
User Stories and BDD – Part 1
Seb Rose explores the origins and evolution
of the user story.

The ACCU Conference
Frances Buontempo extols the benefits of attending
– or presenting at – the annual conference.

TheModel Student
A reprint of an article from Richard Harris,
exploring some interesting mathematics
for those modelling using computers.

Afterwood
Chris Oldwood explores the categorisation and
storage of computer books.

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

October 2022 | Overload | 1

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That
is, we care about writing good code,
and about writing it in a good way. We
are dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Copyrights and Trademarks
Some articles and other contributions use terms that are either registered trade marks or
claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request, we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the
author. By submitting material to ACCU for publication, an author is, by default, assumed to
have granted ACCU the right to publish and republish that material in any medium as they
see fit. An author of an article or column (not a letter or a review of software or a book) may
explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution
2) members to copy source code for use on their own computers, no material can be copied
from Overload without written permission from the copyright holder.

October 2022
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication
in Overload 172 should be
submitted by 1st November 2022
and those for Overload 173 by 1st
January 2023.

 4 User Stories and BDD – Part 1
Seb Rose explains the origins
and evolution of the user story.

	 7	 The	Power	of	Ref-qualifiers
Andreas Fertig reminds us why
ref-qualifiers are useful.

 9 The ACCU Conference
Frances Buontempo outlines the benefits of
attending (or presenting at) the ACCU Conference.

 10 The Model Student: The Regular Travelling
Salesman – Part 1
Richard Harris explores the mathematics interesting
to those modelling problems with computers.

 16 Afterwood
Chris Oldwood explores the categorisation
and storage of computer books.

FRAnCES BUOnTEMPOFEATURE

2 | Overload | October 2022

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been
a programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.

The UK had a heatwave for four days in August, which
happened to coincide with a festival we attended.
Lugging kit and sleeping in a tent in the heat was hard
work. We did manage to see a few bands, but came
back sunburnt and tired. This means I haven’t written
an editorial, as ever. We might try to hire a campervan

next time. That way, we can keep going, catch up with friends and see
some bands, but without exhausting ourselves. In order to keep doing
what you love, you sometimes need to find new approaches, otherwise
everything becomes unsustainable.

Though the UK does have heat waves from time to time, this one seemed
unprecedented. Climate change may well be to blame. Regardless of the
cause, when things change, a new approach is usually called for, hence
our camper van decision. Sometimes nothing has changed, but you start
noticing things have gotten out of hand. It’s all very well saying “DevOps
means eat your own dog-food,” but if you get woken up to handle a prod
issue every few hours, finding and fixing the root-cause is important. I
suspect most programmers will put up with annoyances to a point, and
often for far longer than many others would endure, including tedious data
manipulation, or sifting through gigantic log files to find errors. Eventually,
the tedium causes action. “We aren’t going to take this anymore,” cry the
devs. While putting up with the tedium, you can spot repetitive actions that
can possibly be automated. This allows you to change the process in order
to keep everything the same, at least when looked at from the outside.
Keeping a process running usually involves measuring or tinkering in order
to keep things ticking over. From the outside, things may appear smooth,
unchanging and reliable, but under the calm surface the metaphorical duck
may be paddling frantically. Whether this is sustainable or not depends on
how much, and how often, tinkering is needed.

Sustainability does not mean keeping everything the same. The UK is
having a fuel crisis, with the prices spiraling out of control. Some people
are suggesting fracking in order to generate our own gas, the thinking
being we would then have a cheaper supply and could carry on as we are.
That may not be the best solution for a variety of reasons. Some people
are crying out for new ways of heating homes or better insulation instead.
Sometimes, we solve the wrong problems. It’s tempting to try to tinker in
order to keep things as they are, but sometimes you need a radical change.
The same happens with a code base. Sometimes a rewrite is called for.
Some style guides include ways to ensure, or at least attempt to ensure,
code is maintainable. Adding new parameters to a function, starting with a
leading comma springs to mind. It’s easy to forget to add a comma on the

line before, and this can cause hard to track down
compile errors. Adding , int yet_another_
parameter to the end of the existing inputs
ensures this doesn’t happen. However, adding

more and more parameters might be causing another problem. Large and
potentially confusing function signatures add to cognitive load. Though
such guidelines attempt to help maintain the codebase, they might allow or
even encourage the rot to set in. Treating yourself to a whole new function
might be better. Anything to make life easier. Well, maybe not anything.
Sometimes the open-closed principle is offered as a way to future proof
your code, by making it open for extension but closed for modification.
Chris Oldwood did a deep dive into the SOLID principles [Oldwood14].
Perhaps making code easy to change is more important than lots of wiring
to avoid future changes to existing code.

‘Net zero’ and ‘sustainable’ can be something of a bandwagon companies
jump on for marketing purposes, often described as ‘greenwashing’. I
recently noticed ‘news’ about a company that had created reusable printer
paper. The idea seemed to be that you buy special paper, and possibly ink,
along with their printer, which ‘sucks’ the ink off a page and uses it again,
for up to about five times. Perhaps this is a good idea, but it will depend on
the total energy and resources needed compared to producing paper every
time. Finding new ways to do old things is all very well, but that can miss
chances for improvement. Whether electric cars will solve the climate
emergency, or whether we need to rethink how much transportation and
travel is unnecessary, is worth pondering. We can see the same thing
happening when we code. It might feel quicker to shoe-horn a small hack
in place to get something working, but sometimes that takes far longer than
expected, or worse, seems to work but causes hard to diagnose problems
later. Do you ever find yourself looking at a function and thinking, “Oh
no, not this again.” It could be a badly named variable that confuses you
silly, or a very long switch statement. That could make it time for a
radical rethink and some rather intrusive refactoring. If net zero means
some positive steps are combined with some negative steps, leading to
no overall steps that do not seem to be much progress. I have committed
code before and been relieved to notice I have deleted as many lines as I
have added. The huge spaghetti monster is no worse. Net zero. Perhaps I
should challenge myself to make more negative code commits. Let’s aim
for better than net zero. Using the climate emergency analogy, a sum of
zero is not a sustainable approach, since it fails to make anything better.

We haven’t defined sustainable yet. The word has a sense of keeping going
and not dying out, which C++ is managing, despite a period onslaught from
other new languages claiming to do so much better. The rival languages
do all offer improvements and new perspectives, which C++ sometimes
takes onboard. As C++ progresses forwards with each new version, the
committee tries to keep backwards compatibility. Bjarne Stroustrup notes:

C++’s C compatibility was a key language design decision rather
than a marketing gimmick. Compatibility has been difficult to achieve
and maintain, but real benefits to real programmers resulted, and
still result today.

Sustainability: An
Impossible Dream?
Sustainable development is currently receiving a lot of attention.
Frances Buontempo questions what might make this possible.

FRAnCES BUOnTEMPO FEATURE

October 2022 | Overload | 3

He also says, “C++20 is backwards compatible with C++11, that is almost
completely backwards compatible with C++98” [Stroustrup21]. The attempt
to keep versions compatible includes the application binary interface
(ABI), which can make implementing new features surprisingly difficult.
Johnathan Wakely talked about this at an ACCU conference, saying
“There are lots more things that get done implicitly by the language and
so look simple in the code, but…” The rest of the slides explain the ‘but’.
[Wakely15]. Compatibility is a challenge. Compatibility is not the same
as sustainability, of course; however, it is part of the jigsaw. Trying to
keep up to date with C++ changes can be a challenge. Hopefully, some
of the Overload articles help and I usually find various talks at the ACCU
conference give excellent overviews of new language features. Check out
the YouTube channel if you’ve never been to the conference [ACCUConf].
Sustainability means something can continue, whether this means
planting new trees for each that gets chopped down, or not using up all
your resources, so your program crashes. Sustainability is about avoiding
irreparable damage, but measuring anything’s total impact can be difficult,
and drawing a line beyond which something becomes irreparable is hard.

Talking about a code base or manufacturing process as sustainable is one
thing, but until AI takes over, programs will be created by people, and
people get broken too. If you do the same thing for a very long time,
you might suffer from burnout. The World Health Organisation (WHO)
recognized burnout as an occupational phenomenon, rather than a medical
condition, in 2019 [WHO19]. The WHO give this definition:

Burn-out is a syndrome conceptualized as resulting from chronic
workplace stress that has not been successfully managed. It is
characterized by three dimensions:

	� feelings of energy depletion or exhaustion;

	� increased mental distance from one’s job, or feelings of
negativism or cynicism related to one’s job;

	� reduced professional efficacy.

Burn-out refers specifically to phenomena in the occupational
context and should not be applied to describe experiences in other
areas of life.

After my PhD, I couldn’t face reading any more. I managed to nurse
myself round by reading The Sandman comics by Neil Gaiman [Gaiman].
If you find you can no longer face doing something you used to love, take
a step back. You may not be suffering from burnout, but some ‘me time’
and self-care once in a while is good for you.

If doing the same thing over and over without a break might cause burn-
out, doing something familiar can bring joy. I frequently get tasked with
writing unit tests for other people after they have written code. I have
Opinions, with a capital O, about writing tests after you’ve written code.
Test first, people. However, I am happy to add tests to a code base. It can
be a good way of finding out how the code works, and it’s impossible
to break something vital in production. You might even find out why
something goes wrong in prod. I feel comfortable adding tests, because
I know how to do this. Some people are surprised that I am willing to do
something they think of as tedious, but using a skill you have built up to
do something productive is joyful. Bertrand Russell explores happiness in
The Conquest of Happiness [Schmitz16]. He says:

Two chief elements make work interesting: first, the exercise of skill,
and second, construction. … All skilled work can be pleasurable,
provided the skill required is either variable or capable of indefinite
improvement. Even more important as a source of happiness is the
element of constructiveness.

A sense of purpose and constructiveness might just avoid burnout. He
also says:

The most satisfactory purposes are those that lead on indefinitely
from one success to another without ever coming to a dead end.

Constant dead ends make tasks unsustainable. Trying to write an
editorial, or article, or book may seem beset with dead ends and wrong
turns; however, sometimes you find a direction to head in, and the words
almost write themselves. Something similar can happen with code; you

might find the right data structure and then you’re on a roll. Or a small
refactor that opens up infinite new possibilities. In order to find that joy
and momentum, you need some agency in the process. Allow me one
more quote from Bertrand Russell:

One of the causes of unhappiness among intellectuals in the
present day is that they find no opportunity for the independent
exercise of their talents, but have to hire themselves out to rich
corporations directed by Philistines, who insist upon their producing
what they themselves regard as pernicious nonsense.

We mentioned SOLID earlier. We have names for patterns we use when
we code. We also have names for things that go wrong. Off by one
errors, undefined behaviour, the list goes on. This happens outside of
the programming world too. I watched a television programme a while
ago called Why buildings collapse. Clearly something of a clickbait title;
however, it was very interesting. One phrase stuck in my mind: ‘punching
shear failure’. [RISA] This phrase could well be applied to some code I
have written. Having a name for your pain helps you discuss it and think
it through.

In order to be sustainable, we need to step back and check everything
is going ok from time to time. A recent podcast from Stackoverflow
[May22] briefly discussed why some organisations are moving AI back
from the cloud to on-prem hardware. For a while, it seemed as though
everything was going to end up in the cloud; however, people are often
seeing huge bills, having got some settings wrong. They are also finding it
generally cheaper, even with the right settings, and more performant, than
sharing resources in the cloud. Some decisions need revisiting. Have you
ever marked a unit test with an ignore attribute, just temporarily, while
you fix something? And then forgot to remove the attribute. This may not
be the worst form of greenwashing, but let’s avoid ‘pernicious nonsense’
and see if we can make our coding sustainable.

References
[ACCUConf] ACCU Conference YouTube channel.

https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw
[Gaiman] Neil Gaiman, The Sandman, published by DC Comics. See

https://sandman.fandom.com/wiki/The_Sandman
[May22] Eira May ‘Why AI is having an on-prem moment’, published

23 August 2022 at https://stackoverflow.blog/2022/08/23/why-ai-is-
having-an-on-prem-moment-ep-476/

[Oldwood14] Chris Oldwood, ‘KISSing SOLID Goodbye’,
Overload 122 pages 14–17, available at https://accu.org/journals/
overload/22/122/overload122.pdf#page=15, published August 2014.

[RISA] Punching Shear – Design, available at https://risa.com/risahelp/
risafoundation/Content/Common_Design/Punching%20Shear%20
-%20Design.htm

[Schmitz16] Nele Schmitz ‘What we can learn about sustainable
development from B. Russell’s The Conquest of Happiness’, posted
March 2016 and available from https://www.researchgate.net/
publication/299407539_What_we_can_learn_about_sustainable_
development_from_B_Russell%27s_The_conquest_of_Happiness

[Stroustrup21] Bjarne Stroustrup ‘What is the difference between
C++98 and C++11 and C++14?’ on https://www.stroustrup.com/
bs_faq.html, last updated 23 July 2021.

[Wakely15] Jonathan Wakely ‘What is an ABI and why is it so
complicated?’ presented at the ACCU conference 2015 and available
at: https://accu.org/conf-docs/PDFs_2015/JonathanWakely-
What%20Is%20An%20ABI%20And%20Why%20Is%20It%20
So%20Complicated.pdf

[WHO19] World Health Organization, ‘Burn-out an “occupational
phenomenon”: Internation Classification of Diseases, 28 May
2019, at: https://www.who.int/news/item/28-05-2019-burn-out-an-
occupational-phenomenon-international-classification-of-diseases

https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw
https://sandman.fandom.com/wiki/The_Sandman
https://stackoverflow.blog/2022/08/23/why-ai-is-having-an-on-prem-moment-ep-476/
https://stackoverflow.blog/2022/08/23/why-ai-is-having-an-on-prem-moment-ep-476/
https://accu.org/journals/overload/22/122/overload122.pdf#page=15
https://accu.org/journals/overload/22/122/overload122.pdf#page=15
https://risa.com/risahelp/risafoundation/Content/Common_Design/Punching%20Shear%20-%20Design.htm
https://risa.com/risahelp/risafoundation/Content/Common_Design/Punching%20Shear%20-%20Design.htm
https://risa.com/risahelp/risafoundation/Content/Common_Design/Punching%20Shear%20-%20Design.htm
https://www.researchgate.net/publication/299407539_What_we_can_learn_about_sustainable_development_from_B_Russell%27s_The_conquest_of_Happiness
https://www.researchgate.net/publication/299407539_What_we_can_learn_about_sustainable_development_from_B_Russell%27s_The_conquest_of_Happiness
https://www.researchgate.net/publication/299407539_What_we_can_learn_about_sustainable_development_from_B_Russell%27s_The_conquest_of_Happiness
https://www.stroustrup.com/bs_faq.html
https://www.stroustrup.com/bs_faq.html
https://accu.org/conf-docs/PDFs_2015/JonathanWakely-What%20Is%20An%20ABI%20And%20Why%20Is%20It%20So%20Complicated.pdf
https://accu.org/conf-docs/PDFs_2015/JonathanWakely-What%20Is%20An%20ABI%20And%20Why%20Is%20It%20So%20Complicated.pdf
https://accu.org/conf-docs/PDFs_2015/JonathanWakely-What%20Is%20An%20ABI%20And%20Why%20Is%20It%20So%20Complicated.pdf
https://www.who.int/news/item/28-05-2019-burn-out-an-occupational-phenomenon-international-classification-of-diseases
https://www.who.int/news/item/28-05-2019-burn-out-an-occupational-phenomenon-international-classification-of-diseases

SEB ROSEFEATURE

4 | Overload | October 2022

This article is taken from the first in a series of blogs that take a look
at user stories, what they’re used for, and how they interact with a
BDD approach to software development.You could say that this is a

story about user stories. And like every other story, it’s important to
choose where to begin – because, contrary to the advice given in the
Sound of Music, it’s not always a good idea to “start at the very beginning”.

What’s the problem?
Several years ago, I gave a talk at CukenFest called ‘Let Me Tell You A
Story’ [Rose14]. It was inspired by a number of feature files that I’d seen
online that started with text that looked remarkably like a user story
(Figure 2).

This seemed very strange to me, because most features require the
delivery of several user stories. So how could you choose just one one
to put at the top of your feature file?

My colleague, Matt Wynne, believes the practice was encouraged by
the original feature file snippet [Cucumber] that shipped with TextMate
[TextMate] many years ago when Cucumber was first gaining popularity.

Similar shortcuts also ship with Sublime Text and Visual Studio Code –
and probably many other editors and IDEs (Figure 3).

The cargo cult effect [Wikipedia-1] has meant the majority of new
Cucumber users who pick up these tools wrongly assume that putting
their user story at the top of the feature file is the right thing to do.

The relationship between user stories and feature files is not well
understood. This article is taken from a series of blogs aiming to put
that right.

Software development before agile
Let’s take a journey back in time, to the 20th century. How did people
develop software back in the dim, distant past, before the agile manifesto?
[Agile] The usual answer that people give is: “they used to use waterfall”.

In the waterfall metaphor, software development is seen as a linear
progression through various project stages: requirements analysis,
architectural design, coding, testing, operations. The assumption is that
work flows smoothly downhill – just like water. (See Figure 4.)

Figure 1

Figure 2

User Stories and BDD – Part 1
Where did it all begin? Seb Rose explains
the origins and evolution of the user story.

Seb Rose Seb has been a consultant, coach, designer, analyst and
developer for over 40 years. Co-author of the BDD Books series
Discovery and Formulation (Leanpub), lead author of The Cucumber
for Java Book (Pragmatic Programmers), and contributing author to
97 Things Every Programmer Should Know (O’Reilly).

Waterfall
The term waterfall was first used to describe this way of working in
a 1976 paper by Bell & Thayer [Bell76]. The authors credited a 1970
paper by Winston Royce [Royce70] that never actually uses the word,
waterfall. Not only that, but Royce’s paper emphasises that this way
of working “is risky and invites failure”.

Even sadder, in 1985 – 15 years after Royce had warned about the
risks – the US Department of Defence “captured this approach
in DOD-STD-2167A, their standards for working with software
development contractors.” [Wikipedia-2]

It may surprise you to learn that even before Royce wrote his paper
there were people who were working in a completely different way
– using Iterative and Incremental Development (IDD). A paper
written by Larman & Basili [Larman03] found traces of IID, that were
“indistinguishable from XP”, from as far back as 1958!

Figure 3
The feature file snippet that ships with Sublime

SEB ROSE FEATURE

October 2022 | Overload | 5

The problem with the waterfall approach is that at each stage people would
spend weeks (or months) preparing detailed documents before passing
them on to the team responsible for the next stage. Building software
the same way you’d build a bridge or a skyscraper. It could be years
before the first line of code was written, by which time requirements and
priorities had often changed.

Most of the requirements that were discussed in detail were not delivered
in the way that they had originally been envisaged. In fact, many never
got delivered at all.

This was hugely wasteful, both in terms of the cost of delay [Wikipedia-3],
and the time spent analysing and specifying features that would never see
the light of day.

The risks associated with waterfall development have been known
about for a long time. Iterative and incremental approaches – that
mitigate those risks – are not a recent development, though it’s only
recently that they’ve become mainstream.

What are stories for?
Fast forward a few decades, and we find a handful of experienced
programmers determined to tackle the fact that the waterfall approach led
to significant waste.

These consultants were breaking the mould, coming up with their own
practices and methodologies aimed at minimising the waste inherent
in spending time doing detailed design work prematurely. Instead, they
suggested working in an incremental and iterative fashion, deferring
detailed design work until it was clear that the functionality was about
to be delivered. Collectively, these became known as lightweight
methodologies [Wikipedia-4].

One of these methodologies was called eXtreme Programming (XP) [XP].

The XP folk created the concept of a story as a “placeholder for
a conversation” [Jeffries01]. This allowed them to do high-level
decomposition of the work that needed to be done (stories), while
accepting that more detailed analysis (conversations) would be needed
before implementation started.

Another popular methodology at the time was Scrum (Figure 5). The
Scrum Guide [Scrum] doesn’t mention stories, but includes a concept
that embraces them, called the Product Backlog Item (PBI). Each PBI
represents some functionality that can be prioritised by the Product
Owner. Scrum is not prescriptive about what format a PBI should take,
although they are often represented as stories.

A story is a way of remembering that a piece of work might need to
be done, without committing to actually doing it, or diving into the
details too soon.

Putting the ‘user’ into user story
Lightweight methodologies were a big hit, but there were so many of
them that it was difficult for anyone to decide which one to use. This led

in 2001 to a gathering of 17 men at a ski resort, which in turn led to the
agile manifesto [Agile]. It’s been a very influential document, but many
of the things that people associate with “agile” aren’t mentioned in it at
all. On the subject of stories, the manifesto is entirely silent. However,
one of the twelve principles speaks to the problem stories aim to solve:

Simplicity – the art of maximizing the amount of work not done – is
essential.

The original description of the Planning Game in Extreme Programming
Explained [Beck04] does mention stories – but the book doesn’t use the
term user stories anywhere. So, where did the inclusion of the word user
come from?

I asked on Twitter [Rose19], and it seems that no one really knows –
at least no one who’s telling. Martijn Meijering dug into the internet
archive and discovered that in a snapshot from 2002, story and user story
were used interchangeably on the C2 wiki [C2] (which is where the XP
community discussed things).

However it happened, calling them user stories emphasised that the goal
is to “maximise the value of software produced by the team” [Beck04].
As stories began to be used more widely, teams needed a strong steer to
ensure they prioritised work that would deliver value to the user, and the
term user story did just that.

However, the use of the word user has led to many arguments. Should
every story be from the perspective of a user? What users does the system
have? Is the system administrator a user? Is the support team? Are the
developers? What about another system consuming your API?

It’s called a user story to help people focus on maximising the value of
what’s produced – but we must remember that value comes in many
shapes and sizes.

A template is born
The challenges teams had writing user stories led to the creation of the
Connextra template by Rachel Davies in the early 2000s. She found that
it wasn’t enough to just write the story from the user’s perspective. Her
teams seemed to have better conversations when the story contained three
specific pieces of information:

1. The feature that needs to be discussed

2. The role that will get the benefit from the feature

3. The benefit that is expected

Rachel’s template is now almost universal, in part due to its inclusion by
Mike Cohn in his seminal books Agile Estimating and Planning [Cohn05]
and User Stories Applied [Cohn04]:

As a <type of user>

I want <capability>

so that <business value>

The template is guidance to help teams capture enough information in the
story, so that the conversation they have is valuable.

Figure 5
Image: [Wikimedia]

Figure 4
Image: [Royce70]

SEB ROSEFEATURE

6 | Overload | October 2022

Like any one-size-fits all system, while the template can be very useful for
beginners, blind adherence to it can become problematic. Rachel herself
describes some of the problems that treating this template as catechism
can cause [Davies06]:

... this format can lead people to focus more on end users interests
rather than the perspective of the person putting the business
case forward. Also when given a template people can start treating
story cards written this way as mini-requirements specs focussing
on the written words rather than using stories as tools for driving
a conversation. Even worse, stories that don’t fit this form will be
battered into shape until they do.

Stories help you ask the right questions about the context and reason
for the request. The important part is not about the words on the
card but the shared understanding developed in the team.

Back to the future
Fast forward another couple of decades, and we find the user story as
an almost universally recognised term in our industry’s vocabulary.
However, in practice, we see the understanding of the term varies widely
from team to team, from organisation to organisation.

Even though stories were intended to defer detailed analysis until the
functionality was about to be developed, this is often not how they are
used. There are many teams that use electronic tracking software (e.g. Jira)
to build backlogs that contain hundreds of stories, each concealing detailed
requirements. And despite the original intent of a story as a placeholder
for a conversation, these details have never been discussed with the team.

So, while the term user story is widely used, it can mean very different
things depending on who you talk to. This series of posts aims to fix that.

More ...
In this article, I’ve given an overview of the evolution of the user story
as it is commonly used today. My blog digs into the BDD practice of
Discovery, and the uncomfortable metamorphosis that stories undergo in
the process. �

References and further resources
[Agile] ‘Manifesto for Agile Software Development’, available at:

https://agilemanifesto.org/
[Beck04] Kent Beck (2004) Extreme Programming Explained: Embrace

Change, Addison-Wesley Professinal, ISBN: 978-0321278654
[Bell76] T. E. Bell and T. A. Thayer, ‘Software requirements: are they

really a problem?’ published by TRW Defense and Space Systems
Group, available at https://static.aminer.org/pdf/PDF/000/361/405/
software_requirements_are_they_really_a_problem.pdf

[C2] C2 wiki (2002): https://web.archive.org/web/20021105182544/
http://c2.com/cgi/wiki?PlanningGame

[Cohn04] Mike Cohn (2004) User Stories Applied for Agile Software
Development, Addison-Wesley Professional, ISBN 978-0321205681

[Cohn05] Mike Cohn (2005) Agile Estimating and Planning, Pearson,
ISBN: 978-0131479418

[Cucumber] Cucumber Plain Text Feature Completions.tmPreferences,
available on github at: https://github.com/bmabey/cucumber-
tmbundle/blob/bb89925f54372282e6f7500cc53b746e44dbc31a/
Preferences/Cucumber%20Plain%20Text%20Feature%20
Completions.tmPreferences

[Davies06] Rachel Davies ‘As a coach I want a story template so that
people ask questions’ posted on 1 December 2006, available at
https://agilecoach.typepad.com/agile-coaching/2006/12/as-a-coach-
i-want-a-story-template-so-that-people-ask-questions.html

[Davies19] Rachel Davies conversation on Twitter: https://twitter.com/
rachelcdavies/status/1186313143611469826

[Jeffries01] Ron Jeffries ‘Essential XP: Card, Conversation,
Confirmation’ posted 30 August 2001, available at
http://www.extremeprogramming.org/

[Larman03] Craig Larman and Victor Basili, ‘Iterative and Incremental
Development: A Brief History’, published in Computer June 2003,
available at: https://www.craiglarman.com/wiki/downloads/misc/
history-of-iterative-larman-and-basili-ieee-computer.pdf

[Rose14] Seb Rose, ‘Let me tell you a story’, a presentation delivered
on 3 April 2014 as part of CukeUp! 2014, available from
https://skillsmatter.com/skillscasts/5101-let-me-tell-you-a-story

[Rose19] Seb Rose, initiated conversation on Twitter:
https://twitter.com/gojkoadzic/status/1186316368121159680

[Royce70] Winston Royce ‘Managing the Development of Large
Software Systems’, Proceedings of IEEE WESCON August 1970,
available at http://www-scf.usc.edu/~csci201/lectures/Lecture11/
royce1970.pdf

[Scrum] The Scrum Guide published by Scrum.org:
https://www.scrum.org/resources/scrum-guide

[TextMate] ‘TextMate: The missing editor for OX X’, published 6
August (year unknown) at https://dhh.dk/arc/000270.html

[Wikimedia] Srum diagram (labelled), developed by Mountain Goat
Software and available from https://commons.wikimedia.org/wiki/
File:Scrum_diagram_(labelled).png under a Creative Commons
Attribution 2.5 Generic Licence.

[Wikipedia-1] ‘Cargo cult’: https://en.wikipedia.org/wiki/Cargo_cult
[Wikipedia-2] ‘Waterfall model’: https://en.wikipedia.org/wiki/

Waterfall_model
[Wikipedia-3] ‘Cost of delay’:

https://en.wikipedia.org/wiki/Cost_of_delay
[Wikipedia-4] ‘Lightweight methodology’: https://en.wikipedia.org/

wiki/Lightweight_methodology
[XP] ‘Extreme Programming: A gentle introduction’, available at:

http://www.extremeprogramming.org/

Resources
Rebecca J. Wirfs-Brock ‘Responsibility Driven Design’, reprinted

from The Smalltalk Report (date unknown) and available at
https://www.wirfs-brock.com/PDFs/Responsibility-Driven.pdf

A Laboratory for Teaching Object Oriented Thinking - Kent Beck, Ward
Cunningham

This article was published on Seb’s blog on 31 October 2019: https://
cucumber.io/blog/bdd/user-stories-are-not-the-same-as-features/

Figure 6

https://agilemanifesto.org/
https://static.aminer.org/pdf/PDF/000/361/405/software_requirements_are_they_really_a_problem.pdf
https://static.aminer.org/pdf/PDF/000/361/405/software_requirements_are_they_really_a_problem.pdf
https://web.archive.org/web/20021105182544/http://c2.com/cgi/wiki?PlanningGame
https://web.archive.org/web/20021105182544/http://c2.com/cgi/wiki?PlanningGame
https://github.com/bmabey/cucumber-tmbundle/blob/bb89925f54372282e6f7500cc53b746e44dbc31a/Preferences/Cucumber%20Plain%20Text%20Feature%20Completions.tmPreferences
https://github.com/bmabey/cucumber-tmbundle/blob/bb89925f54372282e6f7500cc53b746e44dbc31a/Preferences/Cucumber%20Plain%20Text%20Feature%20Completions.tmPreferences
https://github.com/bmabey/cucumber-tmbundle/blob/bb89925f54372282e6f7500cc53b746e44dbc31a/Preferences/Cucumber%20Plain%20Text%20Feature%20Completions.tmPreferences
https://github.com/bmabey/cucumber-tmbundle/blob/bb89925f54372282e6f7500cc53b746e44dbc31a/Preferences/Cucumber%20Plain%20Text%20Feature%20Completions.tmPreferences
https://agilecoach.typepad.com/agile-coaching/2006/12/as-a-coach-i-want-a-story-template-so-that-people-ask-questions.html
https://agilecoach.typepad.com/agile-coaching/2006/12/as-a-coach-i-want-a-story-template-so-that-people-ask-questions.html
https://twitter.com/rachelcdavies/status/1186313143611469826
https://twitter.com/rachelcdavies/status/1186313143611469826
http://www.extremeprogramming.org/
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
https://skillsmatter.com/skillscasts/5101-let-me-tell-you-a-story
https://twitter.com/gojkoadzic/status/1186316368121159680
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
https://www.scrum.org/resources/scrum-guide
https://dhh.dk/arc/000270.html
https://commons.wikimedia.org/wiki/File:Scrum_diagram_(labelled).png
https://commons.wikimedia.org/wiki/File:Scrum_diagram_(labelled).png
https://en.wikipedia.org/wiki/Cargo_cult
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Cost_of_delay
https://en.wikipedia.org/wiki/Lightweight_methodology
https://en.wikipedia.org/wiki/Lightweight_methodology
http://www.extremeprogramming.org/
https://www.wirfs-brock.com/PDFs/Responsibility-Driven.pdf
https://cucumber.io/blog/bdd/user-stories-are-not-the-same-as-features/
https://cucumber.io/blog/bdd/user-stories-are-not-the-same-as-features/

AnDREAS FERTIg FEATURE

October 2022 | Overload | 7

The	Power	of	Ref-qualifiers
Ref-qualifiers are frequently overlooked.
Andreas Fertig reminds us why they are useful.

In this article, I discuss an often unknown feature: C++11’s ref-
qualifiers. My book, Programming with C++20 [Fertig21], contains
the example in Listing 1.

What I have illustrated is that there is an issue with range-based for-
loops. In , we call GetKeeper().items() in the head of the range-
based for-loop. By doing this, we create a dangling reference. The chain
here is that GetKeeper returns a temporary object, Keeper. On that
temporary object, we then call items. The issue now is that the value
returned by items does not get lifetime-extended. As items returns a
reference to something stored inside Keeper, once the Keeper object
goes out of scope, the thing items references does as well.

The issue here is that as a user of Keeper, spotting this error is hard.
Nicolai Josuttis [Josuttis21] has tried to fix this issue for some time (see
[P2012R2]). Sadly, a fix isn’t that easy if we consider other parts of the
language with similar issues as well.

Okay, a long bit of text totally without any reference to ref-qualifiers,
right? Well, the fix in my book is to use C++20’s range-based for-loop
with an initializer. However, we have more options.

An obvious one is to let items return by value. That way, the state of
the Keeper object doesn’t matter. While this approach works, for other
scenarios, it becomes suboptimal. We now get copies constantly, plus we
lose the ability to modify items inside Keeper.

ref-qualifiers	to	the	rescue
Now, this brings us to ref-qualifiers. They are often associated with move
semantics, but we can use them without move. However, we will soon see
why ref-qualifiers make the most sense with move semantics.

A version of Keeper with ref-qualifiers looks like Listing 2.

In , you can see the ref-qualifiers: the & and && after the function
declaration of items. The notation is that one ampersand implies
lvalue-reference and two mean rvalue-reference. That is the same as for
parameters or variables.

We have expressed now that in , items look like before, except for the
&. But we have an overload in , which returns by value. That overload
uses &&, meaning it is invoked on a temporary object. In our case, the ref-
qualifiers help us make using items on a temporary object safe.

Considering performance
From a performance point of view, you might see an unnecessary copy in
. The compiler isn’t able to implicitly move the return value here. It
needs a little help from us.

In Listing 3, in , you can see std::move. Yes, I have told you in the
past only rarely to use move [Fertig22], but this is one of the few cases
where moving actually helps, assuming that data is movable and that you
need the performance.

class Keeper {
 std::vector<int> data{2, 3, 4};

public:
 ~Keeper() { std::cout << "dtor\n"; }
 // Returns by reference
 auto& items() { return data; }
};

// Returns by value
Keeper GetKeeper()
{
 return {};
}

void Use()
{
 //  Use the result of GetKeeper and return
 // over items
 for(auto& item : GetKeeper().items()) {
 std::cout << item << '\n';
 }
}

Listing 1

class Keeper {
 std::vector<int> data{2, 3, 4};

public:
 ~Keeper() { std::cout << "dtor\n"; }

 auto& items() & { return data; }

 //  For rvalues, by value with move
 auto items() && { return std::move(data); }
};

Listing 3

Andreas Fertig is a trainer and lecturer on C++11 to C++20,
who presents at international conferences. Involved in the C++
standardization committee, he has published articles (for example, in
iX) and several textbooks, most recently Programming with C++20.
His tool – C++ Insights (https://cppinsights.io) – enables people to
look behind the scenes of C++, and better understand constructs. He
can be reached at contact@andreasfertig.com

class Keeper {
 std::vector<int> data{2, 3, 4};

public:
 ~Keeper() { std::cout << "dtor\n"; }

 //  For lvalues
 auto& items() & { return data; }

 //  For rvalues, by value
 auto items() && { return data; }
};

Listing 2

AnDREAS FERTIgFEATURE

8 | Overload | October 2022

Another option is to provide only the lvalue version of the function,
removing the second items function. Without this function, all calls
from a temporary object to the remaining lvalue items function result in
a compile error. You have a design choice here.

Summary
Ref-qualifiers give us finer control over functions. Especially in cases
like above, where the object contains moveable data, providing the l- and
rvalue overloads can lead to better performance – no need to pay twice
for a memory allocation.

We are using a functional programming style in C++ more and more.
Consider applying ref-qualifiers to functions returning references to make
them safe for this programming style. �

References
[Fertig21] Andreas Fertig (2021) Programming with C++20: Concepts,

Coroutines, Ranges, and more, Fertig Publications, ISBN 978-
3949323010

[Fertig22] Andreas Fertig (2022) ‘Why you should use std::move
only rarely’, posted 1 February 2022 at: https://andreasfertig.
blog/2022/02/why-you-should-use-stdmove-only-rarely/

[Josuttis21] Nicolai Josuttis, on Twitter: https://twitter.com/NicoJosuttis/
status/1443267749854208000

[PR2012R2] Nicolai Josuttis, Victor Zverovich, Filipe Mulonde and
Arthur O’Dwyer ‘Fix the range-based for loop R2’ available
at https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/
p2012r2.pdf

This article was published on Andreas Fertig’s blog on 5 July 2022
and is available at: https://andreasfertig.blog/2022/07/the-power-of-
ref-qualifiers/

Ref-qualifiers	give	us	finer	control	over	
functions, especially in cases where the
object contains moveable data

https://andreasfertig.blog/2022/02/why-you-should-use-stdmove-only-rarely/
https://andreasfertig.blog/2022/02/why-you-should-use-stdmove-only-rarely/
https://twitter.com/NicoJosuttis/status/1443267749854208000
https://twitter.com/NicoJosuttis/status/1443267749854208000
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2012r2.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2012r2.pdf
https://andreasfertig.blog/2022/07/the-power-of-ref-qualifiers/
https://andreasfertig.blog/2022/07/the-power-of-ref-qualifiers/

FRAnCES BUOnTEMPO FEATURE

October 2022 | Overload | 9

The ACCU Conference
Frances Buontempo extols the virtues of attending (or presenting).

ACCU is a group of programmers who care about their craft,
sharing knowledge, continually learning, and generally seeking
Professionalism in Programming. We welcome new members

(https://accu.org/menu-overviews/membership/). In addition to our
journals, discussion lists and local groups, we hold an annual Spring
conference. Members get a conference discount, which more than covers
the cost of joining.

The conference has a C++ focus, but covers all aspects of development
and often includes other programming languages. The ACCU 2023
conference will be held in Bristol, UK, from 2023-04-19 to 2023-04-22;
it will be run as a hybrid event, so you can either take part online or in
person. There will also be two days of full-day tutorials on 2023-04-17
and 2023-04-18.

The next call for papers will start mid-October, so watch the ACCU
website or the accu-general mailing list (https://accu.org/members/
mailing-lists). You could propose a full day tutorial, a 90-minute session
or a shorter session. Get your thinking hats on! If you have an idea, but
haven’t submitted a proposal before, plenty of ACCU members will be
willing to read through an initial draft and give you feedback.

If you’re not brave enough to give a 90-minute full talk, you could always
consider giving a shorter talk or even give a lightning talk instead. These
are five minute slots at the end of the day and volunteers step up during
the conference. They almost always have everyone laughing and provide
a great way to round off the day.

As mentioned, ACCU members get a discount, as do speakers. Also, keep
your eyes open for early bird rates. If you personally can’t afford the
conference, it is worth asking if work will pay for you under a training
budget. That was how I first managed to attend. I had to write up why
the conference would be useful, and again, getting someone to read a
business case through give early feedback is worth considering. Failing
that, consider seeing if IncludeCpp (https://www.includecpp.org/) can
help you find a scholarship, or check the ACCU website to see if the
conference needs volunteers.

Previous conference schedules and slides are available on the ACCU
website (https://accu.org/conf-previous/) and we now have a YouTube
channel (https://www.youtube.com/c/ACCUConf), so you can listen to
talks from 2016 onwards.

I have attended several conferences now, and spoken at a few. The
journey from attendee to speaker has been valuable. I could never have
imagined getting up and speaking years ago, but ACCU members and the
conference itself are very supportive. I have learnt so much from the talks
and made friends over coffee, lunch breaks and a few pints of beer. ACCU
always had a reputation of being quite hard-core, with the audience
potentially digging deep with knowledgeable questions. That is true, but
the combination of difficult questions and a supportive environment make
this my go-to conference.

As our conference chair, Felix, explains below, times are changing.
The move to make the conference hybrid came about because of the
pandemic. This has allowed people to take part who otherwise couldn’t
attend, which is a good thing. The next conference will be run by a
different organizing committee, as Felix explains. We are bound to still
see some usual suspects and new faces, ask probing questions and make
new friends. Times change. C++ changes. New programming languages
come and go. No matter what, it is always wonderful to meet with like-
minded people, and go away inspired.

I look forward to potentially meeting you at 2023’s conference, and
perhaps listening to you talk. I should stop and hand over to Felix. I have
a proposal to write! �

Thank you to Julie Archer and Archer Yates Ltd.
Julie Archer from Archer Yates Ltd, the organising company of the
ACCU Conference, told me during the conference in April that she
wants to step down and that she will hand over the conference to her
very close friend Sarah Byrne who runs her own event organising
company mosaicevents.co.uk.

This was a great shock for me, because Julie and her great team were
inseparable from the ACCU conference, in my mind. She explained
to me that because of comprehensible reasons she cannot continue to
organise the conference.

When I attended the ACCU Conference for the very first time in 2015,
Julie and her team were the first faces I saw when I arrived. They
welcomed me very warmly and I felt immediately among friends.
And this feeling continued throughout the whole event. I had attended
several different events before but during this time I fell in love
with the ACCU conference and started to play an active role. Julie’s
support from my very first day on the programme committee and later
as chair was amazing! Whenever an attendee, a speaker, a sponsor or
one from the committee had a problem or needed something unusual,

the team from Archer Yates made it possible. Beside the ‘normal’
organisation they took special care that the conference dinner became
an unforgettable event every year!

It was a stroke of luck that ACCU met Archer Yates Ltd. Their
knowledge of planning and organising an event, combined with the
association’s know-how of a subject that is evolving so fast became
a very successful joint venture. The ACCU Conference has evolved
from a group of sessions after a WG21 (https://isocpp.org/std/the-
committee) meeting to one of the first class software engineering
conferences. This would never have been possible without a partner
that had worked so absolutely brilliantly in the background. Julie
and her team did everything possible that the conferences went so
smoothly. The interaction between speakers and attendees lays in the
centre of the event.

I will miss Julie and her team, but I wish them the best in the future!

Felix Petriconi

ACCU Conference Chair

Frances Buontempo has a BA in Maths + Philosophy, an MSc in
Pure Maths and a PhD technically in Chemical Engineering, but
mainly programming and learning about AI and data mining. She
has been a programmer since the 90s, and learnt to program by
reading the manual for her Dad’s BBC model B machine. She can be
contacted at frances.buontempo@gmail.com.

https://accu.org/menu-overviews/membership/
https://accu.org/members/mailing-lists
https://accu.org/members/mailing-lists
https://www.includecpp.org/
https://accu.org/conf-previous/
https://www.youtube.com/c/ACCUConf
https://isocpp.org/std/the-committee
https://isocpp.org/std/the-committee

RichaRd haRRisFeatuRe

10 | Overload | October 2022

the travelling salesman problem, or TSP, must be one of the most
popular problems amongst computer science students. It is extremely
simple to state; what is the shortest route by which one can tour n

cities and return to one’s starting point? Figure 1 shows random and
optimal tours of a 9-city TSP.

On first inspection, it seems to be fairly simple. The 9-city tour in Figure 1
can be solved by eye in just a few seconds.

However, the general case is fiendishly difficult. So much so that finding
a fast algorithm to generate the optimal tour, or even proving that no such
algorithm exists, will net you $1,000,000 from the Clay Mathematics
Institute [Clay].

This is because it is an example of an NP-complete (nondeterministic
polynomial complexity) problem. This is the class of problems for which
the answer can be checked in polynomial time, but for which finding
it has unknown complexity. The question of whether an NP-complete
problem can be solved in polynomial time is succinctly expressed as ‘is P
equal to NP?’ and answering it is one of the Millennium Prize Problems,
hence the substantial cash reward.

The answer to this question is so valuable because it has been proven that
if you can solve one NP-complete problem in polynomial time, you can
solve them all in polynomial time. And NP-complete problems turn up
all over the place.

For example, secure communication on the internet relies upon P ≠ NP.
The cryptographic algorithms used to make communication secure
depend on functions that are easy to compute, but hard to invert. If P = NP
then no such functions exist and secure communication on an insecure
medium is impossible. Since every financial institution relies upon such
communication for transferring funds, I suspect that you could raise far
more than $1,000,000 if you were able to prove that P = NP. Fortunately
for the integrity of our bank accounts the evidence seems to indicate that
if the question is ever answered it will be in the negative.

So, given that some of the keenest minds on the planet have failed to solve
this problem, what possible insights could an amateur modeller provide?

Not many, I’m afraid. Well, not for this problem exactly.

I’d like to introduce a variant of the TSP that I’ll call the regular travelling
salesman problem. This is a TSP in which the cities are located at the
vertices of a regular polygon. Figure 2 shows the first four regular TSPs.

The question of which is the shortest tour is rather uninteresting for the
regular TSP as it’s simply the circumference of the polygon. Assuming
that the cities are located at unit distance from the centre of the polygons
(i.e. the polygons have unit radius), the length of the optimal tour can be
found with a little trigonometry.

Figure 3 shows the length of a side.

Figure 1

Figure 3

the Model student: the Regular
travelling salesman – Part 1
Richard Harris begins a series of articles
exploring some of the mathematics of interest
to those modelling problems with computers.

Figure 2

Richard Harris When he wrote this article, Richard had been a
professional programmer since 1996. He had a background in
Artificial Intelligence and numerical computing and was employed
writing software for financial regulation.

RichaRd haRRis FeatuRe

October 2022 | Overload | 11

For a tour of n cities, the length, l, of the optimal tour is given by:

As n gets large, so θ gets small, and for small θ, sin θ is well approximated
by θ itself. We can conclude, therefore, that for large n, the length of the
optimal tour is approximately equal to 2π. This shouldn’t come as much
of a surprise since for large n a polygon is a good approximation for a
circle. In fact, it was this observation that Archimedes [Archimedes] used
to prove that

The ratio of the circumference of any circle to its diameter is less
than 31/7 but greater than 310/71.

It’s also fairly easy to find the length of the most sub-optimal tour. The
key is to note that for odd n the furthest two cities from any given city are
those connecting the opposite side of the polygon. Figure 4 shows the
longest single steps and tour in a 5-city regular TSP.

For odd regular TSPs, we can take a step of this length for every city,
giving us a star shaped tour. We can calculate the length of this tour in a
similar way to that we used to calculate the shortest tour length. Figure 5
shows the length of the longest single step.

So for a tour of odd n cities, the length, l', of the worst tour is given by:

This time for sufficiently large n, θ is small enough that cos θ is well
approximated by 1. For large odd n, therefore, the length of the worst
tour is approximately equal to 2n. Once again, we could have equally
well concluded this from the fact that for large n the polygon is a good
approximation for a circle for which the largest step is across the diameter.

For an even number of cities the worst single step is to the city on the
opposite side of the polygon with a distance of 2. Unfortunately, each time
we take such a step we rule it out for the city we visit, which will have to
take a shorter step. So we can have ½n steps of length 2 and ½n steps of
length strictly less than 2, giving a total length strictly less than 2n.

This doesn’t show that for an even number of cities the limit is 2n, just
that it cannot exceed 2n. However, we can follow the longest step with the
second longest to one of the first city’s neighbours. We can repeat this for
all but the last pair of cities for which we can take the longest step
followed by the shortest. Figure 6 shows a 2n - 2 limit tour for 6 cities.

Whilst I haven’t shown that this is the worst strategy, it does have a limit
close to 2n for large n. It takes ½n steps with length 2, ½n - 1 steps with
length approximately equal to 2, and one step with length approximately
equal to 0 giving a total of 2n - 2.

So, are there any remotely interesting questions we can ask about the
regular TSP?

How about what the average length of a tour is? Or, more generally, how
are the lengths of random regular TSP tours distributed?

This is where the maths gets a little bit tricky, so we’ll need to write a
program to enumerate the tours directly. The simplest way to do this is

�
�

�

�

�

�

� � �

2

2 2

2

n

h

l n h n
n

sin

sin

Figure 4

Figure 5

�
�

�
�

�

� � �

� �
�

� �

�

� � � � ��
�
�

�
�
� �

2 1

2

2 2

2
2 2

2
2

n
n

n

h

l n h n
n

n
n

sin

sin cos

Figure 6

so are there any remotely
interesting questions we can ask

about the regular tsP?

RichaRd haRRisFeatuRe

12 | Overload | October 2022

to assign each city a number from 0 to n - 1 so we can represent a tour as
a sequence of integers. Figure 7 shows labels for a 5-city regular TSP.

A tour can be defined as:
 #include <vector>
 namespace tsp
 {
 typedef std::vector<size_t> tour;
 }

We’ll need some code to calculate the distance between the cities. We can
save ourselves some work if we calculate the distances in advance rather
than on the fly. We can exploit the fact that our cities are located at the
vertices of regular polygons by noting that due to rotational symmetry
the distance between two cities depends only on how may steps round
the circumference separate them. Listing 1 shows a class to calculate
distances between cities.

The constructor does most of the work, calculating the distances between
cities 0 to n - 1 steps apart. Listing 2 calculates the distances between cities.

Of course, we could have also exploited the reflectional symmetry that
means the distance between cities separated by i and n - i steps are also the
same, but I’m not keen to make the code more complex for the relatively
small improvement that results. The code to retrieve the distance between
two cities is relatively simple and is shown in Listing 3.

To calculate the length of a tour we need only iterate over it and sum the
distances of each step (Listing 4).

namespace tsp
{
 class distances
 {
 public:
 distances(size_t n);

 size_t size() const;
 double operator()(size_t step) const;
 double operator()(size_t i, size_t j) const;

 private:
 typedef std::vector<double> vector;

 size_t n_;
 vector distances_;
 };
}

Listing 1

tsp::distances::distances(size_t n) : n_(n),
 distances_(n)
{
 if(n_<3) throw std::invalid_argument("");

 static const double pi = acos(0.0) * 2.0;
 double theta = 2.0*pi / double(n_);
 double alpha = 0.0;

 vector::iterator first = distances_.begin();
 vector::iterator last = distances_.end();

 while(first!=last)
 {
 *first = 2.0 * sin(alpha/2.0);
 ++first;
 alpha += theta;
 }
}

Listing 2
double
tsp::distances::operator()(size_t step) const
{
 if(step>=distances_.size())
 throw std::invalid_argument(“”);
 return distances_[step];
}
double
tsp::distances::operator()(size_t i,
 size_t j) const
{
 if(i>=n_ || j>=n_)
 throw std::invalid_argument(“”);
 return (*this)((i>j) ? i-j : j-i);
}

Listing 3

Figure 7

double
tsp::tour_length(const tour &t,
 const distances &d)
 {
 if(t.size()==0)
 throw std::invalid_argument("");

 tour::const_iterator first = t.begin();
 tour::const_iterator next = first+1;
 tour::const_iterator last = t.end();

 double length = 0.0;
 while(next!=last) length += d(*first++,
 *next++);
 length += d(*first, t.front());

 return length;
}

Listing 4

We can exploit the fact that our cities are
located at the vertices of regular polygons

RichaRd haRRis FeatuRe

October 2022 | Overload | 13

The final thing we’ll need before we start generating tours is some code
to keep track of the distribution of tour lengths. Listing 5 shows a class to
maintain a histogram of tour lengths.

Most of the member functions of our histogram class are pretty trivial, so
we’ll just look at the interesting ones. Firstly, the constructors. Listing 6
shows how the tour histograms are constructed.

As you can see, unless we specify otherwise, we’ll use twice as many
buckets as we have vertices. This is because we’ve already proven that
the maximum tour length is bounded above by 2n, so it makes sense to
restrict our histogram to values between 0 and 2n and dividing this into
unit length ranges is a natural choice.

The init member function simply initialises the ranges for each of the
buckets and sets their counts to 0. Note that, for our default histogram, the
bucket identified with length l records tours of length greater than or equal
to l - 1 and less than l. Listing 6 shows initialising the tour histogram.

We can exploit the fact that our histogram buckets are distributed evenly
over the range 0 to 2n when recording tour lengths. To identify the correct
bucket we need only take the integer part of the tour length multiplied by
the number of buckets and divided by 2n.

namespace tsp
{
 class tour_histogram
 {
 public:
 struct value_type
 {
 double length;
 size_t count;
 value_type();
 value_type(double len, size_t cnt);
 };

 typedef std::vector<value_type>
 histogram_type;
 typedef histogram_type::
 size_type size_type;
 typedef const value_type &
 const_reference;
 typedef histogram_type::
 const_iterator const_iterator;

 tour_histogram();
 explicit tour_histogram(size_t vertices);
 tour_histogram(size_type vertices,
 size_type buckets);

 bool empty() const;
 size_type size() const;
 size_type vertices() const;

 const_iterator begin() const;
 const_iterator end() const;
 const_reference operator[](
 size_type i) const;
 const_reference at(size_type i) const;
 void add(double len, size_t count = 1);

 private:
 void init();
 size_type vertices_;
 histogram_type histogram_;
 };
}

Listing 5

tsp::tour_histogram::tour_histogram(
 size_t vertices) :

vertices_(vertices),

histogram_(2*vertices)

 {
 init();
 }

tsp::tour_histogram::tour_histogram(
 size_type vertices,
 size_type buckets) :

vertices_(vertices),

histogram_(buckets)

{
 init();
}

void
tsp::tour_histogram::init()
{
 if(empty()) throw std::invalid_argument(“”);

 double step =
 double(2*vertices_) / double(size());
 double length = 0.0;

 histogram_type::iterator first
 = histogram_.begin();
 histogram_type::iterator last
 = histogram_.end();
 --last;

 while(first!=last)
 {
 length += step;
 *first++ = value_type(length, 0);
 }

 *first = value_type(double(2*vertices_), 0);
}

Listing 6

unless we specify otherwise, we’ll use twice
as many buckets as we have vertices

RichaRd haRRisFeatuRe

14 | Overload | October 2022

Listing 7 shows adding a tour to the histogram.

Now we have all of the scaffolding we need to
start measuring the properties of random tours
of the regular TSP. Before we start, however, we
should be mindful of the enormity of the task we
have set ourselves.

The problem is that the number of tours grows
extremely rapidly with the number of cities. For
a TSP with n cities, we have a total of n! tours
which are going to take a lot of time to enumerate.

Table 1 shows the growth of n! with n.

We can improve matters slightly by considering
symmetries again.

First, we have a rotational symmetry, in that we
can start at any of the cities in a given tour and generate a new tour. By
fixing the first city, we improve matters by a factor of n.

Secondly, we have a reflectional symmetry in that we can follow any
given tour backwards and get a new tour. By fixing which direction we
take around the polygon, we reduce the complexity of the problem by a
further factor of 2.

Whilst exploiting the rotational symmetry is relatively straightforward,
the reflectional symmetry once again requires quite a bit of house-keeping.
Hence I shall only attempt to exploit the former for the time being.

The first thing we’re going to need is a way to generate the initial tour.
 void
 tsp::generate_tour(tour::iterator first,
 tour::iterator last)
 {
 size_t i = 0;
 while(first!=last) *first++ = i++;
 }

Once we can do that it is a simple matter of iterating through each of the
remaining tours and adding their lengths to our histogram. Fortunately
there’s a standard function we can use to iterate through them for
us; std::next_permutation. This takes a pair of iterators and
transforms the values to the lexicographically next largest permutation,
returning false if there are no more permutations. Using this function to
calculate the histogram of tour lengths is relatively straightforward, as
shown in Listing 8.

Note that exploiting the rotational symmetry of the starting city
is achieved by simply leaving out the first city in our call to
std::next_permutation.

Now we are ready to start looking at the results for some tours, albeit only
those for which the computational burden is not too great.

Figure 8 (overleaf) shows the tour histograms for 8, 10, 12 and 14 city
regular TSPs.

We can also use the histograms to calculate an approximate value for the
average length of the tours. We do this by assuming that every tour that
is added to a bucket has length equal to the mid-point of the range for
that bucket. For our default number of buckets, this introduces an error
of at most 0.5, which for large n shouldn’t be significant. If you’re not
comfortable with this error, it would not be a particularly difficult task to
adjust the add member function to also record the sum of the tour lengths
with which you could more accurately calculate the average length. I’m
not going to bother, though.

The approximate average lengths of the above tours, as both absolute
length and in proportion to the number of cities, are given in Table 2.

The distributions shown by the histograms and the average tour lengths
both hint at a common limit for large n , but unless we can analyse longer
tours we have no way of confirming this. Unfortunately, the computational
expense is getting a little burdensome as Table 3 illustrates.

So can we reduce the computational expense of generating the tour
histograms? Well that, I’m afraid, is a question that shall have to wait
until next time. n

n n!
3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

table 1

void
tsp::tour_histogram::add(double len)
{
 size_type offset((double(size())*len)/
 histogram_.back().length);
 if(offset>=size())
 throw std::invalid_argument(“”);
 histogram_[offset].count += 1;
}

Listing 7

void
 tsp::full_tour(tour_histogram &histogram)
 {
 distances dists(histogram.vertices());
 tour t(histogram.vertices());
 generate_tour(t.begin(), t.end());

 do histogram.add(tour_length(t, dists));
 while(std::next_permutation(t.begin()+1,
 t.end()));
 }
}

Listing 8

n μ μ/n
8 10.99 1.37

10 13.51 1.35

12 16.07 1.34

14 18.62 1.33

table 2

n time (seconds)
8 0.002

10 0.180

12 22.140

14 4024.410

table 3

the problem is that the number of tours grows
extremely rapidly with the number of cities.

RichaRd haRRis FeatuRe

October 2022 | Overload | 15

acknowledgements
With thanks to Larisa Khodarinova for a lively discussion on group
theory that lead to the correct count of distinct tours and to Astrid Osborn
and John Paul Barjaktarevic for proof reading this article.

References and further reading
[Agnihothri98] Agnihothri, ‘A Mean Value Analysis of the Travelling

Repairman Problem’, IEE Transactions, vol. 20, pp. 223-229, 1998.
[Archimedes] Archimedes, On the Measurement of the Circle, c. 250-

212BC.
[Basel01] Basel and Willemain, ‘Random Tours in the Travelling

Salesman Problem: Analysis and Application’, Computational
Optimization and Applications, vol. 20, pp. 211-217, 2001.

[Beardwood59] Beardwood, Halton and Hammersley, ‘The Shortest
Path Through Many Points’, Proceedings of the Cambridge
Philosophical Society, vol. 55, pp. 299-327, 1959.

[Clay] Clay Mathematics Institute Millennium Problems:
http://www.claymath.org/millennium

[Hoffman96] Hoffman and Padberg, ‘Travelling Salesman Problem’,
Encyclopedia of Operations Research and Management Science,
Gass and Harris (Eds.), Kluwer Academic, Norwell, MA, 1996.

[Jaillet93] Jaillet, ‘Analysis of Probabalistic Combinatorial Optimization
Problems’ in Euclidean Spaces, Mathematics of Operations
Research, vol. 18, pp. 51-71, 1993.

Figure 8

Dr Richard Harris died over the summer. His unexpected
death was a shock and those who knew him miss him
so much. Richard had been a member of ACCU for a
very long time. He wrote many articles and spoke at the
conference on many occasions. Our member’s magazine,
CVu, September edition included people’s memories of
Richard. They only hint at who he was.

He wrote a website, https://www.thusspakeak.com/,
which will eventually disappear. It has many puzzles and
explanations of maths and stats. It contains a maths library
written in JavaScript, just to prove what’s possible. His
usual language of choice was C++, but he had fun writing
various numeric types and functions in JavaScript. He
claimed he wrote it all by hand, including the style-sheets,
in Notepad. If you knew him, this isn’t entirely surprising.
Some ACCU members are attempting to archive the
website so it doesn’t disappear forever. Watch this space.

We will reprint the follow-up travelling salesman article in
the next Overload, but feel free to look back through the
other articles he wrote for ACCU (listed at https://accu.org/
journals/nonmembers/overload_author_members/#[lH]).

http://www.claymath.org/millennium
https://www.thusspakeak.com/
https://accu.org/journals/nonmembers/overload_author_members/#[lH]
https://accu.org/journals/nonmembers/overload_author_members/#[lH]

ChRIS OLDWOODFEATURE

16 | Overload | October 2022

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has resumed
commentating on the Godmanchester duck race but continues to be easily distracted by messages to gort@cix.co.uk or @
chrisoldwood

Afterwood
War and Peace is a famously long novel that mixes fiction
with history and philosophy. Chris Oldwood muses on the
categorisation of computing books – and where to put them.

After serving many years as the playroom (nay, ‘dumping ground’)
the kids have finally grown-up to the point at which it can serve as
something a little more refined. The need to redecorate has created

the impetus required to pull the books off the shelves and have a sort out
before putting them back in what I hope is a more ‘logical’ order. The room
now takes on the grandiose title of ‘library’, not by virtue of the number
of books, it has less than before, but simply because the ratio of books to
other ‘crap’ is such that they now dominate significantly, and you stand a
chance of being able to use the sofa and chairs for actually sitting down.

Having my programming books share the same space as the family’s other
books is a fairly recent event. Prior to this they were stacked on shelves
in the downstairs toilet until gravity conspired with Jeffrey Richter et
al to cause the shelves to sag and bow to such extent that they made
the occupants using the facilities as nature intended to become deeply
uncomfortable. Richter wasn’t the only culprit, although he seems to have
a penchant for mighty tomes; other notable authors that stress-tested the
woodwork included the likes of Brockschmidt (OLE), Hohpe (Patterns)
and Meyer (OO), with Robert Binders’ Testing Object-Oriented Systems
the heavyweight champion.

Book obesity is not a new topic to this journal with its editor raising similar
concerns some 10 years ago [Buontempo12]. In what became yet another
failed attempt at writing an editorial, Fran distracted herself by weighing
the classic K&R book on the C programming language (375g it turns out)
while lamenting the ‘cost’ (time-wise) of modern technical books. I’ve
definitely got books where even the index would weigh more than 375g!

For the sake of balance I should point out there is an upside to having
1000+ page books – they make excellent weights when pressing leaves or
flowers, or fixing things with glue that require continuous pressure while
setting. Such weight comes with great responsibility, though, and one
needs to be careful not to place the book too precariously, lest it slip off the
table and land on one’s toes. Fran may have used K&R for her book scale,
but misfortune has suggested to me that the Richter scale can equally be
applied to the pain level of bruised toes as much as it does earthquakes.

Putting the ‘technical library’ in the downstairs toilet was partly borne
out of practicality. The desk performed admirably as a level 1 cache
but the latency of accessing the level 2 cache in the attic was dreadful,
especially in the evening when my kids were asleep as they played host
to the hatch and loft ladder. The shelves in the toilet drastically improved
the (amortized) L2 access time without disrupting the facilities due to a
clustered configuration (aka secondary toilet in the upstairs bathroom).

There was also a slightly humorous element to using such an unusual
location as a library – my wife would suggest to visitors that it was to
keep them ‘hidden away’ and avoid tainting the collections of Penguin
Classics and Dr Seuss. In retrospect, I’m not buying this argument as
when I was finally granted safe haven with the rest of the family’s books,
they were still relegated to the topmost shelf as if they were some kind
of illicit material. The extra reinforcement for the new top shelf may also

have had a bearing on this decision along with me, the tallest member of
the family, being the only one who needed to reach that high up.

Unpacking the boxes of books once the fresh lick of paint had dried
provided a much needed opportunity to revaluate the existing organization
which was analogous to the complexity guarantee for a std::vector –
inserting anywhere except near the end was time-consuming. Naturally,
I paid the price and ended up with a retrieval complexity approaching
O(N). (Sorting the books was very much left as an exercise for the reader,
which they never seemed to get around to…)

I can’t say that organising technical books primarily by author, title,
or year has ever felt natural to me. Luckily (based on my limited data
set) authors tend to stick to the same topics and, as technologies tend
to come and go, grouping around them ends up leading to a clustering
based on author and age as a side-effect. My programming career to date
has largely involved writing applications and services on Windows in
C++ and C#, so that provides three obvious initial collections with only
Windows++ and Windows via C++ causing any immediate hesitation.
But what about the rest?

What I really need is a book on category theory. I’m aware that Bartosz
Milewski has written one specifically for programmers, but the trouble
then is where do I file that? I already have Milewski’s C++ in Action from
the early 2000s so do I create a new category just for him? Looking at
the remaining stack of books they are largely singletons, although design
patterns also now stands out as a notable genre too.

Naturally C++ and C# got amalgamated into a larger section on
programming languages, which I did alphabetise. It all went swimmingly
until I came to the x86 and Z80 handbooks – do they go at the beginning
under A for assembly language, or the end under their CPU names? I did
briefly consider making the dilemma go away by redesigning the bookshelf
as a circular linked list so that A and Z would adjoin, but only very briefly.

What’s left after that little exercise are a whole bunch of books – old and
new – about a variety of software development topics covering process,
reviewing, quality, history, etc. with no obvious home. Hence, with no
self-contained sub-categories leaping out I’m inclined to borrow from
J.B. Rainsberger [Rainsberger12]:

Junior programmer’s bookshelf: 90% APIs and programming
languages; Senior programmer’s bookshelf: 80% applied
psychology.

…and file them all under a single section: applied psychology. Sorted! �

References
[Buontempo12] Frances Buontempo, ‘Editorial: Too Much

Information’, Overload 111, published October 2012, available at:
https://members.accu.org/index.php/journals/1885

[Rainsberger15] R. B. Rainsberger, on Twitter,
tweeted 1 July 2015, https://twitter.com/jbrains/
status/616228270841962496

https://members.accu.org/index.php/journals/1885
https://twitter.com/jbrains/status/616228270841962496
https://twitter.com/jbrains/status/616228270841962496

accu
professionalism in programming

To find out more, visit accu.org

Monthly journals

Annual conference

Discussion lists

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	Sustainability: An Impossible Dream?
	User Stories and BDD – Part 1
	The Power of Ref-qualifiers
	The ACCU Conference
	The Model Student: The Regular Travelling Salesman – Part 1
	Afterwood

