

Find out more at www.qbssoftware.com

https://www.jetbrains.com/cpp/?utm_source=accu&utm_medium=banner&utm_content=journal&utm_campaign=ww-en-clion-media

February 2020 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 A line-to-line conversion from Node.js to
Node.cpp
Dmytro Ivanchykhin, Sergey Ignatchenko and
MaximBlashchuk show how we can get a 5x
improvement in speed.

8 The Path of Least Resistance
Steve Love helps us with a walk through
Python imports.

14 Quick Modular Calculations (Part 2)
Cassio Neri presents alternatives to the
minverse algorithm.

18 A Secure Environment For Running Apps?
Alan Griffiths considers the security aspects of
apps from the app store.

20Afterwood
Chris Oldwood shows us that ‘the centre half’ is
more than a sporting term.

OVERLOAD 155

February 2020

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 156 should be submitted
by 1st March 2020 and those for
Overload 157 by 1st May 2020.

EDITORIAL FRANCES BUONTEMPO
Members and Remembrances
Remembering things can be
difficult. Frances Buontempo
reminisces on routes to erudition.
I had a busy Christmas doing almost nothing, which
was nice, but meant I forgot to write an editorial. We
played backgammon, which I hadn’t played for ages
now, and moved on to charades. The randomness of
backgammon means you can’t learn a sequence of
moves off by heart to try to win, but some sensible

moves given, say, the initial setup and a certain dice roll do stick in the
mind. Certain pairs of numbers together with the distance apart of pieces
gives ways to keep things safe, or small risks worth taking, Playing
charades is another matter, but again certain visual clues are memorable.
Making a ‘T’ shape with your hands to indicate the word ‘the’, for
example. As the game progresses, once a word has been guessed from a
silly action that becomes a new way to express a word. The sillier, the
better. Or maybe that’s just me.

Certain properties, such as silliness, make ideas and actions more
memorable. Children are taught songs that have repetition, rhymes and
rhythm. The structure and sound means a novice can mimic or guess and
often get things right. People can manage to ‘jam’ together, extemporizing
and ad-libbing music or other types of performance, without sheet music
or a script by knowing the rules of the game. Playing in a given key means
certain notes will work together. Having a time signature indicates when
to play a note. To the uninitiated, it probably looks like magic. To those
on the inside, the magic is more a combination of experience and known
rules or guidelines. Some jams start with a known tune, but then go on the
change and bend the sequence creating something new.

All kinds of activities follow this kind of pattern, along the lines of the
Shu Ha Ri idea from martial arts. Meaning ‘embracing the kata’ it
describes three steps in learning:

 Shu: Student follows instructions precisely.

 Ha: Student starts to learn principles and theory (i.e. can break the
rules).

 Ri: student becomes master and ‘is’ the rules, creating new rules.

Martin Fowler wrote a brief blog about this [Fowler14], comparing it to
the Dreyfus model of learning, though Alistair Cockburn originally
introduced it as a way of approaching the learning of software
development. Starting with known patterns and rules, once you can
remember them, you can try out new things. This helps you understand
what and why. Then you can try completely new things.

Do you know the rules? Perhaps software development doesn’t really have
rules. Sometimes people have memorised

algorithms, perhaps in order to succeed at
interviews, or maybe just for fun. This may

start by following some pseudocode in a

book or on a website, or even copying and pasting from a website. This
will not be sufficient to learn the technique properly. More practice is
required. It can be illuminating to find several different ways of coding
up the same thing, or trying it in various languages. As you go deeper, you
may start to understand some underlying principles. Sometimes you can
build up an instinct, and spot what might be making code slow, but an
expert knows to always measure as well. Sometimes your instinct is
wrong, nonetheless being at a point where you do have instincts, even if
it’s which websites or books to turn to for help, indicates a level of
knowledge. If you can then explain what you are noticing to someone else,
you are building expertise. If they can follow what you said, then you are
doing even better.

Sometimes, you might be trying to learn on your own. If you try to learn
a new language or to drive a new framework, where do you start? I find
myself constantly looking things up, until I bore myself and get
determined to remember the basics. Sometimes practising a few small
functions over and over until I can use something like muscle memory to
let the code happen helps. Some people prefer books, others videos or
classes, either in person or on line. In some ways the medium is
immaterial. The process will be similar. Try, try, try again. And then either
succeed or give up.

Do you remember how you learnt to code? Or how to find your way around
an unfamiliar code base? On several occasions when I’ve started a new
contract, team mates will sit with me, often in a meeting room, and sketch
things out on a white board. Or sit me by their desk, pressing the ‘go to
definition’ key in their IDE. Even when I desperately try to make notes,
I never feel like I know my own way round until I have explored by myself,
or try to actually add new features. Certainly, a short introduction can help
you find your way more quickly. We went on holiday to Morocco a while
ago. It’s very easy to get lost in the medina, but there’s a Mosque with a
large tower on the edge of the market square. The simple instruction,
“Look for the tower” helps us not get completely lost. If you visit a new
town, and someone shows you around, you will not remember exactly
which routes you took, even if you take extensive notes. When you next
venture out by yourself, you will almost certainly have unsure moments
of which way to turn. If you at least spot one landmark to get you back to
the car park, bus station or other significant place, you have more chance
of finding your own way round. You can’t remember every detail, but
having one or two important things in mind makes so much difference.
Introducing a new starter to your setup is difficult, don’t get me wrong.
You need to find a balance between pointing out an important signpost
and allowing your new colleague to explore. Talking at someone for
several hours, and having to look things up yourself as you go isn’t the
best approach. Let the new person look things up. Pair with them for a bit.
Ask what they need to ‘hit the ground running’, as the phrase goes.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2020

EDITORIALFRANCES BUONTEMPO
Can you remember your best onboarding experiences? What about your
best learning experiences? I could tell war stories about some lecturers at
University, or some teachers at school. I’m sure we all could. When things
didn’t go well, those who were keen to learn would often form small self-
help groups. Students can often figure stuff out between themselves,
despite the teacher. I’m allowed to be negative about teachers because I
used to be one. It’s not an easy job. I have a lot of respect for people who
manage to teach well, and am saddened when I hear of the hard time some
lecturers are having in various institutions, trying to find time to help their
students. This is straying dangerously close to a political opinion piece
now, which would count as an editorial. I have avoided this so far, so must
change subject immediately.

People have ways of remembering salient points, and so do machines. In
order to remember state between function calls, object oriented
programming stores values in member variables for future use in member
function calls. Without something like the single responsibility principle,
the class can end up more like a school with hundreds of members chucked
in to save having to think about how to share state between various objects.
An alternative would be lots of global variables. A more functional style
might chain calls together, never having state, per se, but rather results to
operate on. There are also various approaches to asynchronous code.
C++20’s coroutines can stop for a bit and resume later. They need to
‘remember’ what they were doing when they kick off again. There are
various approaches to this, however ‘Coroutines are stackless: they
suspend execution by returning to the caller and the data that is required
to resume execution is stored separately from the stack.’ [cppreference].
Perhaps you are a full heap developer, rather than a full stack developer,
if you are using C++. See what I did there?

What else involves remembering or learning? The first thing that springs
to mind, for me, is machine learning. Almost all machine learning
algorithms start with a random setup, often several random numbers, and
iterate until a criterion is fulfilled, nudging the numbers up or down a bit,
based on feedback, in the form of a ‘fitness’ or scoring function. When
complete, they have a new set of numbers. Describing this as learning
seems a bit odd at first glance. When we learn, we tend to feel like we can
then remember something new afterwards. Does a machine ‘remember’
anything? It might cache or serialise the new numbers. Perhaps this is like
us holding something in memory for a while, or resorting to taking notes.
The machine won’t be able to explain its new knowledge to anyone though.
Don’t get me wrong, I love machine learning, but words like ‘learn’,
‘train’, and ‘intelligence’ need some consideration when used in a new
context.

What about other new things? How do you get a talk at a conference
accepted? Or an article published, or even write a book? Well, if you don’t
try, it won’t happen. It can be helpful to talk to people who have done the
thing you want to do. When I consider which of my talks have been
accepted and which haven’t been, I’m not certain of the main differences.
Though proposals with a clearer main topic did better, but there’s more to
it than that. Getting an article accepted is another matter. It varies between
publications. Some more academic journals can take months, if not years,

to finally accept or reject an idea. Overload has a much quicker turn round,
and we’ll help you improve an initial idea if required. As for getting a book
published, asking for published authors to read your pitch will help. They
have been through it before. When I first joined ACCU, I was blown away
by people who talked at conferences, wrote articles and had even had books
published. I got used to this, making it seem less unachievable. If you are
an ACCU member, well done. Use this opportunity to network and join
in. If you’re not, you’re missing out. Just saying.

Another angle of getting published or a talk accepted, is considering how
your idea will be assessed. If you’ve never read someone else’s proposal,
you’re missing out. Many organisations will give you a chance to be on a
review board or committee. Several publishing companies let you join
their review team, and the ACCU members’ magazine, CVu, runs a book
review section. Review other people’s work: you may not get paid for
doing so, but will gain valuable experience. You’ll start to spot ways of
saying things, how to make yourself clearer, and how to develop an idea.
Insider knowledge is invaluable. Join ACCU, and take part in the Code
Critique Competition. You might win a book token, or at least see your
name in print. Write for Overload. Volunteer for the review team. Or
volunteer to be a guest editor. I’m serious; if you would like a go, then get
in touch. I’ll help you through the process, from encouraging people to
write, to coordinating with the review team and getting the magazine to
the production editor. Learn what happens behind the scenes. It’s not
magic, but is rewarding.

I joined ACCU many years ago. I’ve met so many people, some I only
know by name but others I have met in person at meetups or the conference.
Inevitably, people come and go. Last year, a long standing member, Hubert
Matthews, died. He was our chairperson for a time, and I went to several
of his conferences talks. Many of us paid tribute via the accu-general email
list. It’s always a shock when someone dies, but having fond and positive
memories is wonderful, even when initially tinged with sadness.

I’ve spent a long time talking about how to learn new things, as well as
remembering what’s gone before. Whether remembering people or
experiences, taking a moment to think back and reflect is useful. Maybe
history and tradition give us the Shu – some kind of patterns or
‘instructions’. However, to learn from past mistakes and glories, we should
avoid cargo cult stuff, mindlessly following a recipe. Don’t do something
because that’s the ‘right way’, ‘best practice’, or ‘most
appropriate’, or it worked for someone else. Bend the
rules once or twice. Move on to Ha and then Ri. Join
ACCU, get involved and lay down good memories and
make friends. Bring on the New Year.

References
[cppreference] Coroutines (C++20) at https://en.cppreference.com/w/

cpp/language/coroutines

[Fowler14] Martin Fowler, ShuHaRi, published 22 August 2014,
available at https://martinfowler.com/bliki/ShuHaRi.html
February 2020 | Overload | 3

https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/language/coroutines
https://martinfowler.com/bliki/ShuHaRi.html

FEATURE DMYTRO IVANCHYKHIN, SERGEY IGNATCHENKO & MAXIM BLASHCHUK
A line-to-line conversion from
Node.js to Node.cpp
Dmytro Ivanchykhin, Sergey Ignatchenko and Maxim
Blashchuk show how we can get a 5x improvement in speed.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Hare, and do not necessarily coincide with the opinions of the
translators and Overload editors; also, please keep in mind that
translat ion diff icult ies from Lapine (l ike those described in
[Loganberry04]) might have prevented an exact translation. In addition,
the translators and Overload expressly disclaim all responsibility from
any action or inaction resulting from reading this article.

t is pretty well known that, computation-wise, C++ code is substantially
faster than Node.js (even with all the efforts spent on the v8 engine);
for details we can refer to [Debian], where for different calculation-

oriented algorithms the results were in favour of C++, with differences in
wall-clock time ranging from 1.2x to 6x.

However, most of the benchmarks out there (including [Debian]) are
concentrating on pure computations. This means that differences in the
ability of different frameworks to handle requests (which forms a basis for
handling real-world interactive loads) are not addressed. This article aims
to start covering this gap.

Node.cpp
At this point, we want to compare good old Node.js with our own new kid
on the block, which we named Node.cpp.

The idea behind Node.cpp is to make a framework which will allow us to
write C++ code in Node.js style while benefiting from C++ goodies
(including significantly improved performance). Moreover,

It should be possible to take existing Node.js code and convert it into
Node.cpp with line-to-line correspondence between the two.1

As of now, Node.cpp is still very much in its infancy, but we have already
managed to write enough code to run some benchmark tests Let’s take a
look at the code of the http ‘echo’ server which is along the lines of the
sample from [Ostinelli11] (see Listing 1).

As we can see, there is a direct correspondence between Node.JS code and
Node.cpp code; sure, there are quirks related to the nature of C++ (and
some more due to still-missing APIs in Node.cpp – which will be fixed
before release), but overall the whole thing looks similar enough

to enable manual but more or less mechanistic rewriting from
Node.js into Node.cpp

I

Listing 1

//Node.js
http.createServer(function(request, response) {
 if (request.method == "GET"
 || request.method == "HEAD") {
 response.writeHead(200,
 {"Content-Type":"text/xml"});
 var urlObj = url.parse(request.url, true);
 var value = urlObj.query["value"];
 if (value == ''){
 response.end("no value specified");
 } else {
 response.end("" + value + "");
 }
 } else {
 response.writeHead(405,
 "Method Not Allowed");
 response.end();
 }
}).listen(2000);

//Node.cpp
srv = net::createHttpServer<ServerType>(
 [](net::IncomingHttpMessageAtServer& request,
 net::HttpServerResponse& response){
 if (request.getMethod() == "GET"
 || request.getMethod() == "HEAD") {
 response.writeHead(200,
 {{"Content-Type", "text/xml"}});
 auto queryValues =
 Url::parseUrlQueryString(
 request.getUrl());
 auto& value = queryValues["value"];
 if (value.toStr() == ""){
 response.end("no value specified");
 } else {
 response.end(value.toStr());
 }
 } else {
 response.writeHead(405,
 "Method Not Allowed");
 response.end();
 }
 });
srv->listen(2000, "0.0.0.0", 5000);

Dmytro Ivanchykhin has 10+ years of development experience,
and has a strong mathematical background (in the past, he taught
maths at NDSU in the United States). Dmytro can be contacted at
d_ivanchykhin@yahoo.com

Sergey Ignatchenko has 15+ years of industry experience,
including being a co-architect of a stock exchange, and the sole
architect of a game with 400K simultaneous players. He currently
holds the position of Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com

Maxim Blashchuk Maxim Blashchuk has substantial development
experience, most of it with embedded programming. Recently he
joined a team performing research on low-level C++ libraries providing
properties such as determinism and memory safety.

1 At this point, we’re talking about a manual rewrite; whether automated
conversion will be possible, and how efficient it will be, is currently
beyond the scope of this article.
4 | Overload | February 2020

FEATUREDMYTRO IVANCHYKHIN, SERGEY IGNATCHENKO & MAXIM BLASHCHUK

differences in the ability of different
frameworks to handle requests (which

forms a basis for handling real-world
interactive loads) are not addressed
Sure, after rewriting into Node.cpp the code will be still a bit more verbose,
but what is important is that such a rewrite should be feasible without any
changes to the essence of the Node.js code.

What’s the point?
Ok, we can see that it IS possible to convert some rudimentary Node.js
code into Node.cpp without breaking the structure of existing Node.js
code. But what is the point of going through such an exercise?

In the not so distant future, we’re planning to add some ultra-useful
features to Node.cpp – such as deterministic recording/replay (which in
turn will allow production post-mortem debugging (sic!)); however, for
the time being, we’ll concentrate on one advantage of Node.cpp – namely,
on performance.

Test setup
When testing our Node.cpp against Node.js, our plan was to:

 Exclude testing of computations (there are too many computations
out there, and they are addressed by other benchmarks such as
[Debian])

 Have a test which is as close to real-world conditions as possible

To achieve this, we used httperf along the lines described in
[Ostinelli11], with some changes intended (a) to reflect the real world
better (most importantly, we ran our tests between two separate boxes),
and (b) restricting the programs under test to use one single core (multi-
core tests using cluster module are coming, but they’re not a part of this
particular article).

Hardware
Unlike [Ostinelli11], we ran our client and server on two different boxes:

 Server

HP DL380eG8 (12xLFF), CPU: 2x Intel Xeon E5-2420 (6 cores, 12
threads, 15M Cache, 1.90 GHz, 7.20 GT/s Intel® QPI), RAM 32
GB, Disks 4x3TB SATA, Network card: 10GE UTP card

Overall, our test server is pretty much a typical workhorse 2S server,
which has tended to dominate data centres for at least for last 20
years.

 Client

Dell R630, CPU: 2x Intel Xeon E5-2630v4, 128G RAM, Disks
2x480GB SSD

Honestly, client hardware doesn’t matter much and is mentioned
here merely for the sake of completeness.

Client and server boxes were interconnected directly via a 10Gbit switch.

Software
Both client and server boxes were running stock Ubuntu 19.10 (Eoan).

On the client, we ran httperf patched to use an increased number of file
descriptors as discussed in [Stackoverflow].

We used this command line for httperf:

 httperf --timeout=5 --client=0/1
 --server=10.32.36.3 --port=2000 --rate=XXX
 --send-buffer=4096 --recv-buffer=16384
 --num-conns=8000 --num-calls=70

where the (session) rate parameter went from 100 to 2000 in steps of 100.

On the server, we ran either Node.js, which is available for eoan (10.15.2),
or the open-source code for [node.cpp] compiled with Clang 9. App-level
code used for Node.js and Node.cpp is shown in Listing 1 above. Another
test we ran (just as a sanity check and to put things into perspective) was
the raw performance of the single-core nginx serving static files (which
are requested by the same httperf); in a sense, nginx results represent
‘The Holy Grail’ of http dynamic processing, something we can try to
reach.

Results
The results of our testing are shown in Figure 1, overleaf.

Here, along the lines of [Ostinelli11], the ‘desired’ response rate is
calculated as rate  num-calls (as specified in the command line for
httperf), and the ‘real’ response rate is the actual response rate as measured
by httperf.

As we can see, with a lower load, all the servers behave similarly until the
capacity of a particular server is reached; but after that limit is reached,
however much we increase the load, the response rate doesn’t really
improve and stays more or less stable.

As such, we can conclude (at least within the limitations of the current test
setup), that Node.js can handle a maximum of 13,000 responses/sec per
core, while Node.cpp can handle around 70,000 responses/sec (that’s over
a 5 advantage performance-wise(!!)). Static-serving nginx, as expected,
goes well above both dynamic handlers (at 100,000 responses/sec), but we
have to note that (i) a 30% difference between Node.cpp and nginx is not
THAT bad, and (ii) we will try to bring node.cpp MUCH closer to the
performance of static-serving nginx.

Important notes about the results:

 All the results are currently for a single core only. Tests for multiple
cores (using cluster API) are coming soon.

 Node.cpp has a 5 performance advantage over Node.js

5 is a Damn Lot™. It is also interesting to note that other
frameworks competing with Node.js (such as Erlang/Elixir and
golang) seem to have performance in the same ballpark as Node.js,
so Node.cpp can become a competitive advantage of the Node.*
ecosystem (more on this below). We’re planning to come to this
question in our next article, after running multi-core tests adding
Erlang, Elixir, and golang to the mix.

 The big fat question is where Node.js (as well as competing
frameworks) manage to lose that 5 performance improvement (we
DO realize that it is not Node.cpp which performs well, it is rather
February 2020 | Overload | 5

FEATURE DMYTRO IVANCHYKHIN, SERGEY IGNATCHENKO & MAXIM BLASHCHUK

Node.cpp is still in its early infancy, and is
not ready (yet) for production use… If you
want to help, please feel free to contribute
Node.js which performs poorly). More investigation would be
needed to find out why it is slower.

 Node.cpp is merely 30% behind the statically-serving nginx.

This number looks even more impressive as Node.cpp didn’t even
start with any optimizations of its code (it is not pessimized, but
that’s it); in particular, Node.cpp is currently using generic poll()
rather than Linux-specific epoll() – and is still merely 30%
behind The Holy Grail of http performance.

 Our tests were intentionally run for an as-small-as-feasible piece of
code; we did NOT try to measure the performance of the
computations within the language (this is covered by [Debian] and
other benchmarks); instead, we tried to test the maximum
performance of the respective frameworks.

This means that for this particular test where we’re implementing an
echo http server, using C++ plug-ins for Node.js wouldn’t bring
any observable benefit (what would we do within a C++ plug-in to
implement echo? Copy a string from input to output?)

 Within these tests, the performance of Node.cpp with runtime
memory safety enabled was not that much different from its
performance with runtime memory safety checks turned off (NB:
this applies ONLY to this particular test; in general, such results

depend heavily on the memory structures used, and may vary
greatly).

Great! When can we start conversion?
As noted above, the whole point of Node.cpp is to allow conversion of
(those 5% of performance-critical Nodes which warrant such an effort)
from Node.js into Node.cpp.

The only tiny problem on the way is that Node.cpp is still in its early
infancy, and is not ready (yet) for production use. In particular, the set of
supported APIs is still extremely limited, and package management is not
there yet. If you want to help, please feel free to contribute (or contact the
authors); we feel that Node.cpp is a project with wonderful prospects that
can help make Node.* ecosystem an indisputable leader at least
performance-wise (and a common point of view is that Node loses
performance-wise both to Erlang/Elixir and to Golang [Christensen16]
[Peabody] [Stressgrid20]2).

Figure 1

2. We do know that at least some of these tests are unfair to Node.js (by
ignoring cluster module), and that Node is generally rather competitive
to Erlang/Elixir and Golang, but 5x performance improvement would
clearly blow all the competition out of the water.
6 | Overload | February 2020

FEATUREDMYTRO IVANCHYKHIN, SERGEY IGNATCHENKO & MAXIM BLASHCHUK

the Node.cpp server outperforms the
Node.js one by a factor of 5x. We feel that

this opens up wonderful opportunities
Conclusions and future work
Over the course of this article, we took a very rudimentary Node.js http
server, and converted it more or less line-by-line into Node.cpp. Then we
ran a bunch of http tests to compare performance of both versions, and
found that the Node.cpp server outperforms the Node.js one by a factor of
5. We feel that this opens up wonderful opportunities and are going to
continue our work to enable high-performance Node.* programming for
those Nodes where performance is critical. 

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.

References
[Christensen16] Jack Christensen (2016) ‘Websocket Shootout: Clojure,

C++, Elixir, Go, NodeJS, and Ruby’ at: https://hashrocket.com/blog/
posts/websocket-shootout, posted 1 September 2016

[Debian] The Computer Language Benchmarks Game: ‘Node js versus
C++ g++ fastest programs’ https://benchmarksgame-
team.pages.debian.net/benchmarksgame/fastest/node-gpp.html

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[Ostinelli11] Roberto Ostinelli (2011) ‘A comparison between Misultin,
Mochiweb, Cowboy, NodeJS and Tornadoweb’ at:
 http://www.ostinelli.net/a-comparison-between-misultin-
mochiweb-cowboy-nodejs-and-tornadoweb/

[node.cpp] node.cpp, https://github.com/node-dot-cpp/node.cpp
[Peabody] Brad Peabody ‘Server-side I/O Performance: Node vs. PHP vs.

Java vs. Go’ at: https://www.toptal.com/back-end/server-side-io-
performance-node-php-java-go

[Stackoverflow] lawnmowerlatte ‘Changing the file descriptor size in
httperf’ at: https://stackoverflow.com/a/16449853/4947867

[Stressgrid20] Stressgrid (2020) ‘Benchmarking Go vs Node vs Elixir’ at:
 https://stressgrid.com/blog/benchmarking_go_vs_node_vs_elixir/,
posted 6 January 2020
February 2020 | Overload | 7

https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/node-gpp.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/node-gpp.html
http://www.ostinelli.net/a-comparison-between-misultin-mochiweb-cowboy-nodejs-and-tornadoweb/
http://www.ostinelli.net/a-comparison-between-misultin-mochiweb-cowboy-nodejs-and-tornadoweb/
https://github.com/node-dot-cpp/node.cpp
https://stressgrid.com/blog/benchmarking_go_vs_node_vs_elixir/
https://hashrocket.com/blog/posts/websocket-shootout
https://hashrocket.com/blog/posts/websocket-shootout
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
https://www.toptal.com/back-end/server-side-io-performance-node-php-java-go
https://www.toptal.com/back-end/server-side-io-performance-node-php-java-go
https://stackoverflow.com/a/16449853/4947867

FEATURE STEVE LOVE
The Path of Least Resistance
Python’s modules and imports can be overwhelming.
Steve Love attempts to de-mystify the process.
here is more to Python than scripting. As its popularity grows, people
naturally want to do more with Python than just knock out simple
scripts, and are increasingly wanting to write whole applications in

it. It’s lucky, then, that Python provides great facilities to support exactly
that need. It can, however, be a little daunting to switch from using Python
to run a simple script to working on a full-scale application. This article is
intended to help with that, and to show how a little thought and planning
on the structure of a program can make your life easier, and help you to
avoid some of the mistakes that will certainly make your life harder.

We will examine modules and packages, how to use them, and how to
break your programs into smaller chunks by writing your own. We will
look in some detail at how Python locates the modules you import, and
some of the difficulties this presents. Throughout, the examples will be
based on the tests, since this provides a great way to see how modules and
packages work. As part of that, we’ll get to explore how to test modules
independently, and how to structure packages to make using them
straightforward.

A Python program
We begin with that simple, single file script, because it introduces some
of the ideas that we’ll build on later. Listing 1 is a simple tool to take CSV
data and turn it into JSON.

This program takes its input from stdin, and parses it as comma separated
values. The DictReader parser turns each row of the CSV data into a
dict.

Next, the entire input is read by creating a list of the dictionaries.

Lastly, the list is transformed into JSON, and the result (pretty) printed to
stdout.

The code itself is not really what this article is about. What’s more
interesting are the import statements at the top of the program. All 3 of
these modules are part of the Python Standard Library. The import
statement tells the Python interpreter to find a module (or a package, but
we’ll get to that) and make its contents available for use.

The fact that these are standard library modules means they’re always
available if you have Python installed. The implication here is that you can
share this program with anyone, and they’ll be able to use it successfully
if they have Python installed (and it’s the right version, and you’ve told
them how to use it).

That’s all well and good for such a simple program, but sooner or later
(sooner, hopefully!) someone will ask “Where are the tests?”, followed
quickly by “And what about error handling?” Error handling is left as an
exercise, but testing allows us to explore more features of Python’s support
for modules.

Modularity 0.0
The basic Python feature for splitting a program into smaller parts is the
function. It may seem overkill for our tiny script with only 3 lines of
working code, but one of the side-effects (bumph-tish!) of creating a
function is that with a little care, you can make a unit-test to exercise it
independently. ‘Independently’ has multiple levels of meaning here:
independent of other functions in your program, independent of the file
system or other external components like databases, independent of user
input – and, by the way – screen output. Your unit-tests should work as if
the computer is disconnected from the outside world – no keyboard, no
mouse, no screen, no network, no disk.

Why is this important? Partly because disk and network access is slow and
unreliable, and you want your tests to run quickly, and partly because your
tests might be run by some automated system like a Continuous Integration
system that might not have access to the same things you do on your
workstation.

Our program so far doesn’t lend itself to being easily and automatically
tested, so we’ll start with factoring out the code that parses CSV data into
a list of dictionaries. Listing 2 shows an example.

The function still uses a DictReader, but instead of directly using
sys.stdin, it passes the argument it receives from the calling code.

The calling code now passes sys.stdin to the function and captures the
result. The printing to screen remains the same.

A simple first test for this might be to check that the function doesn’t
misbehave if the input is empty. Although Python has a built-in unit-testing
facility, there are lightweight alternatives, and the examples in this article

T

Listing 1

import csv
import json
import sys

parser = csv.DictReader(sys.stdin)
data = list(parser)
print(json.dumps(data, sort_keys=True,
 indent=2))

Listing 2

import csv
import json
import sys
def read_csv(input):
 parser = csv.DictReader(input)
 return list(parser)

data = read_csv(sys.stdin)
print(json.dumps(data, sort_keys = True,
 indent = 2))

Steve Love is an independent developer constantly searching for new
ways to be more productive without endangering his inherent laziness.
He can be contacted at steve@arventech.com
8 | Overload | February 2020

FEATURESTEVE LOVE

it’s the import that’s interesting, because
it shows that any old Python script is also a

module that can be imported
all use pytest. Pytest will automatically discover test functions with names
prefixed with test, in files with names prefixed with test_. For this
example, assume the program is in a file called csv2json.py, and the
test file is test_csv2json.py, containing Listing 3.

The first line imports the read_csv function from our csv2json script.
The import name csv2json is just the name of the file, without the .py
extension.

To start with, we write a test that we expect to fail, just to ensure we’re
actually exercising what we think we’re exercising. csv.DictReader
works with iterable objects, but passing None should certainly cause an
error.

Once again, it’s the import that’s interesting, because it shows that any old
Python script is also a module that can be imported. There is nothing
special about code in Listing 2 to make it a module. A Python module is
a namespace, so names within it must be unique, but can be the same as
names from other namespaces without a clash. The syntax for importing
shown here indicates that we only want one identifier from the csv2json
module. Alternately, we could use

 import csv2json

and then explicitly qualify the use of the function with the namespace:

 result = csv2json.read_csv(None).

We have a function, and a test with which to exercise it. Running that test
couldn’t be easier. From a command prompt/shell, in the directory location
of the test script, run pytest [pytest].

But wait! What’s this? (Figure 1 shows the output from pytest.)

It looks like the test failed, but not in the way we expect. It demonstrates
another aspect of Python’s import behaviour: importing a module runs the
module. That’s obviously not what we intended. What we need is some
way to indicate the difference between running a python program, and
importing its contents to a different program. Sure enough, Python
provides a simple way to do this.

Each Python module in a program has a unique name, which you can
access via the global __name__ value. Additionally, if you invoke a
program, then its name is always __main__. Listing 4 shows this in
action.

Importing a module runs all the top-level code – which includes the
definition of functions. The code within a function (or class) is syntax
checked, but not invoked

When the script is run, the test for __name__ will fail if it’s being run as
a result of an import of the module.

The function is invoked explicitly if the script is being run rather than
imported.

Running the test now produces the output shown in Figure 2 (overleaf).

This time, the test has failed in the way we expected: DictReader is
expecting an iterator. We can now alter the test to something we expect to
pass, as shown here:

 def test_read_csv_accepts_empty_input():
 result = read_csv([])
 assert result == []

And sure enough, it does.

 ==== test session starts ====
 platform win32 -- Python 3.7.2, pytest-5.3.2,
 py-1.8.0, pluggy-0.13.1
 rootdir:
 collected 1 item

 test_csv2json.py . [100%]

 ==== 1 passed in 0.04s ====

The next steps would be to add more tests, and some error handling, and
factoring out the JSON export with its own tests, too. These are left as
exercises.

Listing 3

from csv2json import read_csv
def test_read_csv_accepts_empty_input():
 result = read_csv(None)
 assert result == []

Figure 1

==================== ERRORS ====================
____ ERROR collecting test_csv2json.py ____

test_csv2json.py:1: in <module>
 from csv2json import read_csv
csv2json.py:9: in <module>
 data = read_csv(sys.stdin)
csv2json.py:7: in read_csv
 return list(parser)
…

 "pytest: reading from stdin while output is
captured! Consider using `-s`."
E OSError: pytest: reading from stdin while
output is captured! Consider using `-s`.

Listing 4

import csv
import json
import sys
def read_csv(input):
 parser = csv.DictReader(input)
 return list(parser)
if __name__ == '__main__':
 data = read_csv(sys.stdin)
 print(json.dumps(data, sort_keys = True,
 indent = 2))
February 2020 | Overload | 9

FEATURE STEVE LOVE

Python provides another facility to bundle
several modules together into a package
What have we learned?
1. Simple Python modules are just files with Python code in them
2. Importing a module runs all the top-level code in that module
3. Python modules all have a unique name within a program, which is

accessed via the value of __name__
4. The entry point of the program is a module called __main__
5. Unit tests are a great way of exercising your code, but they’re also

great for exercising the structure of the code.

Packages
Having satisfied the requirement for tests, we may wish to embellish our
little library to be a bit more general. One obvious thing might be to extend
the functionality to handle other data formats, and perhaps to be able to
convert in any direction. It wouldn’t necessarily be unreasonable to just
add a new method to the module called json2csv1. However, if we want
to add new text formats, the combinations become unwieldy, and would
introduce an unnecessary amount of duplication.

The basis of the library is to take some input and parse it into a Python
data structure, which we can then turn into an export format. Having gone
to the trouble of separating the inputs and outputs, we can extend the idea
and use a different module for each text format. Python provides another
facility to bundle several modules together into a package.

As we’ve already explored, a Python module can be just a file containing
Python code. A Python package is a module that gathers sub-modules (and
possibly sub-packages) together in a directory2, along with a special file
named __init__.py. For the time being, this can be just an empty file,
but we will revisit this file in a later article.

We’ll begin by just adding our existing module to a package called
textfilters. Our source tree now should look something like this:

 root/
 |__ textfilters/
 |__ __init__.py
 |__ csv2json.py
 |__ test_csv2json.py

The import statement in test_csv2json.py now needs to change as
shown here:

from textfilters.csv2json import read_csv

def test_read_csv_accepts_empty_input():
 result = read_csv([])
 assert result == []

The import statement line at the top says ‘import the read_csv
definition from the csv2json module in the textfilters package’.

1. It doesn’t always make sense to do this conversion due to the possibility
of nesting in the JSON input, of course, but just for the exercise.

Figure 2

=================== FAILURES ===================
____ test_read_csv_accepts_empty_input() ____

 def test_read_csv_accepts_empty_input():
> result = read_csv(None)

test_csv2json.py:4:
 _
csv2json.py:6: in read_csv
 parser = csv.DictReader(input)
_ _

self = <csv.DictReader object at
0x000001E882CD94A8>, f = None, fieldnames = None,
restkey = None, restval = None, dialect = 'excel'
args = (), kwds = {}

 def __init__(self, f, fieldnames=None,
 restkey=None, restval=None,
 dialect="excel", *args, **kwds):
 self._fieldnames = fieldnames
 # list of keys for the dict
 self.restkey = restkey
 # key to catch long rows
 self.restval = restval
 # default value for short rows
> self.reader = reader(f, dialect, *args,
 **kwds)
E TypeError: argument 1 must be an iterator

2. This is a little simplistic, because there is no intrinsic requirement for
modules or packages to exist on a file-system, but it suffices for now.

You may need to explicitly qualify function calls with namespacing, if, for
example, you were importing another module or package that defined a
read_csv() function. A full qualification includes the name of the
package:

import textfilters.csv2json
def test_read_csv_accepts_empty_input():
 result = textfilters.csv2json.read_csv([])
 assert result == []

It may be, however, that just the module name provides sufficient
uniqueness in the name, and so a compromise is possible:

from textfilters import csv2json

def test_read_csv_accepts_empty_input():
 result = csv2json.read_csv([])
 assert result == []

Don’t confuse this general idea with Python’s Namespace Packages
[NamespacePkg], which are used to split packages up across several
locations.

Namespaces
10 | Overload | February 2020

FEATURESTEVE LOVE

Importing a module (and remember, packages
are modules too) requires the Python

interpreter to locate the code for that module,
and make its code available to the program
Note that the portion of the import line after the import keyword defines
the namespace. In this example, the namespace consists only of the
function name, and needs no further qualification when used.

So far, so good. Whichever method of importing the function you use,
running the test works, and (hopefully!) your tests still pass.

The next step is to split the functions into their separate modules. So far,
we have two text formats to deal with: CSV and JSON. It makes some
sense, therefore, to handle all the CSV functionality in a module called
csv, and all the JSON in a module called json. Our original CSV function
– read_csv – now has a name with some redundancy, duplicating as it
does the name of the new module. I also decided that ‘read’ and ‘write’
weren’t really accurate names, implying some kind of file-system access,
and decided upon input and output. Listing 5 shows the content of the
new csv module called csv.py.

As previously, it’s not really the implementation that’s interesting about
this, it’s that first import statement. Remember, this is a file called
csv.py, and so its module name is csv. It should be clear from the code
that the intention is to import the built-in csv module, and that is indeed
what will probably happen, due to a number of factors. It’s time to talk
about how Python imports modules.

The search for modules
Importing a module (and remember, packages are modules too) requires
the Python interpreter to locate the code for that module, and make its code
available to the program by binding the code to a name. You can’t usually
give an absolute path directly, but Python has a number of standard places
in which it attempts to locate the module being imported.

Python keeps a cache of modules that have already been imported. Where
an imported module is a sub-module, the parent module (and its parents)
are also cached. This cache is checked first to see if a requested module
has already been imported.

Next, if the module was not found in the cache, the paths in the system-
defined sys.path list are checked in order. This sounds simple enough,
but this is probably where the consequences of giving our own module the
same name as a built-in one will become apparent. The contents of
sys.path are initialized on startup with the following:

1. The directory containing the script being invoked, or an empty
string to indicate the current working directory in the case where
Python is invoked with no script (i.e. interactively).

2. The contents of the environment variable PYTHONPATH. You can
alter this to change how modules are located when they’re imported.

3. System defined search paths for built-in modules.
4. The root of the site module (more on this in a later article).

Let’s consider the directory layout containing our package:

 root/
 |__ textfilters/
 |__ __init__.py
 |__ csv.py
 |__ ...
 |__ test_filters.py

If you invoke a python script, or run the Python interpreter, in the root/
textfilters/ directory, the statement import csv will find the csv
module in that directory first. Note that the current working directory is
not used if a Python script is invoked. Correspondingly, invoking a Python
script, or running the Python interpreter in any other location would result
in import csv importing the built-in csv module.

Back to our csv.py module, the statement import csv would indeed
be recursive if you were to invoke the script directly, or any other script
in the same directory that imported it. However, the usual purpose of a
package is for it to be imported into a program, and the reason for making
a directory for a package is to keep the package’s contents separate from
other code.

To demonstrate this, let’s have a look at how the test script looks now it’s
using the textfilters package in Listing 6.

The import statement is explicitly requesting the csv module from the
textfilters package.

As long as the textfilters package is found, then this script will use
the csv module within it, and will never import the built-in module of the
same name. In th is ins tance, the invoked Python scr ip t i s
test_filters.py, and the search path will have its directory at the
head of sys.path. The textfilters package is found as a child of that
directory, and all is good with the world.Listing 5

import csv
from io
import StringIO
def input(data):
 parser = csv.DictReader(data)
 return list(parser)
def output(data):
 if len(data) > 0:
 with StringIO() as buffer:
 writer = csv.DictWriter(buffer, data[
 0].keys())
 writer.writeheader()
 for row in data:
 writer.writerow(row)
 return buffer.getvalue()
 return ""

Listing 6

from textfilters
import csv
def test_read_csv_accepts_empty_input():
 result = csv.input([])
 assert result == []
February 2020 | Overload | 11

FEATURE STEVE LOVE

It needs to be said that deliberately
naming your own modules to clash with
built-in modules is a bad idea
If the textfilters package were located somewhere else, away from
your main program, you could add its path to the PYTHONPATH
environment variable to ensure it was found. As previously mentioned, you
don’t directly import modules using absolute paths, but the PYTHONPATH
environment variable is one indirect way of specifying additional search
paths. Requiring all users of your module(s) to have an appropriate setting
for PYTHONPATH is a bit heavy-handed3, but can be useful during
development.

It needs to be said that deliberately naming your own modules to clash with
built-in modules is a bad idea, because just relying on the search behaviour
to ensure the right module is imported is flying close to the wind, to say
the least. However, things are never that simple: you cannot know what
future versions of Python will call new modules, and you cannot know
what other 3rd party libraries your users have installed. This is one reason
why it’s a good idea to partition your code with packages, and be explicit
about the names you import.

What have we learned?
1. A Python package is a module that has sub-modules. Standard

Python packages contain a special file called __init__.py.
2. The package name forms part of the namespace, and needs to be

unique in a program.
3. Python looks for modules in a few standard places, defined in a list

called sys.path.
4. You can modify the search path easily by defining (or changing) an

environment variable called PYTHONPATH.
5. You should partition your code with packages to minimize the risk

of your names clashing with other modules.

Relativity
One of the reasons for packaging up code is to make it easy to share. At
the moment, we have a package – textfilters, and the test code for it
lives outside the package. If we share the package, we should also share
the tests, and having them inside the package means we can more easily
share it just by copying the whole directory.

Look back at Listing 6, and note the import statement directly names the
package. While this is fine (the tests should pass), it seems redundant to
have to explicitly name it. Since this test module is now part of the same
package as the csv module, what’s wrong with just import csv?

The problem with that is we will get caught out (again) by the Python
search path for modules; import csv will just import the built-in csv
module. Is there an alternative to explicitly having to give a full, absolute,
name to modules imported within a package?

We previously learned that you can’t give an absolute path to the import
statement, but you can request a relative path when importing within a
module, i.e. one file in a package needs to import another module within
the same package. Listing 7 shows the needed invocation of import.

The test file is now part of the textfilters package, and so uses .
instead of the package name to indicate ‘within my package directory’.

As we’ve already noted, Python modules have a special value called
__name__. We’ve looked at how this is set to __main__ when a module
is run as a script. When a module is imported, this value takes on the
namespace name, which is essentially the path to the module relative to
the application’s directory, but separated by . instead of \ or /.

Python modules have another special value which is used to resolve
relative imports within it. This is the __package__ value, which contains
the name of the package. If the module is not part of a package, then this
value is the empty string. This is discussed in detail in PEP 366 [PEP366],
but the important thing to note here is that, since the testing module is now
part of a package, the relative import path shown in Listing 7 uses the value
of __package__ to determine how to find the csv module to be imported.

The package so far is a basic outline, with a simple API to translate one
data format to another. We can extend this idea with facilities to transform
the data as it passes through, perhaps to rename fields, or select only those
fields we need. We could clearly just make a new package for these general
utilities, but the intention is that they’re used in conjunction with the
functions we’ve already created, so let’s instead make the new package a
child of the existing one.

 root/
 |__ textfilters/
 |__ __init__.py
 |__ csv.py
 |__ ...
 |__ transformers/
 |__ __init__.py
 |__ change.py
 |__ test_filters.py

Relative imports also work for sub-packages. This is easily demonstrated
with more tests, this time for the transformers/change.py module,
as shown in Listing 8.

The test module imports the code under test from change.py using a
relative import path prefixing the package and module names.

In this case, it’s exactly as if we’d written:

 from textfilters.transformers.change import
 change_keys.

By now, we’re collecting a few test modules in the base of the package
directory, and we might want to think about more tidying up to gather all
the tests together away from the actual package code. We can do this by
creating a new sub-package called tests and moving all the test code into

3. You can also modify sys.path in code, since it’s just a list of paths, but
your users will probably not thank you for it

Listing 7

from . import csv

def test_read_csv_accepts_empty_input():
 result = csv.input([])
 assert result == []
12 | Overload | February 2020

FEATURESTEVE LOVE
it. This must be a sub-package, and so requires an __init__.py of its
own, and the relative imports need to change as shown in Listing 9.

The relative module imports now have an extra dot to indicate the parent
package location.

This may look a bit like relative paths on a file-system, where ../ is the
parent directory, it’s not quite the same. Packages can be arbitrarily nested,
and to indicate the grand-parent directory, on Linux you’d say ../../,
whereas in Python you just add another dot: ...

What have we learned?
1. Modules in a package can use relative imports to access code within

the same module.
2. Packages have a special value __package__ which is used to

resolve relative imports.
3. Packages can have sub-packages, and these can be deeply nested –

if you really want!

All together now
We’ve demonstrated how to write test code in the package to exercise our
little library, so now for completeness, it’s time to demonstrate a little
running program4. Listing 10 shows how it might be used.

This short program essentially does what the code in Listing 1 did, with
the added bonus of taking the column-names and changing them to upper
case. Importing the required functions is the job of the first 2 lines, and for
now, the textfilters package needs to be on Python’s search path. The
simplest way to do that is to have it as a sub-directory of the main
application folder.

Have we achieved what we set out to achieve? We had three goals in mind
at the start:

1. to be able to test independent code independently
2. to be able to split our programs into manageable chunks
3. to be able to share those chunks with others.

We have created a package, with its own set of tests. Those tests not only
test each part of the package code independently of the others, but also –
and importantly – independently of the code that uses it in the main

application. This makes sharing the code with others much easier: the
package is a small, self-contained parcel of functionality.

The import statements are a little verbose, due to the use of sub-packages,
and the need to make the package directory a direct child of the main
application is a little unwieldy.

In the next installment, we will explore how to improve on both of those
things so that your fellow users will really like using your library. 

References and resources
[NamespacePkg] Python Namespace Packages:

https://packaging.python.org/guides/packaging-namespace-
packages/

[PEP366] ‘PEP 366, Main module explicit relative imports’
https://www.python.org/dev/peps/pep-0366/

[pytest] ‘A Python testing framework’ https://docs.pytest.org/en/latest/

4. Ok, not actually completeness, because some of the functionality that
this uses was left as exercises. You did do the exercises?

Listing 8

textfilters / transformers / change.py
def change_keys(data, fn):
 return {
 fn(k): data[k]
 for k in data
 }
textfilters / test_change.py
from .transformers.change
import change_keys
def test_change_keys_transforms_input():
 d = {
 1: 1
 }
 res = change_keys(d, lambda k: 'a')
 assert res == {
 'a': 1
 }

Listing 9

textfilters / tests / test_change.py
from ..transformers.change
 import change_keys
def test_change_keys_transforms_input():
 d = { 1: 1 }
 res = change_keys(d, lambda k: 'a')
 assert res == { 'a': 1 }

Listing 10

from textfilters
import csv, json
from textfilters.transformers.change
import change_keys
import sys
if __name__ == '__main__':
 def key_toupper(k):
 return k.upper()
 data = csv.input(sys.stdin)
 result = [change_keys(row, key_toupper) for row
 in data
]
 print(json.output(result, sort_keys =
 True, indent = 2))

And the winners are...
In the last Overload (and CVu) we invited our readers
to vote for their favourite articles of 2019 in CVu, which
is our sister magazine for members, and in Overload.

For CVu:
1st place: Francis Glassborow for ‘The Early Days of C++

in UK C User Groups’ in CVu 31.3 (July 2019)

2nd place: Pete Goodliffe for ‘Effective Software Testing’ in
CVu 30.6 (January 2019) and

Spencer Collyer for ‘Who Are You Calling Weak?’
in CVu 31.3 (July 2019)

For Overload:
1st place: Cassio Neri for ‘Quick modular calculations (Part

1)’ in Overload 154 (December 2019)

2nd place: Anders Modén for ‘The Duality…’ in Overload 150
(April 2019)

Thank you to everyone who took time to vote, and for those who
wrote. We can’t offer a prize to these winners, just the mention
here. A number of other writers got a vote – so be assured if you
wrote for us someone probably thoroughly enjoyed what you had
to say. Keep up the good work.

The article titles above link to the articles if you are reading this
as a PDF. Overload articles are publicly available, but you must
be a member (and logged in) to access the CVu ones. If you’re
not a member yet, why not join?
February 2020 | Overload | 13

https://packaging.python.org/guides/packaging-namespace-packages/
https://www.python.org/dev/peps/pep-0366/
https://accu.org/index.php/journals/2722
https://accu.org/index.php/journals/2722
https://accu.org/index.php/journals/2722
https://accu.org/index.php/journals/2672
https://accu.org/index.php/journals/2672
https://accu.org/index.php/journals/2672
https://accu.org/index.php/journals/2639
https://docs.pytest.org/en/latest/
https://accu.org/index.php/journals/2613
https://accu.org/index.php/journals/2673

FEATURE CASSIO NERI
Quick Modular Calculations
(Part 2)
The minverse algorithm previously seen is fast but has
limitations. Cassio Neri presents two alternatives.
he first instalment of this series [Neri19] introduced the minverse
algorithm and a C++ library called qmodular [qmodular] that
implements it. We have seen that in certain cases minverse performs

better than the algorithm currently implemented by major compilers when
evaluating expressions of the form n % d == r. Unfortunately, minverse
does not work when == is replaced by <, <=, > or >=. This article presents
two algorithms that do not have this restriction, namely, Multiply and Shift
(mshift) and Multiply and Compare (mcomp). They are very similar to one
another and also to the Remainder by Multiplication and Shifting Right
(RMSR) covered in Hacker’s Delight [Warren13].

It is important to remember that the intention here is not to ‘beat’ the
compiler. On the contrary, this series is an open letter addressed to
compiler writers presenting some algorithms that, potentially, could be
incorporated into their product for the benefit of all programmers.
Performance analysis shows that the alternatives discussed in this series
are often faster than built-in implementations.

Recall and warm up
We start by looking at Figure 11 which displays the time taken to check
whether each element of an array of 65,536 uniformly distributed unsigned
32-bits dividends in the interval [0, 106] leaves remainder 3 when divided
by 10. Bars built_in and minverse correspond to algorithms presented in
[Neri19]. (Built-in is simply2 n % 10 == 3.) Bars mshift and mcomp
refer to algorithms covered by this article. A simple variant of each,
mshift_promoted and mcomp_promoted, are also shown.

All measurements include the time to scan the array of dividends which is
used as unit of time. Timings3 are 2.14 for built-in, 1.71 for minverse, 1.47
for mshift and mcomp and 1.30 for promoted variants. Subtracting the
scanning time and taking results relatively to built-in’s yields 0.71/1.14
≈ 0.62 for minverse, 0.47/1.14 ≈ 0.41 for mshift and mcomp and 0.30/1.14

≈ 0.26 for promoted algorithms. These numbers, however, depend on the
divisor as will be made clear later on.

Listing 1 contrasts the code generated by GCC 8.2.1 with -O3 for some
of these algorithms.

T

Listing 1

built_in
 0: mov %edi,%eax
 2: mov $0xcccccccd,%edx
 7: mul %edx
 9: shr $0x3,%edx
 c: lea (%rdx,%rdx,4),%eax
 f: add %eax,%eax
 11: sub %eax,%edi
 13: cmp $0x3,%edi
 16: sete %al
 19: retq

minverse
 0: sub $0x3,%edi
 3: imul $0xcccccccd,%edi,%edi
 9: ror %edi
 b: cmp $0x19999999,%edi
 11: setbe %al
 14: retq

mshift
 0: imul $0x1999999a,%edi,%edi
 6: shr $0x1c,%edi
 9: cmp $0x4,%edi
 c: sete %al
 f: retq

mcomp
 0: sub $0x3,%edi
 3: imul $0x1999999a,%edi,%edi
 9: cmp $0x1999999a,%edi
 f: setb %al
 12: retq

Cassio Neri has a PhD in Applied Mathematics from Université de
Paris Dauphine. He worked as a lecturer in Mathematics before
moving to the financial industry. He can be contacted at
cassio.neri@gmail.com.

Figure 1

1. Powered by quick-bench.com. For readers who are C++ programmers
and do not know this site, I strongly recommend checking it out. In
addition, I politely ask all readers to consider contributing to the site to
keep it running. (Disclaimer: apart from being a regular user and donor,
I have no other affiliation with this site.)

2. We are using bold fixed-width font for code (as is usual in Overload), so
98 / 10 = 9.8 is maths and 98 / 10 == 9 is code.

3. YMMV, reported numbers were obtained by a single run in quick-
bench.com using GCC 8.2 with -O3 and -std=c++17 [QuickBench].
I do not know details about the platform it runs on, especially the
processor.
14 | Overload | February 2020

http://quick-bench.com
http://quick-bench.com
http://quick-bench.com

FEATURECASSIO NERI

The ellipses serve as reminders that those
equalities hold in the beautiful world of infinite

precision which our CPUs do not belong. Rounding
is necessary and error is unavoidable.
Recall that we are concerned with the evaluation of modular expressions
where the divisor is a compile time constant and the dividend is a
runtime variable. The remainder can be either. They all have the same
unsigned integer type which implements modulus 2w arithmetic.
(Typically, w = 32 or w = 64.) We focuses on GCC 8.2.1 for x86_64 target
but some ideas here might also apply to other platforms.

The ‘Remainder by Multiplication and Shifting Right’
algorithm
This section loosely follows [Warren13] and covers the basics of RMSR
by means of an example. We shall see that RMSR, mshift and mcomp have
the same underlying idea.

Let the divisor be d = 10. By Euclidean division, any integer n can be
uniquely written as n = 10 ∙ q + r, where q and r are integers, r  [0, 9].
Written in code, q = n / 10 and r = n % 10. Using this expression
we obtain

16 ∙ (n / 10) = 16 ∙ ((10 ∙ q + r) / 10) = 16 ∙ q + (16 ∙ r) / 10)

= 16 ∙ q + 16 ∙ (r / 10) .

It follows that 16 ∙ (n / 10) ≡ 16 ∙ (r / 10) (mod 16).

[Warren13] observes that for r = 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9, the quantity
16 ∙ (r / 10) takes values on 0, 1, 3, 4, 6, 8, 9, 11, 12 and 14, respectively.
Since the latter numbers are all distinct they can be mapped back to the
former. Therefore, we efficiently obtain r provided we can reasonably
evaluate:

1. 16 ∙ (n / 10) mod 16; and
2. the inverse of φ defined by φ(r) = 16 ∙ (r / 10), for all r  {0, 1, 2,

3, 4, 5, 6, 7, 8, 9}.

We consider the evaluation of 16 ∙ (n / 10) mod 16 by looking at the
binary representation of intermediate results, namely, x1 = n / 10, x2 = 16
∙ x1, x3 = x2 and x4 = x3 mod 16. To get x2 we multiply x1 by 16, which
shifts bits 4 positions to the left. In particular, the first 4 bits of x1 on the
right of the binary point move to its left. To get x3, we apply the integer
part function discarding fractional bits. Finally, to get x4 we take modulo
16 zeroing all but the 4 leftmost bits. For example, for n = 98 we have
(relevant bits are emphasised):

x1 = 98 / 10 = 9.8 = (1001.11001100…)2,

x2 = 16 ∙ x1 = 156.8 = (10011100.1100…)2,

x3 = x2 = 156 = (10011100)2,

x4 = x3 mod 16 = 12 = (1100)2.

The ellipses above serve as reminders that those equalities hold in the
beautiful world of infinite precision which our CPUs do not belong.
Rounding is necessary and error is unavoidable. Caution is required to
avoid trashing the bits that we are interested in. Hence, we look for an
approximation of x1 = n / 10 known to be correct at least up to 4 bits after
the binary point or, equivalently, an approximation of x2 = (24 / 10) ∙ n
correct, at least, on its integer part. There is an efficient way to tackle this
problem. It is a classical idea widely used by compilers to evaluate division

by compile time constants. For the sake of concreteness, we restraint this
discussion to 32-bits CPUs.

We have x2 = (24 / 10) ∙ n = (232 / 10) ∙ n / 228. Here the rounding comes:
number (232 / 10) = 429,496,729.6 is rounded up to M = 429,496,730
([Warren13] rounds it down) and we get x2 ≈ M ∙ n / 228. The error of this
approximation, (M - (232 / 10)) ∙ n / 228, grows with n and thus, for n large
enough, it becomes such that x2 and M ∙ n / 228 do not have the same integer
part. For such values x3 ≠ M ∙ n / 228 and the algorithm breaks. For
instance, for n = 227, we have x2 = (24 / 10) ∙ 227 = 231 / 10 = 214,748,364.8
whereas M ∙ n / 228 = M ∙ 227 / 228 = M / 2 = 214,748,365.

Despite the last issue, there exist a maximal interval [0, N] such that x3 =
M ∙ n / 228 for any integer n  [0, N]. Finishing part 1 of the RMSR
requires evaluating x4 = x3 mod 16. However, by yet another practical
aspect of CPUs, this step becomes unnecessary. Indeed, M ∙ n / 228 is
evaluated as (M * n) >> 28 in modulus 232 arithmetic. Hence all but
the 32 leftmost bits of M * n are discarded. After the 28-bits right shift
only the 4 leftmost bits of the result might be non-zero. Hence, the
subsequent mod 16 operation has no effect.

The consideration for n = 227 above implies N < 227. In particular, this
method does not work on the whole range of 32-bits unsigned integers.
[Warren13] tackles this issue at the same time as he deals with the
evaluation of φ-1. (Part 2 of RMSR.) This is not straightforward and he
covers it only for a handful of divisors. His approach uses bitwise tricks
obtained, as he puts it, by ‘a lot of trial and error’ (which is not generic)
and look-up tables (which does not scale well). Details can be seen in
[Warren13].

The mshift algorithm
Luckily, mshift and mcomp seek to make remainder comparisons without
knowing it. For this reason they do not need to evaluate φ-1 and only take
into consideration the fact that φ is strictly increasing.

We have seen that if r is the remainder of the division of n by 10, then 16
∙ (n / 10) mod 16 = φ(r). Since φ is strictly increasing, we have r = 0 if,
and only if, φ(r) = φ(0) = 0, ie, 16 ∙ (n / 10) mod 16 = 0. Therefore, the
latter equality is equivalent to divisibility by 10. Finally, using the efficient
evaluation of 16 ∙ (n / 10) mod 16, we get that for n  [0, N], n % 10
== 0 is equivalent to (M * n) >> 28 == 0. The same applies to, say,
r = 3: if n  [0, N], then n % 10 == 3 if, and only if, (M * n) >> 28
== (M * 3) >> 28. (This is mshift in Figure 1 and Listing 1.)

Summarising, let uint_t be an unsigned integer type with modulus 2w

arithmetic. Given any integer d  [2, 2w[, let p be the smallest integer such
that d ≤ 2p. Set M = 2w / d and s = w - p. Then, there exists an integer N
 [0, 2w[such that for integers n  [0, N], r  [0, d - 1] and any relational
operator ⋚ (i.e., ⋚ is any of ==, !=, <, <=, > or >=), we have n % d ⋚ r
is equivalent to phi(n)⋚ phi(r), where phi is defined by

 uint_t phi(uint_t n) {
 return (M * n) >> s;
 }
February 2020 | Overload | 15

FEATURE CASSIO NERI
A lower bound for N is straightforward to calculate but its derivation is
outside the scope of this article. (See [qmodular].) Most often, we have N
< 2w - 1 and, consequently, mshift cannot be applied to the whole range of
uint_t. We shall see later how to deal with this limitation.

The mcomp algorithm
The underlying idea of mcomp is similar to mshift’s, the difference being
a simple observation. The essential point of mshift is looking at a few bits
of n / d after the binary point which are obtained through phi. This function
introduces a rounding error that grows with n and, eventually, gets large
enough to trash the important bits. At this point phi returns a wrong value
and mshift breaks. Looking at more bits on the right of the binary point
enables mcomp to carry on.

Consider the example d = 10 again. As in mshift, the first step of mcomp
is evaluating the approximation 232 / 10 ∙ n, of (232 / 10) ∙ n, under
modulus 232 arithmetic. Table 1 shows both products, in binary, for a few
values of n. For easy of presentation, it only shows the most and least
significant bytes of the 32 bits on the left of the binary point (ellipses
account for the other 16 bits). (The 4 bits that are important to mshift are
emphasised.)

When n divides 10 the second column shows 0 since (232 / 10) ∙ n is a
multiple of 232. The third column only approximates the second one: it
starts showing 0, for n = 0, and steadily diverges from this value as n
increases. Indeed, from n to n + 10 the error goes up by 4 (or (100)2). (This
is due to 232 / 10 ∙ 10 - (232 / 10) ∙ 10 = 232 / 10 ∙ 10 - 232 = 4.) Therefore,
starting at 0, after 226 steps the error accrues to 4 ∙ 226 = 228 for n = 10 ∙
226. This is large enough to trash the 4 leftmost bits of M ∙ n, which become
(0001)2. Notice the latter is the bit pattern expected for remainder r = 1
and not for r = 0 and then, mshift breaks at this point.

However, looking at all bits of the result, (0001 0000 … 0000 0000)2, we
realise it is still far below (0001 1001 … 1001 1010)2 which is the result
for n = 1, that is, M = 232 / 10 ∙ 1 = 232 / 10. Therefore, if that n is not
large enough for M ∙ n to reach the barrier M, then it is still possible to detect
that n is multiple of 10. In other words, n % 10 == 0 is equivalent to
M * n < M.

In general, for any remainder r  [0, d - 1], the result of M ∙ n mod 232

starts, for n = r, with a small error with respect to (232 / 10) ∙ r. The error
steadily increases in steps of size 4 as n takes successive values with the
same remainder. If n is not large enough for M ∙ n to reach the next barrier,
M ∙ (r + 1), then it is still possible to detect that n has remainder r. This

means that n % 10 == r is equivalent to (M * r <= M * n) && (M
* n < M * (r + 1)). Well, this is not entirely true and some details
must be considered.

For r = 9, we have M ∙ (r + 1) = M ∙ 10 = 232 + 4 ≥ 232. Hence, regardless
of n, the second operand of && above should be true. Nevertheless, its
evaluation can yield false since M ∙ (r + 1) overflows under modulus 232

arithmetic. To get the right result when r = 9, we should test only the left
hand side of && above.

Regarding &&, this operator creates a branch that can immensely degrade
performance. To address this issue, notice that by subtracting M ∙ r from
M ∙ r ≤ M ∙ n < M ∙ (r + 1) we get that these inequalities are equivalent to
0 ≤ M ∙ (n - r) < M. However, under modulus 232 arithmetic, the subtraction
overflows when n < r. Although the correct derivation in modulus 232

arithmetic is not that straightforward, the previous result remains valid.
Furthermore, 0 ≤ M ∙ (n - r) is always true and then, we can evaluate n %
10 == r as M * (n - r) < M, except when r = 9. In this case, the
upper bound M should be replaced by M - 4 to account for the fact that M
* 10 overflows by an excess of 4.

There are outstanding issues to be addressed but we evasively refer to
[qmodular] for details.

We now summarise the mcomp algorithm. Let uint_t be an unsigned
integer type with modulus 2w arithmetic. Given any integer d  [2, 2w[,
set M = 2w / d and m = M ∙ d - 2w. If m < M, then there exists an integer
N  [0, 2w[such that for all integers n  [0, N] and r  [0, d - 1], we have:

1. n % d == r is equivalent to
a) M * (n - r) < M, if r ≠ d - 1;
b) M * (n - r) < M – m, if r = d - 1;
c) M * n >= M * r, if r = d - 1;

4. n % d < r is equivalent to M * n < M * r.

From these results we can derive similar equivalences for other relational
operators.

The unbounded case
Like minverse, r  [0, d - 1] is a precondition for mshift and mcomp. To
extend these algorithms to larger remainders, the same approach used for
minverse can be applied. (See [Neri19].)

Increasing the range of applicability
Both mshift and mcomp have a range of applicability, (expressed by the
hypothesis n  [0, N]) which, most often, is not the whole domain of the
unsigned integer types they work on. (In contrast, built-in and minverse
do not have this limitation.)

An easy way of increasing these algorithm’s applicability is by promoting
the type that they work on. Specifically, to evaluate a modular expression
with uint32_t operands, we can promoted n, d and r to uint64_t and
use the algorithm for this type. This is what the suffix _promoted in Figure
1 refers to.

Although GCC provides 128-bit unsigned integer types, on x86_64
platforms these types only have partial support from the CPU and must be
synthesised by software. Therefore, the promotion strategy might be rather
expensive for uint64_t and using mshift or mcomp for this type of
operand might not be the best option if performance and full range of
applicability are simultaneously needed.

Performance analysis
As in the warm up, all measurements shown in this section concern the
evaluation of modular expressions for 65,536 uniformly distributed
unsigned 32-bits dividends in the interval [0, 106]. Remainders can be
either fixed at compile time or variable at runtime. Charts show divisors
on the x-axis and time measurements, in nanoseconds, on the y-axis.
Timings are adjusted to account for the time of array scanning.

For clarity we restrict divisors to [1, 50] which suffices to spot trends.
(Results for divisors up to 1,000 are available in [qmodular].) In addition,
we filter out divisors that are powers of two since the bitwise trick isTable 1

n (232
 / 10) ∙ n 232

 / 10 ∙ n

0 0000 0000 … 0000 0000 0000 0000 … 0000 0000

10 0000 0000 … 0000 0000 0000 0000 … 0000 0100

20 0000 0000 … 0000 0000 0000 0000 … 0000 1000

30 0000 0000 … 0000 0000 0000 0000 … 0000 1100

40 0000 0000 … 0000 0000 0000 0000 … 0001 0000

⋮ ⋮ ⋮

10∙(226 - 4) 0000 0000 … 0000 0000 0000 1111 … 1111 0000

10∙(226 - 3) 0000 0000 … 0000 0000 0000 1111 … 1111 0100

10∙(226 - 2) 0000 0000 … 0000 0000 0000 1111 … 1111 1000

10∙(226 - 1) 0000 0000 … 0000 0000 0000 1111 … 1111 1100

10∙226 0000 0000 … 0000 0000 0001 0000 … 0000 0000

10∙(226 + 1) 0000 0000 … 0000 0000 0001 0000 … 0000 0100

⋮ ⋮ ⋮

1 0001 1000 … 1001 1001 0001 1001 … 1001 1010
16 | Overload | February 2020

FEATURECASSIO NERI
undoubtedly the best algorithm for them. The timings were obtained with
the help of Google Benchmark [Google] running on an AMD Ryzen 7
1800X Eight-Core Processor @ 3600Mhz; caches: L1 Data 32K (x8), L1
Instruction 64K (x8), L2 Unified 512K (x8), L3 Unified 8192K (x2).

Figure 2 concerns divisibility tests, that is, evaluation of n % d == 0.
As already seen in [Neri19], built-in is slower than minverse which zigzags
as divisors changes from odd (faster) to even (slower) values. The new
algorithms, mshift and mcomp, perform for all divisors as good as minverse
does for odd divisors. In contrast, their promoted variants perform better
than minverse for even divisors. This makes the minverse preferable for
odd divisors since it does not have the limitation on the range of n whereas
either of the promoted variants is preferable for even divisors.

Figure 3 covers n % d == r where r is variable and uniformly distributed
in [0, d - 1]. In this example, r < d always holds true but the compiler
does not know it and adds a precondition check before calling mshift,
mcomp and their promoted variants. For clarity, we do not included
minverse but it is worth remembering (see [Neri19]) that it is slower than
the built-in algorithm except for the few divisors for which the latter spikes.
More or less the same happens here for mshift and its promoted flavour.
The good news is that both variations of mcomp are faster than the built-
in algorithm.

Finally, Figure 4 considers the expression n % d > 1. (Recall that
minverse cannot evaluate this expression.) The built-in algorithm performs
worse than all others and the promoted variations perform worse than their
regular counterparts.

Related work
As we have seen, mshift and mcomp follow the idea of RMSR as presented
in [Warren13]. Furthermore, a recent work [Lemire19] presents a slight
variation of promoted mcomp for uint32_t. However, [Lemire19]
restricts its discussion and analysis to divisibility tests, that is, to
expressions of the form n % d == 0.

Conclusion
This article presents the mshift and mcomp algorithms, which make
remainder comparisons without knowing its value. In contrast to minverse,
seen in the previous instalment of this series, they allow the usage of any
comparison operator. However, they have a limitation not shared by
minverse: in general, their range of applicability is not as large as the range
of the inputs’ type. To address this issue, this article presents the promoted
variants which take uint32_t inputs and make intermediate calculations
on uint64_t values. We have seen situations where these algorithms can
perform better than minverse and the built-in algorithm currently
implemented by major compilers.

Although we have worked around the limitation on inputs by promoting
uint32_t values to uint64_t, a similar idea is not viable when the
input is already of the latter type. More precisely, there is no efficient
promoted variant when inputs are already of type uint64_t. This is the
greatest limitation of mshift and mcomp. In Part 3 of this series we shall
see yet another algorithm that does not have this issue. 

Acknowledgements
I am deeply thankful to Fabio Fernandes for the incredible advice he
provided during the research phase of this project. I am equally grateful to
the Overload team for helping improve the manuscript.

References
[Google] https://github.com/google/benchmark

[Lemire19] Daniel Lemire, Owen Kaser and Nathan Kurz, Faster
Remainder by Direct Computation: Applications to Compilers and
Software Libraries, Software: Practice and Experience 49 (6), 2019.

[Neri19] Cassio Neri, ‘Quick Modular Calculations (Part 1)’, Overload
154, pages 11–15, December 2019.

[qmodular] https://github.com/cassioneri/qmodular

[QuickBench] Quick C++ Benchmark: http://quick-bench.com/
u3y2EZt_F8eAtWmFimt0MrwfHS8

[Warren13] Henry S. Warren, Jr., Hacker’s Delight, Second Edition,
Addison Wesley, 2013.

Figure 2

Figure 3

Figure 4
February 2020 | Overload | 17

https://github.com/google/benchmark
http://quick-bench.com/u3y2EZt_F8eAtWmFimt0MrwfHS8
http://quick-bench.com/u3y2EZt_F8eAtWmFimt0MrwfHS8
https://github.com/cassioneri/qmodular

FEATURE ALAN GRIFFITHS
A Secure Environment
for Running Apps?
Getting apps from the app store is easy. Alan Griffiths
considers this from a security perspective.
What does ‘app confinement’ mean?
hen you run an application on a computer you are giving it, and
by extension, the developers of that application access to your
computer. Unless you take precautions, it gets access to

everything you can access.

Historically, there’s been a high cost of entry to application development
and distribution meaning that developers have had to establish a reputation
and trust. While some have suspicions of what, say, Microsoft Office or
Chromium does, there’s no realistic fear that it will steal from you or hold
information on your computer for ransom.

But the barrier to entry has become low, writing an app and getting it into
the app store has never been easier and, as a result, application
development is no longer the preserve of a few well-known organizations.
The basis for trust that used to exist has been eroded.

At the same time, computers are being trusted with more and more
sensitive information. We carry pocket computers with us everywhere and
trust them to hold personal information including access to bank accounts,
credit cards and medical details.

When the computer has access to your bank accounts, running code from
developers that are essentially unknown to you beyond a picture of their
app on the app store is risky.

Taking precautions to mitigate the risk posed by untrusted code is where
app confinement comes into play. By confining the app at the operating
system level it is possible to restrict its access to your computer to only
those things that are needed for it to work.

How does ‘app confinement’ work?
As developers, we all know that something that sounds simple in the user
domain can involve some serious work in the solution domain. App
confinement is no exception: we need to consider what the operating
system needs to do to confine an app; how that can be controlled; how the
user can review and configure the confinement; and how to write and
package applications so they work with restricted access to the system.

The discussion that follows talks about some specific Linux technologies
for app confinement. That’s for the convenience of having concrete
examples that I’m familiar with, but the principles involved can be, and
have been, applied with other technologies and on other operating systems.

Kernel and userspace
The code running on a computer can be divided into ‘kernel’ and
‘userspace’. The kernel is that part of the operating system that mediates
all interaction with hardware and between processes. The userspace is
everything that runs within a normal app. (I know this isn’t the whole story,

but software development is about useful abstractions and this separation
is useful for this article.)

If we write a “hello world” application, the code we write runs in userspace.
And so does the output function from the library we use (maybe
operator<<(), or printf() or …) but at some point it writes to the
console and at that point the kernel takes over and, eventually (there may
well be further userspace and kernel code executed), some pixels are lit on
the screen.

While code can run without invoking the kernel it cannot produce
significant effects without doing so. It can’t access your files, it can’t
access the internet, it can’t access your keyboard, mouse, touchpad,
interact with other processes, etc.

That makes the interface between userspace and kernel a useful place to
restrict the activities of a program.

AppArmor
The kernel enhancement I’m familiar with for implementing the
confinement of apps is AppArmor. This intercepts calls to the kernel and
checks to see if the app is permitted to make them. It does this based on
an ‘AppArmor profile’ that has been applied to the app.

Like much of Linux configuration, these profiles are based on text files.
These contain rules for matching resources on the system and specify the
access that is permitted. For example:

 owner /run/user/[0-9]*/wayland-[0-9]* rw,

allows read and write access to any files matching the pattern that have the
same owner (i.e. user) as the app’s process. The app cannot access files or
resources unless they are allowed by a rule. (Not even if it is running as
root.)

While AppArmor profiles are readable, they are not at a very convenient
level of abstraction. Usually, one is concerned with, for example, enabling
the playing of DVDs not with listing the various logical devices that may
be needed to do so. Profiles can easily run into hundreds of lines, to take
an example I am working with:

 $ cat
 /var/lib/snapd/apparmor/profiles/snap.mir-kiosk-
 kodi.mir-kiosk-kodi | wc -l
 1199

Lists of rules that are this long for each and every application are not easy
to maintain nor review.

Snaps, snapcraft and snapd
AppArmor is an implementation detail of ‘snap confinement’, which is a
component of Canonical’s ‘Snap’ packaging format. Snaps make use of
lists of AppArmor rules called ‘interfaces’, each of which covers
identifiable capabilities. These interfaces are reviewed by the Snap
developers and can be enabled (or disabled) by the end user.

Listing 1 is an example corresponding to the 1200-line AppArmor profile
mentioned above:

W

Alan Griffiths Alan has delivered working software and
development processes to a range of organizations, written for a
number of magazines, spoken at several conferences, and made
many friends. He can be contacted at alan@octopull.co.uk
18 | Overload | February 2020

FEATUREALAN GRIFFITHS
The owner of the computer is in charge of the interfaces a snap connects
to. Some, carefully curated, interfaces will ‘auto-connect’ on installation,
most require the user to explicitly enable them. (There are both graphical
and command-line ways to manage the connections.)

This means that, provided an app is packaged and confined as a snap, you
can install it and be sure that it isn’t accessing parts of your computer you
do not choose to share. Instead of trusting each and every application, you
just have to trust ‘snap confinement’. Trusting the well-known company
that provides the operating system is less of a risk than trusting ‘Jo’ who
uploaded some interesting looking game to the app store.

Writing apps for confined environments
In principle, there is nothing very special about writing apps for confined
environments. Your app will need to ‘do stuff’ and that implies having the
permissions needed to do that stuff. In the above example, Kodi, a media
player needs access to various sources of media and the devices needed
for audio and video playback.

A side-effect of Snap confinement is that some directories are not in the
‘expected’ place and applications must respect the environment variables
that locate them. For example, each snap will have its own $HOME
directory (something like /home/alan/snap/mir-kiosk-kodi/51)
which it can use without restrictions. So long as the application uses $HOME
(and not something like /home/$USER) it can ‘just work’.

Although it has its own $HOME a confined app has no access to the user’s
home directory unless the ‘home’ interface is connected. Even connecting
this interface does not give unfettered access: it only allows access to
‘normal’ files and directories, it does not provide any access to hidden ones
or those associated with other snapped applications.

While the details of this treatment of $HOME are specific to Snaps
something similar is needed by any system of confinement to allow
applications to work without changes. There are a few other environment
variables that are adjusted for Snap confinement but (possibly with a bit
of tweaking to the packaging ‘recipe’) most applications ‘just work’.

The main thing application developers need to do is avoid requiring
unnecessary capabilities for the application to run. And to be aware that
some capabilities may not be enabled so that can be handled gracefully.

The Kodi media centre is a good example of this: options that rely on access
to resources that are unavailable (because the user hasn’t enabled those

interfaces) do not appear on the menus. I don’t think this is intentional
support for confinement by the Kodi developers, just a by-product of it
being possible to install Kodi on devices with a wide range of capabilities.

Computers are everywhere
Computers are being used in increasing numbers of internet connected
devices. As well as the familiar desktops, laptops, tablets and phones there
are all sorts of smart devices that are getting both an internet connection
and the ability to install apps. Securing the operation of these is important
for both users and developers.

As a user, it may seem cute to install a game for the kids on your car
infotainment system, but you really want to be sure that it cannot
misbehave and interfere with the satnav! Or, inside the home, adding apps
for some local shops to the latest smart fridge could expose traffic on your
home WiFi.

As developers, we have a responsibility to ensure the systems we deploy
are properly protected against bad actors. Fulfilling that responsibility
while opening the system to extension by, for example, installing third-
party applications from a ‘store’ needs care.

I hope I’ve given a flavour of how, if the operating system is secure by
design, this is possible. 

Further reading
 AppArmor

AppArmor (https://en.wikipedia.org/wiki/AppArmor) is common
on Debian based distros including Ubuntu. Android and some
Redhat based distros use SELinux (https://en.wikipedia.org/wiki/
Security-Enhanced_Linux).

 Snaps

Snaps (https://en.wikipedia.org/wiki/Snappy_(package_manager))
provide a way to package Linux applications so they can be installed
and run on a wide range of distros.

The containment tool described here is specific to snaps and differs
from competing distribution-agnostic packaging technology such as
AppImage (https://en.wikipedia.org/wiki/AppImage) and Flatpak
(https://en.wikipedia.org/wiki/Flatpak).

Listing 1

$ snap connections mir-kiosk-kodi
Interface Plug Slot Notes
alsa mir-kiosk-kodi:alsa :alsa manual
audio-playback mir-kiosk-kodi:audio-playback :audio-playback -
avahi-observe mir-kiosk-kodi:avahi-observe :avahi-observe manual
hardware-observe mir-kiosk-kodi:hardware-observe :hardware-observe manual
locale-control mir-kiosk-kodi:locale-control :locale-control manual
mount-observe mir-kiosk-kodi:mount-observe :mount-observe manual
network-observe mir-kiosk-kodi:network-observe :network-observe manual
opengl mir-kiosk-kodi:opengl :opengl -
pulseaudio mir-kiosk-kodi:pulseaudio :pulseaudio -
removable-media mir-kiosk-kodi:removable-media :removable-media manual
shutdown mir-kiosk-kodi:shutdown :shutdown manual
system-observe mir-kiosk-kodi:system-observe :system-observe manual
wayland mir-kiosk-kodi:wayland :wayland manual
February 2020 | Overload | 19

https://en.wikipedia.org/wiki/AppArmor
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/Snappy_(package_manager)
https://en.wikipedia.org/wiki/AppImage
https://en.wikipedia.org/wiki/Flatpak

FEATURE CHRIS OLDWOOD
Afterwood
The centre half is more than a sporting
term. Chris Oldwood shows us why.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

s a child, I loved playing football (nay, soccer). Every waking
moment was an opportunity to get outside and play football. At
school, lessons and lunch were merely a chance to catch my breath

before heading back outside again at break or lunch time to play another
game. The school holidays were a Utopia where football could be played
from dawn to dusk with no pointless interruptions, like lessons.

The first real distraction to put a significant dent in my football time was
when the father of a school friend built himself a ZX81 from a kit and we
got to play on it one summer. The discovery that my next-door-but-one
neighbour had a ZX80 sitting idle in their attic nibbled into more of that
time, while the remainder slowly became a victim to an increase in
swimming training until football became the exception instead of the
norm. It wasn’t until starting my first proper job at a software house where
they played football together after-hours that I got my boots down from
the attic and rekindled my love for the beautiful game.

I never played as a striker, even as a child, so I resumed my previous
position in the defensive line, sometimes as a left- or right-back, but
mostly as a centre-half or sweeper. This position tends to be frequented
by players who are tall and reasonably well built and hence it can earn
them the somewhat dubious title of ‘Big Man at the Back’. Naturally,
from such a central position you have a good view of the field of play and
can coordinate the surrounding defenders and mid-fielders. Each player
acts with a high degree of autonomy, adapting to the local conditions as
the opposing team surges forward, but the centre-half also has one eye on
the rest of the field so that the defence can adjust itself to the changing
face of an attack.

Having never played (adult-wise) at anything more than Sunday League
football (i.e. ‘pub’ football) I have no idea if this is how a real centre-half
plays or is even supposed to play; it just felt natural to play that way. As
a professional programmer, I have found myself gravitating towards a
similar role with the various teams I’ve worked in over the last couple of
decades. If we consider the goal to be the delivery of bug fixes and new
features – the crowd-pleasing items – while the opponent is the
background noise of complexity, tooling, deployment, documentation,
process, etc. then you’ll usually find me tackling the latter rather than
ramming home the former. Naturally, I’ll surface around the 6-yard box
every now and then for corners and free-kicks but I’m just as happy with
an assist as a name on the score-sheet.

While in the early years my own skills were growing in many directions
as I uncovered the mountain of things to learn, once I had a grasp of the
basic mechanics of programming I found more time to comprehend many
of the more peripheral duties which make the sustained delivery of
software hard. While it was never a conscious decision at first it always
seemed more important to help colleagues out, where possible, rather than
plough on with my own assigned work uninterrupted. Before I’d even

heard of pair or mob programming I was in no doubt that I had a far more
enjoyable time working with other people and so to be more
knowledgeable in those areas that others were less interested in gave me
an opportunity to work more closely with other people. Naturally, it’s a
two-way street and, much as I enjoy reading, learning from other people
feels far more effective.

While I’m happy to ‘watch their backs’ and help the team and, by
extension, the company reach a global maxima it’s not a position that sits
well within many large organisations due to the way they assess progress
and performance. When working in a small team that sits together where
the management can see you physically wandering around the desks or
standing debating with colleagues across the partition it gives a very
concrete view of collaboration which no doubts helps promote your value
to the team, even if your personal goal tally for the season is a little on the
low end.

When working entirely remotely this advantage disappears – out of sight,
out of mind. With no physical presence to rely on, a management team
that relies solely on metrics, perhaps one metric in particular, like the
number of JIRA tickets closed, is likely to form a less-than-flattering
picture of your productivity or ‘value’ to the team. Lest you think an
organisation would be foolish to consider this approach any more valid
than counting lines of code or number of commits; trust me, it happens.
Hearing phrases like ‘they have their own work to do’ should be
considered a free-kick on the edge of the penalty box. Ultimately such
times of madness demand us to summon Charles Goodhart and game the
system.

As a proponent of the Russian proverb ‘trust, but verify’ I do not expect
anyone to blindly trust me any more than I expect someone to be watching
my every move. Trust is also a two-way street and I expect any verifier to
look past arbitrary metrics and find the fingerprints that the team leaves
behind in the commit log, meetings, documentation, chat channels, etc. If
someone is having an impact, their presence will be observable despite the
best efforts of some products to cling to the outdated notion of one person
one task.

I might have finally reached an age where nature has convinced me to
hang up my boots again for good but it’s not changed my position.
Software teams run more smoothly when they have someone that can read
the game well and provide backup and support when necessary to help
them get the results they’re after. 

A

20 | Overload | February 2020

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

www.qbssoftware.com

	Overload155.pdf
	Members and Remembrances
	A line-to-line conversion from Node.js to Node.cpp
	The Path of Least Resistance
	Quick Modular Calculations (Part 2)
	A Secure Environment for Running Apps?
	Afterwood

