
Revisiting Data-Oriented Design
Exploring how Data-Oriented Design can help
develop modifiable and testable software

Why Should Automation Be Done
By The Dev Team?
Why developers need to be involved in the
automating of test scenarios for BDD

C++20 Benefits: Consistency
With Ranges
How C++20 Ranges simplify walking over a
container in C++

Afterwood
Always question your assumptions

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

February 2022 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Revisiting Data-Oriented Design
Lucian Radu Teodorescu explores how
Data-oriented Design can help develop
modifiable and testable software.

4 An Associative Container for
Non-bash Shell Scripts
Ralph McArdell shows you what to do.

16 Why Should Automation Be
Done By The Dev Team?
Seb Rose explains why developers need
to be involved in the automating of test
scenarios for BDD.

18 C++20 Benefits:
Consistency With Ranges
Andreas Fertig shows how C++20 Ranges
simplify walking over a container in C++.

20 Afterwood
Chris Oldwood reminds us to question
our assumptions and try to think straight.

OVERLOAD 167

February 2022

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover design

Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Bekir Dönmez
on Unsplash.

Copy deadlines

All articles intended for publication
in Overload 168 should be
submitted by 1st March 2022 and
those for Overload 169 by
1st May 2022.

https://unsplash.com/@bekirdonmeez
https://unsplash.com/photos/eofm5R5f9Kw

EDITORIAL FRANCES BUONTEMPO
What are you optimizing for?
Sometimes attempts to improve things make it
worse. Frances Buontempo encourages you to
think about what you’re doing when you try to
optimise, and to check it really is working.
.Welcome to the first issue of Overload, 2022. Before
you ask, I haven’t written an editorial. I have been
fighting a battle with the number of tabs open in my
PC’s browser. I might be winning, with only 67, after
a steady 69. I did try closing several, but unfortunately
opened other links while tidying up and kept ending

back at 69. Clearly, for me 69 is the optimal number of tabs and 67 is just
showing off. That only wasted a few hours of my life. Advent of Code
[Advent] took even more time, and is hogging a couple of tabs as we speak.

If you’ve not come across Advent of Code before, I did a short write up
for our members’ magazine CVu [Buontempo22]. Puzzles are set during
December, each having two parts. The first part tends to nudge you
towards a simple way to solve the problem and the second part then slaps
you in the face by blowing out RAM or similar. There are often warning
signs in the description, such as ‘exponential’ getting a mention, or simply
a gut feeling that this might get really big, really quick. Knuth told us
“premature optimisation is the root of all evil.” Though this quote is about
how long something might take to run, rather than memory, it can apply
to both. However, speed and RAM tend to tug in opposite directions – it
can be hard to do things quickly and use little memory. Caching requires
somewhere to store the cache, but can avoid duplicate calculations. It may
even slow down your code if it introduces cache misses. Many attempts
to solve problems tug in opposing directions. To find out if you have
covid, you could take a lateral flow test. The results are available quickly,
but may not be so accurate. Instead, you could take a PCR test, but have
to wait longer for the results. The PCR – a polymerase chain reaction –
requires a few iterations, splitting up DNA and making copies of the target
of interest if present, making it much more sensitive than the lateral flow
test, which relies on cells in the sample hitting detector molecules leading
to a colour change. (Forgive me if my summary of this year’s Royal
Institute Christmas Lecture is a bit mis-remembered and only vaguely
correct. There are some helpful links on their website [Royal Institute21]).
Speed versus accuracy is a common optimization tradeoff.

If you are optimizing, you need to decide your requirements. RAM, speed
and accuracy might matter, but comprehensibility and even happiness
might come into play as well. Loop unrolling tricks may speed up your
code, but confuse your colleagues (or your future self) and cause
unhappiness. You could experiment with -funroll-loops if you are
using GCC, rather than try to do this by hand, however the manual says
“This option makes code larger, and may or may not make it run faster.”

[GCC]. The question lurking in the background for
any optimization is always, “Has this

worked?” For a one-off task, it’s all too
common to spend more time attempting to
automate it than doing the task manually.

XKCD [XKCD] reminds us that writing code to automate something
might not be the time saver we hoped for. More than that, if you are trying
to speed up your code, measure and see what happens. Your instincts may
be wrong.

Machine learning frequently involves optimization in one form or another.
A fundamental part of the process involves checking the algorithm is
working by calculating a score in a so-called fitness or cost function.
Bigger scores are better if you want to maximize something, like profit or
happiness, and smaller scores are better for minimization problems, such
as travel time or fuel used. The algorithm makes course corrections to get
a better score in the fitness function, usually by selecting different,
randomly chosen inputs. Using randomness to solve a problem might
seem odd on the face of it. If there is time to brute force a solution that
might be better. However, some situations have so many possible
combinations of inputs it’s quicker to try a few and see what happens. One
selection might be good enough, job done. Otherwise, try, try, try again.
Now, pure randomness might never work. First, the same inputs may be
selected several times over, wasting time. Many machine learning
algorithms actually do this, though not deliberately. For example, genetic
algorithms don’t conventionally track what they have tried before. If the
algorithm gets stuck in a rut, trying the same thing over and over again,
you can try again from the top with different parameters or a new fitness
function. Second, a pure random algorithm might never solve a problem:
the so-called bogosort springs to mind [Wikipedia]. This algorithm checks
if the inputs are sorted. If they are great, return them. Otherwise randomly
permute and try again. Potentially forever. The internet [Morgan-Mar]
assures me there are other even worse variants of this algorithm. In order
to optimize my tab count, I have closed that link, so I’ll leave you to find
out about the sorting algorithm that violates the second law of
thermodynamics and report back. Randomness can work, but might not.

Machine learning can also be used to make predictions. There are many
ways to do this, but each tries to minimize the difference between
predicted values and actual values, again giving another optimisation
problem. Often this requires a gradient calculation, in order to move
‘downhill’ or closer to the required outputs. This number crunching can
take a while, so you can speed up the optimisation by using stochastic
gradient descent. This “inexact but powerful technique” [Stojiljković21]
finds the gradient on a small subset of the training data, clearly an attempt
to optimise the optimisation. Where will this meta-optimising end? That
randomness can be used to solve problems may be a surprise. It shouldn’t;
trial and error is a sensible way to explore a problem. Furthermore,
Stochastic (random) processes underpin many machine learning
algorithms. In fact they also form much of finance and possibly some
rocket science too. The c2 wiki does question the connection [c2-09] but
quickly devolves into flippancy, quoting words allegedly overheard at

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2022

EDITORIALFRANCES BUONTEMPO
NASA: “Come on! You make things sound so difficult. Sending probes to
Mars isn’t rocket science, you know!”

Now, in order to optimize, we may need to think beyond our initial
requirements. Nobert Wiener, a mathematician who made some
fundamental steps towards modern artificial intelligence, warned us to be
very thoughtful about the “purpose put into the machine.” [Wiener60] He
reminds us of the tale of the sorcerer’s apprentice, who automates a broom
to carry water, which it dutifully does, nearly drowning the apprentice in
the process. He then says,

If we use, to achieve our purposes, a mechanical agency with whose
operation we cannot efficiently interfere once we have started it,
because the action is so fast and irrevocable that we have not the
data to intervene before the action is complete, then we had better
be quite sure that the purpose put into the machine is the purpose
which we really desire and not merely a colorful imitation of it.

There are many similar thought experiments concerning potential
problems with automation, AI and optimization. The paperclip maximizer
springs to mind. If we task an AI to collect paperclips, and leave it to its
purpose, it might put “first all of earth and then increasing portions of space
into paperclip manufacturing facilities”. [LessWrong]. Fear not: not all
attempts to optimize pose an existential risk to the human race, the planet
or the universe. 2021’s Reith Lectures were given by Stuart Russell and
explored ‘Living with Artificial Intelligence’ [Russell21]. He mentioned
Wiener’s concerns about fully specifying our objectives. Asimov’s 3 Laws
of Robotics are an attempt to constrain AI, covering us when we fail to
give clear purpose to a robot, and allowing many interesting stories to
develop. They are interesting, but fictional. Russell suggested a better
solution involves assistance games [Shah19], where a human provides
feedback while the AI learns rather than giving a fixed objective up-front.
I suspect an analogy about waterfall versus agile is lurking in there
somewhere. I’ll leave that for you to think about.

When we optimize, we need to keep an eye on our solution, to ensure it is
solving our problem and not causing other complications in the process.
We may not find the best possible approach and that’s OK. Trial and error
experiments might find an acceptable algorithm or set of inputs.
Acceptable might be good enough. If you need your code to run faster,
quick enough is fine. Spending weeks trying to find the quickest possible
code might take longer than running a slightly slower version that works.
As we try to improve our code’s performance, we might need to consider
its comprehensibility and the happiness, or otherwise, of future developers.
Many clever techniques can speed up code, but might make your head hurt
each time you encounter them. Duff’s device, a loop unrolling technique,
always makes my eyes glaze over. It’s also important to realise that a clever
technique that works in one situation may not work in another. If your
target architecture changes or new floating point operations become
available, or you change compiler, old optimization techniques may in fact
pessimise your performance. Things change.

What happens if we abandon our quest to optimize and try to pessimise
instead? There are various ways to achieve this, for example the ‘Multiply
and Surrender’ strategy, which

consists in replacing the problem at hand by two or more
subproblems, each slightly simpler than the original, and continue
multiplying subproblems and subsubproblems recursively in this
fashion as long as possible. At some point the subproblems will all
become so simple that their solution can no longer be postponed,
and we will have to surrender. [c2-14]

This may seem like a case of chronic procrastination, but sometimes
switching one problem for another works. However this can lead to
analysis paralysis, where you freeze because every possible route forward
appears to cause further problems. Multiply and surrender falls into a
category known as reluctant algorithms. ‘Pessimal Algorithms and
Simplexity Analysis’ by Broder and Stolfi [Broder84] explores other ways
to solve various problems slowly. They open by posing the following
problem: “Consider the following problem: we are given a table of n integer
keys A1, A2, ..., An and a query integer X. We want to locate X in the table,
but we are in no particular hurry to succeed; in fact, we would like to delay
success as much as possible.” They also consider the sloppiest path

problem for graphs, a slowsort and many other problems. Deliberately
writing slow algorithms may seem foolish, but it’s a great read and might
get you thinking.

Sometimes trying to speed up makes things worse. How often have you
watched a driver on a crowded motorway switching lanes to get one car
ahead? Usually you pass them several times over if you stick to one lane.
They have a greater speed than you, because they have travelled a larger
distance in the same period of time, but have failed to make better progress
towards their final destination. Slow is fast as the saying goes. In fact,
traffic flow models are fascinating, which reminds me I should draw to a
close because I have an ACCU conference talk to prepare. On a final note,
don’t forget Goldratt’s theory of constraints. All processes have
constraints or bottlenecks. If you try to optimise other parts of the process,
you are unlikely to make any difference. Counterintuitively, you might
find slowing down can give a steady input to the bottleneck which might
speed things up overall. The Theory of Constraints “shifts the focus of
management from optimizing separate assets, functions
and resources to increasing the flow of throughput
generated by the entire system.” [Constraints]. Here’s
to a slow and steady 2022.

References
[Advent] https://adventofcode.com/

[Broder84] Andrei Broder and Jorge Stolfi (1984) ‘Pessimal Algorithms
and Simplexity Analysis’, available at https://www.mipmip.org/
tidbits/pasa.pdf

[Buontempo22] Frances Buontempo (2022) ‘Advent of Code’, CVu 33.6,
available from: https://accu.org/journals/cvu/33/6/buontempo/

[c2-09] ‘Rocket Scientist’ (last updated 18 October 2009):
https://wiki.c2.com/?RocketScientist

[c2-14] ‘Multiply and Surrender’ (last updated 26 October 2014):
http://wiki.c2.com/?MultiplyAndSurrender

[Constraints] ‘Theory of Constraints (TOC) of Dr. Eliyahu Goldratt’
available at: https://www.tocinstitute.org/theory-of-constraints.html

[GCC] Using the GNU Compiler Collection (GCC) ‘Options that Control
Optimization’ available at https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html

[LessWrong] ‘Paperclip Maximiser’, Less Wrong, available at
https://www.lesswrong.com/tag/paperclip-maximizer

[Morgan-Mar] David Morgan-Mar, ‘DM’s Esoteric Programming
Languages’ available at https://www.dangermouse.net/esoteric/

[Royal Institute21] Royal Institute Christmas Lectures 2021, ‘Going
viral: How Covid changed science forever’, available at
https://www.rigb.org/christmas-lectures/2021-going-viral-how-
covid-changed-science-forever

[Russell21] Stuart Russell (2021) Living with Artificial Intelligence (a set
of 4 talks), The Reith Lectures, available at https://www.bbc.co.uk/
programmes/m001216k/episodes/player

[Shah19] Rohin Shah (2019) ‘Human-AI Collaboration’, published on
Less Wrong, 22 Oct 2019, available at https://www.lesswrong.com/
posts/dBMC63hjkc5wPqTC7/human-ai-collaboration

[Stojiljković21] Mirko Stojiljković (2021) ‘Stochastic Gradient Descent
Algorithm With Python and NumPy’ on Real Python, available at
https://realpython.com/gradient-descent-algorithm-python/

[Wiener60] Wiener, Norbert. ‘Some Moral and Technical Consequences
of Automation’ Science, vol. 131, no. 3410, American Association
for the Advancement of Science, 1960, pp. 1355–58, Available here
https://nissenbaum.tech.cornell.edu/papers/Wiener.pdf

[Wikipedia] Bogosort: https://en.wikipedia.org/wiki/Bogosort

[XKCD] ‘Automation’, available at https://xkcd.com/1319/
February 2022 | Overload | 3

https://adventofcode.com/
https://accu.org/journals/cvu/33/6/buontempo/
https://wiki.c2.com/?RocketScientist
http://wiki.c2.com/?MultiplyAndSurrender
https://www.tocinstitute.org/theory-of-constraints.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.lesswrong.com/tag/paperclip-maximizer
https://www.dangermouse.net/esoteric/
https://www.rigb.org/christmas-lectures/2021-going-viral-how-covid-changed-science-forever
https://www.bbc.co.uk/programmes/m001216k/episodes/player
https://www.bbc.co.uk/programmes/m001216k/episodes/player
https://www.lesswrong.com/posts/dBMC63hjkc5wPqTC7/human-ai-collaboration
https://www.lesswrong.com/posts/dBMC63hjkc5wPqTC7/human-ai-collaboration
https://realpython.com/gradient-descent-algorithm-python/
https://nissenbaum.tech.cornell.edu/papers/Wiener.pdf
https://en.wikipedia.org/wiki/Bogosort
https://xkcd.com/1319/
https://www.mipmip.org/tidbits/pasa.pdf
https://www.mipmip.org/tidbits/pasa.pdf

FEATURE LUCIAN RADU TEODORESCU
Revisiting Data-Oriented Design
Modifiable and testable software makes life
easier. Lucian Radu Teodorescu explores
how Data-oriented Design can help here.
f one made a list of the top of the most outstanding C++ talks in the last
10 years, Mike Acton’s talk ‘Data-Oriented Design and C++’ [Acton14]
would probably rank very high on it. A relatively recent tweet chain

started by Victor Ciura [Ciura21] is just a small confirmation of this. The
talk covers the fundamental principles for building software, and shows
with multiple examples how to get 10x improvements in performance. For
a C++ programmer, such an improvement is close to the holy grail.

The common belief these days is that Data-Oriented Design (for short,
DOD) is an approach that focuses on program optimisation, an approach
brought into the light by Mike Acton.

This article aims at revisiting Acton’s main ideas on Data-Oriented Design
and seeing its general applicability for software systems that don’t have
hard performance constraints. That is, ignoring performance, we are going
to focus on the design part of Data-Oriented Design.

A recap of Acton’s Data-Oriented Design
If you haven’t watched Mike Acton’s presentation [Acton14], it’s best for
you to pause reading this article and watch the recording first. The text is
waiting patiently.

The ‘Data-Oriented Design and C++’ talk can be divided into four parts.
In the first part, Mike describes the constraints that the game industry
typically faces, giving a context and a justification for some problems
exposed in the talk. In the second part, the talk focuses on the principles
of Data-Oriented Design, rules of thumb and a few myths in Software
Engineering – this is, more or less, the theoretical framework of Data-
Oriented Design. He then goes to give examples from the game industry
on how performance can be improved by using DOD; improvements of
10x can be seen by making some relatively simple transformations, having
data usage in mind – this is probably regarded as the most powerful part
of the presentation. At the end, the talk comes back to reinforce some
principles by drawing some conclusions from the presented examples.

Principles and rules of thumb
We will list here the principles and the rules of thumb that Acton exposed
in his CppCon 2014 talk [Acton14], in the second part of the presentation.
We will separate out the principles from the rules of thumb, and we will
number them so that we can refer to them.

[DOD-P1] The purpose of all programs, and all parts of those
programs, is to transform data from one form to another.

[DOD-P2] If you don’t understand the data, you don’t understand
the problem.

[DOD-P3] Conversely, understand the problem by understanding
the data.

[DOD-P4] Different problems require different solutions.

[DOD-P5] If you have different data, you have a different problem.

[DOD-P6] If you don’t understand the cost of solving the problem,
you don’t understand the problem.

[DOD-P7] If you don’t understand the hardware, you can’t reason
about the cost of solving the problem.

[DOD-P8] Everything is a data problem. Including usability,
maintenance, debug-ability, etc. Everything.

[DOD-P9] Solving problems you probably don’t have creates more
problems you definitely do.

[DOD-P10] Latency and throughput are only the same in sequential
systems.

[DOD-ROT1] Rule of thumb: Where there is one, there are many.
Try looking on the time axis.

[DOD-ROT2] Rule of thumb: The more context you have, the better
you can make the solution. Don’t throw away data you need.

[DOD-ROT3] Rule of thumb: NUMA extends to I/O and pre-built
data all the way back through time to original source creation.

[DOD-P11] Software does not run in a magic fairy aether powered
by the fevered dreams of CS PhDs.

These are old principles, but they are even more important these days with
the uneven growth of performance for different hardware parts and the
ever-increasing demanding needs of the industry.

The three big lies in the software industry
According to Acton, in the software industry we have three big lies that
made us move away from these principles:

 Software is a platform. He argues, obviously, that the end hardware
is the actual platform. Those who believe that software can be the
platform are just ignoring the reality.

 Code designed around model of the world. Here the argument is a
bit more complicated; it involves the confusion between the needs
for data maintainability and an understanding of the properties of the
data, and also the confusion about what IS-A means in the real world
and what it means in software. That is, what can be easily done in
the real world cannot be simply translated to software. In a previous
Overload article, I also argued that IS-A is far too confusing to be
used as a basis for software construction [Teodorescu20].

 Code is more important than data. The reasoning against this fallacy
starts with [DOD-P1]. If the purpose of any code is to transform
data, then data must be more important than code.

An analysis of the DOD principles
While the actual phrasing for some principles may create confusion and
may lead to false interpretation, we believe that these are generally true.
One reason for accepting them so quickly is because they echo what
Brooks had to say in a section called ‘Representation Is the Essence of
Programming’ from his The Mythical Man-Month book [Brooks95]:

Much more often, strategic breakthrough will come from redoing the
representation of the data or tables. This is where the heart of a

I

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro
4 | Overload | February 2022

FEATURELUCIAN RADU TEODORESCU

the final problem that we need to solve
is typically much bigger than our focus
program lies. Show me your flowcharts and conceal your tables, and
I shall continue to be mystified. Show me your tables, and I won't
usually need your flowcharts; they'll be obvious. […] Representation
is the essence of programming.

Having Brooks backing it up gives DOD a considerable boost in
confidence.

We said that the aim of this article is to not-focus on performance, so let’s
split up Acton’s principles and rules of thumb into two categories:

 general software design principles: [DOD-P1] to [DOD-P5], [DOD-
P8], [DOD-P9], [DOD-ROT2], and [DOD-ROT3]

 performance-related principles: [DOD-P6], [DOD-P7], [DOD-
P10], [DOD-ROT1], and [DOD-P11]

We will entirely ignore the performance-related principles.

The first principle is probably the most important one. It echoes what
Brooks also said, and puts the data and data transformation in the centre
of all our programming activities. This is obviously true. The important
part to notice is that this applies not to the whole program, but also to
program parts. That is, regardless of what size a unit of code is, its purpose
is to transform data. This applies from small code snippets, functions, and
program components to entire programs. This is an important fact, which
we will explore in more detail later. Please also note that it’s hard to fit
classes on the same bill; it’s hard to say that the purpose of classes is to
transform data – we will cover this later, too.

The principles [DOD-P2]-[DOD-P5] are somehow expressing the same
idea: a software problem is a data transformation problem, and the solution
needs to be closely related to the data. This can be viewed as a direct
consequence of the first principle.

Principle [DOD-P8] extends the data-centric view from just programming
to related activities: maintenance, debugging, and even usability. Properly
justifying this principle is a more complex endeavour, so we will skip it.
What is interesting here is the idea that we often need to look at a larger
context when designing a solution. It’s the same idea that is expressed in
[DOD-ROT2] and [DOD-ROT3]. And this perfectly aligns with a quote
from Eliel Saarinen that Kevlin Henney often brings up in his talks:

Always design a thing by considering it in its next larger context

In Software Engineering, we frequently focus on a narrow part of the
universe and try to solve that part. But that is just part of the problem; the
final problem that we need to solve is typically much bigger than our focus.
Acton also reminds us that we often have additional duties, not just the
coding part. [DOD-ROT3] is especially intriguing as it makes us think
outside the box. For example, some problems are better solved at compile-
time, and not at run-time; this is also appropriate not just for performance,
but for modifiability, testability, and other concerns that we might have.

Finally, [DOD-P9] is a truism, but something that we software engineers
probably need to hear more often. For some strange reason, we tend to
create problems for ourselves out of thin air, as if the problems that we
already have are not enough.

To summarise, these principles state that data and data transformation are
at the heart of software engineering, and that we should also be aware of
the context of this data to fully meet our goals. We argued that all of these
make a lot of sense as general principles for Software Engineering, not just
for performance-focused development.

Building software with Data-Oriented Design
The name Data-Oriented Design indicates that we can use this approach
to design applications. We try to use these data-centric principles, together
with the modular decomposition, to sketch a process of designing an
application. We will attempt a hierarchical decomposition of the problem,
so we will apply the same techniques at multiple levels.

For our purposes, we assume that the process follows somehow an ideal
(waterfall) model: we work on a level of abstraction, we fully perform our
duties there, and we never invalidate our assumptions. This rarely happens
in practice, but let us simplify the exposition here.

Let us take an artificial problem as our running example. Let’s assume that
we are building a web service that can be used to do image processing.
Some descriptions here are a bit fuzzy on the actual problem to be solved;
in real-life, the engineer should fully understand the problem before
attempting to solve it.

Top level
We start by considering the problem as a whole. Based on [DOD-P3], we
need to understand all the data around this web service to understand the
problem to solve. We must understand the inputs of the service (e.g.,
images from users, images from a database, data models, commands for
processing the images, the parameters for image processing, etc.) but also
the data produced by the system (e.g., other images, description of the
image properties, etc.) – this is typically called the API of the service. But
this is not all the data that needs to be transformed by the service. The
service also has interactions with the cloud platform, with the DevOps
team, with other nodes in the cloud, etc. For example, logging and
monitoring are two important aspects of any web service. Moreover,
adjacent concerns like how often the system will be restarted, what is the
usage scenario, what are the peak hours/seasons, etc., contribute to the data
exchange that the program needs to properly manage. And, even if
performance is not a major concern, interaction with the actual physical
hardware also needs to be considered (for example, for data reliability
concerns, which can dramatically change the architecture of the solution).

These may seem a lot of concerns to be taken care of, but, they all deserve
our attention. Applying proper engineering to the problem requires us to
consider these aspects.

So far, we have just considered the data that our software needs to interact
with. But that’s not everything that we need to consider at this level. We
need to look now at the next larger context to understand more about the
problem at hand (see [DOD-P8]). We need to look at whether the system
will be used by humans or other services, what the long-term plan is for
the customer paying for this service, what are other services used by the
same customer, what are the forces acting on the customer, etc. These all
February 2022 | Overload | 5

FEATURE LUCIAN RADU TEODORESCU

There are multiple approaches to breaking down
a system into sub-systems. It is generally
accepted that good decompositions will
minimise coupling between the smaller parts.
can influence how the customer demands new features or bug-fixes for the
new service. Based on these, we can make decisions on how the application
needs to be structured, and, more important for our discussion, what
additional data we need to maintain to keep the system operational.

Only when we have all this information, when we know what data needs
to be transformed by our system, what additional data we need to support,
and how our service interacts with the platform, do we can fully understand
the problem that we are trying to solve.

Breaking down into modules
After we fully understand the problem that we need to solve, i.e., we fully
understand the data (see [DOD-P2]) we are ready to decompose the
problem into smaller parts, i.e., modules. In this context, the term module
may refer to larger application modules (e.g., libraries) or smaller parts of
the application (e.g., translation units, functions)

There are multiple approaches to breaking down a system into sub-
systems. It is generally accepted that good decompositions will minimise
coupling between the smaller parts. Again, depending on your perspective,
there are various approaches to ensure low coupling (by change rate, by
functional role, by organisational structure, etc.). But we can also use Data-
Oriented Design to offer us guidelines on how to perform the decoupling:

 group together data that is used together

 separate data that is not used together

The usage of the data gives us boundaries for our modules. If there are two
completely independent data flows, then it probably makes sense that those
two flows be in separate modules.

Passing data across modules is more expensive (modifiability, and
typically performance) than passing data inside the same module. Thus,
one can find the module boundary at the points in which data is stable
enough to form an API. This is one important aspect to take into
consideration when decomposing the problem.

Another significant aspect of performing a Data-Oriented decomposition
is, following [DOD-P1], making sure that the submodule is a proper
abstraction for transforming data. One should be able to think of the new
submodule as a large function (not necessarily pure) that takes some input
data and produces some output data.

With these in mind, we can identify the requirements for creating a module:

 properly identify the input data for the module

 the input data needs to be stable enough to act as the module API

 properly identify the output data for the module

 the output data needs to be stable enough to act as the module API

 analyse the next larger context to properly know the constraints that
are imposed on the new module

 ensure that the module can be easily thought of as a large function
that transforms input data into output data

Consider the system depicted in Figure 1. Traditionally, one would
decompose the system by considering the nodes; the fewer arrows a node
has, the less coupled the node is. In a Data-Oriented approach, we should
view the links as the main elements.

The system depicted in Figure 1 can probably be decomposed into two
parts: one that contains nodes N1-N7, and one that contains the nodes N8-
N11. Looking at the data flow, one can easily see how the two modules
would be assimilated as two large functions.

But maybe the data link d10 is not the most stable data channel. It may
frequently change with d11 and be very coupled to it. In this case, perhaps
it makes more sense to put n7 into the second module, and have the second
module depend on two data inputs.

Ideally, each module would have only one data stream as input, but there
are countless cases in which multiple input data streams are required. This
is especially applicable to modules that maintain state, and interact with
other modules in multiple ways.

We might find oftentimes that a data-centric decomposition leads to the
same results as a functional decomposition. However, the focus is on the
data, not on the code that just transforms the data.

In our imaginary application, we might decide to have a high-level module
that deals with HTTP handling, and one module for each type of request
handled by the service. These high-level modules can then be subdivided
even further into smaller modules, until the decomposition makes sense.
This follows because the data required for processing a request type is
typically independent of the data required for processing another request
type. All the modules created for handing different requests will interact

N1

N2

N3

N4 N5

N6

N7 N8

N9

N10

N11

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14

d15

Figure 1
6 | Overload | February 2022

FEATURELUCIAN RADU TEODORESCU

If the purpose of the code is to transform data,
then it makes sense to make explicit the data

we are transforming by making global data
either an input or an output of the function
with the module for HTTP handling, but the data passed between these
modules is relatively stable.

And, speaking of HTTP services, maybe it’s worth emphasising one
important aspects of APIs. From a modifiability perspective, it’s much
better to have an API based on HTTP and standard conventions rather than
a TCP-based user-defined protocol. The HTTP-based API tends to be more
stable, while the TCP-based one may require many changes. Choosing an
API based on stability is a consequence of using a data-centric approach.

On reusable libraries
One question that arises is whether Data-Oriented Design encourages or
accepts reusable libraries.

The simplistic answer would be NO. A reusable library tends to focus on
the code, and abstracts the problem away. In general, different problems
require different data; different data means that it’s hard to find a stable
API for reusable code libraries. For example, an image can be represented
in countless ways; over-generalising a library to process all possible types
of image types is an effort that is not needed for most of the applications.

On the other hand, one can easily imagine that the same data structures and
same algorithms appear in multiple places in the same application. Maybe
the application supports only a limited set of image formats, and this needs
to be supported for all the operations our service provides. Or perhaps the
linear algebra to be used in the application can be easily abstracted out.

I want to avoid putting words in Acton’s mouth, but I believe that a
pragmatic approach to Data-Oriented Design would accept a limited set
of reusable libraries. As long as we don’t try to build reusable libraries out
of everything; i.e., avoid creating problems that we don’t have.

Use of classes
When we were analysing the DOD principles, we said that classes are a
bit odd with respect to these principles. We agreed that the purpose of all
code is to transform data, but, if viewed as code, classes don’t typically
transform data. Let us analyse a bit more the meaning of this.

When we say classes, in a language like C++ (or C#, or Java, or any
language that supports OOP), we typically mean three things:

 a definition of the data layout in memory

 behaviour associated with the data stored in the class

 encapsulating the data of the class through behaviour

The data-layout part of the class is well aligned with DOD. After all, Data-
Oriented Design deeply cares about how the data is arranged when solving
problems. The problem comes from the other two properties of the class.

First, and more importantly, encapsulating the data inside the class means
hiding the data. This is completely against Data-Oriented Design. We
cannot have data-orientation when we make extra effort to hide the data.
In the spirit of [DOD-P9], we are just creating problems for ourselves,
without any real benefit.

Associating behaviour with data is also a bit awkward. This is because we
move the focus from the data to the code near the data. We are privileging

code inside the class to the detriment of code outside the class. All code
should be equal, and inferior to data.

In an ideal world, code should be put in pure functions; impure functions
are to be avoided, if possible. If the purpose of the code is to transform
data, then it makes sense to make explicit the data we are transforming by
making global data either an input or an output of the function.

Pure functions are not quite compatible with class methods, so this is
another indication that we should not pack together code with data.

Instead of using classes for representing data, we should use plain
structures.

As odd as it sounds, functional languages are more suited to Data-Oriented
design than Object-Oriented languages, if we entirely ignore the
performance aspect.

Completeness
Unlike other methods, applying Data-Oriented Design doesn’t need to be
complete. One can design various parts with a DOD mindset, while leaving
other parts to use a code-centric approach (for whatever reason).

Similarly, one can refactor legacy systems and introduce DOD in parts
where the system most benefits from it. One can hope to improve
performance, or maybe maintainability and debug-ability, and can apply
DOD just to those parts of the system.

As long as developers don’t switch too often between DOD and non-DOD
code, creating a lot of confusion, it’s fine to have both approaches in the
same system.

Therefore, if the ideas presented here are appealing, the reader might
consider a gradual deployment of DOD practices in their codebase.

Modifiability
Software is not as hard as a rock. This is why it’s called soft. Typically,
software is as fluid as a river is, so perhaps fluidware is a better term.

So, how would Data-Oriented Design fare regarding modifiability? Let’s
look first at the costs of change. Here we have both good news and bad
news.

The bad news is that certain parts of the code might change more often if
DOD is strictly applied, and especially when performance is a major
concern. Let us take an example from Acton’s presentation. One technique
the author uses to improve the performance and “make the code more data-
oriented” is to pull out conditions from loops and from functions with a
remark that sounds like “if one has a boolean flag then one probably has
multiple types of objects; one should create different data structures and
different execution paths”. That is, each time one feels like adding a
boolean flag, one should probably reimplement a whole chain of
processing. That sounds a bit expensive in terms of programming time.

To generalise this, if the data changes, the problem changes, and we
have to write new code. This is the true implication of [DOD-P4] and
[DOD-P5].
February 2022 | Overload | 7

FEATURE LUCIAN RADU TEODORESCU
But, if we turn this around, this is also good news: if the data doesn’t
change, then the code we might want to change is minimal. There is
probably a bug in one small data transformation. As the data doesn’t
change, the flow cannot change; if the flow doesn’t change, then probably
the bug is in one small part of the flow. And the change required is pretty
small, as there isn’t much we can do to change the code without changing
the data.

I view this as a trade-off in modifiability: the more data-oriented a system
becomes, the harder it is to make a change when the data needs to change;
the less data-oriented a system is, the more difficult it is to make a change
when data remains the same.

Let us briefly cover debug-ability as part of modifiability.

A typical data-oriented application is harder to debug with breakpoint, as
we need to look at larger volumes of data, and how the data changes over
time. Any data-oriented program must have easy ways to extract data out
of the system. One cannot properly apply DOD to a system in which it is
hard to get data out once the code is running. One quick-and-dirty
technique is to dump data to a file.

Once one extracts the data from the system, then, as the system is data-
oriented, one can make many predictions for the running application. It
should be relatively easy to figure out where the problem lies; the data tells
it all.

Probably one shortcoming of this is that the developer must not be afraid
of looking at potentially large volumes of data. Personally, I don’t see this
as a problem, but I know people who are not comfortable with this
approach.

Testability
Being able to test the code written is almost as important as writing the
main application code itself. So, Data-Oriented Design needs to behave
well regarding testability if we were to consider it a viable technique.

First, the data-oriented code will be driven by data. There are no other
code-dependencies. Thus, one can easily create tests that provide some
input data and check whether that data is correctly transformed. I would
argue that regular DOD code is more testable than regular OOP code.

Furthermore, as discussed above, the ideal DOD code would consist of
pure functions. This makes it much easier to test compared to traditional
OOP systems, in which the global and shared state is always a problem.

However, it’s not just unit tests that benefit from DOD approaches.
Integration tests also become easier to write. We argued that a module, at
any level, can be thought of as one big function with some inputs and
outputs. That is, it doesn’t matter what size of module we are testing: the
strategy applied to unit-tests can be applied to integration tests as well. The
only inconvenience of having integration tests rather than unit tests is that
the pairs of inputs and outputs become far more complex. However, this
has to do with the inherent complexity of integration testing, not the
method used to write our code.

As with modifiability, the main downside is that, whenever data changes
in the code, a lot of the tests need to be updated too. The effort of updating
the tests should be proportional to the effort of changing the code.

A refactoring story
I feel that this is the right time to share a personal example that is connected
(at least partially) with Data-Oriented Design. A couple of years back, as
an architect, I was tasked to help a (newly formed) team refactor a legacy
module. The code was so bad that the team supporting it refused to fix bugs
when they were shown the root cause by saying: “if I touch this part of the
code, everything will break”. The module contained more than 600 files
generated by a huge state machine; the state machine was so complex that
saying it was over-engineered seems like a compliment. One of the most
important classes in the module contained about 70 pure virtual functions,
and it was derived in strange and unexpected ways. On top of that, the
threading was a complete mess.

After an initial assessment of all the problems of the module and the
strategies that could be used to simplify it, I sat with the team to make a
concrete plan for improving it.

The first thing we did was to define what data is being processed by the
module. We analysed the data that must be stored by the module (it was a
module that had responsibility for keeping some system state). Then we
analysed how other modules would interact with this module, in terms of
needed data. To our surprise, we found out that the data required by the
module was much smaller than we initially thought.

That was the most important step of our effort. Once the data was clear to
all of us, we were able to quickly identify the boundaries in which we
operate. Without looking at the detail, we knew how the system could be
dramatically improved – we knew all the possible ways in which the data
could be transformed.

Of course, the new data structures were much better than the old ones. The
crazy state machine, with all the generated code and the glue code, was
reduced to something that was less than 3000 lines of code. The threading
was fixed by using tasks and a clever thread-safe copy-on-write technique.
In the end, the whole effort was a great success.

For this effort, we didn’t fully utilise Data-Oriented Design techniques.
And certainly, performance was not a major concern. However, the upfront
discussion on the data structures was the biggest step forward in the entire
process. It was at that time that I realised that Data-Oriented Design should
be more about design than about performance.

Conclusions
If Mike Acton had named his approach Data-Oriented Optimisation1, then
I would probably have quickly dismissed it as something that is important
in certain domains, and that maybe it doesn’t have universal applicability.
But the approach contains the term design in its name. And design has a
more universal meaning in Software Engineering. Most of what we do is
design. So, an analysis of the method focusing on the design part and
ignoring the performance part was necessary.

In this article, we have analysed the principles of Data-Oriented Design.
While they are a bit verbose, they do make sense – they echo well-accepted
principles in our field. Thus, if the principles hold, then it follows that we
should use DOD approaches more frequently.

We then went on to analyse the implications of using DOD to design
complex applications. We found out that, even though the implications are
different from what we are typically accustomed to in OOP, DOD can be
used successfully. Assuming that the data doesn’t change often, DOD can
provide better modifiability, and, in general, it provides better testability.

All these make Data-Oriented Design a set of practices that should be used
more often in Software Engineering. Maybe we don’t get 10x
improvement in performance, modifiability and testability. However,
considering the state of our industry, any visible improvement is highly
welcomed.

References
[Acton14] Mike Acton, ‘Data-Oriented Design and C++’, CppCon 2014,

https://www.youtube.com/watch?v=rX0ItVEVjHc

[Brooks95] Frederick P. Brooks Jr., The Mythical Man-Month
(anniversary ed.)., Addison-Wesley Longman Publishing, 1995

[Ciura21] Victor Ciura, ‘Unpopular opinion (in the C++ community)…’,
Twitter, https://twitter.com/ciura_victor/status/
1463280526647865353?s=21

[Teodorescu20] Lucian Radu Teodorescu, ‘Deconstructing Inheritance’,
Overload 156, April 2020, https://accu.org/journals/overload/28/
156/overload156.pdf

1. Come to think of it, DOO doesn’t sound that bad. And it forms a nice
opposition to OOP. One is data-first, the other one focuses on
programming, i.e., on code.
8 | Overload | February 2022

https://accu.org/journals/overload/28/156/overload156.pdf
https://accu.org/journals/overload/28/156/overload156.pdf
https://twitter.com/ciura_victor/status/1463280526647865353?s=21
https://twitter.com/ciura_victor/status/1463280526647865353?s=21
https://www.youtube.com/watch?v=rX0ItVEVjHc

FEATURERALPH MCARDELL
An Associative Container for
Non-bash Shell Scripts
Basic shell facilities don’t provide associative containers.
Ralph McArdell shows you what to do if you need one.
ave you ever found yourself stuck with having to write a *nix/ *nux
shell script that cannot assume that Bash and system core utilites
having GNU extensions are available and so specify the shell

processor simply to be /bin/sh and then found you could really use some
sort of container to store multiple values?

This happened to me a while ago and I thought I would attempt to create
an associative container abstraction that could be used with only basic
shell facilities.

Basic selection
Having decided to use ‘only basic shell facilities’, and not being a shell
scripting guru, the next question was just what are ‘basic shell facilities’?
What facilities are available for sh? In fact what shell is used when we
use /bin/sh? It seems that these days /bin/sh may simply link to some
other shell program such as Dash.

A little research lead me to the Open Group’s [OpenGroup] page on the
POSIX (IEEE Std 1003.1-2017) ‘Shell Command Language’ [ShellLang].
It seemed that trying to use only the shell language facilities as described
on this page would be the most portable solution, assuming as few facilities
would be available as possible.

Not quite basic
After reading through the specification of the Shell Command Language,
it became apparent that one feature that I would really like to use was
not available as standard. The local utility used to declare variables
local to a function call is not required to be implemented but is sort-of
reserved in that the results of using local has unspecified results. It
seems local variables within a function were considered but rejected,
though the identifier local was reserved just in case local function
variables make it into a future version of the POSIX standard
[ShellLangRationale].

I decided that I would use local – at least until it proved a problem,
whereby most uses could probably be replaced with careful use of
global variables. The exception would be cases where recursion was
required. However, I would assume local variables were only in scope
in the call of the declaring function, and not in functions called from
the declaring function call – similar to most other languages’ local
variable scoping rules.

The requirements
In the end it turned out that in addition to local, some basic use of core
utilities were required. The full requirements to use the associative
container shell script library are:

 the POSIX Shell Command Language, as described at [ShellLang]

 the local utility

 echo -n (the use of -n is not strictly portable)

 basic use of the tr character transform utility

 basic use of the sed stream editor utility to perform global
subsitutions.

What’s in the box?
Having decided on a super-set of the standard POSIX Shell Command
Language to use, the next thing was to look at the available facilities and
work out how they could be used. Some of the facilities (or lack of) that
are of note are mentioned below.

First off, flow control contructs – if, elif, else, case, while, until,
for – are supported, as are user-defined functions. However, returning
values from a direct function call (one that does not start a sub-command
shell in a separate process) is limited to the numeric exit status – although
the Boolean-like true and false can be used for predicate functions that
can be called and tested in flow control constructs such as if or while.
This is because true and false are built-in utilities that return with an
exit code of 0 (success) or a non-zero value (failure) respectively.

To return a copy of an expression, as is more familiar, a user-defined
function can be called using Command Substitution, which executes the
function in a separate, presumably forked, sub-shell process. The output
to stdout from a Command Substitution call is captured and effectively
become the function call’s return value. Note that Command Substitution
is also commonly used to capture the output of commands into variables.
However, creating and destroying the sub-shell around the function call is
expensive.

Variables store string values. Sometimes these can be interpreted as
numbers. There are some limited operations that can be performed on a
variable’s string value:

 Various error or default/alternative value substitution actions
around values being null, set and not null or unset.

 Character length of the string value of a variable.

 Removal of a pattern matching the smallest or largest prefix or
suffix of the variable’s value from the variable’s value.

Notably, as far as I could see, there is no facility to more directly reference
variable values’ characters or substrings other than the prefix/suffix
pattern match removal operations.

Arithmetic can be performed on numeric values using Arithmetic
Expansion.

Facilities often used on the command line such as redirection (>, <, etc.),
pipelines (|), and-or lists (&&, ||) , asynchronous execution (&) and so on
are supported.

H

Ralph McArdell Ralph started programming around 1980 in the
6th form in BASIC on a teletype over a 110bps dialup modem.
Since the mid 1990s he has been a freelance developer using a
variety of systems and programming languages, with an emphasis
on C++. He has been an ACCU member since the turn of the
millenium and helps organise ACCU London meetings. You can
contact him at ralphmcardell@gmail.com
February 2022 | Overload | 9

FEATURE RALPH MCARDELL

with no true random access
operations into a string, the format of a
dict was going to have to be sequential
There is a set of special variables. Of particularly interest are $@ and $#
for the list of parameters passed to the script from the command line or to
a function call and the number of such parameters, along with the set,
unset and shift built-in utilities that allow control and processing of
script and function call parameter lists.

Script source files can be included in other script source files using the dot
(.) built-in utility. The bash style source synonym for dot is not
supported.

The shape of code to come
By now, I had an idea of the general shape of the project. The first order
of business would be to decide on a name and use it, or a form of it, as the
basis for file names and, given the lack of namespaces, as a prefix to
function names and the like.

The implementation code would be contained in a shell script file intended
for inclusion using ., the dot built-in utility, in client scripts. Such included
files do not need to be executable themselves. Sometime later I found out
that there is a convention that such included shell script library files should
have a .sh suffix.

The public, client, API would consist of a set of functions, most of which
would return string values. To make the use of these functions more
familair they would be designed to be called using Command Substitution.

Any private internal implementation details – helper functions, global
variables and the like – would have uglified names involving prefixed and
suffixed double underscores.

Given that values are strings, the associative container instances would
have to be represented as a string. Instance creation operations would have
to return the string-instance value. Operations that do not modify an
instance would take an instance as the first parameter to its implementation
function. Operations that modify an instance would both take an intance
as the first parameter and return the modified instance. Note that all
parameter passing and value returning is effectively by value, so lots of
potential copying.

What’s in a name
The first point of action was to decide a name from which the script library
file name and library script identifier names can be derived.

The name I chose, following in the footsteps of Python, was dict.

The library file name was also originally just dict but later was changed
to dict.sh, following the discovery of the previously mentioned
convention.

What’s a dict to do?
Obviously dict instances would be of a dictionary type – also known as
maps. These are associative containers whose entries are key:value value
pairs that allow values to be looked up by their associated key. They can
be ordered or unordered.

Given the limited options available with the facilities of the POSIX Shell
Command Language, I decided it would be much simpler to opt for dicts
being unordered.

The basic operations required would be:

 Create dict instances.

 Add and update entries in a dict.

 Lookup and return a value in a dict given its associated key.

 Remove an entry from a dict given the associated key.

Some additional operations also proved useful:

 A function to return the size of the dict, being the number of entries.

 A predicate to check whether some value, which of course is a
string, appears to be a string formatted as a dict.

 A for-each operation that calls a function for each entry in a dict.

 A customisable pretty-print function to pretty print a dict in a user-
controlled fashion.

 To aid debugging a function to print a dict string with special
unprintable characters translated to printable characters.

One capability that needed to be added explicitly is the ability to nest one
dict as a value of another, preferrably to an arbitrary depth.

The dict data format
As the only data type to play with is the string and with no true random
access operations into a string, the format of a dict was going to have to
be sequential, with an appearence of random access only – think tape
access rather than disk. This sort of thinking lead to vague memories of
some of the lesser used control codes in the ASCII (and thereby the
Unicode®) character set. The ones of interest here are the separator
control codes. Checking a convenient ASCII table source [AsciiTable] we
see these are:

 FS (value hex 1C) – File Separator

 GS (value hex 1D) – Group Separator

 RS (value hex 1E) – Record Separator

 US (value hex 1F) – Unit Separator

On the one hand, using these values to separate parts of a dict instance
means keys and values cannot contain them. On the other hand, for the
intended use cases this should not be much of a problem. Where it would
be an issue would be keys or values being binary data but this is not a
primary use case. If storing binary data in a dict is required then the data
can be encoded, for example with base64 encoding.

The current layout of a dict in Extended Backus Naur Form [EBNF] is as
shown in Figure 1, overleaf.

There are several things to note about the layout. The first is that a dict
instance has two main parts: the header followed by zero or more entries.

The header consists of an initial dict identifier ‘chunk’ consisting of the
four characters 'DiCt' surrounded by an ASCII Group Separator character
10 | Overload | February 2022

FEATURERALPH MCARDELL

the characters that could cause confusion are
substituted for different sequences on entry with the

reverse substitutions being applied on value extraction
on each side. This is followed by metadata fields for the version of the dict
structure (currently '1.1.0') and the size of the dict being the number of
entries, which starts at zero (an empty dict) and is updated as entries are
added and removed. Note that each field is followed by an ASCII Unit
Separator character, both in the header metadata record and within entries.
The end of the metadata record is signified by an ASCII Record Separator
character.

The following entries section consists of key:value pair entry records. As
with the metadata record each key and each value is followed by an ASCII
Unit Separator character, and each entry record is terminated with an
ASCII Record Separator character.

Keys can be any string of characters except those used as separators –
currently the ASCII GS, RS and US characters are used, but the FS – File
Separator character might have a use in a later update, so I suggest it is
best to not use any of the four ASCII separator characters.

The same restrictions apply to entry values, except that a dict can be nested
as a value of another dict. In these cases the characters that could cause

confusion are substituted for different sequences on entry with the reverse
substitutions being applied on value extraction.

The dict API functions
The current set of dict API functions are:

 dict_declare to create a dict and optionally populate it with one
or more initial entries.

 dict_set to add or update one or more entries to a dict.

 dict_get to return from a dict the value associated with the
provided key, or an empty string if not found.

 dict_remove to remove an entry from a dict given its key.

 dict_size to return the number of entries as stored in a dict’s
metadata record’s size field.

 dict_is_dict – a predicate function – to check if a value is a dict.

 dict_for_each to iterate over the entries of a dict calling a
function for each entry passing it the entry’s key, value, one based
computed record index and any extra parameters passsed to
dict_for_each.

 dict_count returns the count of the number of records which
should be the same as the value returned by dict_size. It uses
dict_for_each and its computed record index to iteratively
count the number of entries. The main use of dict_count is for
testing.

 dict_pretty_print prints the entries of a dict according to a
caller provided format – itself specified by a dict. Uses
dict_for_each to recursively iterate over entries and nested dict
entry values. This is a case where local variables are really required.

 dict_print_raw to print the raw dict string with the unprintable
separator characters translated to others. Mainly useful for
debugging.

In addition there are simple versions of functions that insert or extract
values: dict_declare_simple , dict_set_simple and
dict_get_simple. These function act as their non-simple versions
except that passing dicts as values is not supported. They assume entry
values inserted or extracted are not dict strings and thus elide the checks
and special handling required for dict values.

Finally there is a function that is intended to be used with
dict_for_each, dict_op_to_var_flat, that creates a variable for
each entry in the dict based on the entry’s key name. The ‘flat’ part of the
name is intended to indicate that the function does not recurse down into
nested dict values.

Slice and splice
There are some basic private internal constants and operations to aid in
building and updating dict strings. For example the initial empty dict is a
fixed string as the only variable part is the size metadata field value and
initially this is always 0.

Figure 1

 dict = header, { entry };
 header = dict-type, entry-separator,
 version, field-separator,
 size, entry-separator;
 entry = key, field-separator, value,
 entry-separator;
 dict-type = GS, "D", "i" "C", "t", GS;
 version = digits, ".", digits, ".",
 digits;
 size = digits;
 key = string;
 value = string | prepared-dict;
 entry-separator = field-separator,
 record-separator;
 field-separator = US;
record-separator = RS;
 prepared-dict = ? a dict instance that has had
 its special separator
 characters substituted so it
 can be safely used as a
 nested dict value
 ?;
 string = character, { character };
 character = ? any valid character except
 ASCII FS, GS, RS, US ?;
 digits = digit, { digit };
 digit = "0" | "1" | "2" | "3" | "4" |
 "5" | "6" | "7" | "8" | "9" ;
 GS = "\0x1D";
 RS = "\0x1E";
 US = "\0x1F";
February 2022 | Overload | 11

FEATURE RALPH MCARDELL
Some small functions help out with chores, such as ensuring keys are
followed by the US field separator character and building an entry string
by combining such a decorated key with a value and the US RS entry
separator character sequence.

Locating entries is more interesting. The value associated with a key is
required as the result. First the header is stripped from the dict
(remember parameters are passed by value so in fact the header is
stripped from a copy of the dict) by using the remove-smallest-prefix
operation ${dict#hdr-pattern}, where hdr-pattern is the fixed
part of the header including the entry-separator with the size field
value wildcarded.

Next the rest of the dict string up to and including the required key field
is removed using the remove-smallest-prefix operation again, this time
with a pattern specifying all characters up to the preceding entry-
separator and the decorated key value. This leaves the start of the dict
substring copy with the value associated with the key followed by all the
subsequent entries. Finally, all these subsequent entries that follow the
value are removed using the remove-largest-suffix operation
${value_plus%%pattern} with a pattern specifying the entry-
separator and all following characters, leaving just the value.

If removing the dict portion up to the required value did not remove
anything then there was no pattern match meaning the key was not found
in the dict. In this case an empty string is returned.

Add or update is similar except in this case if a key is found the prefix and
suffix parts of the sliced up dict around the associated value are kept and
the new value spliced in between them, the old value being discarded. In
the case a key is not found a new entry is created and appended to the end
of the dict.

Entry removal again consists of breaking the existing dict into parts and
splicing parts back together. In this case the parts spliced together to form
the result are a prefix part up to the key of the entry being removed and a
suffix part from the start of the entry, if any, following the removed entry’s
entry separator sequence.

A wrinkle in the above is the updating of the size metadata field. This is
performed if required after the dict (copy) has been spliced back together
and is done by stripping the header and then appending the resulting entry
records to a newly built header with the updated size value using string
concatenation of the various substring parts.

dict_for_each first strips off the header of its passed dict copy then
repeatedly extracts the key and value of the initial entry record in the
resulting entry records and then removes the whole of the initial entry
record, until eventually there are no more entries to remove. On each
iteration, a function whose name is passed as the second parameter to
dict_for_each is called and passed the extracted key and value
values and a one-based computed record number along with any
parameters passed to dict_for_each following the second function
name parameter.

Being prepared
If the value of an entry to add or update is itself a dict then it has to be
modified before being inserted; otherwise, its entries can interfere with
operations on the outer containing dict. Likewise, if the value of an entry
located with dict_get is a modified nested dict then it has to be modified
back to its original state before the value is returned.

dict_declare and dict_set check to see if a value to add or update
is a dict and if it is it is prepared for nesting. Likewise, if a value extracted
by dict_get appears to be a prepared nested dict then it is prepared for
unnesting.

The prepare-for-nesting operation inserts an ASCII GS character before
every field-separator and record-separator – which are the
ASCII US and RS characters respectively. This prevents the matching that
occurs with the slicing and splicing of dict operations from matching any
fields or entries in the prepared for nesting dict value. For example, when
stripping away entries before the value of an associated key the pattern used
to match the smallest prefix to remove is everything (*) up to an entry-

separator followed by the decorated key, being the key followed by a
field-separator, which for a key value of "KEY" expands to:

 match = [string], US, RS, "K", "E", "Y", US;

If a nested dict value happened to also have an entry with a key value of
"KEY", and this occured before the entry being searched for, if the nested
dict entry had not been prepared this entry would be found. However, after
preparing for nesting, the entry fragments that would have matched would
have the following sequence:

 prepared-averted-match = GS, US, GS, RS, "K",
 "E", "Y", GS, US;

which fails to match both as the prepared modified entry-separator
sequence is now GS, US, GS, RS and as if that were not enough the
modified decorated key has become "K", "E", "Y", GS, US.

The prepare-for-unnesting reverses the effects of preparing for nesting. It
replaces all occurrences of GS, US with US and every occurrence of GS,
RS with RS.

These transformations work for multiple levels of nested dict values. Each
additional level of nesting causes an additonal GS character to be inserted
before each US and RS character. So if a dict has the following sequence
of characters for an entry:

 unnested-entry = "K", "E", "Y", US, "V", "A",
 "L", "U", "E", US, RS;

Then inserting the dict into another dict tranforms the entry character
sequence like so:

 nested-entry-level-1 = "K", "E", "Y", GS, US,
 "V", "A", "L", "U", "E", GS, US, GS, RS;

If the second dict is then inserted into a third, the already-prepared-for-
nesting nested dict value is modified again when the second dict is
prepared for nesting, and the entry sequence is further transformed thus:

 nested-entry-level-2 = "K", "E", "Y", GS, GS, US,
 "V", "A", "L", "U", "E", GS, GS, US, GS, GS, RS;

If the second dict nested in the third dict is looked up in the third dict then
its prepared separator sequences are transformed by the prepare-for-
unnesting operation, effectively removing one GS character before each US
and RS character, which for the initial dict, nested as a value of the second
nested dict, removes one of the two accumulated GS characters before its
US and RS characters, transforming the entry sequence from nested-
entry-level-2 back to nested-entry-level-1. If the dict nested
in the second dict copy obtained from the third dict is then looked up in
the second dict copy, its prepared separator sequences will again be
transformed by the prepare-for-unnesting operation, removing the
remaining GS characters before its US and RS characters, transforming the
entry sequence from nested-entry-level-1 back to unnested-
entry.

Unforunately, the only way I could see to perform the required
replacements for the prepare-for-nesting and prepare-for-unnesting
operations was to farm the tasks out to sed using two global substitutions
per preparation operation. This, of course, is quite a heavy weight afair.

Exemplary dict-ation
Enough of the waffle, let’s dive in an see how to use dict in practice. The
dict.sh shell script library and the examples shown are available in the
GitHub sh-utils repository [ShUtils].

So let us start with the obligatory Hello World example (Listing 1,
overleaf).

First the source of the dict shell script library is included using the dot built-
in. It is assumed that dict.sh is either on the PATH or in the same directory
as the Hello World script.

Next a dict is created using dict_declare_simple, as we are not
nesting any dict values. It can be seen that the parameters to
dict_declare_simple are values for initial entries to initialise the
new dict with. They are grouped pairwise: key1 value1 key2 value2 ... keyN
valueN. This is easy to handle in Shell Command Language thanks to the
12 | Overload | February 2022

FEATURERALPH MCARDELL
$@ and $# special parameters and the shift built-in. The returned dict
string is assigned to a variable named record.

The whole greeting is then written to the console by calling
dict_get_simple to obtain the values associated with the greeting and
who keys. The returned values are expanded directly into the echo’d
string.

The dict is then updated by calling dict_set_simple. Note the pattern
of passing the expanded record variable as the first argument and
receiving the returned dict string back into the record variable. If we
wanted to keep the original state of record then the updated dict could
be assigned to a different variable. Once again note the pairwise grouping
of entry keys and values in the parameter list.

Finally, the greeting and who values are obtained from the updated dict,
this time assigning each value to its own variable, which are then written
to the console.

Assuming the Hello World script file is called dict_hello_world, we
are in a console session and the working directory is the directory
containing dict_hello_world then executing:

 ./dict_hello_world

should produce the following results (not forgetting to ensure the script is
executable):

 Hello, World!
 Hi, Earth!

What is needed though is more colour! This can be achieved by using ANSI
terminal control sequences [AnsiTermCodes]. In the next example the
Hello World example is extended to add keys foreground and background
which have nested dict values containing keys r, g and b to store 24-bit (8
bit + 8 bit + 8 bit) RGB colour value triples which are used to set the
foreground and background colours of the output greeting text using 24-bit
colour mode ANSI terminal control escape codes. (See Listing 2.)

After including the dict.sh source as before, there is support for setting the
ANSI terminal foreground and background 24-bit colours consisting of a
bunch of constants (readonly variables) that build up the ANSI terminal
control escape codes and the set_ansi_24bit_colours_string
function that takes dicts having r, g and b keys whose values specify the
individual 8-bit components of the 24-bit colours for the foreground and
background. The set_ansi_24bit_colours_string result is
returned in the return_value global variable and is a string that will
set the requested 24-bit colours when written to a supporting ANSI
terminal such Xterm, GNOME terminal or KDE’s Konsole (as listed in the
24-bit section of [AnsiTermCodes]).

As previously, a dict is created. However, this time dict_declare must
be used as some of the initial entry values are dicts. The nested dict values
for the foreground and background entries are created by calling
dict_declare_simple as none of the nested dicts’ entries’ values are
themselves dicts.

set_ansi_24bit_colours_string is called before outputting the
complete greeting, and is passed the foreground and background RGB

Listing 1

#!/bin/sh

. dict.sh

record="$(dict_declare_simple 'greeting' 'Hello'\
 'who' 'World')"
echo "$(dict_get_simple "${record}" 'greeting'),\
 $(dict_get_simple "${record}" 'who')!"

record="$(dict_set_simple "${record}"\
 'greeting' 'Hi' 'who' 'Earth')"
greeting="$(dict_get_simple "${record}"\
 'greeting')"
who="$(dict_get_simple "${record}" 'who')"
echo "${greeting}, ${who}!"

Listing 2

#!/bin/sh
. dict.sh

readonly ASCII_ESC=$(echo '\033')
readonly ANSI_CMD_PREFIX="${ASCII_ESC}["
readonly ANSI_CMD_END="2m"
readonly ANSI_CMD_RESET="${ANSI_CMD_PREFIX}0m"
readonly \
 ANSI_CMD_FG_MULTIBIT="${ANSI_CMD_PREFIX}38"
readonly \
 ANSI_CMD_BG_MULTIBIT="${ANSI_CMD_PREFIX}48"
readonly \
 ANSI_CMD_FG_24BIT="${ANSI_CMD_FG_MULTIBIT};2"
readonly \
 ANSI_CMD_BG_24BIT="${ANSI_CMD_BG_MULTIBIT};2"

set_ansi_24bit_colours_string() {
 local fg="${1}"
 local bg="${2}"
 local r="$(dict_get_simple "${fg}" 'r')"
 local g="$(dict_get_simple "${fg}" 'g')"
 local b="$(dict_get_simple "${fg}" 'b')"
 local fg_cmd="${ANSI_CMD_FG_24BIT};${r};${g};\
${b}${ANSI_CMD_END}"

 r="$(dict_get_simple "${bg}" 'r')"
 g="$(dict_get_simple "${bg}" 'g')"
 b="$(dict_get_simple "${bg}" 'b')"
 return_value="${fg_cmd}${ANSI_CMD_BG_24BIT};\
${r}; ${g};${b}${ANSI_CMD_END}"
}

record="$(dict_declare \
 'greeting' 'Hello' 'who' 'World' \
 'foreground' "$(dict_declare_simple 'r' '127' \
 'g' '255' 'b' '80')" \
 'background' "$(dict_declare_simple 'r' '80' \
 'g' '0' 'b' '0')" \
)"

set_ansi_24bit_colours_string \
 "$(dict_get "${record}" 'foreground')" \
 "$(dict_get "${record}" 'background')"

echo -n "${return_value}"
echo -n "$(dict_get_simple "${record}"\
 'greeting'),\
 $(dict_get_simple "${record}" 'who')!"
echo "${ANSI_CMD_RESET}"

record="$(dict_set_simple "${record}" \
 'greeting' 'Hi' 'who' 'Earth')"

record="$(dict_set "${record}" \
 'foreground' "$(dict_declare_simple 'r' '255' \
 'g' '127' 'b' '80')" \
 'background' "$(dict_declare_simple 'r' '0' \
 'g' '80' 'b' '0')" \
)"

fore="$(dict_get "${record}" 'foreground')"
back="$(dict_get "${record}" 'background')"
set_ansi_24bit_colours_string "${fore}" "${back}"

greeting="$(dict_get_simple "${record}" \
 'greeting')"
who="$(dict_get_simple "${record}" 'who')"
echo "${return_value}${greeting},\
 ${who}!${ANSI_CMD_RESET}"
February 2022 | Overload | 13

FEATURE RALPH MCARDELL
triple dicts which were obtained using dict_get (as they are nested dict
values) from the record dict and stored in variables fore and back.

The string returned by set_ansi_24bit_colours_string in
return_value is echo’d to the console without a terminating newline
to set the terminal’s foreground and background colours and then the
greeting is output as before except no terminating newline is output as
following the greeting the ANSI_CMD_RESET constant string is output to
reset the terminal, removing the previously set foreground and background
colours.

The greeting and who entries of record are updated as before with
dict_set_simple. Then the foreground and background RGB triple
dict values are updated using dict_set. Note that all four entries could
have been updated in a single call to dict_get. However, doing it in two
parts demonstrates that a dict containing nested dict values can still be
operated on by the simple forms of the API functions so long as no dict
entry values are involved in that specific function call.

Once more, the (updated) foreground and background RGB triple dicts are
passed to set_ansi_24bit_colours_string to obtain the new set-
colours ANSI control escape code string. The updated values for the
greeting and who entries are, as before, obtained with calls to
dict_get_simple and stored in variables greeting and who.

Finally, the whole output sequence: set-colour-control-escape-codes,
greeting, who, ANSI reset control-escape-code is output in a single
echo command.

Executing the extended Hello World example should produce the same
textual output, only with more colour involved.

Other tricks
There are a few things that you can do with dicts that might be of interest.
First, dicts are strings. Yes, I know that has been stated a time or two
already. However, as strings they can be used like any other string,
although of course just printing them out loses something in the process –
the unprintable separator characters for a start.

More usefully, they can be passed to commands and other scripts as
arguments. This is useful if, for example, you have a suite of mutli-stage
scripts that run one after the other and it is the intial script’s job to obtain
the arguments and options for the job – they are collected in a dict which
is passed from one script to the next, each accessing the arguments and
options relevant to itself.

Of course as strings they can also be saved to disk and read back later, or
sent over a network. Basically, dicts are already serialised. The only issue
in the future would be with regard to possible differing versions of the dict
data format, at which time the version metadata field in the dict header
would become a lot more relevant.

As an associative key:value container it is possible to use dicts to emulate
other container types. Two that come to mind are vectors (that is single
dimension arrays) and sets.

The characteristics of a vector are that values are identified by an integer
index, usually starting at 0 or 1 and increasing by one for each entry.
Another characteristic of some implementations is that they can only have
elements efficiently added to the end of the vector.

A dict can emulate a vector which for example has elements starting at
index 0 and only allows appending elements to the end. The idea would
be to wrap the underlying dict operation function calls in vector specific
operation functions.

Operations that create new elements do not require the index key values
as parameters. Rather they synthesise the next index as being the value
returned by dict_size. Hence an empty vector-dict would have size
zero and so the index key for the first element would be '0', the size is then
one thus the index of the next added element would be '1' and so on.
Operations that add new elements would be created with initial element
values and append new element values, which would be wrappers around
dict_declare (or dict_declare_simple) and dict_set (or

dict_set_simple). Listing 3 shows what a vector_append function
might look like.

Note that the values to be added have to be pairwise interleaved with their
index key values which requires modifying the $@ special parameter while
iterating over it which is why a snapshot of the value of $# is taken before
the iteration starts which is then manually decremented. Similarly a
snapshot of the intitial size of the vector is taken before iteration start which
is incremented manually – this is to reduce the overhead of calling
dict_size.

Other operations that could be useful would be accessing a specific
element by index key, which would simply devolve to a call to dict_get
(or dict_get_simple), and updating an existing element, which would
basically wrap a call to dict_set (or dict_set_simple) with checks
on the index value to ensure it is a valid and in range index value.

Iteration can of course be performed via dict_for_each, possibly via
a wrapper that adapts the function called if not all of the usual three
arguments dict_for_each passes to the supplied function for each
entry (key, value and computed one based record number) are not required.

Emulating a set is similar in that both keys and values do not need to be
specified when adding set members. In this case, it is only the key values
that need to be given, the associated values are of no interest other than
them not being empty so that set membership can be determined by passing
the cadidate value to dict_get_simple (or dict_get) and testing the
result to see if it is not empty. The entry values can all be the same –
preferably a short value such as '_'.

As with the vector emulation case, functions can be written that wrap the
underlying dict operations. For example, Listing 4 shows what a predicate
function to check if a set-dict contains a value might look like.

Conclusions and possible future directions
The dict.sh Shell Command Language library script implements a
dictionary container using mostly just standard features of the POSIX Shell

Listing 3

vector_append() {
 local vector="${1}"
 shift
 local count=$#
 local index=$(dict_size "${vector}")
 while [${count} -gt 0]; do
 local value="${1}"
 shift
 set -- "$@" "${index}" "${value}"
 count=$((${count}-1))
 index=$((${index}+1))
 done

 # pass the vector and converted entry values
 # to dict_set:
 vector_return_value="$(dict_set \
 "${vector}" "$@")"
}

Listing 4

set_contains() {
 local set="${1}" # the haystack to search
 local value="${2}" # the needle to find
 local maybe_in="$(dict_get_simple \
 "${set}" "${value}")"
 if [-n "${maybe_in}"]; then
 true; return
 else
 false; return
 fi
}

14 | Overload | February 2022

FEATURERALPH MCARDELL
Command Language plus simple use of a few core utilities, with the
exception of local and echo -n.

However, performance is a concern. The call-out to sed to perform the
required substitutions when inserting or retrieving nested dicts is
particularly heavy on performance.

The use of Command Substitution is also an area that drags down
performance. In fact internally the private, uglyfied support functions are
now all called directly and return their results by sett ing a
__dict_return_value__ global variable.

I have a couple of ideas to potentially address these two issues.

The first is to re-work how dicts are nested that removes the need for
changing the data format and thus removes the dependence on sed. The
idea – very nebulous at the moment – would be to give each dict an
identifier, which might be random and may need to be globally unique, and
bolt nested dicts onto the end of the dict string with some sort of new
separator sequence – maybe using the currently unused FS character.
Entries that have nested dict values would have values that reference that
dict by identifier.

The second idea is to add a parallel set of API functions that are called
directly rather than by Command Substitution and return their value in a
variable specified by name by the caller as an additional parameter by
making used of the eval built-in utility. These would be more
cumbersome to use but eleminate having to spin up a sub-shell process for
every call.

However, at the end of the day there is only going to be so much that can
be done to reduce performance overheads. The underlying sequential
nature of strings and the complexity required by the slice and splice
operations will end up limiting performance. dicts are never going to have
any great performance, especially at scale. However they were not
intended to.

The reliance on echo -n for the existing API functions can be fixed by
using standard facilties of the printf utility.

Some additional operations would be useful. One that springs to mind is
a dict_merge or dict_extend operation that combines the elements
of two (or more?) dicts.

Rather than emulating other container types, it would be cleaner to
implement each as their own library script, tailoring the data structure and
operations to suit each.

I do not know if or when I will make these changes as I had already gone
down a few rabbit holes while getting on with a larger task when I started
implementing dict. It would be good to bottom out and pop back up out of
some of the rabbit holes.

References
[AsciiTable] ASCII Table https://www.asciitable.com/

[AnsiTermCodes] ANSI terminal control codes https://en.wikipedia.org/
wiki/ANSI_escape_code

[EBNF] Extended Backus Naur Form https://en.wikipedia.org/wiki/
Extended_Backus%E2%80%93Naur_form

[OpenGroup] The Open Group https://www.opengroup.org/

[ShellLang] Shell Command Language https://pubs.opengroup.org/
onlinepubs/9699919799/utilities/V3_chap02.html

[ShellLangRationale] Rationale for Shell and Utilities, Shell Command
Language, Shell Commands, Function Definition Command, p.2
https://pubs.opengroup.org/onlinepubs/9699919799/xrat/
V4_xcu_chap02.html

[ShUtils] sh-utils repository https://github.com/ralph-mcardell/sh-utils
February 2022 | Overload | 15

And the winners are...
In Overload 166 and CVu 33.6, we invited you to vote for your favourite articles of 2021 both in Overload and in CVu, which is our
sister magazine for members. The results are in.

For CVu:
1st place: James Handley for ‘The Culture of Code’ in CVu 33.2 (May 2021)

Roger Orr for ‘How Many Braces Must A Programmer Write Down’ in CVu 33.3 (July 2021)

Simon Sebright for ‘Let’s Reproduce’ in CVu 33.5 (November 2021)

Closely followed (with 3 votes each) by:

Roger Orr for ‘Buffer Overflows on Windows and How to Find Them’ in CVu 32.6 (January 2021)

Frances Glassborow for ‘Russel Winder 1955/12/30-2021/1/23’ in CVu 33.1 (March 2021)

For Overload:
1st place: Bjarne Stroupstrup for ‘C++ – an Invisible Foundation of Everything’ in Overload 161 (February 2021)

Followed (with 3 votes each) by:

Eugene Hutomy for ‘Chepurni Multimethods for Contemporary C++’ in Overload 162 (April 2021)

Steve Love for ‘Amongst Our Weaponry’ in Overload 162 (April 2021)

Frances Buontempo for ‘Teach Your Computer to Program Itself’ in Overload 164 (August 2021)

Lucian Radu Teodoresco for ‘C++ Executors: the Good, the Bad, and Some Examples’ in Overload 164 (August 2021)

Anders Knatten for ‘No Move vs Deleted Move Constructors’ in Overload 166 (December 2021)

Thank you to everyone who took time to vote, and for those who wrote the articles. We can’t offer a prize to these winners, just the mention here.
A number of other writers got a vote – so be assured if you wrote for us someone probably thoroughly enjoyed what you had to say.

Keep up the good work.

The article titles above link to the articles if you are reading this online. Overload articles are publicly available, but you must be a member (and
logged in) to access the CVu ones. If you’re not a member yet, why not join?

sh-utils repository https://github.com/ralph-mcardell/sh-utils
https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xcu_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code
https://accu.org/journals/cvu/33/2/handley/
https://accu.org/journals/overload/29/161/stroustrup/
https://accu.org/journals/overload/29/162/hutorny/
https://accu.org/journals/overload/29/164/buontempo-2/
https://accu.org/journals/overload/29/162/love/
https://accu.org/journals/overload/29/164/teodorescu/
https://accu.org/journals/overload/29/166/knatten/
https://accu.org/journals/cvu/33/3/orr-1/
https://accu.org/journals/cvu/33/5/sebright/
https://accu.org/journals/cvu/32/6/orr-1/
https://accu.org/journals/cvu/33/1/glassborow-1/

FEATURE SEB ROSE
Why Should Automation Be Done
By The Dev Team?
Test automation and BDD are related but different.
Seb Rose explains why developers need to be
involved in the automating of test scenarios for BDD.
’ve been writing and talking about test automation and BDD for quite
a while now. In February 2021, I gave a short version of a talk called
‘Are BDD and test automation the same thing?’ at the Automation Guild

conference [Rose21a] to explore their relationship and address the
confusion that exists in the industry.

The conference organiser, Joe Colantonio, hosted a Q&A session after the
talk, but there wasn’t enough time to answer all of the questions. Handily,
he provided me with a list of all the questions asked, along with his
estimation of their ‘sentiment’ – either neutral or negative. He marked five
unanswered questions as having a negative sentiment.

 Why should automation be done by the dev team?

 Isn’t the business-readable documentation just extra overhead?

 What’s wrong with changing the scenarios to enable automation?

 Can all testing be automated?

 How can Cucumber help us understand the root causes of failure?

This article addresses the first of them.

The question
I do not get, why u say the automation part #5 on the graph, should
be done by the DEV team and never the QA, because it’s part of
the design process. For example, if a team uses Serenity-BDD with
screenplay, which makes it very easy to implement SBEs, shouldn’t
DEV team focus on prod code instead?

The question relates to the diagram in Figure 1 (opposite), which was
published in Discovery [Nagy18] and as a LinkedIn article [Rose18].

In my talk, I made it clear that I believed that developers should be involved
in step #5 - Automate. The questioner asks “… shouldn’t DEV team focus
on prod code …?” This is a very common question, rooted in a confusion
between BDD and Test Automation.

Test automation
Test automation is a generic term that can be applied to any activity that
results in the automation of tests. Programmer (or unit) tests are one aspect
of test automation. So are integration tests and end-to-end (E2E) tests.
Load, performance, and penetration tests can also be automated.

Typically, teams that are focused on test automation do that automation
after the code has been written. Development and testing are separate
activities, often undertaken by different teams with different goals.

 Development goal: implement the feature

 Testing goal: check the implementation achieves expected quality

This approach is widespread and valuable but has some drawbacks. If
you’d like to dig into those drawbacks there are some links in the ‘Going
deeper’ section below.

BDD
Behaviour-driven development (BDD) is an approach that grew out of test-
driven development (TDD) and agile software development. The goals of
BDD [Cucumber] are:

 Encouraging collaboration across roles to build shared
understanding of the problem to be solved

 Working in rapid, small iterations to increase feedback and the flow
of value

 Producing system documentation that is automatically checked
against the system’s behaviour

The diagram at the beginning of this article lays out an idealised behaviour-
driven process flow. As you can see, step #5 – Automate comes before
#6 – Implement, which can seem back-to-front from some perspectives.
How can we automate the testing of software that doesn’t exist yet?

Take a minute to change perspective and things don’t seem quite so crazy.
The Automate step isn’t about testing at all. Each scenario describes one
behaviour of the system which will need to be implemented in code. When
we automate that scenario, we begin to imagine the code we wish we had.
This is a detailed design activity – and as such needs the involvement of
someone with development skills.

This approach is, in this respect, identical to TDD – except that TDD is
generally a developer-only activity. BDD is collaborative, bringing together
the 3 Amigos (business, developer, tester) to collaborate throughout. The
additional benefits that BDD brings are a shared understanding of the
business domain and business-readable documentation.

#5 – Automate transforms a scenario in the business-readable
documentation into a failing automated test. This guides the development
team as they design and implement the code that will deliver the specified
functionality. Once the behaviour has been implemented, the automation
ensures the continued correctness of the system’s behaviour, and the
documentation is considered living documentation. In contrast,
documentation that lives in textual documents that are external to the
system itself, can be thought of as dead documentation, because it usually
reflects how the system used to behave.

BDD does not replace traditional testing and test automation, but it does
reduce a team’s reliance on them to some degree. Nor does BDD replace
a team’s need for people with testing skills. They are needed more than ever
– to help the team reach a shared understanding, to share with developers
their specialised domain knowledge, and to ensure customer satisfaction
using specific skills such as exploratory, load, or usability testing.

I

Seb Rose Seb has been a consultant, coach, designer, analyst and
developer for over 40 years. He’s now Continuous Improvement
Lead with SmartBear, helping apply the lessons he has learned to
internal development practices and product roadmaps. Co-author of
the BDD Books series Discovery and Formulation (Leanpub), lead
author of The Cucumber for Java Book (Pragmatic Programmers),
and contributing author to 97 Things Every Programmer Should
Know (O’Reilly).
16 | Overload | February 2022

FEATURESEB ROSE

Figure 1
Confusion
The confusion between test automation and BDD may have its roots in its
predecessor, TDD. It has always been problematic that a design and
development technique should have the word “test” so prominent in its
name. Especially in an industry where development and test have been so
siloed for so long.

The confusion has been exacerbated by the understandable desire to utilise
testers that don’t have development skills to write automated tests. This
desire has been encouraged by the existence of natural language
automation formats using the language of Given/When/Then:

 Given/When/Then are the core keywords of Gherkin

 Gherkin is the structured syntax understood by automation tools
such as Cucumber

 Cucumber is a widely downloaded, open-source tool, available on
numerous platforms

 Cucumber was created to support BDD

These facts allow people to deduce an ‘obvious’ but incorrect conclusion:

 I conform to Gherkin when I write my tests

 I use Cucumber to automate my Gherkin

 Cucumber was created to support BDD

 Therefore, I am ‘doing BDD’

The correct conclusion should be:

 Therefore, I am automating tests using Given/When/Then

The correct logic flows in the opposite direction:

 To benefit from a shared understanding, the team needs to
collaborate on the detailed specifications

 To assure the value of that understanding, it must be captured using
business-readable terms

 Gherkin’s use of natural language and Given/When/Then makes it
an ideal choice

 Cucumber’s ability to understand Gherkin makes it the ideal
automation tool

 Therefore, Cucumber and Gherkin are supporting the team to
work in a behaviour-driven way

Conclusion
If the goal is to automate a test, then you may not need developer skills (I
think you still need developer skills, but that is another article).

If the goal is to reduce misunderstandings (and hence defects, rework, and
costs), then you should look beyond test-after automation to BDD. In
which case functional automation is an integral part of the design and
implementation process and requires the development team to be leading
participants.

Going deeper
I’ve presented a session called‘Contrasting test automation and BDD’ on
this topic at a number of conferences and webinars over the past year. For
more extensive coverage, please watch the video and take a look at the
slides [Rose21b].

References
[AG21] The Automation Guild Conference 2021website:

https://guildconferences.com/ag-2021/

[Cucumber] ‘Behaviour-Driven Development’ available at
https://cucumber.io/docs/bdd/

[Nagy18] Gaspar Nagy and Seb Rose (2018) Discovery: Explore
behaviour using examples: Volume 1 (BDD Books), ISBN 978-
1983591259

[Rose18] Seb Rose ‘BDD Tasks and Activities’, posted on Linkedin 21
December 2018, available at https://www.linkedin.com/pulse/bdd-
tasks-activities-seb-rose/

[Rose21a] ‘Are BDD and test automation the same thing?’, presented at
the Automation Guild conference [AG21], available at
https://www.slideshare.net/sebrose/are-bdd-and-test-automation-
the-same-thing-automation-guild-2021

[Rose21b] Seb Rose ‘Contrasting test automation and BDD’ (2020-2021)
Slides: https://www.slideshare.net/sebrose/test-automation-and-
bdd-vivit-unicom-2020 Video: https://tinyurl.com/2p8s7tmc

This article was first published on the Cucumber blog, which
is supported by SmartBear (https://cucumber.io/blog/bdd/
why-should-automation-be-done-by-the-dev-team/) on
17 March 2021.
February 2022 | Overload | 17

https://cucumber.io/blog/bdd/why-should-automation-be-done-by-the-dev-team/
https://guildconferences.com/ag-2021/
https://cucumber.io/docs/bdd/
https://www.linkedin.com/pulse/bdd-tasks-activities-seb-rose/
https://www.linkedin.com/pulse/bdd-tasks-activities-seb-rose/
https://www.slideshare.net/sebrose/are-bdd-and-test-automation-the-same-thing-automation-guild-2021
https://www.slideshare.net/sebrose/test-automation-and-bdd-vivit-unicom-2020
https://www.slideshare.net/sebrose/test-automation-and-bdd-vivit-unicom-2020
https://tinyurl.com/2p8s7tmc

FEATURE ANDREAS FERTIG
C++20 Benefits:
Consistency With Ranges
Where do you begin when walking over a container in C++?
Andreas Fertig shows how C++20 Ranges simplify this.
his article is a short version of Chapter 3, ‘Ranges’, from my latest
book Programming with C++20. The book contains a more detailed
explanation and more information about this topic.

You have probably all already heard of C++20’s ranges. With ranges-v3,
Eric Niebler has already provided us with a solution, independent of
C++20 [Niebler]. In this article, I would like to shed some light on how
C++20’s ranges work and the benefits you get from them. There are
multiple benefits from ranges. Today, I want to talk about consistency. I
assume that you already know about ranges or that you can catch up
quickly, so I’m not focussing on the various algorithms ranges bring us,
nor the pipe syntax. I want to teach you how ranges help achieve
consistency, what this means, and how you can apply it to your own
codebase, independently of C++20. Let’s get started.

What’s consistency in this context?
The first question is, what is consistency? Let’s have a look at the example
in Listing 1.

Essentially, we can see two types there: Container and
OtherContainer . The internals do not matter for this article. What
matters is the function begin. We see it in as a free-function for
Container and as a member-function in OtherContainer.

In Use, we look at an abbreviated function template from C++20. For those
who haven’t seen this before, think of it as a function template. The key
here is that we don’t know the type of parameter c – a situation we have
regularly in generic code. The question now is, what is the correct way to
call begin? I’m showing you two approaches here. does call a free
function begin, relying on overload-resolution. , on the other hand, does
explicitly call the std version of begin.

The issue is, we don’t know which type c is, and both attempts are good
for only one of the containers. This is a usual burden in generic code. The
workaround is a so-called two-step using. We use using to bring
std::begin into the overload-set. Now, we use an unqualified call to
begin. This picks up the version in std and the free-function we provided
for Container. In code, it looks like Listing 2.

Arthur O’Dwyer wrote a post about two-step with std::swap, which
explains it from a different angle. [O’Dwyer]

The one issue pre-C++20 is that std::begin deals only with member-
functions, which brings an inconsistency. While we can get the example
above working in generic code, we end up with at least three different
functions being called:

 begin(Container) for Container

 std::begin for OtherContainer

 OtherContainer::begin also for OtherContainer

In the case of the member function, when std::begin can be used, it
calls the member function for us. The inconsistency is that not all calls are
routed via std::begin. What if std::begin does a couple of checks
on the type and puts some safety measures on if these checks fail? Then
we do get these benefits for OtherContainer but not Container. This
is not only sad. It can be a nightmare to debug.

Ranges for consistency
Of course, we wouldn’t talk about ranges if they could not solve this
situation. Here is what you do when ranges are available:

 void Use(auto& c)
 {
 // Use ranges
 std::ranges::begin(c);
 }

ranges::begin looks for free- and member-functions. This makes it so
much better. But why doesn’t std::begin do the same? Well, because
of ADL (argument dependent lookup). Once we’ve provided our own free
function, begin, for a type, it beats std::begin. Why? Because this is
how ADL works (I’m not going into the details here, it could fill at least
another article.)

T

Listing 2

void Use(auto& c)
{
 using std::begin; // Bring std::begin in the

// namespace

 // Now both functions are in scope
 begin(c);
}

Listing 1

struct Container {}; // Container without begin
int* begin(Container); // Free-function begin

// for Container

struct OtherContainer { // Container with begin
 int* begin();
};

void Use(auto& c)
{
 begin(c); // Call ::begin(Container)
 std::begin(c); // Call STL std::begin
}

Andreas Fertig is a trainer and lecturer on C++11 to C++20, who
presents at international conferences. Involved in the C++
standardization committee, he has published articles (for example,
in iX) and several textbooks, most recently Programming with
C++20. His tool – C++ Insights (https://cppinsights.io) – enables
people to look behind the scenes of C++, and better understand
constructs. He can be reached at contact@andreasfertig.info
18 | Overload | February 2022

https://cppinsights.io

FEATUREANDREAS FERTIG
Just use ranges in this case, and you don’t need to learn the two-step using
and about ADL. At this point, you can stop reading. You have already
learned how you could improve your code with ranges. But you would like
to learn more? Good. Why should only ranges do this magic?

Consistency for your code-base
Okay, we do want to get the same result as with ranges. We want to have
a function, let’s say begin, which users can customize, but all calls should
first go to our begin function.

We use the data types from before. The goal is to provide our own begin
function in the namespace custom, giving us the same consistent
behaviour as ranges do.

 void Use(auto& c)
 {
 custom::begin(c);
 }

The code above is what we need to use. Now let’s see how we build
custom::begin.

A function object to avoid ADL
The first step is to avoid ADL. It is great, but in our case effectively
prevents us from having a custom::begin call regardless of existing
free functions. How can we do this? Well, we avoid the function call.
Paraphrased from a famous space movie, ‘These are not the functions
you’re looking for.’ Instead of the function begin, we provide a callable
with the name begin (see Listing 3).

In , we see our callable begin. It is a plain struct with a templated
call operator. Inside this call-operator, in , we use constexpr if from
C++17 together with C++20’s Concepts (“I love it when a plan comes
together” comes to mind) first to check whether the type Rng provides a
free-function begin. If so, we call it by moving the data to it. Otherwise,

the else if checks with the same utilities whether Rng has a member-
function begin. The procedure is the same. If found, the member function
is called, and the parameter is moved into it.

Congrats! With this simple change, I hope you agree that it is simple or at
least manageable, your code is now more consistent. As long as we call
custom::begin, this function is called first and routes the call to the free
or member-function. But there is more.

Chipping in a bit more C++20?
Since we have already used abbreviated function templates and Concepts
from C++20, why not see what other features from the future are here now
that we can apply?

The callable seems a bit much to write. Plus, you all probably know by
now that a lambda is a callable as well. In fact, what I presented above
could as well be a lambda. The only thing pre-C++20 was that there was
no nice way to have a template type-parameter. Yes, C++14’s generic
lambdas together with decltype allowed us to do this already, but isn’t
the version below cleaner? (See Listing 4.)

This code here does the same as before. Just that here we use C++20’s
lambdas with a template-head, allowing us to specify the template type
parameter R. The body of the lambda is a copy of the callable’s body.

References
[O’Dwyer] Arthur O’Dwyer, ‘What is the std::swap two-step?’,

available at https://quuxplusone.github.io/blog/2020/07/11/the-std-
swap-two-step/

[Niebler] range-v3, available on GitHub: https://github.com/ericniebler/
range-v3

Listing 3

namespace custom {
 namespace details {
 struct begin_fn { // Callable
 template<class R>
 constexpr auto operator()(R&& rng) const
 {
 // Free-function
 if constexpr(requires(R rng) {
 begin(std::forward<R>(rng)); }) {
 return begin(std::forward<R>(rng));

 // Same as above for containers
 } else if constexpr(requires(R rng) {
 std::forward<R>(rng).begin();
 }) {
 return std::forward<R>(rng).begin();
 }
 }
 };
 } // namespace details

 // Callable variable named begin
 inline constexpr details::begin_fn begin{};
} // namespace custom

Listing 4

namespace custom {
 namespace details {
 constexpr auto begin_fn = []<class R>(R&& rng)
{ // Callable
 // Free-function
 if constexpr(requires(R rng) {
 begin(std::forward<R>(rng)); }) {
 return begin(std::forward<R>(rng));

 // Same as above for containers
 } else if constexpr(requires(R rng) {
 std::forward<R>(rng).begin();
 }) {
 return std::forward<R>(rng).begin();
 }
 };
 } // namespace details

 // Callable variable named begin
 inline constexpr auto begin
 = details::begin_fn;

} // namespace custom

This article was first published on Andreas Fertig’s blog
(https://andreasfertig.blog/2021/05/cpp20-benefits-
consistency-with-ranges/) on 4 May 2021.
February 2022 | Overload | 19

https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://quuxplusone.github.io/blog/2020/07/11/the-std-swap-two-step/
https://quuxplusone.github.io/blog/2020/07/11/the-std-swap-two-step/
https://andreasfertig.blog/2021/05/cpp20-benefits-consistency-with-ranges/
https://andreasfertig.blog/2021/05/cpp20-benefits-consistency-with-ranges/

FEATURE CHRIS OLDWOOD
Afterwood
Humans are fallible and frequently confused by
seeming paradoxes. Chris Oldwood reminds us to
question our assumptions and try to think straight.
hen I was a boy, I got an illustrated encyclopaedia as a present
one Christmas or birthday. I wasn’t into reading fiction and loved
flicking through the book looking at the various cut-away

drawings of machines – both old and new – as I was fascinated by how
things worked. The one section of the book I remember most clearly
though was a picture of a man in a running race with a tortoise. The text
described how it was impossible for the man to ever beat the tortoise, if
the tortoise had a head start, because when the man reaches the point
where the tortoise stood, the tortoise will have moved on. While the book
probably referred to the puzzle by its more well-known name of Achilles
and the Tortoise, I never managed to remember that. It probably even
mentioned this is just one of Zeno’s many paradoxes, as I discovered
some decades later via Wikipedia.

Being a child, I wasn’t capable of unravelling the paradox and pointing
out where Zeno ‘had cheated’ but I knew he must have because
empirically I saw the outcome disproved every day on the school field at
playtime. And yet the logic in the simple statement made perfect sense.
Despite reading the various rebuttals numerous times over the years, I’m
still not entirely sure I fully understand where the falsehood lies in theory,
but I do know that it does in practice.

Over the last couple of years, the pandemic has made me aware of some
other interesting statistical anomalies as a variety of people have tried to
make sense of the ever growing body of data around the effects of the
virus so that models can be built, hypotheses formulated, and (ideally)
policy implemented to minimise its effects. One anomaly that seemed to
crop up repeatedly in the early days of the pandemic was Simpson’s
Paradox. In an explanation of its effects, the particular example that most
struck a chord was a plot showing that ‘in general’ more exercise caused
an increase in cholesterol, which clearly goes against medical advice. For
those of you like me not well versed in statistics, the illusion here is that
what you’re seeing is just the natural rise in cholesterol as we get older. If
you break the plot down into clusters based on age, you see that within an
age group cholesterol does indeed go down with exercise. The devil, as
they say, is in the details.

Another popular mathematical puzzle which crops up regularly is the
Birthday Paradox, which has serious applications in cryptography, not
just as a parlour trick. The problem is often stated as: “How many people
need to be in a room for there to be a better than 50% chance that any two
share a birthday?” The answer is 23, which is surprising to a lot of people;
hence it’s commonly described as a paradox because the answer is
counterintuitive, even though with the right level of maths ability you can
‘easily’ prove it. Somewhat ironically, according to the Wikipedia page,
the reason it’s discoverer Harold Davenport didn’t publish his findings
was because he couldn’t believe it hadn’t already been published.

I think we programmers tend to think of ourselves as a pretty logical
bunch. The act of programming requires us to be incredibly precise in our
instructions to the computer, a device which makes most pedants appear
quite liberal. Our job involves reasoning about problems and, where
necessary, turning this into code which will ultimately be consumed by a
gazillion logic gates. It’s logic all the way down. And yet my take-away
from Achilles vs Tortoise is that what I think might be logical may in fact
be flawed because I can’t obviously see a counter-argument. In our
eagerness to get something working or a bug fixed we can fall into the trap
of formulating a hypothesis that can be proved correct when we should be
finding ways to disprove it, or in the very least putting the scaffolding in
place to make that process easier. In some respects, the practice of TDD
borrows from the ideas of falsifiability as it puts a focus on the testability
angle of our code (hypothesis). By making the code testable, we make it
easier for ourselves to try and conjure up reasons why the code might not
work correctly, and ultimately express those scenarios too, in the form of
executable code. Much as I’d like to believe I can follow Sir Tony Hoare’s
advice and “make the program so simple, there are obviously no errors”
I’m also aware of the assumptions that can eventually lead to our undoing.

Larry Wall famously described the three great virtues of a programmer as
laziness, impatience, and hubris. I’ve always found the last a curious
choice as hubris is commonly used as a pejorative, although I understand
it can be seen as a positive force in some circumstances. I wonder how
many others misinterpret that quote leading to a lack of humility? In
contrast I find fallibility is a more useful position to take.

I once got involved in a support query involving corruption of a cache file.
The programmer who wrote the file handling code reached a conclusion
that there must be a bug in the Windows CopyFile API rather than doubt
his own code. While I would never rule that out entirely, there are many
reasons why I think it’s improbable and I’d be looking far closer to home
before even contemplating such an idea. A quick trawl through the parent
process’s logs and I pointed out that the child process was now being
terminated for taking too long to start-up, ultimately caused by an increase
in the cache file’s size and I/O load on the remote server. This felt more
plausible and, more importantly, easier to validate.

Of all the paradoxes in Wikipedia’s long list, the one I’m finding easiest
to relate to as I get older and more experienced is Socrates’ apocryphal
saying “I know that I know nothing”. Clearly I do know something, lots in
fact, but the pace with which our industry moves it can feel like technology
is the tortoise and I’m Achilles desperately trying to keep up.

W

20 | Overload | February 2022

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He has
resumed commentating on the Godmanchester duck race but continues to be easily distracted by messages to
gort@cix.co.uk or @chrisoldwood

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

REGISTRATION NOWOPEN! Visit https://conference.accu.org

accu
2022
Pre-Conference Tutorials 2022.4.4-5

	What are you optimizing for?
	Revisiting Data-Oriented Design
	An Associative Container for Non-bash Shell Scripts
	And the winners are...
	Why Should Automation Be Done By The Dev Team?
	C++20 Benefits: Consistency With Ranges
	Afterwood

