
A magazine of ACCU ISSN: 1354-3172

C++ Exceptions
and Memory

Allocation Failure
Wu Yongwei investigates when memory
allocation failures happen and suggests

a strategy to deal with them

C++ on Sea: Trip Report
Sándor Dargó explains why he thinks speaking rather
than just attending a conference is worth considering

Reasoning about Complexity – Part 2
Lucian Radu Teodorescu introduces a complexity
measure to help us reason about code

Passkey Idiom: A Useful Empty Class
Arne Mertz introduces the passkey idiom
to avoid exposing too much with friendship

 C++20 Dynamic Allocations at Compile-time
Andreas Fertig shows us how we can
use dynamic memory at compile time

Afterwood
Chris Oldwood tells us how he discovered open source
and got his first role as a software maintainer

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

ACCU is a not-for-profit organisation.

Become a member and support your
programming community.

www.ACCU.org

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

August 2023 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

August 2023
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication
in Overload 177 should be
submitted by 1st September 2023
and those for Overload 178 by
1st November 2023.

 4 C++ Exceptions and Memory Allocation Failure
Wu Yongwei investigates when memory
allocation failures happen and suggests
a strategy to deal with them.

 8 C++ on Sea 2023: Trip Report
Sándor Dargó explains why he thinks
speaking rather than just attending a
conference is worth considering.

 12 Reasoning about Complexity – Part 2
Lucian Radu Teodorescu introduces a
complexity measure to help us reason
about code to tackle complexity.

 18 Passkey Idiom: A Useful Empty Class
Arne Mertz introduces the passkey idiom to
avoid exposing too much with friendship.

 20 C++20 Dynamic Allocations at Compile-time
Andreas Fertig shows where we can
use dynamic memory at compile time.

 24 Afterwood
Chris Oldwood tells us how he
discovered open source and got his
first role as a software maintainer.

FRAnCES BUOnTEMPOEDITORIAl

2 | Overload | August 2023

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

I volunteered at C++OnSea [C++ On Sea] last week.
It was fun but exhausting and, of course, I didn’t get
a moment to write an editorial. The conference had
a packed schedule, with workshops on Tuesday and
talks from Wednesday through Friday. Fortunately,
we drove home on the Saturday, giving us a chance to

catch up on some sleep over Friday night.

Conferences are a brilliant way to keep your knowledge up to date. They
can be expensive though, so if your company won’t pay for you, or you are
a student or unemployed, the only way to attend might be as a volunteer.
To be honest, that wasn’t my driving factor for volunteering. It is also
wholesome to help out when you can. Each volunteer was scheduled to
cover reception, be on hand or be in a specific talk to ensure the speaker
had what they needed and didn’t run over the allotted time. Rather than
having to choose where to be when, I mostly ran on my rails, following the
rota. Sometimes cruising on autopilot is a good thing. Decision making
can be difficult, so following a timetable means you just ‘do the thing’ and
don’t have to decide. I attended talks I might not have considered had I
been given a free choice, and each talk was very informative.

There are some situations where running on autopilot with your eyes shut,
sleeping at the wheel, may not be ideal. We are promised self-driving
cars, which in theory could make this possible. However, we’re not there
yet. Even if a car has some technology instigated by self-driving car
research, such as automatic braking if you get too close to a vehicle in
front, or tech to keep you in a lane on a motorway, you cannot safely fall
asleep. “Keep your eyes on the road and your hands upon the wheel”,
as the song goes. Keeping your eyes on the road is a way to say watch
where you’re going. Where are self-driving cars going? I personally think
they are leading to some improvements in car safety, but still wish for
transporters or fewer items needing to be driven on roads. As ever, it’s
worth pausing and considering what you are trying to achieve. A reliable
public transport service would suit me, along with places that are safe to
walk or cycle along. Just because you think of a potential new technology
doesn’t mean it’s a good idea or even worth pursuing. I am convinced
self-driving cars are trying to solve the wrong problem.

So, more generally, we could ask where AI is going. Recently, there has
been much discussion around the ethics of AI and whether we need to
stop and think about potential dystopian outcomes. Many people are
embracing various large language models [Wikipedia-1], including
ChatGPT. I mentioned ChatGPT sucking up lots of my time in our last

issue [Buontempo23]. Bryce Adelstein Lelbach
gave the last keynote at C++OnSea, talking

about ‘AI-Assisted Software Engineering’
[Lelbach23]. Specifically, he shared how he
tried to cajole ChatGPT into producing code

for std::unique [C++ Reference] allowing for parallel execution. The
function eliminates all except the first element from every consecutive
group of equivalent elements from a range. ChatGPT frequently eliminated
any duplicates, rather than just consecutive duplicates, but did sketch out
some code that nearly worked after much prompting. I won’t manage to
do the talk justice here, but a take home for me was asking the model for
options without any code, and then picking an option and asking for code.
This gives an opportunity to backtrack if ChatGPT hallucinates itself into
a dead-end or tries to use the function it is supposed to be implementing.
It is very easy to find yourself going around in circles otherwise. I’m
sure Bryce was perfectly capable of writing the function himself, but the
experiment with AI generating code was interesting and informative. It
certainly didn’t prove we can do away with programmers and leave AI to
write our code for us. Bryce suggested the AI fumbled its way through the
implementation in a manner similar to many humans, taking wrong turns,
but certainly suggesting some useful ideas.

C++OnSea was a great opportunity to catch up with people and above
all, keep learning. No matter how hard you try, there is always more to
learn. It’s very easy to stick inside your comfort zone, and not notice new
features that might improve your code. C++ is continuing to evolve and
there is so much to learn. Taking a step back from the daily grind and
taking time to listen and reflect is always good. A conference jam-packed
with information is even better. I overheard several people saying “Ooh,
I didn’t realise that.” No matter how well informed you think you are,
there’s always more to learn. I’m writing a C++ book at the moment,
aimed at people who want to catch up on what they have missed since
C++11 [Buontempo]. I felt a little shy about mentioning this at a C++
conference, but it turns out several people are interested. I had assumed
everyone there would already know everything. I was wrong. There’s
nothing wrong with knowing you have gaps in your knowledge and doing
something about it. In order to learn, it’s good to have a target, otherwise
straying off into sidetracks and erroneous details is a problem. Following
a course or reading a book can keep you on track. Even better, proposing
a talk or writing an article can focus the mind, and help you discover
things you don’t fully understand. Deadlines and external accountability
can stop you drifting off track.

All programming languages evolve over time, or at least ones in use do.
As a programmer, you can either keep your eyes firmly shut and stick
with older idioms, doing what you learnt years ago, or embrace change.
Like all knowledge workers, we need time to open our eyes and continue
learning. Do you have some topics you want to learn more about? Take
a moment to think of a few. Is there something you can’t manage, and
your heart sinks each time you need to try it? Multi-threaded code? An
algorithm, for example a linked list in an interview? Some UI or database
work? Maybe try to think of a tiny project to try for a couple of hours and

Asleep at the Wheel
Are you cruising on autopilot?
Frances Buontempo wonders if we need
to change direction from time to time.

FRAnCES BUOnTEMPO EDITORIAl

August 2023 | Overload | 3

give yourself time to face your fear. Sometimes you can manage to crack
something difficult. You might need help, so ask. The ACCU general
email group is always so helpful. Or, try ChatGPT or an alternative (for
example, [Amazon]) and see what happens.

Now, we can’t all be brilliant or even competent at everything. It’s OK to
know your limits and delegate to someone else instead. Maybe focusing
on what you are already good at and getting better at that is acceptable
too. I don’t enjoy database or UI work, and can muddle through if needs
be, by reading the docs and piecing something basic together. If you need
something polished, go ask someone else. Don’t sleepwalk into a place or
role you don’t enjoy if you are privileged enough to have options. Doing
something you are not competent at, or hate doing, is unsustainable in
the long run.

Jutta Eckstein has been talking about sustainability a lot recently. Her
website has a section devoted to the topic [Eckstein]. I attended her
session at ACCU 2022 [Eckstein22]. Her abstract said,

…some forecasts project that in 2030 IT will account for 21% of
all energy consumption. The software lifecycle creates direct
and indirect carbon emissions: it has a footprint, worsening
environmental problems. If we do not change the way we implement
software, we will contribute to the increase of the carbon footprint.
However, the environmental aspect is not the only one we need to
focus on. If we take sustainability seriously, we have to examine
software development holistically from these three perspectives:
social, economic, and environmental (as defined by the triple
bottom line).

Of course, these are some forecasts, and could be wrong, but thinking
about environmental impact is important. Jutta frequently mentions
taking the environmental, social, and economic footprint of products
(and their creation) into account, and encourages exploring how the agile
principles can contribute to an organization’s sustainability, and how a
greater awareness can change your current way of working and contribute
to increased sustainability [Agile]. I’m hoping Jutta will write an article
for us one day soon. You could argue that software development is partly
asleep at the wheel, using more and more resources. We probably need
to wake up. Two people at C++OnSea independently mentioned massive
data centre costs due to huge electricity bills, and one lightning talk
demonstrated that thinking about the data structures and algorithms we
use can reduce power consumption. It turns out using single instruction
multiple data (SIMD) [Wikipedia-2] can help to save the world. The
speaker, Andrew Drakeford, starting by pointing out that,

Being particularly energy-intensive, the data center industry
accounts for around 4% of global electricity consumption and 1%
of global greenhouse gas emissions.

His talk clearly showed reduced time and power usage when using SIMD
to find the std::max_element. I think the lightning talks will be online
at some point. I’ll let you know.

Running on your rails can be fine. In fact, sometimes we need to do things
on autopilot. Having to think about each breath or each step would also be
unsustainable. However, things change, so sometimes we need to adapt
to survive. Our internet has been somewhat intermittent of late, which
has made me aware just how reliant I am on looking things up online. I
have resorted to looking things up in books recently. I always used to do
this and have a huge library, including many of my father’s mathematics
books, along with double copies of many programming books, since my
husband codes too. I have caught myself looking for free PDFs of books I
own in preference to getting up and walking a few steps to the bookcase.

Without a reliable internet, I have dusted off a few books and done some
bonus steps. In some ways, the lack of internet has forced a change.
We’re switching providers, so normal service may be resumed shortly. It
has been interesting to notice just how reliant I am on the internet though.
You often don’t realise what you’re doing day to day until something
forces you to do differently. They say a change is as good as a rest. That
said, I am hoping we find a better ISP soon, because frankly I do rely on
the internet for many things. Looking up references in books is great, and
I shall endeavour to use the books I spent money on rather than surfing
the internet from time to time. However, being able to send emails is
easier with some internet.

Life is often a random walk. Even if we have plans, sometimes the
accidental interactions and discoveries change our direction. That doesn’t
mean we shouldn’t have plans. Being asleep at the wheel is not a good
idea. Taking a break from time to time, either to go to a conference, have
a holiday or take a sabbatical is a sensible idea. Stepping aside to reflect
or do something different can be energizing, and lead to insights inspiring
new approaches we wouldn’t otherwise have thought of.

Doing something new is a good thing too. If you’ve never written an
article, give it a go. The Overload team is here to help. If you want to do
a guest editor spot, get in touch. Overload probably
deserves a proper editorial at some point. If you’ve
attended a talk, workshop or conference recently,
do send us a write-up. And if you haven’t, what’s
stopping you?

References
[Agile] Agile Sustainability Initiative, Agile Alliance,

https://www.agilealliance.org/resources/initiatives/agile-
sustainability-initiative/

[Amazon] CodeWhisperer: https://aws.amazon.com/codewhisperer/
[Buontempo] Frances Buontempo C++ Bookcamp (unpublished

– expected 2024) https://www.manning.com/books/c-plus-plus-
bookcamp

[Buontempo23] Frances Buontempo, Editorial: ‘Production and
Productivity’ in Overload June 2023, available at https://accu.org/
journals/overload/31/175/buontempo/

[C++ On Sea] C++ On Sea conference: http://cpponsea.uk/
[C++ Reference] std::unique, details at:

https://en.cppreference.com/w/cpp/algorithm/unique
[Eckstein] Jutta Eckstein, ‘Agile & Sustainability’ page on her website:

https://www.jeckstein.com/sustainability/
[Eckstein22] Jutta Eckstein ‘Software for Future’ at ACCU Conference

2022, details available at: https://accu.org/conf-previous/2022/
sessions/software-for-future-whats-the-impact-of-the-agile-
manifesto-on-our-carbon-footprint/session/index.html

[Lelbach23] Bryce Adelstein Lelbach ‘Endnote: AI-Assisted Software
Engineering’ (abstract), available at: https://cpponsea.uk/2023/
sessions/endnote-ai-assisted-software-engineering.html

[Wikipedia-1] Large language model: https://en.wikipedia.org/wiki/
Large_language_model

[Wikipedia-2] Single instruction, multiple data: https://en.wikipedia.org/
wiki/Single_instruction,_multiple_data

https://www.agilealliance.org/resources/initiatives/agile-sustainability-initiative/
https://www.agilealliance.org/resources/initiatives/agile-sustainability-initiative/
https://aws.amazon.com/codewhisperer/
https://www.manning.com/books/c-plus-plus-bookcamp
https://www.manning.com/books/c-plus-plus-bookcamp
https://accu.org/journals/overload/31/175/buontempo
https://accu.org/journals/overload/31/175/buontempo
http://cpponsea.uk/
https://en.cppreference.com/w/cpp/algorithm/unique
https://www.jeckstein.com/sustainability/
https://accu.org/conf-previous/2022/sessions/software-for-future-whats-the-impact-of-the-agile-manifesto-on-our-carbon-footprint/session/index.html
https://accu.org/conf-previous/2022/sessions/software-for-future-whats-the-impact-of-the-agile-manifesto-on-our-carbon-footprint/session/index.html
https://accu.org/conf-previous/2022/sessions/software-for-future-whats-the-impact-of-the-agile-manifesto-on-our-carbon-footprint/session/index.html
https://cpponsea.uk/2023/sessions/endnote-ai-assisted-software-engineering.html
https://cpponsea.uk/2023/sessions/endnote-ai-assisted-software-engineering.html
https://en.wikipedia.org/wiki/Large_language_model
https://en.wikipedia.org/wiki/Large_language_model
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data

WU YOngWEIFEATURE

4 | Overload | August 2023

Background
C++ exceptions are habitually disabled in many software projects. A related
issue is that these projects also encourage the use of new (nothrow)
instead of the more common new, as the latter may throw an exception.
This choice is kind of self-deceptive, as people don’t usually disable
completely all mechanisms that potentially throw exceptions, such as
standard library containers and string. In fact, every time we initialize
or modify a string, vector, or map, we may be allocating memory
on the heap. If we think that new will end in an exception (and therefore
choose to use new (nothrow)), exceptions may also occur when using
these mechanisms. In a program that has disabled exceptions, the result
will inevitably be a program crash.

However, it seems that the crashes I described are unlikely to occur…
When was the last time you saw a memory allocation failure? Before I
tested to check this issue, the last time I saw a memory allocation failure
was when there was a memory corruption in the program: there was still
plenty of memory in the system, but the memory manager of the program
could no longer work reliably. In this case, there was already undefined
behaviour, and checking for memory allocation failure ceased to make
sense. A crash of the program was inevitable, and and it was a good thing
if the crash occurred earlier, whether due to an uncaught exception, a null
pointer dereference, or something else.

Now the question is: If there is no undefined behaviour in the program,
will memory allocation ever fail? This seems worth exploring.

Test of memory allocation failure
Due to the limitation of address space, there is an obvious upper limit to
the amount of memory that one process can allocate. On a 32-bit system,
this limit is 232 bytes, or 4 GiB. However, on typical 64-bit systems like
x64, this limit is not 264 bytes, but 248 bytes instead, or 256 TiB.

On a 32-bit system, when a process’s memory usage reaches around
2 GiB (it may vary depending on the specific system, but will not exceed
4 GiB), memory allocation is guaranteed to fail. The physical memory of
a real-world 32-bit system can often reach 4 GiB, so we do expect to see
memory allocation failures.

The more interesting question is: What happens when the amount of
physical memory is far less than the address space size? Ignoring abnormal
scenarios like allocating more memory than the physical memory size
at a time (which would likely be a logic error in the program), can a
reasonable program still experience memory allocation failures?

The core logic of my test code is shown in Listing 1.

The program allocates memory repeatedly – optionally zeroing the
allocated memory – until it catches a bad_alloc exception.

(I did not change the new-handler [CppReference-1], as I do not usually do
this in projects, and it is not helpful in testing whether memory allocation
failures can really happen. When the new-handler is invoked, memory
allocation has already failed – unless the new-handler can free some
memory and make allocation succeed, it can hardly do anything useful.)

The test shows that Windows and Linux exhibit significantly different
behaviour in this regard. These two are the major platforms concerned,
and macOS behaves similarly to Linux.

Windows
I conducted the test on Windows 10 (x64). According to the Microsoft
documentation, the total amount of memory that an application can
allocate is determined by the size of RAM and that of the page file. When
managed by the OS, the maximum size of the page file is three times the
size of the memory, and cannot exceed one-eighth the size of the volume
where the page file resides [Microsoft]. This total memory limit is shared
by all applications.

The program’s output is shown below (allocating 1 GiB at a time on a test
machine with 6 GiB of RAM):
 Allocated 1 GiB
 Allocated 2 GiB
 Allocated 3 GiB
 …
 Allocated 14 GiB
 Allocated 15 GiB
 Successfully caught bad_alloc exception
 Press ENTER to quit

The outputs are the same, regardless of whether the memory is zeroed or
not, but zeroing the memory makes the program run much slower. You
can observe in the Task Manager that the memory actually used by the
program is smaller than the amount of allocated memory, even when the

C++ Exceptions and Memory
Allocation Failure
Memory allocation failures can happen. Wu Yongwei investigates
when they happen and suggests a strategy to deal with them.

try {
 std::size_t total_alloc = 0;
 for (;;) {
 char* ptr = new char[chunk_size];
 if (zero_mem) {
 memset(ptr, 0, chunk_size);
 }
 total_alloc += chunk_size;
 std::cout << "Allocated "
 << (zero_mem ? "and initialized "
 : "")
 << total_alloc << " B\n";
 }
}
catch (std::bad_alloc&) {
 std::cout << "Successfully caught bad_alloc "
 "exception\n";
}

listing 1

Wu Yongwei Having been a programmer and software architect,
Yongwei is currently a consultant and trainer on modern C++.
He has nearly 30 years’ experience in systems programming and
architecture in C and C++. His focus is on the C++ language, software
architecture, performance tuning, design patterns, and code reuse.
He has a programming page at http://wyw.dcweb.cn/, and he can be
reached at wuyongwei@gmail.com.

WU YOngWEI FEATURE

August 2023 | Overload | 5

memory is zeroed; and that when the amount of allocated (and zeroed)
memory gets close to that of available memory, the program’s execution
is further slowed down, and disk I/O increases significantly – Windows
starts paging in order to satisfy the program’s memory needs.

As I mentioned a moment ago, there is an overall memory limit shared
by all applications. If a program encounters a memory allocation failure,
other programs will immediately experience memory issues too, until the
former one exits. After running the program above, if I don’t press the
Enter key to quit, the results of newly opened programs are as follows
(even if the physical memory usage remains low):
 Successfully caught bad_alloc exception
 Press ENTER to quit

Assuming that a program does not allocate a large amount of memory
and only uses a small portion (so we exclude some special types of
applications, which will be briefly discussed later), when it catches a
memory allocation failure, the total memory allocated will be about 4
times the physical memory, and the system should have already slowed
down significantly due to frequent paging. In other words, even if the
program can continue to run normally, the user experience has already
been pretty poor.

linux
I conducted the test on Ubuntu Linux 22.04 LTS (x64), and the result
was quite different from Windows. If I do not zero the memory, memory
allocation will only fail when the total allocated memory gets near
128 TiB. The output below is from a run which allocates 4 GiB at a time:
 Allocated 4 GiB
 Allocated 8 GiB
 Allocated 12 GiB
 …
 Allocated 127.988 TiB
 Allocated 127.992 TiB
 Successfully caught bad_alloc exception
 Press ENTER to quit

In other words, the program can catch the bad_alloc exception only
when it runs out of memory address…

Another thing different from Windows is that other programs are not
affected if memory is allocated but not used (zeroed). A second copy of
the test program still gets close to 128 TiB happily.

Of course, we get very different results if we really use the memory.
When the allocated memory exceeds the available memory (physical
memory plus the swap partition), the program is killed by the Linux
OOM killer (out-of-memory killer). An example run is shown below (on
a test machine with 3 GiB memory, allocating 1 GiB at a time):
 Allocated and initialized 1 GiB
 Allocated and initialized 2 GiB
 Allocated and initialized 3 GiB
 Allocated and initialized 4 GiB
 Allocated and initialized 5 GiB
 Allocated and initialized 6 GiB
 Killed

The program had successfully allocated and used 6 GiB memory, and was
killed by the OS when it was initializing the 7th chunk of memory. In a
typical 64-bit Linux environment, memory allocation will never fail –
unless you request for an apparently unreasonable size (possible only for
new Obj[size] or operator new(size), but not new Obj). You
cannot catch the memory allocation failure.

Modify the overcommit_memory setting?
We can modify the overcommit_memory setting [Kernel], you probably
have shouted out. What I described above was the default Linux
behaviour, when /proc/sys/vm/overcommit_memory was set
to 0 (heuristic overcommit handling). If its value is set to 1 (always
overcommit), memory allocation will always succeed, as long as there
is enough virtual memory address space: you can successfully allocate
32 TiB memory on a machine with only 32 GiB memory – this can
actually be useful for applications like sparse matrix computations. Yet
another possible value is 2 (don’t overcommit), which allows the user to
fine-tune the amount of allocatable memory, usually with the help of /
proc/sys/vm/overcommit_ratio.

In the don’t-overcommit mode, the default overcommit ratio (a confusing
name) is 50 (%), a quite conservative value. It means the total address
space commit for the system is not allowed to exceed swap + 50% of
physical RAM. In a general-purpose Linux system, especially in the GUI
environment, this mode is unsuitable, as it can cause applications to fail
unexpectedly. However, for other systems (like embedded ones) it might
be the appropriate mode to use, ensuring that applications can really catch
the memory allocation failures and that there is little (or no) thrashing.

(Before you ask, no, you cannot, in general, change the overcommit
setting in your code. It is global, not per process; and it requires the root
privilege.)

Summary of memory allocation failure behaviour
Looking at the test results above, we can see that normal memory
allocations will not fail on general Linux systems, but may fail on Windows
or special-purpose Linux systems that have turned off overcommitting.

Strategies for memory allocation failure
We can classify systems into two categories:
	� Those on which memory allocation will not fail
	� Those on which memory allocation can fail

The strategy for the former category is simple: we can simply ignore all
memory allocation failures. If there were errors, it must be due to some
logic errors or even undefined behaviour in the code. In such a system,
you cannot encounter a memory allocation failure unless the requested
size if invalid (or when the memory is already corrupt). I assume you must
have checked that size is valid for expressions like new Obj[size] or
malloc(size), haven’t you?
The strategy for the latter category is much more complicated. Depending
on the requirements, we can have different solutions:

If a program encounters a memory allocation
failure, other programs will immediately experience

memory issues too, until the former one exits

WU YOngWEIFEATURE

6 | Overload | August 2023

1. Use new (nothrow), do not use the C++ standard library, and
disable exceptions. If we turned off exceptions, we would not be
able to express the failure to establish invariants in constructors
or other places where we cannot return an error code. We would
have to resort to the so-called ‘two-phase construction’ and other
techniques, which would make the code more complicated and harder
to maintain. However, I need to emphasize that notwithstanding all
these shortcomings, this solution is self-consistent – troubles for
robustness – though I am not inclined to work on such projects.

2. Use new (nothrow), use the C++ standard library, and disable
exceptions. This is a troublesome and self-deceiving approach. It
brings about troubles but no safety. If memory is really insufficient,
your program can still blow up.

3. Plan memory use carefully, use new, use the C++ standard
library, and disable exceptions; in addition, set up recovery/
restart mechanisms for long-running processes. This might be
appropriate for special-purpose Linux devices, especially when
there is already a lot of code that is not exception-safe. The basic
assumption of this scenario is that memory should be sufficient, but
the system should still have reasonable behaviour when memory
allocation fails.

4. Use new (nothrow), use the C++ standard library, and enable
exceptions. When the bad_alloc exception does happen, we can
catch it and deal with the situation appropriately. When serving
external requests, we can wrap the entire service code with try
...catch, and perform rollback actions and error logging when an
exception (not just bad_alloc) occurs. This may not be the easiest
solution, as it requires the developers know how to write exception-
safe code. But neither is it very difficult, if RAII [CppReference-2]
is already properly used in the code and there are not many raw
owning pointers. In fact, refactoring old code with RAII (including
smart pointers) can be beneficial per se, even without considering
whether we want exception safety or not.

Somebody may think: Can we modify the C++ standard library so that it
does not throw exceptions? Let us have a look what a standard library that
does not throw exceptions may look like.

Standard library that does not throw?
If we do not use exceptions, we still need to have a way to express errors.
Traditionally we use error codes, but these have the huge problem that
a universal way does not exist: errno encodes errors in its way, your
system has your way, and yet a third-party library may have its own way.
When you put all things together, you may find that the only thing in
common is that 0 means successful…

Assuming that you have solved the problem after tremendous efforts
(make all subsystems use a single set of error codes, or adopt something
like std::error_code [CppReference-3]), you will still find yourself
with the big question of when to check for errors. Programmers that have

been used to the standard library behaviour may not realise that using the
following vector is no longer safe:
 my::vector<int> v{1, 2, 3, 4, 5};

The constructor of vector may allocate memory, which may fail but it
cannot report the error. So you must check for its validity when using v.
Something like:
 if (auto e = v.error_status();
 e != my::no_error) {
 return e;
 }
 use(v);

OK… At least a function can use an object passed in by reference from
its caller, right?
 my::error_t process(const my::string& msg)
 {
 use(msg);
 …
 }

Naïve! If my::string behaves similarly to std::string and
supports implicit construction from a string literal – i.e. people can call
this function with process("hello world!") – the constructor
of the temporary string object may fail. If we really intend to have
complete safety (like in Solution 1 above), we need to write:
 my::error_t process(const my::string& msg)
 {
 if (auto e = msg.error_status();
 e != my::no_error) {
 return e;
 }
 use(msg);
 …
 }

And we cannot use overloaded operators if they may fail.
vector::operator[] returns a reference, and it is still OK.
map::operator[] may create new map nodes, and can cause problems.
Code like the following needs to be rewritten:
 class manager {
 public:
 void process(int idx, const std::string& msg)
 {
 store_[idx].push_back(msg);
 }
 private:
 std::map<int, std::vector<string>> store_;
 };

The very simple manager::process would become many lines in its
exception-less and safe version (Listing 2).

Ignoring how verbose it is, writing such code correctly seems more
complicated than making one’s code exception-safe, right? It is not an
easy thing just to remember which APIs will always succeed and which
APIs may return errors.

refactoring old code with RAII (including
smart pointers) can be beneficial per se,
even without considering whether we
want exception safety or not

WU YOngWEI FEATURE

August 2023 | Overload | 7

And obviously you can see that such code would be in no way compatible
with the current C++ standard library. The code that uses the current
standard library would need to be rewritten, third-party code that uses the
standard library could not be used directly, and developers would need to
be re-trained (if they did not flee).

Recommended strategy
I would like to emphasize first that deciding how to deal with memory
allocation failure is part of the system design, and it should not be just
the decision of some local code. This is especially true if the ‘failure’ is
unlikely to happen and the cost of ‘prevention’ is too high. (For similar
reasons, we do not have checkpoints at the front of each building. Safety
is important only when the harm can be higher than the prevention cost.)

Returning to the four solutions I discussed earlier, my order of
recommendations is 4, 3, 1, and 2.

	� Solution 4 allows the use of exceptions so that we can catch bad_
alloc and other exceptions while using the standard library (or other
code). You don’t have to make your code 100% bullet-proof right in
the beginning. Instead, you can first enable exceptions and deal with
exceptions in some outside constructs, without actually throwing
anything in your code. When memory allocation failure happens,
you can at least catch it, save critical data, print diagnostics or log
something, and quit gracefully (a service probably needs to have
some restart mechanism external to itself). In addition, exceptions
are friendly to testing and debugging. We should also remember
that error codes and exceptions are not mutually exclusive: even in
a system where exceptions are enabled, exceptions should only be
used for exceptional scenarios. Expected errors, like an unfound file
in the specified path or an invalid user input, should not normally be
dealt with as exceptions.

	� Solution 3 does not use exceptions, while recognizing that memory
failure handling is part of the system design, not deserving local
handling anywhere in the code. For a single-run command, crashing
on insufficient memory may not be a bad choice (of course, good
diagnostics would be better, but then we would need to go to
Solution 4). For a long-running service, fast recovery/restart must
be taken into account. This is the second best to me.

	� Solution 1 does not use exceptions and rejects all overhead related
to exception handling, time- or space-wise. It considers that safety
is foremost and is worth extra labour. If your project requires such
safety, you need to consider this approach. In fact, it may be the
only reasonable approach for real-time control systems (aviation,
driving, etc.), as typical C++ implementations have a high penalty
when an exception is really thrown.

	� Solution 2 is the worst, neither convenient nor safe. Unfortunately,
it seems quite popular due to historical momentum, with its users
unaware how bad it is…

Keep in mind that C++ is not C: the C-style check-and-return can look
much worse in C++ than in C. This is because C++ code tends to use
dynamic memory more often, which is arguably a good thing – it makes
C++ code safer and more flexible. Although fixed-size buffers (common
in C) are fast, they are inflexible and susceptible to buffer overflows.

Actually, the main reason I wanted to write this article was to point out
the problems of Solution 2 and to describe the alternatives. We should
not follow existing practices blindly, but make rational choices based on
requirements and facts. �

Test code
The complete code for testing the memory failure behaviour is available
at either:

	� http://wyw.dcweb.cn/mem_alloc_test.zip (for downloading)

	� http://wyw.dcweb.cn/mem_alloc_test.cpp.html (for browsing)
You can clearly see that I am quite happy with exceptions.

References
[CppReference-1] cppreference.com, std::set_new_handler,

https://en.cppreference.com/w/cpp/memory/new/set_new_handler
[CppReference-2] cppreference.com, ‘RAII’,

https://en.cppreference.com/w/cpp/language/raii
[CppReference-3] cppreference.com, std::error_code,

https://en.cppreference.com/w/cpp/error/error_code
[Kernel] kernel.org, ‘Overcommit accounting’,https://www.kernel.org/

doc/Documentation/vm/overcommit-accounting
[Microsoft] Microsoft, ‘How to determine the appropriate page file size

for 64-bit versions of Windows’, https://learn.microsoft.com/en-us/
troubleshoot/windows-client/performance/how-to-determine-the-
appropriate-page-file-size-for-64-bit-versions-of-windows

class manager {
public:
 error_t process(int idx,
 const my::string& msg)
 {
 if (auto e = msg.error_status();
 e != my::no_error) {
 return e;
 }
 auto* ptr =
 store_.find_or_insert_default(idx);
 if (auto e = store_.error_status();
 e != my::no_error) {
 return e;
 }
 ptr->push_back(msg);
 return ptr->error_status();
 }
 …

private:
 my::map<int, my::vector<string>> store_;
};

listing 2

http://wyw.dcweb.cn/mem_alloc_test.zip
http://wyw.dcweb.cn/mem_alloc_test.cpp.html
https://en.cppreference.com/w/cpp/memory/new/set_new_handler
https://en.cppreference.com/w/cpp/language/raii
https://en.cppreference.com/w/cpp/error/error_code
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/how-to-determine-the-appropriate-page-file-size-for-64-bit-versions-of-windows
https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/how-to-determine-the-appropriate-page-file-size-for-64-bit-versions-of-windows
https://learn.microsoft.com/en-us/troubleshoot/windows-client/performance/how-to-determine-the-appropriate-page-file-size-for-64-bit-versions-of-windows

SánDOR DARgóFEATURE

8 | Overload | August 2023

last week, from 27th to 30th June, I had the privilege of attending and
presenting at C++ on Sea 2023 [C++OnSea] for the 4th time in a
row! Despite having been accepted as a speaker, I was not sure if I

would make it this year, as I changed jobs recently, but my management
at Spotify was encouraging and supportive. They granted me the time
so that I didn’t have to use my vacation days. Also, I am grateful to my
family, in particular to my wife, for taking care of the kids alone for the
week.

Let me share with you a few thoughts about the conference.

First, I’m going to write about the three talks that I liked the most during
the 3 days, then I’m going to share 3 interesting ideas I heard about and
then I’ll share some personal impressions about the conference.

My favourite talks
Over those few days, I pondered a lot about what makes a talk good
and enjoyable. What makes a presenter good, at least for me? While my
thoughts are not crystal clear yet, I definitely enjoyed talks that covered
‘beginner’ topics in depth. Another feeling I have is that good presenters
limit the amount of knowledge they want to share so they have enough
time to explain and they don’t talk at the speed of Eminem.

Special member functions in C++ by Kris van Rens
Kris’s talk [vanRens23]about special member functions in C++ is a
good reminder of how difficult it can be to write a simple class in C++.
Especially if you cannot follow the rule of 0. But do you know about the
rule of 0? Or the rule of 5? Or the rule of four and a half?

At first, I was not sure if I want to mention this talk among my favourite
ones. But as I listed 2–3 favourite ideas from this talk, I realized that this
in fact was one of my best picks.

Let’s see those ideas.

Have you heard about the Hinnant table [Hinnant20]? The one in
Figure 1 shows when you can or cannot rely on the compiler to generate
the special functions for you.

Kris shared how you can memorize it easily. While the table has 42–48
fields (depending on whether you count the diagonal), you only need
three rules in order to memorize it.

	� When the user declares any other constructor then the default
constructor is not declared

	� When the user declares any copy or move operation or the destructor,
then the move operations are not declared.

	� When the user declares any move operation then the copy operations
are deleted

Another idea I really appreciated was that we should test special functions.
You might think that testing those are cumbersome. But not so! You don’t
necessarily want to test the internals of a copy constructor. You don’t
necessarily have to test if all the members are copied promptly. Maybe
you want to, but you don’t have to go that far.

It’s already a great step if you can ensure, with the help of type traits
(or concepts) and static_cast, that a given class satisfies certain
characteristics (see Listing 1).

Then even if you modify the class, you make sure that you don’t lose its
copyablity. Such tests might even enhance your understanding of how
certain types of members influence a class.

While I think these tests also serve documentational reasons and they
would look great in the header file along with the class declaration,

C++ on Sea 2023: Trip Report
C++ on Sea happened again in June this year.
Sándor Dargó explains why he thinks speaking rather
than just attending a conference is worth considering.

class X{};

static_assert
 (std::is_trivially_destructible<X>{});
static_assert
 (std::is_trivially_default_constructible<X>{});
static_assert
 (std::is_trivially_copy_constructible<X>{});
static_assert
 (std::is_trivially_copy_assignable<X>{});
static_assert
 (std::is_trivially_move_constructible<X>{});
static_assert
 (std::is_trivially_move_assignable<X>{});

listing 1

Sándor Dargó is is a passionate software craftsman focusing on
reducing maintenance costs by applying and enforcing clean code
standards. He loves knowledge sharing, both oral and written. When
not reading or writing, he spends most of his time with his two
children and wife in the kitchen or travelling. Feel free to contact him
at sandor.dargo@gmail.com

Figure 1

SánDOR DARgó FEATURE

August 2023 | Overload | 9

probably it’s wiser to put them along with the unit tests so that you don’t
make the compilation of the production code any longer.

One last thought! An explicit =delete is better than relying on that
others know the Hinnant table as well as you.

Typical C++, but why? by Björn Fahller
Björn Fahller spoke at C++ On Sea 3 times this year! He volunteered to
replace one of the speakers who sadly couldn’t make it to the conference,
and he also did a lighting talk.

One of my favourite talks was his presentation about how to use C++’s
type system effectively [Fahller23].

No, not because of the great images of jigsaw montages.

No, not because at the end he mentioned my talk from last year as a
valuable reference [Dargo22a]. But to be fair, it really touched me.
Especially that it was not because I was in the room; it was already
mentioned on the references slide.

As I also covered here [Dargo22b], using several bool parameters is both
difficult to read and dangerous. But it’s not only about bools. Adjacent
parameters of the same type always have the risk of being mixed up.

Instead of relying on good eyes, you might want to rely on the compiler
and use enums and classes with descriptive names.

And as Björn said, don’t use type aliases instead of strong types, a type
alias is just a comment, nothing more.

An interesting idea he mentioned was how to deal with parameters when
you have a bunch of them and many of them would be defaultable. In that
case, use a struct, let the members have their default values declared
in place and then take advantage of C++20’s designated initializers
[Filipek21]!

What a nice idea!

C++ and Safety by Timur Doumler
The topic of safety often comes up in C++. It’s been an important topic for
many years, but the topic has become even more prevalent since the NSA
wrote that “exploitable software vulnerabilities are still frequently based on
memory issues” and recommended that “the private sector, academia and
the U.S. Government use a memory-safe language when possible”.

In his talk [Doumler23a], Timur discussed the different forms of safety,
and how they relate to correctness. He debunked some myths and shared
his view of whether C++ is in trouble or not.

When it comes to safety, we can think about both functional and language
safety. When we talk about C++, we are talking about language safety.
Language safety can be broken down into memory, thread, arithmetic
and definition safety. Timur showed through a set of small and simple
examples how much C++ lacks basically any aspect of language safety.

He also showed that even if you have language-safe programs, having
a functionally safe, God forbid, correct program is so difficult. In that
sense, C++ is not the problem.

But otherwise, how much is C++ the problem? Why did the NSA
explicitly target C++?

Those who complain most often speak about ‘C/C++’. Anyone who speaks
about ‘C/C++’ shows how little they understand these programming
languages. Those are two separate languages!

While it’s true that almost 50% of the reported language vulnerabilities
are coming from C, C++ is actually only the 6th on the list, behind
languages such as PHP, Java and Javascript. Even Python. (See Figure 2
[Doumler23b].)

C++ took a long journey and is full of safety features and it’s still getting
further safety features. Will they be completely safe? No. Will C++ ever
be fully safe? No, it’s impossible. As a minimum, language safety would
mean no undefined behaviour.

But we need undefined behaviour and we often have to make tradeoffs
between safety and performance, portability or cost.

Yet, Timur showed the different strategies we could take to achieve
the different kinds of language safety and also shared how viable these
strategies would be.

Timur’s conclusion is that C++ mostly has a PR issue. C++ isn’t as behind
so many safety issues as many think. Even so, it’s getting safer and many
UBs have been or are being removed when this doesn’t compromise
performance and compatibility, which are often the main reasons behind
using C++.

There is no such thing as a safe coding language. Languages call
other languages and even so-called safe languages such as Rust have
vulnerabilities. On the other hand, the C++ committee should probably
be clearer on its strategy and also on how far we have already come.

An interesting talk with full of easy-to-follow examples!

Figure 2

Will C++ ever be fully safe? no, it’s
impossible. As a minimum, language safety

would mean no undefined behaviour.

SánDOR DARgóFEATURE

10 | Overload | August 2023

My favourite ideas
Now let me share a few interesting ideas from three different talks.

Jonathan Müller’s favourite C++ question
Jonathan’s talk would have probably been among my favourite ones if he
had 30 minutes more to present the same content. My brain is too slow
for interesting ideas coming so rapidly! He talked about C++ features
that are either forgotten or undervalued.

He mentioned many interesting topics, and some I’ll probably write about
more deeply in the coming months (I’ll not forget to refer to his talk!), but
here I want to mention only one thing.

His favourite C++ question that was originally posted by Richard Smith
[Smith19])
 // Assuming an LP64 / LLP64 system,
 // what does this print?

 short a = 1;
 std::cout << sizeof(+a)["23456"] << std::endl;

So, what is the output?

The answer requires quite a few steps. I don’t want to go into an
explanation in this article: I’d like you to think about it. Here are a few
hints:

	� What does unary plus do?

	� What’s the type of "23456"?

	� What does sizeof return?

	� What is a little-known characteristic of the built-in index operator?

	� What’s the precedence of operations in this expression?

If you are stuck and desperately looking for the answer, check it out on
Jonathan’s site [Muller23].

Bryce Adelstein lelbach thinks we often treat AI unfairly
In his endnote, Bryce talked about his experiments with ChatGPT and
how it was helping him create a parallel algorithm.

Listening to him probably made many of us think that oh, okay, it’s hard
to use AI-assisted tools effectively, they are still too dumb for this, and
they need too many iterations, too many rounds.

But at the end, Bryce reminded us that we are just being unfair towards
ChatGPT and other large language models.

Do we expect ourselves to write perfect code on the first run?

Not really, right?

If you post a pull request and someone asks you if there were any bugs in
it, would you reply that yes, here they are?!

Not really, right?

ChatGPT et al. cannot write perfect code on the first or second run either,
but it can analyse its own code more objectively than you or I could our
own code. At the same time, it can iterate on code and write better and
better solutions of the same problem.

So, let’s reconsider how we think about them.

Dr. Allessandria Polizzi shared that boredom can also lead to
burnout
Even at a conference dedicated to C++, you might find topics that are
not necessarily about the language (such as my talk about clean code), or
about software development.

Dr. Allessandria Polizzi spoke about mental health. She shared what the
main risks are leading to burnout and what best practices are available
for us in case we want to guard against it. Burnout is real and it doesn’t
simply happen to you, you can prevent it.

There is one risk here that I want to emphasize from her presentation.
You might think it’s great when you have a low workload. I think that if
you are conscious enough of the issue, it’s not so bad, but according to
research, for most people a low workload can lead to burnout faster than
a high workload. Not just burnout but even ‘boreout’ is real.

In my opinion, if you have a low workload, take advantage of it. Work
on your own initiatives and invest time in learning to get even better at
your job.

Nevertheless, it’s important to know what are the different factors that
can lead to burnout.

Personal impressions
Finally, let me talk about some more personal feelings about the
conference.

C++ On Kaizen
I remember that, even last year [Dargo22c], I appreciated the constant
improvements at the conference. I think most of the complaints were about
lack of water and long queueing times for lunch. The water problem was
solved after the first day, and this year, the queueing situation improved a
lot too. In different rooms, talks ended at different times right before the
lunch break so that not everybody went to eat at the same time. That was
a great idea! But what matters more – to me – is the mindset of constant
improvement.

Hard to stay an introvert
By the end of the conference, I felt exhausted, but in a good way. I had
inspiring discussions with so many people and I even met someone who
went to the same high school as me and finished just one year earlier.

While I’m an introvert and I rarely start conversations with strangers, I
tried my best at the conference. And even when I didn’t, as a speaker I
often got approached by others.

What the main risks are leading to burnout
and what best practices are available for us
in case we want to guard against it?

SánDOR DARgó FEATURE

August 2023 | Overload | 11

I was on the phone with my wife and I told her that I had got a baseball
cap as a swag, though I’m not sure if I would ever use it. She reminded
me that she wears such caps. “Oh I remember,” I said, “you even have the
one signed by Charles Leclerc!” At that moment I realized that I could
also get some autographs at the conference. Not on a cap, but on the
conference T-Shirt which has the name of all the speakers!

By the end, I had a signature from almost anyone. And mine is just next to
the signature of the Explorer of Compilers! How cool is that!

My two talks
This year, my topic(s) were not technical. I signed up for a lightning

talk, where I shared my findings on how one can improve his or her job
hunt experience. After all, I joined Spotify less than a year ago! Such an
important topic for everyone!

Thursday afternoon, I got an hour to speak about why clean code is not
the norm [Dargo23]! In particular, about what clean code is, what it has to
do with software quality and also how it is related to professional ethics.

At the end, there were some good and/or provoking questions and
remarks. I was humbled by the ratio of other speakers in the audience, and
I received a lot of great feedback. Even if we didn’t agree on everything,
my talk was thought-provoking and sparked many discussions.

Conclusion
In this article, I have covered one way that can help you get closer not
only to attending but to speaking at conferences. In my opinion, this is
way better than just attending, because often (most of) your costs will
be covered, you’ll learn way more and build more connections. Not to

mention that it’s easier to convince your management to let you speak at
a conference than to buy you a ticket and finance the trip.

C++ On Sea was once again an awesome experience! Great organization,
a strong line-up and awesome attendees! I hope I can be back in Folkestone
in 2024. �

Connect deeper
If you liked this article, please

	� hit on the like button on the original post

	� subscribe to my newsletter (http://eepurl.com/gvcv1j)

	� and let’s connect on Twitter (https://twitter.com/SandorDargo)!

References
[C++OnSea] The C++ on Sea website: https://cpponsea.uk/
[Dargo22a] Sándor Dargó ‘Strongly Typed Containers’ presented

at C++ on Sea 2022, available at https://www.youtube.com/
watch?v=0cTOqwrvq94

[Dargo22b] Sándor Dargó ‘Use strong types instead of bool
parameters’ posted 5 April 2023 at https://www.sandordargo.com/
blog/2022/04/06/use-strong-types-instead-booleans

[Dargo22c] Sándor Dargó ‘Trip Report: C++ on Sea 2022’, posted on 26
July 2022 at https://www.sandordargo.com/blog/2022/07/27/cpp-on-
sea-trip-report

[Dargo23] Sándor Dargó ‘Why clean code is not the norm?’ (abstract)
available at https://cpponsea.uk/2023/sessions/why-clean-code-is-
not-the-norm.html

[Doumler23a] Timur Doumler ‘C++ and Safety’ (abstact) available at
https://cpponsea.uk/2023/sessions/cpp-and-safety.html

[Doumler23b] Timur Doumler ‘The C++ Undefined Behaviour Survey’,
posted on Timur.Audio on 14 April 2023 at https://timur.audio/

[Fahller23] Björn Fahller ‘Typical C++, But Why?’ (abstract) available
at https://cpponsea.uk/2023/sessions/typical-cpp-but-why.html

[Filipek21] Bartlomiej Filipek ‘Designated initializers in C++20’
posted on the C++ Stories blog: https://www.cppstories.com/2021/
designated-init-cpp20/

[Hinnant20] Howard Hinnant ‘How I Declare My class And Why’,
posted 24 February 2020 at https://howardhinnant.github.io/
classdecl.html

[Muller23] Jonathan Müller ‘C++ Features You Might Not Know’
(slides and video) available at https://www.jonathanmueller.dev/talk/
cpp-features/

[Smith19] Richard Smith, quiz question posted on Twitter on
18 March 2019, available at https://twitter.com/zygoloid/
status/1107740875671498752?lang=en

[vanRens23] Kris van Rens ‘Special member functions in C++’
(abstract) available at https://cpponsea.uk/2023/sessions/special-
member-functions-in-cpp.html

This article was published on Sándor Dargó’s blog in July 2023
and is available at https://www.sandordargo.com/blog/2023/07/05/
trip-report-cpp-on-sea-2023.

http://eepurl.com/gvcv1j
https://twitter.com/SandorDargo
https://cpponsea.uk/
https://www.youtube.com/watch?v=0cTOqwrvq94
https://www.youtube.com/watch?v=0cTOqwrvq94
https://www.sandordargo.com/blog/2022/04/06/use-strong-types-instead-booleans
https://www.sandordargo.com/blog/2022/04/06/use-strong-types-instead-booleans
https://www.sandordargo.com/blog/2022/07/27/cpp-on-sea-trip-report
https://www.sandordargo.com/blog/2022/07/27/cpp-on-sea-trip-report
https://cpponsea.uk/2023/sessions/why-clean-code-is-not-the-norm.html
https://cpponsea.uk/2023/sessions/why-clean-code-is-not-the-norm.html
https://cpponsea.uk/2023/sessions/cpp-and-safety.html
https://timur.audio/
https://cpponsea.uk/2023/sessions/typical-cpp-but-why.html
https://www.cppstories.com/2021/designated-init-cpp20/
https://www.cppstories.com/2021/designated-init-cpp20/
https://howardhinnant.github.io/classdecl.html
https://howardhinnant.github.io/classdecl.html
https://www.jonathanmueller.dev/talk/cpp-features/
https://www.jonathanmueller.dev/talk/cpp-features/
https://twitter.com/zygoloid/status/1107740875671498752?lang=en
https://twitter.com/zygoloid/status/1107740875671498752?lang=en
https://cpponsea.uk/2023/sessions/special-member-functions-in-cpp.html
https://cpponsea.uk/2023/sessions/special-member-functions-in-cpp.html
https://www.sandordargo.com/blog/2023/07/05/trip-report-cpp-on-sea-2023
https://www.sandordargo.com/blog/2023/07/05/trip-report-cpp-on-sea-2023

lUCIAn RADU TEODORESCUFEATURE

12 | Overload | August 2023

This is the second part of the article on reasoning and complexity.
In the first part, we argued the importance of reasoning in software
engineering, and started exploring some dimensions of reasoning

that we might apply in our field.

In this part, we use this reasoning to tackle complexity. Starting from
Brooks’s ‘No Silver Bullet’ article [Brooks95], we make the distinction
between what’s essential and what’s accidental in software engineering.
To properly reason about these two, we make a sharp distinction between
the two. We define a framework for analysing essential complexity in a
more formal manner. For accidental complexity, we cannot find such a
formal system, but we use the discussion about reasoning from the first
part to give us a hint on how we can approach accidental complexity
found in software.

If the first part of the article looked like an essay, this part is like a play
in 14 acts.

Essential and accidental complexity
Act 1: The actors introduce themselves
Brooks talks about software as having two types of difficulties: essential
and accidental [Brooks95]. In the first category, we can find the difficulties
inherent to the nature of the software, and in the second, those difficulties
that today attend its production but are not that inherent. In the inherent
category, Brooks lists complexity (no two parts are alike), conformity
(there isn’t a more fundamental level of software so that we can reduce
all the software to that level), changeability (software is constantly
changing), and invisibility (software cannot be drawn in space; software
is many-many-dimensional).

Brooks argues that by now we have solved a major part of the accidental
difficulties and what’s left are essential difficulties, and we cannot get a
ten-fold increase in productivity as we cannot improve on these essential
difficulties. He lists a series of promising technologies and paradigms and
argues that they cannot bring that ten-fold increase in productivity.

If we strictly follow the wording of Brooks, and his categorisation, it
makes no sense for us to discuss essential complexity. Complexity
is always inherent, is always essential. However, in present times, we
often shift the terms of Brook’s problem into essential complexity and
accidental complexity. For example, Kevlin Henney makes use of these
new terms [Henney22b].

But neither of the two approaches properly defines a clean boundary
between what’s essential and what’s accidental. This is always left to
interpretation.

Act 2: The dilemma
Let’s take an example. Let’s say we have a project in which we need to
create an echo server: it accepts TCP/TLS connections, and whenever it
receives a message, it replies with the content of the received message.

By both accounts, there is an inherent complexity of the problem itself
(accepting connections, communication protocols, reading and writing
messages, etc.) This is most probably essential.

Now, if one chooses to solve this problem imperatively (i.e., using
object-oriented programming) or in a functional manner, is this essential
or accidental? A naive read of Brooks may suggest that this is essential,
not accidental. After all, the paradigm we are using has a great influence
on the data structures, algorithms, and function invocations we need to
solve the problem. On the other hand, Kevlin argues that this is part of
the accidental.

Moving on, we are making a choice of a programming language to use,
and then probably multiple choices of which technologies to be used in
this project. Is this essential or accidental? When we implement this,
we may have a clean implementation, or maybe we end up with a lot of
technical debt in our implementation. Does technical debt account for
essential or for accidental?

Furthermore, during the implementation of this project, we choose
some tooling to facilitate our development. We are probably using Git,
we may want to use CI/CD, we may want to create some architecture
documentation, we may want to write some detail design documentation,
etc. We may also have processes to follow that dictate which individuals
should work on the project, which individuals need to be informed, which
need to review, which must approve various deliverables during the
lifetime of the project. Most of these seem to be related to the accidental
part; there are plenty of difficulties that we have to solve in order to get
the project complete.

Act 3: An unexpected event; war preparations
To make progress on the previous dilemma, let’s set a convention: we
talk about the essential complexity of a problem as being the complexities
inherently associated with the problem, and not what different solutions
may look like. If there are two solutions to the same problem, one of
them being less complex, and one being more complex, we say that the
problem is no more complex than the first solution.

This is consistent with Kevlin’s perspective. [Henney22b]

Furthermore, let’s assume that we can associate a value with the
complexity of a problem and the corresponding solutions. If P is a
problem and S1, S2, …, Sn are solutions to P, and C(Si) is the complexity
associated with solution Si, then we can say that the complexity of the
problem P is defined by:

C (P) = min C (S i)

That is, the complexity of the problem is the minimum possible
complexity of all the solutions.

Reasoning about
Complexity – Part 2
Understanding code could increase our productivity by an order
of magnitude. Lucian Radu Teodorescu introduces a complexity
measure to help us reason about code to tackle complexity.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

lUCIAn RADU TEODORESCU FEATURE

August 2023 | Overload | 13

In this setup, we assume that the complexity function C(Si) is only a
function of the code for solution Si, and does not relate to any difficulties
about producing solution Si (i.e., processes, build systems performance,
etc.).

Furthermore, we want to distinguish between the difficulties associated
with the code of solution Si, and the difficulties related to the tools and
processes that were used to produce Si. We will mainly focus on the actual
complexity of the code and ignore any complexity that is not directly
visible in the code. Based on the data we have (mostly informal) the main
difficulty is dealing with the code itself (for example, we spend more time
reasoning about the code than using git to submit a patch).

We also discard any non-functional requirements and constraints that
were not explicitly specified in the problem domain. For example, if the
problem is just sort an array of elements, then sleep-sort and bogo-sort
[Henney22a] are suitable solutions for the problem, and we consider them
while evaluating the complexity of the problem.

Let’s say that each solution can be represented as a graph; for example,
let’s say that the nodes are instructions, and the links are relationships
between instructions. We count the complexity of the solution as being
the sum of complexities associated with each node and each link. This is
a relatively simplistic model, and not very precise, but it gives us a good
approximation of what we need. It turns out we don’t need anything else
to have basic reasoning about the complexity.

We can complicate this model by allowing the nodes of a graph to be
formed by other graphs, not just by instructions. This way, we build a
hierarchy of graphs for representing solutions.

All the complexities of a solution that do not appear as complexities of
the problem can be labeled as accidental. We don’t have (yet) a good
measure for accidental complexity.

Reasoning on essential complexity
Act 4: An old ally
The reader may be familiar with an old ally of ours from an older
episode named ‘Performance Considered Essential’ [Teodorescu22].
While arguing why performance is important for all (practical) software
problems, we were helped by our friend: the_one_algorithm. This
algorithm solves most practical problems by trying out all possible
combinations of outputs (i.e., using backtracking), and selecting the one
that matches the expected requirements. That is, we need the requirements
of the problem to be encoded as tests. The algorithm would try any
possible combination of output values, and checks if the output can be a
solution to the problem input.

For a problem that doesn’t have explicit performance constraints, if
we can find a set of tests that properly captures the requirements of the
problem, the use of the_one_algorithm is a solution to our problem.
Thus, we can use this powerful ally to launch an attack on the complexity
value of a problem.

For most problems, the easiest way to derive the set of tests is to
start analysing the requirements of the problem. We have functional
requirements, non-functional requirements (quality attributes) and
constraints. Usually, the functional requirements are the only ones that
are explicit and directly associated with the problem; however, our
construction works even if we make non-functional requirements explicit.
And, as we said, we only care about explicit requirements when assessing
a problem.

Thus, in most cases, to satisfy our ally, we would iterate over the list of
explicit requirements and provide a list of one or more tests that we can
apply. This list of tests can then be transformed using conjunction into a
global test for a solution of the problem.

Act 5: The first complexity wars
Let us prepare our attempt at conquering essential complexity.

We have a problem P, that has a set of requirements R1, R2, …Rn. For this
set of requirements, we come up with a set of tests T1, T2, … Tn. A test can
be simple or more complex. For each test, we can define an underlying
problem, so that means that we can associate a complexity value to it.
Let’s say the complexity values for the tests will be C1, C2, … Cn.

Our the_one_algorithm algorithm also has a complexity. Let’s note
that with C0.

It is worth mentioning that the actual complexity values we associate
don’t matter that much to our approach. For simplicity, we can define a
basis, a fixed set of instructions/algorithms that all have complexity equal
to 1. For complex operations that are composed of basis operations, we
can calculate the complexity appropriately.

For example, it makes sense to associate a complexity value of 1 to our
the_one_algorithm ally. We understand it enough to reason about
it, we don’t always have to analyse its constituent parts each time we are
interested in analysing the complexity of a problem/solution.

Furthermore, to simplify things, we can always find the tests T1, T2, … Tn
to be independent of each other. That is, the complexity of the overall test
will just be the sum of the complexity of the individual requirement tests.

Moreover, we assume that the sequence of tests T1, T2, … Tn is the
simplest that we can find.

With this, for a problem P for which we find the solution of using
the_one_algorithm with associated tests T1, T2, … Tn, we find that
the complexity of the solution is:

C (solution) = C 0 + C (Ti)/
Thus, the complexity of the problem is

C (P) # C 0 + C (Ti/)

We count the complexity of the solution as being the sum
of complexities associated with each node and each link.
This is a relatively simplistic model, and not very precise,

but it gives us a good approximation of what we need

lUCIAn RADU TEODORESCUFEATURE

14 | Overload | August 2023

In plain English, for every problem, the complexity of the problem is at
least one plus the complexity of all the tests we need to fully specify the
requirements.

Act 6: The peace treaty
For most problems, the complexity obtained in this way is probably
smaller than the complexity obtained by analysing the algorithm itself.
(Note to future self: this is not properly argued; the reader didn’t receive
proper reasoning to support this statement.) Thus, we can approximately
define the complexity of the problem as the complexity of the solution
involving the_one_algorithm.

Even if the above statement is not true in all cases, we can still use it
to compare two problems, even if the comparison is approximate. For
example, we can compare the essential complexity of a problem defined
as sort N elements with the problem defined as stable sort N elements.
For the second problem, we have more requirements, thus more tests to
be performed, so the complexity is greater:

C (P2) > C (P1)

Thus, for practical purposes, we will use the complexity of our solution
involving the backtracking algorithm as an approximation of the essential
complexity of the problem:

C (P) + C 0 + C (Ti)/
And thus, we have a definition for the essential complexity of a problem,
even if this is just an approximation.

Act 7: Aftermath; an example
Let’s say that we assign complexities of 1 to the following operations:

	� running our backtracking algorithm (the_one_algorithm)

	� accessing elements in an array (either input or output)

	� comparing two elements (of the same type) for equivalence or for
ordering

	� comparing indices

	� using the existential or universal quantifier on one variable, with a
predicate (predicate complexity is added separately)

	� implication operator →

Let’s say that we have P1 as sort N elements of an array, in place. This
problem can be defined thanks to the following tests (in the interest of
space, not extremely formal, more like a sketch):

	� T1: 6 i ! [0,N),7 j ! [0,N),arrayorig [i] == array final [j]
in English: all the elements that were initially in the array are still
present in the output array

	� T2: 6i ! [0,N),7 j ! [i + 1,N), array final [i] # array final [j]
in English: the elements in the final array are sorted

With the above rules, the complexities associated with the tests are
C(T1) = 5 (one forall, one exists, two array accesses and one equality
comparison) and C(T2) = 5 (same).

That is, C(P1) = 1 + 5 + 5 = 11.

Let’s now take P2 to mean search an element X in an array of N elements;
if found, return its index (R), otherwise return NULL. We can have the
following tests for this algorithm:

	� T1: R ! NULL " R ! [0,N)&& array [R] == X

	� T2: R = NULL " J7 i! [0,N), array [i] == X

With the tests written this way, we can have C(P2) = 1 + 4 + 5 = 10.

Act 8: Enjoying the victory
After a relatively long journey, we have managed to define a metric
that can approximate essential complexity. Considering the fact that we
started from not knowing what essential complexity is, I hope the reader
agrees with me that this is a pretty good result.

This allows us to compare problems in terms of essential complexity,
allowing us to say that one problem is more complex than another.

But there is another interesting change that we’ve achieved here. We
managed to simplify our reasoning about the problem by transforming
it from something that is inherently complex into a linear sequence of
predicates. Instead of having a quadratic reasoning of the problem, we
now can apply a linear algorithm for reasoning about its complexity.

Why quadratic? Well, on an inherently complex problem, one can
assume that every part of the problem is connected to every other part
of the problem. If the problem has N parts, then there may be N(N-1)/2
connections inside the problem.

It turns out that any transformation that enables representation of the
problem in a linear form can enable a simplification in how we reason
about the problem.1

Reasoning on accidental complexity
Act 9: Dark clouds gather again in our minds
We’ve won the first battle, we’ve found a way to reason about essential
complexity, but we haven’t won the war.

By construction, we’ve moved into essential complexity only what is
inherently related to the problem, but all the practical things about various
solutions have been left in the accidental complexity part.

If, for example, we have a concrete implementation of a sorting algorithm,
we don’t have a good way of reasoning about it. Does it matter the choice

1 Please note that the problem is still as complex as before. In our case,
the difficulty of the problem moved into the process of generating good
tests for the problem. The process of generating a linear sequence of
tests is not necessarily linear. But, once we have that transformation
done, it’s much easier to reason about the problem.

we have managed to define a metric that
can approximate essential complexity

lUCIAn RADU TEODORESCU FEATURE

August 2023 | Overload | 15

of programming paradigm, or the choice of programming language, or
the choice of the algorithm being used? Of course, it does.

Unfortunately, accidental complexity radiates from essential complexity.
Similar to how a black hole radiates light, in the same way, essential
complexity continuously generates accidental complexity. Particles split
at the border of a black hole, part of them being pulled into a black hole
and part of them being emitted as light from the direction of the black
hole. Similarly, trying to write code for solving essential parts of the
problem always creates more accidental difficulties.

For example, creating functions to solve a particular aspect of the
problem always comes with naming them, with dividing the logic in two
parts (what’s inside the function and what’s outside the function) and
having different types of coupling between those two parts. Naming and
these divisions are not inherently to the problem, so they are accidental
complexity. Even the fact that we created a function has introduced a
new element into our program that we have to reason about (it provides
benefits, but always has costs too).

In all software projects, there is always a dark force in the accidental
complexity that we have to constantly face. And, as the main bottleneck
is our brain, the only weapon we seem to have against it is by improving
our ways of reasoning about the problem.

Act 10: Sorting it out
Let’s consider the problem of sorting, in place, an array of numbers. We’ve
already shown a system in which the essential complexity of the problem
equals 5. Let’s consider now the complexity of a sorting solution, namely
insertion sort. Listing 1 shows a C++ implementation.

To analyse the complexity of this algorithm, we would use the metric that
we introduced in ‘How We (Don’t) Reason About Code’ [Teodorescu21].
That is, we count all the postconditions that can infer by reading the code.
To make things simpler, we would not count the syntactical aspects of the
code, and not bother about the types and semantic information present
in the code. We would only reason about the possible values. And, even
here, we would take some small shortcuts to keep things simple. We

would compute the reasoning complexity of the code, by counting the
number of postconditions we can infer from the code.

Here it is:

1. i is always greater or equal to 1;
2. i is always less than n in the body of the loop;
3. key always has a value of an array element (arr[i]);
4. j starts as i-1;
5. j is never incremented;
6. j is decremented each time the body of the while loop is run;
7. j is always less than i;
8. j is always greater or equal to 0 in the while body;
9. in the while body, arr[j] is always a valid value in the range

arr[0..i-1];
10. in the while body, arr[j+1] is always a value in the range

arr[1..i];
11. if arr[j]>key then we move the element arr[j] one position

right, overwriting the value we have there;
12. while shifting the elements right in the body of the while loop, we

are not losing the value of any element (considering that the value
of arr[i] is stored in key);

13. in the while body arr[j+1] is always a value in the range
arr[0..i-1];

14. at the end of the while loop, if j>=0 then arr[j] <= key;
15. at the end of the while loop, arr[j+1] > key;
16. at the end of the while loop, all the elements arr[j+1..i-1]

(assuming j+1<=i-1) are moved one position to the right (keeping
their order);

17. if all the elements in range arr[0..i-1] are sorted at the start
of the for loop, then at the end of the while loop, all elements in
range arr[0..j] (assuming j>=0) are smaller than key;

18. if all the elements in range arr[0..i-1] are sorted at the start
of the for loop, then at the end of the while loop, all elements
in range arr[j+1..i-1] (assuming j+1<=i-1) are greater than
key;

19. storing the value of key at arr[j+1] does not lose any value from
the original array;

20. if all the elements in range arr[0..i-1] are sorted at the start of
the for loop, then at the end of the for loop, all the elements in
range arr[0..i] would be sorted;

21. at the end of the for loop, all the elements original present in the
input array will still be present in the array;

22. at the end of the for loop, all the elements will be sorted.

In the end, the reasoning complexity of this sorting algorithm is 22, as
we have 22 preconditions to complete our reasoning. The astute reader

// inputs: int n, int arr[]
for (int i=1; i<n; i++) {
 int key = arr[i];
 int j=i-1;
 // Move elements in arr[0..i-1] that are
greater
 // than the key one step right
 while (j>=0 && arr[j]>key) {
 arr[j+1] = arr[j];
 j--;
 }
 // Put the element at the right position
 arr[j+1] = key;
 // Postcondition: arr[0..i] is sorted
}

listing 1

Even the fact that we created a function
has introduced a new element into our
program that we have to reason about

lUCIAn RADU TEODORESCUFEATURE

16 | Overload | August 2023

may remark that we went quickly over the items that required induction.
A more in-depth analysis would probably yield a bigger complexity for
our algorithm.

In the case of this reasoning complexity, we counted the number of
postconditions that we can deduce from the code. Previously, when
measuring the essential complexity, we measured the number of elements
of the predicates that describe the problem. We have two slightly different
approaches, but their core is the same: counting the number of reasoning
units involved in the two things. Generalising, we can say that the two
metrics are compatible.

While it’s not quite correct, we can compare the essential complexity value
of 5 for the problem of sorting in place, with the reasoning complexity
of 22 for the insertion sort algorithm. This gives us an indication that the
complexity of a solution is, in general, higher than the complexity of the
problem. The difference is accidental complexity.

Please note that, for this example, the complexity of the solution is 4.4
times bigger than the essential complexity.

Act 11: Self-inflicted pain
It is unclear to me why this is the case, but it feels to me that software
engineers are the most masochistic out of all the engineering disciplines I
know of. The amount of self-inflicted pain that software engineers cause
is staggering. It feels to be even more than the number of problems that
are solved.

Bugs, technical debt, optimistic estimates, late projects, you name it.
They all come with accidental complexity.

Starting from the assumption that all engineers want to avoid such pain,
the problem lies somewhere between the actions that engineers undertake
and the consequences of those actions. I’m trying to avoid going through
the rabbit hole of entering a discussion on moral logic.

This disconnect is most probably generated by incomplete reasoning.
If I’m doing action A now, I must not fully realise that it leads to the
consequences C that are harmful to me.

This comes back to the ideas that I touched on in the first part of this
article. We need to get better at reasoning about different aspects of
software engineering. If we do, then maybe we figure out better strategies
to reduce the amount of pain and accidental complexity that have left.

Act 12: linearising the problem
If we have a problem (or a sub-problem for that matter) that is complex to
understand, then perhaps linearising the problem will make it easier for
us to reason about it.

To make this clearer, let’s repeat the reasoning we had above when we
analysed the process of reasoning about essential complexity. Let’s
assume that the problem has N parts (potentially each of these parts
hiding more complexity). In a system with N parts, there can be N(N-1)/2
communication channels. That is a quadratic order of magnitude.

The more connections there are between the parts of the problem, the
more complex the problem is for us, as it gets harder and harder to reason
about it.

For example, if we have a 10 parts problem, we have 45 connections
between these parts. Thus, to fully reason about this problem, we need to
keep track of 45 connections and 10 parts, in total 55 things. If, however,
we can arrange the parts in a sequence, and each part would only be
related to the adjacent part, then there would be only 9 communication
channels. In total, 19 things to keep track of. The difference between 45
and 19 is significant.

But even this isn’t our biggest difficulty. We may face a bigger challenge
when trying to reason about the non-linearised problem. Studies show
that we can only keep track of 7 things at once (plus/minus 2) [Miller56].
Thus, it becomes harder for our minds to reason when the number of
elements grows over this threshold.

If the 10 parts of the problem are linearised, then if one fully wants to
reason about a part, they need to consider that part and the 2 relations it
might have with the adjacent parts. That is, one needs to keep track of 3
things.

But, if all the parts are connected to all the other parts, one can’t easily
reason about any single part. This is because they must keep track of 11
different things at the same time.

Linearisation is not always possible, but maybe we can group the parts,
and reduce the cognitive load for reasoning about these parts. But, as
always, we must have better reasoning strategies for breaking up systems
formed from multiple parts into smaller systems. While there are great
advancements in this area, I feel that we still need more thought put into
how to organise the parts of our systems.

Act 13: In search of the silver bullet
After exploring essential complexity and accidental complexity, let’s
quickly try to address Brooks’ question: can we find a silver bullet that
would increase our productivity by an order of magnitude?

Brooks put this problem in terms of difficulties. But, let’s reduce this
question to complexity. That would be: can we find a way to reduce the
complexity of our code by a factor of 10?

The reader should note that the difficulty of working in the code may
not be directly proportional to our complexity measure. But, in the lack
of a better measure, we can assume that the difficulty is linear with the
complexity number. That is, with our assumption, a code with twice the
value for complexity will be twice as difficult to work with.

We start from the idea that the complexity of some code cannot be smaller
than the complexity of the problem we are trying to solve. We always
have some accidental complexity. Mathematically, we have C(solution) =
C(problem) + C(accidental).

To have a ten-fold decrease, we need to have C(solution) > 10C(problem)
or C(accidental) > 9C(problem).

The more connections there are between
the parts of the problem, the more
complex the problem is for us, as it gets
harder and harder to reason about it

lUCIAn RADU TEODORESCU FEATURE

August 2023 | Overload | 17

Moreover, we should be able to reduce the accidental complexity by that
much.

In our sorting example, the ratio between the complexity of the solution
and the complexity of the problem was only 4.4. That is, for this problem,
we cannot get a 10-fold improvement even if we could magically remove
all the accidental complexity.

I would argue that, for most problems, we would get similar ratios. That
is, the complexity of the solution isn’t 10 times bigger than the complexity
of the problem.

On the other hand, there are so many code bases with heavy piles of
technical debt. In those cases, one can reduce a lot of accidental
complexity and get a 10x improvement on working in that codebase. But,
maybe those cases are just exceptions.

As mentioned above, besides the complexity of the code we are writing
for the solution, there are also difficulties related to tools and processes
that are not captured in the code. Making a stance similar to Brooks, we
assume that these difficulties are not significant in the grand scheme of
things.2

So, with our set of assumptions, we can only confirm Brooks’ postulate:

There is no single development, in either technology or
management technique, which by itself promises even one order-
of-magnitude improvement within a decade in productivity, in
reliability, in simplicity.

Act 14: Epilogue
The war is not over, and it probably will never be. It just leaves deep
scars on countless people, who willingly or unwillingly take part in the
software engineering wars.

Problems will become more and more complex, and thus we need to be
prepared to have more and more tools at our disposal to fight complexity,
whether it’s essential or accidental.

By now, we know what the main challenge is. It’s not about the tools,
about libraries and frameworks, or following the steps of a specific
process. Although all these can help. It’s about utilising our brain in a
more efficient manner. And, because we cannot rewire our brain, we need
to change how we structure all the activities in software engineering to
better fit the model of the brain.

In our long discussion we covered three things: reasoning in software
engineering (the topic of part one, in the last issue), reasoning on essential
complexity, and reasoning on accidental complexity. In part one, we
argued that a certain type of philosophical reasoning is fundamental for
software engineering, and we set ourselves on a track to explore different
reasoning strategies, with the hope that we will have a better grasp on
software engineering. In the second part of this article (this issue), we

2 This is different to the point that Mark Seemann argues in his ‘Yes silver
bullet’ article [Seemann19].

approached essential and accidental complexity. While we were able to
provide a framework for reasoning about essential complexity, we soon
realised that this framework doesn’t directly help that much in practice.
We started our exploration of accidental complexity; however, things are
far muddier here, as we are dealing with almost all the aspects of software
engineering. Instead of providing a semiformal description of accidental
complexity, we started to reason on some aspects that seem to be of great
importance. While by no means complete, we believe that the discussion
covers some important aspects of accidental complexity.

After our analysis, we tried to have an answer for whether there can be a
silver bullet that would reduce the difficulties of programming by a factor
of 10. With a series of assumptions, we concluded that this is probably not
the case. Even if it appears that accidental complexity constitutes a large
part of what we need to solve in software engineering, it doesn’t fully
cover 9/10 of our projects. And, even if it did, the complexity of reasoning
about different parts of the solution is pretty high, so we cannot hope to
increase it dramatically. Especially since we can’t rewire our brains.

Thus, once again, if we cannot rewire our brains, the only hope we have
is to get better at reasoning on different aspects of our solution, and on
different aspects of software engineering, and maybe trick our brain into
being more productive. �

References
[Brooks95] Frederick P. Brooks Jr., The Mythical Man-Month

(anniversary ed.)., Addison-Wesley Longman Publishing, 1995.
[Henney22a] Kevlin Henney, ‘The Most Bogus Sort’, 2022, https://

kevlinhenney.medium.com/the-most-bogus-sort-3879e2e98e67
[Henney22b] Kevlin Henney, ‘Why It Can Be Hard to Test’, 2022,

https://www.youtube.com/watch?v=aqkvapSSrKg
[Miller56] George A. Miller, ‘The magical number seven, plus or minus

two: Some limits on our capacity for processing information’,
Psychological Review. 63 (2), 1956,
http://psychclassics.yorku.ca/Miller/

[Seemann19] Mark Seemann, ‘Yes silver bullet’, 2019,
https://blog.ploeh.dk/2019/07/01/yes-silver-bullet/

[Teodorescu21] Lucian Radu Teodorescu, ‘How We (Don’t) Reason
About Code’, Overload 163, June 2021, https://accu.org/journals/
overload/29/163/overload163.pdf#page=13

[Teodorescu22] Lucian Radu Teodorescu, ‘Performance Considered
Essential’, Overload 169, June 2022, https://accu.org/journals/
overload/30/169/overload169.pdf#page=6

we need to be prepared to have more and
more tools at our disposal to fight complexity,

whether it’s essential or accidental

https://kevlinhenney.medium.com/the-most-bogus-sort-3879e2e98e67
https://kevlinhenney.medium.com/the-most-bogus-sort-3879e2e98e67
https://www.youtube.com/watch?v=aqkvapSSrKg
http://psychclassics.yorku.ca/Miller/
https://blog.ploeh.dk/2019/07/01/yes-silver-bullet/
https://accu.org/journals/overload/29/163/overload163.pdf#page=13
https://accu.org/journals/overload/29/163/overload163.pdf#page=13
https://accu.org/journals/overload/30/169/overload169.pdf#page=6
https://accu.org/journals/overload/30/169/overload169.pdf#page=6

ARnE MERTzFEATURE

18 | Overload | August 2023

let’s have a look at an example for useful empty classes. The passkey
idiom can help us regain the control that we give up by simply making
classes friends.

The problem with friendship
Friendship is the strongest coupling we can express in C++, even stronger
than inheritance. So, we’d better be careful and avoid it if possible. But
sometimes we just can’t get around giving one class more access than
another.

A common example is a class that has to be created by a factory. The
factory needs access to the class’s constructors. Other classes should not
have that access so as not to circumvent the bookkeeping or whatever else
makes the factory necessary.

The problem with the friend keyword is that it gives access to
everything. There is no way to tell the compiler that the factory should
not have access to any other private elements except the constructor. It’s
all or nothing. See Listing 1.

Whenever we make a class a friend, we give it unrestricted access. We
even relinquish the control of our class invariants, because the friend
can now mess with our internals as it pleases.

The passkey idiom
There is a way to restrict that access. As so often is the case, another
indirection can solve the problem. Instead of directly giving the factory
access to everything, we can give it access to a specified set of methods,
provided it can create a little key token. See Listing 2.

A few notes
There are variants to this idiom: The key class need not be a private
member of Secret here. It can well be a public member or a free class
on its own. That way the same key class could be used as key for multiple
classes.

A thing to keep in mind is to make both constructors of the key class
private, even if the key class is a private member of Secret. The default
constructor needs to be private and actually defined, i.e. not defaulted,
because sadly even though the key class itself and the defaulted

constructor are not accessible, it can be created via uniform initialization
[Mertz15] if it has no data members .
 //...
 ConstructorKey() = default;
 //...
 Secret s("foo?" , {}); //Secret::ConstructorKey
 // is not mentioned, so we don’t access a
 // private name or what?

Passkey Idiom: A Useful Empty Class
How do you share some but not all of a class?
Arne Mertz introduces the passkey idiom
to avoid exposing too much with friendship.

class Secret {
friend class SecretFactory;
private:
 //Factory needs access:
 explicit Secret(std::string str)
 : data(std::move(str)) {}
 //Factory should not have access but has:
 void addData(std::string const& moreData);
private:
 //Factory DEFINITELY should not have access
 //but has:
 std::string data;
};

listing 1

class Secret {
 class ConstructorKey {
 friend class SecretFactory;
 private:
 ConstructorKey() {};
 ConstructorKey(ConstructorKey const&)
 = default;
 };
public:
 //Whoever can provide a key has access:
 explicit Secret(std::string str,
 ConstructorKey) : data(std::move(str)) {}

private:
 //these stay private, since Secret itself has
 // no friends any more
 void addData(std::string const& moreData);

 std::string data;
};

class SecretFactory {
public:
 Secret getSecret(std::string str) {
 return Secret{std::move(str), {}};
 //OK, SecretFactory can access
 }

 // void modify(Secret& secret,
 // std::string const& additionalData) {
 // secret.addData(additionalData); //ERROR:
 // // void Secret::addData(const string&)
 // // is private
 // }
};

int main() {
 Secret s{"foo?", {}}; //ERROR:
 // Secret::ConstructorKey::ConstructorKey()
 // is private

 SecretFactory sf;
 Secret s = sf.getSecret("moo!"); //OK
}

listing 2

Arne Mertz has been working with modern and not-so-modern C++
codebases for over 15 years in embedded and enterprise contexts.
He is a mentor and teacher for clean code and modern C++ for
colleagues and customers at Zühlke Engineering.

ARnE MERTz FEATURE

August 2023 | Overload | 19

There was a small discussion about that in the ‘cpplang’ Slack channel
[Slack] a while ago. The reason is that uniform initialization, in this case,
will call aggregate initialization which does not care about the defaulted
constructor as long as the type has no data members. It seems to be a
loophole in the standard causing this unexpected behaviour.

The copy constructor needs to be private especially if the class is not
a private member of Secret. Otherwise, this little hack could give us
access too easily:
 ConstructorKey* pk = nullptr;
 Secret s("bar!", *pk);

While dereferencing an uninitialized or null pointer is undefined
behaviour, it will work in all major compilers, maybe triggering a few
warnings. Making the copy constructor private closes that hole, so it is
syntactically impossible to create a ConstructorKey object.

Conclusion
While it is probably not needed often, small tricks like this one can help
us to make our programs more robust against mistakes. �

References
[Mertz15] Arne Mertz ‘Modern C++ Features – Uniform Initialization

and initializer_list’, posted 5 July 2015 at:
https://arne-mertz.de/2015/07/new-c-features-uniform-initialization-
and-initializer_list/

[Slack] Cpplang discussion: https://cpplang.slack.com/

This article was first published on Arne’s blog – Simplify C++! – on 19
October 2016 at https://arne-mertz.de/2016/10/passkey-idiom/ Illustration by Idalia Kulik.

https://arne-mertz.de/2015/07/new-c-features-uniform-initialization-and-initializer_list/
https://arne-mertz.de/2015/07/new-c-features-uniform-initialization-and-initializer_list/
https://cpplang.slack.com/
https://arne-mertz.de/2016/10/passkey-idiom/

AnDREAS FERTIgFEATURE

20 | Overload | June 2023

You may already have heard and seen that C++20 brings the
ability to allocate dynamic memory at compile-time. This leads
to std::vector and std::string being fully constexpr in

C++20. In this article, I like to give you a solid idea of where you can
use that.

How does dynamic allocation at compile-time work?
First, let’s ensure that we all understand how dynamic allocations at
compile-time work. In the early draft of the paper ‘Standard containers
and constexpr’ [P0784R1], proposed so-called non-transient allocations.
They would have allowed us to allocate memory at compile-time and keep
it to run-time. The previously allocated memory would then be promoted
to static storage. However, various concerns did lead to allowing only
transient allocations. That means what happens at compile-time stays at
compile-time. Or in other words, the dynamic memory we allocate at
compile-time must be deallocated at compile-time. This restriction makes
a lot of the appealing use-cases impossible. I personally think that there
are many examples out there that are of only little to no benefit.

The advantages of constexpr
I like to take a few sentences to explain what are the advantages of
constexpr.

First, computation at compile-time does increase my local build-time.
That is a pain, but it speeds up the application for my customers – a very
valuable benefit. In the case where a constexpr function is evaluated
only at compile-time, I get a smaller binary footprint. That leads to
more potential features in an application. I’m doing a lot of stuff in an
embedded environment which is usually a bit more constrained than a PC
application, so the size benefit does not apply to everyone.

Second, constexpr functions, which are executed at compile-time,
follow the perfect abstract machine. The benefit here is that the compiler
tells me about undefined behavior in the compile-time path of a constexpr
function. It is important to understand that the compiler only inspects the
path taken if the function is evaluated in a constexpr context. Here is
an example to illustrate what I mean.
 constexpr auto div(int a, int b)
 {
 return a / b;
 }

 constexpr auto x = div(4, 2); u
 auto y = div(4, 0); v
 // constexpr auto z = div(4, 0); w

This simple function div is marked constexpr. Subsequently, div is
used to initialize three variables. In u, the result of the call to div is
assigned to a constexpr variable. This leads to div being evaluated at
compile time. The values are 4 and 2. The next two calls to div divide
four by zero. As we all know, only Chuck Norris can divide by zero.
Now, v assigns the result to a non-constexpr variable. Hence div
is executed at run-time. In this case, the compiler does not check for the
division by zero despite the fact that the function div is constexpr.
This changes as soon as we assign the call to div to a constexpr
variable, as done in w. Because div gets evaluated at compile-time now,
and the error is on the constexpr path, the compilation is terminated
with an error like that shown in Figure 1.

Aside from not making it, catching such an error right away is the best
thing that can happen.

Dynamic allocations at compile-time
As I stated initially, I think many examples of dynamic allocations at
compile-time are with little real-world impact. A lot of the examples look
like this:
 constexpr auto sum(const vector<int>& v)
 {
 int ret{};
 for(auto i : v) { ret += i; }
 return ret;
 }
 constexpr auto s = sum({5, 7, 9});

Yes, I think there is a benefit to having sum constexpr. But whether
this requires a container with dynamic size or if a variadic template would
have been the better choice is often unclear to me. I tend to pick the
template solution in favor of reducing the memory allocations.

The main issue I see is that, most often, the dynamically allocated
memory must go out of the function. Because this is impossible, it boils
down to either summing something up and returning only that value or
falling back to, say std:array.

So, where do I think dynamic allocations at compile-time come in handy
and are usable in real-world code?

C++20 Dynamic Allocations
at Compile-time
People often say constexpr all the things. Andreas Fertig shows
where we can use dynamic memory at compile time.

Andreas Fertig is a trainer and lecturer on C++11 to C++20,
who presents at international conferences. Involved in the C++
standardization committee, he has published articles (for example, in
iX) and several textbooks, most recently Programming with C++20.
His tool – C++ Insights (https://cppinsights.io) – enables people to
look behind the scenes of C++, and better understand constructs. He
can be reached at contact@andreasfertig.com

<source>:8:16: error: constexpr variable 'z' must
be initialized by a constant expression
constexpr auto z = div(4, 0);
 ^ ~~~~~~~~~
<source>:3:14: note: division by zero
 return a / b;
 ^
<source>:8:20: note: in call to 'div(4, 0)'
constexpr auto z = div(4, 0);
 ^
1 error generated.
Compiler returned: 1

Figure 1

https://cppinsights.io

AnDREAS FERTIg FEATURE

June 2023 | Overload | 21

A practical example of dynamic allocations at
compile-time for every C++ developer
All right, huge promise in this heading, but I believe it is true.

Here is my example. Say we have an application with a function
GetHome that returns the current user’s home directory. Another function
GetDocumentsDir, returns, as the name implies, the documents folder
within the user’s home directory. In code, this can look like this:
 string GetHome()
 {
 return getenv("HOME"); // assume /home/cpp
 }

 string GetDocumentsDir()
 {
 auto home = GetHome();
 home += "/Documents";
 return home;
 }

Not rocket science, I know. The only hurdle is that the compiler figures
out that getenv is never constexpr.

For now, let’s just use std::is_constant_evaluated and return an
empty string.

What both functions return is a std::string.

Now that we have a constexpr std::string, we can make these
two functions constexpr, as shown next.
 constexpr string GetHome()
 {
 if(std::is_constant_evaluated()) {
 return {}; // What to do here?
 } else {
 return getenv("HOME");
 }
 }

 constexpr string GetDocumentsDir()
 {
 auto home = GetHome();
 home += "/Documents";
 return home;
 }

The issue is that while the code may look nice, the functions are unusable
at compile-time due to the restriction of allocations at compile-time. They
both return a std::string which contains the result we are interested
in. But it must be freed before we leave compile-time. Yet, the user’s
home directory is a dynamic thing that is 100% run-time dependent. So
absolutely no win here, right?

Well, yes. For your normal program, compile-time allocations do nothing
good here. So time to shift our focus to the non-normal program part,
which is testing. Because the dynamic home directory makes tests
environment-dependent, we change GetHome slightly to return a fixed
home directory if TEST is defined. The code then looks like Listing 1.

Say we like to write a basic test checking that the result matches our
expectations. I use Catch2 here [Catch2]:
 TEST_CASE("Documents Directory")
 {
 CHECK(GetDocumentsDir()
 == "/home/cpp/Documents");
 }

Still no use at compile-time of GetDocumentsDir or GetHome. Why
not? If we look closely, we now have everything in place. Due to the
defined test environment, GetHome no longer depends on getenv.
For our test case above, we are not really interested in having the string
available at run-time. We mostly care about the result of the comparison
in CHECK.

How you approach this is now a matter of taste.

A neat trick with consteval
Among the various improvements of C++20 are changes to constexpr,
namely a new keyword consteval. In this part of the article, I want to
dig into consteval a bit and see what we can do with this new facility.

What consteval does
As the name of the keyword tries to imply, it forces a constant evaluation.
In the standard, a function that is marked as consteval is called an
immediate function. The keyword can be applied only to functions.
Immediate here means that the function is evaluated at the front-end,
yielding only a value, which the back-end uses. Such a function never
goes into your binary. A consteval-function must be evaluated at
compile-time or compilation fails. With that, a consteval-function is a
stronger version of constexpr-functions. We have now a choice:

	� Compile-time only (consteval)

	� Compile- or -run-time (constexpr)

	� Run-time (no attribution required)

constexpr string GetHome()
{
#ifdef TEST
 return "/home/cpp";
#else
 if(std::is_constant_evaluated()) {
 return {}; // What to do here?
 } else {
 return getenv("HOME");
 }
#endif
}
constexpr string GetDocumentsDir()
{
 auto home = GetHome();
 home += "/Documents";
 return home;
}

listing 1

while the code may look nice, the functions
are unusable at compile-time due to the

restriction of allocations at compile-time

AnDREAS FERTIgFEATURE

22 | Overload | June 2023

Figure 2 visualizes the three different variants.

The behavior of consteval is handy in a situation where you want to
ensure that a certain function is always evaluated at compile-time.

We already have constexpr
Now, let’s circle back and see what we can do with constexpr and
where things get complicated.

A typical pattern I see in my training classes is the following:
 constexpr int Calc(int x)
 { u
 return 4 * x;
 }
 int main()
 {
 auto res = Calc(2); v
 }

In u, we have a constexpr-function, so far so good. Then in v,
this function gets called, and the result is stored in res. The natural
expectation is that Calc is evaluated at compile-time. All criteria are met:

	� The function is marked as constexpr;

	� All input values are constants.

However, Calc is evaluated at run-time. Depending on your optimizer
and optimization level, things may be different, but Calc is called at run-
time from a standards point. What is missing is making the variable res
itself constexpr:
 constexpr int Calc(int x)
 {
 return 4 * x;
 }
 int main()
 {
 constexpr auto res = Calc(2); w
 }

In this version, we achieved what we wanted. Calc is called at compile-
time because the variable itself is marked as constexpr (w). While
in a lot of situations, this is okay, there is one where this pattern doesn’t

work. You may already know this. Marking a variable as constexpr
also makes this variable implicitly const. If you struggle here, use C++
Insights to show you what constexpr brings piggyback.

Now, assume that we like to have that call to Calc happen at compile-
time, but res should be writable at run-time. This is where we can use
consteval, to force evaluation at compile-time, regardless of the
constexpr’ness of the variable:
 consteval int Calc(int x)
 { // consteval now
 return 4 * x;
 }
 int main()
 {
 auto res = Calc(2); // Compile-time due to
 // consteval
 ++res; // Modify res at run-time
 }

Your new friend: as_constant

All right, so far, so good. In the version above Calc is now a compile-
time only function. Now, what if we like to have both? Calc should be
usable at compile- and run-time. But at the same time we would like res
to be writable at run-time? Let me introduce you to as_constant, a
handy new helper (you have to copy or write yourself):
 consteval auto as_constant(auto value)
 {
 return value;
 }

Yes, as_constant appears to be a very silly function. The function
simply returns its input without any modification. I would probably make
you remove such a silly function in a code review. But thanks to the
consteval modifier, as_constant serves a greater purpose:
 constexpr int Calc(int x)
 { // constexpr again x
 return 4 * x;
 }
 int main()
 {
 // Forcing compile-time with as_constant y
 auto res = as_constant(Calc(2));
 ++res; // Modify res at run-time z
 res = Calc(res); // Run-time use of Calc
 }

In x, Calc is constexpr again. We use as_constant in y to force
compile-time evaluation of Calc. As before, we can modify res in z,
but we can now also use Calc at run-time as shows. This is something
you cannot achieve with another new compile-time keyword in C++20,
constinit, as constinit works only with static initialized data.

Since as_constant is evaluated purely at compile-time, the by-value
semantic is okay. No need to care about moving things.

One thing is left to mention, with the approach shown with as_constant
the destructor of the type used in the function must be constexpr.

Figure 2

consteval is handy in a situation where
you want to ensure that a certain function
is always evaluated at compile-time

AnDREAS FERTIg FEATURE

June 2023 | Overload | 23

Using as_constant
If you want to use as_constant in the check for the home directory, the
test would look like this:
 TEST_CASE("Documents Directory constexpr")
 {
 CHECK(as_constant(GetDocumentsDir()
 == "/home/cpp/Documents"));
 }

I probably would soon start defining something like DCHECK for dual
execution and encapsulate the as_constant call there. This macro then
executes the test at compile and run-time. That way, I ensure to get the
best out of my test.
 #define DCHECK(expr) \
 CHECK(as_constant(expr)); \
 CHECK(expr)

 TEST_CASE("Documents Directory dual")
 {
 DCHECK(GetDocumentsDir()
 == "/home/cpp/Documents");
 }

In an even better world, I would detect whether a function is evaluable
at compile-time and then simply add this step of checking in CHECK.
However, the pity here is that such a check must check whether the
function is marked as constexpr or consteval but not execute it
because once such a function contains UB, the check would fail.

But let’s step back. What happens here, and why does it work?

as_constant enforces a compile-time evaluation of what it gets called
with. In our case, we create two temporary std::strings, which
are compared, and the result of this comparison is the parameter value
of as_constant. The interesting part here is that temporaries in a
compile-time-context are compile-time. We forced the comparison of
GetDocumentsDir with the expected string to happen at compile-time.
We then only promote the boolean value back into run-time.

The huge win you get with that approach is that in this test at compile-
time, the compiler will warn you about undefined behavior:

	� like an of-by-one error (which happened to me while I implemented
my own constexpr string for the purpose of this article);

	� memory leaks because not all memory gets deallocated;

	� comparisons of pointers of different arrays;

	� and more...

With the large RAM we have today, memory leaks are hard to test at run-
time, but not so in a constexpr context. As I said so often, the compiler
is our friend. Maybe our best friend when it comes to programming.

Of course, there are other ways. You can make the same comparison as
part of a static_assert. The main difference I see is that the test will

fail early, leading to a step-by-step failure discovery. Sometimes it is nicer
to see all failing tests at once.

Another way is to assign the comparison result to a constexpr variable
that saves you from introducing the helper function as_constant.

I hope you agree with my initial promise; the example I showed you is
something every programmer can adapt.

Recap
Sometimes it helps to think out of the box a bit. Even with the restrictions
of compile-time allocations, there are ways where we can profit from the
new abilities.

	� Make functions that use dynamic memory constexpr.

	� Look at which data is already available statically.

	� Check whether the result, like the comparison above, is enough, and
the dynamic memory can happily be deallocated at compile-time.

Your advantages are:

	� Use the same code for compile and run-time;

	� Catch bugs for free with the compile-time evaluation;

	� The result can stay in the compile-time context in more complex
cases because it is more like in the initial example with sum.

	� Over time, maybe we will get non-transient allocations. Then your
code is already ready.

I hope you have learned something today. If you have other techniques or
feedback, please contact me. �

References
[Catch2] A modern, C++-native, test framework for unit-tests, TDD and

BDD: https://github.com/catchorg/Catch2
[P0784R1] Standard containers and constexpr: https://www.open-std.

org/jtc1/sc22/wg21/docs/papers/2018/p0784r1.html

This article was published as two posts on Andreas Fertig’s blog:

 � ‘C++20: A neat trick with consteval’ (posted 6 July 2021) available
from: https://andreasfertig.blog/2021/07/cpp20-a-neat-trick-with-
consteval/

 � ‘C++20: Dynamic Allocations at Compile-time’ (posted 3 August
2021) available from: https://andreasfertig.blog/2021/08/cpp20-
dynamic-allocations-at-compile-time/

With the large RAM we have today, memory
leaks are hard to test at run-time, but not so in a

constexpr context…the compiler is our friend

https://github.com/catchorg/Catch2
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0784r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0784r1.html
https://andreasfertig.blog/2021/07/cpp20-a-neat-trick-with-consteval/
https://andreasfertig.blog/2021/07/cpp20-a-neat-trick-with-consteval/
https://andreasfertig.blog/2021/08/cpp20-dynamic-allocations-at-compile-time/
https://andreasfertig.blog/2021/08/cpp20-dynamic-allocations-at-compile-time/

CHRIS OlDWOODFEATURE

24 | Overload | August 2023

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or @
chrisoldwood

A tweet recently appeared in my timeline that caused me to go all
Obi-Wan Kenobi and exclaim “now there’s a name I’ve not heard
in a very long time”. The name was Phil Karn, although his twitter

handle of KA9Q might ring a few bells to those in the amateur (ham) radio
scene. But that’s not where I know his name from, at least, not directly.

My first professional programming gig was with a small software house
(GST) in the UK back in the early ’90s. This was an era where we weren’t
all permanently connected to the Internet. Although small, the company
had a Novell NetWare network on which we could send internal email
using the Pegasus Mail (aka pmail) DOS based email client which had
special support for Novell NetWare. However, it didn’t have any native
support for sending email over the Internet because there was no formal
TCP/IP support in DOS.

Enter stage left: Phil Karn.

Back in the mid ’80s Phil wrote a TCP/IP application called KA9Q
[KA9Q] (the name being based on his ham radio callsign) which he
later ported to MS-DOS. This application allowed a PC to connect to the
Internet via a modem and came bundled with a number of popular clients
such as Telnet, FTP, and, more importantly for this story, SMTP. (At the
time KA9Q was referred to as a NOS – Network Operating System –
because networking wasn’t a ubiquitous part of an OS like it is today.)
Another key feature of this application was that the source was freely
available, so you could add support for additional hardware, fix bugs, etc.

Although the Novell NetWare sysadmin at GST was also an amateur radio
fan, apparently it was another employee (John Bradley) who worked out
that if they could fork KA9Q and tweak the SMTP server code to work
with PMail / NetWare it would allow the company to send and receive
mail externally, as well as internally. And thus was born “nonet” – a [NO]
vell fork of the KA9Q net program that delivered incoming mail directly
to a NetWare user’s inbox.

Of course, it wasn’t quite that simple as a direct Internet connection cost
a small fortune, but luckily Demon Internet [Wikipedia] had started its
‘tenner-a-month’ offering (£10 + VAT being the subscription price) in
the UK which allowed mere mortals and small companies to ‘get on the
internet’ at a more affordable price. You still had to pay telephone call
charges which meant you couldn’t simply leave your modem permanently
online, but using a classic scheduler like cron allowed you to regularly
dial-up, exchange emails, and then disconnect – a process affectionately
known as a ‘blink’. (Although the modem handshake alone took way
longer than the blink of an eye, let alone the actual exchange of emails!)

This all happened before I even joined GST so you’re probably wondering
where this somewhat obscure history lesson is going…

Eventually the existing maintainer of Nonet (John Bradley) left the
company, and somebody needed to take over the reins because either a
change in PMail or NetWare (I’m hazy on the details 30 years later) was
causing a problem. Actually, I had already started taking an interest in
networking and KA9Q because I realised I could use its FTP client to

download this up-and-coming new UNIX-like OS for PCs (and the Atari
TT) called ‘Linux’. The company was also spending more time connected
to the Internet due to the rise in Internet email and despite my best efforts
to reconfigure the concurrency of the built-in SMTP server, a bug when
handling bounced emails meant it was too unreliable and I had to revert
it back to one.

With a genuine need to fix a couple of problems affecting the company,
and my newfound skills in the C programming language, I rolled up my
sleeves and offered to dive in and fix things. Except this was not just
a simple C console application, it was like nothing I had seen before.
To concurrently handle sending and receiving TCP/IP traffic while also
processing screen and keyboard I/O on an OS with no built-in multi-
tasking capabilities meant Phil had to implement his own form of co-
operative multi-tasking which he did using coroutines and some clever
hacks. This codebase wasn’t something you could easily attach a debugger
to and single-step around the code and I wasn’t nearly clever enough to
understand how it all worked, so I resorted to printf style debugging and a
fast edit, compile, test loop. In the end I fixed the most pressing issue but
the “bouncing email” hang continued to elude me.

With the fix in place and working nicely I realised there were other
companies out there also relying on this free tool and so I had to put
together a “formal” release (source and binary), upload it to various FTP
servers, CiX, etc. and announce it. I also realised that I needed to update
the support details in the README and become the point of contact for
NOnet going forward, at least, until I also left the company a couple of
years later. And so this was my introduction to becoming a maintainer of
(a tiny fork) of an open source project.

Over the following 30 years I’ve written and released more than 30 free
tools of my own, all with source code freely available, and with at least
basic documentation, installer, etc. and continued to support them when I
can (sometimes on company time, when they have benefitted from them,
but mostly on my daily commute by train).

I only realised later that I had automatically given this stuff away,
although I seriously doubt there is any value in any of it anyway. I now
have genuine admiration too for those people that do start a company
and turn their software projects into a saleable product. Hence, I attribute
at least some part of my (unconscious) decision to adopt an (informal)
open source model for my own tools to Phil Karn and KA9Q because it
seemed like the right thing to do. My professional programming career
has allowed me to stand on the shoulders of giants and I’m glad that I have
been able to use my own position of privilege to contribute something (no
matter how small) back to the software community. �

References
[KA9Q] http://www.ka9q.net/code/ka9qnos
[Wikipedia] https://en.wikipedia.org/wiki/Demon_

Internet

Afterwood
Open source code has a long history.
Chris Oldwood tells us how he discovered open
source and got his first role as a software maintainer.

http://www.ka9q.net/code/ka9qnos
https://en.wikipedia.org/wiki/Demon_Internet
https://en.wikipedia.org/wiki/Demon_Internet

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

Visit www.ACCU.org to find out more

To connect with
like-minded people

visit accu.org

accu

	Editorial: Asleep at the Wheel
	C++ Exceptions and Memory Allocation Failure
	C++ on Sea 2023: Trip Report
	Reasoning about Complexity – Part 2
	Passkey Idiom: A Useful Empty Class
	C++20 Dynamic Allocations at Compile-time
	Afterwood

