
C++ Executors: the Good,
the Bad and Some Examples
Exploring the C++ executors proposal

Testing Propositions
Hypothesis: Is testing propositions
more important than having examples
as exemplars?

Afterwood
Git is not universally
loved, but maybe Git
itself is not the problem

August 2021 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 C++ Executors: the Good, the Bad, and
Some Examples
Lucian Radu Teodorescu explores the C++
executors proposal.

9 Testing Propositions
Russel Winder considers whether testing
propositions is more important than having
examples as exemplars.

19 Teach Your Computer to Program Itself
Frances Buontempo demonstrates how to
autogenerate code.

24 Afterwood
Chris Oldwood reflects on some of the
issues with Git.

OVERLOAD 164

August 2021

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover design

Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Ian Dooley,
on Unsplash.

Copy deadlines

All articles intended for publication
in Overload 165 should be
submitted by 1st September 2021
and those for Overload 166 by
1st November 2021.

https://unsplash.com/photos/TevqnfbI0Zc
https://unsplash.com/@sadswim

EDITORIAL FRANCES BUONTEMPO
Too Much Typing
Programmers spend an inordinate amount
of time typing. Frances Buontempo
wonders whether this can be curtailed.
Last time I wrote about using labels and typecasting
people. I still don’t know what label I’d choose for
myself and I don’t know what to write about for an
editorial either. Besides anything else, my typing has
taken a nosedive recently. I really must practise with
gtypist or similar. Remote pairing sessions seem to

mean I get flustered and can’t remember where the letters or symbols are.
I suspect some of the trouble comes from listening, looking at someone,
typing and thinking simultaneously. Some days it’s easier to multitask
than others.

Remote pairing or ensemble sessions can take on various forms. Some
IDEs allow you to all connect to one session, which avoids the problem
of having to push broken code for another team member to pick it up. You
could copy code into a chat, but many chat app do very nasty things to
whitespace, line endings and the like. I’m using Teams at work currently,
which has a propensity to make code appear yellow on a green background
when pasted into a chat, aside from messing with the contents. Looking
at it makes me feel green, perhaps in sympathy. As an alternative to typing,
we can resort to a call. We can even sketch a diagram. I prefer pen and
paper or whiteboards, but there are many online collaboration tools. I
always then spend far too long trying to work out how to move, focus or
add text boxes, all the while muttering “I hate GUIs”. The thing about a
piece of paper is it has a fixed size and clear edges, which affects what
you choose to draw. Constraint can be liberating. A software tool may
allow extension in all directions for a very long way. Finding anything
afterwards can be a challenge. The old saying goes “A picture is worth a
thousand words”, but if that picture has over a thousand labels and
comments, not to mention arrows and other mystic symbols, words may
well have been more succinct. Less is more and drawing clear diagrams
is a skill.

Documenting things well is also a skill. I recently noticed when our
business analysts ask for documentation they mean write down what was
decided, so people know afterwards. As a programmer, when I hear the
word documentation, I tend to groan. I have tried to use so many APIs,
libraries and the like with pages and pages of instructions. Various things
go wrong. Sometimes I am reading the wrong version for the tool I am
using. Many cutting edge tools change at a huge pace, so it’s easy to waste
time trying something that either no longer works or will only work after
an upgrade, breaking many other things in the process. Other times, scroll
bars are involved. You ever had that thing where you open a man page,

start reading, page down, keep reading, notice
something interesting you didn’t know, try it

out, forget what you were trying to do, then
remember, scroll further, try to find an
example, give up, look on stack overflow,

desperate for an example to copy and twiddle with, finally finding one
using a totally different tool that you then install? And so it continues.
Maybe it’s just me? That was, of course, far too many words to illustrate
an example we are probably all familiar with. Too many words, people.
Think back to documentation you have written. Was it useful for anyone?
Have you ever re-read something you’ve previously written? I usually
spot typos or similar when it’s too late, however that’s not what I’m talking
about. Writing can tend to fall into one of two camps – either almost no
details, so not much use, or every possible detail but no high level “How
to start” or similar. If you have trouble documenting code, or writing blogs
or articles, try to notice writing you like and ask yourself why. What’s
good about it? How is it presented? Are the sections helpful and easy to
navigate? This will make your writing better.

Many companies use some kind of wiki to keep their documentation. This
is sensible, but trying to find useful information afterwards can be a
challenge. It can feel like walking into someone’s room, only to find it
full of hand-written notebooks. The instructions for baking the cake you
were dreaming of may be in there somewhere, but frankly, it might be easy
to throw it all out and start over. Wikis and the like need curating. If you
don’t have a tidy up once in a while, the rot can set in. Most people tend
to avoid deleting pages that are no longer relevant, just in case they prove
to be important historical documents. Often they can be of interest, but
are a distraction if you are trying to find out how to do something. If your
system supports showing historical pages and views of pages, maybe trust
it as you would trust version control? In fact, how often do we leave, or
at least see, commented out code in a code base? If it’s not used, delete
it. I guess it can take some skill to find code in version control history that
no longer exists, especially if the file it was in has gone too, but it’s not
impossible. And, it might be possible to write code to do what’s required
if you can’t find an old version. Less clutter can make it easier to think.

I am reliably informed Rich Hickey, the inventor of Clojure once said,
“Programming is not about typing, it’s about thinking.” On the face of it this
sounds true, yet sometimes we need to try out code to see what it does.
No amount of thinking will catch all the edge cases etc. In my career, I
have often found myself in a meeting discussing a bug or feature and how
to approach it, while people draw on white boards, speculate and the like.
Frequently, we go nowhere near the code, guess, misremember and then
when we come to write or fix the code, realise many further issues have
not been taken into account. Don’t be shy of opening up the code while
people talk and doing science. See what actually happens. It’s the only
way. No amount of writing a wish list in a Jira will “Make It So”.

Talking of Clojure, as I’m sure you know this dynamic language is a Java-
based dialect of Lisp. Dynamic languages offer what is referred to as duck
typing, in that you can duck typing in the types, and furthermore “If it

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | August 2021

EDITORIALFRANCES BUONTEMPO
quacks like a duck, it is a duck”. Wikipedia tells me that though the Clojure
“type system is entirely dynamic, recent efforts have also sought the
implementation of gradual typing”. [Wikipedia-1]. I understand dynamic
typing: the type checks happen at run time, though it can be possible to
flush out problems with a linter without waiting until something blows up.
This can be odd to get used to if you come from a static typing background.
I had not come across the term gradual typing before, so had to read a lot
of the internet. My executive summary is it’s some kind of mixed model,
like C#, although compiled and statically type checked, since the
introduction of a dynamic type some things may blow up at runtime instead
of compile time. Other gradually typed languages are available, including
J, Objective-C and Typescript. I’ve had a run in with Typescript recently.
Initially it felt like too much typing, pun intended, though one or two ideas,
such as being able to coerce some JSON into an interface actually saved
some physical typing. I still have mixed feelings.

Whenever I’ve spent time using a dynamic language, allowing me to type
x = 10 and the like, switching to C++ or similar and having to add an int
in as well seems unnecessary. I do eventually get over myself, but the
paradigm shift takes a while. Occasionally, I find myself in what seems like
the worst of both worlds. In particular, I am referring to Python’s type hints.
These provide optional annotation for code. There were introduced by
PEP484 [Python]. Initially, I was curious and tried them out. The PEP states

While these annotations are available at runtime through the usual
annotations attribute, no type checking happens at runtime.
Instead, the proposal assumes the existence of a separate off-line
type checker which users can run over their source code voluntarily.
Essentially, such a type checker acts as a very powerful linter.

It mentions mypy, an optional type checker, as the inspiration. The type
hints felt like a vast amount of extra effort for not much benefit. Many
people often tell me it helps their IDE offer suggestions for auto-complete
and similar. That’s as may be, but I tend to use Vim for Python, though I
understand not everyone does. I have heard tale of type hints being used
on large code bases, and the main thing I recall was the type hints finding
places where a function would return None because a snakey mess of if/
else statements missed a return. Such an error can be picked up by a
linter, so I didn’t come away inspired. Since type hints are not all or
nothing, you can add them in places you feel might be beneficial. I’m still
not convinced of their value, but feel free to have a play and report back.
There are plenty of details online, but Real Python [RealPython] offer a
good overview.

In what I consider a similar vein, Stepanov and McJones added a template
constraint, requires to their code listings in their Elements of Programming
book [Stepanov09]. The C++ community was starting to talk about
concepts at the time so it made sense. The start of the book told us the
requires clause could be an “expression built up from constant values,
concrete types, formal parameters, applications of type attributes and type
functions, equality on values and types, concepts, and logical connectives.”
They thereby described properties of a type. If you turn to Appendix B,
you will find

 #define requires(…)

which is somewhat underwhelming. I do see the benefit in what became
concepts in C++. At very least, they can make error messages clearer.
However, C++ being C++ means they can end up getting quite
complicated. Trying to explain why you sometimes need to say requires
requires is a challenge [StackOverflow].

Even though C++ is statically type checked, you can achieve what feels a
bit like duck typing with templates, though things will go wrong at compile
time rather than run time. Freedom to take any type and call a method on
it, without having to build up a class hierarchy or other boilerplate code
can be liberating. This allows us to pass iterators into an algorithm and do
something with each element, regardless of the data structure the iterators
came from. You could suggest C#’s LINQ has a similar feel, but
Stepanov’s genius idea was to separate the data structures and algorithms.
C++ also allows use of any, variant, optional and similar. Claiming
something is of type any feels like an oxymoron, but these can be very
useful.

I started by talking about the physical act of typing, and then strayed into
the world of types of objects in code. I could stray into category and type
theory, but will spare you that. Let’s think about typing lots of code, or
perhaps worse, attempting to grok a long function. Sometimes, we see a
very long select statement or snakey mess of ifs and elses. I personally
believe it is usually possible to collapse these down a bit to something
that’s easier to follow. Even pulling out of few statements into their own
function can leave less detail to look at in one place, though they have
moved elsewhere. Sometimes swapping a for loop for an algorithm makes
the code more succinct. Opinions can be divided at this point. Sometimes
code is obviously messy, sometimes it is quite neat, but sometimes it is
‘too cute’. You spend longer figuring out what it does when it’s a one liner
than you would have done with a for loop. Try out the cute code, by all
means, but check you still understand it the next day.

Managing to be succinct and clear is difficult, but
worth a try. Lengthy rambles take too long to read and
I’m now running out of space, so shall end with a Pascal
quote: “I would have written a shorter letter, but I did not
have the time.” [Wikipedia-2]

References
[Python] Python: https://www.python.org/dev/peps/pep-0484/

[RealPython] Real Python: https://realpython.com/python-type-checking

[StackOverflow] For an example, see https://stackoverflow.com/
questions/54200988/why-do-we-require-requires-requires

[Stepanov09] Alexander Stepanov and Paul McJones (2009) Elements of
Programming ISBN 9780321635372, Addison Wesley. Available
from: http://elementsofprogramming.com/

[Wikipedia-1] Clojure: https://en.wikipedia.org/wiki/Clojure

[Wikipedia-2] Pascal (Letter XVI), according to https://en.wikipedia.org/
wiki/Lettres_provinciales
August 2021 | Overload | 3

https://www.python.org/dev/peps/pep-0484/
https://realpython.com/python-type-checking
https://stackoverflow.com/questions/54200988/why-do-we-require-requires-requires
https://stackoverflow.com/questions/54200988/why-do-we-require-requires-requires
http://elementsofprogramming.com/
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Lettres_provinciales
https://en.wikipedia.org/wiki/Lettres_provinciales

FEATURE LUCIAN RADU TEODORESCU
C++ Executors: the Good, the Bad,
and Some Examples
Executors aim to provide a uniform interface for work creation.
Lucian Radu Teodorescu explores the C++ executors proposal.
ne of the most anticipated features in the upcoming C++ standard is
the support for executors. Through executors, we hope to get a higher
level set of abstractions for doing concurrent/parallel work. If

everything goes well, the executors will land in C++23.

This article aims at providing a critical perspective on the proposed
additions to the C++ standard. We specifically look at the proposal entitled
P0443R14: A Unified Executors Proposal for C++ [P0443R14], but we
touch on a few connected proposals as well.

The article provides a brief tour of the proposal with a couple of examples,
and then jumps to a critical analysis of various points of the proposal. This
critical analysis tries to bring forward the strong points of the proposal, as
well as the weak points. The hope is that by the end of the article the reader
will have a better understanding of the proposal, and of its pros and cons.

A brief tour of the proposal
P0443R14 has some sort of internal unity, but at a more careful reading
one can divide the proposal in two main parts:

 support for executors

 support for senders and receivers

The executors part doesn’t need to be coupled with senders and receivers,
while senders and receivers can be theoretically based on slightly different
executor semantics. Furthermore, conceptually, they solve different
problems. Moreover, the paper itself makes the distinction between these
two parts. Thus, it makes sense for us to treat them separately as well.

The libunifex library [libunifex] is a prototype implementation for the
proposal, containing almost everything from the proposal, and much more.
The authors of the library were also contributors to the proposal. My own
Concore library [concore] also has support for the main concepts in the
proposal.

Executors support
An executor is a work execution interface [P0443R14]; it allows users to
execute generic work. The following code shows a simple usage of an
executor:

 executor auto ex = ...;
 execute(ex, []{ cout << "Hello, executors!\n"; });

If we have an executor object (i.e., matching the executor concept), then
we can just execute work on it. The work is some form of an invokable
entity. We have decoupled the work from the context in which it is
executed.

That’s it! Things are that simple!

The P0443R14 paper describes an executor that can be obtained from a
static_thread_pool object, proposed to be added to the standard

library. As the name suggests, this would add support for thread pools. The
users can then create thread pools and pass work to be executed on these
pools. Here is one simple example that will execute work on one of the
threads inside the thread pool:

 std::static_thread_pool pool(4);
 execution::execute(pool.executor(),
 []{ cout << "pool work\n"; }

The executor concept and the thread pool by themselves are directly usable
for building concurrent applications. But, more importantly, it is easy to
create other executors. The paper exemplifies how one could write an
inline_executor that just executes the work on the current thread,
similarly to calling a function. To define a new executor, the user must
provide an execute method that takes work (technically this is a
customisation-point-object that can take other forms too, but we’ll try to
provide a simplified view) and a way to compare the executors for equality.

To showcase how easy it is to define an executor, we’ll just copy the
definition of inline_executor given by P0443R14 here:

 struct inline_executor {
 // define execute
 template<class F>
 void execute(F&& f) const noexcept {
 std::invoke(std::forward<F>(f));
 }
 // enable comparisons
 auto operator<=>(const inline_executor&)
 const = default;
 };

Piece of cake!

An executor can have multiple properties attached to it. For example, an
executor can be blocking to callers (like inline_executor) or non-
blocking (like the executor from static_thread_pool). Another
example would be the property that indicates the type of allocator that the
executors use.

The support for properties is actually introduced by paper P1393R0: A
General Property Customization Mechanism [P1393R0] (and the
executors paper builds on it). At this point, there is no consensus on
whether this would move forward or not. But, even if this proposal doesn’t
move forward, executors are still usable.

Senders and receivers
Here, things get a bit more complicated. The paper defines the following
(major) concepts:

 sender: work that has not been scheduled for execution yet, to
which one must add a continuation (a receiver) and then “launch” or
enqueue for execution [P0443R14]

 receiver: is a callback object to receive the results from a sender
object

 scheduler: a factory of single-shot senders [P0443R14]

O

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro
4 | Overload | August 2021

FEATURELUCIAN RADU TEODORESCU

One way to think of receivers is to consider
them as generalised callbacks; they are

called to announce the completion
(successful or not) of another operation
 operation_state: the state of an asynchronous operation, the
result of connecting a sender with a receiver

Besides this, the paper also defines a few customisation points (CPOs):

 set_value: applied to a receiver object, it is called by the
sender to notify the receiver about the completion of the work, with
some resulting values; part of the semantic of being a receiver.

 set_done: applied to a receiver object, it is called whenever the
work in the sender has been cancelled; part of the semantic of being
a receiver.

 set_error: applied to a receiver object, it is called whenever
there was an error with the work in the sender; part of the semantic
of being a receiver.

 connect: applied to a sender object and passing in a receiver,
it is called to connect the two objects, resulting in an object
compatible with operation_state; part of the semantic of being
a sender.

 start: applied to an operation_state object, it is called to
logically start the operation (as resulting from connecting the sender
and the receiver); part of the semantic of being an
operation_state.

 submit: applied to a sender object, it is called to combine it with
a receiver object and immediately start (at least logically) the
resulting operation.

 schedule: applied to a scheduler object, it is called to return a
‘single-shot’ sender (this will call the receiver with no value); part
of the semantics of being a scheduler.

Customisation point objects are generalisations over functions. The
standard provides some free functions for them, but allows (and sometime
requires) the user to customise their behaviour. The key point that one
should distinguish between two variants of functions with the same name:
one that the framework provides and one that the user needs to provide.

Let’s take a simple example. To define a receiver, the user is required to
define a set_done method/function. The framework also defines an
execution::set_done function that can be called by the senders.
Something like the following:

 struct my_sender {
 ...
 execution::set_done(recv);
 ...
 };

Yes, things can be a bit confusing, but I think that with enough exposure
people will get used to this. It’s similar to the std::begin() function
versus the begin() method defined in containers like std::vector.

Using this, one can write code that represents asynchronous computations
as chains between senders and receivers. Listing 1 presents an example.

At the beginning of the listing, there are two types that model the
receiver concept; they can be used to be notified about the completion
of some asynchronous operation. set_value() is called when the

previous computation is successful, set_done() is called when the
operation was cancelled, and set_error() is called whenever there was
an error in the previous computation. One way to think of receivers is to
consider them as generalised callbacks; they are called to announce the
completion (successful or not) of another operation.

Schedulers are objects that can generate ‘single-shot’ senders. These
single-shot senders are just sending impulses to receivers downstream,
without sending any information to them. This is why we can connect such
a sender (sndr1 with a receiver that doesn’t take any value).

A sender can be bound to a receiver only once, so they can be considered
short-lived: they only live for one computation to go through them. This
is why it is important for the framework to allow easy creation of senders.

The example in Listing 1 shows how a sender (sndr1) can be connected
to a receiver (in our case, an object of type my_recv0). The connection
between a sender and a receiver is captured by an object that models the
operation_state concept. This concept corresponds to an
asynchronous operation (i.e., tasks). Senders by their own, and receiver by
their own, cannot be considered tasks. The only thing that one can do with
an operation_state object is to start it. This is done by calling the
start() customisation-point-object.

In the last few lines of Listing 1, we present how a computation can be
represented using the sender algorithms introduced by [P1897R3]. A

Listing 1

struct my_recv0 {
 void set_value() { cout << "impulse\n"; }
 void set_done() noexcept {}
 void set_error(exception_ptr) noexcept {}
};
template <typename T>
struct my_recv {
 void set_value(T val) { cout << val << endl; }
 void set_done() noexcept {}
 void set_error(exception_ptr) noexcept {}
};
static_thread_pool pool{3};
auto sched = pool.scheduler();
// single-shot sender
auto sndr1 = schedule(sched);

auto op_state = connect(sndr1, my_recv0{});
start(op_state); // prints "impuslse"

// computation with P1897R3 abstractions
auto f = [](int x) { return 3.141592 * x; };
auto print = [](double x) { cout << x; };
auto sndr = just(2)
 | on(sched)
 | transform(f);
// prints the result 2*3.141592 asynchronously
submit(move(sndr), my_recv<double>{});
August 2021 | Overload | 5

FEATURE LUCIAN RADU TEODORESCU

Just like we use serializers to handle some types of
restrictions, we can generalise them and use
executors for solving all types of restrictions
sender algorithm is a function that returns a sender (or, something that,
when combined with a sender, returns another sender). In our case,
just(2) returns a sender that will just push the value 2 to its receiver.
The on(sched) returns an object that when combined with the previous
sender generates a sender that runs the previous computation on the given
scheduler. In our case, we are indicating that everything needs to be
executed on our thread pool. Finally, transform(f), when combined
with the previous sender, will return a sender that will execute the given
function to transform the received input.

Putting all these together, we obtain a sender that will multiply 2 with
3.141592 on our thread pool.

In the last, line, instead of connecting it to a receiver and calling start
on the resulting operation state, we call submit. This is a shorter version
of the above.

This was a quick summary of the important parts of the proposal. More
examples and discussions can be found in other resources on the Internet.
Two presentations that explain executors and senders/receivers in more
detail can be found at [Hollman19] and [Niebler19].

A critique of the executors proposal
We will organise this section into a series of smaller inquiries into various
aspects of the proposals. We will label each of these inquiries with Good
and Bad. This labelling scheme is a bit too polarising, but I’m trying to
convey a summary of the inquiry. Especially the Bad label is maybe too
harsh. This label must definitely NOT apply transitively to the people
behind this proposal; they worked really hard to create this proposal; this
thing is not an easy endeavour (see [Hollman19] for some more insights
into the saga of executors).

Good: Support for executors
I can’t find words to express how good it is to have executors as a C++
core abstraction. It allows one to design proper concurrent algorithms,
while separating them from the actual concurrency primitives.

The same application can have multiple concurrency abstractions, and we
can design algorithms or flows that work with any of them. For example,
one might have one or more thread pools as described by this proposal, or
can have executors from third-party libraries (Intel oneAPI, Grand Central
Dispatch, HPX, Concore, etc.). Moreover, users can write their own
executors, with reasonable low effort. For example, in my C++Now 2021
presentation [Teodorescu21b] I’ve showcased how one can build a priority
serializer (structure that allows executing one task at a time, but takes the
tasks in priority order) – the implementation was under 100 lines of code.

The reader might know that I often talk about serializers as concurrent
abstractions that help in writing better concurrent code, simulating locks
behaviour while avoiding the pitfalls of the locks (see [Teodorescu21a],
[Teodorescu20a] or [Teodorescu20b]). Serializers are also executors.
Generalising, we can introduce concurrent abstractions as executors.

Moreover, the executors can be easily composed to provide more powerful
abstractions. For example, a serializer (which is an executor) can be

parameterised with one (or even two) executors, which specifies the actual
mechanism to execute the tasks.

If there is one thing that the readers remember from this article, I hope it
is that executors are a good addition to the standard.

Good: Every concurrent problem can be specified
using only executors
As argued in [Teodorescu20a], every concurrent problem can be expressed
as a set of tasks and restrictions/dependencies between them. I’ll not try
to give all the formal details here, but we can prove that the restrictions/
dependencies of the tasks can be represented using different executors. Just
like we use serializers to handle some types of restrictions, we can
generalise them and use executors for solving all types of restrictions.

To achieve this, we can add various labels (with or without additional
information) to the tasks, and we define rules that infer the restrictions/
dependencies based on these labels. For example, dependencies can be
encoded with a particular label that contains some ordering number.
Restrictions like those found in serializers can be implemented with labels
that mark that certain tasks are mutually exclusive.

For each type (or better, for each instance) of a label, we can create an
executor that will encode the restrictions represented by that label. This
way, for each type of restriction that we have, we will have an executor to
encode it.

If we have all these, then one just needs to compose the executors in the
proper way to ensure the safety of the application. The composition might
pose some problems in terms of performance, but these performance
problems can always be solved by specialising the executors.

Executors are fundamental building blocks for writing concurrent
programs.

Good: Proposal provides a way to encode computations
Between a sender and a receiver pair, we can encode all types of
computations. As an operation_state object can act like a task, and
as we can represent all computations with tasks, it means that we can
represent all types of computations with senders and receivers.

Beyond this, the proposal seems to encourage the expression of
computations as chains of computations, in which values are passed from
a source (an initial sender) to a final receiver. This indicates a tendency
towards functional style expression of computations. This sounds good.

Bad: Proposal seems to restrict how computations
can be expressed
The above point can be turned around as a negative. It feels awkward in a
predominant-imperative programming language to allow expression of
concurrency in a functional style. Functional style sounds good to me, but
there are a lot of C++ programmers that dislike functional style.

Probably my biggest complaint here is that where to place computations
is confusing: in the senders or in the receivers. And the naming here doesn’t
help at all. Let’s say that one wants an asynchronous action to dump to disk
6 | Overload | August 2021

FEATURELUCIAN RADU TEODORESCU
the state of some object. How should one design this? The problem of
dumping some state to disk doesn’t properly map to the sender and receiver
concept; there is nothing to send or to receive.

There is no way one can directly put this computation into an
operation_state object, so one needs to choose between a sender and
a receiver. If we were to look where the proposal puts most of the
computation, we would end up with the idea that the dumping code needs
to be placed inside a sender; the proposal also states “a sender represents
work [that has not been scheduled for execution yet]” [P0443R14], so this
seems like the reasonable thing to do. But writing custom senders is hard
(see below); moreover, we need to bind to it a dummy receiver for no
purpose.

An easier alternative is to put the computation in the receiver. But that goes
against the idea of “a receiver is simply callback” that is used by the
proposal to describe receivers. Creating a receiver that dumps the data to
disk is relatively easy. But, in addition to that, one needs to also connect
the receiver with a single-shot sender and lunch the work to the execution.
The presence of the sender should not be needed.

One can easily solve the same problem with executors.

Bad: The concepts introduced are too complex
Executors are simple: you have an executor object, and you provide work
to it. This can be easily taught to C++ programmers.

On the other hand, teaching senders and receivers is much harder. Not only
there are more concepts to teach, but also the distinction between them is
unclear.

Here are a few points that can generate confusion:

 schedulers seem to be an unneeded addition; we can represent the
same semantics with just executors and senders

 operation_state objects seem more natural (as they correspond
to tasks), but there is no way for the user to directly write such
objects

 if operation_state objects cannot be controlled by the user,
then maybe they shouldn’t be exposed to the user

 submit seems to be a nice simplification of connect and start,
but having both variants adds confusion

 considering that both submit and the pair connect and start
can be customised by the user, one can end up in cases in which
submit is not equivalent with connect/start; this means that
we have ambiguous semantics

Looking closely at the proposal, we find circular dependencies between
the proposed concepts and customisation-point-objects (via wrapper
objects). For example, connect CPO can be defined via the as-
operation wrapper in terms of execute CPO. But then, execute is
defined in terms of submit CPO, which is also defined in terms of
connect (via the submit-state wrapper object). Circular
dependencies are a design smell.

The point is that it’s really hard to grasp senders and receivers.

Good: Receivers have full completion notifications
Many threading libraries are more concerned about ensuring the execution
of asynchronous work, and don’t consider error cases much. The way that
senders and receivers are conceived, if the user puts the work in the sender,
there will be a notification that indicates in which way the work was
completed: successfully, with an error, or it was cancelled.

Good error handling is always desired.

Good: Easy to write receivers
As shown in Listing 1, it’s relatively easy to write receivers. If one provides
three methods – set_value, set_done and set_error – then one has
defined a receiver. There are multiple ways in which the receiver can be
defined, and there might be different types of receivers, but the idea
remains simple.

If users only need to write receivers, then using senders and receivers
would probably be an easy endeavour.

Bad: Hard to write senders
On the other hand, it’s hard to write even simple senders. For a sender, one
needs to write a connect method/function (or maybe submit?). This
gets a receiver and has to generate an operation_state object, which
should be compatible with the start CPO. On top of these, templates,
tag types, move semantics and exception specifications will make this
much harder.

But this is not the complete picture. The proposal encourages composition
of senders; thus one should write sender algorithms instead of simple
senders. That is, algorithms that take one sender and return another sender.
If one sender receives a signal from another sender, it should do its
corresponding work and notify the next receiver. This means that the user
also needs to write a receiver for the previous sender, and ensure that the
flow is connected from the previous sender to the next receiver.

Listing 2 provides an example of a sender algorithm that just produces a
value when invoked by the previous sender. I doubt that the reader would
consider this easy to write, even with this relatively simple case we are
covering.

Bad: Hard to extend the senders/receivers framework
As mentioned above, the proposal envisions extensibility through sender
algorithms, similar to the one discussed above. This directly implies that
the framework is hard to extend.

This can be compared with executors, which are relatively easy to extend.
It’s not hard to create a class that models the executor concept.

Bad: No monadic bind
One solution to the extensibility problem was a monadic bind. That is,
provide a way in which one can create new senders by providing a function
with a certain signature. Although monads are sometimes considered hard
to grasp, they are proven to be useful for extending the operations on
certain structures.

It is worth noting that the senders framework has the potential to use
monads as follows. First, msender<T> encodes the concept of a sender
that connects to receivers that take object T as input. For the type converter
part of the monad, it is easy to find a transformation from an object T to
msender<T> – this is actually provided by the sender just() defined
by [P1897R3]. The missing operation is something that would have a
signature like:

 template <typename T1, typename T2>
 msender<T2> bind(const msender<T1>& x,
 function<msender<T2>(T1)> f);

The reader should note that [P1897R3] provides a relatively similar
function (imperfect translation):

 template <typename T1, typename T2>
 msender<T2> transform(const msender<T1>& x,
 function<T2(T1)> f);

But this is not the same. In the first case the received function object is of
type T1 → msender<T2>, while in the second case has the kind T1 →
T2 One cannot provide the same extensibility with transform as with
the bind function. If the bind function corresponds to monoids, the
tranform function corresponds to functors (using terminology from
category theory). Of the two, monads are good at composition.

Bad: Cannot express streams with senders/receivers
One might think that senders and receivers are good at representing data
streams (i.e., reactive processing, push model). In such a model, one would
have sources of events (or values). Then, one can attach various
transformations on top of these sources to create channels that transform
the input events/values so that they can be properly processed.

The chains of transformations can also be created with senders and
receivers, but unfortunately such a channel can only propagate one value
August 2021 | Overload | 7

FEATURE LUCIAN RADU TEODORESCU
through it. For each value that needs to be propagated, a new channel of
transformation needs to be created.

This is unfortunate as data stream programming can be an efficient way
of solving some concurrent problems.

Bad: Too much templatised code
I’m not going to dwell too much on this topic. The proposal advocates
highly templatised code, which will result in increased compilation time
for all the code that uses it. If most C++ software were to use this as the
fundamental basis for concurrency, then the overall compilation time for
all the programs would increase considerably.

The reader should note that, for proper concurrency, the executors would
have to move work packages between threads. This implies that at some
point there needs to be some type-erasure. It’s a pity that this type-erasure
is not at a higher level.

Conclusions
This article tried to provide a critique of the executors proposal for the
upcoming C++ standard. As with a lot of such critiques in our field, we
cannot be fully objective. Software engineering is based on compromises,
and the tendency to choose one alternative over another makes us more
subjective than we would want to be. But, even if we can’t achieve
objectivity, such a critique can serve to highlight some nuances of the
critiqued object. I have tried to be as objective as I can in this article, but,
perhaps, my biases found their way through. However, it is my hope that
the reader will find some help in all this endeavour.

As it is already mentioned in the proposal, P0443R14 has two main parts:
one that introduce executors, and one that introduce senders and receivers.

Overall, I find the executors part to be a needed addition to the C++
language, Moreover, it’s simple to use and very extensible.

For the senders and receivers part of the proposal, I have formulated some
objections. They are more complex than they need to be and not as
extensible. Probably the best way forward for the standard committee is
to split the proposal in two parts and consider them separately for inclusion
in the C++ standard.

Looking at the overall proposal, the simple presence of executors makes
it worthwhile. C++ can move towards using higher level abstractions for
concurrency, abstractions that need executors as their fundamentals. For
example, the parallel algorithms would greatly benefit from executors.

References
[concore] Lucian Radu Teodorescu, Concore library, https://github.com/

lucteo/concore

[Hollman19] Daisy Hollman, ‘The Ongoing Saga of ISO-C++
Executors’, C++Now 2019, https://www.youtube.com/
watch?v=iYMfYdO0_OU

[libunifex], Facebook, libunifex library. https://github.com/
facebookexperimental/libunifex

[Niebler19] Eric Niebler, Daisy Hollman, ‘A Unifying Abstraction for
Async in C++’, CppCon 2019, https://www.youtube.com/
watch?v=tF-Nz4aRWAM

[P0443R14] Jared Hoberock et al., ‘P0443R14: A Unified Executors
Proposal for C++’, http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2020/p0443r14.html

[P1393R0] David Hollman et al., ‘P1393R0: A General Property
Customization Mechanism’, http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2020/p0443r14.html

[P1897R3], Lee Howes, ‘P1897R3: Towards C++23 executors: A
proposal for an initial set of algorithms’, http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2020/p1897r3.html

[Teodorescu21a], Lucian Radu Teodorescu, ‘Threads Considered
Harmful’, https://www.youtube.com/watch?v=_T1XjxXNSCs

[Teodorescu21b], Lucian Radu Teodorescu, ‘Designing Concurrent C++
Applications’, https://www.youtube.com/watch?v=nGqE48_p6s4

[Teodorescu20a] Lucian Radu Teodorescu, ‘The Global Lockdown of
Locks’, Overload 158, August 2020, available from https://accu.org/
journals/overload/28/158/teodorescu/

[Teodorescu20b] Lucian Radu Teodorescu, ‘Concurrency Design
Patterns’, Overload 159, October 2020 available from
https://accu.org/journals/overload/28/159/teodorescu/

Listing 2

// Receiver of void, and sender of int
template <typename S>
struct value_sender {
 int val_;
 S base_sender_;

 value_sender(int val, S&& base_sender)
 : val_(val)
 , base_sender_((S &&) base_sender) {}
 template <template <typename...> class Tuple,
 template <typename...> class Variant>
 using value_types = Variant<Tuple<int>>;
 template <template <typename...> class Variant>
 using error_types = Variant<std::exception_ptr>;
 static constexpr bool sends_done = true;

 template <typename R>
 struct op_state {
 struct void_receiver {
 int val_;
 R final_receiver_;

 void_receiver(int val, R&& final_receiver)
 : val_(val)
 , final_receiver_((R &&) final_receiver)
 {}
 void set_value() noexcept {
 execution::set_value((R &&)
 final_receiver_, val_); }
 void set_done() noexcept {
 execution::set_done((R &&)
 final_receiver_); }
 void set_error(std::exception_ptr e)
 noexcept { execution::set_error((R &&)
 final_receiver_, e); }
 };
 typename detail::connect_result_t<S,
 void_receiver> kickoff_op_;
 op_state(int val, R&& recv, S base_sender)
 : kickoff_op_(execution::connect((S &&)
 base_sender, void_receiver{
 val, (R &&) recv})) {}
 void start() noexcept {
 execution::start(kickoff_op_); }
 };
 template <typename R>
 op_state<R> connect(R&& recv) {
 return {val_, (R &&) recv
 , (S &&) base_sender_};
 }
};
8 | Overload | August 2021

https://www.youtube.com/watch?v=iYMfYdO0_OU
https://www.youtube.com/watch?v=iYMfYdO0_OU
https://github.com/facebookexperimental/libunifex
https://github.com/facebookexperimental/libunifex
https://www.youtube.com/watch?v=tF-Nz4aRWAM
https://www.youtube.com/watch?v=tF-Nz4aRWAM
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r14.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1897r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1897r3.html
https://www.youtube.com/watch?v=_T1XjxXNSCs
https://www.youtube.com/watch?v=nGqE48_p6s4
https://github.com/lucteo/concore
https://github.com/lucteo/concore
https://accu.org/journals/overload/28/158/teodorescu/
https://accu.org/journals/overload/28/158/teodorescu/
https://accu.org/journals/overload/28/159/teodorescu/

FEATURERUSSEL WINDER
Testing Propositions
Is testing propositions more important
than having examples as exemplars?
Russel Winder considers this hypothesis.
ith the rise of test-driven development (TDD) in the 1990s as
part of the eXtreme Programming (XP) movement, the role of
example-based testing became fixed into the culture of software

development1. The original idea was to drive development of software
products based on examples of usage of the product by end users. To
support this Kent Beck and others at the centre of the XP community
created test frameworks. They called them unit test frameworks
presumably because they were being used to test the units of code that
were being constructed. This all seemed to work very well for the people
who had been in on the start of this new way of developing software. But
then XP became well-known and fashionable: programmers other than
the original cabal began to claim they were doing XP and its tool TDD.
Some of them even bought the books written by Kent Beck and others at
the centre of the XP community. Some of them even read said books.

Labels are very important. The test frameworks were labelled unit test
frameworks. As all programmers know, units are functions, procedures,
subroutines, classes, modules: the units of compilation. (Interpreted
languages have much the same structure despite not being compiled per
se.) Unit tests are thus about testing the units, and the tools for this are unit
test frameworks. Somewhere along the line, connection between these
tests and the end user scenarios got lost. Testing became an introvert
thing. The whole notion of functional testing and ‘end to end’ testing
seemed to get lost because the label for the frameworks were ‘unit test’.

After a period of frustration with the lack of connection between end user
scenarios and tests, some people developed the idea of acceptance testing
so as to create frameworks and workflows. (Acceptance testing has been
an integral part of most engineering disciplines for centuries; it took
software development a while to regenerate the ideas.) FitNesse
[FitNesse] and Robot [Robot] are examples of the sort of framework that
came out of this period.

However, the distance between acceptance testing and unit testing was
still a yawning chasm2. Then we get a new entrant into the game,
behaviour-driven development (BDD). This was an attempt by Dan North
and others to recreate the way of using tests during development. The
TDD of XP had lost its meaning to far too many programmers, so the
testing frameworks for BDD were called JBehave, Cucumber, etc. and
had no concept of unit even remotely associated with them.

Now whilst BDD reasserted the need for programmers and software
developers to be aware of end user scenarios and at least pretend to care
about user experience whilst implementing systems, we ended up with
even more layers of tests and test frameworks.

And then came QuickCheck [QuickCheck], and the world of test was
really shaken up: the term ‘property-based testing’ became a thing.

QuickCheck [Hackage] first appeared in work by John Hughes and others
in the early 2000s. It started life in the Haskell [Haskell] community but
has during the 2010s spread rapidly into the milieus of any programming
language that even remotely cares about having good tests.

Example required
Waffling on textually is all very well, but what we really need is code;
examples are what exemplify the points, exemplars are what we need. At
this point it seems entirely appropriate to make some reuse, which, as is
sadly traditional in software development, is achieved by cut and paste.
So I have cut and paste3 the following from a previous article for
Overload [Winder16]:

For this we need some code that needs testing: code that is small
enough to fit on the pages of this august journal, but which highlights
some critical features of the test frameworks.

We need an example that requires testing, but that gets out of the
way of the testing code because it is so trivial.

We need factorial.

Factorial is a classic example usually of the imperative vs. functional
way of programming, and so is beloved of teachers of first year
undergraduate programming courses. I like this example though
because it allows investigating techniques of testing, and allows
comparison of test frameworks.

Factorial is usually presented via the recurrence relation:

This is a great example, not so much for showing software development
or algorithms, but for showing testing4, and the frameworks provided by
each programming language.

Given the Haskell heritage of property-based testing, it seems only right,
and proper, to use Haskell for the first example. (It is assumed that GHC
7.10 or later (or equivalent) is being used.)

1. Into the culture of cultured developers, anyway.
2. Yes there is integration testing and system testing as well as unit testing

and acceptance testing, and all this has been around in software, in
principle at least, for decades, but only acceptance testing and unit
testing had frameworks to support them. OK, technically FitNesse is an
integration testing framework, but that wasn’t how it was being used,
and not how it is now advertised and used.

W

3. Without the footnotes, so if you want those you’ll have to check the
original. We should note though that unlike that article of this august
journal, this is an August august journal issue, so very august.

4. OK so in this case this is unit testing, but we are creating APIs which
are just units so unit testing is acceptance testing for all intents and
purposes.

f

f nfn n

0

1

1

Russel Winder Ex-theoretical physicist, ex-UNIX system
programmer, ex-academic. Now an ex-independent consultant, ex-
analyst, ex-author, ex-expert witness and ex-trainer. Was
interested in all things parallel and concurrent. And build. Was
actively involved with Groovy, GPars, GroovyFX, SCons, and
Gant. Also Gradle, Ceylon, Kotlin, D and bit of Rust. And lots of
Python especially Python-CSP.
August 2021 | Overload | 9

FEATURE RUSSEL WINDER

it seems to be idiomatic to have the type
signature ... as a check that the function
implementation is consistent with the
stated signature
Haskell implementation…
There are many algorithms for realizing the Factorial function: iterative,
naïve recursive, and tail recursive are the most obvious. So as we see in
Listing 1 we have three realizations of the Factorial function. Each of the
functions starts with a type signature followed by the implementation.
The type signature is arguably redundant since the compiler deduces all
types. However, it seems to be idiomatic to have the type signature, not
only as documentation, but also as a check that the function
implementation is consistent with the stated signature. Note that in
Haskell there are no function call parentheses – parentheses are used to
ensure correct evaluation of expressions as positional arguments to
function calls. It is also important to note that in Haskell functions are
always curried: a function of two parameters is actually a function of one
parameter that returns a function of one parameter. Why do this? It makes
it really easy to partially evaluate functions to create other functions. The
code of Listing 1 doesn’t make use of this, but we will be using this feature
shortly.

The iterative and naïveRecursive implementations are just
matches with an expression: each match starts with a | and is an
expression of Boolean value then a = followed by the result expression to
evaluate for that match expression. Matches are tried in order and
otherwise is the ‘catch all’ “Boolean” that always succeeds; it should,
of course, be the last in the sequence. The error function raises an
exception to be handled elsewhere. The tailRecursive function has a

match and also a ‘where clause’ which defines the function iteration
by pattern matching on the parameters. The ‘where clause’ definitions are
scoped to the function of definition5,6.

…and example-based test
Kent Beck style TDD started in Smalltalk with sUnit7 and then transferred
to Java with JUnit8. A (thankfully fading) tradition seems to have grown
that the first test framework in any language is constructed in the JUnit3
architecture – even if this architecture is entirely unsuitable, and indeed
not idiomatic, for the programming language. Haskell seem to have neatly
side-stepped the problem from the outset since although the name is
HUnit [HUnit] as required by the tradition, the architecture is nothing at
all like JUnit3. Trying to create the JUnit3 architecture in Haskell would
have been hard and definitely not idiomatic, HUnit is definitely idiomatic
Haskell.

Listing 2 shows the beginnings of a test using a table driven (aka data
driven) approach. It seems silly to have to write a new function for each
test case, hence the use of a table (positiveData) to hold the inputs and
outputs and create all the tests with a generator (testPositive, a
function of two parameters, the function to test and a string unique to the
function so as to identify it). The function test takes a list argument with
all the tests, here the list is being constructed with a list comprehension:
the bit before the | is the value to calculate in each case (a fairly arcane
expression, but lets not get too het up about it) and the expression after is
the ‘loop’ that drives the creation of the different values, in this case create
a list entry for each pair in the table. Then we have a sequence (thanks to
the do expression9) of three calls to runTestTT (a function of one
parameter) which actually runs all the tests.

Of course, anyone saying to themselves “but he hasn’t tested negative
values for the arguments of the Factorial functions”, you are not being
silly; you are being far from silly, very sensible in fact. I am avoiding this
aspect of the testing here simply to avoid some Haskell code complexity10

that adds nothing to the flow in this article. If I had used Python or Java

Listing 1

module Factorial(iterative, naïveRecursive,
 tailRecursive) where
exceptionErrorMessage = "Factorial not defined for
negative integers."

iterative :: Integer -> Integer
iterative n
 | n < 0 = error exceptionErrorMessage
 | otherwise = product [1..n]

naïveRecursive :: Integer -> Integer
naïveRecursive n
 | n < 0 = error exceptionErrorMessage
 | n == 0 = 1
 | otherwise = n * naïveRecursive (n - 1)

tailRecursive :: Integer -> Integer
tailRecursive n
 | n < 0 = error exceptionErrorMessage
 | otherwise = iteration n 1
 where
 iteration 0 result = result
 iteration i result = iteration (i - 1)
 (result * i)

5. If you need a tutorial introduction to the Haskell programming language
then http://learnyouahaskell.com/ and http://book.realworldhaskell.org/
are recommended.

6. If you work with the JVM and want to use Haskell, there is Frege; see
http://www.frege-lang.org or https://github.com/Frege/frege Frege is a
realization of Haskell on the JVM that allows a few extensions to
Haskell so as to work harmoniously with the Java Platform.

7. The name really does give the game away that the framework was for
unit testing.

8. Initially called JUnit, then when JUnit4 came out JUnit was renamed
JUnit3 as by then it was at major version 3. Now of course we have
JUnit5.

9. Yes it’s a monad. Apparently monads are difficult to understand, and
when you do understand them, they are impossible to explain. This is
perhaps an indicator of why there are so many tutorials about monads
on the Web.

10. Involving Monads. Did I mention about how once you understand
monads, you cannot explain them?
10 | Overload | August 2021

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.frege-lang.org
https://github.com/Frege/frege

FEATURERUSSEL WINDER

The proposition of proposition-based testing is to
make propositions about the code and then use

random selection of values from the domain to check
the propositions are not invalid
(or, indeed, almost any language other than Haskell) we would not have
this issue. For those wishing to see the detail of a full test please see my
Factorial repository on GitHub [Winder].

And the proposition is…
The code of Listing 2 nicely shows that what we are doing is selecting
values from the domain of the function and ensuring the result of
executing the function is the correct value from the image of the

function11. This is really rather an important thing to do but are we doing
it effectively?

Clearly to prove the implementation is correct we have to execute the
code under test with every possible value of the domain. Given there are
roughly 264 (about 18,446,744,073,709,551,616) possible values to test
on a 64-bit machine, we will almost certainly decide to give up
immediately, or at least within just a few femtoseconds. The test code as
shown in Listing 2 is sampling the domain in an attempt to give us
confidence that our implementation is not wrong. Have we done that
here? Are we satisfied? Possibly yes, but could we do more quickly and
easily?

The proposition of proposition-based testing is to make propositions
about the code and then use random selection of values from the domain
to check the propositions are not invalid. In this case of testing the
Factorial function, what are the propositions? Factorial is defined by a
recurrence relation comprising two rules. These rules describe the
property of the function that is Factorial with respect to the domain, the
non-negative integers. If we encode the recurrence relation as a predicate
(a Boolean valued function) we have a representation of the property that
can be tested by random selection of non-negative integers.

Listing 3 shows a QuickCheck test of Factorial. The function f_p is the
predicate representing the property being tested. It is a function of two
parameters, a function to test and a value to test, with the result being
whether the recurrence relation that defines Factorial is true for that value
and that function: the predicate is an assertion of the property that any
function claiming to implement the Factorial function must satisfy. Why
is this not being used directly, but instead factorial_property is the
predicate being tested by the calls to quickCheck? It is all about types
and the fact that values are automatically generated for us based on the
domain of the property being tested. f_p is a predicate dealing with
Integer, the domain of the functions being tested, values of which can
be negative. Factorial is undefined for negative values12. So the predicate
called by quickCheck, factorial_property, is defined with
Natural as the domain, i.e. for non-negative integers13. So when we
execute quickCheck on the function under test, it is non-negative
integer values that are generated: The predicate never needs to deal with
negative values, it tests just the Factorial proposition and worries not
about handling the exceptions that the implementations raise on being
given a negative argument. Should we test for negative arguments and
that an exception is generated? Probably. Did I mention ignoring this for
now?

Earlier I mentioned currying and partial evaluation. In Listing 3, we are
seeing this in action. The argument to each quickCheck call is an
expression that partially evaluates factorial_property, binding a

Listing 2

module Main where

import Test.HUnit

import Factorial

positiveData = [
 (0, 1),
 (1, 1),
 (2, 2),
 (3, 6),
 (4, 24),
 (5, 120),
 (6, 720),
 (7, 5040),
 (8, 40320),
 (9, 362880),
 (10, 3628800),
 (11, 39916800),
 (12, 479001600),
 (13, 6227020800),
 (14, 87178291200),
 (20, 2432902008176640000),
 (30, 265252859812191058636308480000000),
 (40,
815915283247897734345611269596115894272000000000)
]

testPositive function comment =
 test [comment ++ " " ++ show i ~: "" ~:
 expected ~=? function i |
 (i, expected) <- positiveData]

main = do
 runTestTT (testPositive Factorial.iterative
 "Iterative")
 runTestTT (testPositive Factorial.naïveRecursive
 "Naïve Recursive")
 runTestTT (testPositive Factorial.tailRecursive
 "Tail Recursive")

11. Pages such as https://en.wikipedia.org/wiki/Domain_of_a_function and
https://en.wikipedia.org/wiki/Image_(mathematics) may be handy if you
are unused to the terminology used here.

12. And also non-integral types, do not forget this in real testing.
13. If you are thinking we should be setting up a property to check that all

negative integers result in an error, you are thinking on the right lines.
August 2021 | Overload | 11

https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Image_(mathematics)

FEATURE RUSSEL WINDER

Shrinking is such a boon ... that it is now
seen as essential for any property-based
testing framework
particular implementation of Factorial, and returning a function that
takes only a Natural value. This sort of partial evaluation is a typical
and idiomatic technique of functional programming, and increasingly any
language that supports functions as first class entities.

By default QuickCheck selects 100 values from the domain, so Listing 3
is actually 300 tests. In the case we have here there are no fails, all 300
tests pass. Somewhat splendidly, if there is a failure of a proposition,
QuickCheck sets about ‘shrinking’ which means searching for the
smallest value in the domain for which the proposition fails to hold. Many
people are implementing some form of proposition testing in many
languages. Any not having shrinking are generally seen as being not
production ready. Shrinking is such a boon to taking the results of the tests
and deducing (or more usually inferring) the cause of the problem, that it
is now seen as essential for any property-based testing framework.

Figure 1 shows the result of running the two test programs: first the HUnit
example based testing – 18 hand picked tests for each of the three
implementations; and second the QuickCheck property-based testing –
100 tests for each case, all passing so no need for shrinking.

But who uses Haskell?
Well, quite a lot of people. However, one of the major goals of Haskell is
to ‘Avoid success at all costs’14. The point here is not un-sensible. Haskell
is a language for exploring and extending ideas and principles of
functional programming. The Haskell committee therefore needs to avoid
having to worry about backward compatibility. This puts it a bit at odds

with many commercial and industrial operations who feel that, once
written, a line of code should compile (if that is appropriate) and execute
exactly the same for all time without any change. Clearly this can be
achieved easily in any language by never upgrading the toolchain.
However, the organizations that demand code works for all time usually
demand that toolchains are regularly updated. (Otherwise the language is
considered dead and unusable. There is irony in here somewhere I
believe.) There is no pleasing some people. Successful languages in the
sense of having many users clearly have to deal with backward
compatibility. Haskell doesn’t. Thus Haskell, whilst being a very
important language, doesn’t really have much market traction.

Frege makes an entry
Frege [Frege] though is actually likely to get more traction than Haskell.
Despite the potential for having to update codebases, using ‘Haskell on
the JVM’ is an excellent way of creating JVM-based systems. And
because the JVM is a polyglot platform, bits of systems can be in Java,
Frege, Kotlin [Kotlin], Ceylon [Ceylon], Scala [Scala], Apache Groovy
[Groovy], etc. For anyone out there using the Java Platform, I can strongly
recommend at least trying Frege. To give you a taste, look at Listing 4,
which shows three Frege implementations of the Factorial function, and
that Frege really is Haskell. The tests (see Listing 5) are slightly different
from the Haskell ones not because the languages are different but because
the context is: instead of creating a standalone executable as happens with
Haskell, Frege create a JVM class to be managed by a test runner. So
instead of a main function calling the test executor, we just declare
property instances for running using the property function, and assume
the test runner will do the right thing when invoked. The three examples
here show a different way of constraining the test domain to non-negative
integers than we saw with Haskell. Function composition (. operator,
must have spaces either side to distinguish it from member selection) of
the property function (using partial evaluation) with a test data generator
(NonNegative.getNonNegative; dot as selector not function
composition) shows how easy all this can be. Instead of just using the
default generator (which would be Integer for this property function
factorial_property, we are providing an explicit generator so as to
condition the values from the domain that get generated.

14. A phrase initially spoken by Simon Peyton Jones a number of years ago
that caught on in the Haskell community.

Listing 3

module Main where

import Numeric.Natural
import Test.QuickCheck

import Factorial

f_p :: (Integer -> Integer) -> Integer -> Bool
f_p f n
 | n == 0 = f n == 1
 | otherwise = f n == n * f (n - 1)

factorial_property :: (Integer -> Integer) ->
 Natural -> Bool
factorial_property f n = f_p f (fromIntegral n)

main :: IO()
main = do
 quickCheck (factorial_property iterative)
 quickCheck (factorial_property naïveRecursive)
 quickCheck (factorial_property tailRecursive)

Figure 1

$./factorial_test_hunit
Cases: 18 Tried: 18 Errors: 0 Failures: 0
Cases: 18 Tried: 18 Errors: 0 Failures: 0
Cases: 18 Tried: 18 Errors: 0 Failures: 0

$./factorial_test_quickcheck
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
12 | Overload | August 2021

FEATURERUSSEL WINDER

it behoves us to consider the proposition of
proposition testing in one or more languages that

have already gained real traction
The result of executing the Frege QuickCheck property-based tests are
seen in Figure 2. As with the Haskell, 100 samples for each test with no
fails and so no shrinking.

But…
With Haskell trying not to have a user base reliant on backward
compatibility, and Frege not yet having quite enough traction as yet to be
deemed popular, it behoves us to consider the proposition of proposition
testing in one or more languages that have already gained real traction.

First off let us consider…Python.

Let’s hypothesize Python
Python [Python_1] has been around since the late 1980s and early 1990s.
During the 2000s it rapidly gained in popularity. And then there was the
‘Python 2 / Python 3 Schism’.15 After Python 3.3 was released, there were
no excuses for staying with Python 2. (Well, except two – and I leave it as
an exercise for the reader to ascertain what these two genuine reasons are
for not immediately moving your Python 2 code to Python 3.) For myself,
I use Python 3.5 because Python now has function signature type
checking [Python_2]16.

Listing 6 shows four implementations of the Factorial function. Note that
the function signatures are advisory not strong type checking. Using the
MyPy [MyPy] program the types will be checked, but on execution it is
just standard Python as people have known for decades.

I suspect the Python code here is sufficiently straightforward that almost
all programmers17 will be able to deduce or infer any meanings that are
not immediately clear in the code. But a few comments to help: the range
function generates a range ‘from up to but not including’. The if
expression is of the form:

Listing 4

module Factorial where

exceptionErrorMessage = "Factorial not defined for
negative integers."

iterative :: Integer -> Integer
iterative n
 | n < 0 = error exceptionErrorMessage
 | otherwise = product [1..n]

naïveRecursive :: Integer -> Integer
naïveRecursive n
 | n < 0 = error exceptionErrorMessage
 | n == 0 = 1
 | otherwise = n * naïveRecursive (n - 1)

tailRecursive :: Integer -> Integer
tailRecursive n
 | n < 0 = error exceptionErrorMessage
 | otherwise = iteration n 1
 where
 iteration 0 result = result
 iteration i result = iteration (i - 1)
 (result * i)

Listing 5

module Factorial_Test where

import Test.QuickCheck(quickCheck, property)
import Test.QuickCheckModifiers(NonNegative)

import Factorial(iterative, naïveRecursive,
 tailRecursive)

factorial_property :: (Integer -> Integer)
 -> Integer -> Bool
factorial_property f n
 | n == 0 = f n == 1
 | otherwise = f n == n * f (n - 1)

factorial_iterative_property =
 property ((factorial_property iterative)
 . NonNegative.getNonNegative)
factorial_naïveRecursive_property =
 property ((factorial_property naïveRecursive)
 . NonNegative.getNonNegative)
factorial_tailRecursive_property =
 property ((factorial_property tailRecursive)
 . NonNegative.getNonNegative)

15. We will leave any form of description and commentary on the schism to
historians. As Python programmers, we use Python 3 and get on with
programming.

16. This isn’t actually correct: Python allows function signatures as of 3.5
but doesn’t check them. You have to have to have a separate parser-
type-checker such as MyPy. This is annoying, Python should be doing
the checking.

17. We will resist the temptation to make some facetious, and likely
offensive, comment about some programmers who use only one
programming language and refuse to look at any others. “Resistance is
futile.” Seven of Nine.

Figure 2

Factorial_Test.factorial_tailRecursive_property:
 +++ OK, passed 100 tests.
Factorial_Test.factorial_iterative_property:
 +++ OK, passed 100 tests.
Factorial_Test.factorial_naïveRecursive_property:
 +++ OK, passed 100 tests.
Properties passed: 3, failed: 0
August 2021 | Overload | 13

FEATURE RUSSEL WINDER

not only are we testing non-negative and
negative integers, we also test other forms of
error that are possible in Python
 <true-value> if <boolean-expression>
 else <false-value>

The nested function iterate in tail_recursive is scoped to the else
block.

But are these implementations ‘correct’? To test them let’s use PyTest
[Pytest]. The test framework that comes as standard with Python (unittest,
aka PyUnit) could do the job, but PyTest is just better18. PyTest provides
an excellent base for testing but it does not have property-based testing.

For this we will use Hypothesis [Hypothesis] (which can be used with
PyUnit as easily as with PyTest, but PyTest is just better).

Listing 7 shows a fairly comprehensive test – not only are we testing non-
negative and negative integers, we also test other forms of error that are
possible in Python. Tests are functions with the first four characters of the
name being t, e, s, t. Very JUnit3, and yet these are module-level

18. For reasons that may, or may not, become apparent in this article, but
relate to PyUnit following JUnit3 architecture – remember the fading
tradition – and PyTest being Pythonic.

Listing 6

from functools import reduce
from operator import mul

def _validate(x: int) -> None:
 if not isinstance(x, int):
 raise TypeError('Argument must be an
integer.')
 if x < 0:
 raise ValueError('Argument must be a
non-negative integer.')

def iterative(x: int) ->int:
 _validate(x)
 if x < 2:
 return 1
 total = 1
 for i in range(2, x + 1):
 total *= i
 return total

def recursive(x: int) -> int:
 _validate(x)
 return 1 if x < 2 else x * recursive(x - 1)

def tail_recursive(x: int) -> int:
 _validate(x)
 if x < 2:
 return 1
 else:
 def iterate(i: int, result: int=1):
 return result if i < 2 else iterate(i - 1,
 result * i)
 return iterate(x)

def using_reduce(x: int) -> int:
 _validate(x)
 return 1 if x < 2 else reduce(mul,
 range(2, x + 1))

Listing 7

from pytest import mark, raises

from hypothesis import given
from hypothesis.strategies import (integers,
 floats, text)

from factorial import (iterative, recursive,
 tail_recursive, using_reduce)

algorithms = (iterative, using_reduce, recursive,
 tail_recursive)

@mark.parametrize('a', algorithms)
@given(integers(min_value=0, max_value=900))
def test_with_non_negative_integer (a, x):
 assert a(x) == (1 if x == 0 else x * a(x - 1))

@mark.parametrize('a', algorithms)
@given(integers(max_value=-1))
def test_negative_integer_causes_ValueError(a, x):
 with raises(ValueError):
 a(x)

@mark.parametrize('a', algorithms)
@given(floats())
def test_float_causes_TypeError(a, x):
 with raises(TypeError):
 a(x)

@mark.parametrize('a', algorithms)
def test_none_causes_TypeError(a):
 with raises(TypeError):
 a(None)

@mark.parametrize('a', algorithms)
@given(text())
def test_string_causes_TypeError(a, x):
 with raises(TypeError):
 a(x)

if __name__ == '__main__':
 from pytest import main
 main()
14 | Overload | August 2021

FEATURERUSSEL WINDER

Figure 3

============================= test session starts ==============================
platform linux -- Python 3.5.1, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: /home/users/russel/Docs/Papers/ACCU/Draft/TestingPropositions/SourceCode/Python, inifile:
plugins: hypothesis-3.4.0, cov-2.2.1
collected 20 items

test_factorial.py

========================== 20 passed in 2.32 seconds ===========================

automated data generation is at the heart of
property-based testing
functions. There are no classes or inheritance in sight: that would be the
PyUnit way. The PyTest way is to dispense with the classes as necessary
infrastructure, swapping them for needing some infrastructure to be
imported in some way or other. (This is all handled behind the scenes
when pytest.main executes.) PyTest is in so many ways more Pythonic19

than PyUnit.

PyTest has the @mark.parametrize decorator that rewrites your code
so as to have one test per item of data in an iterable. In all the cases here,
it is being used to generate tests for each algorithm20.

The @given decorator, which comes from Hypothesis, does not rewrite
functions to create new test functions. Instead it generates code to run the
function it decorates with a number (the default is 100) of randomly
chosen values using the generator given as argument to the decorator,
recording the results to report back. This automated data generation is at
the heart of property-based testing, and Hypothesis, via the supporting
functions such as integers, floats, and text (for generating
integers, floats, and string respectively), does this very well. Notice how
it is so easy to generate just negative integers or just non-negative
integers. Also note the use of the ‘with statement’21 and the raises
function for testing that code does, in fact, raise an exception.

All the test functions have a parameter a that gets bound by the action of
the @mark.parametrize decorator, and a parameter x that gets bound
by the action of the @given decorator. This is all very different from the
partial evaluation used in Haskell and Frege: different language features
lead to different idioms to achieve the same goal. What is Pythonic is not
Haskellic/Fregic, and vice versa. At least not necessarily.

The pytest.main function, when executed, causes all the decorators to
undertake their work and executes the result. The output from an
execution will look very much as in Figure 3. You may find when you try
this that the last line is green.22

Doing the C++ thing
There are many other example languages we could present here to show
the almost complete coverage of property-based testing in the world:
Kotlin [Kotlin], Ceylon [Ceylon], Scala [Scala], Apache Groovy
[Groovy], Rust [Rust], D [D], Go [Go],… However, given this is an
August23 ACCU journal and, historically at least, ACCU members have
had a strong interest in C++, we should perhaps look at C++. Clearly
people could just use Haskell and QuickCheck to test their C++ code, but
let’s be realistic here, that isn’t going to happen24. So what about
QuickCheck in C++? There are a number of implementations, for
example CppQuickCheck [QuickCheck_2] and QuickCheck++
[QuickCheck_3]. I am, though, going to use RapidCheck [RapidCheck]
here because it seems like the most sophisticated and simplest to use of
the ones I have looked at to date25.

There is one thing we have to note straight away: Factorial values are
big26. Factorial of 30 is a number bigger than can be stored in a 64-bit
integer. So all the implementations of Factorial used in books and first
year student exercises are a bit of a farce because they are shown using
hardware integers: the implementations work for arguments [0..20] and
then things get worrisome. “But this is true for all languages and we didn’t
raise this issue for Haskell, Frege and Python.” you say. Well for Haskell
(and Frege, since Frege is just Haskell on the JVM) the Int type is a
hardware number but Integer, the type used in the Haskell and Frege
code, is an integer type the values of which can be effectively arbitrary
size. There is a limit, but then in the end even the universe is finite27. What
about Python? The Python28 int type uses hardware when it can or an
unbounded (albeit finite27) integer when it cannot. What about C++? Well

19. See http://docs.python-guide.org/en/latest/writing/style/
20. There are ways of parameterizing tests in PyUnit (aka unittest), but it is

left as an exercise for the reader to look for these. PyTest and
@pytest.mark.parametrize are the way this author chooses to
do parameterized tests in Python.

21. Context managers and the ‘with statement’ are Python’s way of doing
RAII (resource acquisition is initialization, https://en.wikipedia.org/wiki/
Resource_Acquisition_Is_Initialization) amongst other great things.

22. Whilst this is an August august journal (and so very august), it is
monochrome. So you will have to imagine the greenness of the test
output. Either that or actually try the code out for yourself and observe
the greenness first hand.

23. Or should that be august. Well actually it has to be both.
24. Not least because Haskell’s avowed aim is never to be successful.
25. Also it uses Catch [Catch] for its tests.
26. Factorials are big like space is big, think big in Hitchhiker’s Guide to the

Galaxy terms: “Space,” it says, “is big. Really big. You just won’t believe
how vastly, hugely, mindbogglingly big it is. I mean, you may think it’s
a long way down the road to the chemist, but that’s just peanuts to
space. Listen…?”
https://en.wikiquote.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy
August 2021 | Overload | 15

https://en.wikiquote.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://docs.python-guide.org/en/latest/writing/style/

FEATURE RUSSEL WINDER
the language and standard library have only hardware-based types, which
could be taken as rather restricting. GNU has however conveniently
created a C library for unbounded (albeit finite27) integers, and it has a
rather splendid C++ binding [GNU].

So using the GMP C++ API, we can construct implementations of the
Factorial function that are not restricted to arguments in the range [0..20]
but are more generally useful. Listing 8 shows the functions being
exported by the Factorial namespace. We could dispense with the
long overloads, but it seems more programmer friendly to offer them.

Listing 9 presents the implementations. I suspect that unless you already
know C++ (this code is C++14) you have already moved on. So any form
of explanatory note is effectively useless here.29 We will note though that
there is a class defined in there as well as implementations of the Factorial
function.

Listing 10 presents the RapidCheck-based test code for the Factorial
functions. There is a vector of function pointers30 so that we can easily
iterate over the different implementations. Within the loop we have a
sequence of the propositions. Each check has a descriptive string and a
lambda function. The type of variables to the lambda function will cause
(by default 100) values of that type to be created and the lambda executed
for each of them. You can have any number of parameters – zero has been
chosen here, which might seem a bit strange at first, but think generating
random integers. Some of them are negative and some non-negative and

27. Space may be big (see above) but the universe (space being the same
thing as the universe as far as we know) is finite – assuming the current
theories are correct.

28. Python 3 anyway. Python 2 has effectively the same behaviour, but
with more types. It is left as an exercise for the reader whether to worry
about this.

29. There was some thought of introducing the acronym RTFC (read the
fine code), but this temptation was resisted. “Resistance is futile.”
Seven of Nine.

Listing 8

#include <gmpxx.h>

namespace Factorial {

mpz_class iterative(mpz_class const n);
mpz_class iterative(long const n);
mpz_class reductive(mpz_class const n);
mpz_class reductive(long const n);
mpz_class naive_recursive(mpz_class const n);
mpz_class naive_recursive(long const n);
mpz_class tail_recursive(mpz_class const n);
mpz_class tail_recursive(long const n);

} // namespace Factorial

Listing 9

#include "factorial.hpp"

#include <functional>
#include <iterator>
#include <numeric>

namespace Factorial {
static void validate(mpz_class const n) {
 if (n < 0) {
 throw std::invalid_argument("Parameter must be
a non-negative integer."); }
}
auto const one = mpz_class(1);
auto const two = mpz_class(2);

mpz_class iterative(mpz_class const n) {
 validate(n);
 mpz_class total {1};
 for (unsigned int i = 2; i <= n; ++i) {
 total *= i; }
 return total;
}
mpz_class iterative(long const n) {
 return iterative(mpz_class(n)); }

30. Well, actually pairs, with the first being the function pointer and the
second being a descriptive string.

Listing 9 (cont’d)

class mpz_class_iterator:
 std::iterator<std::input_iterator_tag,
 mpz_class> {
 private:
 mpz_class value;
 public:
 mpz_class_iterator(mpz_class const v) :
 value(v) { }
 mpz_class_iterator& operator++() {
 value += 1; return *this; }
 mpz_class_iterator operator++(int) {
 mpz_class_iterator tmp {
 *this}; ++*this; return tmp; }
 bool operator==(mpz_class_iterator const &
 other) const {
 return value == other.value; }
 bool operator!=(mpz_class_iterator const &
 other) const {
 return value != other.value; }
 mpz_class operator*() const { return value; }
 mpz_class const * operator->() const {
 return &value; }
};

mpz_class reductive(mpz_class const n) {
 validate(n);
 return (n < 2)
 ? one
 : std::accumulate(mpz_class_iterator(two),
 mpz_class_iterator(n + 1), one,
 std::multiplies<>());}
mpz_class reductive(long const n) {
 return reductive(mpz_class(n)); }
mpz_class naive_recursive(mpz_class const n) {
 validate(n);
 return (n < 2) ? one :
 n * naive_recursive(n - 1);
}

mpz_class naive_recursive(long const n) {
 return naive_recursive(mpz_class(n)); }

static mpz_class tail_recursive_iterate
 (mpz_class const n, mpz_class const result) {
 return (n < 2) ? result :
 tail_recursive_iterate(n - 1, result * n);
}

mpz_class tail_recursive(mpz_class const n) {
 validate(n);
 return (n < 2) ? one : tail_recursive_iterate(n,
 one);
}
mpz_class tail_recursive(long const n) {
 return tail_recursive(mpz_class(n)); }
} // namespace Factorial
16 | Overload | August 2021

FEATURERUSSEL WINDER
we have to be careful to separate these cases as the propositions are so
very different. Also some of the calculation for non-negative integers will
result in big values. The factorial of a big number is stonkingly big.
Evaluation will take a while… a long while… a very long while… so long
we will have read War and Peace… a large number of times. So we
restrict the integers of the domain sample by using an explicit generator.
In this case for the non-negative integers we sample from [0..900]. For the
negative integers we sample from a wider range as there should only ever
be a very rapid exception raised, there should never actually be a
calculation.

So that is the Factorial functions themselves tested. I trust you agree that
what we have here is a very quick, easy, and providing good coverage test.
But, you ask, what about that class? Should we test the class? An
interesting question. Many would say “No” because it is internal stuff, not
exposed as part of the API. This works for me: why test anything that is
not observable from outside. Others will say “Yes” mostly because it
cannot hurt. For this article I say “Yes” because it provides another
example of proposition-based testing. We do not test any examples, we
test only properties of the class and its member functions. See Listing 11.
By testing the properties, we are getting as close to proving the
implementation not wrong as it is possible to get in an easily maintainable
way. QED.

And to prove that point, see Figure 4, which shows the Factorial tests and
class test executed. So many useful (passing) tests, so little effort.

The message
Example-based testing of a sample from the domain tells us we are
calculating the correct value(s). Proposition-based testing tells us that our
code realizes the relationships that should exist between different values

from the domain. They actually tell us slightly different things and so
arguably good tests do both, not one or the other. However if we have
chosen the properties to test correctly then zero, one, or two examples are
likely to be sufficient to ‘prove’ the code not incorrect. Hypothesis, for
example, provides an @example decorator for adding those few
examples. For other frameworks in other languages we can just add one
or two example-based tests to the property-based tests.

But, some will say, don’t (example-based) tests provide examples of use?
Well yes, sort of. I suggest that these examples of use should be in the
documentation, that users should not have to descend to reading the tests.
So for me property-based testing (with as few examples as needed) is the
future of testing. Examples and exemplars should be in the
documentation. You do write documentation, don’t you…

Listing 10

#include "rapidcheck.h"

#include <string>
#include <utility>

#include "factorial.hpp"

std::vector<std::pair<mpz_class (*)(long const),
std::string>> const algorithms {
 {Factorial::iterative, "iterative"},
 {Factorial::reductive, "reductive"},
 {Factorial::naive_recursive, "naïve recursive"},
 {Factorial::tail_recursive, "tail recursive"}
};

int main() {
 for (auto && a: algorithms) {
 auto f = a.first;

 rc::check(a.second + " applied to non-negative
 integer argument obeys the recurrence
 relation.", [f]() {
 auto i = *rc::gen::inRange(0, 900);
 RC_ASSERT(f(i) == ((i == 0) ? mpz_class(1) :
 i * f(i - 1)));
 });

 rc::check(a.second + " applied to negative
 integer raises an exception.", [f]() {
 auto i = *rc::gen::inRange(-100000, -1);
 RC_ASSERT_THROWS_AS(f(i),
 std::invalid_argument);
 });
 }
 return 0;
}

Listing 11

#include "rapidcheck.h"
#include "factorial.cpp"

int main() {
 using namespace Factorial;

 rc::check("value of operator delivers the right
 value", [](int i) {
 RC_ASSERT(*mpz_class_iterator{i} == i);
 });

 rc::check("pointer operator delivers the right
 value", [](int i) {
 RC_ASSERT(mpz_class_iterator{i}->get_si()
 == i);
 });

 rc::check("equality is value not identity.",
 [](int i) {
 RC_ASSERT(mpz_class_iterator{i}
 == mpz_class_iterator{i});
 });

 rc::check("inequality is value not identity.",
 [](int i, int j) {
 RC_PRE(j != 0);
 RC_ASSERT(mpz_class_iterator{i}
 != mpz_class_iterator{i + j});
 });

 rc::check("preincrement does in fact increment",
 [](int i) {
 RC_ASSERT(++mpz_class_iterator{i}
 == mpz_class_iterator{i + 1});
 });

 rc::check("postincrement does in fact
 increment", [](int i) {
 RC_ASSERT(mpz_class_iterator{i}++
 == mpz_class_iterator{i});
 });

 rc::check("value of preincrement returns correct
 value", [](int i) {
 RC_ASSERT(*++mpz_class_iterator{i}
 == i + 1);
 });

 rc::check("value of postincrement returns
 correct value", [](int i) {
 RC_ASSERT(*mpz_class_iterator{i}++ == i);
 });
}

August 2021 | Overload | 17

FEATURE RUSSEL WINDER
An apology
Having just ranted about documentation, you may think I am being
hypocritical since the code presented here has no comments. A priori,
code without comments, at least documentation comments31, is a Bad
Thing™ – all code should be properly documentation commented. All the
code in the GitHub repository that holds the originals from which the code
presented here were extracted is. So if you want to see the properly
commented versions, feel free to visit https://github.com/russel/Factorial.
If you find any improperly commented code, please feel free to nudge me
about it and I will fix it post haste32.

Acknowledgements
Thanks to Fran Buontempo for being the editor of this august33 journal,
especially this August august journal34, and letting me submit a wee bit
late.

Thanks to Jonathan Wakely for not laughing too much when I showed
him the original C++ code, and for making suggestions that made the code
far more sensible.

Thanks to the unnamed reviewers who pointed out some infelicities of
presentation as well as syntax. Almost all the syntactic changes have been
made – I disagreed with a few. Hopefully the changes made to the content
has fully addressed the presentation issues that were raised.

Thanks to all those people working on programming languages and test
frameworks, and especially for those working on property-based testing
features, without whom this article would have been a very great deal
shorter.

References
[Catch] https://github.com/philsquared/Catch

[Ceylon] http://ceylon-lang.org/

[D] http://dlang.org/

[FitNesse] http://www.fitnesse.org/

[Frege] http://www.frege-lang.org or https://github.com/Frege/frege

[GNU] https://gmplib.org/,
https://gmplib.org/manual/C_002b_002b-Interface-General.html

[Go] https://golang.org/

[Groovy] http://www.groovy-lang.org/

[Hackage] https://hackage.haskell.org/package/QuickCheck

[Haskell] https://www.haskell.org/

[HUnit] https://github.com/hspec/HUnit

[Hypothesis] http://hypothesis.works/,
https://hypothesis.readthedocs.io/en/latest/,
https://github.com/HypothesisWorks/hypothesis-python

[Kotlin] http://kotlinlang.org/

[MyPy] http://www.mypy-lang.org/

[Pytest] http://pytest.org/latest/

[Python_1] https://www.python.org/

[Python_2] https://www.python.org/dev/peps/pep-3107/,
https://www.python.org/dev/peps/pep-0484/

[QuickCheck] https://en.wikipedia.org/wiki/QuickCheck

[QuickCheck_2] https://github.com/grogers0/CppQuickCheck

[QuickCheck_3] http://software.legiasoft.com/quickcheck/

[RapidCheck] https://github.com/emil-e/rapidcheck

[Robot] http://robotframework.org/

[Rust] https://www.rust-lang.org/

[Scala] http://www.scala-lang.org/

[Winder] The full Haskell example can be found at https://github.com/
russel/Factorial/tree/master/Haskell.

[Winder16] Overload, 24(131):26–32, February 2016. There are PDF
(http://accu.org/var/uploads/journals/Overload131.pdf#page=27) or
HTML (http://accu.org/index.php/journals/2203) versions available.

31. Debating the usefulness or otherwise of non-documentation comments
is left as an exercise for the readership.

32. And request Doctor Who or someone to perform appropriate time travel
with the corrections so that the situation has never been the case.

Figure 4

$./test_factorial
Using configuration: seed=10731500115167123548

- iterative applied to non-negative integer
argument obeys the recurrence relation.
OK, passed 100 tests

- iterative applied to negative integer raises an
exception.
OK, passed 100 tests

- reductive applied to non-negative integer
argument obeys the recurrence relation.
OK, passed 100 tests

- reductive applied to negative integer raises an
exception.
OK, passed 100 tests

- naïve recursive applied to non-negative integer
argument obeys the recurrence relation.
OK, passed 100 tests

- naïve recursive applied to negative integer
raises an exception.
OK, passed 100 tests

- tail recursive applied to non-negative integer
argument obeys the recurrence relation.
OK, passed 100 tests

- tail recursive applied to negative integer
raises an exception.
OK, passed 100 tests

$./test_mpz_class_iterator
Using configuration: seed=9168594634932513587

- value of operator delivers the right value
OK, passed 100 tests

- pointer operator delivers the right value
OK, passed 100 tests

- equality is value not identity.
OK, passed 100 tests

- inequality is value not identity.
OK, passed 100 tests

- preincrement does in fact increment
OK, passed 100 tests

33. And, indeed, August.
34. “This joke is getting silly, stop this joke immediately.” The Colonel.

Russel was a long-standing ACCU member who passed
away earlier this year. We miss him and have reprinted this
article in his memory, which was first published in Overload
134, August 2016.
18 | Overload | August 2021

http://www.fitnesse.org/
https://en.wikipedia.org/wiki/QuickCheck
http://robotframework.org/
http://www.groovy-lang.org/
https://www.haskell.org/
http://accu.org/var/uploads/journals/Overload131.pdf#page=27
http://accu.org/index.php/journals/2203
https://github.com/hspec/HUnit
https://github.com/russel/Factorial/tree/master/Haskell
https://github.com/russel/Factorial/tree/master/Haskell
http://www.frege-lang.org
https://github.com/Frege/frege
http://kotlinlang.org/
https://www.python.org/
http://www.scala-lang.org/
http://ceylon-lang.org/
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-0484/
http://pytest.org/latest/
http://hypothesis.works/
https://hypothesis.readthedocs.io/en/latest/
https://github.com/HypothesisWorks/hypothesis-python
http://www.mypy-lang.org/
http://dlang.org/
https://golang.org/
https://www.rust-lang.org/
https://github.com/grogers0/CppQuickCheck
http://software.legiasoft.com/quickcheck/
https://github.com/emil-e/rapidcheck
https://github.com/philsquared/Catch
https://gmplib.org/manual/C_002b_002b-Interface-General.html
https://github.com/russel/Factorial
https://gmplib.org/

FEATUREFRANCES BUONTEMPO
Teach Your Computer to
Program Itself
Can AI replace programmers? Frances Buontempo
demonstrates how to autogenerate code and why we
may not be replaceable yet.
rogramming is difficult. Since the dawn of computers, various
attempts have been made to make programmers’ lives easier.
Initially, programming involved low level work, which we would

struggle to recognize as a language in any way, shape or form. In order to
ease the situation, automatic programming was introduced. This may
sound as though programmers could be automated away; however, at the
time this meant high level languages. Biermann [Biermann76] begins his
introduction by saying:

Ever since the early days of electronic computers, man has been
using his ingenuity to save himself from the chores of programming.
Hand coding in machine language gave way to assembly language
programming, which was replaced for most users by compiled
languages.

He goes on to ask how much could be automatically generated, for example
could input/output specification allow automatic generation of the code in-
between? This question raises its head from time to time.

In this article, I will illustrate one approach, mentioning the difficulties
involved and considering if it can become widespread. Before we begin,
bear in mind Biermann was writing at a time when high level programming
languages were cutting edge. Prior to these, programmers coded numerical
operations using absolute addresses, hexadecimal programming if you
will. The introduction of assembly languages was the start of the high level
language evolution. The next step removed programmers further from the
machine, introducing computers that programmed themselves, in some
sense. “Interpreters, assemblers, compilers, and generators—programs
designed to operate on or produce other programs, that is, automatic
programming” according to Mildred Koss [Wikipedia]. It could be argued
that we no longer program computers. Instead, we give high level
instructions, and they write the code for us. Computers still need our input
in this model though. Though automatic programming is what we might
now simply call programming, another approach to programming, alluded
to by Biermann’s mention of code generation from specification, known
as Program Synthesis has received attention again recently. In particular
Microsoft have been writing about the subject. According to Microsoft
[Microsoft17a]:

Program synthesis is the task of automatically finding a program in
the underlying programming language that satisfies the user intent
expressed in the form of some specification. Since the inception of
AI in the 1950s, this problem has been considered the holy grail of
Computer Science.

Their paper [Microsoft17b] offers a literature review covering common
program synthesis techniques and potential future work in the field. One
topic they mention is Genetic Programming. My article will provide you
with an introduction to this technique, using the time honoured Fizz Buzz
problem.

According to the c2 wiki [c2], Fizz Buzz is an interview question,
“designed to help filter out the 99.5% of programming job candidates who
can't seem to program their way out of a wet paper bag.”

The problem is as follows:

Write a program that prints the numbers from 1 to 100. But for
multiples of three print “Fizz” instead of the number and for the
multiples of five print “Buzz”. For numbers which are multiples of
both three and five print “FizzBuzz”.

Genetic programming (GP) starts from a high-level statement of ‘what
needs to be done’ and automatically creates a computer program to solve
the problem. In this sense, is it identical to other synthesis techniques. GP
falls into a broader area of stochastic search, meaning the search is partly
random. In theory, a completely randomly generated program may solve
the problem at hand, but genetic programing uses the specification, or in
simpler language, tests, to guide the search. GP works in a similar manner
to a genetic algorithm. I previously gave a step by step guide to coding your
way out of a paper bag, regardless of whether or not it was wet, in Overload
[Buontempo13], and my book [Buontempo19] goes into more detail.

A basic genetic algorithm finds variables that solve a problem, either
exactly or approximately. In practice this means a set of tests must be
designed up front, also known as a fitness or cost function to ascertain
whether the problem has been solved. A potential solution is assessed by
running the tests with the chosen variables and using the outcome as a
score. This could be number of tests passed, a cost which could be in dollars
to be minimised or a ‘fitness’ to be maximized, such as money saved. The
potential applications are broad, but the general idea of a test providing a
numerical score to be maximized or minimized means a genetic algorithm
can also be seen as an optimization technique. Genetic algorithms are
inspired by the idea of Darwinian evolution, forming a subset of
evolutionary algorithms. They use selection and mutation to drive the
population towards greater fitness, inspired by the idea of the survival of
the fittest.

The algorithm starts with a collection of fixed length lists populated at
random. The values can be numbers, Booleans or characters, to investigate
problems requiring numerical solutions, various constraint-based
problems, hardware design and much more besides. They can even be
strings, such as place names, allowing a trip itinerary to be discovered. The
problem at hand will steer the size of the list. Some problems can be
encoded in various ways, but many have one obvious encoding. If you
want to discover two numbers, your list will comprise two numbers. The
number of solutions, or population size, can be anything. Starting small
and seeing what happens often works, since this will progress quickly, but
may get stuck on bad solutions. The fixed length lists are often referred to
as genotypes, alluding to genes representing a chromosome. The solutions
can be assessed, or tested, and the best solution reported. The average, best,
worst and standard deviation of scores can also help decide how well the

P

Frances Buontempo has a BA in Maths + Philosophy, an MSc in
Pure Maths and a PhD technically in Chemical Engineering, but
mainly programming and learning about AI and data mining. She
has been a programmer since the 90s, and learnt to program by
reading the manual for her Dad’s BBC model B machine. She can
be contacted at frances.buontempo@gmail.com.
August 2021 | Overload | 19

FEATURE FRANCES BUONTEMPO

At each step, the population can be
completely or partially replaced by creating
or ‘breeding’ new lists from ‘better’ solutions
or ‘parents’
search is progressing. As the algorithm continues, the score should
improve. At its simplest the population will remain fixed size over the
duration of the search, though variations allow it to grow or shrink. At each
step, the population can be completely or partially replaced by creating or
‘breeding’ new lists from ‘better’ solutions or ‘parents’. The parent
solutions are taken from the population, using one of many selection
algorithms. A tournament selection is the simplest to implement and
understand. A fixed number are randomly selected from the population and
the two with the optimal score are selected. This fixed number is another
decision that must be made. It could vary over the life of the algorithm.

Once two parents are selected, they ‘breed’, referred to as ‘crossover’ or
recombination. For a list of two variables, this could be achieved by
splitting the variables in half, passing one value (or gene) from each parent
to the new offspring (Figure 1)

For more than two variables, there are many other options: splitting at a
random point, splitting in various places and interleaving the genes,
alternating, and so on. Regardless of the crossover strategy, this alludes to
a population gene pool with gene crossover forming new offspring.
Survival of the fittest, or fit enough, ensures better adapted genes survive.

Crossover will explore the search space of potential solutions, though may
miss some. In order to avoid getting stuck in a rut, mutation is also used,
again alluding to natural selection. A random percentage of the new
solutions are mutated. This percentage is yet another variable, or hyper-
parameter to choose. In effect, this means flipping a Boolean value,
incrementing, decrementing or scaling a number, or replacing a value with
an entirely new random value. The combination of selection, pushing
solutions to get better, along with crossover and mutation encourages
exploration of the search space. This is useful if a brute force solution
would take too long, since it explores fruitful looking parts of the space

without needing to try everything. The algorithm is not guaranteed to work,
but even if it cannot solve your problem the evolved attempts at a solution
will reveal details about the shape of the search and solution space.

It should be noted that crossover and mutation can generate invalid
solutions. A trip itinerary could end up with the same place twice while
leaving somewhere out. A numerical problem may end up with negative
numbers which are inappropriate. Such unviable solutions could be killed
immediately, however the testing, or fitness step will also weed them out,
if designed appropriately. This is one of many decisions to be made.

Once the population has been fully or partially replaced, using crossover
and mutation, the algorithm’s progress is reported, again by best, along
with any other statistics required. The breed test report cycle is
repeated either for a pre-specified number of times or until a good enough
solution is found. Recall that several hyper-parameters had to be chosen
– rates of mutation, how to select parents, how big a population size, how
to perform crossover. A genetic algorithm may be run several times with
different hyper-parameters before a solution is found.

With one change, from solutions as lists to solutions as trees, we can switch
from a genetic algorithm to genetic programming. The tree can represent
a program, either as an expression or an abstract syntax tree. GP also uses
crossover, mutation and testing to explore the search space. Aside from
hyper-parameter choice, which is admittedly difficult, a suite of tests to
pass means GP can generate code for us. I shall take the liberty of
borrowing Kevlin Henney’s Fizz Buzz test suite. They comprise eight
tests, which are necessary and sufficient for Fizz Buzz, as follows:

1. Every result is ‘Fizz’, ‘Buzz’ ‘FizzBuzz’ or a decimal string
2. Every decimal result corresponds to its ordinal position
3. Every third result contains ‘Fizz’
4. Every fifth result contains ‘Buzz’
5. Every fifteenth result is ‘FizzBizz’
6. The ordinal position of every ‘Fizz’ result is divisible by 3
7. The ordinal position of every ‘Buzz’ is divisible by 5
8. The ordinal position of ‘FizzBuzz’ is divisible by 15

These form our fitness function, giving a maximum score of eight. A score
of minus one will be awarded to programs which are not viable (for
example, invalid syntax or a run time error).

In what follows, I shall use the Distributed Evolutionary Algorithms in
Python (DEAP) framework [DEAP-1]. Other frameworks are available.
First, a Toolbox object is required. This will hold all the parts we need.

 toolbox = base.Toolbox()

Of note, DEAP does not use an abstract syntax tree directly, instead what
are described as primitive operators are required, stored in a ‘primitive set’.

 primitive_set = gp.PrimitiveSet("MAIN", 1)

This requires some extra boilerplate to add primitives (operators and
functions) to the set, such as operator.add and similar. In addition you
can add terminals (leaf nodes in a tree), such as 3 or ‘Fizz’. You can also
add what are termed ephemeral constants, which could take a lambda that
returns a random number. This allows constants to be generated per
solution.

Figure 1
20 | Overload | August 2021

FEATUREFRANCES BUONTEMPO

Not all expressions randomly generated are valid.
Invalid trees can be dropped immediately
The full code listing is available in a gist [Buontempo], but Listing 1
contains a few examples I used.

The mysterious if_then_else is defined as follows:

 def if_then_else(x,y,z):
 if x:
 return y
 else:
 return z

There may be a neater way to get DEAP to use this construct, but it will do.

The modXXX functions are again a bit of a hack, for example:

 def mod3(x):
 return operator.mod(x, 3) == 0

A primitive takes a callable and the number of parameters, while a
terminal, or leaf node, takes a value only. I did not manage to get the GP
to find the values 3, 5 or 15 which was disappointing. The gist includes a
version to generate code finding if a number is odd or even, using new
primitives and ‘constants’:

 primitive_set.addPrimitive(operator.mod, 2)
 primitive_set.addEphemeralConstant("rand101",
 lambda: random.randint(-1,1))
 primitive_set.addEphemeralConstant("randints",
 lambda: random.randint(0,10))

This did work, so in theory I suspect the GP could discover more of the
parts needed for Fizz Buzz with more experimentation. For this article, we
shall cheat and give the GP some help.

It is worth naming the arguments so the generated code looks less ugly:

 primitive_set.renameArguments(ARG0='x')

Once the primitive set is populated, DEAP can form an expression:

expr = gp.genFull(primitive_set, min_=1, max_=3)

that can then be converted to tree:

 tree = PrimitiveTree(expr)

Printing the randomly generated tree gives

 mod3('Fizz')

You can ‘compile’ this to see what happens as follows:

 example = toolbox.compile(tree)

This returns a lambda, which you can then call. The astute amongst you
may notice this will lead to a run time error. Not all expressions randomly
generated are valid. Invalid trees can be dropped immediately.

In order to run the algorithm, we tell DEAP how to assess the fitness of
individual trees

 creator.create("FitnessMax", base.Fitness,
 weights=(1.0,))
 creator.create("Individual", gp.PrimitiveTree,
 fitness=creator.FitnessMax)

This is very stringly typed, but allows much flexibility. The weights for
the fitness are set to one, meaning the number of tests passed, from our
eight tests, is multiplied by one. Setting the weight to -1 would seek out
a minimum rather than a maximum. The primitive tree type is “specifically
formatted for optimization of genetic programming operations” according to
the documentation [DEAP-2]. In theory you could extend this or make a
new type. A strongly typed version is available. We will stick to the
PrimitiveTree type for this example.

Using the toolbox we created earlier, we register expressions, individuals,
populations and a compile function (see Listing 2).

The half and half for the expressions means half the time expressions are
generated with grow (between the maximum and minimum height) and the
other half with full (maximum height). Letting expressions get too big
takes time and may not give much benefit. In theory you could add if
true inside if true many, many times. Without baking preferences
for acceptable source code, this will have no impact on the fitness of a
solution, but take time to grow, so the maximum tree size parameters can
help.

I initially tried 5 and the trees improved but then stuck below 100% fitness,
then started getting worse. As with genetic algorithms, and almost all
machine learning, you need to experiment with the parameters.

We need to register a few more things then we’re ready to go. We need a
fitness function (Listing 3, on the next page).

Yes, the fitness function returns a tuple, required by the framework, so that
is not a spare comma at the end. The tests_passed function takes the
function generated by GP and runs it over some numbers, conventionally
1 to 100 for Fizz Buzz, though I have chosen to start at zero. safe_run
is used to catch and penalize errors.

Listing 1

primitive_set.addPrimitive(operator.and_, 2)
primitive_set.addPrimitive(operator.or_, 2)
primitive_set.addPrimitive(if_then_else, 3)
primitive_set.addPrimitive(mod3, 1)
primitive_set.addPrimitive(mod5, 1)
primitive_set.addPrimitive(mod15, 1)
primitive_set.addTerminal("Buzz")
primitive_set.addTerminal("Fizz")
primitive_set.addTerminal("FizzBuzz")

Listing 2

toolbox.register("expr", gp.genHalfAndHalf,
 primitive_set=primitive_set, min_=1, max_=2)
toolbox.register("individual", tools.initIterate,
 creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat,
 list, toolbox.individual)
toolbox.register("compile", gp.compile,
 primitive_set=primitive_set)
August 2021 | Overload | 21

FEATURE FRANCES BUONTEMPO
We then register this fitness function and set up more options and
parameters (see Listing 4).

I also added some statistics to the toolbox to track the algorithms progress.
This used DEAP’s multi-statistics tool (again, full details in the gist)

 mstats = tools.MultiStatistics(…)

These are reported at each step in the loop. To keep track of the best tree
use the hall of fame:

 hof = tools.HallOfFame(1)

Recall that the GP uses randomness to find solutions, so I clamped the seed
for repeatable experiments, random.seed(318)

We finally decide a population size, how often to crossover and mutate,
and how many generations to run this for. It’s worth trying a small
population first, 10 or so, and a few generations to see what happens, then
increase these if things do seem to improve over the generations:

 pop = toolbox.population(n=4000)
 pCrossover = 0.75
 pMutation = 0.5
 nGen = 75
 pop, log = algorithms.eaSimple(pop, toolbox,
 pCrossover, pMutation, nGen, stats=mstats,
 halloffame=hof, verbose=True)

After running for several minutes we obtain an expression that generates
Fizz Buzz for us (Listing 5). The best tree has 81 nodes, with the
expression shown in Listing 6. (See also Figure 2, overleaf.)

The generated expression is very unpleasant, but it works. In my defence,
I recently came across a report into ‘Modified Condition Decision
Coverage’ to “assist with the assessment of the adequacy of the
requirements-based testing process”. [US-FAA]. On page 177, the authors
cite an expression with 76 conditionals found in Ada source code for
aeroplane black boxes (Listing 7).

So, humans can write complicated code too. Somewhere in the middle of
the figure you may see the conditional

 if FizzBuzz or FizzBuzz: then FizzBuzz

It is possible to prune a tree, however if the aim of program synthesis is to
remove programmer from the process, no one need ever see the
implementation.

It took considerably longer to get my computer to generate this code than
it would have taken to write this by hand. Any machine learning algorithm
needs several runs and many attempts to tune parameters. Tools are
gradually coming to the fore to track the training process. For example,
Feature stores to keep cleansed data for training are becoming popular and
DevMLOps is becoming a common phrase. MLFLow [MLFLow] offers
a way to track training and parameter choice. Furthermore automatic
parameter tuning is being investigated, for example AWS’ automatic
model tuning in SageMaker [Amazon].

Was this GP Fizz Buzz exercise worth the time spent? The exercise was
interesting, and I encourage you to try it out. If you can get a version
working without cheating, so that your computer discovers the magic

Listing 3

def tests_passed (func, points):
 passed = 0
 def safe_run(func, x):
 try:
 return func(x)
 except:
 return -1
 results = [safe_run(func, x) for x in points]
 # not listed for brevity,
 # but passed += 1 for each of the eight tests
 # assessed on the results list just formed
 return passed
def fitness(individual, points):
 # Transform the tree expression in a callable
 # function
 func = toolbox.compile(expr=individual)
 return tests_passed(func, points),

Listing 4

toolbox.register("evaluate",
 fitness points=range(101))
toolbox.register("select", tools.selTournament,
 tournsize=3)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genFull, min_=0,
 max_=2)
toolbox.register("mutate", gp.mutUniform,
 expr=toolbox.expr_mut, pset=primitive_set)

Listing 5

['FizzBuzz', 1, 2, 'Fizz', 4, 'Buzz', 'Fizz', 7,
8, 'Fizz', 'Buzz', 11, 'Fizz', 13, 14, 'FizzBuzz',
16, 17, 'Fizz', 19, 'Buzz', 'Fizz', 22, 23,
'Fizz', 'Buzz', 26, 'Fizz', 28, 29, 'FizzBuzz',
31, 32, 'Fizz', 34, 'Buzz', 'Fizz', 37, 38,
'Fizz', 'Buzz', 41, 'Fizz', 43, 44, 'FizzBuzz',
46, 47, 'Fizz', 49, 'Buzz', 'Fizz', 52, 53,
'Fizz', 'Buzz', 56, 'Fizz', 58, 59, 'FizzBuzz',
61, 62, 'Fizz', 64, 'Buzz', 'Fizz', 67, 68,
'Fizz', 'Buzz', 71, 'Fizz', 73, 74, 'FizzBuzz',
76, 77, 'Fizz', 79, 'Buzz', 'Fizz', 82, 83,
'Fizz', 'Buzz', 86, 'Fizz', 88, 89, 'FizzBuzz',
91, 92, 'Fizz', 94, 'Buzz', 'Fizz', 97, 98,
'Fizz', 'Buzz']

Listing 6

if_then_else(mod15(if_then_else(if_then_else(mul(
x, 'FizzBuzz'), 'Fizz', 'Buzz'), x,
if_then_else('Buzz', 'FizzBuzz', mod3(x)))),
'FizzBuzz',
if_then_else(both(if_then_else(if_then_else(mod15
(x), either('FizzBuzz', 'FizzBuzz'), 'FizzBuzz'),
if_then_else('FizzBuzz', mod15(mod5(x)), 'Buzz'),
'Buzz'), if_then_else('Fizz', 'Buzz',
if_then_else('FizzBuzz',
if_then_else(if_then_else('Buzz',
if_then_else(if_then_else(mod3(x), x,
'FizzBuzz'), if_then_else(x, x, either('Buzz',
'Buzz')), x), 'Fizz'), 'Fizz', x),
if_then_else(either(if_then_else(x, x, mod3(x)),
'FizzBuzz'), 'Fizz', 'Fizz')))),
if_then_else(mod15(x), either('FizzBuzz',
either('Buzz', x)), if_then_else(mod3(x), 'Fizz',
x)), 'Buzz'))

Listing 7

Bv or (Ev /= El) or Bv2 or Bv3 or Bv4 or Bv5 or
Bv6 or Bv7 or Bv8 or Bv9 or Bv10 or Bv11 or Bv12
or Bv13 or Bv14 or Bv15 or Bv16 or Bv17 or Bv18 or
Bv19 or Bv20 or Bv21 or Bv22 or Bv23 or Bv24 or
Bv25 or Bv26 or Bv27 or Bv28 or Bv29 or Bv30 or
Bv31 or Bv32 or Bv33 or Bv34 or Bv35 or Bv36 or
Bv37 or Bv38 or Bv39 or Bv40 or Bv41 or Bv42 or
Bv43 or Bv44 or Bv45 or Bv46 or Bv47 or Bv48 or
Bv49 or Bv50 or Bv51 or (Ev2 = El2) or ((Ev3 =
El2) and (Sav /= Sac)) or Bv52 or Bv53 or Bv54 or
Bv55 or Bv56 or Bv57 or Bv58 or Bv59 or Bv60 or
Bv61 or Bv62 or Bv63 or Bv64 or Bv65 or Ev4 /= El3
or Ev5 = El4 or Ev6 = El4 or Ev7 = El4 or Ev8 =
El4 or Ev9 = El4 or Ev10 = El4
22 | Overload | August 2021

FEATUREFRANCES BUONTEMPO

Figure 2

if_then_else

mod15 FizzBuzz if_then_else

if_then_else both if_then_else Buzz

if_then_else x if_then_else if_then_else if_then_else mod15 either if_then_else

mul Fizz Buzz Buzz FizzBuzz mod3 if_then_else if_then_else Buzz Fizz Buzz if_then_else x FizzBuzz either mod3 Fizz x

x FizzBuzz x mod15 either FizzBuzz FizzBuzz mod15 Buzz FizzBuzz if_then_else if_then_else Buzz x x

x FizzBuzz FizzBuzz mod5 if_then_else Fizz x either Fizz Fizz

x Buzz if_then_else Fizz if_then_else FizzBuzz

if_then_else if_then_else x x x mod3

mod3 x FizzBuzz x x either

x Buzz Buzz

x

numbers 3 and 5, do write in. Having an understanding of the
implementation and details behind buzz words such as Artificial
Intelligence is always useful.

I mentioned a Microsoft paper at the start. Program synthesis seems to be
an area of research that has recently become active again. They mention a
Python Programming Puzzles project “which can be used to teach and
evaluate an AI’s programming proficiency” [Microsoft-1]. Fizz Buzz isn’t
here, yet. For further background on genetic programming, go to Genetic
Programming Inc [GP] and the Royal Society Paper, ‘Program synthesis:
challenges and opportunities’ [David17] gives a thorough overview . The
ACM SIGPLAN published a blog giving an overview of the state of the
art in 2019 [Bornholt19]. This includes Excel’s ‘Flash Fill’ [Microsoft-2],
which offers suggestions to fill cells as you type based on patterns it finds.
This uses an inductive approach, which you could describe as
extrapolating from examples, rather than the pre-specified criteria tests
approach used in this article. Program synthesis has been used to
automatically derive compiler optimizations. In particular, Souper can
help identify missing peephole optimizations in LLVM’s midend
optimizers [Souper]. Even if computers never fully program themselves,
program synthesis can be and is used for practical applications. Watch this
space.

References
[Amazon] ‘How Hyperparamter Tuning Works’, availble at:

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-
model-tuning-how-it-works.html

[Biermann76] Biermann (1976) ‘Approaches to automatic programming’
in Advances in Computers Vol 15, p1–63, available at: https://
www.sciencedirect.com/science/article/pii/S0065245808605197

[Bornholt19] James Bornholt (2019) ‘Program Synthesis in 2019’,
available at https://blog.sigplan.org/2019/07/31/program-synthesis-
in-2019/

[Buontempo] GP Fizz Buzz: https://gist.github.com/doctorlove/
be4ebe4929855f69861c13b57dbcf3aa

[Buontempo13] Frances Buontempo (2013) ‘How to Program Your Way
Out of a Paper Bag Using Genetic Algorithms’ in Overload 118,
available from https://accu.org/journals/overload/21/118/
overload118.pdf#page=8

[Buontempo19] Frances Buontempo (2019) Genetic Algorithms and
Machine Learning for Programmers, The Pragmatic Bookshelf,
ISBN 9781680506204. See https://pragprog.com/titles/fbmach/
genetic-algorithms-and-machine-learning-for-programmers/

[c2] ‘Fizz Buzz Test’ on the c2 wiki: https://wiki.c2.com/?FizzBuzzTest

[David17] Cristina David and Daniel Kroening (2017) ‘Program
synthesis: challenges and opportunities’, The Royal Socienty
September 2017, available at: https://royalsocietypublishing.org/
doi/10.1098/rsta.2015.0403

[DEAP-1] DEAP documentation: https://deap.readthedocs.io/en/master/

[DEAP-2] Genetic Programming: https://deap.readthedocs.io/en/master/
api/gp.html

[GP] Genetic http://www.genetic-programming.com/

[Microsoft-1] https://github.com/microsoft/PythonProgrammingPuzzles

[Microsoft-2] Excel’s ‘Flash Fill’: https://support.microsoft.com/en-us/
office/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-
1578341f73f7

[Microsoft17a] ‘Program Synthesis’ abstract (2017)
https://www.microsoft.com/en-us/research/publication/program-
synthesis/

[Microsoft17b] ‘Program Synthesis’ paper (2017)
https://www.microsoft.com/en-us/research/wp-content/uploads/
2017/10/program_synthesis_now.pdf

[MLFLow] https://mlflow.org/

[Souper] https://github.com/google/souper

[US-FAA] Federal Aviation Administration (2001) ‘An Investigation of
Three Forms of the Modified Condition Decision Coverage (MCDC)
Criterion’, U.S. Department of Transportation, available from:
http://www.tc.faa.gov/its/worldpac/techrpt/ar01-18.pdf

[Wikipedia] Mildred Koss, quoted by Wikipedia:
https://en.wikipedia.org/wiki/Automatic_programming
August 2021 | Overload | 23

https://www.sciencedirect.com/science/article/pii/S0065245808605197
https://www.sciencedirect.com/science/article/pii/S0065245808605197
https://en.wikipedia.org/wiki/Automatic_programming
https://www.microsoft.com/en-us/research/publication/program-synthesis/
http://www.tc.faa.gov/its/worldpac/techrpt/ar01-18.pdf
https://github.com/google/souper
https://mlflow.org/
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf
ttps://support.microsoft.com/en-us/office/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7
ttps://support.microsoft.com/en-us/office/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7
https://github.com/microsoft/PythonProgrammingPuzzles
http://www.genetic-programming.com/
https://deap.readthedocs.io/en/master/api/gp.html
https://deap.readthedocs.io/en/master/api/gp.html
https://deap.readthedocs.io/en/master/
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0403
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0403
https://blog.sigplan.org/2019/07/31/program-synthesis-in-2019/
https://blog.sigplan.org/2019/07/31/program-synthesis-in-2019/
https://wiki.c2.com/?FizzBuzzTest
https://pragprog.com/titles/fbmach/genetic-algorithms-and-machine-learning-for-programmers/
https://pragprog.com/titles/fbmach/genetic-algorithms-and-machine-learning-for-programmers/
https://accu.org/journals/overload/21/118/overload118.pdf#page=8
https://accu.org/journals/overload/21/118/overload118.pdf#page=8
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
https://gist.github.com/doctorlove/be4ebe4929855f69861c13b57dbcf3aa
https://gist.github.com/doctorlove/be4ebe4929855f69861c13b57dbcf3aa

FEATURE CHRIS OLDWOOD
Afterwood
Git is not universally loved. Chris Oldwood
suggests that Git itself is not the problem.
it comes in for a lot of stick for being a complicated tool that’s hard
to learn, and they’re right, git is a complicated tool. But it’s a tool
designed to solve a difficult problem – many disparate people

collaborating on a single product in a totally decentralized fashion.
However, many of us don’t need to work that way, so why are we using
the tool in a way that makes our lives more difficult?

KISS
For my entire professional programming career, which now spans over 25
years, and my personal endeavours, I have used a version control tool
(VCS) to manage the source code. In that time, for the most part, I have
worked in a trunk-based development fashion [Oldwood14a]. That means
all development goes on in one integration branch and the general
philosophy for every commit is ‘always be ready to ship’ [c2]. (This does
not preclude the use of private branches for spikes and/or release branches
for hotfix engineering when absolutely needed. #NoAbsolutes.) As you
might guess features toggles [Oldwood13] (in many different guises) play
a significant part in achieving that.

A consequence of this simplistic way of working [Oldwood16] is that my
development cycle, and therefore my use of git, boils down to these few
steps:

 clone

 edit / build / test

 diff

 add / commit

 pull

 push

There may occasionally be a short inner loop where a merge conflict shows
up during the pull (integration) phase which causes me to go through the
edit / diff / commit cycle again, but by-and-large conflicts are rare due to
close collaboration and very short change cycles. Ultimately though, from
the gazillions of commands that git supports, I mostly use just those 6. As
you can probably guess, despite using git for nearly 7 years, I actually know
very little about it (command wise). (I pondered including ‘log’ in the list
for when doing a spot of software archaeology [Oldwood14b] but that is
becoming much rarer these days. I also only use ‘fetch’ when I have to
work with feature branches.)

Isolation
Where I see people getting into trouble and subsequently venting their
anger is when branches are involved. This is not a problem that is specific
to git though, you see this crop up with any VCS that supports branches
whether it be ClearCase, Perforce, Subversion, etc. Hence, the tool is not
the problem, the workflow is. And that commonly stems from a delivery
process mandated by the organization, meaning that ultimately the issue
is one of an organizational nature, not the tooling per se.

An organisation which seeks to reduce risk by isolating work (and by
extension its people) onto branches is increasing the delay in feedback
thereby paradoxically increasing the risk of integration, or so-called
‘merge debt’ [Oldwood14a]. A natural side-effect of making it harder to
push through changes is that people will start batching up work in an
attempt to boost ‘efficiency’. The trick is to go in the opposite direction
and break things down into smaller units of work that are easier to produce
and quicker to improve. Balancing production code changes with a solid
investment in test coverage and automation reduces that risk further along
with collaboration boosting techniques like pair and mob programming.
[Oldwood18]

Less is more
Instead of enforcing a complicated workflow and employing complex
tools in the hope that we can remain in control of our process we should
instead seek to keep the workflow simple so that our tools remain easy to
use. Git was written to solve a problem most teams don’t have as they
neither have the volume of distributed people or complexity of product to
deal with. Organisations that do have complex codebases cannot expect
to dig themselves out of their hole simply by introducing a more powerful
version control tool, it will only increase the cost of delay while bringing
a false sense of security as programmers work in the dark for longer.

References
[c2] ‘Always Be Ready To Ship’, available from https://wiki.c2.com/

?AlwaysBeReadyToShip

[Oldwood13] Chris Oldwood ‘Codebase Stability With Feature Toggles’,
published to blog 17 October 2013, available from
https://chrisoldwood.blogspot.com/2013/10/codebase-stability-
with-feature-toggles.html

[Oldwood14a] Chris Oldwood (2014) ‘Branching Strategies’, Overload
121 published June 2014, available from https://accu.org/journals/
overload/22/121/oldwood_1920/

[Oldwood14b] Chris Oldwood (2014) ‘In The Toolbox – Software
Archaeology’, published in CVu and available from
http://www.chrisoldwood.com/articles/in-the-toolbox-software-
archaeology.html

[Oldwood16] Chris Oldwood (2016) ‘In The Toolbox – Commit
Checklist’ published in CVu and available from
http://www.chrisoldwood.com/articles/in-the-toolbox-commit-
checklist.html

[Oldwood18] Chris Oldwood (2018) ‘To Mob, Pair or Fly Solo’,
published in CVu 30.5 (November 2018) and available from
http://www.chrisoldwood.com/articles/to-mob-pair-or-fly-solo.html

G

This article was first published by
Chris on his blog in December 2019.
24 | Overload | August 2021

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology from plush corporate offices the lounge below his bedroom. With no
Godmanchester duck race to commentate on this year, he’s been even more easily distracted by messages to
gort@cix.co.uk or @chrisoldwood

https://wiki.c2.com/?AlwaysBeReadyToShip
https://wiki.c2.com/?AlwaysBeReadyToShip
https://chrisoldwood.blogspot.com/2013/10/codebase-stability-with-feature-toggles.html
https://accu.org/journals/overload/22/121/oldwood_1920/
https://accu.org/journals/overload/22/121/oldwood_1920/
http://www.chrisoldwood.com/articles/in-the-toolbox-software-archaeology.html
http://www.chrisoldwood.com/articles/in-the-toolbox-commit-checklist.html
http://www.chrisoldwood.com/articles/to-mob-pair-or-fly-solo.html
[Oldwood14a]

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	Too Much Typing
	C++ Executors: the Good, the Bad, and Some Examples
	Testing Propositions
	Teach Your Computer to Program Itself
	Afterwood

