
The Year of C++ Successor Languages
Lucian Radu Teodorescu reports on the languages
created to rival C++.

An Introduction to Go for C++ Programmers
Arun Saha walks us through Go from the
perspective of a C++ programmer.

TheModel Student: The Regular Travelling
Salesman – Part 2
A reprint of the second article in the series from Richard
Harris investigating modelling problems on a computer.

The Testing Iceberg
Seb Rose explains when we should invest effort in
making a test readable to non-technical people.

Afterwood
Chris Oldwood brings us some seasonal cheer.

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

Visit www.ACCU.org to find out more

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

December 2022 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

December 2022
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Elliot Wilkinson on
Unsplash.

Copy deadlines
All articles intended for publication
in Overload 173 should be
submitted by 1st January 2023
and those for Overload 174 by
1st March 2023.

	 4	 Compile-Time Strings
Wu Yongwei summarises his experience of
using compile-time strings.

	 8	 The Year of C++ Successor Languages
Lucian Radu Teodorescu reports on the
languages created to rival C++.

	15	 An Introduction to Go for C++ Programmers
Arun Saha walks us through Go as a
C++ programmer.

	21	 The Testing Iceberg
Seb Rose introduces the Testing Iceberg to
explain when we should invest effort in making a
test readable to non-technical people.

	22	 The Model Student: The Regular Travelling
Salesman – Part Two
Richard Harris explores more of the
mathematics of modelling problems with
computers.

	28	 Afterwood
Chris Oldwood git-pull’s a cracker, bringing us
some seasonal cheer.

https://unsplash.com/@thegoldenmelon
https://unsplash.com/photos/yy-BsqALwY4

Frances BuontempoEDITORIAL

2 | Overload | December 2022

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been
a programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.

Yet again the chaotic news from the UK has distracted
me and I therefore haven’t even begun thinking about
an editorial. The rolling news frequently claims,
‘Breaking news: Announcement expected soon.’
People then talk for ages filling time until ‘Something
Happens’. The big bold lettering claiming there is

breaking news is certainly attention grabbing. Newspapers also try to
draw our eyes with cleverly worded headlines. Programming articles and
talks also have an honourable history of catchy titles. ‘How I Learned To
Stop Worrying and Love X’, ‘X considered harmful’, ‘What is X and why
do I care?’, and the like.

Often these seem very formulaic so it should be simple to get AI to generate
them. I say AI, but I jest. Picking a verb or noun at random from a list to
fill in some blanks would work. The internet seems to be littered with
‘awesome’ (or other over-the-top word) headline generators. I tried one
for my ACCU conference proposal and the suggestions were varied. ‘How
to Use Random to Understanding’, ‘10 Steps to a Successful Random’or
‘What [Current Popular TV Show] Can Teach You About Random’.
Maybe you don’t fall for cynical marketing or other such distractions, but
some people do. We could dig into why conspiracy theories work, but that
is outside my area of expertise. When we lived in London, we spent an
amount of time talking to Dr Gordon Wright, a lecturer in Psychology and
researcher at Goldsmiths, University of London, about conspiracy theories
and why people take them on board. You can follow up by reading a few
of his publications [Wright] if you want. This is a broad topic, and Gordon
understands it far better than I do. There are many reasons conspiracies
gain ground, but sometimes feeling like you have realized something few
other people know becomes a feedback loop. The more people tell you
that you are wrong ‘proves’ your point. An easy trap to fall into and a hard
one to escape. Sometimes I convince myself I know where a bug is hiding
or the root of a performance issue and would waste hours if someone
doesn’t stop me. Of course, this differs from believing a conspiracy theory,
because I can be persuaded around relatively quickly. Likewise, most of
us can see through the hyped-up headlines. Listening to both sides, trying
to find evidence, and avoiding confirmation bias all help.

Sometimes out and out lies or ‘spun’ headlines aren’t the problem. Some
of us are distracted by shiny new things. For a long time, we have seen
various languages touted as the successor to C++. Go was introduced by
Google a while ago, with version 1.0 released in 2012. This issue has an
introduction to the language if you’ve not tried it before. I recall being told
Go is safer because it uses garbage collection. Many other languages do as

well, and some would suggest that deterministic
destruction can have its advantages. Some

claim Go compiles quicker too [Golang]. It
comes with inbuilt concurrency options too,

having been specifically designed for networking and multiprocessing.
Elements of concurrency are now part of C++ though. I couldn’t possibly
say if one is better than the other. It probably depends on how you define
‘better’. Then came Rust. I am told Rust emphasizes performance, type
safety, and concurrency and enforces memory safety. Many people do
seem to be enjoying using it. Carbon is another language started at Google
and explicitly touted as “an experimental successor to C++” [Carbon-1].
It claims to have “Safer fundamentals, and an incremental path towards a
memory-safe subset.” There are various other successor languages too,
including Cpp2; see Lucian’s article in this edition of Overload.

C++ was not introduced by a company. It is an ISO language, so
agreement is required to introduce new features or make changes. It
also tries to keep backwards compatibility, though will sometimes make
breaking changes, and this includes elements inherited from C, though
C is also evolving. Wikipedia notes that C++ began as an early fork of
pre-standardised C++ [Wikipedia-1]. Bjarne Stroustrup has written about
C and C++ interoperability [Stroustrup02]. This paper investigated how
the future evolution of C and C++ can best serve that community. The
paper is now over twenty years old, but still contains many sensible and
relevant ideas. The second section is entitled ‘Red herrings’ and he nails
the reasons statements “confound and inflame debates” about C and C++,
but I believe these apply to more recently statements about C++ versus
ShinyNewLanguage. He talks about mischaracterisations deflecting away
from more salient matters. For example, “I don’t like OO so C is better
than C++.” It’s very hard to decide which language is better suited for
a task, and a company deciding to use Carbon, for example, will have
trouble finding people with five plus years’ experience for the language.
When Go first came out, I did see recruitment agents asking for several
years’ experience in Go. You couldn’t make this stuff up! However, that’s
a recruitment agent problem, rather than a language war issue. Finally,
Bjarne also points out “Often, a language is chosen for a project based
on little knowledge of the future task, mostly on a couple of programmers’
previous experience, and on what happens to be available.” Even if
there were a perfect language for a task and you knew all your future
requirements, if you can’t get the staff, you will either need a training
budget, or have to make do with an ‘inferior’ language. And I suspect no
language is perfect. Perhaps I should invent a language called Perfect, if
no one has beaten me to it. We can be sure it will be Perfect in name only.
Don’t believe the hype.

New rivals to C++ frequently point out the legacy that C++ needs to
support. The committee does tread carefully. Releasing ABI breaking
changes is infrequent. Compiler implementers have to tread carefully too.
Gcc talks about the complexity of managing different version numbers
and options [GNU]. They also talk about ABI checks they use, ending
by saying “Perhaps there are other C++ ABI checkers. If so, please notify

Don’t Believe the Hype
Attention grabbing announcements can usually
be safely ignored. Frances Buontempo considers
how to pick her way through the hyperbole.

Frances Buontempo EDITORIAL

December 2022 | Overload | 3

us. We’d like to know about them!” Any new-fangled, upstart language
that isn’t ISO standardized is free to do whatever it chooses, right? Well,
maybe. I had always thought of C# as a Microsoft language, leaving them
free to change things at will. This may be partially true, and I have lost
track of many newer features since I haven’t used the language in anger
for a couple or so years. However, C# was open sourced a while ago and
the common language infrastructure (CLI) is ISO and ECMA standardised
[ISO]. This allows .Net code to run on non-Windows platforms. Having
standards might not be a bad thing.

Trying to learn a new language can be difficult at the best of times. For
a new language, we have extra challenges. The docs for Carbon say
it’s “currently an experimental project. There is no working compiler or
toolchain.” You can try out code on the compiler explorer [Carbon-2], and
it will be interesting to watch how this plays out. Back in 2013, I wrote
about learning fantasy languages. [Buontempo13] and suggested a new
language wouldn’t have code you could copy on Stack Overflow (SO)
and there wouldn’t be any books you could buy to learn from. I can’t
currently see a cpp2 or Carbon tag on SO and if I search for books, I
find ones relating to Mac programming using the Carbon API, which is a
different matter. Naming is one of the hardest problems in programming,
and programming language names are often really rather difficult to
search for on the internet. C, C++, D, r, G; sometimes slapping “lang” on
the end helps, but not always.

Many people have a pot shot at C++. It is a frustrating language at times
and can be difficult to learn. However, I enjoy coding in C++ and think
many of the recent changes have made life better. I am very grateful to the
committee members who spend time and money keeping things moving.
While thinking about hype, I recalled Russel Winder giving a talk at
Canary Wharf in London a long while ago, entitled something like ‘C++
is dead’. The talk wasn’t recorded, but I did find a slide deck [Winder13]
from Russel’s lightning talk for the 2013 ACCU conference. His title
was ‘Who needs C++ when you have D and Go?’ He walked through an
example calculating the sum of the squares of numbers between 0 and
100 that are divisible by seven. The slides show various approaches in
Python, D and Go. He then shows what we used to have to do in C++. His
conclusion was “D is the real winner as the functions work out of the box.
The Go code requires lots of extra code. Until std::range exists it (C++)
is the loser.” And here we are now, with ranges. I suspect Russel would
have been delighted with the introduction of ranges to C++, but then gone
on to lambast C++ in other ways. Calling out problems with a language
and showing other approaches often leads to incremental improvement.
Causing controversy with attention grabbing titles can lead to positive
outcomes.

Sometimes attention grabbing is purely gratuitous. Modal dialog boxes
materializing just as I am typing being a case in point. Or my PC (personal
computer) announcing an immediate reboot is required. We are often told
to avoid scams by being wary of anything demanding immediate action.
The sense of urgency is purported to produce a slight panic, rendering
one incapable of thinking straight. I am not suggesting my PC is trying to
scam me, but I do wonder sometimes. It’s possible to flag chats or emails
as high importance, and I often accidentally find a key combination to do
this by mistake. If I see an email marked as being of high importance, I
am usually somewhat skeptical.

We are used to red flags indicating high importance or warnings. We
use symbols to convey ideas. Stock phrases and headlines or titles use
patterns to convey a lot of information in very few words. If we see a
title ending in a question mark, we suspect Betteridge’s law of headlines
applies [Wikipedia-2]. Can any headline that ends in a question mark
be answered by the word ‘no’? I’m not sure how to think through the
self-reference in this question. Betteridge’s law suggests the answer is
‘no’, which proves the law is wrong. This takes us rather close to a Gödel
sentence and then we hit the limits of provability in formal systems. You
can’t have consistency and completeness. (See [Gödel] for more details.)
You can’t have your cake and eat it.

Now, some stock phrases are culture specific, so forgive me if I have
failed to take this into account as I write. Furthermore, some words and

phrases fall out of favour. In April 2019, I wrote a piece entitled ‘This
means war!’ [Buontempo19], exploring how careless use of language can
upset people. We often use foobar or similar terms borrowed from the
military when we write code snippets, without realizing the background
to the words. Recently people have been discussing the default branch
name of ‘master’ in version control and moving to a different name. The
words ‘master’ and ‘slave’ do conjure up much unpleasantness. Whenever
this happens, some people will complain about PC (political correctness)
gone mad, or more recently about “tofu eating wokerati” [Guardian22].
Perhaps that is somewhat culture specific too, being tied to current affairs
in the UK. It’s a great phrase though. I, for one, fully embrace tofu.

We use titles, headlines and even variable names, like temp, to indicate
more context. If someone says, “Hold my pint,” we expect a diatribe or
long tale of woe. A friend stayed over recently and we showed him around
our house. The previous owners told us many tales about the house. We
were told of a plague pit at the end of the garden, a cock fighting pit under
the floorboards and many similar tales. We settled into starting each with
the phrase “Legend has it”, as a useful shorthand.

There is nothing wrong with a spot of controversy or hype. The trick is to
pick your way through the attention grabbing silliness and make things
better. I’d like to think that, in some small way, Russel contributed to
C++’s ranges without realizing it. Let’s call out the things we don’t like
and work on incremental improvement of whichever
language we choose to code in.

References
[Buontempo13] Frances Buontempo ‘Learning

Fantasy Languages’ Overload 116 August 2013,
https://accu.org/journals/overload/21/116/overload116.pdf#page=3

[Buontempo19] Frances Buontempo ‘The Means War!’ Overload 150
https://accu.org/journals/overload/27/150/overload150.pdf#page=4

[Carbon-1] Carbon on github:
https://github.com/carbon-language/carbon-lang

[Carbon-2] Compiler Explorer: https://carbon.compiler-explorer.com/
[GNU] ‘ABI Policy an Guidelines’ in The GNU C++ Library Manual

https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html
[Gödel] ‘Gödel’s Incompleteness Theorems’ (2013) in Stanford

Encylopedia of Philosophy https://plato.stanford.edu/entries/goedel-
incompleteness/

[Golang] Golang Vs C++: https://mindmajix.com/golang-vs-cpp
[Guardian22] ‘Suella Braverman blames ‘Guardian-reading, tofu-eating

wokerati’ for disruptive protests’ at https://www.theguardian.com/
politics/video/2022/oct/18/suella-braverman-blames-guardian-
reading-tofu-eating-wokerati-for-disruptive-protests-video

[ISO] ‘ISO/IEC 23271:2012 Information technology – Common
Language Infrastructure (CLI)’: https://www.iso.org/standard/58046.
html

[Stroustrup02] Bjarne Stroustrup (2002) ‘C and C++: a Case for
Compatibility’, The C/C++ Users Journal,
https://www.stroustrup.com/compat_short.pdf

[Wikipedia-1] Compatibility of C and C++: https://en.wikipedia.org/
wiki/Compatibility_of_C_and_C%2B%2B

[Wikipedia-2] ‘Betteridge’s law of headlines’: https://en.wikipedia.org/
wiki/Betteridge%27s_law_of_headlines

[Winder13] Russel Winder (2013) ‘Who Needs C++ When You Have D
and Go?” from a Lightening Talk at ACCU Conference 2013
https://www.slideshare.net/Russel_Winder/who-
needscwhenyouhaved-andgo

[Wright] Dr Gordon Wright, Goldsmiths, University of London:
biography and various articles: https://www.gold.ac.uk/psychology/
staff/wright-gordon/

https://accu.org/journals/overload/21/116/overload116.pdf#page=3
https://accu.org/journals/overload/27/150/overload150.pdf#page=4
https://github.com/carbon-language/carbon-lang
https://carbon.compiler-explorer.com/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html
https://plato.stanford.edu/entries/goedel-incompleteness/
https://plato.stanford.edu/entries/goedel-incompleteness/
https://mindmajix.com/golang-vs-cpp
https://www.theguardian.com/politics/video/2022/oct/18/suella-braverman-blames-guardian-reading-tofu-eating-wokerati-for-disruptive-protests-video
https://www.theguardian.com/politics/video/2022/oct/18/suella-braverman-blames-guardian-reading-tofu-eating-wokerati-for-disruptive-protests-video
https://www.theguardian.com/politics/video/2022/oct/18/suella-braverman-blames-guardian-reading-tofu-eating-wokerati-for-disruptive-protests-video
https://www.iso.org/standard/58046.html
https://www.iso.org/standard/58046.html
https://www.stroustrup.com/compat_short.pdf
https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B
https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B
https://en.wikipedia.org/wiki/Betteridge%27s_law_of_headlines
https://en.wikipedia.org/wiki/Betteridge%27s_law_of_headlines
https://www.slideshare.net/Russel_Winder/who-needscwhenyouhaved-andgo
https://www.slideshare.net/Russel_Winder/who-needscwhenyouhaved-andgo
https://www.gold.ac.uk/psychology/staff/wright-gordon/
https://www.gold.ac.uk/psychology/staff/wright-gordon/

Wu YongweiFeature

4 | Overload | December 2022

Std::string is mostly unsuitable for compile-time string
manipulations.

There are several reasons:

	� Before C++20, one could not use strings at all at compile time.
In addition, the major compilers didn’t start to support compile-time
strings until quite late. MSVC [MSVC] was the front runner in
this regard, GCC [GCC] came second with GCC 12, and Clang
[Clang] came last with Clang 15 (released a short while ago).

	� With C++20 one can use strings at compile time, but there are
still a lot of inconveniences, the most obvious being that strings
generated at compile time cannot be used at run time. Besides, a
string cannot be declared constexpr.

	� A string cannot be used as a template argument.

So we have to give up this apparent choice, but explore other possibilities.
The candidates are:

	� const char pointer, which is what a string literal naturally decays to

	� string_view, a powerful tool added by C++17: it has similar
member functions to those of string, but they are mostly marked
as constexpr!

	� array, with which we can generate brand-new strings

We will try these types in the following discussion.

Functions commonly needed
Getting the string length
One of the most basic functions on a string is getting its length. Here we
cannot use the C function strlen, as it is not constexpr.

We will try several different ways to implement it.

First, we can implement strlen manually, and mark the function
constexpr (see Listing 1). However, is there an existing mechanism
to retrieve the length of a string in the standard library? The answer is
a definite Yes. The standard library does support getting the length of a
string of any of the standard character types, like char, wchar_t, etc.
With the most common character type char, we can write:
 constexpr size_t length(const char* str)
 {
 return char_traits<char>::length(str);
 }

It’s been possible to use char_traits methods at compile time since
C++17. (However, you may encounter problems with older compiler
versions, like GCC 8.)

Assuming you can use C++17, string_view is definitely worth a try:
 constexpr size_t length(string_view sv)
 {
 return sv.size();
 }

Regardless of the approach used, now we can use the following code to
verify that we can indeed check the length of a string at compile time:
 static_assert(strtools::length("Hi") == 2);

At present, the string_view implementation seems the most
convenient.

Finding a character
Finding a specific character is also quite often needed. We can’t use
strchr, but again, we can choose from a few different implementations.
The code is pretty simple, whether implemented with char_traits or
with string_view.

Here is the version with char_traits:
 constexpr const char*
 find(const char* str, char ch)
 {
 return char_traits<char>::find(
 str, length(str), ch);
 }

Here is the version with string_view:
 constexpr string_view::size_type
 find(string_view sv, char ch)
 {
 return sv.find(ch);
 }

I am not going to show the manual lookup code this time. (Unless you
have to use an old compiler, simpler is better.)

Compile-Time Strings
Compile-time strings have been used in
many projects over the years. Wu Yongwei
summarises his experience.

Wu Yongwei Having been a programmer and software architect,
Yongwei is currently a consultant and trainer on modern C++.
He has nearly 30 years’ experience in systems programming and
architecture in C and C++. His focus is on the C++ language, software
architecture, performance tuning, design patterns, and code reuse.
He has a programming page at http://wyw.dcweb.cn/, and he can be
reached at wuyongwei@gmail.com

namespace strtools {
 constexpr size_t length(const char* str)
 {
 size_t count = 0;
 while (*str != '\0') {
 ++str;
 ++count;
 }
 return count;
 }
} // namespace strtools

Listing 1

Wu Yongwei Feature

December 2022 | Overload | 5

Comparing strings
The next functions are string comparisons. Here string_view wins
hands down: string_view supports the standard comparisons directly,
and you do not need to write any code.

Getting substrings
It seems that string_views are very convenient, and we should
use string_views wherever possible. However, is string_
view::substr suitable for getting substrings? This is difficult to
answer without an actual usage scenario. One real scenario I encountered
in projects was that the __FILE__ macro may contain the full path at
compile time, resulting in different binaries when compiling under
different paths. We wanted to truncate the path completely so that the
absolute paths would not show up in binaries.

My tests showed that string_view::substr could not handle this
job. With the following code:
 puts("/usr/local"sv.substr(5).data());

we will see assembly output like the following from the compiler on
[Godbolt] (at https://godbolt.org/z/1dssd96vz):
 .LC0:
 .string "/usr/local"
 …
 mov edi, OFFSET FLAT:.LC0+5
 call puts

We have to find another way.

Let’s try array. It’s easy to think of code like the following:
 constexpr auto substr(string_view sv,
 size_t offset, size_t count)
 {
 array<char, count + 1> result{};
 copy_n(&sv[offset], count, result.data());
 return result;
 }

The intention of the code should be very clear: generate a brand-new
character array of the requested size and zero it out (constexpr
variables had to be initialized on declaration before C++20); copy
what we need; and then return the result. Unfortunately, the code won’t
compile.

There are two problems in the code:
	� Function parameters are not constexpr, and cannot be used as

template arguments.

	� copy_n was not constexpr before C++20, and cannot be used in
compile-time programming.

The second problem is easy to fix: a manual loop will do. We shall focus
on the first problem.

A constexpr function can be evaluated at compile time or at run time,
so its function arguments are not treated as compile-time constants, and
cannot be used in places where compile-time constants are required, such
as template arguments.

Furthermore, this problem still exists with the C++20 consteval
function, where the function is only invoked at compile time. The main
issue is that if we allow function parameters to be used as compile-time
constants, then we can write a function where its arguments of different
values (same type) can produce return values of different types. For
example (currently illegal):
 consteval auto make_constant(int n)
 {
 return integral_constant<int, n>{};
 }

This is unacceptable in the current type system: we still require that the
return values of a function have a unique type. If we want a value to
be used as a template argument inside a function, it must be passed to
the function template as a template argument (rather than as a function
argument to a non-template function). In this case, each distinct template
argument implies a different template specialization, so the issue of a
multiple-return-type function does not occur.

By the way, a standard proposal P1045 [Stone19] tried to solve this
problem, but its progress seems stalled. As there are workarounds (to be
discussed below), we are still able to achieve the desired effect.

Let’s now return to the substr function and convert the count
parameter into a template parameter. Listing 2 is the result

The code can really work this time. With:
 puts(substr<5>("/usr/local", 5).data())

we no longer see "/usr/" in the compiler output.

Regretfully, we now see how compilers are challenged with abstractions:
With the latest versions of GCC (12.2) and MSVC (19.33) on Godbolt,
this version of substr does not generate the optimal output. There are
also some compatibility issues with older compiler versions. So, purely
from a practical point of view, I recommend the implementation in
Listing 3 (overleaf) that does not use string_view:

template <size_t Count>
constexpr auto substr(string_view sv,
 size_t offset = 0)
{
 array<char, Count + 1> result{};
 for (size_t i = 0; i < Count; ++i)
 {
 result[i] = sv[offset + i];
 }
 return result;
}

Listing 2

If we want a value to be used as a template
argument inside a function, it must be passed to

the function template as a template argument.

https://godbolt.org/z/1dssd96vz

Wu YongweiFeature

6 | Overload | December 2022

If you are interested, you can compare the assembly outputs of these two
different versions of the code:
	� https://godbolt.org/z/7nYK97oKr

	� https://godbolt.org/z/Ts563oaYj

Only Clang is able to generate the same efficient assembly code with both
versions:
 mov word ptr [rsp + 4], 108
 mov dword ptr [rsp], 1633906540
 mov rdi, rsp
 call puts

If you don’t understand why the numbers 108 and 1633906540 are there,
let me remind you that the hexadecimal representations of these two
numbers are 0x6C and 0x61636F6C, respectively. Check the ASCII table
and you should be able to understand.

Since we have stopped using string_view in the function parameters,
the parameter offset has become much less useful. Hence, I will get rid
of this parameter, and rename the function to copy_str (Listing 4).

Passing arguments at compile time
When you try composing the compile-time functions together, you
will find something lacking. For example, if you wanted to remove the
first segment of a path automatically (like from "/usr/local" to
"local"), you might try some code like Listing 5.

The problem is still that it won’t compile. And did you notice that this
code violates exactly the constraint I mentioned above that the return type
of a function must be consistent and unique?

I have adopted a solution described by Michael Park [Park17]: using
lambda expressions to encapsulate ‘compile-time arguments’. I have
defined three macros for convenience and readability:

 #define CARG typename
 #define CARG_WRAP(x) [] { return (x); }
 #define CARG_UNWRAP(x) (x)()

CARG means ‘constexpr argument’, a compile-time constant argument.
We can now make make_constant really work:
 template <CARG Int>
 constexpr auto make_constant(Int cn)
 {
 constexpr int n = CARG_UNWRAP(cn);
 return integral_constant<int, n>{};
 }

And it is easy to verify that it works:
 auto result = make_constant(CARG_WRAP(2));
 static_assert(
 std::is_same_v<integral_constant<int, 2>,
 decltype(result)>);

A few explanations follow. In the template parameter, I use CARG
(instead of typename) for code readability: it indicates the intention that
the template parameter is essentially a type wrapper for compile-time
constants. Int is the name of this special type. We will not provide this
type when instantiating the function template, but instead let the compiler
deduce it.

When calling the ‘function’ (make_constant(CARG_WRAP(2))),
we provide a lambda expression ([] { return (2); }), which
encapsulates the constant we need. When we need to use this parameter,
we use CARG_UNWRAP (evaluate [] { return (2); }()) to get the
constant back.

Now we can rewrite the remove_head function (Listing 6).

This function is similar in structure to the previous version, but there
are many detail changes. In order to pass the result to copy_str as a
template argument, we have to use constexpr all the way along. So
we have to give up mutability, and write code in a quite functional style.

Does it really work? Let’s put the following statement into the main
function:
 puts(strtools::remove_head(
 CARG_WRAP("/usr/local")) .data());

And here is the optimized assembly output from GCC on x86-64 (see
https://godbolt.org/z/Mv5YanPvq):
main:
 sub rsp, 24
 mov eax, DWORD PTR .LC0[rip]
 lea rdi, [rsp+8]
 mov DWORD PTR [rsp+8], eax
 mov eax, 108
 mov WORD PTR [rsp+12], ax
 call puts
 xor eax, eax
 add rsp, 24
 ret
.LC0:
 .byte 108
 .byte 111
 .byte 99
 .byte 97

template <size_t Count>
constexpr auto substr(const char* str,
 size_t offset = 0)
{
 array<char, Count + 1> result{};
 for (size_t i = 0; i < Count; ++i) {
 result[i] = str[offset + i];
 }
 return result;
}

Listing 3

template <size_t Count>
constexpr auto copy_str(const char* str)
{
 array<char, Count + 1> result{};
 for (size_t i = 0; i < Count; ++i)
 {
 result[i] = str[i];
 }
 return result;
}

Listing 4

constexpr auto remove_head(const char* path)
{
 if (*path == '/') {
 ++path;
 }
 auto start = find(path, '/');
 if (start == nullptr) {
 return copy_str<length(path)>(path);
 } else {
 return copy_str<length(start + 1)
 >(start + 1);
 }
}

Listing 5

template <CARG Str>
constexpr auto remove_head(Str cpath)
{
 constexpr auto path = CARG_UNWRAP(cpath);
 constexpr int skip = (*path == '/') ? 1 : 0;
 constexpr auto pos = path + skip;
 constexpr auto start = find(pos, '/');
 if constexpr (start == nullptr) {
 return copy_str<length(pos)>(pos);
 } else {
 return copy_str<length(start + 1)>(start
 + 1);
 }
}

Listing 6

https://godbolt.org/z/7nYK97oKr
https://godbolt.org/z/Ts563oaYj
https://godbolt.org/z/Mv5YanPvq

Wu Yongwei Feature

December 2022 | Overload | 7

As you can see clearly, the compiler will put the ASCII codes for "local"
on the stack, assign its starting address to the rdi register, and then call the
puts function. There is absolutely no trace of "/usr/" in the output.
In fact, there is no difference between the output of the puts statement
above and that of puts(substr<5>("/usr/local", 5).data()).

I would like to remind you that it is safe to pass and store the character
array, but it is not safe to store the pointer obtained from its data()
method. It is possible to use such a pointer immediately in calling other
functions (like puts, above), as the lifetime of array will extend till the
current statement finishes execution. However, if you saved this pointer,
it would become dangling after the current statement, and dereferencing
it would then be undefined behaviour.

String template parameters
We have tried turning strings into types (via lambda expressions) for
compile-time argument passing, but unlike integers and integral_
constants, there is no one-to-one correspondence between the two.
This is often inconvenient: for two integral_constants, we can
directly use is_same to determine whether they are the same; for strings
represented as lambda expressions, we cannot do the same – two lambda
expressions always have different types.

Direct use of string literals as non-type template arguments is not allowed
in C++, because strings may appear repeatedly in different translation
units, and they do not have proper comparison semantics – comparing
two strings is just a comparison of two pointers, which cannot achieve
what users generally expect. To use string literals as template arguments,
we need to find a way to pass the string as a sequence of characters to the
template. We have two methods available:

	� The non-standard GNU extension used by GCC and Clang (which
can be used prior to C++20)

	� The C++20 approach suitable for any conformant compilers
(including GCC and Clang)

Let’s have a look one by one.

The GNU extension
GCC and Clang have implemented the standard proposal N3599
[Smith13], which allows us to use strings as template arguments. The
compiler will expand the string into characters, and the rest is standard
C++. Listing 7 is an example.

The definition of the class template is standard C++, so that:
 compile_time_string<'H', 'i'>

is a valid type and, at the same time, by taking the value member of
this type, we can get "Hi". The GNU extension is the string literal
operator template – we can now write "Hi"_cts to get an object of
type compile_time_string<'H', 'i'>. The following code will
compile with the above definitions:
 constexpr auto a = "Hi"_cts;
 constexpr auto b = "Hi"_cts;
 static_assert(
 is_same_v<decltype(a), decltype(b)>);

The C++20 approach
Though the above method is simple and effective, it failed to reach
consensus in the C++ standards committee and did not become part of
the standard. However, with C++20, we can use more types in non-type
template parameters. In particular, user-defined literal types are amongst
them. Listing 8 is an example.

Again, the first class template is not special, but allowing this compile_
time_string to be used as the type of a non-type template parameter
(quite a mouthful ), as well as the string literal operator template,
is a C++20 improvement. We can now write "Hi"_cts to generate a
compile_time_string object. Note, however, that this object is of
type compile_time_string<3>, so "Hi"_cts and "Ha"_cts
are of the same type – which is very different from the results of the
GNU extension. However, the important thing is that compile_time_
string can now be used as type of a template parameter, so we can just
add another layer:
 template <compile_time_string cts>
 struct cts_wrapper {
 static constexpr compile_time_string str{cts};
 };

Corresponding to the previous compile-time string type comparison, we
now need to write:
 auto a = cts_wrapper<"Hi"_cts>{};
 auto b = cts_wrapper<"Hi"_cts>{};
 static_assert(
 is_same_v<decltype(a), decltype(b)>);

Or we can further simplify it to (as compile_time_string has a non-
explicit constructor):
 auto a = cts_wrapper<"Hi">{};
 auto b = cts_wrapper<"Hi">{};
 static_assert(
 is_same_v<decltype(a), decltype(b)>);

They have proved to be useful in my real projects, and I hope they will
help you too. n

References
[Clang] https://clang.llvm.org/
[GCC] http://www.gcc.org/
[Godbolt] Matt Godbolt, Compiler Explorer, https://godbolt.org/
[MSVC] https://visualstudio.microsoft.com/
[Park17] Michael Park, ‘constexpr function parameters’, May 2017,

https://mpark.github.io/programming/2017/05/26/constexpr-
function-parameters/

[Smith13] Richard Smith, ‘N3599: Literal operator templates for
strings’, March 2013, http://wg21.link/n3599

[Stone19] David Stone, ‘P1045R1: constexpr Function Parameters’,
September 2019, https://wg21.link/p1045r1

template <char... Cs>
struct compile_time_string {
 static constexpr char value[]{Cs..., '\0'};
};

template <typename T, T... Cs>
constexpr compile_time_string<Cs...>
 operator""_cts()
{
 return {};
}

Listing 7

template <size_t N>
struct compile_time_string {
 constexpr compile_time_string(
 const char (&str)[N])
 {
 copy_n(str, N, value);
 }
 char value[N]{};
};
template <compile_time_string cts>
constexpr auto operator""_cts()
{
 return cts;
}

Listing 8

https://clang.llvm.org/
http://www.gcc.org/
https://godbolt.org/
https://visualstudio.microsoft.com/
https://mpark.github.io/programming/2017/05/26/constexpr-function-parameters/
https://mpark.github.io/programming/2017/05/26/constexpr-function-parameters/
http://wg21.link/n3599
https://wg21.link/p1045r1

Lucian Radu TeodorescuFeature

8 | Overload | December 2022

C++ is a peculiar programming language. It is one of the most used
programming languages, and yet it is one of the most criticised.
According to TIOBE index [TIOBE22], for 30 years, C++ has been

in the top 4 programming languages (using a 12-month average). See also
Figure 1 (the TIOBE Programming Community Index for October 2022)
for language trends in the past 20 years.

For a language that has existed for almost 40 years, to be constantly
in the list of top programming languages is a great achievement. It
must be a language that is loved by its users. Well, paradoxically, that
is not true. C++ is one of the most criticised languages. Personally, I
couldn’t find any C++ programmer who argues that C++ is a beautiful
language. Virtually everyone complains that the language is too big, too
complex, with features that should be killed, with too many features, and,
conversely, with not enough features. Over-generalising, C++ can be seen
as a random collection of features without a clear, cohesive story.

Some of the most notable criticisms can be found on the C++
programming language Wikipedia page [Wikipedia]. While defending
the language, Bjarne Stroustrup argues that “within C++, there is a much
smaller and cleaner language struggling to get out” [Stroustrup94]. This
quote is still in widespread use today, after 28 years. While this is meant
to be defending C++, if we analyse it carefully, we realise that it’s also
an implicit criticism: C++ still hasn’t become that smaller and cleaner
language that people expect it to be. It may simply mean that this smaller
and cleaner language is just a mirage.

So, the main question is: How can we obtain a better language that is
simpler and cleaner than the current C++, and occupies the same space
(system programming language) as C++? What does a C++ successor
language look like?

And, while there have been some attempts to answer this question in the
past, 2022 was the only year in which three possible successor languages
were announced, all in keynote talks at major C++ conferences.

First, we have Val announced at C++ Now by Dave Abrahams and
Dimitri Racordon [Abrahams22a, Abrahams22b, Val]. At the core of
Val there is the idea that one can build safe and efficient programs using
mutable value semantics [Racordon22a]

Two months later, at CppNorth, the Carbon language was announced by
Chandler Carruth [Carruth22, Carbon]. The Carbon language tries to solve
several aspects of C++: technical debt accumulated over decades, the
prioritisation of backwards compatibility and the C++ evolution process.

Another two months after that, at CppCon, Herb Sutter announces
CppFront, as a possible successor of C++ [Sutter22]. His main goal was
to “bring C++ itself forward and double down on C++” and prevent users

from migrating to other languages. The declared aims are to make C++
50× times safer and 10× simpler.

This article tries to provide a critical perspective on these three languages.
I’m not doing this because I think that they can’t be C++ successors;
quite the opposite, I’m trying to lay out the problems that these languages
need to solve before hoping to claim C++’s place. While I do have some
personal biases, I’ll try my best to be objective in my analysis.

Previous attempts
The D programming language was created by Walter Bright and
appeared in 2001; later in 2007, Andrei Alexandrescu joined the design
and development effort. This language was supposed to learn from C++’s
mistakes and be its successor. It promises the same level of efficiency but
adds a ton of new features and simplifies some of the more complex parts
of C++. The D homepage advertises D as a language in which one can
“write fast, read fast, and run fast”.

D had attracted some commercial users, but it’s safe to say that it did not
reach the status of an important programming language. While Andrei is
one of my long-time heroes and I have a considerable respect for Walter,
I mainly viewed D as a large collection of language features, loosely tied
together. It feels to me that the language lacks a clear foundation that
would give cohesiveness to all the features.

The Go programming language was introduced in 2009 by Google; version
1.0 was released in 2012. The goal of this language is to allow programmers
to “build fast, reliable, and efficient software at scale”. The designers of the
Go language disliked C++, so, as a consequence, Go seems more like an
evolution of C than an evolution of C++. Go only added generics in 2022,
and still lacks widely used features like exception handling.

Go is a language that implies the presence of garbage collection; this makes
numerous C++ users consider it inappropriate for system programming.
While Go can be called a successful programming language (number 11th
in TIOBE Index [TIOBE22]), its success is mainly in the cloud business.
Despite its relative success, it can’t be called a C++ successor.

Rust is a programming language developed at Mozilla, announced in
2010, with the first version released in 2015. Rust focuses on reliable
(memory and thread safety) and efficient software. The Rust language
model is based around the so-called borrow checker, which tracks the
lifetime of all the objects; thus, it can detect safety errors at compile-time
and does not require the use of a garbage collector.

Rust, although not as popular as Go ([TIOBE22]), seems to be considered
a good replacement for C++. The problem is that there is no clear/clean/
universal way to interface between Rust and C++; this makes C++
programmers that want to move to Rust experience an abrupt migration.

Val
Dave Abrahams and Dimitri Racordon announced Val at C++ Now
2022 [Abrahams22a, Abrahams22b] in a talk called ‘A Future of Value
Semantics and Generic Programming’. They did not claim that Val might

The Year of C++
Successor Languages
2022 has seen many languages created to rival C++.
Lucian Radu Teodorescu reports on the current state of the art.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

Lucian Radu Teodorescu Feature

December 2022 | Overload | 9

be a C++ successor language, but based on the title of the talk and the
surrounding context (keynote at a major C++ conference) people inferred
that Val might be one. Dave and Dimitri gave two more talks at CppCon
2022 that strengthened this position ([Abrahams22c, Racordon22b]).

Val positions itself with the following aims [Val]:

	� Fast by definition

	� Safe by default

	� Simple

	� Interoperable with C++

Val targets the audiences of C++, Rust and Swift languages with these
goals. It aims to achieve the performance of C++ but guarantees safety
in a simpler way than Rust does it. In terms of performance, Val aims
to reduce the amount of object copying and memory allocations needed
for writing safe software. In terms of safety, all constructs in Val are
guaranteed to be safe, unless the user explicitly asks for extra control
(marking portions of the code as unsafe). The simplicity of the language
mainly comes from its strong Swift influence, which is usually considered
to be a simple-to-use language.

Many programming languages don’t necessarily have a core idea that
goes through all its features and acts like a catalyst for the language;
this creates the impression that those languages lack coherence. This
cannot be said about Val. This language stands out as having a model
to programmatically eliminate safety issues: it’s called Mutable Value
Semantics [Racordon22a]. But, before we get there, let’s explore the main
problem that it solves.

C++ is inherently unsafe
It all starts with the observation that, in the presence of mutation,
reference semantics can lead to unsafe programs. Because reference
semantics allow the creation of complex dependency graphs, mutation
cannot guarantee that safety is preserved across the entire graph. If, for

example, a function operates on two objects and changes one of them,
there is no guarantee that the other object doesn’t change in a completely
unexpected way. This creates a problem in both single-threaded and
multi-threaded environments. Moreover, there isn’t a systematic way for
us to validate the consequences of a mutation without deeply inspecting
all the code that is potentially impacted. This simply breaks the core ideas
of structured programming.

Take the following C++ code snippet:
 void append_vec(vector<int>& dest,
 const vector<int>& src) {
 for (auto x: src)
 dest.push_back(x);
 }

Ignoring the inefficiency in the implementation, the code has a serious
safety issue. And, this issue cannot be easily seen if we look at this code
alone; we have to look at the surrounding code as well. If the caller of
this function provides the same vector both as source and as destination
parameter, then this leads to undefined behaviour.

To ensure proper semantics for functions like this, we need an
independence guarantee: we need to ensure that the objects we interact
with (and we write to at least one of them) are not identical. This cannot
be properly enforced in the language; thus we are inherently in unsafe
territory.

I would like to point out that the issue here is more complicated than it
looks. If both arguments of a function are const references (i.e., we are
not changing anything in them), then there is no issue. The problem only
arises when we have mutation.

Swift solves this problem by using the copy-on-write technique. But this
can lead to inefficiencies.

Rust solves this problem by keeping track of lifetimes for the objects. This
adds a burden to the programmer, and can add unnecessary restrictions
to the programs.

Figure 1

The code has a serious safety issue. And this issue
cannot be easily seen if we look at this code alone;

we have to look at the surrounding code as well

Lucian Radu TeodorescuFeature

10 | Overload | December 2022

Mutable value semantics
Functional programming languages avoid the above issue by forbidding
mutation. It’s OK to have multiple references to objects, as nobody can
change these objects. This feels unnatural for many programmers, and it’s
inefficient for countless algorithms.

Val solves this problem in an entirely different way: it adds restrictions to
references, and ensures that nobody can read an object while somebody
else is allowed to change it.

Val recognises the importance of whole/part relationships. These can only
form a tree, not a cyclic graph. If we want to modify an object of this tree,
we immediately know the impact of that change, i.e., all other objects
that can potentially affected by this mutation. It allows us to reason what
objects are safe to be passed as read and as write into a function.

In the end, following this logic, we can safely add references to represent
whole/part relationships.

In the Val model, mutation is not forbidden, but each time we mutate
an object, the compiler can compute which objects can be safely read
and which objects can be safely written at the same time. Safety can be
guaranteed by construction.

Eliminating arbitrary references between objects and focusing on whole/
part relationships is what gives Val value semantics. But, because
Val also allows mutation of values, we can call this model Mutable
Value Semantics. More information about this model can be found in
[Racordon22a].

Scientific approach
Reaching this point, it makes sense for me to touch on an aspect that I
consider important: Val seems to follow a scientific approach.

The reader can see that in the previous section we (briefly) describe a
computation model that ensures safety. It’s not just a claim that the author
makes about the language being safe. They have a proof of safety, under
the restrictions imposed by the language.

Dimitri Racordon, the main creator of the language, is actually a post-doc
researcher. Dave Abrahams also seems to be like-minded. Dave joined
Sean Parent to re-form Adobe’s STLabs. The research-oriented influence
of Alex Stepanov (creator of STL, and previous member of STLabs) on
both Dave and Sean can be seen.

There is no guarantee that Val will be as successful as C++, but one can
spot the sound approach of solving some fundamental issues of C++:
clearly define the problem and then come up with a general and elegant
solution.

Using ad hoc references
Val simply denotes as unsafe the usage of ad hoc references. This makes
it unclear how one can implement programs that need references beyond
expressing whole/part relationships.

For example, implementing a doubly linked list requires references that
cannot be modelled as whole/part relationships. It is not clear how to
implement doubly linked lists with mutable value semantics. As another
example, consider a shared cache component in an application. By
definition, such a component needs to be accessed by multiple parties,
and needs to allow mutation. Again, it’s not clear how this can be
implemented in Val.

Maybe the simple answer to these examples is that the user must mark
some code as unsafe. That may be OK; we, as users of the language, just
lack the experience on how these cases would be handled. Val has to
provide good guidance for handling such cases.

C++ interoperability
As the time of writing this article, Val has no clear public plan for handling
interoperability with C++; it just declared its intention. To become a C++
successor language, Val needs to solve this problem. And, it appears that
this problem is not an easy one.

The first thing to notice is that, according to its description, Val is mostly
inspired by Swift [Val]. This means that the gap between Val and C++ is
not small (larger than the gaps between Carbon and Cpp2 on one side, and
C++ on the other side). Closing this gap may require significant effort.

The second obstacle is the restrictions imposed by the mutable value
semantics system. C++ inherently contains a lot of ad hoc references. This
means, that C++ code would be seen in Val to contain countless unsafe
operations. In my mind, it feels that almost all C++ operations ought to
be marked unsafe in Val. This seems to increase the interoperability gap.

Please note, I’m not saying that Val can’t properly interoperate with C++;
it’s just that implementing this may not be a simple endeavour.

Carbon
Carbon is a language announced as a (possible) C++ successor language
at CppNorth 2022 [Carruth22, Carbon]. Carbon is backed by Google (and,
according to Chandler, also by Adobe). Furthermore, as an interesting
fact, Google was the big name absent at CppCon 2022; maybe this is an
indicator that Google is serious about moving away from C++.

In his talk, Chandler, started enumerating the current problems with C++:

	� a lot of technical debt (40 years of C++, plus all the technical debt
from C)

	� C++ prioritises backward compatibility over language evolution;
this also prevents fixing technical debt

	� the ISO process of language evolution is not optimised for the actual
needs of C++ evolution

The solution to these problems, according to Chandler, is to start thinking
about a C++ successor language. Similar to how C++ was created to be
a successor of C, how Swift was created to be a successor of ObjectiveC

I’m not saying that Val can’t properly interoperate
with C++; it’s just that implementing this may not
be a simple endeavour

Lucian Radu Teodorescu Feature

December 2022 | Overload | 11

and how Kotlin was created as a successor of Java, we need to find a
successor language to C++.

To create a C++ successor language, we need builds within the existing
ecosystem, provide bidirectional interoperability and ensure we have
tools to assist us in migration and learning. And those are actually the
goals of the newly announced Carbon language.

Carbon doesn’t seem to have an emblematic feature compared to C++.
It just feels like a C++ cleanup project. In the announcement keynote,
Chandler showed a cleaner syntax, cleaner pointer semantics, better
packaging, better defaults for public/private members, explicit self
parameter, inheritance cleanup, API extension points, and C++0x-style
generics. All these features are present in other programming languages,
in one way or another.

Better defaults
Carbon can be seen as C++ with better defaults. This is a good thing.
People will see a familiar language that is just better/simpler. The learning
curve for Carbon can be smooth, and the transition from C++ to Carbon
made without jumping through too many hoops.

But, on the other hand, how is this different from D? D also attempted to
be a C++ successor by learning from C++ mistakes and cleaning its rough
edges. What would give the Carbon language its internal coherency and
not let it feel like a group of unrelated features?

If we look at this from an evolution perspective, even if all the defaults
make a lot of sense today, what guarantees that they would make sense in
the following decades? How can we prevent Carbon from accumulating
technical debt? A partial answer to this question is, as Chandler
mentioned, the use of tools in assisting the migration. But, as we’ve all
seen how painful the migration from Python 2 to Python 3 was; probably
not everyone is convinced that tools can help up be future-proof.

All these are questions that the Carbon team need to answer. I’m not
trying to claim that these are hard questions to answer, but they need to
be answered.

Interoperability with C++ is hard
Even if Carbon can be a C++ with better defaults, interoperability with
C++ is not necessarily easy. Here are some points brought up by Sean
Baxter [ADSP22]:

	� there is no function overloading in Carbon

	� there is no exception handling in Carbon

	� there is no multiple inheritance in Carbon, but people can still use
it in C++

	� Carbon doesn’t handle raw pointers, unlike C++

	� Carbon doesn’t have constructors

Looking at these points, it can be easily seen that interoperability with
C++ will be a complex topic. Most probably, even if the interoperability
issues can be completely resolved, migrating from C++ to Carbon for
large software will not be a simple transition.

The rise and fall of the Culture
Google is a company that strongly believes in culture as a driving force
for software development. This was also expressed by Chandler in his
keynote with a quote from Peter Drucker:

Culture eats strategy for breakfast, technology for lunch, and
products for dinner, and soon thereafter everything else too.

While I do believe that culture in an organisation is essential, just quoting
Peter Drucker is not a recipe for success. The main problem is that it’s
hard to measure culture and its impact. Chandler lays out a couple of
points about culture for Carbon (inclusiveness, community friendly, etc.).
While all these points are good points, they are not enough to define
culture or to make it work for the Carbon project. For example, Chandler
doesn’t mention technical excellence, perseverance, courage to try new
things, or how to prioritise different (culture-related) goals.

In one of the previous companies I worked at, we had a mantra that said
‘we never let a project fail’. Does Google and the Carbon project have a
similar goal in its culture? People seem to see Google as a company that
tries out many products and shuts them down after some time. See, for
example, Figure 2 for a tweet from Victor Zverovich [Zverovich22] that
capitalises on this perception in a joke about Carbon. This line of thought
may not be too far-fetched considering that Chandler also announced that
there is a different team in Google that has the same goal, but they start
from Rust and move towards C++.

To reiterate: culture is good, and the points that Chandler brought up are
good points. But, I’m an engineer: I need verifiable arguments if I’m to
be convinced of something.

Governance model
One of the interesting points about the Carbon announcement is the
governance model. The Carbon project aims at a governance in which
no company dictates the future of the language. Everyone can participate

Figure 2

The learning curve for Carbon can be smooth,
and the transition from C++ to Carbon made

without jumping through too many hoops.

Lucian Radu TeodorescuFeature

12 | Overload | December 2022

in the evolution of the language by creating pull-requests, but the more
important the feature is, the more analysis/argumentation is needed.

For significant features that don’t have consensus, there is a steering
committee of three members (Chandler Carruth, Kate Gregory, Richard
Smith) that is responsible to reach to a decision. They don’t get the
chance to contribute to the design; they just have to weigh the arguments
presented to them and make the choice.

It is intriguing to notice that this model tries to emphasise a democratic
process, which is somehow similar to the goal that ISO has. It’s just a
different division of parties involved, with clearer rules of what to
do when an impasse is reached. If the same people that work on C++
standardisation worked on Carbon, it’s not clear if the Carbon process
would be significantly better.

While democratic methods are currently the best way to govern, we’ve
seen recently a series of major political failures that can be directly
correlated to downsides of democracy. And, it’s worth mentioning, in
Ancient Greece, democracy was considered a bad way to govern.

Cpp2
CppFront is a project that was announced by Herb Sutter in the closing
keynote of CppCon 2022 [Sutter22]. It is a transpiler that converts from
a “better C++”, i.e., Cpp2, to old C++. While CppFront / Cpp2 was
officially announced this year, Herb has been working on this project for
about 7 years; each year, Herb has showcased a small part of Cpp2.

Herb wants to improve C++ significantly (i.e., 10×) rather than performing
incremental changes (i.e., 10%). He hopes to bring C++ to that old goal
of much simpler and cleaner language that Stroustrup envisioned 30 years
ago. And, interestingly enough, takes the same approach that Stroustrup
took when he wanted to improve on C: start a new language and translate
the code to the previous language. Thus, CppFront is a small transpiler that
takes Cpp2 code (Herb’s new language) and outputs regular C++ code.

Herb also sets metrics that we can use to evaluate whether this experiment
succeeds: 50 times safer (that is 98% fewer CVEs), and 10 times simpler
(90% less total guidance to teach). Defining metrics upfront is a good
strategy to be able to evaluate the success of an experiment; I really like
this idea.

Backwards compatibility and interoperability
Cpp2 can be simpler than C++ by dropping backwards compatibility.
This finally allows the language to remove features that are considered
harmful, and to revisit some of the design choices that proved to be
suboptimal. By dropping backwards compatibility, Cpp2 can finally
address decades of accumulated technical debt in C++.

Truth be told, prioritising backwards compatibility over language
evolution in C++ doesn’t have a solid case. Each time we add a major
feature to the language (e.g., concepts, coroutines, modules, etc.) we
essentially create a new epoch in the language. New code can interact
with old code, but old code cannot simply depend on new code written

with the new features. Although the C++ standard doesn’t officially talk
in terms of language epochs, there is an underlying system of epochs in
the language, dictated by the releases of new features.

One can think of Cpp2 a major new feature to C++. Things are a bit more
complicated in terms of interoperability and tooling, but the essence is
the same. There are no good technical reasons why old-style C++ cannot
coexist with Cpp2 in the same application.

By design, Cpp2 is semantically close to C++; this makes interoperability
easier. On the other hand, this can prevent Cpp2 from having entirely
different features from C++. For example, it would be hard for Cpp2 to
use C++0x-style generics.

Addressing safety
A goal of 50× improved safety sounds impressive. If Cpp2 can deliver
this, I believe most users of the language will be happy.

Let’s put this number in perspective, to thoroughly understand the impact.
It means that 98% of C++ applications would not crash any more if they
were translated to Cpp2 (assuming that crashes are produced only by
unsafe applications). Or that 98% of the C++ web applications would not
have vulnerabilities (if there are no other non-C++ vulnerabilities). That
would be a drastic reduction of crashes and security vulnerabilities.

This seems too good to be true. Actually, if we analyse this in more detail,
it appears that these numbers are too high.

First, if we discuss safety, we need to be clear on what safety is. Safety
includes:

1.	 type safety

2.	 bounds safety

3.	 lifetime safety

4.	 initialisation safety

5.	 object access safety

6.	 thread safety

7.	 arithmetic safety

The first 4 items on this list are addressed by Herb in his keynote.
However, not all the aspects of those safety items were addressed. As
a prime example, lifetime safety cannot be guaranteed in the presence
of raw pointers; just checking pointers for null is simply not enough.
There is also not a single feature announced to detect use-after-delete
cases with pointers.

Cpp2, as described in the CppCon keynote, cannot detect the problem
with this code:
 vec.push_back(vec.front());

New code can interact with old code, but
old code cannot simply depend on new
code written with the new features

Lucian Radu Teodorescu Feature

December 2022 | Overload | 13

Herb defines his safety metric to include the first four safety components;
deliberately ignoring the other types of safety seems odd. Especially if the
omitted ones are important.

Object access safety refers to safety rules that are influenced by object
access patterns. In general, unsafe code in this category can translate into
type safety, bounds safety or lifetime safety. The rules for invalidating
iterators are great examples for this category.

Thread safety is a big issue in C++ and was not mentioned at all by
Herb. In her 2021 C++ Now talk [Kazakova21], Anastasia Kazakova
presents data showing that in the C++ community, Concurrency safety
accounts for 27% of user frustration. For comparison, bounds safety
issues only accounts for 16% and use-after-delete accounts for 15% of
user frustration. Concurrency safety is the biggest pain point in terms of
safety, and this is not even captured on Herb’s list.

Herb claims on his slide that Cpp2 gets “safety by construction”. That
cannot be true. Safety by construction should mean that the language is
built in such a way that always lead to safe constructs (unless programmers
really ignore the type system and take safety into their own hands) –
similar to how Val or Rust is built. But Cpp2 doesn’t do that; it just adds
more safety checks for some common sources of unsafe behaviour. This
should immediately stand out if the reader has watched the talks given
by Dave Abrahams and Dimitri Racordon [Abrahams22a, Abrahams22b,
Abrahams22c, Racordon22b], and also Sean Parent’s talk on exceptions
[Parent22].

This makes me believe that 50× improvement on safety is not achievable
as a goal.

On the measurability of the goals
As I mentioned above, I do love the fact that Herb set up metrics for
his experiment. Theoretically, at any point, we can measure the progress
against these metrics, and we can assess if the experiment is a success or
can lead to success.

Let’s start with the second metric: being 10× simpler, as measured in
the guidance we need to teach in C++ books. It’s less likely for people
to write books on Cpp2 before this experiment proves to be a success,
but we can imagine what the content of such a book would be. We can
determine what would be the concepts we need to teach about Cpp2, and
we can compare that to the list of things we are currently teaching about
C++. Thus, we can measure this metric.

This is not as straightforward as one might think. C++ has a long history;
thus we know its pitfalls, and people have documented these in C++
books. But, Cpp2 doesn’t have such a rich history, so there is always the
suspicion that we don’t know all its pitfalls. However, Cpp2 being so
close to C++, I honestly believe that we can dismiss these concerns and
get an accurate measurement on simplicity.

But, I cannot say the same thing about the second metric. How can we
measure the percentage of CVEs and safety bugs? We first need to have

a sufficiently large corpus of Cpp2 programs, written by a large variety
of programmers and companies. However, in order for that to happen,
Cpp2 needs to be considered a success – a circular dependency. Thus, the
safety metric, as defined in Herb’s talk, is not a good metric to measure
the success of the experiment.

Using this metric makes sense to assess the language some time after
it has been used in the mainstream, but not to judge the success of the
experiment.

To have or not to have monads
At 1h 33 min in the keynote talk (taking the YouTube video as a reference)
[Sutter22], Herb Sutter proudly remarks: “I have not said the word monad
once”. Then he goes on to explain that Cpp2 is all about language ideas
that we are currently using in C++; not weird foreign terms from other
languages.

While this remark may appeal to the self-centred part of the C++
community, I believe it hurts the community more than it helps.

First, C++ uses monads all over the place. The new C++23
std::expected feature may be a known example of using monads,
but C++ is fundamentally built around monads. We implicitly use monads
when we call functions that may throw exceptions – that is, virtually
everywhere.

Secondly, it creates a feeling of self-sufficiency within the language users.
Instead of opening the community to new ideas, such a statement transmits
the message that C++ doesn’t need to learn from other languages. But the
huge amount of technical debt the language has, and the appearance of
three successor languages, proves otherwise.

Comparison
Table 1 attempts to provide a comparison between the three languages;
C++ is also included as a baseline.

All three C++ successor languages announced this year are considered to
be experiments. We don’t have good indicators whether they will actually

Metric Val Carbon Cpp2 C++
Project status experiment experiment experiment mature

GitHub stars /
active users

272 28.5k 2.4k millions

Resemblance
to C++

lower medium high perfect

Safety strong unsafe+ unsafe+ unsafe

Decision
coherence

high medium medium low

Theory based yes no no no

Table 1

All three C++ successor languages announced this
year are considered to be experiments…we don’t have

good indicators whether they will actually succeed

Lucian Radu TeodorescuFeature

14 | Overload | December 2022

succeed in attracting a critical mass of coders/code bases that would use
them in production environments.

Looking at the number of stars on GitHub, we see Carbon as the leader
of the pack – by a long way, compared to the other two. Carbon has
succeeded at creating more hype inside the community; the focus on
inclusivity and the governance model might have contributed to this.

The three languages also differentiate themselves in terms of how they
resemble C++. As expected, Cpp2 is the closest of the three to C++.
Carbon seems further away from C++, but uses the same fundamental
building blocks as C++; the user fundamentally thinks in the same terms
in Carbon as they used to in C++. Because of Mutable Value Semantics,
Val programmers need to have a slightly different mental model when
programming, which may present Val as a language further away from
C++. On the other hand, if we look at the fast by definition mantra of Val,
especially in the context of safe by default and simple, the principles of
the language seem to translate well to a C++ audience.

Out of the three new languages, Val is the only one that can back up its
promise of safety. The other two try to change some of the defaults for the
most unsafe operations; it’s unclear if that makes a large difference yet.
If Carbon and Cpp2 don’t feel like languages that you can easily shoot
yourself in the foot with, they probably feel like languages that you can
easily inflict knife cuts on your legs with.

All three languages seem to improve on C++ in terms of language feature
coherence. But changing the defaults doesn’t get you that far in terms of
language coherency. Here, Val’s approach seems slightly more cohesive
compared to Carbon and Cpp2.

Finally, the point which I believe is important in an engineering discipline
like ours: how many of the language design decisions are backup by some
sort of science? In this respect, Val seems to be the only one that has some
theoretical foundation. This can provide real guarantees to its users.

Personal take
Herb started his keynote with a plea not to abandon C++. It’s a testament,
from C++ leadership, that people are considering abandoning C++.
The appearance of three C++ successor languages in a single year just
confirms the same idea. Whether C++ is starting to lose popularity or
not is not yet known, but we can probably assume that this year is an
inflection point for the future of C++.

Currently, it’s too early to tell whether any of these experiments will
succeed or not. All languages have strengths, and all of them have weak
points. If at least one of them succeeds, I believe we advance the practice
in programming languages; that probably means a positive impact in the
software industry overall.

As much as possible, I have tried to be objective in this comparison, but I
do have my biases. I hope that they didn’t prevent me doing a decent job
of comparing these languages.

Speaking of biases, I do need to confess: in my spare time, I have started
working with the Val team to push the core ideas of the language forward.
To me, the ideas, if they can be perfected and adopted successfully in
practice, are more important than particular languages. If Val dies as a
programming language but all its ideas are incorporated in C++, then I
will be delighted.

I have been captivated by the ideas of mutable value semantics since I saw
the recordings of Dave and Dimitri’s talks from C++ Now [Abrahams22a,
Abrahams22b]. I distinctly remember at that point that I contemplated
writing an Overload article on the subject; well, here we are. Meeting
Dave and Dimitri at CppCon 2022 and spending time with them walking
through the details, convinced me that the ideas behind Val are profound,
well thought through, and that they deserve close attention.

Looking at the popularity numbers, Val doesn’t do that well. Probably one
of the reasons for this is the fact that good ideas take time to settle in. To
paraphrase a famous speech, I chose to work on Val, not because it’s easy,
but because it’s hard; because Val’s goals are worthwhile. n

References
[ADSP22] Connor Hoekstra, Bryce Adelstein Lelbach, Connor, Sean

Baxter, ADSP: The Podcast, Episode 97: ‘C++ vs Carbon vs Circle
vs CppFront with Sean Baxter’, 2022, https://adspthepodcast.
com/2022/09/30/Episode-97.html

[Abrahams22a] Dave Abrahams, A Future of Value Semantics and
Generic Programming (part 1), C++ Now 2022,
https://www.youtube.com/watch?v=4Ri8bly-dJs

[Abrahams22b] Dave Abrahams, Dimitri Racordon, A Future of Value
Semantics and Generic Programming (part 2), C++ Now 2022,
https://www.youtube.com/watch?v=GsxYnEAZoNI&list=WL

[Abrahams22c] Dave Abrahams, ‘Values: Safety, Regularity,
Independence, and the Future of Programming’, CppCon 2022

[Carbon] GitHub, Carbon Language: An experimental successor to C++,
https://github.com/carbon-language/carbon-lang

[Carruth22] Chandler Carruth, ‘Carbon Language: An experimental
successor to C++’, CppNorth 2022, https://www.youtube.com/
watch?v=omrY53kbVoA

[Kazakova21] Anastasia Kazakova, ‘Code Analysis++’, CppNow, 2021,
https://www.youtube.com/watch?v=qUmG61aQyQE

[Parent22] Sean Parent, ‘Exceptions the Other Way Around’
https://www.youtube.com/watch?v=mkkaAWNE-Ig

[Racordon22a] Dimitri Racordon, Denys Shabalin, Daniel Zheng, Dave
Abrahams, Brennan Saeta, ‘Implementation Strategies for Mutable
Value Semantics’
https://www.jot.fm/issues/issue_2022_02/article2.pdf

[Racordon22b] Dimitri Racordon, ‘Val Wants To Be Your
Friend: The design of a safe, fast, and simple programming
language’, CppCon 2022, https://www.youtube.com/
watch?v=ELeZAKCN4tY&list=WL

[Stroustrup94] Bjarne Stroustrup, The Design and Evolution of C++,
Addison-Wesley Professional, 1994

[Sutter22] Herb Sutter, ‘Can C++ be 10× simpler & safer … ?’,
CppCon 2022, https://www.youtube.com/
watch?v=ELeZAKCN4tY&list=WL

[TIOBE22] TIOBE, TIOBE Index for October 2022, October 2022,
https://www.tiobe.com/tiobe-index/ (last accessed October 2022)

[Wikipedia] Wikipedia, C++, https://en.wikipedia.org/wiki/
C%2B%2B#Criticism

[Val] The Val Programming Language, https://www.val-lang.dev/
[Zverovich22] Victor Zverovich, ‘Google will soon have…’, Twitter,

2022, https://twitter.com/vzverovich/

https://adspthepodcast.com/2022/09/30/Episode-97.html
https://adspthepodcast.com/2022/09/30/Episode-97.html
https://www.youtube.com/watch?v=4Ri8bly-dJs
https://www.youtube.com/watch?v=GsxYnEAZoNI&list=WL
https://github.com/carbon-language/carbon-lang
https://www.youtube.com/watch?v=omrY53kbVoA
https://www.youtube.com/watch?v=omrY53kbVoA
https://www.youtube.com/watch?v=qUmG61aQyQE
https://www.youtube.com/watch?v=mkkaAWNE-Ig
https://www.jot.fm/issues/issue_2022_02/article2.pdf
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.youtube.com/watch?v=ELeZAKCN4tY&list=WL
https://www.tiobe.com/tiobe-index/
https://en.wikipedia.org/wiki/C%2B%2B#Criticism
https://en.wikipedia.org/wiki/C%2B%2B#Criticism
https://www.val-lang.dev/
https://twitter.com/vzverovich/

Arun Saha Feature

December 2022 | Overload | 15

An Introduction to Go
for C++ Programmers
Learning another language is always interesting.
Arun Saha walks us through Go as a C++ programmer.

Go is a statically typed, compiled programming language with
memory safety, garbage collection, and CSP-style concurrency [Go]
[Wikipedia]. It was designed at Google in 2007, publicly announced

in 2009, and version 1.0 was released in 2012. It is open-sourced under
BSD-3-Clause license and developed at github [Github].

You might wonder why we are talking about the Go programming
language. While most of the other top programming languages are much
older, Go has achieved significant usage and popularity within just ten
years of its existence [TIOBE] [Stackoverflow]. I believe that this is not
accidental but a result of different language design decisions. On one
hand, it has almost C- and C++-like efficiency, while on the other hand, it
has Python-like brevity and a batteries-included approach.

I have been a long-time C++ and C programmer. I started learning and
using Go last year. During this (ongoing) journey, I have noticed a lot
of elements in Go that are similar to C++ and many elements that are
different. In this article, I would like to share that learning with you. (The
concurrency aspects are part of a future article.)

Variable declaration
A variable declaration in C++ has the type specified to the left of the
identifier. For example,
 int result = 42;

In a variable declaration in Go, the order is reversed – the type is specified
to the right of the identifier. The equivalent in Go is the following.
 var result int = 42

This is perhaps the biggest habit change necessary for reading and writing
Go. The designers have chosen this deliberately [Pike10]. It took me a
while to get used to this.

Semicolons
Unlike C++, semicolons are optional to terminate statements in Go. The
lexer insert semicolons automatically, so the source code is mostly free of
them. If only multiple statements are written on a line, then semicolons
are necessary to separate them.

Declaration versus assignment
Go chose := (colon equals) as a shorthand notation to define and initialize
a variable within the scope of a function or a loop.
 attempt := 1 // Shorthand declaration and
 // assignment

A variable declaration needs the var keyword outside of a function. It
can be used inside a function as well. The following notation first defines
a variable and later assigns to it.
 var attempt int // Declaration
 …
 attempt = 1 // Assignment

Obviously, the above two approaches can be combined to have an explicit
type declaration and assignment, as shown in the following.
 var attempt int = 1 // Long declaration and
 // assignment

While using the new shorthand notation, a common beginner confusion
is the following.
 sum := 0
 …
 sum := newsum // Error: Multiple declaration
 // of 'sum'
 sum = newsum // OK. Assignment

Zero initialization
In Go, any declared but not explicitly initialized variable would be
automatically zero-initialized. There are well-defined zero values for each
type, for example, 0 for numeric types, false for boolean, "" (empty
string) for strings. Thus, the following statement not only declares but
also initializes the variable.
 var result int

I love this feature!

In C++ (and some other languages), a lot of bugs boil down to uninitialized
variables as they do not have any automatic or implicit initialization.
This required introduction of compiler flags like -Wunintialized,
-Wmaybe-uninitialized [GCC] to detect uninitialized variables that
the programmers must remember to enable and enforce. Go eliminates all
those hassles and errors through this simple language specification.

Type declaration
A type declaration defines a new named type that has the same underlying
type as an existing type. The following example declares Miles as a new
type with float64 as the underlying type.
 type Miles float64

Two named types with the same underlying type cannot be assigned or
compared as shown in the example below.
 type Kilometers float64
 var m Miles = 26.2
 var k Kilometers = 42
 k = m // compilation error
 equal := k == m // compilation error

Arun Saha Arun is a software engineer and works in different
areas of software-defined data centers including networking and
storage systems. Arun is passionate about building robust software
infrastructure, engineering high quality software, and improving
productivity. Arun holds a B.S. and Ph.D. in Computer Science. He
can be reached at arunksaha@gmail.com

Arun SahaFeature

16 | Overload | December 2022

Functions
A function is defined with the func keyword as shown below.
 func add(a int, b int) int {
 return a + b
 }

Go allows multiple return values from a function. The following function
returns both the sum and the difference of two values.
 func sumdiff(a int, b int) (int, int) {
 sum := a + b
 diff := a - b
 return sum, diff
 }

It can be called and used in the following way.
 func multipleReturn() {
 sum, diff := sumdiff(2, 3)
 }

The return values could be named. It helps disambiguate between multiple
return values of the same type.
 func sumdiff2(a int, b int) (sum int, diff int) {
 sum = a + b
 diff = a - b
 return
 }

The returned variables (sum, diff) are defined in the return statement
and assigned in the body of the function. The final return statement is
required.

Go does not support function overloading.

Constructor and destructor
In C++, the name of the constructor is the same as the class name. A class
may have one or more constructors.

Go does not have constructors. Instead, the following convention is
followed. A package provides public functions with names starting with
New to (1) allocate an object, (2) initialize it per the package’s needs, and
(3) return the allocated object. The following is an example of creating a
new list from the “container/list” package in the Go standard library [Go].
 // Create a new list and put some numbers in it.
 l := list.New()
 e4 := l.PushBack(4)

In absence of such New functions, instantiating a struct performs zero
initialization to all its members.

Go does not have destructors.

Error handling
Go does not have exceptions. However, there is a strong and widely used
convention for generating and propagating errors. Any function where
something can go wrong usually returns an error along with its usual

return value(s). The returned error is part of the function signature, it is
usually the last of the returned values. If a function can return an error,
then the caller is expected to check that; it can handle it or pass it up to
its caller.

The following example is from the Go standard library [Go]; Open()
opens the named file for reading. On successful opening, it returns a File
object and nil error. If it fails to open, it returns a nil File object
and an error object to capture the cause.
 func Open(name string) (*File, error)

It can be used as follows.
 f, err := os.Open("notes.txt")
 if err != nil {
 log.Fatal(err)
 }

In Go, nil is the zero value for pointers, interfaces, maps, slices,
functions, etc. It is equivalent to nullptr in C++.

Go represents a potential error state with the built-in interface type,
error. A nil error represents no error.

Go has a built-in function panic() that stops the ordinary flow of control
and begins panicking. It can be initiated by invoking panic() directly.
They can also be caused by runtime errors, such as division by zero.

Defer
Go provides a defer mechanism to specify a function that will be
called at the exit of the current scope. It is similar to ScopeGuard or
std::experimental::scope_exit in C++. Defer is used as a
regular pattern for unlocking mutexes, closing files, etc. The example
below uses defer for closing a file when the function returns.
 // Contents returns the file’s contents as a
 // string.
 func Contents(filename string) (string, error) {
 f, err := os.Open(filename)
 if err != nil {
 return "", err
 }
 defer f.Close() // f.Close will run when we’re
 // finished.
 <truncated>

defer is not a substitute for a destructor since there is no way to use it
when a heap-allocated object is deconstructed.

The built-in function recover() regains control of a panicking situation.
It is only useful inside deferred functions. If the current flow of control
is panicking, a call to recover will capture the value given to panic and
resume normal execution.

Visibility
Unlike C++, Go does not have class member visibility qualifiers like
public, protected, or private. In Go, any variable, constant, function

There is a strong and widely used convention for
generating and propagating errors. Any function
where something can go wrong usually returns
an error along with its usual return value(s).

Arun Saha Feature

December 2022 | Overload | 17

or struct data member starting with an upper-case character is public; others
(starting with a lower-case character) are private. For example,
 type Person struct {
 Name string // public data member
 Phone string // public data member
 creditCardNumber string // private data member
 }

Methods
Go allows defining methods on types. A method is a function with a
special receiver argument. The receiver appears in its own argument list
between the func keyword and the method name.

In this example, the Distance method has a receiver of type Point
named point.
 type Point struct {
 X, Y float64
 }
 func (point Point) Distance() float64 {
 return math.Sqrt(point.X*point.X
 + point.Y*point.Y)
 }

Like C++, Go has pointers. A pointer holds the memory address of a
variable. (Go does not allow pointer arithmetic though.)
 point := Point{X:3, Y:4}
 ptr := &point

If the method needs to change any of the data members, then the method
needs a pointer receiver as the following.
 func (point *Point) Move(dx, dy float64) {
 point.X += dx
 point.Y += dy
 }

Like C++, methods can be invoked either on the variable type or the
pointer type.
 dist1 := ptr.Distance()
 dist2 := point.Distance()

A significant difference from C++ is that the object of the member function
can be named anything, as opposed to the reserved keyword this.

Const
A Go program can define compile-time constants as const.
 const separator = ","

But a variable cannot be qualified as const at its declaration and
initialization. I.e., there is no equivalent of the following C++ expression.
 int const result = ComputeResult(…);

There is no mechanism for const pointers or pointers to const data.
Methods with non-pointer receivers behave as const member functions.

The following member function uses a non-pointer receiver (i.e., Person
instead of *Person) and is equivalent to a const-member function in
C++.
 func (p Person) GetName() string {
 return p.Name
 }

On the contrary, the following member function uses a pointer-receiver
(*Person) and is equivalent to a non-const-member function in C++.
 func (p *Person) SetPhoneNumber(ph string) {
 p.Phone = ph
 }

Loop
There is only one kind of loop available in Go, the for loop.

The following is a traditional init-condition-post style for loop. There
are no parentheses to enclose the init-condition-post portion. Note that,
the only kind of increment that Go offers is post-increment (i.e., i++).
 func Sum(n int) int {
 sum := 0
 for i := 1; i <= n; i++ {
 sum += i
 }
 return sum
 }

The following is a range-based for loop iterating over a sequence of
ints.
 func SumIntSequence(nums []int) int {
 var sum int
 for _, elem := range nums {
 sum += elem
 }
 return sum
 }

The range returns two values for each iteration, the index and the element.
The _ is a placeholder for a return value that is not used subsequently in
the code. In the above code, _ is used to ignore the returned index value.

Common data structures
The two most widely used data structures in Go are slices and maps. Both
are built into the language.

Array
Like almost all other languages, an array is a sequence of contiguous
mutable elements of fixed length. The following is an array of four strings.
 suits := [4]string{"clubs", "diamonds", "hearts",
 "spades"}

Slices, described below, are based on arrays. Most of the time, instead of
using arrays directly, Go programs use slices.

A significant difference from C++ is that the object
of the member function can be named anything

Arun SahaFeature

18 | Overload | December 2022

Slice
Slice is a non-owning view of a subsequence of contiguously stored
mutable elements in an underlying array. It is written as []T where the
elements are of type T. A slice has three components: a pointer, a length,
and a capacity.

A slice can be defined using a new underlying array or specifying a half-
open range of the subsequence in an existing array or another slice.
 myCards := []string{"CA", "D9"} // slice based on
 // a new underlying array
 redSuits := suits[1:3] // slice based on
 // an existing array
 trump := redSuits[:1] // slice based on
 // another existing slice

Multiple slices may refer to the same underlying storage, and those slices’
views may overlap.
 majorSuits := suits[2:] // overlaps with redSuits

For slices with overlapping contents, mutating an element through one
slice is visible to the other slices.
 redSuits[1] = "xxx"
 fmt.Printf("%q\n", majorSuits)
 // prints: ["xxx" "spades"]

Unlike arrays, slices are growable using the built-in function append().
If the underlying array has reached its capacity, then append() allocates
a new underlying array, copies the previous contents, and appends the
new ones.
 myCards = append(myCards, "CQ")
 // myCards: ["CA" "D9" "CQ"]

If other slices were sharing the original array, those slices and the original
array stay untouched.

Erasing elements from a slice is achieved by concatenating the slice
before and the slice after. For erasing the ith element, we concatenate the
(i-1) elements on the left, i.e., [:i], to all the elements on the right, i.e.,
[i+1:]. The following example erases the element at index 1.
 myCards = append(myCards[:1], myCards[2:]...)
 // myCards: ["CA" "CQ"]

From a C++ viewpoint, the slice has some similarities to std::vector
from the storage management aspect and it has some other similarities to
std::span, and std::string_view from the view sharing aspect.

Map
The map is a reference to a hash table, an unordered collection of key-
value pairs, in which all the keys are distinct, and the value associated
with a key can be retrieved, updated, or removed in constant time. It is
written as map[K]V, where K and V are the types of its keys and values.
The following map associates strings to ints.
 var rgbMap map[string]int

A map needs to be initialized with the built-in make function.
 rgbMap = make(map[string]int)

The following shows insertion and retrieval.
 rgbMap["red"] = 1 // insert or update
 redCode := rgbMap["red"] // retrieve

A Go map is equivalent to std::unordered_map in C++.

Generics
Ten years after the initial release, Go started supporting Generics in 2022.
It is equivalent to templates in C++.

Go allows expressing type constraints. The following example composes
(union) the standard library provided Integer and Float constraints to
define the Numeric constraint.
 type Numeric interface {
 constraints.Integer | constraints.Float
 }

The generic function SumSequence() accepts a slice of type T where
T satisfies the Numeric constraint. The generic type T and its constraint
Numeric are enclosed in a pair of square brackets after the function
name. The return type is also the generic type T.
 func SumSequence[T Numeric](nums []T) T {
 var sum T
 for _, elem := range nums {
 sum += elem
 }
 return sum
 }

The statement var sum T performs default zero initialization for
the actual type. Like C++, you can build generic data structures. The
following example shows building a generic set data structure.
 type Set[K comparable] struct {
 elems map[K]bool
 }
 func NewSet[K comparable]() *Set[K] {
 var set Set[K]
 set.elems = make(map[K]bool)
 return &set
 }
 func (set *Set[K]) Add(elem K) {
 set.elems[elem] = true
 }

A sample user code is the following.
 seti := NewSet[int]()
 seti.Add(42)

Stack versus heap allocation and garbage collection
In C++, the local or automatic variables in a function are allocated in the
stack. They are deallocated when the function returns. Thus, returning the
address of such a variable is a recipe for disaster.

the placement of a variable in stack versus heap is
up to the compiler…if the lifetime of a variable exists
beyond the scope of a function – based on escape
analysis – then the compiler places it on the heap

Arun Saha Feature

December 2022 | Overload | 19

In Go, however, the placement of a variable in stack versus heap is up
to the compiler. If the lifetime of a variable exists beyond the scope of a
function – based on escape analysis – then the compiler places it on the
heap. Based on this principle, in the NewSet() function above it is okay
to return the address of its local variable.

Go has automatic memory management or garbage collection. If there is
no path to reach a heap variable from any other package level variable or
any currently active functions, then the variable is unreachable and can
be deallocated.

Interface
An interface in Go is an abstract type; it is a collection of one or more
behaviors (methods) that are offered as part of this interface. This way it
is like Pure Abstract Virtual Classes (PABC) in C++. One or more structs
can satisfy an interface by implementing all the methods of the interface.
Such structs are known as instances of that interface.

The methods are named as verbs (e.g., Read, Write, Close) and the
interfaces are named as nouns that perform those verbs (e.g., Reader,
Writer, Closer).

The Reader interface offers a Read method to read from some source,
outside the scope of this function, into the byte buffer buf, returning
the number of bytes read n (where 0 <= n <= len(buf)) and any error
encountered err.
 type Reader interface {
 Read(buf []byte) (n int, err error)
 }

The Writer interface offers a Write method to write len(buf)
bytes from the buffer buf to the underlying data stream, returning the
number of bytes written n (where 0 <= n <= len(buf)) and any error
encountered err that caused the write to stop early.
 type Writer interface {
 Write(buf []byte) (n int, err error)
 }

A user-defined type can implement such standard interfaces and avail
the standard library methods. The following example shows how a user-
defined type Gadget implements the Writer interface.
 type Gadget struct {
 serial []byte
 }
 func (gadget *Gadget) Write(data []byte)
 (n int, err error) {
 gadget.serial = make([]byte, len(data))
 copy(gadget.serial, data)
 return len(data), nil
 }

A client of Gadget can use it like the following.
 serial := []byte("123456789")
 gadget := Gadget{}
 fmt.Fprintf(&gadget, "%s", serial)

Interfaces can be composed to make bigger interfaces.

The interface ReadWriter is an interface that combines the Reader
and Writer interfaces.
 type ReadWriter interface {
 Reader
 Writer
 }

An expression may be assigned to an interface if and only if its type
satisfies the interface.
 // Declaration: w is a variable of interface
 // type io.Writer
 var w io.Writer
 w = os.Stdout
 // OK: os.Stdout is of type *os.File which
 // has Write method
 w = time.Second
 // compile error: time.Second is of type
 // time.Duration lacking Write method

The empty interface, interface{}, also known as any, is satisfied by
any value.

A struct can satisfy more than one interface. When a struct implements an
interface, then it may or may not explicitly specify the interface. When it
is not explicitly specified, the compiler uses structural typing to determine
if a struct is implicitly satisfying an interface and allows substitution.

An interface value can be converted to its concrete value or a different
kind of interface value by an operation known as type assertion. The
following example shows how an interface value w may be converted to
a variable f of its concrete type.
 var w io.Writer
 w = os.Stdout
 f := w.(*os.File) // success: f == os.Stdout
 c := w.(*bytes.Buffer) // runtime panic:
 // interface holds *os.File, not *bytes.Buffer

The following example shows how the interface value w of interface type
io.Writer (from above) is converted to interface value rw of interface
type io.ReadWriter.
 rw := w.(io.ReadWriter)
 // success: *os.File has both Read and Write

Inheritance
Go does not offer inheritance. A struct cannot inherit another struct.
However, inheritance-like behavior can be achieved by designing
interface(s), and struct(s) satisfying those interface(s) [Saha21].

Packages and modules
Go source files are bundled into packages, and packages are bundled into
modules.

A package groups files of similar functionalities together. The source
code for a package resides in one or more .go files, usually in a directory

An interface in Go is an abstract type; it is a
collection of one or more behaviors (methods)

that are offered as part of this interface

Arun SahaFeature

20 | Overload | December 2022

whose name is the same as the package name. All such files list the name
of the package at the beginning of the file, e.g., package fmt. Files
outside the package can refer to or use a package by importing it, e.g.,
import "fmt". Each package serves as a separate namespace. From a
C++ point of view, it is similar to a library from the file organization and
build aspect, and namespace from the naming scope aspect.

A module is a collection of Go packages stored in a file tree with a
go.mod file at its root. The go.mod file defines the module’s dependency
requirements.

Eco system
Go is not just a language; it comes with a rich toolchain [Edwards19]
ecosystem around it. Following are some frequently used tools in the
ecosystem:

1.	 go build to build,

2.	 go run to build and run an executable,

3.	 go test to build and run the tests and benchmarks, and

4.	 go doc to build the documentation from comments and examples.

Beyond the basics, there are

5.	 go get to download a package from the Internet

6.	 go fmt to format the source code uniformly, and so on.

Go offers a flag -race that can be passed to go build or go test to
instrument the code for race detection.

Conclusion and further reading
This article is a quick introduction to Go from a C++ perspective. It is by
no means a tutorial on Go. For that, please refer to the resources below.

Effective Go [Go-1] and The Go Programming Language [Donovan15]
are excellent sources for starting to learn Go. The Go Playground [Go-2]
is an excellent tool to write and execute Go programs from the comfort
of a browser. n

Acknowledgments
Many thanks to Prakash Jalan, Frances Buontempo, and the Overload
reviewers for their feedback on the earlier versions of this article.

Note: The opinions expressed in this article are solely the author’s.

References
[Donovan15] Alan A. A. Donovan and Brian W. Kernighan (2015)

The Go Programming Language, Addison-Wesley Professional
Computing Series, ISBN: 978-0134190440

[Edwards19] Alex Edwards ‘An Overview of Go’s Tooling’, published
15 April 2019 at https://www.alexedwards.net/blog/an-overview-of-
go-tooling

[GCC] ‘Options to request or suppress warnings’ at https://gcc.gnu.org/
onlinedocs/gcc/Warning-Options.html

[Github] Go: The Go Programming Language – https://github.com/
golang

[Go] The Go website: https://go.dev/
[Go-1] Effective Go, https://go.dev/doc/effective_go
[Go-2] The Go Playground: https://go.dev/play/
[Pike10] Rob Pike ‘Go’s declaration syntax’ published 7 Jul 2020 at

https://go.dev/blog/declaration-syntax
[Saha21] Arun Saha ‘Inheritance in golang’ published 27 Oct 2021

at https://medium.com/@arunksaha/inheritance-in-golang-
44680461cbcf

[Stackoverflow] ‘Most poular technologies’ at https://survey.
stackoverflow.co/2022/#technology-most-popular-technologies

[TIOBE] ‘TIOBE Index for November 2022’: https://www.tiobe.com/
tiobe-index/

[Wikipedia] ‘Go (programming language)’: https://en.wikipedia.org/
wiki/Go_(programming_language)

Vote for your favourites:

	� Best in CVu

	� Best in Overload

Select up to 3 favourites
from each journal.

Voting open online at:

Best Articles 2022

https://www.surveymonkey.co.uk/r/ZJ3TF9P

https://www.alexedwards.net/blog/an-overview-of-go-tooling
https://www.alexedwards.net/blog/an-overview-of-go-tooling
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://github.com/golang
https://github.com/golang
https://go.dev/
https://go.dev/doc/effective_go
https://go.dev/play/
https://go.dev/blog/declaration-syntax
mailto:https://medium.com/@arunksaha/inheritance-in-golang-44680461cbcf
mailto:https://medium.com/@arunksaha/inheritance-in-golang-44680461cbcf
https://survey.stackoverflow.co/2022/#technology-most-popular-technologies
https://survey.stackoverflow.co/2022/#technology-most-popular-technologies
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://www.surveymonkey.co.uk/r/ZJ3TF9P

Seb Rose Feature

December 2022 | Overload | 21

The Testing Iceberg
Many of us are aware of the Testing Pyramid.
Seb Rose introduces the Testing Iceberg to
explain when we should invest effort in making a
test readable to non-technical team members.

Almost 10 years ago, I had a conversation with @mattwynne, which
led to the hastily sketched piece of paper (Figure 1). The diagram on
the left (since redrawn and blogged about by @tooky [Tooke13])

shows the relationship between end-to-end tests and business-readable
tests. Not all business-readable tests need to be end-to-end and not all
end-to-end tests need to be business readable.

The middle part of the sketch is my attempt to show the relative size of
these sets of tests. There should be far more business-readable tests than
end-to-end tests. It also shows that most end-to-end tests are business-
readable because there are very few situations where purely technical
concerns require anything broader than integration tests. The point is,
where possible, test the domain model directly and only use end-to-end
tests to verify correct ‘wiring up’ of the entire system.

The far right of the sketch attempts to relate the Venn diagram to the
well known Testing Pyramid [Vocke18]. Business-readable tests that hit
the domain model directly map to the middle section of the pyramid –
integration/component tests. Business-readable tests that hit the full stack
map to the top of the pyramid. Not shown is where non-business-readable
end-to-end tests should map.

At this point I’m going to re-imagine the Testing Pyramid as a Testing
Iceberg (Figure 2: another product of conversations with @mattwynne).

Those portions of the iceberg above the waterline are business-readable,
while those below are not. As you can see, in this diagram there are
examples of all test types both above and below the readability waterline.

Now I can map non-business-readable end-to-end tests to the submerged
system test portion of the iceberg, which is very small because most

end-to-end tests should be business-readable. Some projects may have
specific technical concerns that can only be validated using a fully
deployed system, and that are of no interest to business people, but these
will be few and far between.

I often get asked how I decide whether a test should be written in a
business-readable format (such as Gherkin) rather than a programmer-
readable format (such as xUnit). A common anti-pattern is to assume
that all end-to-end tests should be business-readable, while all unit tests
should be programmer-readable. The Testing Iceberg demonstrates that
the question we should actually ask is ‘which tests will benefit from being
business readable?’ If your Product Owner or Business Analyst could
give useful feedback on the accuracy of the behaviour a test is verifying,
then you will get value from writing that test using a business-readable
format. n

Reference
[Tooke13] Steve Tooke (2013) ‘Cucumber and Full Stack Testing’

published 18 January 2013 at https://tooky.co.uk/cucumber-and-full-
stack-testing/

[Vocke18] ‘The Practical Test Pyramid’, published 26 February 2018 at
 https://martinfowler.com/articles/practical-test-pyramid.html

Figure 1

Seb Rose Seb has been a consultant, coach, designer, analyst and
developer for over 40 years. Co-author of the BDD Books series
Discovery and Formulation (Leanpub), lead author of The Cucumber
for Java Book (Pragmatic Programmers), and contributing author to
97 Things Every Programmer Should Know (O’Reilly).

This article is based on a post published on Seb’s blog on
14 February 2013: http://claysnow.co.uk/the-testing-iceberg/

Figure 2

https://tooky.co.uk/cucumber-and-full-stack-testing/
https://tooky.co.uk/cucumber-and-full-stack-testing/
https://martinfowler.com/articles/practical-test-pyramid.html
http://claysnow.co.uk/the-testing-iceberg/

Richard HarrisFeature

22 | Overload | December 2022

Last time I described the regular travelling salesman problem and we
discovered that whilst the shortest tour was trivial to determine, the
distribution of tour lengths was a little more difficult. Specifically, the

factorial growth of the number of tours as the number of cities increased
limited us to tours of no more than 14 cities.

So, how should we go about reducing the computational expense? Well,
if we can spot any more symmetries we might be able to exploit them.
Taking a look at every 5-city tour, fixing the first city as usual, might give
a hint as to whether any more symmetries exist.

Figure 1 shows the complete set of tours for 5-city fixed-start regular TSP.
Clearly there’s a symmetry we’ve not yet taken into account since only 4
of the 24 possible tours are distinct from one another!

So where is it?

Well, perhaps surprisingly, it’s the most obvious of them all. The fixed
starting city and tour direction symmetries that we have already addressed
exist for all TSPs. This final symmetry results from our tour being around
a regular polygon. Specifically, it results from the fact that we can rotate
and reflect the city labels on the polygon.

Trivially, reversing the city labels is equivalent to reversing the direction
of the tour. More interestingly, rotating the city labels is not necessarily
equivalent to rotating the starting city.

This is easily demonstrated by taking a tour that does not have rotational
symmetry, say the second in Figure 1, rotating the labels and then
checking whether rotating the starting point results in the same tour.

Figure 2 clearly shows that rotating the labels results in a tour that cannot
be created by rotating the starting point.

Before we embark on
constructing an algorithm
to efficiently generate the
minimal set of symmetrically
distinct tours, it’s probably
worth figuring out how
many of them there are. The
analysis is easiest for tours
with a prime number of
cities, p.

First of all, we should count the number of tours for which any rotation of
the labels is equivalent to changing the starting city. Trivially, these tours
must move the same number of vertices around the perimeter of the
polygon at each step since if two consecutive steps were of different
lengths, rotating the labels would mean that one of the cities would be
followed by a different step, as illustrated in Figure 3.

For odd, and hence prime, regular tours there are

such tours (the factor of ½ resulting from the reflectional symmetry).

For prime regular TSPs, all remaining distinct tours must have a layout such
that no rotation of the labels is equivalent to a rotation of the starting city.

To see why, assume that rotating the labels k times, where k is not equal
to either 1 or p, is equivalent to the initial tour with a different starting
city. Rotating it another k times must also be equivalent, as must rotating
it any multiple of k times, since we return to an equivalent of the starting
tour every time. We should also note that rotating the labels more than p
times is equivalent to rotating them that number modulo p.

For each label, l, and any multiple of the k rotations, m, l will be mapped to

Now, it is a property of prime numbers that repeatedly applying this
mapping must result in every number between 0 and p-1. For p equal to
5 and k equal to 2, we can demonstrate this by enumerating every step

Figure 1 Figure 3

c p
1

1

2
�

�

l l mk p� �()(mod)

The Model Student: The Regular
Travelling Salesman – Part 2
Richard Harris explores more of the mathematics
of modelling problems with computers.

Richard Harris When he wrote this article, Richard had been a
professional programmer since 1996. He had a background in
Artificial Intelligence and numerical computing and was employed
writing software for financial regulation.

Rotating labels for a 5-city regular TSP

Initial tour 0-1-2-4-3

Rotate labels: 1-2-3-0-4

Rotate starting point: 0-4-1-2-3

Figure 2

Richard Harris Feature

December 2022 | Overload | 23

Whilst this is a reasonable illustration of this fact, it is not remotely akin
to a proof. To prove it, we first look for a multiple of the k rotations that
maps every label to itself.

We can subtract the label value from both sides of the equation giving

Since p is prime, mk can only be a multiple of p if either m or k is a
multiple of p.

This demonstrates that if k is not equal to a multiple of p, repeatedly
applying k rotations of the labels must generate all other rotations of the
labels before returning to the initial layout. Therefore if k label rotations
lead to a tour which is equivalent to the first, we simply keep repeating
them to find that every possible rotation must also be equivalent.

So the remaining distinct tours must generate 2p2, rather than 2p, tours
since they have the extra rotational symmetry of the labels. The total
number of tours must be equal to the sum of them both, giving

Hence the total number of distinct tours is given by

Whilst this does save us an extra order of magnitude, it’s still factorial
complexity so it doesn’t really help us all that much.

For odd non-prime regular TSPs, the situation is even worse. This is
because there will be some distinct tours for which there is a partial
rotation of the labels that is equivalent to a rotation of the starting city.
Since these will generate fewer tours, there must be more distinct tours.

For even regular TSPs, it is only the tour around the perimeter of the
polygon for which label and starting city rotation are equivalent. This
leads, by a similar argument, to a lower bound for the number of distinct
tours being

The reason that this is only a lower bound is that, as for odd non-prime
regular TSPs, there exist partial label rotations that are equivalent to
starting city rotations which will each generate fewer tours.

I rather suspect that it’s not therefore worth the effort it would require
to develop an efficient algorithm for enumerating the symmetrically
distinct tours.

So how should we proceed?

Well, if we’re willing to sacrifice a little accuracy, we can simply generate
a random subset of the tours. If the subset is large enough the resulting
distribution of tour lengths should be approximately equal to that of the
complete set of tours.

Fortunately for us, the standard library also includes a function for
generating random permutations of sequences that we can use to generate
our random tours; std::random_shuffle. Once again, we will ignore
the reflectional symmetry for the sake of simplicity. We will still, however,
exploit the rotational symmetry, although this time it’s to distribute the
samples as evenly as possible amongst the full set of tours. Listing 1
shows sampling the tour histogram.

Since we’re no longer bound by the number of cities, but by the number
of samples we might as well
take a look at histograms for
large numbers of cities.

Figure 4 and Figure 5
(next page) record the
results of 1,000 and 10,000
city regular TSPs, with
10,000,000 and 100,000,000 samples respectively. Table 1 shows the
approximate average tour lengths for these histograms.

0 0 2 2 2

2 2 2 4 4

4 4 2 6 1

1 1 2 3 3

3 3 2 5 0

� � � �
� � � �
� � � �
� � � �
� � � �

l l mk p� �()(mod)

0 = mk p(mod)

2 2

2

2

1

2

1 1

2

2

1

1

2

2

p c pc p

c p pc
p

p p p
p

p p
p

p

p

� �

�
�

�
� �

�
� � �

!

!

! ()

()! ()

c c c
p p

p
p

p� �

�
� � �

�
�

1

1 1

2

1

2

()! ()

c n
n

�
� �

�
()!1 2

2
1

Listing 1

void
tsp::sample_tour(tour_histogram &histogram,
 size_t samples)
{
 distances dists(histogram.vertices());
 tour t(histogram.vertices());
 generate_tour(t.begin(), t.end());
 while(samples--)
 {
 std::random_shuffle(t.begin()+1, t.end());
 histogram.add(tour_length(t, dists));
 }
}

n mean mean/n
1,000 1,274.5 1.27

10,000 12,725.1 1.27

Table 1

if we’re willing to sacrifice a little
accuracy, we can simply generate a

random subset of the tours

Richard HarrisFeature

24 | Overload | December 2022

It seems reasonable that the limit of the average tour length is going to be
approximately 1.27n. The question that remains is why? Can we deduce
a formula for the limit of the distribution of tour lengths for very large
numbers of cities?

For extremely large numbers of cities, most steps in a regular TSP tour
are more or less independent to those that have already been taken. It is
only when the majority of cities have been visited that the choice of steps
will be restricted to limited regions on the circumference of the polygon.

There is a statistical theorem called the law of large numbers which states
that as n tends to infinity, the sum of n random numbers independently
drawn from any single given distribution tends to n times the average of
that distribution. If our assertion that the steps are more or less independent
to each other is valid we should be able to approximate the average tour
length with n times the average step length. For very large n, the average
step length will be approximately equal to the average distance between
two randomly selected points on the circumference of a circle of unit

radius. In the same way that we can add up a finite set of step lengths and
divide by the number of them to get the average, we can integrate the
lengths of steps to cities separated by an angle of θ around the
circumference and divide by 2π.

This clearly confirms that our expectation of the average tour length was
correct, but is not enough for us to completely determine how the tour
lengths are distributed.

There is another statistical theorem we can use to help us; the central
limit theorem. The central limit theorem states, for a very wide class
of distributions, that the sum of a set of independently drawn random
numbers is normally distributed. Because of this property, it shows up in
a vast number of places.

The normal distribution is defined in terms of both the average, μ, and the
standard deviation, σ, of the numbers drawn from it. The standard
deviation is a measure of how different on average the numbers in a set
are from their mean and it is calculated as follows

Note that in this context E means the expected, or average, value.

Given these values the normal distribution is defined by its cumulative
density function, or cdf, which is the function in x that gives the probability
that a random number will be less than x.

�
�

�
�

�
�

�

�
�

�

�

�

�

�

�

� ��
��

�
��

� � �

�

�

1

2
2

2

1

2

1
2

2

1
2

0

2

0

2

0

2

sin

sin

cos

((

d

d

�� � � �

� �

1 2 1

4
1 27

) ())

.
�

E x
n

x

E x

n
x

n
x x

n
x

i
i

i
i

i
i

()

(())

()

()

� �

� �

� �

� � �

�

�

�

�

�

� �

�

� �

1

1

1
2

1

2 2

2

2 2

ii
i

i
i i

i
i

i
i

n
x

n

n
x

n
x

2 2 2

2 2 2

2 2

2
1 1

1

1
2

1

� �

� � �

� �

� � �

�

�

� �

� �

�

Figure 4

Figure 5

The central limit theorem states, for a
very wide class of distributions, that
the sum of a set of independently drawn
random numbers is normally distributed

Richard Harris Feature

December 2022 | Overload | 25

Unfortunately this integral does not have a closed form, meaning a simple
formulaic, solution. The derivative, known as the probability density
function, or pdf, is simple to calculate, however, and its graph is shown in
Figure 6 (the normal distribution pdf).

So the final piece of the puzzle is to calculate the average squared distance
between two cities in a regular TSP, which we can use to determine which
normal distribution is applicable. We could approximate it with an
integral over the circle again, but there is an approximate formula for
regular TSPs with a number of cities equal to a multiple of 4, so we may
as well use it.

This may not look very easy to solve, but appearances
can be deceptive. The trick is to exploit some
trigonometric identities. It does get a little bit
fiddly though, so those of you for whom the word
‘trigonometry’ conjures images of sinister maths
teachers intent on ruining your life (or at least that
double period after lunch on Thursdays) might want
to skip ahead and just trust me.

Now, the identities in question are

We can use these by splitting the sum into four parts
(Equation 1).

Now since the last three terms are sums over ¼n
steps offset by a constant factor, we can simply shift
the constant factor from the index into the sum itself
(Equation 2).

The next point to note is that we can perform the
second and fourth sums backwards by subtracting
from the last angle in each sum (Equation 3).

Now we exploit the identity that equates the sine of
the angle added to or subtracted from ½p to the cosine
of the angle (Equation 4).

E x
n

l

n
k
n

n
k
n

i
i

i

n

i

n

()

sin

sin

2

21

2

1

1

1
4

1
4

�

�
�

�

�

�

�

� �

�

sin sin()

cos sin sin

sin cos

� � �

� �
� �

�

� �

� �

� ��
�
�

�
�
� � ��

�
�

�
�
�

� �

2 2

1
2 2

Figure 6

E x
n

k
n n

k
n n

k
n nk

n

k

n

k

n

() sin cos cos si
2 2

1

4

2

1

4

2

1

4
4 4 4 4

� � � �
� � �
� � �� � �

nn

sin cos

2

1

4

2

1

4

28

k
n

n
k
n

k
n

k

n

k

n

�

� �

�

�

�

�� �

Equation 4

E x
n

k
n n

k
n n

k
nk

n

k

n

() sin sin sin
2 2

1

4

2

0

4
1

24 4

2

4
� � ��

�
�

�
�
� �

� �

�

� �� � � �
���

�
�

�
�
� � ��

�
�

�
�
�

�

� �

�

�

� �

�

�
�

�

�

2

4

4

4

1

4

2

0

4
1

2

1

4

k

n

k

n

k

n

n
k

n
k
n

sin

sin �� ��
�
�

�
�
� � ��

�
�

�
�
� �

� �
� �4

2

4

2

42

1

4

2

1

4

2

n
k
n n

k
n nk

n

k

n

sin sin sin
� � � �

��
�

��
�
�

�
�
�

�
� k

nk

n

1

4

Equation 3

E x
n

k
n n

k
n n

k
nk

n

k

n

() sin sin sin
2 2

1

4

2

1

4

24 4

4

4
� � ��

�
�

�
�
� � �

� �
� �� � � � �

22

4 3

41

4

2

1

4�
�
�

�
�
� � ��

�
�

�
�
�

� �
� �
k

n

k

n

n
k
n

sin
� �

Equation 2

E x
n

k
n

n
k
n n

k
n n

k

n

k

n

k n

n

() sin

sin sin

2 2

1

2

1

4

2

4
1

2

4

4 4 4

�

� � �

�

� � �

�

� �

�

� �
ssin sin

2

2
1

3

4

2

3

4
1

4k
n n

k
n

k n

n

k n

n
� �

� � � �

� ��

Equation 1

F x e dt
tx

(; ,)

()

� �
� �

�
��

� �

��
�

1

2

2

2
2

those of you for whom the word
‘trigonometry’ conjures images of sinister

maths teachers intent on ruining your life ...
might want to skip ahead and just trust me

Richard HarrisFeature

26 | Overload | December 2022

Finally, we exploit the identity that equates the sum of the squares of the
sine and cosine of an angle to 1 to yield the result.

Therefore, the standard deviation of the step length is given by

In addition to stating that the sums of random numbers are normally
distributed, the central limit theorem states that the specific normal
distribution will have an average equal to n times that of their distribution
and a standard deviation equal to the square root of n times that of their
distribution.

This means that the distribution of tour length of a regular TSP with n
cities should tend, for large n, towards

Figure 7 compares the histogram we’d expect from the normal distribution
(at the bottom) to that we generated by sampling the 1,000 city tour (at the
top). Under the assumption of normality, a bucket with mid point x and
width w should contain the proportion of the samples given by

Well, despite the fact that the assumption that the tour steps are
independent is demonstrably false these look remarkably similar, a fact
borne out by the histogram of the difference between them, plotted on the
same scale in Figure 8.

In fact, there exists a mathematical technique for determining the
likelihood that a sample histogram is consistent with a particular
distribution. I strongly suspect that it would indicate that the sample
histogram is not consistent with the normal distribution, but since we
have already acknowledged that our assumptions are false we shouldn’t
find that surprising. Nevertheless, given that the maximum difference is
of the order of 0.015, or 1½%, it’s not too bad an approximation.

So can we perform a similar analysis on the usual type of TSP?

Well, let’s assume that the cities are evenly randomly distributed on the
unit square. If we’re interested in the average tour length of all possible
tours we should firstly note that we can take a tour of a random TSP
by simply visiting each city in order. Furthermore, every possible tour
can be generated by changing the labels and using the same scheme,

since we can view the labels as instructions as to the order in which we
should visit them. This means that picking the location of the next city in

E x
n n

n
k

n

()
2

1

4

8
1
8

4
2� � � �

�
�

�
�

�
�

2

2

2

2
16

2
16

� �

� �

N n
n

n4
2

16

2
, �

�
�

�

�
��

�

�
��

F x w n n n F x w n n n
� �

�

�
��

�

�
�� � ��

�
�

�
�
� �

�

�
��

�

�
�

2

4
2

16

2

4
2

16

2 2
; , ; ,
� � � � �� Figure 7

Figure 8

picking the location of the next city in a TSP is
equivalent to picking the next city in a tour

Richard Harris Feature

December 2022 | Overload | 27

a TSP is equivalent to picking the next city in a tour. Since the former is
independent of the cities already chosen, the latter must be independent
the steps already taken, satisfying the independence requirement of the
law of large numbers.

However, the distribution of step lengths is dependent on where in the
square we are currently located, and this breaks the requirement that the
step lengths are identically distributed. However, there is another version
of the law of large numbers which states that the sum of independent
random numbers from different distributions will tend to the sum of
the averages of those distributions. Known as the strong law of large
numbers, it requires that the standard deviations of those distributions
have a particular property which happens to be satisfied if they do not
grow without limit, or in other words are all less than some finite number.
For cities in the unit square, this will be true for any reasonable definition
of distance and so this approximation is actually more reasonable for
normal TSPs than it is for regular TSPs.

Unfortunately, the expression for the average step length is a little bit
more complicated this time. If we represent a pair of points by their
coordinates on the unit square, (x, y) and (a, b), we have

Once again, this is because the integral is the continuous limit of a sum.
The fraction is the limit of the sum of the distances between all pairs of
points in the unit square divided by the number of such pairs.

For the usual definition of distance, the integral becomes

Whilst I’m not willing to assert that this does not have a closed form
solution, it’s too complicated for me to attempt. If we change the cost of
travelling between cities to the square of the distance, it becomes a little
easier, however.

Continuing in the same vein leads to the result

The average cost of a tour should therefore be approximately equal to ⅓n.

If you are interested, I invite you to investigate the accuracy of this
approximation for different numbers of cities. You may be surprised as to
just how accurate it actually is.

So is there anything more that can be said about the statistical properties
of tours through TSPs? Well certainly, but not by me as I am afraid I
have exhausted my mathematical toolbox. But this is an active area of
research and a great many results have been found, of which just a few
are described below.

Beardwood, Halton and Hammersley [Beardwood59] proved that the
expected length of the shortest path through a random TSP tends to a
value proportional to the square root of the number of cities.

Jaillet [Jaillet93] examined the probabilistic TSP in which each city has a
probability that it may be skipped during the tour and provided bounds on
the expected length of the shortest tour.

Agnihothri [Agnihothri98] examined the travelling repairman problem in
which a repairman must travel to fix machines when they break down and
developed a mathematical model with which expected travelling time,
amongst other things, can be calculated.

And you, dear reader, may be able to shed further light on the properties
of either the regular or normal TSP, and if you do please let me know. n

Acknowledgements
With thanks to Larisa Khodarinova for a lively discussion on group
theory that led to the correct count of distinct tours and to Astrid Osborn
and John Paul Barjaktarevic for proofreading this article.

References
[Agnihothri98] Agnihothri, ‘A Mean Value Analysis of the Travelling

Repairman Problem’, IEE Transactions, vol. 20, pp. 223-229, 1998.
[Beardwood59] Beardwood, Halton and Hammersley, ‘The Shortest

Path Through Many Points’, Proceedings of the Cambridge
Philosophical Society, vol. 55, pp. 299-327, 1959.

[Jaillet93] Jaillet, ‘Analysis of Probabalistic Combinatorial Optimization
Problems in Euclidean Spaces’, Mathematics of Operations
Research, vol. 18, pp. 51-71, 1993.

Further reading
Archimedes, On the Measurement of the Circle, c. 250-212BC.
Basel and Willemain, ‘Random Tours in the Travelling Salesman

Problem: Analysis and Application’, Computational Optimization
and Applications, vol. 20, pp. 211-217, 2001.

Clay Mathematics Institute ‘Millennium Problems’,
http://www.claymath.org/millennium.

Hoffman and Padberg, ‘Travelling Salesman Problem’, Encyclopedia
of Operations Research and Management Science, Gass and Harris
(Eds.), Kluwer Academic, Norwell, MA, 1996.

E l
dist x y a b dx dy da db

dx dy da db
()

((,), (,))

�
����

��
0

1

0

1

0

1

0

1

0

1

0

1

0

1

11

0

1

0

1

0

1

0

1

0

1

��

����� dist x y a b dx dy da db((,), (,))

E l x a y b dx dy da db() (() ())� � � ����� 2 2

1

2

0

1

0

1

0

1

0

1

E l x a y b dx dy da db

x ax a y by b

() () ()� � � �

� � � � � �

���� 2 2

0

1

0

1

0

1

0

1

2 2 2 2
2 2 ddx dy da db

bx abx a b by b y b

0

1

0

1

0

1

0

1

2 2 2 2 3

0

1

0

1

2
1

3

����

�� � � � � ��
��

�
�����

���� � � � � �

0

1

0

1

2 2 2

0

1

0

1

0

1

2
1

3

dx dy da

x ax a y y dx dy da

E l() � � � � � �

� �

�

1

3

1

2

1

3

1

3

1

2

1

3

4

3
1

1

3

We made a mistake…
In ‘The Model Student: The Regular Travelling Salesman – Part 1’
(Overload 171), we said that Archimedes proved that the ratio of the
circumference of a circle to its diameter was between 31/7 and 310/71. He
didn’t. He proved it was between 31/7 and 310/71.

Thank you to Gary Taverner for pointing out the error – but unfortunately
we were too late to correct the printed version of Overload.

Dr Richard Harris died over the summer, and this article
has been republished as a tribute to him, following on from
the article in Overload 171.

For more information about Richard, his work and his
legacy to the software industry, see ‘The Model Student:
The Regular Travelling Salesman – Part 1’ in Overload 171.

http://www.claymath.org/millennium

Chris OldwoodFeature

28 | Overload | December 2022

Afterwood
Pun and Dad jokes are lots of fun.
Chris Oldwood git-pull’s a cracker.

As the Earth closes in on another complete loop of the Sun and
one more season of this journal comes to an end we first need to
pass through the year’s final major holiday – Christmas. This

is a magical time of the year for both children and adults as that jolly,
larger-than-life fellow in a red suit pays us a visit. Sadly, some of the
mystique surrounding how he manages to circumnavigate the globe in
such a short period of time has been dispelled due to the event being live
streamed by NORAD. Santa’s big mistake, like so many of us Internet
users, was to accept cookies and now his every move is being tracked.
When Google first revealed its ‘map/reduce’ technology I wondered if
industrial espionage might have allowed them to expose one of Santa’s
biggest secrets, but his tech still remains safe for the time being, although
I do wonder if their original motto of ‘Don’t be Evil’ was simply a ploy to
get on his good side. One thing’s for sure, Santa must be a big fan of The
Gang of Four as he takes the Visitor pattern very seriously.

For those of us in the UK, there is the annual disappointment of hoping for
a ‘white’ Christmas despite knowing full well that the changing climate
has probably put that out of reach for the foreseeable future. Maybe if you
can find a couple of ageing mainframe programmers and can antagonise
them with a fiendish text manipulation problem you might provoke a
SNOBOL fight. Of course, baiting people is not going to earn you a place
on Santa’s more favourable list, and you can’t take a leaf out of the Linux
playbook and simply invoke yourself with ‘nice’ – you just have to get
on with actually being nice. Some parents try to incentivise their children
over the festive period, but we’ve always preferred the long game; the
only ELF you’ll find on our shelves lives in the library as a chapter in a
book about binary file formats.

If you look closely enough, Christmas is a time of data structures: lists,
maps, and those all-important trees. Santa’s choice of a list for the
containers of who’s been naughty and who’s been nice is certainly a
curious one, although if there is one data structure that has wildly varying
characteristics depending on which programming language you choose
it’s the humble list – it might be singly linked, doubly linked, or even
array-like. With billions of people to manage, I can only imagine he
uses Big HO notation to choose his implementation wisely. I suspect the
reason he checks it twice is due to all those pointers and the need for an

address sanitizer. Either way he must be storing our names using narrow
strings because it’s a time for no L"".

While lists might be the focus for Santa, us mere mortals have trees
to contend with. Every year, December starts with the difficult task of
choosing a tree, but then, even more importantly it needs to be decorated.
If there is one thing you can never get agreement on it’s how best to
traverse it: pre-order, in-order, or post-order?! Being the impetuous
sort, the kids like to visit the leaves too early by plastering them with
tinsel meaning that the lights have to be surgically inserted later. Despite
favouring a trunk-based approach, I’m not afraid to admit that feature
branches have their place too.

Irrespective of how much effort we put into the upper regions of the
tree, it’s Santa who is responsible for most of what lies around the base.
Much like the role of an Enterprise Architect, he does little of the work
himself, preferring instead to farm it out to the little people. Also like
an Enterprise Architect, you can always spot those presents he handled
himself because of the excessive amount of wrapping. I’ve always felt
elves would probably make good C# and Java programmers due to their
expertise with boxing, although many are probably destined to work at
Microsoft in the Office team as they also seem obsessed with ribbons. At
least we haven’t reached the point where requesting presents from Santa
has degenerated into raising a JIRA ticket.

By the time we reach our Christmas lunch, Santa will be back home and
resting after rushing around the globe grappling with time-zones. (Dates
are a popular festive snack too though fortunately they only come in
two formats – pitted or unpitted.) Lunch in the UK typically consists of
turkey, although GOOS is popular with the TDD crowd, along with a
varied selection of trimmings, such as credential stuffing for those in the
infosec business. They aren’t the only ones battling with crackers though,
as everyone gets to partake in wearing a thin paper crown and reading
out a pitiful Christmas themed joke. For those of you who have never
had the (dis)pleasure of pulling crackers, let this episode of
‘Afterwood’ be my present to you.

Merry Christmas and a happy New Year! n

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by emails and DMs to gort@cix.co.uk
or @chrisoldwood

Season’s Greetings
from all at ACCU

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

To connect with
like-minded people

visit accu.org

accu

	Don’t Believe the Hype
	Compile-Time Strings
	The Year of C++ Successor Languages
	An Introduction to Go for C++ Programmers
	The Testing Iceberg
	The Model Student: The Regular Travelling Salesman – Part 2
	Afterwood

