overload

OCTOBER 2020 £4.50

Mrencv Ilﬂ_S !ln Patterns

The Edge of "I:"++

Every technology has a boundary;.
we look at the “outer: limits™ of C++

poly:vector - A Vector for Pﬂl\llllll"llllc Objects

An efficient C++ container of polymorphic
objects, based on STL principles

A magazine of ACCU ISSN: 1354-3172

Smart editor

with full language support
Support for C++03/C++11,
Boost and libc++, C++
templates and macros.

Code generation

and navigation

Generate menu,

Find context usages,

Go to Symbol, and more

GET A C++ DEVELOPMENT TOOL
THAT YOU BESEH\!E

ReSharper C++
Visual Studio Extension
for C++ developers

AppCode
IDE for iOS

Start a free 30-day trial
jb.gag/cpp-accu

Find out more at www.gbssoftware.com

and 05 X development

5908

CLion
Cross-platform IDE
for C and C++ developers

girLanguage
‘Power Tools

Reliable

refactorings

Rename, Extract Function
/ Constant / Variable,
Change Signature, & more

Profound

code analysis

On-the-fly analysis

with Quick-fixes & dozens

‘of smart checks

QBS

SOFTWARE

OVERLOAD 159

Octoher 2020
ISSN 1354-3172

Frances Buontempo
overload @accu.org

Ben Curry
b.d.curry@gmail.com

Mikael Kilpelédinen
mikael.kilpelainen @ kolumbus.fi

Steve Love
steve @arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero @ howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland @ gmail.com

Anthony Williams
anthony.ajw @gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete @ goodliffe.net

All articles intended for publication

in Overload 160 should be

submitted by 1st November 2020

and those for Overload 161 by
1st January 2021.

The ACCU

The ACCU is an organisation of
programmers who care about

professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are

dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and

have been contributed free of charge.

1 CONTENTS

Overload is a publication of the AGCU
For details of the AGCU, our publications
and activities, visit the ACCU wehsite:
www.accu.org

4 poly:vector - A Vector for Polymorphic
Ohjects

Janky Ferenc introduces a sequential container for
storing polymorphic objects in C++.

Stanislav Kozlovski helps us visualise this most
misunderstood configuration setting.

13 Concurency Design Patterns

Lucian Radu Teodorescu investigates design
patterns that help unlock concurrent performance.

20 C++ Modules: A Brief Tour

Nathan Sidwell presents a tourist’s guide to the
long-awaited C++ module system.

25 The Edge of C++

Deak Ferenc explores the bounds of various
C++ constructs.

39 Afterwood

Chris Oldwood considers various fail cases.

Copyrights and Trade Marks

Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

| Overload | 1

EDITORIAL =

Virtual/Reality

Do we know what reality is? Frances
Buontempo is no longer sure and now
wonders if she’s a fictional character.

Since becoming Overload editor, I have failed to write

an editorial. In my defence, I have managed to fill the

first two pages with musings, somewhat like a meta-

or virtual editorial. Having attended a live stream of

various noisy bands instead of making our annual

pilgrimage to a metal festival in a field in England
during August, I have again failed to find time to write an editorial. The
online festival was tremendous; I discovered a couple of new bands and
interacted with others across the world on social media while they played.
Nonetheless, this is not the same as being in a circle pit or somewhere near
the front bouncing off other audience members. Live music is a real
visceral experience that is impossible to capture virtually. I tried to
imagine a haptic feedback mosh-pit suit, but didn’t get very far. I’ll need
to read some decent SciFi to plug the gaps in my imagination. Fictional
accounts of possibilities frequently pave the way for changes in
technology, or more broadly society in general. Fictional, or virtual,
imaginings cause a shift in the fabric of reality. Star Trek has arguably
brought about mobile phones, tablets and automatic doors. I’'m hanging
on for the replicators and transporters, as I have said many times before.
I am given to believe that the film Predator [IMDb-1] caused someone in
the military to ask if the mimetic camouflage suit were possible in reality,
securing funding to research this. ‘Now the nightmare vision of an
invisible murderer from space could come true on Earth, thanks to
University of Bristol scientists.” [Waugh15]. Cheerful stuff.

Over time, many people have bashed ‘virtual’ interactions. I have been
asked, “Have you actually talked to them?” when I say I’ve been
discussing a technical issue. Some people can’t understand how to
communicate by writing only, and believe a ‘proper’ conversation is
always better. This general statement misses many nuances, and the best
way to communicate almost always depends. For example, a colleague did
‘phone’ me, or make a Slack call rather, to talk me through running a
script. As with many step-up scripts, it asked probing question, like ‘Wipe
all this out and replace it? [y/N]’. The technical among you will realise
pressing enter will select the upper case option ‘N’, which is a shorthand
for ‘No’. As you can imagine, the actual words on the call went like:
Fran: No?

Him: Yes.

Fran: What? Yes.

Him: No, No.

Fran: Tell you what, I’1l just accept the defaults and call you back.

Whoever insists that phone calls are better than
typing or scripts inhabits a different reality
to a large amount of my life. Did I tell you
about the guy who tried to read a barcode

2 | Overload | October 2020

down the phone to a customer once? “Thick, thick, thin...” T kid you not.
Talking to people is not always the best way to communicate.
Furthermore, I wonder if a Slack call is even a real telephone call?

A telephone is a sound at a distance. Anything starting ‘tele’ captures the
idea of something happening at a distance, so I guess a Google Hangout,
Zoom, or Slack call are like phone calls, but give the optional extra of
having your web-cams on so you can see each other. This, of course, can
put stress on the bandwidth, since you are uploading and downloading
pictures and sounds, rather than just listening to each other. Very
distracting. I acknowledge some people like to see each other and wave.
Having a virtual beer with the camera on is great. You can discuss what
you are drinking. Or, for the alcohol-free, sharing a remote cup of tea and
cake means you can show off the cake and discuss recipes. All good.
Something that works well for one situation may not work well across the
board. As all consultants will tell you, there is no One True Way to
approach things. It always depends.

Talking over a phone or video call is no less talking than a face to face
conversation. Certainly, there are differences. You don’t have to spend
time and money travelling to be in the same place. You can’t shake hands
or hug remotely. You can still talk, and listen. Sharing barcodes or running
a script might be better done without talking, as discussed. Writing things
down can force you to be precise and unambiguous with language. It also
provides a paper trail, which is useful in a variety of circumstances. It may
not count as a real conversation, but who cares or even knows what’s real.
Life is complex.

Code can get complex too. Object oriented programming using the idea
of dynamically dispatched functions, flagged up as virtual to vary
behaviour at runtime. In The Design and Evolution of C++ [Stroustrup94,
p73], Stroustrup explains functions marked as virtual use “the Simula and
C++ term for ‘may be redefined later in a class derived from this one’. This
avoids a huge switch statement choosing what to do at run time for a
specific ‘type’, perhaps indicated with a flag. Any new types need to be
added to the switch statement, increasing compile times and potentially
introducing bugs. Stroustrup explains he adopted the Simula inheritance
mechanism to avoid these problems. Simula hails from the 1960s, and the
inheritance model along with subclasses may have been introduced in
Simula67 [Wikipedia]. Be aware that subclassing, having a sub and super
class, or base and derived as Stroustrup re-dubbed them, is different to
virtual functions. [op cit, p 49] “Even without virtual functions, derived
classes in C with Classes were useful for building new data structures out
of old ones.” I half wonder why we use the virtual and override
keywords. The base class can have an implementation, so abstract
would be the wrong word. We indicate that with= 0 {}; well, the curly
braces are only needed if we want to implement the abstract function.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about Al and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo @ gmail.com.

Without the braces, we have a pure virtual function, which is non-
functional and will crash if it’s ever called. Don’t tell non-tech people.
Their heads will explode.

Now, virtual functions are one thing, but people who know other OO
languages often laugh at C++’s multiple inheritance model, and the use of
a virtual base class. Language bashing often springs from not fully
understanding a different paradigm. Rein yourself in if you notice you’re
doing this. Nonetheless, some ways of coding are less than ideal.
Structured programming offered a grand improvement over jumping
around between various lines of code. Though it is possible to warp your
head into code laced with goto statements, I suspect most programmers
would say it is OK to bash this way of coding. Dijkstra’s famous ‘Go to
considered harmful’ paper [Dijkstra68] is probably legendary by now, and
inspires many similar talk titles. One thing we do all seem to agree on.

The pandemic has forced many things into cyberspace that used to be face
to face. People are discussing the pros and cons of virtual meetups and
conferences. Having not spoken at one, I can appreciate it must be odd to
not have the visual or auditory feedback of attendees. People will type
questions or share great quotes on social media, but it must be impossible
to follow what’s happening while talking into a laptop and wondering if
anyone can even see or hear you. Alex Chan recently offered some advice
for presenters:

Virtual presenters should ALWAYS wear high-contrast lipstick. I'm
sick of seeing presenters whose lips are barely distinguishable from
their face.

It makes you look even more fabulous than usual.

1 The extra contrast makes it easier for anybody who relies on lip-
reading. [Chan20]

This kicked off a small discussion about the history of television, or even
older, black and white films. Make-up was, and still is, used to great visual
effect, and also to avoid distractions like shiny skin and so on. Sound
engineering is also a full on-technical discipline, to adapt and change the
real sound, making it clearer, better, or more dramatic. Even a live stage
performance, for example at a real metal festival, has lighting to emphasise
cool stuff, often flames, loud noises, costumes and a sound desk for
reasons. Good reasons. A ‘real’ live performance, would be unplugged, no
make-up, no lighting. You could argue it shouldn’t involve any kind of
‘man-made’ instrument. If you don’t agree, consider for a moment the
source of the word virtual. It ties in with the idea of possessing certain
virtues. OK, that’s not so helpful. What is a virtue? Somewhere between
potency or effectiveness, and manliness [Etymology-1]. If you follow the
latter meaning, not only do you get the idea of ‘man-made’, but you get
‘vir’ or ‘wiro’ or even ‘were’ as a root word [Etymology-2]. A werewolf
is a virtual or man wolf. I’'m happy to leave the ‘man’ aside as perhaps
meaning ‘human’ in this case.

Where does this leave us? Virtual reality is created by humans, but
therefore has virtue. Virtual reality is no less real than reality itself. It
comes in many flavours, for example sometimes we talk of augmented
reality instead. Sometimes virtual and real aren’t opposite. If something
in tech is described as real-time, that distinguishes it from a lag or polled
snapshot, rather than virtual time, whatsoever that might be. Of course,
time and space are relative, so talking of ‘real’ time, as though there is One
True Time that we can all agree on, reveals a lack of understanding of
Relativity. Furthermore, many real-time operating systems or loggers are
more ‘near-real-time’ than actual real time. This starts to beg the question,
what is real anyway? We use the word carelessly, and try ideas like
‘Actually existing, things... genuine’. As opposed to fake? I am told, ‘The

1 EDITORIAL

meaning ‘genuine’ is recorded from 1550s; the sense of ‘unaffected, no-
nonsense’ is from 1847.” [Etymology-3] I could pull further on the history
of each of these words, but copying from dictionaries is even further from
an editorial than my usual excuses.

Perhaps we should consider fakes for a bit. I recently listened to a Radio
4 programme, called ‘Re-enactment radio’ [BBC]. Antonia Quirke and
guests discuss whether scenes in movies are plausible or even possible.
This time they discussed fight scenes and computers in films. Unrealistic
super-hero style fight scenes got a bashing. Most unfair, to my mind. I like
tightly choreographed unrealistic fight scenes. IfI want to see realistic fight
scenes | could go into town on a Friday night and watch the results of too
much alcohol, well, could have done were it not for the virus. Swordfish
[IMDb-2], some kind of covert counter-terrorist hacking story I have never
seen, was then dismantled. The geeky expert on the radio called out
implausible hacking into a government system, using bad C code that does
not compile, and flashing ‘Access Denied” messages culminating in finally
managing to hack into a directory and list the contents, which included a
customer satisfaction survey. Not what you’d expect to find on a
government IT system. Do any of you pause a film when you see code in
the background and try to figure out what language it is and if it’s correct?
If not, never watch a film with me.

It’s easier to spot fakes when you are knowledgeable on a subject.
However, this isn’t fool-proof. Perhaps this begs an even more important
question. Are you sure you are real, or anything is real? Are you sure you
aren’t a computer program, living in cyberspace? Are you living in the
Matrix? You can’t prove anything, all you can do is wonder and consider.
You can try to be genuine, or virtuous. Don’t bash

virtual goings on, but do consider if you have an

appropriate lip-stick for younext ‘live’ gig. Keep itreal,

as they used to say.

References
[BBC] Re-enactment Radio: https://www.bbc.co.uk/programmes/
m000dk15

[Chan20] Alex Chan, tweeted 4 September 2020, https://twitter.com/
alexwlchan/status/1301793743603929088

[Dijkstra68] Dijkstra, Edsger W. (March 1968). ‘Letters to the editor: Go
to statement considered harmful’ Communications of the ACM. 11
(3): 147-148

[Etymology-1] Virtual: https://www.etymonline.com/word/virtual

[Etymology-2] Virtue: https://www.etymonline.com/word/
virtue?ref=etymonline crossreference

Etymology-3] Real: https://www.etymonline.com/word/real
IMDb-1] Predator (1987) https://www.imdb.com/title/tt0093773/
IMDb-2] Swordfish (2001) https://www.imdb.com/title/tt0244244/

Stroustrup94] Bjarne Stroustrup (1994) The Design and Evolution of
C++ published by Addison Wesley

[Waugh15] Rob Waugh (2015) ‘Predator’ becomes reality as scientists
unveil a real camouflage cloak, published in https://metro.co.uk/
2015/06/16/predator-becomes-reality-as-scientists-unveil-a-real-
camouflage-cloak-5249172/

[Wikipedia] Simula: https://en.wikipedia.org/wiki/Simula

— = =

October 2020 | Overload | 3

https://www.bbc.co.uk/programmes/m000dk15
https://www.bbc.co.uk/programmes/m000dk15
https://twitter.com/alexwlchan/status/1301793743603929088
https://twitter.com/alexwlchan/status/1301793743603929088
https://www.etymonline.com/word/virtual
https://www.etymonline.com/word/virtue?ref=etymonline_crossreference
https://www.etymonline.com/word/virtue?ref=etymonline_crossreference
https://www.etymonline.com/word/real
https://www.imdb.com/title/tt0093773/
https://www.imdb.com/title/tt0244244/
https://metro.co.uk/2015/06/16/predator-becomes-reality-as-scientists-unveil-a-real-camouflage-cloak-5249172/
https://metro.co.uk/2015/06/16/predator-becomes-reality-as-scientists-unveil-a-real-camouflage-cloak-5249172/
https://en.wikipedia.org/wiki/Simula
[BBC]

FEATURE »

poly:vector - A Vector for
Polymorphic Ohjects

Heterogeneous vectors can be slow. Janky Ferenc introduces a
sequential container for storing polymorphic objects in C++.

of polymorphic types is a recurring programming pattern.

Heterogeneous collections storage cannot always guarantee co-locating
objects, resulting in access penalties on modern CPU hardware where
memory caching is utilized. This paper describes a container that has (on
average) better access performance when storing polymorphic objects than
other C++ Standard Template Library (STL) based variants. It achieves
this by structurally enforcing the locality of references and by reducing the
number of the total allocation count when a unique ownership model is
desired.

I n the Object-Oriented Programming paradigm, dealing with collections

Introduction and motivation

One of the most recurring patterns with the object-oriented software (OOP)
design paradigm is ownership and management of ownership. In order to
exploit the benefits of the design principles, the use of interface, and
implementation classes are required. In the C++ language, dynamic
dispatch is only applicable when a particular virtual function is called
through a pointer or reference to an interface class. When pointers are
involved in C++, the most frequently arising question is ownership: who
owns the object, i.e., which part of the code will free up resources
associated with an object?

There are multiple working solutions for this problem: smart pointers for
expressing unique (std: :unique_ptr<T>) and shared ownership
(std: :shared_ptr<T>) or the gsl: :owner<T> from GSL libraries
for marking pointers as owners of the resource while treating all others as
non-owners. While the former is an active way of having a handle object
through which to access the desired object and also of invoking the
destructor and freeing up the allocated memory on the handle object’s
destruction, the latter is more like an annotation. Static analyzers can flag
potential leaks and undefined behaviours related to resource management
based on these annotations.

If the objective is to have a collection of polymorphic objects whose
lifetime is associated with the containing data structure, the standard
solution is to use one of the standard containers parameterized with a smart
pointer of the interface type, e.g: std: :vector<std: :unique ptr
<MyInterface>>. That solution fulfils the requirements of resource
management. However, if modern CPU architecture is considered — where
locality of references is the key driver of performance — it might be sub-
optimal as, typically, the memory layout will look as illustrated in Figure 1.

On most modern CPU architecture that uses out-of-order execution,
overall performance is mostly affected by how the CPU cache is utilized.
Assuming that it is more important to ensure the locality of references than

Janky Ferenc Nandor Ferenc received an MSc in Electrical
Engineering from BME, Budapest, in 2013. He has since worked for
various telecommunication companies, and is currently working as a C++
software developer for an international corporate bank. His main areas of
interest are C++ programming, network protocols, FPGA programming
and software development. Ferenc is a member of the SmartComLab at
BME TMIT. He can be reached at mailto:janky @ tmit.ome.hu

4 | Overload | October 2020

std::vector<std::unique_ptr<interface>>

unique_ptr<interface> ImplA
i tr<interface>
unique_ptr<interface T
unique_ptr<interface>
unique_ptr<interface>
i ImpIB
ImplA
Figure 1

optimizing asymptotic complexity — if the problem size is below a certain
threshold where the former limit dominates performance — that locality
must somehow be enforced structurally to squeeze out maximum
performance from both software and hardware [Maness18]. In managed
languages, there is no direct control available for the application
programmer to manually control allocation layout; however, with such a
system programming language as C++, this can be addressed as well — pun
intended.

Nevertheless, such a data structure does not exist in the C++ Standard
Library. While the Standard Template Library (STL) is generic enough for
locality to be improved by using custom allocators, and C++17’s recent
addition of std: :pmr: :monotonic_buffer_ resource makes it
easier than ever. The monotonic resource’s only problem is that if the
assigned memory resource is exhausted, it will fall back to the upstream
allocator, and the locality is not guaranteed once again. Moreover, if we
examine the total allocation count when using e.g:
std: :pmr: :vector<unique ptr<Interface>>, it will be still
higher than expected (including the object allocation as well).

The purpose of this article is to introduce a container that is specifically
tailored for the use-case described earlier, structurally providing locality
of references and keeping the total allocation count (when the data
structure requests a new chunk of memory) at a minimum without the need
for custom allocators. Furthermore, this container must not be comparably
worse than the standard alternative in the best-case scenario while also
being significantly better in the worst-case scenario. The best-case
scenario means that most allocations happen successively, and in contrast,
the worst-case means when random allocations happen with random
longevity. Given this data structure, the memory layout would be

JANKY FERENC NANDOR = FERTURE

static type of the object
known at compile time

guaranteed to look something like that illustrated by Figure 2. The

implementation and the benchmarks can be obtained from [Janky18].

Design

While STL already presents a solution for dynamic memory management

abstraction in the form of Allocators — an application of policy-based class > _ -
design [Alexandrescul 1] — the key for managing/storing objects in this elem_ptr
fashion is cloning/moving. To address the other problem of relocating elem_ptr
objects through their interface reference, another concept has to be elem_ptr
introduced in the form of a Cloning Policy. This can be described as a ————
concept, as seen in Listing 1. " elem_ptr.
The cloning policy must be able to clone — move if supported — objects

around in memory through a base class pointer. The new additions to the

typical class hierarchy can be identified by the small white star (%) in LIy

Figure 3. The other component is the element pointer, which can be ImplA
thought of as a decentralized smart pointer as the smart pointer operation

is really realized by two collaborating classes: the vector and the element ImpIB
pointer itself, with the vector managing the lifetime while the access is

provided through the element pointer. ImpIC
Two archetypes of cloning policies have been designed: ImplA
delegate_cloning_policy and no_cloning_policy. The _:_I
former is suitable for the most common use cases where the derived classes

are regular in terms of copy/move. As one might assume, this cloning fig“re 2

policy captures the method of cloning/moving at the time of insertion to
the container. That also means the static type of the object inserted must

<<concept>>

allocator

responsible for
cloning/moving objects

responsible for holding s
and the cloning policy
instance if any

Interface .
¢
allocator_base }-‘—o poly::vector o
<kcreates>>
responsible for managing
underlying storage using
the allocator iterator)C

October 2020 | Overload | 5

FEATURE »

namespace poly
{
template <typename T>
struct type tag
{

using type = T;
}:
} // namespace poly
using namespace poly ;
using namespace std;

template <typename InterfaceT, typename Allocator>
constexpr auto AllocatorPointerMatch =
is_same_v < InterfaceT ,
typename pointer traits<
typename allocator_traits < Allocator >::
pointer >:: element_type >;

template <typename T, typename InterfaceT,
typename Allocator >
concept HasClone = requires (T cp , Allocator a)

{

cp. clone (a,
declval < typename allocator_traits
< Allocator >::pointer >(),
declval < typename allocator_ traits
< Allocator >::void_pointer >())
} -> same_as < typename allocator_traits
< Allocator >:: pointer >;
}i
template <typename T, typename InterfaceT,
typename Allocator >
concept HasMove =
is_nothrow_move constructible v <T> &&
is_nothrow_move_assignable v <T> &&
requires (T cp , Allocator a)

{

cp. move (a,

declval < typename allocator_traits

< Allocator >::pointer >(),

declval < typename allocator_traits
< Allocator >::void_pointer >())

} -> same_as < typename allocator_traits
< Allocator >:: pointer >;
}i

template <typename T, typename I,
typename Derived >

concept CloningPolicy =
AllocatorPointerMatch <I, A> &&
is_nothrow_constructible v <T> &&
is_nothrow_copy constructible v <T> &&
is_nothrow_copy_ assignable v <T> &&
copyable <T> &&
(constructible_ from <T, type tag < Derived >>

|| default_initializable <T >) &&

(HasClone <T, I, A> || HasMove <T,

Listing 1

be known at compile time, at the point of insertion. The latter does not
allow any copy/move of an object, i.e., if the container capacity is
exhausted, then a std: :bad_alloc exception is raised.

typename A,

I, A >);

Since cloning_policy is a concept — as denoted in Figure 3 — the user
can supply a type that suits the actual class hierarchy whose instances are
stored in the container. For example, if there is already a Clone virtual
member function declared in the interface, a policy class can be written
quickly to use that function when the container must copy the objects to a
new location, e.g., because of a resize.

6 | Overload | October 2020

== poly:vec AllocCount == std::vec AllocCount

(lower is better)

- g—a——

lg(Allocation call count)

000 070 100 118 130 140 170 200 300 400 5.00
Ig(Object Count)

Figure 4

The classic size and capacity concept has to be augmented in this
container: here, an average size is considered as size, which is the total
amount of memory occupied by the objects stored in the container divided
by the number of objects. The container’s exponential growth is also
calculated based on the average size (including the to-be inserted element
in the average).

Besides these, the aim was to provide the same level of exception safety
and API as one would expect from the implementation based on
std: :vector<std: :unique_ptr<Interface>>.

Evaluation and measurements

Time-based measurements are not trivial to carry out during software-
benchmarking and when using a non-realtime OS. For these scenarios, the
measurement metric is the overall execution wall clock time. This is
provided by the OS through a high resolution clock — for specific
operations over a given object count that is processed through the
containers [Reich18]. For the evaluation, a demo Interface class has
been defined with two distinct and different sized implementation classes.
The vectors under test were populated randomly from these two types. To
minimize the variance of the measurements, the concept of static thread
affinity (a.k.a thread pinning) was used hand-in-hand with setting the
highest priority (smallest nice value) for the benchmark process. This way,
the process will not be scheduled away that much, and most of the cache
trashing occurs because of the benchmark program itself and not as a result
of the rescheduling.

The evaluation of the container was based on three sets of measurement
scenarios that have been defined as the following:

m total number of allocation count: how many times did the program
allocate memory from the runtime environment — the smaller the
value, the better;

B Dbest-case scenario (when the objects are populated into the vector in
a successive manner without any in-between allocations from other
places): benchmark the sequential access time — the smaller the
value, the better;

B worst-case scenario (where the vector is populated with objects
while allocations are happening from other places, resulting in each
and every object being on a separate page): benchmark the
sequential access time — a smaller value is better (NB: this is simply
emulated by allocating a page for an object and constructing it there).

Figure 4 shows the total allocation count, while Figure 5 the allocated size
of memory, including the allocations made as a result of storing the object
on a heap managed by a smart pointer handle. The data has been plotted
using a log-log scale for better clarity. Figure 4 and Figure 5 should be
interpreted together, e.g., for 1000 objects (at coordinate 3 on the
horizontal axis) of randomly chosen types from the demo class hierarchy,
there were a total of 11 calls to the allocator’s allocate member function
with the total size of 66006 bytes, while for the std: : vec alternative the
total allocation calls were 1018 with the total size of 24812 bytes — on
average. As one can see, the total allocation count is smaller for
poly: :vector, which is a consequence of the omitted heap allocation
when the objects are instantiated, while the total size is slightly greater for
poly: :vector. This is because that poly: : vector is growing its

—8— poly::vec AllocSize —#— std:wvec AllocSize

lg(Allocation size in bytes)
(lower is better)
L T B

000 070 100 118 130 140 170 200 300 400 500
Ig(Object Count)

=i~ poly::vec relative —e— std::vec (unit)
18
16
14
12

08
06
04

Relative access
performance
(lower is better)

02

1 5 10 15 20 5 50 100 1000 10000 100000

Object count

capacity exponentially — based on the average size that is a weighted
average of all stored objects’ size. This trade-off for ensuring the locality
incurs somewhat higher memory utilization. However, the benefit of a
reduced allocation count is obvious. Furthermore, it is even more
significant when allocators from the pmr namespace are used, as the
allocate call there will not be inlined normally. There is no
devirtualization, as it is a dynamically dispatched call. This adds more
penalty if there are more allocations made than necessary.

The measurement data that was used to generate Figure 6 and Figure 7 is
based on average values. Multiple measurements were carried out for the
same object count, and the statistical difference was determined by using
two-tail Student T-test with unequal variances, o = 0:01. For Figure 6 —
which shows the averages for the best-case scenario based on the raw data

=i poly::vec relative —#— std::vec (unit)
14

12

S~

7

06

.

04

Relative access
performance
(lower is better)

0.2

0

1 5 10 15 20 25 50 100 1000 10000 100000

Object count

Figure 7

n FEATURE

at the key points — there is no statistical significance of the differences
between the averages. Therefore we can say that, most probably,
poly: :vector is not worse than the std: : vector based alternative
in this aspect. In the worst-case scenario — illustrated by Figure 7 — the raw
data showed that until the object count reaches 100, the difference is
statistically insignificant, and also showed that for a greater object count,
poly: :vector outperforms the STL-based alternative in terms of
sequential access performance. (NB.: For the small object count
measurements, the variance was so significant and also the timings were
inaccurate that no real consequence can be deduced from those data
points.)

Another important aspect — yet less tangible in terms of performance — is
the syntactic verbosity of poly: : vector compared to std: : vector.
Even though it has no runtime impact, it is still much more convenient to
express ideas directly in code. As an example: if the programmer wishes
to place an object of polymorphic type into a container, currently a smart
pointer has to be created, memory to be allocated, the object to be
constructed and assigned to the smart pointer handle instance for memory
and lifetime management, then inserted into the container itself. With
poly: :vector, this is not the case: the intention is expressed directly.
This argument is analogous to the for loop versus STL range-based
algorithms. While each has its place, the intention and the business logic
are still more clearly communicated using the latter.

Conclusion

In this paper, a generic container has been described that is tailored for
storing polymorphic instances derived from a well-known interface. Due
to the underlying memory and layout management, locality of references
is enforced structurally, which results in increased sequential access
performance with greater object counts, while also reducing the total
number of allocation count which could also be beneficial from
performance perspective. The trade-off for achieving this is an increased
memory utilization, as the container maintains capacity not just for the
objects handles but also for the yet to be stored objects based on an average
size computation. It has also been shown that with the best-case allocation
scheme the access performance is comparable to the standard based
alternative.

In summary this container can be used as a drop in replacement for
std: :vector<std: :unique_ptr<InterfaceType>> pattern in
high performance applications that use OOP for abstraction but still want
to eliminate the penalties due to memory fragmentation. B

[Alexandrescull] Andrei Alexandrescu. Modern C++ design: generic
programming and design patterns applied, Chapter 1. Addison-
Wesley, 2011.

[Janky18] Ferenc Nandor Janky. poly::vector github repository.
https://github.com/fecjanky/poly vector, 2018. Accessed: 2020-09-
18.

[Maness18] Wesley Maness and Richard Reich (2018) ‘Cache-line aware
data structures’ in Overload 146, available at: https://accu.org/
journals/overload/26/146/maness_2535/

[Reich18] Richard Reich and Wesley Maness (2018) ‘Measuring
throughput and the impact of cache-line awareness’ in Overload 148,
available at: https://accu.org/journals/overload/26/148/reich 2585/

October 2020 | Overload | 7

https://accu.org/journals/overload/26/146/maness_2535/
https://accu.org/journals/overload/26/146/maness_2535/
https://accu.org/journals/overload/26/148/reich_2585/

FEATURE »

Kafka’s configuration can be confusing.
Slanislav Kozlovski helps us visualise this
most misunderstood configuration setting.

approaches to whose interaction I’ve seen to be ubiquitously
confused. Those two configs are acks and
min.insync.replicas —and how they interplay with each other.

“ aving worked with Kafka for almost two years now, there are two

This article aims to be a handy reference which clears the confusion
through the help of some illustrations.

To best understand these configs, it’s useful to remind ourselves of Kafka’s
replication protocol.

I’m assuming you’re already familiar with Kafka — if you aren’t, feel free
to check out my ‘A Thorough Introduction to Apache Kafka’ article
[Kozlovski20].

For each partition, there exists one leader broker and » follower brokers.
The config which controls how many such brokers (1+N) exist is
replication. factor. That’s the total amount of times the data inside
a single partition is replicated across the cluster. The default and typical
recommendation is 3 (see Figure 1).

Producer clients only write to the leader broker — the followers
asynchronously replicate the data. Now, because of the messy world of
distributed systems, we need a way to tell whether these followers are
managing to keep up with the leader — do they have the latest data written
to the leader?

In-sync replicas

An in-sync replica (ISR) is a broker that has the latest data for a given
partition. A leader is always an in-sync replica. A follower is an in-sync
replica only if it has fully caught up to the partition it’s following. In other
words, it can’t be behind on the latest records for a given partition.

If a follower broker falls behind the latest data for a partition, we no longer
count it as an in-sync replica. See Figure 2, which shows that Broker 3 is
behind (out of sync).

Note that the way we determine whether a replica is in-sync or not is a bit
more nuanced — it’s not as simple as ‘Does the broker have the latest
record?’ Discussing that is outside the scope of this article. For now, trust
me that red brokers with snails on them are out of sync.

The acks setting is a client (producer) configuration. It denotes the
number of brokers that must receive the record before we consider the
write as successful. It support three values — 0, 1, and all.

‘acks=0'

With a value of 0, the producer won’t even wait for a response from the
broker. It immediately considers the write successful the moment the
record is sent out. (See Figure 3: The producer doesn’t even wait for a
response. The message is acknowledged!)

Broker 1 §€
Partition 1 {Leader)

aipiaioio

Broker 2

Partition 1
(2] (=] (]

Broker 3

Partition 1 %
NEEEE

Figure 1

Stanislav Kozlovski Stanislav began his programming career racing
through some coding academies and bootcamps, where he aced all of
his courses and began work at SumUp, a German fintech company
aiming to become the first global card acceptance brand. He was later
recruited into Confluent, a company offering a hosted solution and
enterprise products around Apache Kafka. Contact him on Twitter,
where he’s @BdKozlovski or at Stanislav_Kozlovski @ outlook.com

8 | Overload | October 2020

Apache Kafka

Apache Kafka is a battle-tested event streaming platform that allows you
to implement end-to-end streaming use cases. It allows users to publish
(write) and subscribe to (read) streams of events, store them durably and
reliably, and process these stream of events as they occur or
retrospectively.

Kafka is a distributed, highly scalable, elastic, fault-tolerant and secure
system used by more than one-third of Fortune 500 companies.

STANISLAV KOZLOUSKI = FERTURE .

In Sync Replicas = [1, 2]
out ¢f Sync Replicas = [3]

Broker 1 %

Partition 1 (Leader)

CIlz]1=]14]]s J[e](7]

B

Broker 2 % Broker 3 §g

Partition 1 Partition 1

LJ(z] () («](s]) (] [7]) JERIGIEIE] o

Figure 2
= | VAK miojoinio =
¥ &
e 5 B [GTa 010 0 E—
Figure 3
_ oW o &
romee [y ACK T CT (2] I I &
BLh::f' §€ | B:::r:1 §g
OEEEE | | Canas '
Figure 4
r_‘ E] : i::r;::mmn §g
== Sltiolaiaoo =

Broker 2 §§ Broker 3 gﬁ

Partition 1
| ‘

L) () [«] (=] [e]

October 2020 | Overload | 9

FEATURE = STANISLAV KOZLOVSKI

Protucafequas! |

' S emree S ::I':::mmﬂ §g
oo [y ACK LEEEGEE &
Sl ® ki :
NEEEEE) | TEEEEE 1
Figure 6
= @
_r B —— i::::::m.“ﬂ §g min.insync.replicas=
e | Ok [EICIEEIE -
B:;h:::‘ §€ Bro::lrs
(D EEEE) | I N
Figure?
= SO
T st Ml @GEE 3 = s K| e
CIEEIEE NilGannn o
Figure 8
r-‘l @ g Broker 1 §g m.tn.msznc‘reglicaa-a
c;;-u o o Partition 1 (Leader) .
e)) [EEE &
o2 ¥ s #
(EHEEEE | GGG

10 | Overload | October 2020

‘acks=1

With a setting of 1, the producer will consider the write successful when
the leader receives the record. The leader broker will know to immediately
respond the moment it receives the record and not wait any longer. (See
Figure 4: The producer waits for a response. Once it receives it, the
message is acknowledged. The broker immediately responds once it
receives the record. The followers asynchronously replicate the new
record.)

When set to all, the producer will consider the write successful when all
of the in-sync replicas receive the record. This is achieved by the leader
broker being smart as to when it responds to the request — it’ll send back
aresponse once all the in-sync replicas receive the record themselves. (See
Figure 5: Not so fast! Broker 3 still hasn’t received the record.)

Like I said, the leader broker knows when to respond to a producer that
uses acks=all. (See Figure 6: Ah, there we go!)

Acks'’s utility

As you can tell, the acks setting is a good way to configure your preferred
trade-off between durability guarantees and performance.

If you’d like to be sure your records are nice and safe — configure your acks
toall.

If you value latency and throughput over sleeping well at night, set a low
threshold of 0. You may have a greater chance of losing messages, but you
inherently have better latency and throughput.

Minimum in-sync replica
There’s one thing missing with the acks=all configuration in isolation.

Ifthe leader responds when all the in-sync replicas have received the write,
what happens when the leader is the only in-sync replica? Wouldn’t that
be equivalent to setting acks=1?

This is where min . insync. replicas starts to shine!

min.insync.replicas is a config on the broker that denotes the
minimum number of in-sync replicas required to exist for a broker to allow
acks=all requests. That is, all requests with acks=all won’t be
processed and receive an error response if the number of in-sync replicas
is below the configured minimum amount. It acts as a sort of gatekeeper
to ensure scenarios like the one described above can’t happen. (See Figure
7: Broker 3 is out of sync).

As shown, min.insync.replicas=X allows acks=all requests to
continue to work when at least x replicas of the partition are in sync. Here,
we saw an example with two replicas.

But if we go below that value of in-sync replicas, the producer will start
receiving exceptions. (See Figure 8: Brokers 2 and 3 are out of sync.)

As you can see, producers with acks=all can’t write to the partition
successfully during such a situation. Note, however, that producers with
acks=0 or acks=1 continue to work just fine.

Caveat

A common misconception isthatmin. insync.replicas denotes how
many replicas need to receive the record in order for the leader to respond
to the producer. That’s not true — the config is the minimum number of in-
sync replicas required to exist in order for the request to be processed. That

n FEATURE

is, if there are three in-sync replicas andmin . insync . replicas=2, the
leader will respond only when all three replicas have the record. (See
Figure 9: Broker 3 is an in-sync replica. The leader can’t respond yet
because broker 3 hasn’t received the write.)

Summary

And that’s all there is to it! Simple once visualized — isn’t it?

To recap, the acks and min. insync.replicas settings are what let
you configure the preferred durability requirements for writes in your
Kafka cluster.

B acks=0 — the write is considered successful the moment the request
is sent out. No need to wait for a response.

B acks=1 — the leader must receive the record and respond before the
write is considered successful.

B acks=all - all online in sync replicas must receive the write. If
there are less than min. insync. replicas online, then the write
won’t be processed. B

Further Reading

Kafka is a complex distributed system, so there’s a lot more to learn about!
Here are some resources I can recommend as a follow-up:

m Kafka consumer data-access semantics (https://www.confluent.io/
blog/apache-kafka-data-access-semantics-consumers-and-
membership/) — A more in-depth blog of mine that goes over how
consumers achieve durability, consistency, and availability.

m Kafka controller (https://medium.com/@stanislavkozlovski/apache-
kafkas-distributed-system-firefighter-the-controller-broker-
lafcaleae302) — Another in-depth post of mine where we dive into
how coordination between brokers works. It explains what makes a
replica out of sync (the nuance I alluded to earlier).

B ‘99th Percentile Latency at Scale with Apache Kafka’ (https://
www.confluent.io/blog/configure-kafka-to-minimize-latency/) —
An amazing post going over Kafka performance — great tips and
explanation on how to configure for low latency and high
throughput.

m Kafka Summit SF 2019 videos: https://www.confluent.io/resources/
kafka-summit-san-francisco-2019/

m Confluent blog (https://www.confluent.io/blog/) — a wealth of
information regarding Apache Kafka

m Kafka documentation (https://kafka.apache.org/documentation/) —
Great, extensive, high-quality documentation.

Kafka is actively developed — it’s only growing in features and reliability
due to its healthy community. To best follow its development, I’d
recommend joining the mailing lists (https://kafka.apache.org/contact).

Reference
[Kozlovski20] Stanislav Kozlovski * in Overload 159, August 2020,
available at: https://accu.org/journals/overload/28/158/kozlovski/

This article was first published on Stanislav’s blog on 29 March
https://medium.com/better-programming/kafka-acks-explained-
c0515b3b707e

October 2020 | Overload | 11

https://medium.com/better-programming/kafka-acks-explained-c0515b3b707e
https://medium.com/better-programming/kafka-acks-explained-c0515b3b707e
https://www.confluent.io/blog/apache-kafka-data-access-semantics-consumers-and-membership/
https://medium.com/@stanislavkozlovski/apache-kafkas-distributed-system-firefighter-the-controller-broker-1afca1eae302
https://medium.com/@stanislavkozlovski/apache-kafkas-distributed-system-firefighter-the-controller-broker-1afca1eae302
https://medium.com/@stanislavkozlovski/apache-kafkas-distributed-system-firefighter-the-controller-broker-1afca1eae302
https://www.confluent.io/blog/configure-kafka-to-minimize-latency/
https://www.confluent.io/blog/configure-kafka-to-minimize-latency/
https://www.confluent.io/resources/kafka-summit-san-francisco-2019/
https://www.confluent.io/resources/kafka-summit-san-francisco-2019/
https://www.confluent.io/blog/
https://kafka.apache.org/documentation/
https://kafka.apache.org/contact
https://accu.org/journals/overload/28/158/kozlovski/

FEATURE »

Orchestrating concurrent tasks using mutexes is seldom
efficient. Lucian Tadu Teodorescu investigates design
patterns that help unlock concurrent performance.

mutexes should be avoided and tasks can be a viable alternative to them.

If you are a reader of Overload, then you probably know by now that
If you are not an Overload reader, you are missing out ©.

In the last two articles [Teodorescu20a] [Teodorescu20b], I tried to show
that using tasks instead of mutexes is more performant, is safer and they
can be employed in all the places that mutexes can. Tasks are not the only
alternative to mutexes, but this seems to be the most general alternative;
to a large degree, one can change all programs that use mutexes to use
tasks. In general, using tasks, one shifts focus from the details of
implementing multithreaded applications to designing concurrent
applications. And, whenever the focus is on design, we can be much better
at the task at hand — design is central to the software engineering discipline.

But, as tasks are not very widespread, people may not have sufficient
examples to start working with tasks instead of mutexes. This article tries
to help with this by providing a series of design patterns that can help ease
the adoption of task systems, and that may, at the same time, improve
general concurrency design skills. Even more fundamentally, it tries to
show how applications can be designed for concurrency.

Concurrency vs. parallelism

There is widespread confusion in the software industry between
concurrency and parallelism. Before moving forward with the article, it’s
worth clarifying the distinction.

Parallelism is about running multiple things in parallel; concurrency is
about ensuring that multiple things can run in parallel (or, more correctly,
at the same time), the composition of independent processesl. For
parallelism, one needs to have at least two CPU cores; on the other hand,
concurrency can be expressed on a single core too. Having two threads
doesn’t imply parallelism, but it implies concurrency. So, parallelism
implies concurrency, but not the other way around. To benefit from
parallelism, one needs to design for concurrency.

If we look from a performance point of view, one wants parallelism, but
needs to design the code for concurrency. If we look from a design point
of view, then we should mostly be only concerned with concurrency. At
design time, it’s not clear if at run-time one will have the hardware to run
things in parallel. The goal of concurrency is to structure programs, but
not necessarily to make them run with more parallelism — in the best case,
it is an enabler for parallelism.

See [Pike13] for a better-articulated distinction between the two concepts.

We are focusing here on the design aspects, on how to express concurrent
processes, and, therefore, we will ignore parallelism for the most part.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. In his spare time, he is
working on his own programming language and he is improving his
Chuck Norris debugging skills: staring at the code until all the bugs
flee in horror. You can contact him at lucteo @lucteo.ro

12 | Overload | October 2020

Drawing inspiration from Christopher Alexander [Alexander77], Gamma
et all. [Gamma94] popularized the idea that designing software systems
can be greatly improved by using patterns. Instead of working up all the
details of a software system, one can get inspiration from various design
pattern to speed up the design process. In some sense, patterns are a
formalization of collective experience; using this experience can greatly
help the design process.

Here, we aim at leveraging patterns as a compact way of transmitting a
body of experience in designing concurrent systems. Mixing and matching
these patterns can help to solve a large variety of concurrency problems.
Moreover, as we present some fundamental patterns, [would argue that it
can help solve any concurrency problem — maybe, in some cases, not the
best solution, but still a solution. The reader is strongly encouraged to see
these patterns as building blocks and start playing with them to build more
and more complex concurrency systems.

Because of the space constraints, we will expose a compact version for
each pattern. We will say a few words about what each pattern is about,
when to use it and, when appropriate, some key points. Diagrams seem to
help a lot the process of reasoning about the design of a system, so we’ll
make sure to include a diagram for each pattern we discuss. Also, for each
pattern we’ll provide a short example in C++ code, using my Concore
library [concore]z. One of the benefits of using these examples is to show
that, using an appropriate library, one can easily express concurrency in
C++. After all, concurrency doesn’t need to be one of the hardest areas in
computer science.

Basic concurrency patterns
Create concurrent work

Description. Allows the creation of concurrent work; increases concurrency.
Creates new tasks (typically two or more) from the existing task.

Representation. See Figure 1. We represent this pattern by multiple
arrows originating from the single task, leading to new tasks. There can
be more than two tasks created from one task, so there can be more than
two arrows.

Figure 1

1. We use the term processes here in the same way that Hoare uses it in
his seminal book [Hoare85]; it means any body of work; not to be
confused with OS processes.

2. Concore is not yet a production-ready library; things may change in the
future, both in terms of API and of features.

n FEATURE

void start() {
initComponents () ;
concore: :spawn([]{ loadAssets(); });
concore: :spawn ([] {
initiliseComputationEngine (); });

Listing 1

Example. See Listing 1. In the body of the first task (start () function),
we do some work, then we spawn two new tasks; the two tasks can be
executed concurrently. For spawning the two tasks we use lambdas, as they
are perfect for the job. Tasks are implemented using functors that take no
arguments and return nothing. (We can build tasks that pass values around
by binding values to the lambdas used to create the tasks.)

Discussion. There are multiple ways in which a task can be given to the
task system; this example uses the spawn function. Another way to do it
istouseaglobal executor or some other type of executor. Executors,
in Concore, can be used to customize how tasks are executed (they are
somehow similar to the executors proposed for the C++ Standard, but, at
least for the moment, they are not the same).

Key point. It’s important to ensure safety for the concurrent tasks that are
created; i.e., there should be no race condition bugs between the set of tasks
that are created. See [Teodorescu20b] for more details. In our example,
showSplashScreen () should not interfere with LoadAssets ().

When to use. To increase concurrency in an application, this should be
used as often as our correctness allows (and performance does not
degrade). With respect to performance, is often better to over-split the
work into multiple concurrent processes than to split it less than needed —
it’s much easier, later on, to combine work later on than to split it further.
But, if we have enough tasks in the system, and we want to maximize
performance, considering the results from [Teodorescu20a], we should
split tasks so that the sizes of the tasks are several orders of magnitude
higher than the overhead generated by the task framework.

Continuation

Description. Allows ‘do X after finishing Y’ workloads to be encoded.
Allows decoupling between the first task and its continuation (see
[Wikipedia]). Can also be used to split longer tasks into smaller ones, for
performance reasons.

Representation. See Figure 2.

Example. Listing 2 shows an example of how this pattern can be used; we
have an HTTP engine that makes async requests, and whenever the

Figure 2

void handleResponse (HttpResponseData respData,
HandlerType handler) {
// the work for this task: process the response
HttpResponse resp = respData.toResponse() ;
// create a continuation to handle the response
concore: :task cont{[resp = std::move(resp),
handler] {
handler (resp) ;
I3
concore: :spawn (std: :move (cont)) ;
}
void httpAsyncCall (const char* url,
HandlerType handler) {
// does HTTP logic, and eventually async
// calls handleRespnse ()
}
void useHttpCode () {
// the work to be executed as a continuation
HandlerType handler = [] (HttpResponse resp) ({
printResponse (resp) ;
}i
// call the Http code asynchronously, passing the
// continuation work
httpAsyncCall ("www.google.com", handler) ;
// whenever the response comes back,
// the above handler is called

Listing 2

response comes back, it executes a continuation; the example shows just
how the continuation is started, and how the top-level API can be used.
One can see that the HTTP implementation is decoupled from the response
handling logic; the latter is passed as a continuation to the HTTP engine.
Discussion. This is similar to the creation of concurrent work, but we just
create one follow-up task. In this pattern, the follow-up task is always
started at the end of the first task.

When to use. Mostly when we need to decouple two actions that need to
be executed serially. Sometimes when we just need to break a long task
into smaller tasks (which can improve performance by giving more
flexibility to the task scheduler).

See also. Creating of concurrent work, serializers.

Join

Description. Allows the execution of work whenever multiple concurrent
tasks are finished. The inverse of the creation of concurrent work pattern.
Representation. See Figure 3.

Example. Listing 3 shows how the problem from Listing 1 can continue;
when both the two tasks are complete, a £inish_task is started. At the
end of each task, they have to notify an event object to ensure that the
fhish task starts at the right time.

October 2020 | Overload | 13

l FEATURE = LUCIAN RADU TEODORESCU

S

Discussion. The way this pattern is expressed, we create a task whenever
the previous tasks are done, as opposed to somebody waiting for the tasks
to be complete. In task-based programming, people are encouraged to
minimize the number of waits in favour of creating new tasks.

When to use. Whenever several tasks need to complete before starting
another task (e.g., they compute something that is needed for the successor
task).

Fork-join

Description. This pattern is somehow a combination of the creation of
concurrent work and the join pattern. But we present it here separately for
its peculiar way of handing the stack and continuing the work; the thread
that created the work also waits for the work to be completed, and its stack
remains intact. This is actually a busy-wait. See [McCool12], [Robison14]
for more details.

Representation. See Figure 4.

Example. Listing 4 shows a recursive generic algorithm that applies a
functor over a range of integers. While the interval is large enough, it
divides it and recursively applies the functor. It’s important to notice that,
even if this works with tasks, the stacks for all the recursive calls are kept
alive by the wait () calls.

Discussion. As tasks are functions that do not take any parameters and
don’t return anything, the way to pass information between tasks is via

concore: :finish task doneTask([]{
listenForRequests() ;
}, 2); // waits on 2 tasks

// Spawn 2 tasks

auto event = doneTask.event();

concore: :spawn ([event] {
loadAssets() ;
event.notify done();

})

concore: :spawn ([event] {
initiliseComputationEngine () ;
event.notify done();

})

// When they complete,

Listing 3
14 | Overload | October 2020

the done task is triggered

T

Figure 4

captured variables in the given functors/lambdas. Typically, if the stack is
not available, the data passed between the tasks need to be allocated on
the heap. By keeping the stack around, this pattern allows the user to avoid
allocating data on the heap. It also simplifies the handling of the data (i.e.,
don’t need to pack the data in additional structures). This can save a lot of
development time if one wants to improve concurrency for a piece of code
that is found at the bottom of a somehow larger callstack.

Key point. This pattern waits on the caller thread/task. But, it’s important
to realize that this is a busy-wait. If it cannot execute any tasks that have
just forked, it will attempt to execute other tasks from the system in the
hope that the forked tasks finish as soon as possible. While trying to
maintain a constant throughput, this pattern may slightly damage the
latency of certain operations.

When to use. Whenever the fork and the join need to happen in the same
area of code, whenever we want to take advantage of the stack, or whenever
it’s too complex to refactor the code to use continuations and regular join
patterns.

Designing with hasic patterns

After describing these basic patterns, we should pause and reflect on their
usage. They can be combined in a lot of ways to describe any problem that
can be expressed as a direct acyclic graph. Moreover, with a little creativity
(i.e., creating some helper control tasks), we can also handle arbitrary

template <typename F>
void conc_apply(int start, int end,
int granularity, F f) {
if (end - start <= granularity)
for (int i = start; i < end; i++)
£(i);
else {
int mid = start + (end - start) / 2;
auto grp = concore::task_group::create();
concore: :spawn([=] { conc_apply(start, mid,
granularity, £f); }, grp):;
concore: :spawn([=] { conc_apply(mid, end,

granularity, £); }, grp);
concore: :wait(grp) ;
}
}
Listing 4

LUCIAN RADU TEODORESCU » FEATURE .

restrictions [Teodorescu20b]. This means that all 4 of these basic patterns
can be used to implement any concurrency problem. This is a powerful
design tool.

Derived patterns
Task graph

Description. Allows the expression of directed acyclic graphs of tasks
directly.

Representation. See Figure 5 for an example of a task graph.

Example. Listing 5 shows an example of how one can code the graph from
Figure 5. After constructing the tasks, one can set the dependencies
between the tasks to match the desired graph. To start executing, one has
to schedule the first task from the graph.

Discussion. The defined graph must be acyclic, otherwise, the tasks will
not run. It’s also worth noting that the task graph doesn’t necessarily need
to start with just one task; one can have graphs that have multiple starting
points. This allows the modelling of much more complex flows.

When to use. Whenever the execution flow is clear upfront and/or the
graph is slightly more complex.

Pineline
Description. Allows the expression of data pipelines that can process
items concurrently.

Representation. See Figure 6 for an example of a pipeline with 4 stages,
2 in order and 2 concurrent.

Example. Listing 6 shows a classic pipeline with stages for Decode, Fetch,
Execute and Write. The Decode and Write stages need to run the elements
in the order in which they are pushed to the pipeline, but the other two
stages can be executed concurrently. For any item pushed through the
pipeline, all the stage functions will be executed in order; they would all
receive the shared pointer to the same data. We gain concurrency by
allowing multiple items to be in the Fetch and Execute stages. The
execution of the Decode and Write stages is serialized, and the items are
processed in the order in which they are pushed.

Discussion. Each item that goes through a pipeline must follow a certain
number of stages, in sequence. But, in some cases, several items can go
through the pipeline concurrently. A pipeline can typically limit the
maximum number of items that are processed concurrently. In a classical

std: :shared ptr<RequestData> data
= CreateRequestData() ;

// create the tasks

concore: :chained_task tl{[data] {
ReadRequest (data); }};

concore: :chained task t2{[data] { Parse(data); }};

concore: :chained task t3{[data] {
Authenticate (data); }};

concore: :chained_task t4{[data] {
StoreBeginAction(data); }};

concore: :chained task t5{[data] {
AllocResources (data); }};

concore: :chained task t6{[data] ({
ComputeResult(data); }};

concore::chained_task t7{[data] {
StoreEndAction(data); 1}};

concore: :chained task t8{[data] ({
UpdateStats(data); }};

concore: :chained task t9{[data] {
SendResponse (data); }};

// set up dependencies

concore: :add_dependencies(tl, {t2, t3});
concore: :add_dependencies(t2, {t4, t5});
concore: :add_dependency (t4, t7);

concore: :add_dependencies ({t3, t5}, t6);
concore: :add_dependencies(t6, {t7, t8, t9});

// start the graph
concore: :spawn (tl) ;

pipeline, processing items at any stage is ordered, but one may want to
relax these restrictions. In the above example, we enforce the Fetch and
the Write stages to be ordered, but we didn’t impose any limit on the middle
stages; the middle stages are allowed to be fully concurrent. Between an
ordered restriction (first and last stages) and no restrictions at all, there is
another type of restriction that one may want to use: out-of-order serial.

October 2020 | Overload | 15

FEATURE »

using LinePtr = std::shared ptr<LineData>;

auto my pipeline =

concore: :pipeline builder<LinePtr>()
| concore::stage_ordering::in_order
| []1(LinePtr line) { Fetch(std::move(line)); }
| concore::stage_ordering::concurrent
| [](LinePtr line) { Decode(std::move(line)); }
| []1(LinePtr line) { Execute(std::move(line)); }
| concore::stage_ordering::in_order
| [](LinePtr line) { Write(std::move(line)); }
| concore::pipeline end;

for (int i = 0; i < num_lines; i++)
my pipeline.push(get line(i));

In this mode, the system is allowed to execute at most one task per stage,
but it doesn’t need to be in order.

Key point. This pattern is a great example of how to change an apparently
sequential system and add concurrency to it. Improving concurrency is
directly related to relaxing some of the constraints of the original model.
The first constraint we drop is that we can execute a maximum of one item
concurrently; it turns out that if we keep the input and the output stage
ordered, most of the time we don’t need this constraint. Also, if one can
move most of the work in a pipeline in stages that are not fully concurrent,
this can improve concurrency a lot; for example, if one spends more than
half of the total time in concurrent stages of the pipeline, then given that
we have enough items that flow through the pipeline, the concurrency will
steadily grow.

When to use. Whenever we have a process that needs to execute
sequentially some steps over some items, but some of the steps can run
concurrently.

Serializers are presented in detail in the previous article [Teodorescu20b],
so we won’t cover them here. The main idea that we want to stress here is
that they are often design patterns in the concurrency world. In my
experience, I find that using a serializer is one of the most frequent first-
choices whenever expressing constraints between tasks; maybe a bit too
often.

Description. Allows the concurrent execution of a body of work over a
collection of items, or transforming a collection of elements with a
mapping function.

16 | Overload | October 2020

Figure 1

Representation. See Figure 7 for arepresentation of a data transformation.
Yellow/light circles and diamonds represent data.

Example. Listing 7 shows how one can apply a transformation to a
collection of elements.

Discussion. This looks very much like a for structure, in which all the
iterations can be executed concurrently. Because of that, it’s probably the
easiest form of concurrency.

When to use. Whenever the iterations of a for loop are independent of
each other.

Description. A concurrent version of std: :accumulate, allowing
reduction over a collection of items.

Representation. Figure 8 shows the inner tasks involved in reducing a
collection of 4 elements.

Example. Listing 8 shows how one can use concurrent reduce operations
to compute the total memory consumption for a vector of resources. It’s
assumed that getting the memory consumption of one resource is
independent of getting the memory consumption for another resource.

Discussion. This is similar to a concurrent £or, but also reduces the results
obtained from all iterations into one value. The reduction operation is not

std: :vector<int> ids = getAssetIds():;

int n = ids.size();

std: :vector<Asset> assets(n);

concore: :conc_for (0, n, [&] (int i) {
assets[i] = prepareAsset(ids[i]); });

Listing 7

LUCIAN RADU TEODORESCU » FEATURE l

std: :vector<Resource> res = getResources();
auto oper = [&] (int prevMem, const Resourceé& res)
-> int {
return prevMem + getMemoryConsumption (res) ;
}s
auto reduce = [] (int 1lhs, int rh