being passed to 
the RESTProcess, and the returned JSON string used to instantiate a 
PythonBuffer. Another attempt at implementing a template solution of 
the RESTProcess descriptor is planned.

Finally, for return values, the PythonBuffer stores the value as an 
appropriate Python object (PyObject) for the type, whether number, 
string, array or so on. For objects, a custom object is returned that has 
the JSON string returned by the RESTProcess stored as the attribute 
_properties ($ is not a valid character in Python identifiers), and also 
new callable attributes for each method, allowing usage like:
  r=container._elem(2).method()

within Python code.

Build time optimisation
As previously alluded, extensive use of variadic templates for processing 
overloaded functions caused a dramatic impact on compile times for the 
Minsky project, which went from circa 2 minutes for the TCL/Tk version 
(which doesn’t support overloaded methods) to around 20 minutes for the 
JavaScript build. Profiling the build times indicated a massive increase 
in the time taken to link the ‘executable’ – in this case a dynamic library 
with a .node extension that Node.js loads as an ‘add on’.

One of the identified reasons for the slowdown in linking speeds is 
the large number of generated template helper functions to handle 
introspection of functional objects. The number grows as the square of 
the number of arguments of the method, and linking objects is O(n2), so 
the link time grows as the 4th power of the number of method arguments. 
As noted later, the link times for standard Linux linkers is not actually 
too bad – in the few years since this work was started, Linux linkers have 
improved remarkably.

export class Minsky extends CppClass {
  model: Group;
  constructor(prefix: string){
    super(prefix);
    this.model
      =new Group(this.$prefix()+'.model');
    ...
  }
  async classifyOp(a1: string): Promise<string>
    {return this.$callMethod('classifyOp',a1);}
  async t(...args: number[]): Promise<number>
    {return this.$callMethod('t',...args);}
  ...
}

Listing 2
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In some way, the link strategy is quite stupid, as these helper functions 
only need to be used on one place in one object file, and so resolved at 
compile time. This suggested a strategy of privately declaring the variadic 
templates and explicitly instantiating them within just a single object file 
where they were used – unfortunately, the compiler still emitted symbols 
for each and every helper template, even if they’re not linked to from 
other object files, and this technique didn’t help.

So the next thing was to remove the RESTProcess .rcd definition files 
from the include headers, and include them in just one compilation unit, 
and explicitly instantiate the template within that compilation unit. This 
improved the build time quite significantly.

The next strategy tried was to do things the old-fashioned way. Instead 
of recursively defined variadic templates, explicit templates created by 
means of a shell script that creates explicit support functions for 0, 1, 2 
etc arity functions up to some predefined maximum value (6 was found to 
be the maximum arity function present, with the renderWindow method 
being one of the biggest).

The final strategy was to reduce the maximum arity of the exposed 
methods. The simplest way to do this, given that one could pass a 
Javascript object which is packed and then unpacked into the C++ object 
via JSON, is to rollup several of the arguments into a compound object. 
In this way, the maximum arity was reduced to 4.

Finally, it turned out that the clang ecosystem had a much more performant 
compiler and linker for these purposes than the GCC ecosystem, and that 
template unrolling gave negligible benefit in the clang case.

Table 1 shows the build times for the various build time optimisations 
described in the text above, displayed graphically in figure 1. The 
optimisations were applied consecutively from top to bottom, so that the 

unrolled template method was applied to explicitly instantiated code, and 
so on.

The final test was to try the extremely performant mold linker [Ueyama]. 
As per Mold’s README, adding the flag -fuse_ld=mold is sufficient 
to delegate the link step to mold. Link times were measured by building 
the target (minskyRESTService.node), removing just the target, leaving 
all the object files present, and timing how long it takes to build the target 
again.

As can be seen from table 2, for Linux builds, the linking time is 
inconsequential, well within noise, so even though Mold is blazingly fast, 
there is no particular advantage for this project. What isn’t inconsequential 
is the link time for generating Windows versions of the Node.js addon, 
which takes over 13 minutes. Just quite why the linker is so slow for 
Windows is unclear, however a neat trick discovered whilst doing this 
benchmarking is to symbolically link the LLVM linker ld.lld to the 
MXE linker x86_64-w64-mingw32.shared-ld. It works just as 
well, and only takes around 4 seconds.

Methods
Build times were recorded using the inbuilt time command, running on a 
quad-core Intel(R) Core(TM) i5-1135G7, at 3.8GHz, with a Samsung 970 
EVO 500GB NVMe M.2 SSD. The operating system was OpenSUSE 
Leap 15.5, and the compilers used: GCC 13.2.1 and Clang 15.0.7.

The codebase used was Minsky 3.3.23, except for the ‘none’ strategy 
above.

In explicitly instantiating the templates that define the descriptor, it is not 
feasible to put the code change behind a feature flag. Going back to the 

3	 Available from https://minsky.sourceforge.net, or https://github.com/
highperformancecoder/minsky

Strategy GCC Clang
None 1048 377

Explicit instantiation 445 287

Unrolled templates 427 291

Arity reduction 409 284

Build times for the different build time optimisations for the two 
different compiler toolchains.

Table 1

Build times for the different build time optimisations for the two different compiler toolchains.

Figure 1

Linker Version Time (seconds)
GNU ld 2.41 4

LLVM ld (lld) 15.07 3.9

Mold 2.3 0.7

MXE ld.bfd 2.37 791

Link times for various linkers tested.

Table 2

https://minsky.sourceforge.net
https://github.com/highperformancecoder/minsky
https://github.com/highperformancecoder/minsky
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earlier version of the code will not be comparing 
apples with apples, as about a year’s worth of 
development has occurred since that change. So the 
particular optimisations were backed out from the 
3.3.2 codebase: the explicit instantiations removed 
(they were implemented in a macro, so this was 
easy), then the inlined descriptor definitions 
included back in the header files. The code 
changes were committed to the branch compile-
optimisations-undone4.

Particular optimisation feature flags can be turned 
on via Makefile flags, as shown in table 3. The 
command was run after an initial make -j9 
to ensure all prerequisites were built, to avoid 
including the prerequisites’ build time. One can 
measure the overhead time required for make to 
start up via make -n, which proved to be about 1.3 
seconds, so well within experimental noise.

Conclusion
The RESTService API descriptor provides a 
scripting-language-independent fat API interface to 
C++ code. Method arguments and return values can be marshaled using 
a custom native type ‘buffer’ object, or using JSON5 encoding with the 
preexisting Classdesc json descriptor. In practice, JSON5 encoding tends 
to be sufficiently performant. Both a Javascript and Python bindings were 
generated automatically for the Minsky systems dynamics simulator, and 
furthermore, TypeScript binding were generated automatically though a 
custom descriptor, leading to easier-to-read scripting code, and relatively 
more type-safe use in Minsky’s front end code.

Using the RESTService descriptor comes at additional build cost, 
compared with the original TCL bindings used for the EcoLab package, 
which is ameliorated via a number of C++ coding techniques, the use 
of the Clang toolchain over the GCC one, and the use of modern Linux 
linkers. n
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Toolchain, 
Strategy

Command

GCC,none4 rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=

Clang,none4 rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=

GCC,explicit rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=

Clang,explicit rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=

GCC,unrolled rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=0xffff

Clang,unrolled rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=0xffff

GCC,arity reduction rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=0xf

Clang,arity reduction rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=0xf

Link time rm gui-js/node-addons/minskyRESTService.node; \

GCC link time time make -j9 GCC=1

Clang link time time make -j9 GCC=

Mold link time time make -j9 OPT=-fuse_ld=mold

Commands for timing different optimisation strategies.

Table 3
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Concurrency: From Theory 
to Practice
Concurrency is a complicated topic. 
Lucian Radu Teodorescu provides a simple theory of 
concurrency which is easy to reason about and apply.

One of the big challenges with concurrency is the misalignment 
between theory and practice. This includes the goals of concurrency 
(e.g., improving the performance of the application) and the means 

we use to achieve that goal (e.g., blocking primitives that slow down the 
program). The theory of concurrency is simple and elegant. In practice, 
concurrency is often messy and strays from the good practices of enabling 
local reasoning and using structured programming.

We present a concurrency model that starts from the theory of 
concurrency, enables local reasoning, and adheres to the ideas of 
structured programming. We show that the model can be put into practice 
and that it yields good results.

Most of the ideas presented here are implemented in a C++ library called 
concore2full [concore2full]. The library is still a work in progress. The 
original goal for this model and for this library was its inclusion in the 
Hylo programming language [Hylo]. For Hylo, we want a concurrency 
model that allows local reasoning and adheres to the structured 
programming paradigm. We also wanted a model in which there is no 
function colouring [Nystrom15], in which concurrency doesn’t require a 
different programming paradigm.

This article is based on a talk I gave at the ACCU 2024 conference 
[Teodorescu24]. The conference was great! The programme selection 
was great; there was always something of interest to me. With many 
passionate C++ engineers and speakers, the exchange of information 
between participants was excellent; as they say, the best track was the 
hallway track. I highly encourage all C++ enthusiasts (and not just C++) 
to participate in future ACCU conferences.

What is concurrency?
Before we actually define concurrency, it’s important to draw a 
distinction between what the program expresses at design-time and its 
run-time behaviour. There might be subtle differences between the two. 
For example, even though the program expresses instruction A before 
instruction B, at run-time, the two instructions might be executed in 
reverse order (if there is no dependency between them) [Wikipedia-2]. 
In this respect, at program design-time we express a range of run-time 
possibilities, without prescribing a precise run-time behaviour.

Another example, more appropriate to our article: the code may specify 
that there needs to be two threads that execute some work, but we don’t 
know at run-time if the two work items are executed in parallel or whether 
the execution hardware somehow sequences them. It may happen that at 
run-time we have only one core available to execute the two work items, 
and thus we execute them serially. The original program expresses more 
possibilities than the actual execution.

More formally, we say that the execution of the program is a refinement 
of the program description written in the code. The execution is more 
determinate than the original program; it is more predictable and more 
controllable, and adds further decisions compared to the original program. 
See [Hoare14] for a more formal description of refinement, and how this 
can be applied to concurrency.

From a run-time perspective, we can define concurrent execution as the 
partial ordering of work execution (as opposed to non-concurrent 
execution, which is a total ordering of work execution). If we denote this 
ordering relation with ≤, then the following rules apply:

This means that, for two work items A ≠ B, there are only three ways in 
which execution can happen:

	� A < B

	� B < A

	� neither A < B, nor B < A; we donate this by A ∥ B.

I urge the reader to pause for a moment and reflect on the significance of 
this. There is no other way in which concurrent execution can happen at 
run-time. From a run-time perspective, concurrency is elementary.

From a design-time perspective, things are slightly more involved, but 
still simple. At design-time, we want to express constraints that would 
limit the behaviour at run-time. There are four simple constraints that 
immediately follow from the run-time possibilities:

	� A < B

	� B < A

	� neither A < B, nor B < A; we donate this by A ∥ B,

	� either A < B, or B < A; we call this mutually exclusive and we donate 
this by A ∦ B.

Besides these simple constraints, we should also define conditional 
concurrency, ℂ (c, A, B), which expands to either A ∥ B or A ∦ B, depending 
on the run-time evaluation of the expression c. And, of course, we need to 
expand our schema to include more than two work items; this expansion 
is trivially achievable.

If we want local reasoning or structured programming, then we should 
strive to make the concurrency constraints local to different functions. 
In this case, we would use the simple constraints, and conditional 
concurrency is not as useful.

In the context of programming languages, the goal of concurrency is to 
allow the programmer to express concurrency constraints on how different 
work items need to be executed. These constraints just put bounds on the 
execution; they still allow a multitude of ways in which work items can 
be executed.
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Expressing concurrency in C++
Let’s now try to express these rules in C++. Let’s assume that A and B are 
local work items (i.e., that needs to be executed in the body of a function). 
We will encode them by using function calls.

For the first two cases, it’s easy, as we already have support from the 
language: 
  A() ; B()

or
  B() ; A()

There is nothing special here; we just sequence the work items in the 
order we execute them.

Expressing mutual exclusion with local work items is trivial. We choose 
which one we want to be before the other, and just code it like that. Thus, 
both A() ; B() and B(); A() are good forms of mutual exclusion 
between A and B.

To express concurrent execution, we introduce a new abstraction that can 
be implemented as a function taking a lambda as an argument. The code 
in Listing 1 shows an example.

In this example, we express the following concurrency constraints: A < B,  
A < C, B ∥ C, B < D, and C < D.

The code behaves as if we spawn a new thread to execute C, and then join 
that thread when awaiting. Of course, we are not doing this, but having 
that as a mental model might help.

The spawn function returns a future object that is neither movable 
nor copyable. We will discuss this restriction and alternatives later; for 
now, it’s important to note that it implies that we only represent local 
concurrency constraints.

This spawn/await model is similar to other async/await models 
[Wikipedia-1], but the implementation details differ.

This forms the basis of the concurrency we need.

More examples
Let’s start with an example showing that this model can be used to encode 
more complex graphs. Please refer to Listing 2 for an implementation of 
the graph expressed in Figure 1 (overleaf).

To build a concurrent sort with this spawn primitive, we can write 
something similar to Listing 3 (overleaf). In this example, we partition 
the array that needs to be sorted into two parts so that all the elements 

A();
auto future = spawn([] { C(); });
B();
future.await();
D();

Listing 1

int run_work() {
  auto sum = 0;
  // T1 is run before anything else.
  sum += run_task(1);

  // Flow that executes T2, T6, T13, T17.
  auto f1 = concore2full::spawn([] {
    auto local_sum = 0;
    local_sum += run_task(2);

    // T6 and T7 are run concurrently.
    auto f = concore2full::spawn([] {
      return run_task(7); });
    local_sum += run_task(6);
    local_sum += f.await();

    local_sum += run_task(13);
    local_sum += run_task(17);
    return local_sum;
  });

  // Flow that executes T3, T8.
  auto f2 = concore2full::spawn([] {
    return run_task(3) + run_task(8);
  });

  // Flow that executes T4, T9, T10, T14.
  auto f3 = concore2full::spawn([] {
    auto local_sum = 0;
    local_sum += run_task(4);

    // T9 and T10 are run concurrently.
    auto f = concore2full::spawn([] {
      return run_task(10); });
    local_sum += run_task(9);
    local_sum += f.await();

    local_sum += run_task(14);
    return local_sum;
  });

  // Flow that executes T5, T11, T12, T15, T16.
  auto f4 = concore2full::spawn([] {
    auto local_sum = 0;
    local_sum += run_task(5);

    // T11+T15 and T12+T16 are run concurrently.
    auto f = concore2full::spawn([] {
      return run_task(12) + run_task(16); });
    local_sum += run_task(11) + run_task(15);
    local_sum += f.await();
    return local_sum;
  });

  // Everything must finish before executing T18.
  sum += f1.await() + f2.await() + f3.await() 
    + f4.await();
  sum += run_task(18);
  return sum;
}

Listing 2

Before we actually define concurrency, 
it’s important to draw a distinction 
between what the program expresses at 
design-time and its run-time behaviour
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on the left side are smaller than the elements on the right side. Then, 
we can sort the left side and the right side concurrently. This process is 
recursively applied until the array that needs to be sorted is small enough 
that a serial sort is more efficient.

Listing 4 shows how one can use bulk_spawn to run the computation 
for a Mandelbrot set concurrently. This primitive spawns multiple work 
items concurrently, where the number of work items is known at run-
time.

This section shows that, using this model, one can build concurrency into 
slightly more complex problems in an intuitive manner.

Structured concurrency
Let us start by reminding the reader about structured programming. 
Following the Structured Programming book by Dahl, Dijkstra, and 

Hoare [Dahl72], we extract two important characteristics of structured 
programming (there are more, but we are just going to focus on these 
two).

The first one is the idea that every operation needs to have a single entry 
and a single exit point. All the basic operations have this shape; the if, 
while, and for blocks all share this as well. Function calls also have this 
shape. This makes all the operations in the program have the same shape.

A second significant idea in structured programming is that of recursive 
decomposition. Complex functionalities can be decomposed into 
smaller functionalities, which may be further divided into even smaller 
functionalities. The entire program can be divided into small operations 
that will ultimately reach the basic operations of the language (variable 
declaration, assignment, arithmetic operations, etc.).

It’s not enough to just be able to decompose programs into smaller 
operations; these operations also need to be (to a large degree) independent. 
That is, one can look at one function and reason about it independently 
without needing to know how other (unrelated) functions in the program 
are implemented. Of course, there are interactions between the functions, 
but these interactions should be reduced as much as possible.

The purpose of structured programming is to enable local reasoning. As 
Dijkstra puts it, the human mind is limited. Having a linear flow in the 
program, in which every operation has the same shape, and being able 
to recursively decompose the program into smaller, mostly independent 
chunks, helps our mind reason about the code.

Let’s now turn our attention to the properties of the future. A future can be 
of four types, based on the movability and copyability traits:

	� not movable and not copyable (what we’ve seen above)

	� movable but not copyable

	� movable and copyable

	� not movable but copyable

The last option doesn’t make much sense, and we can drop it. Thus, we 
have only three options to analyse. The most restrictive one is for the 
future to be not movable and not copyable.

Not being able to move the future implies that the await call (we always 
assume that there will be an await call) needs to be in the same scope 
as the spawn. This means that the pair spawn/await can behave like a 

template <std::random_access_iterator It>
void concurrent_sort(It first, It last) {
  auto size = std::distance(first, last);
  if (size_t(size) < size_threshold) {
    // Use serial sort under a certain threshold.
    std::sort(first, last);
  } else {
    // Partition the data, such as elements 
    // [0, mid) < [mid] <= [mid+1, n).
    auto p = sort_partition(first, last);
    auto mid1 = p.first;
    auto mid2 = p.second;

    // Spawn work to sort the right-hand side.
    auto handle = spawn([=] { concurrent_
sort(mid2, last); });
    // Execute the sorting on the left side, 
    // on the current thread.
    concurrent_sort(first, mid1);
    // We are done when both sides are done.
    handle.await();
  }
}

Listing 3

void concurrent_mandelbrot(int* vals, int max_x,
     int max_y, int depth) {
  concore2full::bulk_spawn(max_y, [=](int y) {
    for (int x = 0; x < max_x; x++) {
      vals[y * max_x + x] = 
        mandelbrot_core(transform(x, y), depth);
    }
  }).await();
}

Listing 4

T2

T3

T1

T6

T13

T4

T5

T7

T8

T9

T10

T11

T12

T14

T15

T16

T17

T18

Figure 1

The purpose of structured programming 
is to enable local reasoning. As Dijkstra 

puts it, the human mind is limited.  
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block (there are some exceptions, but we can safely ignore those). Such 
a block has one entry and one exit point. This means that using spawn/
await blocks follows the idea of structured programming.

With this type of future, we can say that we obtain structured concurrency. 
It makes it easy to reason about concurrency, localising the concurrency 
concerns, and allowing for their encapsulation.

Now, because the await is in the same scope as spawn, it means that 
the stack used at the spawn point is kept alive until await. However, 
because the spawned work needs to be completed before await, it 
follows that the spawn work can safely access the stack available at the 
spawn point. In the example for Listing 1, both B() and C() can access 
the stack that was available at the call of A().

Furthermore, we can store directly in the future object all the data needed 
to synchronise between the two work items that need to be executed 
concurrently. This helps performance, as there is no need for a heap 
allocation.

While this future type is more restrictive than the others, it clearly 
provides advantages.

Let us now look at the future that is movable (but still not copyable). 
Listing 5 provides an example of using such a future.

In this example, we use a different abstraction, called escaping_spawn, 
as we need to produce a different type of future. We see that the spawn 
point and the await point happen at different points, and for that reason, 
the concurrency model is not fully structured. We call this model weakly 
structured concurrency.

While the guarantees for this style are weaker, one can still reason about 
the concurrency being handled between the two functions. The declaration 
of the spawn_work() function indicates that we are escaping a future. 
Reasoning about such an escaped function is similar to that needed for 
returned functors.

If we look at the stack access, we notice that, in this case, C() cannot 
access the stack at point A() (for example, access the data variable). The 
spawn_work function might exit before C() gets a chance to execute. 
The spawned work can only access stack data that is kept alive by the 
await call. However, because we require global reasoning to understand 
where the await point is, in most cases the spawned work cannot access 
the stack from which it was spawned.

Similarly, we cannot put the data required for the synchronisation on the 
stack, as the stack may shortly disappear. Thus, we need to have a heap 
allocation for escaping_spawn.

Thus, weakly structured concurrency is less restrictive, but is not as 
efficient. This is another example that shows that, sometimes, adding 
restrictions in a language may provide additional guarantees, improving 
it. In this case, not being able to move a future allows us to use the stack 
at the spawn point, and allows improved performance.

The bulk_spawn abstraction that we’ve seen in Listing 4, can work both 
in strict structured concurrency but also in weak concurrency cases. For 
bulk_spawn we allocate the frame object on the heap, as the size of the 
frame depends on run-time parameters.

At the point of writing this article, we haven’t yet implemented copyable 
futures; their implementation is more involved, as one spawned work 
item can potentially continue multiple flows that await the result of the 
original work item.

Implementing spawn
Now that we have described the expectations around using this model, let 
us describe how this can be implemented. We are going to focus on the 
implementation of spawn, but the implementation of escaping_spawn 
and bulk_spawn is similar. We use the code from Listing 1 as our 
running example.

First, we are using a task pool to handle the spawned work. This is a 
pretty common technique.

Now, if the work B() takes more time than the work C(), then the 
execution follows the expected pattern; please see Figure 2. There 
would be no blocking wait. The original thread would execute A(), then 
B(), then D(), while a worker thread would execute C(). The work 
corresponding to C() would finish before the await point, thus all the 
concurrent constraints are satisfied. All good.

The problem appears if executing C() takes longer than executing 
B(). The original thread arrives at the await point before the work 
corresponding to C() is complete. This means that the original thread 
cannot continue executing D(); see Figure 3 (overleaf).

auto spawn_work() {
  A();
  std::vector<int> data;

  return escaping_spawn([] {
    C();
  });
}

void weakly_structured_concurrency() {
  auto future = spawn_work();
  B();
  future.await();
  D();
}

Listing 5

A B D

C

pre1 t1 cont

pre2 t2 cont

Figure 2

sometimes, adding restrictions in 
a language may provide additional 
guarantees, improving it
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A common strategy is to block the thread until C() is done. However, this 
has negative performance implications. We cannot go this route (at least, 
not for the general case).

Another strategy is for the original thread to steal some other work 
from the system and execute it while waiting for C() to complete. 
However, while this strategy keeps throughput of the application high, 
it has negative implications in terms of latency. For example, if C() is 
500μs longer than B(), we might start another work item that takes 1s 
to execute. So, we introduce a latency of 1s into this thread. This is not a 
good strategy either.

A better strategy is to let the worker thread continue executing work 
D(), instead of executing it on the original thread. A similar strategy 
is employed by the when_all() algorithm from senders/receivers 
[P2300R9]. If we do this, a new challenge arises: what can the original 
thread do in the meantime?

Well, this may be a bit counterintuitive to the reader, but an adequate 
option is to go to the thread pool and continue the work there. That is, 
we essentially switch the threads. The original thread will continue to 
execute whatever the worker thread has, while the worker thread will 
continue to execute everything on the main flow after the await point. 
We also call this behaviour thread hopping.

A simplified view of a thread is that it consists of a set of registers (most 
importantly an instruction pointer, IP, and a stack pointer, SP) plus a 
stack memory region associated with it. During the lifetime of the thread, 
the stack pointer register keeps changing within the stack region. Thread 
hopping essentially swaps important registers between threads, allowing 
a thread to point to the stack region created by another thread.

A good technique to implement thread hopping is to use stackful 
coroutines [Moura09]. Indeed, for my implementation, I’ve used the 
boost::context library [context]. A stackful coroutine is created to execute 
the spawned work; the worker thread doesn’t do much work on its stack, 
as it immediately jumps to the coroutine stack.

Figure 4 shows how thread hopping works. On the left side of the figure, 
we depict the stack regions; we have three of them: two for the threads 
and one for the coroutine that was created. After executing B() thread 1 
jumps and continues execution on the stack created for thread 2. After 
executing C(), thread 2 continues to execute the continuation on the 
stack created for thread 1. At the end of the work, the two threads are 
essentially swapped.

There is another case that needs to be discussed. It might happen that, 
during the entire execution of the work, there isn’t a worker thread 

available to execute the C() work item. If, when reaching the await point, 
the task corresponding to C() has not been taken by a worker thread for 
execution, we execute it inline, on the original thread.

It is important to note that this execution is consistent with the concurrency 
constraints. That is, B < C can be a valid execution of B ∥ C, and we still 
have B < D and C < D.

In this case, we don’t create a new coroutine for executing C(). We are 
doing the most reasonable thing to do in the case where we don’t have 
enough hardware resources.

Allowing thread switching, we ensure that in any scenario, the system 
will not block, and we always execute work items as soon as possible, 
within the bounds of the given concurrency constraints.

A direct consequence of thread hopping is that a function may enter on 
one thread and exit on a different thread. Please note that this still respects 
the principles of structured programming.

Similar to spawn, we can implement escaping_spawn (to create 
weakly structured futures) and bulk_spawn (to start executing multiple 
work items at the same time).

Early measurements
The ideas presented here are still a work-in-progress. But, even in this 
case, a few measurements would help to understand whether the direction 
in which this is moving is promising or not.

Skynet
Let’s start with the Skynet micro-benchmark [Skynet]. We create a task, 
which creates 10 more tasks, each creating 10 more tasks, etc. At the final 
level, we would be creating 10 million tasks (original benchmark was 
going up to 1 million, but we increased it to 10 million). The tasks at the 
final level are returning their ordinal number, while the other tasks are just 
summing up the values returned from the children. In total, there are five 
quadrillion five trillion tasks created.

The purpose of this micro-benchmark is to check if the task model scales 
for a massive number of tasks. We check whether the program deadlocks 

thread 1
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this may be a bit counterintuitive … but 
an adequate option is to go to the thread 

pool and continue the work there
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or we run out of stack or other resources. In terms of performance, this 
will measure the overhead of creating and joining tasks, and it’s not very 
representative of real-world workloads (where we would do more useful 
work, and create fewer tasks).

The results of running this micro-benchmark are presented in Figure 5. 
First, we present the ‘reference’ measurements, that is, the implementation 
of the micro-benchmark in Go, which uses concurrency with goroutines.

Next, we present the measurements corresponding to three C++ 
implementations: one that just uses coroutines, one that uses senders/
receivers and coroutines, and one that uses senders/receivers and the 
sync_wait algorithm. The coroutine version is single-threaded. The 
version that uses senders/receivers with a coroutine task uses a thread 
pool and fully utilises all the cores on the machine; it achieves the best 
performance from all our measurements. It is important to note that the 
version with sync_wait deadlocks as soon as it creates more tasks than 
there are threads in the thread pool.

Then we show the measurements made for our concurrency framework 
in three different scenarios: using structured concurrency (spawn), using 
weakly structured concurrency (escaping_spawn), and spawning 10 
items at once (bulk_spawn). All three measurements corresponding 
to our implementation are faster than the Go implementation. The 
spawn execution is 20% slower than the senders/receivers execution. 
As expected, the structured concurrency program is faster than the other 
two versions. In the weakly structured concurrency, we are doing a 
heap allocation for each work item we spawn, while in the case of bulk 
spawning items, we are making a heap allocation for spawning the work 
for 10 children.

The results from running this micro-benchmark are overall positive. 
Firstly, we did not deadlock (unlike the sync_wait version), and we 
did not consume a large amount of stack. In terms of performance, we 
are 20% slower than the fastest version measured. This result is not that 
bad, considering the overhead is relatively small, and that the number of 
spawn/await points in a typical application is relatively small.

Speedup
Another micro-benchmark worth doing is checking the scale-up of a 
somewhat more realistic problem (computing the Mandelbrot values for 
a 4K image, one task per row). This time, we try to specify the number of 
threads that the library can use and measure the total runtime.

Figure 6 shows the speedup results for running this on my Apple MacBook 
Pro, M2 Pro, 16 GB, with 12 cores (8 performance, 4 efficiency); the total 
execution time for a test is between 868 ms and 9319 ms. The speedup 
looks really good; for up to 8 threads, it is really close to the ideal 

numbers. Going between 8 and 12 threads, the speedup is not that great, 
as we are utilising the efficiency cores for performance tasks. Going past 
12, the number of cores on my machine, doesn’t help; there are simply no 
extra resources to speed up the computation.

For people familiar with speedup calculations, the numbers are excellent.

Analysis
Expressing concurrency
The concurrency model presented here is very good at expressing 
concurrency. With just a few primitives, we are able to represent many 
concurrency problems. While we don’t have conditional concurrency 
implemented yet, many problems do not need it directly (expressing non-
local concurrency constraints is not best practice).

The model provides a forward progress guarantee. Once a work item 
starts executing, it will complete and, eventually, all work items are 
started. Thus, all the spawned work items are executed. This means that 
the program will always make progress and never be stuck.

Safety
The model assumes that the user ensures proper constraints between 
work items. That is, there are no two concurrent tasks that access the 
same memory location such that at least one of them is writing to it. This 
forms a basic precondition of writing a concurrent relationship between 

Figure 6

Figure 5
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work items. If this precondition is met, the model doesn’t have any race 
conditions.

The model allows directly expressing concurrency constraints, so there 
is no need for extra synchronisation; this eliminates an entire category of 
safety issues. In particular, there are no deadlocks.

To conclude, if the constraints are correctly set, the model ensures 
concurrency safety.

Performance
The concurrency model that we presented doesn’t require blocking waits 
at the user level. This is a huge performance advantage compared to 
many other models found in practice. The only performance costs that the 
model incurs are localised in the calls to spawn and await. As we’ve 
seen, early measurements indicate that this makes the model about 20% 
slower compared to the implementation on top of senders/receivers. This 
is a good number in itself.

In real-world applications, the time spent in spawn/await is tiny 
compared to the useful work. This means that this 20% will not affect 
the overall performance of these applications. This can be seen from the 
speedup measurements we’ve presented.

To conclude, the performance appears to be good, but not necessarily the 
best.

Stack usage
In general, there is a concern that models based on stackful coroutines 
are bad because of their stack usage. That is, one cannot spawn too many 
coroutines as it would require many stack allocations, each coroutine 
needing a full stack. The results from the Skynet micro-benchmark 
proved that our model doesn’t have this problem.

An important factor that influences stack consumption is the way we 
create a coroutine stack for spawning new work: we only do that after 
creating a task in our thread pool. This means that the number of coroutine 
stacks used for spawning work is limited by the number of threads in the 
thread pool.

At this point, the implementation of the model also creates a coroutine 
inside await, to be able to swap continuations. The stack requirements 
for this one are small, and, with a bit of extra work, can be avoided (e.g., 
by reusing the caller’s stack).

Furthermore, the worker threads don’t need a lot of stack space. They 
would only jump to executing on coroutine stacks.

All these, with some extra tuning, can make the stack usage of this 
concurrency model to be small. It can be smaller than the stack required 
for an application that uses the threads-and-locks model and creates more 
threads than necessary.

Interoperability
Here, the model doesn’t fare that well. The main reason is that, with 
thread hopping, a function execution can start on one thread and end on 
a different one. This may break the assumptions of the surrounding code.

If external code calls into our code that uses thread hopping, it may need 
to restore the original thread each time it calls a function into our code. 
This potentially involves a blocking wait (the original thread may be 
doing something else, and we need to wait for it to finish). This is not 
great.

Additionally, the code cannot use thread-local storage in the way people 
are accustomed to.

These interoperability challenges are present in all asynchronous models 
(senders/receivers, other async/await models). In each of these models, 
there needs to be a synchronous-wait operation so that synchronous code 
can call asynchronous code.

More to explore
The current implementation of the model is still young. More features 
need to be added to it. We need copyable futures, so that multiple 
parties can await the completion of a work item. Then, we have to add 
cancellation to the entire model.

To be able to easily encode non-local concurrency constraints, we also 
need more support for what we call conditional concurrency: that is, 
sometimes work items are executed concurrently, sometimes they are 
mutually exclusive, depending on some other conditions.

Another important aspect that we should consider is the integration with 
I/O, timers, running work on GPUs, and custom execution contexts.

All these are in the plan for the future of the model.

Conclusions
We presented a model for concurrency that starts from the theory and tries 
to put it into practice in a simple, easy-to-reason-about, and efficient way.

The theory of concurrency is surprisingly simple: just partial ordering 
on the execution of work items. Instead of modelling this concurrency 
with mutexes, semaphores, and other synchronisation primitives, we 
can directly try to express the possible constraints in the code. We 
introduce the spawn/await model, which can model the most common 
concurrency constraints.

Using spawn/await will keep us in the realm of structured programming. 
The spawn/await block can be considered an operation with one entry 
and one exit point, so it has a similar shape to the rest of the operations. 
We can still use recursive decomposition, and we can encapsulate 
concurrency constraints inside functions. For example, we might add 
concurrent execution to a function that previously did not have any, 
without the callers being affected by it.

All this makes the model give us reasonable concurrency. That is, 
something that we can easily reason about, and something that is not out-
of-ordinary, something that is not unexpected, outrageous, or excessively 
costly. One doesn’t need to use dark arts to master concurrency. n
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Afterwood
What do you do when a software system 
goes wrong? Chris Oldwood discusses 
designing for supportability.

One of the books which had a profound impact on me early on in my 
programming career was Writing Solid Code by Steve Maguire. In 
Chapter 4 (Step Through Your Code) he introduces the practice of 

stepping through any new code you write, in the debugger, to see the code 
in action so that you can check the data flow, such as loop variables, to 
help avoid the perennial programmer nemesis – the off-by-one error. One 
of the side-effects of this practice is that it forces you to think about how 
to make it easy to get to that point in code in a debugger. If the code is 
many layers deep in the application then you might be tempted to create 
an explicit test harness that allows you to invoke the code more easily, 
along with the added benefit of giving you more control over the inputs. 
In turn, that thought process can have an effect on the design of the code 
as you make it more ‘debuggable’ in the first place.

Although he didn’t use the term in his book back in 1993, this notion 
of shaping the code to make it easier to test is now known as ‘Design 
for Testability’ and has a history in the hardware world that dates back 
to at least the early half of the 20th century. Black Box Testing, while 
useful, can only get you so far in the hardware world and, as complexity 
grew, they started to add additional features to help ensure the product 
was working correctly internally. In the software world, White Box 
Testing has materialized under the guise of Unit Testing, with Mocking 
in particular being a realization of how the desire to make code more 
testable can affect the design of components.

I continued to use the practice of stepping through my code in the 
debugger as my primary means of testing for the better part of a decade. 
What brought it to an end was being introduced to the newfangled practice 
of automated unit testing, along with the realization that the computer 
was so much more reliable at repetitive tasks like regression testing than 
a human. (More details on my eventual fall from grace and subsequent 
epiphany can be found in my ACCU 2017 conference talk ‘A Test of 
Strength’.)

Being able to easily and reliably test my code was definitely a big win, 
but it also had another side-effect that I hadn’t anticipated until I started 
working on more complex systems – supportability. I got my first glimpse 
of this when I discovered that a test harness I wrote to make development 
of a back-end scheduling engine easier was being bundled with the 
application, for when bugs in the front-end made it impossible to fix-up 
the schedule. My test harness, while very raw from a GUI point of view 
(the sea of database IDs felt a bit like staring at The Matrix) allowed 
direct access to the back-end code so the schedule could be fixed-up by 
manually driving it using the real business logic. This was considered 
far safer than hacking about directly in the database as it minimised the 
chances of corrupting the state. (Debugging through the front-end, the 
default practice up to that point, cost you 8 minutes just waiting for it to 
load before you could invoke any back-end logic.)

That experience taught me that there was more value in test harnesses 
than simply being able to make a developer’s life easier. As I started 
to interact with more support engineers, I began to see how hard their 
life was supporting applications and systems because they were so far 
removed from the developers building the system. In the intervening 
three decades since that episode took place, the industry as a whole 
has started to empathise more with those outside the development team 
and have recognised that other areas such as InfoSec and Ops are also 
valid stakeholders in the system and their needs have to be listened to 
and addressed alongside those from the end users. This culminated in 
the creation of the DevOps movement and a ‘you build it, you run it’ 
mentality, although it has since grown so much wider as the realisation 
dawned that only a holistic approach to building and running systems 
works in practice over the long term.

While perhaps somewhat easier now, in the past I have had to fight for 
my belief in what appears to be only informally known today as Design 
for Supportability. One project manager back in the late 2000s even 
suggested that any time spent creating custom tooling should be my own 
time, as it was not part of The Deliverables. When the ‘Business as usual’ 
(BAU) and Analysis teams discovered a testing tool I wrote to help me 
create custom test data sets, they openly thanked me, and then I felt my 
approach and time was vindicated.

When I moved to another organization in the same industry to work on 
a similar system, I put supportability front and centre, letting it drive the 
design and architecture to such an extent that for production it ran as a 
bunch of distributed services, but the same code could also be hosted in a 
single command line tool using local instead of remote procedure calls. I 
called it a ‘gig-in-a-box’ because the entire distributed calculation engine 
was essentially running as a monolithic process which allowed us to 
easily debug, test, profile, and hence support the majority of the system’s 
codebase. We even had a formal database schema called ‘support’ so our 
ad hoc SQL snippets could become first class citizens.

For sure, wasting time on speculative requirements and gold-plating are 
a concern, but there are ways to make that visible and, more importantly, 
discover what is driving that behaviour. Any team probably already has 
a bunch of half-baked, stale, duplicated support scripts and tools, so 
formalising them by adding them to the codebase can only be a good 
thing as then they will get the care and attention they deserve. Production 
incidents are stressful enough as it is, having a good toolkit can reduce the 
chances of that turning into a full-on disaster. n
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