




October 2019 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed 
as such. The use of such terms is not intended to support nor disparage any trade mark claim. 
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author. 
By submitting material to ACCU for publication, an author is, by default, assumed to have granted 
ACCU the right to publish and republish that material in any medium as they see fit. An author 
of an article or column (not a letter or a review of software or a book) may explicitly offer single 
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) 
members to copy source code for use on their own computers, no material can be copied from 
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of 
programmers who care about 
professionalism in programming. That is, 
we care about writing good code, and 
about writing it in a good way. We are 
dedicated to raising the standard of 
programming.

The articles in this magazine have all 
been written by ACCU members - by 
programmers, for programmers - and 
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Scenarios Using Custom DSLs
Liz Keogh demonstrates an alternative to natural 
language BDD.

6 OOP Is not Essential
Lucian Teodorescu considers a recent 
OOP claim.

10 I Come Here Not to Bury Delphi,
But to Praise It
Patrick Martin remembers why he used to 
use Delphi.

15 C++ Pipes
Jonathan Boccara demonstrates fluent 
pipelines for collections in C++.

20Afterwood
Chris Oldwood trades programming for politics.

OVERLOAD 153

October 2019

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication 
in Overload 154 should be 
submitted by 1st November 2019 
and those for Overload 155 by 
1st January 2020. 



EDITORIAL FRANCES BUONTEMPO
Predictions and Predilections
Forecasting the future is difficult. Frances Buontempo 
has a foreboding sense that a lack of impartially makes 
things even harder.
Predicting whether or not Overload will have an
editorial while I am the editor is easy. I attended the
Agile 2019 conference this year, co-chairing the Dev
Practices and Craft track with Seb Rose [Agile]. This
long trip, just for a few days, has increased my carbon
footprint and decreased the time I had to think of an

editorial. This means, yet again I haven’t written one. Your prediction was
correct: Overload is editorial-free yet again. 

How do you make a prediction? Listing all the possible outcomes and
assigning a probability to each gives a sense of the likelihood of a specific
outcome. This approach has two problems: listing the outcomes and
getting accurate probabilities. There are several formal approaches, such
as Bayes, for working out these probabilities. In one sense the probability
represents the uncertainty of a given event. Uncertainty can come in two
flavours: epistemological, or due to lack of knowledge, and aleatory, or
due to inherent randomness (see ‘Bayesian statistics’ [Spiegelhalter09]
for more background]. If you sure you are uncertain, are you sure how
uncertain you are? In other words, how do you decide how accurate these
probabilities are? Some experiments can help, but you may not be able to
try something a statistically valid number of times first. Furthermore, how
do you predict how likely something is that has never happened before?
Tough question to answer, but people try to do this. If you have no
empirical data (what other types of data are there?), how can you guess
how often something might happen? One approach is a forecasting model
[Gelman98]. This requires a model, obviously. This might fit known
cases, but I still find it difficult to accept forecasts around previously
unseen events. I do understand the maths, but it all seems inherently odd.

Physics models, though often inspired by data, often take the form of a
closed-form formula, rather like a function, taking inputs and returning a
single output, rather than several outputs with confidence intervals.
Sometimes models have been calibrated to data at some point, to find
parameters, such as acceleration due to gravity. Some models are based
on a combination of other known models. If all the forces acting on a body
can be calculated, the total force can be deduced. In other domains, the
idea of a straight summation breaks down. For example, if two chemicals
have a known toxicity, the level of harm cannot be worked out by adding
the two numbers. They may interact, and be less toxic overall, or even
worse in conjunction. Going back to physics, though the motion of two
bodies, such as the sun and a planet can be calculated, the three-body
problem [Wikipedia] says that there is no closed-form solution for finding
the motion of three, or more, objects, given their starting velocity and

positions. Numerical methods are required
instead. Or as I put it, “left a bit, right as bit”

until you get something close enough to an
answer. For some definition of close.

Not all prediction systems are based on statistics or models. Decision trees
fall under the umbrella term machine learning. They give classifications
of new data based on summaries of training data, in the form of flow charts
or list of rules. Something like

If Utility module updated on a Monday then build broken all week.

In order to find the tree or rules, some decision trees use entropy, which
is formally an Information Theory idea. At a high level, it measures the
chaos present in a system. If you toss a fair coin, you would expect it to
be heads about half the times, and tails the remaining times. This is higher
entropy, or more chaos, and making it hard to predict what the next toss
will be. In contrast, if an unfair coin always comes down heads, every
single time, it is much easier to predict accurately what will happen. Less
chaos means you can compress this down very easily. In the first case, of
a fair coin, writing a function to predict what happens next is harder and
needs more lines of code. In the second case, the function need only return
“Heads” each time. In a sense, this is still based on counting possible
outcomes, but is taking a different perspective. I recently wrote a short
blog post about decision trees [Buontempo19a]. At the expense of
repeating myself, armed with rows of data, each with features and a
category – either yes/no, heads/tails or one of many classes – you can build
a classifier, which will tell you which category new data falls into. There
are various ways to decide how to split up the data, including entropy.
Regardless of the method, each algorithm follows the same overall
process. Start with a root node then

1. If all the data at a node is in the same category (or almost all in the
same category) form a leaf node.

2. For a non-leaf node, pick a feature, according to your chosen
method.

3. Split the data at this node, some to the left branch, and some to the
other branch (or branches) depending on the value of the chosen
feature.

4. Continue until each node is a leaf node.

This is a bit like a sorting algorithm: in quick sort, you choose a pivot value
and split the data down one branch or the other, until you have single
points at nodes. Here we don’t choose a pivot value but features. For
example, is the coin heads or tails? The way to pick a feature can be based
on statistics, information theory or even at random. At each step, you want
to know if all the items in one category tend to have the same value or
range of values of a feature. Once you are done you have a tree (or flow
chart) you can apply to new data. Each way to split has various pros and
cons. You can even build several trees. A random forest will build lots of
trees and they vote on the class of new, unseen data. You could build your
own voting system, using a variety of tree induction techniques. This
might avoid some specific problems, like over-fitting from some

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in 
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a 
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B 
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | October 2019



EDITORIALFRANCES BUONTEMPO
techniques. Decision trees can be used to spot what features problematic
scenarios have in common. Maybe all your bug reports end up with a fix
in the same module. That might not be immediately clear until you analyse
the data. If you want to know what certain things have in common, a
decision tree is worth a try. My Genetic Algorithms and Machine Learning
for Programmers book [Buontempo19b] has a chapter on building a
decision tree from scratch if you want some details, but there are plenty of
frameworks out there that will automatically build one for you. You may
not be able to predict the future with your tree, and your machine may learn
nothing, as is often the case in Machine Learning, however, you may spot
something of interest.

Every classifier, be that a decision tree or not, has a set of possible
outcomes, classes or categories. In various disciplines, including machine
learning, the possible outcomes are described as a “search space”. These
can be more generally useful than for classifiers. When we moved house,
we kept our cat shut in for a bit, so he could get the hang of his new home
first, before exploring the great outdoors. He explored by trying a corridor
and then returning to his starting point. Then he went a bit further, but
always went back to the starting point. Each iteration added a small new
part of his search space. In this case, the constant returning to the base
station wasn’t a bias, it was sensible. In a fit of laziness, we bought a
Roomba, robot vacuum cleaner. This uses a similar algorithm. It has a base
station, which it tends to stick near initially, gradually adding paths round
the room, often making its way round the outside edges, just like our cat.
I wonder if we could use the cat to sweep the floor. Nah, bad idea. I think
I can see a few potential problems with that. This exploration of
possibilities, though not predicting the future, includes an element of
premonition. “Going forwards here means hitting a wall.” Does learning
mean you think you know what outcome is likely, given an initial set of
conditions and a specific choice? Maybe. What do you think learning
means? That’s quite a big thing to think about.

Now, a spatial search brings various extra ways to make predictions.
Sometimes you can guess where something might be, like mugs in a
kitchen. There are often within reaching distance of a kettle. A
combination of logic and expectations can be used to make an initial guess.
I wonder if we tend to apply the same heuristics when dealing with code.
Which header is std::vector in? What about std::map? Easy. What
about std::less? That’s another matter.

Predictions are often driven by some kind of bias. Why would you look in
the fridge for dishwasher tablets? Because the light comes on when you
open the door, so it’s easier to see. Sense does not always prevail. More
sensibly, if you plan a journey and hate public transport, you are more
likely to consider driving, cycling, getting a taxi or walking over some
other modes of transport. I wonder if all the recent AI research into self-
driving cars is somewhat biased. I have maintained for a long time that Star
Trek’s transport technology would be far better. I presume this might be
less polluting. It certainly wouldn’t need upkeep of roads. And I don’t
recall any episodes where transporter accidents involve innocent
pedestrians or cyclists. Not to say transporter accidents are unheard of. I
just maintain someone, somewhere, has a predilection for cars and that is
driving, pun intended, the research into modes of transport in the wrong
direction.

I love AI, and find its twists and turn through history fascinating. Trying
to predict where it will move in the futures is very difficult. As with much
research, it is partially driven by those who fund the work, which is turn
might be biased towards return on investment rather than usefulness or
some kind of inherent value, whatever that means. Other technological
innovations are, frankly, more disquieting. Recent stories of facial
recognition in use at King’s Cross station in London have causes questions
and possible GDPR related issues. It seems the company responsible,
Argent, claims the system will ‘ensure public safety’ [BBC]. I have
questions. If it recognises faces, does it have a database of faces of people

who should be arrested on sight? I would imagine if you tracked
individuals’ paths through the station, you may spot bottlenecks and bad
signage and be able to improve the situation; however, this would not
require saving people faces. Indeed, this immediately made me think of a
variety of sci-fi stories, including Face Off and Minority Report. This
possibly tells you more about my background and point of view than the
event itself. Here’s a conjecture:

Your predictions tell me more about your history and bias than they
do about the future.

Many physics models are based on odd theological or Weltanschauung
(world-view) assumptions. How many colours are there in a rainbow? An
English rainbow has seven, apparently because Newton regarded seven as
a mystically significant number. Other cultures have different counts of the
colours. Pythagoras refused to believe in irrational numbers, resisting
them. He also felt circles were significant, so planets had to be spheres,
and orbits had to be spherical. The starting assumptions colour the final
models. Climate-change deniers are also working on a set of assumptions
and biases. How to notice a bias, or predilection, underpinning a model or
prediction is a hard question. Sometimes the predictions are close enough
or the model seems to work, which might allow incorrect, or at least suspect
starting points to slip through. Question your own assumptions when you
next make a prediction. What point of view are you operating from? What
does the world look like through someone else’s eyes?

One final question. Why are you trying to make a decision anyway?
Frequently, predictions are made in order to aid decision making. For
example, guessing if it will rain will help me decide if I will need an
umbrella. Figuring out what could possibly go wrong can help prepare for
the worst. However, an impending sense of doom can lead to self-fulfilling
prophecies. Can you predict the future without influencing it? Thinking
through what might happen can be useful, though. Being accurate isn’t the
most important thing. Don’t forget:

A completely predictable future is already the past.
~ Alan Watts

What does matter is being aware of possible outcomes,
probable contributing factors, and recognizing your
assumptions. Bias in, bias out. A sense of wonder and
enquiry in, endless possibilities and hope out. 

References
[Agile] Agile 19 conference: https://www.agilealliance.org/agile2019/

[BBC] ‘Data regulator probes King’s Cross facial recognition tech’, 
posted 15 August 2019 at https://www.bbc.co.uk/news/technology-
49357759

[Buontempo19a] Frances Buontempo (2019) ‘Decision trees for feature 
selection’, posted on http://buontempoconsulting.blogspot.com/
2019/07/decision-trees-for-feature-selection.html

[Buontempo19b] Frances Buontempo (2019) ‘Genetic Algorithms and 
Machine Learning for Programmers’, https://pragprog.com/book/
fbmach/genetic-algorithms-and-machine-learning-for-programmers

[Gelman98] Andrew Gelman, Gary King, and John Boscardin (1998) 
‘Estimating the Probability of Events that Have Never Occurred: 
When Is Your Vote Decisive?’ Journal of the American Statistical 
Association, 93 pp1–9. Accessed via https://gking.harvard.edu/files/
gking/files/estimatprob.pdf

[Spiegelhalter09] David Spiegelhalter and Kenneth Rice (2009) 
‘Bayesian Statistics’, published on Scholarpedia, available from: 
http://www.scholarpedia.org/article/Bayesian_statistics

[Wikipedia] Three-body problem: https://en.wikipedia.org/wiki/Three-
body_problem
October 2019 | Overload | 3

https://www.agilealliance.org/agile2019/
http://www.scholarpedia.org/article/Bayesian_statistics
https://gking.harvard.edu/files/gking/files/estimatprob.pdf
https://gking.harvard.edu/files/gking/files/estimatprob.pdf
https://en.wikipedia.org/wiki/Three-body_problem
https://en.wikipedia.org/wiki/Three-body_problem
http://buontempoconsulting.blogspot.com/2019/07/decision-trees-for-feature-selection.html
http://buontempoconsulting.blogspot.com/2019/07/decision-trees-for-feature-selection.html
https://www.bbc.co.uk/news/technology-49357759
https://www.bbc.co.uk/news/technology-49357759


FEATURE LIZ KEOGH
Scenarios Using Custom DSLs
Natural-language BDD can be hard to maintain. Liz Keogh 
demonstrates a simple code-based alternative.
ne of my clients recently asked me how often I use Cucumber or
JBehave in my own projects. Hardly ever, is the answer, so I want to
show you what I do instead.

The English-language Gherkin syntax is hard to refactor. The tools form
another layer of abstraction and maintenance on top of your usual code.
There’s a learning curve that comes with them that can be a bit tricky. The
only reason to use the tools is because you want to collaborate with non-
technical stakeholders. If nobody outside your team is reading your
scenarios after automation, then you don’t need them.

There may still be other reasons you want the tools. They’ll be more
readable than the code I’m about to show you. Dynamic languages are
harder to refactor anyway; I work primarily with static typing. Maybe you
want to take advantage of hooks for your build pipeline. Maybe you
already know and feel comfortable with the tools. Maybe you just really
want to learn the technique. That’s OK. But you don’t need them.

So here’s a simple alternative.

Have some conversations, and write down the 
examples
I like it when the developers do this, and get feedback on their
understanding. Writing it in semi-formal Gherkin syntax is pretty useful
for helping spot missing contexts and outcomes. All the usual goodness
of Three Amigos conversations still applies.

Find a capability, and the thing that implements it
Your application or system probably has a number of things that it enables
people or other systems to do. We’re going to be using a noun that matches
those things as a way of starting our DSL. Here are some examples:

 Buying things  the basket

 Making trades  a trade

 Commenting on an article  a comment / the comments

 Doing banking  the account

You may find the language is a bit stilted here (I did say the English was
clearer!) but that’s a trade-off for the ease of getting started with this. You
might find other things which make more sense to you; it’s sometimes
possible to use verbs for instance.

 Searching for a car  I search

You’ll get the idea in a moment. Each of these is going to be the stem of
a bit of code.

Start with comments in the code
Sometimes I like to just start with my scenario written in comments in the
code. For each step, think about whether the step has already happened, is
the thing that triggers some interesting behaviour, or is the outcome of that
behaviour. Add Given, When or Then as appropriate:

  // Given an article on Climate Change
  // When I post a comment "This is a really
  // conservative forecast."
  // Then it should appear beneath the article.

Add the Given, When or Then to your stem, and…
 Given the basket…

 When the trade…

 When a comment…

 When a search…

 Then the account…

…construct your steps!
Now we’re in code.

  GivenAnArticle().on("Climate Change")

  GivenTheBasket().contains("Pack of Grey Towels")

  WhenTheTrade().isCreated()
    .withCounterparty("Evil Corp")
    .forPrice(150.35, "USD")
    .....
    .andSubmitted()

  WhenISearch().For("Blue Ford Fiesta")

  ThenTheAccount().shouldHaveBalance(15.00, "GBP")

You can see that trading one is using a builder pattern; each step returns
the trade being constructed for further changes, until it’s submitted. I
sometimes like to use boring, valid defaults in my builder so that these
steps only call out the really interesting bits.

I normally suggest that a ‘When’ should be in active voice; that is, it should
show who did it. If that’s important, add the actor.

  WhenTheTrade().isCreated()
    .....
    .andSubmittedBy("Andy Admin")

or

  WhenTheTrade().isCreated()
    .by("Andy Admin")
    .....
    .andSubmitted()

O

Liz Keogh is a Lean and Agile consultant based in London. She is a 
well-known blogger and international speaker, a core member of the 
BDD community and a passionate advocate of the Cynefin framework 
and its ability to change mindsets. She has a strong technical 
background with 20 years’ experience in delivering value and coaching 
others to deliver, from small start-ups to global enterprises. Most of her 
work now focuses on Lean, Agile and organizational transformations, 
and the use of transparency, positive language, well-formed outcomes 
and safe-to-fail experiments in making change innovative, easy and 
fun. Contact her on tiwtter at @lunivore
4 | Overload | October 2019



FEATURELIZ KEOGH
Active voice would normally look more like:

  When("Andy Admin").createsATrade()
    ....
    .andSubmitsIt()

But now our ‘When’ is ambiguous; we can’t tell which kind of capability
we’re about to use, so it makes it really, really hard to maintain. It’s OK
to use passive voice for DSLs.

As I construct these, I delete the comments.

Sometimes I like to just put all the detailed automation in which makes
the steps run, then remove the duplication by refactoring into these steps.
(Sometimes it’s enough just to just leave it with detailed automation, too,
but at least leave the comments in!)

Pass the steps through to Page Objects; use the World for state
You’ll probably find you need to share state between the different steps. I
normally create a ‘World’ object, accessible from the whole scenario.

Each of the stems you created will correspond to one or more page objects.
I like to keep those separate, so my steps in the DSL don’t do anything
more than just call through to that object and return it.

Listing 1 is an example of my scenario object for a Sudoku solver.

It does get quite long, but it’s pretty easy to maintain because it doesn’t
do anything else; all the complexity is in those underlying steps.

And Listing 2 shows how I use it. Full scenarios are available at https://
github.com/lunivore/sudoque/tree/master/Sudoque.Scenarios.

This one was written in plain old NUnit with C#. I’ve done this with JUnit
and Java, and with JUnit and Kotlin. The examples here are only from toy
projects, but I’ve used this technique on several real ones.

There are lots of tools out there which help you to construct these kind of
DSLs; but I’ve found they also come with their own learning curve,
constraints, maintainability issues etc.. This is a pretty easy thing to do; I
don’t think it needs anything more complicated than I’ve put here.

It’s also very easy to refactor overly-detailed, imperative scenarios, of the
kind created by lots of teams who didn’t know about the conversations,
into this form.

It’s easy to move to the BDD tools if you need them
With your Page Objects already in place, it’s pretty quick to get something
like Cucumber up and running and make the step definitions call through
to the page objects exactly as you were before, with just a little bit of
refactoring of method names.

It’s a lot harder to move from Cucumber and regex to a DSL.

Chris Matts once had some great wisdom. “If you don’t know which
technology to choose, pick the one that’s easy to change. If it’s wrong, you
can change it.”

This is the one that’s easy to change, so I tend to start with this. And
sometimes it doesn’t need to change. 

Listing 1

public class Scenario
{
  private readonly SudoqueSteps _sudoqueSteps;
  private readonly CellSteps _cellSteps;
  private readonly HelpSteps _helpSteps;

  private World _world;

  protected Scenario()
  {
    _world = new World();
    _sudoqueSteps = new SudoqueSteps(_world);
    _cellSteps = new CellSteps(_world);
    _helpSteps = new HelpSteps(_world);
  }
  
  protected CellSteps WhenISelectACell{ get 
  { return _cellSteps; }}
  
  protected CellSteps ThenTheCell{ get 
  { return _cellSteps; }}

  protected SudoqueSteps GivenSudoque{ get 
  { return _sudoqueSteps; }}
  
  //...

  protected HelpSteps WhenIAskForHelp { get 
  { return _helpSteps; } }

  protected HelpSteps ThenTheHintText { get 
  { return _helpSteps; } }
}

Listing 2

[TestFixture]
public class PlayerCanSetUpAPuzzle : Scenario
{
  [Test]
  public void APlayerCanSetUpAPuzzle()
  {
    GivenSudoque.IsRunning();
    WhenISelectACell.At(3, 4).AndToggle(1);
    ThenSudoque.ShouldLookLike(
      "... ... ..." + NL +
      "... ... ..." + NL +
      "... ... ..." + NL +
      "           " + NL +
      "... ... ..." + NL +
      ".1. ... ..." + NL +
      "... ... ..." + NL +
      "           " + NL +
      "... ... ..." + NL +
      "... ... ..." + NL +
      "... ... ..." + NL);
  }
}

This article was first published on Liz Keogh’s blog:
https://lizkeogh.com/2019/08/27/scenarios-using-custom-dsls/.
October 2019 | Overload | 5

https://github.com/lunivore/sudoque/tree/master/Sudoque.Scenarios
https://github.com/lunivore/sudoque/tree/master/Sudoque.Scenarios
https://lizkeogh.com/2019/08/27/scenarios-using-custom-dsls/


FEATURE LUCIAN RADU TEODORESCU
OOP Is not Essential
People tend to love or hate Object Oriented 
Programming. Lucian Teodorescu considers 
a recent OOP claim.
recent article from Ilya Suzdalnitski [Suzdalnitski19] complained of
the ‘disaster’ that OOP has become, compared to its promise. The
article received quite a bit of attention, both on Medium and on

Twitter. As the article was rather more ideologic than argumentative, the
reactions ranged from very positive to very negative. One particular
reaction that caught my attention was from Grady Booch [Booch19].

Besides being from Grady Booch (a prominent figure in the OOP world),
the thing that most caught my eye was the “multitudes of real world
systems for which object-orientation was essential” statement. As yet, I
have not seen any compelling examples making OOP necessary.
Moreover, I believe that such examples do not exist, and the present article
is an attempt to show why.

It is far from my intent to pick on some wording that Booch used (in some
less-formal context). What I would like to argue against is the common
belief that Object-Oriented Programming is the ‘true’ way of writing any
software system.

But, by all means, if somebody has such a list of examples of real-world
projects in which OOP was/is essential, please share it with me. And, for
that matter, of any programming paradigm. Any argumentative
explanation of the form ‘software X essentially needs programming
paradigm Y’ would most likely advance our studies on software
engineering.

The meaning of ‘essential’
In the context of the tweet, we can distinguish three possible meanings for
the ‘essential’ word:

 as in Brooks’ division between essential and accidental [Brooks95]
– i.e., there are software systems in which their essential complexity
somehow mandates OOP (see below)

 with the meaning of ‘necessary’– i.e., the software system cannot be
built without it

 with the meaning of ‘it’s much easier with’ – i.e., building the
software system is much easier with OOP; it can be built without
OOP but with much higher costs

Let’s analyze how OOP can be (or not be) essential in a software system
from all three perspectives.

Brooks’ essential
Brooks makes the following division: 

[…] to see what rate of progress we can expect in software technology,
let us examine its difficulties. Following Aristotle, I divide them into
essence – the difficulties inherent in the nature of the software – and
accidents – those difficulties that today attend its production but that
are not inherent.

He then immediately goes to say:

The essence of a software entity is a construct of interlocking
concepts: data sets, relationships among data items, algorithms, and
invocations of functions. This essence is abstract, in that the
conceptual  construct  is  the same under many d i f ferent
representations. It is nonetheless highly precise and richly detailed.

And then he describes what he believes is the irreducible essence of
modern software systems: complexity, conformity (to existing interfaces),
changeability and invisibility.

Nothing in what Brooks calls essential is fundamentally attacked by OOP.
Furthermore, Brooks has a small section on Object-oriented programming,
in which he states that OOP attacks accidental difficulties:

Nevertheless, such advances can do no more than to remove all the
accidental difficulties from the expression of the design. The
complexity of the design itself is essential; and such attacks make no
change whatever in that.

In the ‘“No Silver Bullet” Refired’ chapter [Brooks95], Brooks remarks
that, after 9 years since the original claims, OOP has grown slower than
people would believe.

Ok, so clearly OOP is not essential for any software system in the way
Brooks describes ‘essential’.

‘Essential’ as ‘necessary’
Let us assume Booch intended to say “multitudes of real world systems for
which object-orientation was necessary”, with the meaning that the
software could not be technically written without OOP. Similar to saying
that the complexity of a sorting algorithm is essentially O(nlogn) – that is,

A

Lucian Radu Teodorescu has a PhD in programming languages 
and is a Software Architect at Garmin. As hobbies, he is working on 
his own programming language and he is improving his Chuck 
Norris debugging skills: staring at the code until all the bugs flee in 
horror. You can contact him at lucteo@lucteo.ro
6 | Overload | October 2019



FEATURELUCIAN RADU TEODORESCU

The fact that people are biased towards using
OOP doesn’t make OOP essentially simpler than

other programming paradigms
in the general case, the order of magnitude for the number of comparisons
cannot be less than nlogn.

But that cannot be the case. Any software system that can be built using
one programming language/paradigm can be built using another language
or paradigm. After all, all the programming languages and, by extension,
all programming paradigms are Turing-complete (any programming
paradigm can be used to implement Turing-computable functions). 

‘Essential’ as a form of simplicity
In the last meaning that we explore, we assume that Booch wanted to say
“multitudes of real world systems for which object-orientation makes the
problem much easier to solve”. This is starting to sound a bit more
plausible.

A statement like “Project X can be solved by team Y with OOP simpler
than it can be solved in any other programming paradigm” is a fair
statement. I think most of the readers will agree with it.

But, we must argue that we cannot generalize it for all the teams. OOP is
not necessarily the simplest way to write (reasonably complex) software.
For example, consider people like Joe Armstrong (creator of Erlang, who
sadly died this year) [Seibel09], [Armstrong], Linus Torvalds (who
expresses so colorfully his dislike of C++/OOP) [Torvalds04,07]], Simon
Peyton Jones (designer for Haskell) or Rob Pike (designer for Go). Would
they consider that OOP is the easiest method to write software? Definitely
not.

Different people and different teams will have different proficiency levels
with different technologies/paradigms. Out of all the factors that affect the
proficiency of an individual/team, probably education is the most
important one. If the industry highly esteems OOP programmers, if most
of the formal education encourages people to believe that OOP is the most
important programming paradigm, and if most of the software literature
teaches OOP, then, of course, people will start to be proficient in OOP,
and become biased towards OOP. (It is hard to generalize, but my personal
opinion is that OOP is still highly promoted, probably more than it merits.)

The fact that people are biased towards using OOP doesn’t make OOP
essentially simpler than other programming paradigms. It’s probably just
confirmation bias. People with hammers see nails all around, which
strengthens their belief that the hammer is the best tool.

With all these said, we can conclude that even within this interpretation,
OOP is not essential in building software systems.

OOP features
Let us now analyze the problem from a different perspective; let us try to
answer the following question: Is there some OOP feature that is not
present in other programming paradigms and that would help the
programmers better tame the complexity?

We will analyze the major features of OOP to answer this question. When
I say OOP, I’m mainly thinking of languages like C++, Java, and C#. I will
often contrast them with non-OOP languages like C and with functional
languages (Haskell, ML)

Objects and classes on top of imperative programming
OOP is an imperative paradigm. Nothing new here. It has classes and
objects, but those aren’t necessarily something new.

Classes, in the absence of encapsulation, are just data structures. Similar
to C structs; similar to product types in functional paradigms. Objects are
instances of these classes – in other words, values. There is nothing new
that OOP adds here to help in dealing with complexity.

Please note that OOP has a convention that classes, i.e., data structures,
should correspond to things in the real world. I find this a bit disturbing,
but that is not the issue here. There is nothing that prevents other paradigms
from adopting similar conventions.

Things like class variables are just syntactic sugar. There is nothing here
that essentially helps in fighting complexity.

Encapsulation
Encapsulation is the concept that binds together the data and the functions
that manipulate that data. As opposed to traditional imperative
programming, OOP puts functions inside classes, and calls them methods.
But, a method is nothing more than a function that takes the object as a
(hidden) parameter. Everything is syntactic sugar.

Nothing prevents a C programmer from placing all the functions that
operate on the data near the struct definition. Ignoring the access rights of
methods and attributes, this convention produces similar results. With any
programming language that supports some sort of package constructs, one
can easily emulate encapsulation. Signatures and structures in ML
(functional language) [Harper00] behave very similar to encapsulation in
OOP.

Again, nothing that cannot be done with simple conventions; at best,
improvements that OOP adds here would fall into fighting accidental
difficulties.

Now, let me be clear about one point. In general, encapsulation can be seen
from two different perspectives:

 a syntactic perspective, on how OOP languages recommend placing
data and functions together

 a modeling perspective, a way of thinking about programs, that
tends to put data and the operations on the data together

The argument here was at the syntactic level. OOP languages add syntactic
sugar to easily allow programmers to group data and functions.

The most important part of the encapsulation comes with modeling
perspective. That is a form of decomposition that can actually help fight
complexity (see below in the ‘What is truly essential?’ section). But again,
nothing can prevent a C or an ML programmer from using this way of
thinking about problems. So, even though this modeling technique is
typically associated with OOP, other non-OOP languages can use it.

Information hiding
Preventing the programmer from accessing some variables/functions can
hardly be called an essential improvement for software engineering. If one
October 2019 | Overload | 7



FEATURE LUCIAN RADU TEODORESCU

there is no single OOP feature that would 
have significant importance in fighting 
essential complexity, or in making 
programmer’s life much more easier
needs help in hiding that information, one can always rely on packaging
systems, on conventions (like the leading underscore in Python) or even
code documentation.

Polymorphism
People often claim that OOP is needed to have polymorphic behavior.
Nothing can be more false than that.

First, let us acknowledge the existence of multiple types of polymorphism:
subtype polymorphism (or inheritance based – the one advertised by
OOP), ad hoc polymorphism (i.e., overloading) and parametric
polymorphism (as used by functional programming languages, but also for
implementing generics/templates in some highly acclaimed OOP
languages). And, there is also duck-typing, a form of polymorphism
without static types.

There are no technical reasons to believe that subtype polymorphism is
superior to parametric polymorphism. On the contrary, I believe the
opposite; but I’ll leave that discussion for another time.

Also, the reader should consider that basic polymorphism can be
constructed in C with manual vtables. OOP languages just add syntactic
sugar on top of this.

As polymorphism is not unique to OOP, we also conclude that, with
respect to polymorphism, OOP cannot be essential in building software.

Inheritance
We have already discussed how subtype polymorphism present in OOP is
not essential to building software. Without the polymorphism aspect,
inheritance is drained out of substance. There are voices that claim that
inheritance is abused, and there are a lot of cases in which it can be replaced
by simple composition. For example, see item 34 (Prefer composition to
inheritance) from C++ Coding Standards: 101 Rules, Guidelines, and
Best Practices [Sutter04] and the Inheritance Is The Base Class of Evil
presentation [Parent13].

Without polymorphism, inheritance is just syntactic sugar (one that can
cause harm if abused).

Dynamic dispatch
Although object-oriented languages provide an easy method of
implementing dynamic dispatch (e.g., virtual functions in C++), other
languages have different strategies. Languages like C provide function
pointers to handle this, while functional languages provide closures to
implement dynamic behavior. Essentially, a closure or a function pointer
is an interface with a single method, and any object-oriented interface can
be decomposed into smaller, one-function interfaces.

Yes, interfaces with multiple (virtual) functions can be slightly more
efficient in some contexts, but there is nothing game-changing in having
multiple functions per interface. In the worst case, the user can group
multiple one-function interfaces into one single data structure.

Again, OOP doesn’t provide a feature that is unique and cannot be matched
with a bit more syntactic verbosity; and we already established that is an
accidental difficulty, not an essential one.

In summary
There is no single OOP feature that would have significant importance in
fighting essential complexity, or in making programmer’s life much more
easier. They can be all summed up in the category of syntactic sugar.

Syntactical and modeling – an analogy
Most of the discussion about OOP features revolved around syntactical
aspects of OOP. The reader should be guessing by now that, following
Brooks, I have a strong position for dismissing syntactic features as solving
accidental difficulties, and not being essential to the development process.
Yes, it can make you write 10% faster code, but it is not essential.

There is a different story with the modeling perspective of OOP. We’ll
tackle this in the next section. But before that, I want to draw an analogy.

Let’s compare OOP with the traditional motor car (with internal
combustion). While there are a lot of cars out there, the cars are not
essential to locomotion. We can travel by plane, we can travel by boat, we
can travel by train, we can travel on a horse and even by foot.

Similar to the syntactical features of OOP languages, we can think of the
shape of the car. It is true that the cart alone doesn’t make the car; it just
adds marginal improvement to locomotion (faster speeds, better grip, etc.)

The modeling aspect of OOP is analogous to the internal combustion
engine of the car. The engine is what makes the car a car. But what it is
important here to notice is that there are alternatives to internal combustion
engines. We have fully-electric engines, we have hybrid-engines, we have
engines based on wind or even on solar power; and let’s not forget horses
and locomotion by foot.

The main point is that neither the cart nor the internal combustion engine
is essential for locomotion. And internal combustion engines, even though
they are most commonly seen on cars, can be present on other locomotion
machines.

In the previous sections we went over major OOP features. We concluded
that most of them are syntactic features. The modeling aspects that are
commonly found on OOP languages (encapsulation, polymorphism) can
be present in non-OOP languages. But are these OOP modeling techniques
essential?

What is truly essential?
Decomposition. The breaking down of a complex software system into
multiple parts that are easier to understand, to reason about and to maintain.
Only by decomposition can one hope to tame the complexity.

But beware, decomposition can fall into the same bias as discussed above.
We can say that a certain decomposition would make the software system
easier to understand for team X, but we cannot say that it will do for any
team/individual.
8 | Overload | October 2019



FEATURELUCIAN RADU TEODORESCU
In OOP, people usually follow the so-called object decomposition: we try
to break down the system around ‘things’ (as opposed to operations or
functions), which will become objects/classes. As these objects/classes
will hold state, this type of decomposition typically is a decomposition of
state: the state will be scattered (and shared) around all over the software.
This is typically a bottom-up approach. See also Booch method [Booch94]

By contrast, functional decomposition as found in functional languages
considers functions as basic building blocks. It is more focused on
decomposing data flows. The state is typically immutable and isolated (i.e.,
the inputs of a function are always distinct from the outputs of the same
function). The pipes and filters pattern typically employs a functional
decomposition. This type of decomposition mostly resembles top-down
decomposition.

But, just because these two dominate OOP and functional programming,
it doesn’t mean that there aren’t other types of decomposition. Here are
some decompositions that can make a lot of sense, but not get that much
attention: decomposition based on security levels, based on the distance
from the user (think of a web, layered architecture), based on the expertise
of different teams/individuals (Conway’s law [Conway68]), etc.

In practice, in one software project, typically more than one decomposition
appears. If one decomposition appeals to a group of people, it may not
appeal another group of people, at least not at first sight. For example, I
believe that a decomposition based on security levels is not something that
most of the readers will think of first; on the other hand, I believe there
will be other readers who apply it very frequently.

So, to come back to the previous analogy, there aren’t only internal
combustion engines. Fully-electric engines are starting to show a lot of
potential (can this be similar to functional programming?). Plus, there are
hybrid-engines which don’t seem too bad (I find this analogous to C with
encapsulation based on conventions). Let’s not forget about non
conventional engines, like wind-powered ones (to be associated with less
prominent programming paradigms).

Just like engines, the different types of decompositions have pros and cons.
Like there is no ‘essential’ engine, there isn’t any programming paradigm
that is essential to solving a software problem.

Conclusions
We argue here that OOP is not essential for software systems. It can be
easier for certain teams/individuals, but we cannot generalize. The word
‘essential’ cannot be used in this context with the meaning that Brooks
attributes to the word, and it cannot mean ‘necessary’. In limited contexts,
it can mean simpler; but this simpler is directly dependent on the people
for which it is simpler – there is no such thing as simpler for everyone.

To make sure we haven’t missed anything, we also looked at the problem
from a different perspective: trying to see if there are some features of OOP
that can promise simpler software. But almost all the important OOP
features are merely syntactic sugar; all OOP programs can be translated
into C with minimal effort.

The most important tool for solving software problems is decomposition.
But this is not particularly tied to a programming paradigm. As an industry,
we should probably be focusing more on different ways of decomposing
a complex software system rather than trying to religiously apply one
paradigm or another. There is nothing fundamental that would prevent a
programmer from applying good decomposition principles in C as
opposed to an OOP language.

But probably there are still readers that believe that C doesn’t allow high-
level abstractions. I would urge those readers to carefully analyze the
reasons for that belief. I am highly convinced that similar to the content
exposed in this article, the main reasons are:

 the language features that enable those high-level abstractions are
just syntactic sugar – accidental difficulties

 the reluctance of creating high-level abstractions in a language like
C comes from internal biases

To overcome the biases I recommend the readers to get exposed to multiple
decomposition methods and multiple programming paradigms. With that

in mind, I would also recommend the readers to go over Ilya’s post
[Suzdalnitski19]; it may be ideologic, it might not have all the proper
arguments, but it offers a non-traditional perspective on software
construction.

OOP may be helping a lot of people to write good software. But claiming
essentialness of OOP is a bit too strong, in my opinion. 

References
[Armstrong] Joe Armstrong, ‘Why OO sucks’,

https://www.cs.otago.ac.nz/staffpriv/ok/Joe-Hates-OO.htm

[Booch19] Grady Booch (2019), Twitter reply to Ilya, https://twitter.com/
Grady_Booch/status/1153176945951068161?s=17

[Booch94] Grady Booch (1994), Object-oriented analysis and design 
with applications, Addison-Wesley Professional

[Brooks95] Frederick P. Brooks Jr (1995), The Mythical Man-Month: 
Essays on Software Engineering, Anniversary Edition (2nd Edition), 
Addison-Wesley Professional

[Conway68] Melvin Conway (1968), ‘How Do Committees Invent?’ 
http://www.melconway.com/Home/pdf/committees.pdf

[Harper00] Robert Harper (2000), ‘Signatures and Structures’ in 
Programming in Standard ML, https://www.cs.cmu.edu/~rwh/
introsml/modules/sigstruct.htm

[Parent13] Sean Parent (2013), ‘Inheritance Is The Base Class of Evil’ at 
GoingNative 2013, available from: https://www.youtube.com/
watch?v=bIhUE5uUFOA

[Seibel09] Peter Seibel (2009) ‘Joe Armstrong’ in Coders at Work: 
Reflections on the Craft of Programming, Apress

[Sutter04] Herb Sutter, Andrei Alexandrescu (2004), C++ Coding 
Standards: 101 Rules, Guidelines, and Best Practices, Addison-
Wesley Professional

[Suzdalnitski19] Ilya Suzdalnitski (2019), ‘Object-Oriented 
Programming – The Trillion Dollar Disaster’, 
https://medium.com/better-programming/object-oriented-
programming-the-trillion-dollar-disaster-92a4b666c7c7

[Torvalds04,07] Linus Torvalds (2004, 2007), Linus Torvalds on C++ 
(correspondence), http://harmful.cat-v.org/software/c++/linus
October 2019 | Overload | 9

http://harmful.cat-v.org/software/c++/linus
https://medium.com/better-programming/object-oriented-programming-the-trillion-dollar-disaster-92a4b666c7c7
https://www.youtube.com/watch?v=bIhUE5uUFOA
https://www.youtube.com/watch?v=bIhUE5uUFOA
https://www.cs.cmu.edu/~rwh/introsml/modules/sigstruct.htm
https://www.cs.cmu.edu/~rwh/introsml/modules/sigstruct.htm
http://www.melconway.com/Home/pdf/committees.pdf
https://twitter.com/Grady_Booch/status/1153176945951068161?s=17
https://twitter.com/Grady_Booch/status/1153176945951068161?s=17
https://www.cs.otago.ac.nz/staffpriv/ok/Joe-Hates-OO.htm


FEATURE PATRICK MARTIN
I Come Here Not to Bury 
Delphi, But to Praise It
What helps a programming language gain traction? 
Patrick Martin remembers why he used to use Delphi.
But first what is Delphi?
It is a riddle, wrapped in a mystery, inside an enigma.

And why write about it?
It’s not a controversial statement that Delphi is not what it once was in its
heyday [OracleAtDelphi05]. Nevertheless, I think it’s worth reviewing
what might have formed part of the secret sauce that was part of its success
back then. The current version now supports building 64-bit projects
across the 3 main desktop platforms, to select one area of evolution of the
product.

Furthermore the original aspects that were key for me are not only still
there, but better than before.

Non goals and own goals
There are many things I will not be discussing in this article. For example,
there is always Much To Discuss when it comes to choice of programming
language – I am told – but I will be attempting to steer clear of controversy
of that nature.

Comparing laundry lists of features between languages in some kind of
checklist knockout tournament is certainly not the aim here.

Instead, I want to recall – or if you will, eulogise – a rich seam of features
of the tool that for me made Delphi the game changer that it was then...

Back when I used it full time, these techniques were what made it so
productive and what’s more fun to work with, and I humbly submit that
there are few tools that come close to touching it even now.

First, a quick review
Delphi is a commercial product for developing software [Embarcadero-1],
[Wikipedia-1], with a proprietary IDE and version of Object Pascal
[Wikipedia-2] that integrates tightly with the solution [Embarcadero-3].
There is even a free version you can download from [Embarcadero-2], and
if you can puzzle your way past the registration djinns, you can have it
installed and up and running in a few minutes.

Table 1 shows a heavily abridged table of releases with my comments for
some key milestones.

For prior art: there is even an ACCU article [Fagg98] article, and if you
want a much funnier, arguably less slightly less technical summary of the
early days, try this on for size [Stob12].

Here are seven bullet points I’ve chosen to give a flavour of the system:

 Fast

Compile times were always in the vanguard, currently there are
quotes of many thousands of lines per second.

The time from a standing start of just source to a fully linked native
executable that was ready to go was also very, very short. In the days
of ‘spinning rust’ drives, this is a feature that really mattered – there
is a nice little review here [Hague09].

 Strongly typed (mainly1)

for loops could only be Ordinal types. I got over the shock of not
being able to increment a double type very quickly and never
looked back.

You could (and should) declare enums and sub-range types. It would
then be a compilation and runtime error to assign incorrect values to
these types, if you chose to enable the strict compilation mode,
which you almost always should.

    type
    // everyone likes cards
      Suit = (Club, Diamond, Heart, Spade);
    // small things that it's just embarrassing 
    // to get wrong
      SmallNumber = -128..127;
      SomeCaps = 'A'..'Z';
      Month = 0..11;

 Run time type information at all times

One could always identify the type of an object at runtime and it was
built into the language – with a little more effort one could browse
all the types in the programs’ type system. This will come in useful
for building up complex objects, as we will see.

1. Although, there were some funky compiler features that allowed for
late-bound function calls, mainly to support scripting OLE objects.

Table 1

Year Release
Supports 

development for
Notable Enhancement

1993 Delphi 1.0 Win16 From out of nowhere, 
handling a GPF*

1996 Borland Delphi 2 Win32 first win32 compiler

1998 Inprise Delphi 4 Win32 last version allowing 
16-bit development

2003 Borland Delphi 8 Win32 .NET

2005 Borland Delphi 
2005

Win32

2011 Embarcadero 
Delphi XE2

Win32, Win64 first version producing 
64-bit binaries

2012 Embarcadero 
Delphi XE3

Win32, Win64 last version with .NET 
support

2018 Embarcadero 
Delphi 10.3 Rio

Win32, Win64 current day

* What is a GPF? [Fahrni18]

Patrick Martin Patrick’s github repo was classified using a 
machine learning gadget as belonging to a ‘noble corporate toiler’. 
He can’t top that. Patrick can be contacted at 
patrickmmartin@gmail.com.
10 | Overload | October 2019



FEATUREPATRICK MARTIN
 Straightforward dependency management

The language has files called units – basically modules, which
supported interface and implementation sections for exported
symbols and internal only code.

Circular dependencies were a compile time error, it’s worth taking a
second to let that sink in.

This required the developer to structure their program as a Directed
Acyclic Graph, which strongly encouraged a way of organising
one’s code in such a way that one really only had to inspect the
interface section of a new dependency unit, and then choose whether
to make it a dependency in the implementation or not.

Rinse and repeat for the rest of the program.

In addition, the order of initialisation and finalisation of the units
was straightforward and robust (even if spelled incorrectly – see
later ).

 Extensible RTL and Visual class libraries exploiting the
strengths of the language

Object Pascal supports class properties (read/write, write-only,
read-only) as a first class feature. Objects on the stack are simply not
allowed – I suspect eliminating this capability freed Delphi from
having to deal with a large class of issues related to dynamic runtime
use of code. Coupled with the ability to use the RTTI, these work
together to support configurability of classes from properties.

 Source-based component model

It’s worth bearing in mind that the time when Delphi was conceived
was the era of the rise of the component-based software model
[Wikipedia-4]. For example, people could pay (remember paying
for software?) a nugatory amount for a component that would
emulate Excel and embed it into their software.

In the very first release of Delphi was a thorough guide to writing
components, proselytising for the style of authoring components.
This was really high quality work and – true story – we kept a copy
of the Delphi 1 guide chapters that didn’t survive to later releases
around to consult, as it remained relevant.

 You could go deep if you wanted

For those minded to use them, the features of a language for the
‘hard core programmer’ were also there:

 full access to the FFI of binaries of other languages at link time

 a range of selectable calling conventions (see [Wikipedia-3] for
details of these)

 capability to hand-craft dynamic loading of code modules

 all the usual crazy casting stuff some programmers like to do
(rarely needed in Delphi)

 inline assembly.

Contention: Delphi was inherently very dynamic for 
its time
This is my central thesis.

In 1999, I could fire up the IDE, load the source of a visual form connected
to, say a database and see and navigate records fetched from the database
live in the designer. The development environment was quick and effective
to work in, and I had access to the source for debugging and simply
improving my mind by reading the code.

That feature just on its own, helped to teach me a lot about the engineering
of a coherent architecture. And for those prepared to take the time to
investigate, it had a cornucopia of treasures to uncover beyond the super
user friendly surface.

Example: how the ability to read and debug into  the source make 
a difference
Figure 1 is a simple UI app I created in a few clicks with no code. Setting
one breakpoint and stepping in using one key combination I see where the
application launches the main UI form and then enters the main Windows
interactive message loop.

Figure 1

This was the time of the rise of the Component based model – people
could pay (remember paying for software?) a nugatory amount for a
component that would emulate, say some portion of the Excel
spreadsheet editor and embed it into their software [Wikipedia-4].

In Delphi I could study the built-in in components, or follow the tutorials
and write my own if needs be, or figure out how to achieve my aims using
the existing functionality.

Remember the 90s were wild, man
October 2019 | Overload | 11



FEATURE PATRICK MARTIN
Delphi’s streaming system and form design
Now the real killer app for the app development was the fully synchronised
visual designer

Let’s have a look at some actual code to plug together some hypothetical
framework objects. Note, this process relies upon the concepts of

 properties

 the Delphi closure type (reference to method call on object instance)

 and RTTI to allow the RTL to work all the magic of wiring up the
properties

 there is also a hint of a framework which defines the ownership from
the line TfrmClock.Create(Application);

      begin
        frmClock := TfrmClock.Create(Application);
        lblTime := TLabel.Create(frmClock)
        lblTime.Caption := '...'
        tmrTick := TTimer.Create(frmClock);
        tmrTick.onTimer = tmrTickTimer;
        frmClock.AddChild(tmrTick);
        // ...
      end;  

And let’s have a look at some hypothetical DSL code to describe the moral
equivalent of that code

  object frmClock: TfrmClock
    Caption = 'Clock'
    object lblTime: TLabel
      Caption = '...'
    end
    object tmrTick: TTimer
      OnTimer = tmrTickTimer
    end
  end

Full disclosure: Of course it’s actual real DSL (edited slightly for space)!
The IDE would generate all of that for you.

Now, with the mere addition of the following line
to a class method called tmrTickTimer … we
have a clock app!

   lblTime.Caption := TimeToStr(Now);

So, that’s assembling visual components visually sorted then.

Registry singletons done right (TM)

Listings 1–4 are an example illustrating how deterministic initialisation of
modules would allow for very simple, yet very robust registration
concepts, giving the following output:

  Registry Adding: TSomeProcessor
  Registry Adding: TAnotherProcessor
  Program starting
  Registration complete
  Program exiting
  Registry Removing: TAnotherProcessor
  Registry Removing: TSomeProcessor

Note the initialisation follows the lexical ordering in the program unit in
this case (but see later), and also that the de-init occurs perfectly in the
inverse order.

Add this uses directive into SomeProcessor, adding a source level
dependency to AnotherProcessor from the SomeProcessor
implementation (Listing 5).

The output is:

  Registry Adding: TAnotherProcessor
  Registry Adding: TSomeProcessor
  Program starting
  Registration complete
  Program exiting
  Registry Removing: TSomeProcessor
  Registry Removing: TAnotherProcessor

Listing 5

unit SomeProcessor
...
interface
uses
  AnotherProcessor, // <- indicate we need this
  SomeRegistry;
...  

Listing 4

unit AnotherProcessor
type TAnotherProcessor = class
// details omitted
end;
implementation
initialization
  GetSomeRegistry.RegisterClass
  (TAnotherProcessor);
  // register our class

Listing 3

unit SomeProcessor
type TSomeProcessor = class
// details omitted
end;
initialization
   GetSomeRegistry.RegisterClass(TSomeProcessor); 
   // register our class

Listing 2

unit SomeRegistry;
interface
type
TSomeRegistry = class
public
  procedure RegisterClass(AClass: TClass);
  procedure DeregisterClass(AClass: TClass);
end;
function GetSomeRegistry: TSomeRegistry;
implementation
var
  mSomeRegistry : TSomeRegistry = nil;
// details omitted
initialization
  mSomeRegistry := TSomeRegistry.Create();
finalization
  mSomeRegistry.Free;
end.

Listing 1

program registration;
{$APPTYPE CONSOLE}
uses
  SysUtils,
  AnotherProcessor in 
'depends\AnotherProcessor.pas',
  SomeProcessor in 'depends\SomeProcessor.pas',
  SomeRegistry in 'depends\SomeRegistry.pas';
begin
  try
    WriteLn('Program starting');
    WriteLn('Registration complete');
  except
    on E:Exception do
      Writeln(E.Classname, ': ', E.Message);
  end;
  Writeln('Program exiting');
end.
12 | Overload | October 2019



FEATUREPATRICK MARTIN
Note this happens when updating the implementation of single unit, not
the program code, which remains blissfully agnostic of the changes. In this
way we have been able to clearly and unambiguously capture a program
dependency that was previously not knowable from inspecting the source.

There are corollaries
 RAII per se is out, although your classes must of course still behave

sensibly

 this may have been noticed – properties need to have workable
defaults (or default behaviour that makes sense)

 once you have committed to a property based system for
configuring objects, what constructors could you possibly
write? Instead of solving that hard problem, the component is
plugged into the framework

 no automatic destruction of class instances

 destruction is explicit in Delphi’s Object Pascal and – key point
– with the Delphi component framework the object deletion
would be handled for you correctly

 coupled with the streaming system’s ability to ‘automagically’
find and instantiate the right classes when streaming in a
definition, you spend a lot less time worrying about ‘ownership’
– because (a) it’s done for you, and (b) if you wanted to do it
yourself, you may well get it wrong or find yourself fighting the
existing framework every step of the way

 classes are exclusively references types – so no objects on the stack,
à la c++

 this may feel like an intolerable constraint, but it happens to fits
in well with the concept of dynamic extensibility ->

The code to construct an object can be supplied, even updated on the
fly, because all objects are the same size – they are the size of a
pointer!

 delivering essentially, a ‘plugin’ system that is capable of
plugging in classes and their type metadata on the fly

 by the way: the IDE does this every time you rebuild a
component package you are working on in the IDE

 Exceptions can only throw objects, and also, given the singly rooted
hierarchy we can always walk our way to the actual instance type if
you have imported its interface

 conveniently an extensible object designer system can simply
roll back the stack from the offending starting point

 what is more if the function was a property setter invoked by the
IDE, then the IDE system can simply reject arbitrary failed
attempts to set a property without additional a priori knowledge
of the internals of the components that are interacting

Example of design-time and run-time exception handling
So, let’s see an example of the exception handling strategy in action. Here
is the behaviour when I attempt an operation in the IDE that cannot be
fulfilled (Figure 2) and how that component raised it in the code (Figure 3).
Note that the same code is run in the IDE, via the component package
which can be plugged in via the IDE’s extensibility.

In order to investigate this I only had to add this code and hit ‘Debug’ –
hence seeing the code by debugging the application, which will generate
the same exception.

  procedure TForm1.Button1Click(Sender: TObject);
  begin
    SQLConnection1.Open;
  end;

In the IDE, the property set on the object fails, and the user is notified.

In the application, the default exception handler installed for the
application is invoked, as I elected to not install my own handler, or write
an exception handling block.

That’s the power of a unified and usable approach to exception handling.
Figure 4 shows how it looks in the app.

C’mon it can’t have been that perfect, can it?
Now I have to explain why Delphi is not enjoying the popularity it once
did.

Web applications
Delphi was great for software that would be popped into the post, on a CD
or floppy disks.

When the web based application revolution came, that became irrelevant
for many new applications. I feel the offerings within the Delphi toolbox
for web development didn’t seem to cut through on the feature set, and of
course at the time, everything from the OS to the Development tool needed
to be paid for.

Figure 2

Figure 3
October 2019 | Overload | 13



FEATURE PATRICK MARTIN
Given the competition at the time was the LAMP stack Linux + Apache
+ MySql + PHP, it was clear how that would play out.

It was proprietary
So, a fact of life is: individual companies get in trouble, go off-beam etc.
this can be a real concern. For example the 64-bit compiler took a long time
to appear, and some companies like to take a very long view on their
enterprise applications.

Cost concerns
It could end up looking pricey compared to free tools. Yet: ‘beware false
economies’.

Quality issues
There were some releases that had surprisingly persistent niggles: the
debugger in Delphi 4 could be a real pain, especially given the Delphi 3
debugger was an absolute pleasure to work with. This is the kind of thing
that worries thoughtful programmers and managers with an eye to the future.

Another syndrome that I saw which was very sad, is that the marvellous
extensible IDE was at risk from poorly programmed component packages.
The IDE would be blamed for instability, when in fact, the code that it
loaded into its core might well be the cause. With an improved architecture,
that might have been mitigated, but perhaps not eliminated.

And finally: of course, native code is not to be 100% trusted, yet can only
be run as 100% trusted.

Interfacing with code from other systems
Some might believe this was not possible, but in fact it was.

Of course the interaction with the Windows libraries was mainly via the
win32 API, proving the point.

So, there was nothing preventing the user from making their own
integrations, however these did require some expertise and effort to
produce the translation units that could make use of the foreign function
interfaces.

In fact, one of the long standing issues with Delphi for some people was
that the translation units would not be updated quickly enough when new
systems or features arrived in Windows. This resulted in the Delphi
programmers either having to roll their own or wait for new Delphi releases.

In retrospect
So, in 2019, what conclusions can we draw?

Rapid Application Development with true visual design
Properties, Methods and Events allow complex UI to be defined in a very
minimalist fashion, which is A Good Thing. There are many camps on this
topic, but I hope I demonstrated above, the system supported fully visual
development, all the way from specified in the designer to fully defined
in code and all the waypoints between, and what is more: cleanly.

That was a strength – not all apps need to be coded the same way, or need
the same level of complexity.

Strong typing can actually be fine for RAD
Caveat: with the right level of compiler and runtime co-operation.

Personally, I enjoyed debugging in Delphi, as it seemed that faults tended
to be more reproducible and more easily reasoned through that some other
languages.

Modules are awesome
When the programmer needs to employ a unit from another unit, they really
only need to choose whether they want to add it to the interface or not –
and there is a habit forming effect from the constant gentle reminder that
it was preferable to factor your code well such that dependencies could be
added in the implementation.

In some cases one could simply add a reference to a different module to a
code file in order to modify/patch the programs’ behaviour – see prior
example.

How many of these concerns sound familiar even today?
I suspect we can learn much from the design precepts of the previous glory
days of Delphi and take some lessons forward for the next iteration of our
tools. The observant reader will spot that I mention both compile time and
run-time behaviour of a feature quite often. This is uppermost in my mind
because although a hypothetical rapid development environment may have
well tuned strictness and guarantees in the compiler or in the serialisation
system, the true art is ensuring that there is the minimum ‘impedance
mismatch’ between those two concepts.

There is little point in polishing those systems if I then end up spending
my time fighting the edge cases when they interact. Typically that
borderland is where the tool support is weakest, and also, it tends to be the
most user visible portion of applications. My contention is that in making
that area just easier to operate in, Delphi allowed developers to focus on
the parts of application development that added the most value to the user. 

References
Working code referred to in the article can be found at https://github.com/
patrickmmartin/Brute

[Embarcadero-1] https://www.embarcadero.com/products/delphi
[Embarcadero-2] https://www.embarcadero.com/products/delphi/starter
[Embarcadero-3] http://docwiki.embarcadero.com/RADStudio/Tokyo/

en/Language_Overview
[Fagg98] Adrian Fagg (1998) ‘A Delphic Experience’ in Overload 29, 

available at https://accu.org/index.php/journals/565
[Fahrni18] Windows GPF, published 12 August 2018 at 

https://iam.fahrni.me/2018/08/12/1858/
[Hague09] James Hague ‘A Personal History of Compilation Speed, 

Part 2’, available from https://prog21.dadgum.com/47.html 
[OracleAtDelphi05] ‘10 Years of Deplphi’, published on 8 February 2005 

at https://blog.therealoracleatdelphi.com/2005/02/10-years-of-
delphi_8.html

[Stob12] Verity Stob ‘The Sons of Khan and the Pascal Spring’, The 
Register, 16 January 2012, available at: 
https://www.theregister.co.uk/2012/01/16/
verity_stob_sons_of_khan_2011/

[Wikipedia-1] ‘Delphi (IDE)’: https://en.wikipedia.org/wiki/
Delphi_(IDE)

[Wikipedia-2] ‘Object Pascal’: https://en.wikipedia.org/wiki/
Object_Pascal

[Wikipedia-3] ‘Calling convention’: https://en.wikipedia.org/wiki/
Calling_convention

[Wikipedia-4] ‘Component-based software engineering’: 
https://en.wikipedia.org/wiki/Component-
based_software_engineering

Figure 4

This article was first published on Github: https://github.com/
patrickmmartin/pith-writings/blob/master/et_tu_delphi/article.md.
14 | Overload | October 2019

https://github.com/patrickmmartin/Brute
https://github.com/patrickmmartin/Brute
https://www.embarcadero.com/products/delphi
https://www.embarcadero.com/products/delphi/starter
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Language_Overview
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Language_Overview
https://iam.fahrni.me/2018/08/12/1858/
https://blog.therealoracleatdelphi.com/2005/02/10-years-of-delphi_8.html
https://blog.therealoracleatdelphi.com/2005/02/10-years-of-delphi_8.html
https://www.theregister.co.uk/2012/01/16/verity_stob_sons_of_khan_2011/
https://en.wikipedia.org/wiki/Delphi_(IDE)
https://en.wikipedia.org/wiki/Delphi_(IDE)
https://en.wikipedia.org/wiki/Object_Pascal
https://en.wikipedia.org/wiki/Object_Pascal
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Calling_convention
https://prog21.dadgum.com/47.html
https://accu.org/index.php/journals/565
https://github.com/patrickmmartin/pith-writings/blob/master/et_tu_delphi/article.md
https://en.wikipedia.org/wiki/Component-based_software_engineering


FEATUREJONATHAN BOCCARA
C++ Pipes
Expressive code can make life easier. 
Jonathan Boccara demonstrates fluent 
pipelines for collections in C++.
ipes are small components for writing expressive code when working
on collections. Pipes chain together into a pipeline that receives data
from a source, operates on that data, and sends the results to a

destination.

This is a header-only library, implemented in C++14.

The library is under development and subject to change. Contributions are
welcome. You can also log an issue if you have a wish for enhancement
or if you spot a bug.

A first example
Here is a simple example of a pipeline made of two pipes: transform
and filter:

  auto const source = std::vector<int>{0, 1, 2, 3,
    4, 5, 6, 7, 8, 9};
  auto destination = std::vector<int>{};
  source >>= pipes::filter([](int i)
             { return i % 2 == 0; })
         >>= pipes::transform([](int i)
             { return i * 2; })
         >>= pipes::push_back(destination);
  // destination contains {0, 4, 8, 12, 16};

What’s going on here
 Each element of source is sent to filter.

 Every time filter receives a piece of data, it sends its to the next
pipe (here, transform) only if that piece of data satisfies
filter’s predicate.

 transform then applies its function on the data its gets and sends
the result to the next pipe (here, pipes::push_back).

 pipes::push_back push_backs the data it receives to its
vector (here, destination).

A second example
Here is a more elaborate example with a pipeline that branches out in
several directions:

  A >>= pipes::transform(f)
    >>= pipes::filter(p)
    >>= pipes::unzip(pipes::push_back(B),
        pipes::demux(pipes::push_back(C),
        pipes::filter(q) >>= pipes::push_back(D),
        pipes::filter(r) >>= pipes::push_back(E));

Here, unzip takes the std::pairs or std::tuples it receives and
breaks them down into individual elements. It sends each element to the
pipes it takes (here pipes::push_back and demux). 

demux takes any number of pipes and sends the data it receives to each of
them.

Since data circulates through pipes, real life pipes and plumbing provide
a nice analogy (which gave its names to the library). For example, the
above pipeline can be graphically represented like Figure 1 (overleaf).

Doesn’t it look like ranges?
Pipes sort of look like ranges adaptors from afar, but those two libraries
have very different designs.

Range views are about adapting ranges with view layers, and reading
through those layers in lazy mode. Pipes are about sending pieces of data
as they come along in a collection through a pipeline, and letting them land
in a destination.

Ranges and pipes have overlapping components such as transform and
filter. But pipes do things like ranges can’t do, such as pipes::mux,
pipes::demux and pipes:unzip, and ranges do things that pipes
can’t do, like infinite ranges.

It is possible to use ranges and pipes in the same expression though:

  ranges::view::zip(dadChromosome, momChromosome)
    >>= pipes::transform(crossover) // crossover
        // takes and returns a tuple of 2 elements
    >>= pipes::unzip(pipes::push_back
          (gameteChromosome1),
        pipes::push_back(gameteChromosome2));

Operating on several collections
The pipes library allows to manipulate several collections at the same time,
wi th  t he  pipes::mux  h e l p e r .  No t e  t h a t  co n t r a r y  t o
range::view::zip, pipes::mux doesn’t require to use tuples.

  auto const input1 = std::vector<int>{1, 2, 3, 4,
    5};
  auto const input2 = std::vector<int>{10, 20, 30,
    40, 50};
  auto results = std::vector<int>{};

  pipes::mux(input1, input2) 
    >>= pipes::filter   ([](int a, int b)
        { return a + b < 40; })
    >>= pipes::transform([](int a, int b) 
        { return a * b; })
    >>= pipes::push_back(results);

    // results contains {10, 40, 90}

P

Jonathan Boccara is a Principal Engineering Lead at Murex where 
he works on a large C++ codebase. His focus on making code more 
expressive. He blogs intensively on Fluent C++ and wrote the book The 
Legacy Code Programmer’s Toolbox. He can be reached at 
jonathan@fluentcpp.com

This article was first published on Github:
https://github.com/joboccara/pipes.
October 2019 | Overload | 15

https://github.com/joboccara/pipes


FEATURE JONATHAN BOCCARA

Pipes are about sending pieces of data as they 
come along in a collection through a pipeline, 
and letting them land in a destination
Operating on all the possible combinations between several 
collections
pipes::cartesian_product takes any number of collections, and
generates all the possible combinations between the elements of those
collections. It sends each combination successively to the next pipe after it.

Like pipes::mux, pipes::cartesian_product doesn’t use tuples
but sends the values directly to the next pipe:

  auto const inputs1 = std::vector<int>{1, 2, 3};
  auto const inputs2 
    = std::vector<std::string>{"up", "down"};
  auto results = std::vector<std::string>{};

  pipes::cartesian_product(inputs1, inputs2)
    >>= pipes::transform([](int i, 
        std::string const& s)
        { return std::to_string(i) + '-' + s; })
    >>= pipes::push_back(results);
  // results contains {"1-up", "1-down", "2-up",
  // "2-down", "3-up", "3-down"}

End pipes
This library also provides end pipes, which are components that send data
to a collection in an elaborate way. For example, the map_aggregate
pipe receives std::pair<Key, Value>s and adds them to a map with
the following rule:

 if its key is not already in the map, insert the incoming pair in the
map,

 otherwise, aggregate the value of the incoming pair with the existing
one in the map.

Example:

  std::map<int, std::string> entries = { {1, "a"},
    {2, "b"}, {3, "c"}, {4, "d"} };
  std::map<int, std::string> entries2 = { {2, "b"},
    {3, "c"}, {4, "d"}, {5, "e"} };
  std::map<int, std::string> results;
  // results is empty

  entries >>= pipes::map_aggregator(results,
    concatenateStrings);
  // the elements of entries have been inserted into
  // results

  entries2 >>= pipes::map_aggregator(results,
    concatenateStrings);
  // the new elements of entries2 have been inserter
  // into results, the existing ones have been
  // concatenated with the new values 
  // results contains { {1, "a"}, {2, "bb"}, 
  // {3, "cc"}, {4, "dd"}, {5, "e"} }

All components are located in the namespace pipes.

Easy integration with STL algorithms
All pipes can be used as output iterators of STL algorithms (see Figure 2):

  std::set_difference(begin(setA), end(setA),
                      begin(setB), end(setB),
    transform(f) >>= filter(p) 
      >>= map_aggregator(results, addValues));

Figure 1

transform(f) filter(p) unzip

demux filter(q)

filter(r)

A

B C

D

E

* *

*

*

* = push_back
16 | Overload | October 2019



FEATUREJONATHAN BOCCARA

Figure 2

transform(f) filter(p) unzip

demux filter(q)

filter(r)

X

B C

D

E

* *

*

*

*= push_backY

set_difference
Streams support
The contents of an input stream can be sent to a pipe by using
read_in_stream. The end pipe to_out_stream sends data to an
output stream.

The following example reads strings from the standard input, transforms
them to upper case, and sends them to the standard output:

  std::cin >>= pipes::read_in_stream<std::string>{}
           >>= pipes::transform(toUpper)
           >>= pipes::to_out_stream(std::cout);

General pipes

demux
demux is a pipe that takes any number of pipes, and
sends a copy of the values it receives to each of those
pipes.

  std::vector<int> input = {1, 2, 3,
    4, 5};
  std::vector<int> results1;
  std::vector<int> results2;
  std::vector<int> results3;

  input >>= pipes::demux(
    pipes::push_back {results1),
    pipes::push_back(results2),
    pipes::push_back(results3));
  // results1 contains {1, 2, 3, 4, 5}
  // results2 contains {1, 2, 3, 4, 5}
  // results3 contains {1, 2, 3, 4, 5}

dev_null
dev_null is a pipe that doesn’t do anything with the value it receives. It
is useful for selecting only some data coming out of an algorithm that has
several outputs. An example of such algorithm is set_segregate
[Boccara]:

  std::set<int> setA = {1, 2, 3, 4, 5};
  std::set<int> setB = {3, 4, 5, 6, 7};
  std::vector<int> inAOnly;
  std::vector<int> inBoth;
  sets::set_seggregate(setA, setB,
                       pipes::push_back(inAOnly),
                       pipes::push_back(inBoth),
                       dev_null{});
  // inAOnly contains {1, 2}
  // inBoth contains {3, 4, 5}

drop
drop is a pipe that ignores the first N incoming values, and sends on the
values after them to the next pipe:

  auto const input = std::vector<int>{ 1, 2, 3, 4,

     5, 6, 7, 8, 9, 10};
  auto result = std::vector<int>{};
  input >>= pipes::drop(5)
        >>= pipes::push_back(result);
  // result contains { 6, 7, 8, 9, 10 }

drop_while
drop is a pipe that ignores the incoming values until they stop satisfying
a predicate, and sends on the values after them to the next pipe:

  auto const input = std::vector<int>{ 1, 2, 3, 4,
    5, 6, 7, 8, 9, 10};
  auto result = std::vector<int>{};
  input >>= pipes::drop_while([](int i)
    { return i != 6; })
    >>= pipes::push_back(result);
  // result contains { 6, 7, 8, 9, 10 }

filter
filter is a pipe that takes a predicate p and, when
it receives a value x, sends the result on to the next
pipe if p(x) is true.

  std::vector<int> input = {1, 2, 3, 4, 5, 6, 7, 8,
    9, 10};
  std::vector<int> results;
  input >>= pipes::filter([](int i)
    { return i % 2 == 0; })
    >>= pipes::push_back(results);
  // results contains {2, 4, 6, 8, 10}

join
The join pipe receives collection and sends each element of each of those
collections to the next pipe:

  auto const input = std::vector<std::vector<int>>{
    {1, 2}, {3, 4}, {5, 6} };
  auto results = std::vector<int>{};
  input >>= pipes::join 
        >>= pipes::push_back(results);
  // results contain {1, 2, 3, 4, 5, 6}

partition
partition is a pipe that takes a predicate p and two
other pipes. When it receives a value x, sends the
result on to the first pipe if p(x) is true, and to the
second pipe if p(x) is false.

  std::vector<int> input = {1, 2, 3,
    4, 5, 6, 7, 8, 9, 10};
  std::vector<int> evens;
  std::vector<int> odds;
  input >>= pipes::partition([](int n)
      { return n % 2 == 0; },
October 2019 | Overload | 17



FEATURE JONATHAN BOCCARA
    pipes::push_back(evens),
    pipes::push_back(odds));
  // evens contains {2, 4, 6, 8, 10}
  // odds contains {1, 3, 5, 7, 9}

read_in_stream
read_in_stream is a template pipe that reads from an input stream. The
template parameter indicates what type of data to request from the stream:

  auto const input = std::string{"1.1 2.2 3.3"};
  std::istringstream(input) 
    >>= pipes::read_in_stream<double>{}
    >>= pipes::transform([](double d)
        { return d * 10; })
    >>= pipes::push_back(results);
  // results contain {11, 22, 33};

switch
switch_ is a pipe that takes several case_ branches. Each branch
contains a predicate and a pipe. When it receives a value, it tries it
successively on the predicates of each branch, and sends the value on to
the pipe of the first branch where the predicate returns true. The
default_ branch is equivalent to one that takes a predicate that returns
always true. Having a default_ branch is not mandatory.

  std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7,
    8, 9, 10};
  std::vector<int> multiplesOf4;
  std::vector<int> multiplesOf3;
  std::vector<int> rest;
  numbers >>= pipes::switch_(
    pipes::case_([](int n){ return n % 4 == 0; }) 
      >>= pipes::push_back(multiplesOf4),
    pipes::case_([](int n){ return n % 3 == 0; })
      >>= pipes::push_back(multiplesOf3),
    pipes::default_ >>= pipes::push_back(rest) ));
  // multiplesOf4 contains {4, 8};
  // multiplesOf3 contains {3, 6, 9};
  // rest contains {1, 2, 5, 7, 10};

take
take takes a number N and sends to the next pipe the first N element that
it receives. The elements after it are ignored:

  auto const input = std::vector<int>{1, 2, 3, 4,
    5, 6, 7, 8, 9, 10};
  auto result = std::vector<int>{};
  input >>= pipes::take(6)
        >>= pipes::push_back(result);
  // result contains {1, 2, 3, 4, 5, 6}

take_while
take_while takes a predicate and sends to the next pipe the first values
it receives. It stops when one of them doesn’t satisfy the predicate:

  auto const input = std::vector<int>{1, 2, 3, 4,
    5, 6, 7, 8, 9, 10};
  auto result = std::vector<int>{};
  input >>= pipes::take_while([](int i){ 
    return i != 7; })
    >>= pipes::push_back(result);
  // result contains {1, 2, 3, 4, 5, 6}

tee
tee is a pipe that takes one other pipe, and sends a
copy of the values it receives to each of these pipes
before sending them on to the next pipe. Like the tee
command on UNIX, this pipe is useful to take a peek
at intermediary results.

  auto const inputs = std::vector<int>{1, 2, 3, 4,
    5, 6, 7, 8, 9, 10};
  auto intermediaryResults = std::vector<int>{};

  auto results = std::vector<int>{};
  inputs >>= pipes::tee(pipes::push_back
    (intermediaryResults))
    >>= pipes::push_back(results);
  // intermediaryResults contains {2, 4, 6, 8, 10,
  // 12, 14, 16, 18, 20}
  // results contains {12, 14, 16, 18, 20}

transform
transform is a pipe that takes a function f and,
when it receives a value, applies f on it and sends the
result on to the next pipe.

  std::vector<int> input = {1, 2, 3, 4, 5};
  std::vector<int> results;
  input >>= pipes::transform([](int i) 
    { return i*2; })
    >>= pipes::push_back(results);
  // results contains {2, 4, 6, 8, 10}

unzip
unzip is a pipe that takes N other pipes. When it
receives a std::pair or std::tuple of size N
(for std::pair N is 2), it sends each of its
components to the corresponding output pipe:

  std::map<int, std::string> entries 
= { {1,
    "one"}, {2, "two"}, {3, "three"}, {4, "four"},
    {5, "five"} };
  std::vector<int> keys;
  std::vector<std::string> values;
  entries >>= pipes::unzip(pipes::push_back(keys),
    pipes::push_back(values)));
  // keys contains {1, 2, 3, 4, 5};
  // values contains {"one", "two", "three", "four",
  // "five"};

End pipes

custom
custom takes a function (or function object) that sends to the data it
receives to that function. One of its usages is to give legacy code that does
not use STL containers access to STL algorithms:

  std::vector<int> input = {1, 2, 3, 4, 5, 6, 7 ,8,
    9, 10};
  void legacyInsert(int number, DarkLegacyStructure
    const& thing); // this function inserts into
                   // the old non-STL container
  DarkLegacyStructure legacyStructure = // ...
  std::copy(begin(input), end(input),
    custom([&legacyStructure](int number){
    legacyInsert(number, legacyStructure); });

Read the full story about making legacy code compatible with the STL on
my blog [Boccara17a].

Note that custom goes along with a helper function object, do_, that
allows to perfom several actions sequentially on the output of the
algorithm:

  std::copy(begin(input), end(input),
    pipes::custom(pipes::do_([&](int i){
    results1.push_back(i*2);}).
    then_([&](int i){ results2.push_back(i+1);}).
    then_([&](int i){ results3.push_back(-i);})));

map_aggregator
map_aggregator provides the possibility to embark an aggregator
function in the inserter iterator, so that new elements whose key is already
present in the map can be merged with the existent (e.g. have their values
added together).
18 | Overload | October 2019



FEATUREJONATHAN BOCCARA
  std::vector<std::pair<int, std::string>> entries
    = { {1, "a"}, {2, "b"}, {3, "c"}, {4, "d"} };
  std::vector<std::pair<int, std::string>> entries2
    = { {2, "b"}, {3, "c"}, {4, "d"}, {5, "e"} };
  std::map<int, std::string> results;
  std::copy(entries.begin(), entries.end(),
    map_aggregator(results, concatenateStrings));
  std::copy(entries2.begin(), entries2.end(),
    map_aggregator(results, concatenateStrings));
  // results contains { {1, "a"}, {2, "bb"}, 
  // {3, "cc"}, {4, "dd"}, {5, "e"} }

set_aggreagator provides a similar functionality for aggregating
elements into sets.

Read the full story about map_aggregator and set_aggregator on
my blog [Boccara17b].

override
override is the pipe equivalent to calling begin on an existing
collection. The data that override receives overrides the first element
of the container, then the next, and so on:

  std::vector<int> input = {1, 2, 3, 4, 5, 6, 7, 8,
    9, 10};
  std::vector<int> results = {0, 0, 0, 0, 0, 0, 0,
    0, 0, 0};
  input >>= pipes::filter([](int i)
            { return i % 2 == 0; })
        >>= pipes::override(results);
  // results contains {2, 4, 6, 8, 10, 0, 0, 0, 0, 0};

push_back
push_back is a pipe that is equivalent to std::back_inserter. It
takes a collection that has a push_back member function, such as a
std::vector, and push_backs the values it receives into that
collection.

set_aggregator
Like map_aggregator, but inserting/aggregating into std::sets.
Since std::set values are const, this pipe erases the element and re-
inserts the aggregated value into the std::set.

  struct Value
  {
    int i;
    std::string s;
  };
  bool operator==(Value const& value1, 
    Value const& value2)
  {
    return value1.i == value2.i && value1.s 
      == value2.s;
  }
  bool operator<(Value const& value1, 
    Value const& value2)
  {
    if (value1.i < value2.i) return true;
    if (value2.i < value1.i) return false;
    return value1.s < value2.s;
  }
  Value concatenateValues(Value const& value1,
    Value const& value2)
  {
    if (value1.i != value2.i) throw
      std::runtime_error("Incompatible values");
    return { value1.i, value1.s + value2.s };
  }

  int main()
  {
    std::vector<Value> entries = { Value{1, "a"},
      Value{2, "b"}, Value{3, "c"}, Value{4, "d"} };
    std::vector<Value> entries2 = { Value{2, "b"},
      Value{3, "c"}, Value{4, "d"}, Value{5, "e"} };
    std::set<Value> results;
    std::copy(entries.begin(), entries.end(),
      pipes::set_aggregator(results,
      concatenateValues));
    std::copy(entries2.begin(), entries2.end(),
      pipes::set_aggregator(results,
      concatenateValues));
    // results contain { Value{1, "a"}, Value{2,
    // "bb"}, Value{3, "cc"}, Value{4, "dd"}, 
    // Value{5, "e"} }
  }

sorted_inserter
In the majority of cases where it is used in algorithms, std::inserter
forces its user to provide a position. It makes sense for un-sorted containers
such as std::vector, but for sorted containers such as std::set, we
end up choosing begin or end by default, which doesn’t make sense:

  std::vector<int> v = {1, 3, -4, 2, 7, 10, 8};
  std::set<int> results;
  std::copy(begin(v), end(v),
    std::inserter(results, end(results)));

sorted_inserter removes this constraint by making the position
optional. If no hint is passed, the container is left to determine the correct
position to insert:

  std::vector<int> v = {1, 3, -4, 2, 7, 10, 8};
  std::set<int> results;
  std::copy(begin(v), end(v),
    sorted_inserter(results));
  //results contains { -4, 1, 2, 3, 7, 8, 10 }

Read the full story about sorted_inserter on my blog [Boccara17c].

to_out_stream
to_out_stream takes an output stream and sends incoming to it:

  auto const input =
    std::vector<std::string>{"word1", "word2",
    "word3"};
  input >>= pipes::transform(toUpper)
        >>= pipes::to_out_stream(std::cout);
  // sends "WORD1WORD2WORD3" to the standard output

References
[Boccara] Jonathan Boccara, ‘Sets’, on https://github.com/joboccara/sets

[Boccara17a] Jonathan Boccara, ‘How to Use the STL With Legacy 
Output Collections’, published 24 November 2017, available at 
https://www.fluentcpp.com/2017/11/24/how-to-use-the-stl-in-
legacy-code/

[Boccara17b] Jonathan Boccara, ‘A smart iterator for aggregating new 
elements with existing ones in a map or a set’, published 21 March 
2017, available at https://www.fluentcpp.com/2017/03/21/smart-
iterator-aggregating-new-elements-existing-ones-map-set/

[Boccara17c] Jonathan Boccara, ‘A smart iterator for inserting into a 
sorted container in C++’, published 17 March 2017, available at 
https://www.fluentcpp.com/2017/03/17/smart-iterators-for-
inserting-into-sorted-container/
October 2019 | Overload | 19

https://github.com/joboccara/sets
https://www.fluentcpp.com/2017/11/24/how-to-use-the-stl-in-legacy-code/
https://www.fluentcpp.com/2017/03/21/smart-iterator-aggregating-new-elements-existing-ones-map-set/
https://www.fluentcpp.com/2017/03/21/smart-iterator-aggregating-new-elements-existing-ones-map-set/
https://www.fluentcpp.com/2017/03/17/smart-iterators-for-inserting-into-sorted-container/


FEATURE CHRIS OLDWOOD
Afterwood
People claim politics should not be discussed in polite circles. 
Chris Oldwood reconsiders.
20 | Overload | October 2019

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit 
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the 
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

Welcome, to the real world.
~ Morpheus (The Matrix)

henever I hear someone mention privileged people on TV it tends
to be in reference to some upper class twit that went to one of the
famous British public schools and has now found themselves in

a compromising situation. The term ‘privileged’ is almost always used as
a pejorative because it implies that the person has had access to the best
education and support that money can buy and yet they have still managed
to make a complete mess of things. Even if they haven’t done something
considered illegal, the chances are they’ve done something immoral or
unethical instead, probably using their privileged status to gain access to
the kinds of ‘services’ outside the reach of the general population either
due to its cost, or clandestine nature.

I never went to Eton or Harrow and don’t have a drop of royal blood in
me, so I definitely wouldn’t consider myself part of that kind of privileged
society. I’m perfectly happy to snigger at their hapless mistakes and frown
upon their illicit deeds as much as anyone else. But not that long ago I came
down to earth with somewhat of a bump when I discovered how incredibly
privileged I really am. I don’t mean I suddenly discovered I was a
hereditary peer or heir to a long lost rich relative, just that I realized the
term ‘privilege’, like so many things in life, actually forms a sliding scale.
It seems I haven’t really been paying attention to how it affects both me
and, more importantly, those I come into contact with directly, or even
indirectly, through the virtual medium of social networks, forums, etc.

My cosy bubble burst when a tweet from a rather well-known (and often
highly respected) member of the software engineering community got
injected into my feed, which stated that politics just weren’t that important.
This was at a time when there was an ongoing discussion about whether
it was desirable or not to keep politics out of a person’s timeline that was
normally reserved for more technical content. As someone who
sympathized with this separation to some degree (at the time) I was
somewhat intrigued to see the replies. One of the first in the thread
lambasted the original poster by stating that only someone in such a
privileged position as theirs could even afford to ignore politics.

And in that moment I started to comprehend where I too sat on the scale
and the wave of discomfort caused me to ponder what side-effects my
ambivalence might have had on others. In my naivety I would have liked
to believe that my decision to eschew politics in the workplace would
ensure my impartiality and therefore keep my life simple. After all, one
of the many reasons to become a freelancer in the first place and remain
a ‘lowly’ developer was to endeavour to remain near the bottom of the food
chain and free of organisational concerns. Instead I’m now becoming
uneasy that my choice of ignorance has in fact led me to become complicit,
to some degree, through inaction. To discover someone has suffered when
it might have been within my power to help is unsettling.

As a middle-aged, white, heterosexual, British male it appears to be
incredibly easy to remain oblivious to what is going on to many less

privileged souls, both in the workplace and in supposedly ‘social’ settings.
By unconsciously reinforcing the patriarchy through tending to follow the
overwhelmingly male technical leaders and ‘influencers’ you could easily
be forgiven for not seeing first-hand much of the direct (and indirect) abuse
and dismissive behaviour that so many other people inside (and outside)
our industry suffer from. Lest you think it’s implausible that someone can
remain in the dark for so long, the world of programming provides the
perfect escape, especially when one is lucky enough to get into it at an early
age through the privilege of a computer at home. With so much interesting
stuff to learn, it’s all too easy to prioritise one’s education efforts around
the latest tech stack instead of, say, reading The Psychology of Computer
Programming.

Hence, is it any wonder that we get seduced by the apparent logical ‘utopia’
of the Meritocracy when we strive for technical excellence to the detriment
of our other skills? I’ve undoubtedly been guilty of choosing the ‘best’
person for a job by focusing too heavily on technical merit which has
probably been reinforced by various biases that come from my own more
privileged background. For example, I know in the past I’ve looked far
more favourably on those candidates that have shown an interest in
programming outside their working life.

It was well over 10 years before I met my first female programmer; none
other than the editor of this very journal. Such was the status quo of
working in a male dominated industry that I completely failed to notice
the spelling of ‘Frances’ and incorrectly used the male spelling in our first
few email exchanges! I might have tried downplaying this kind of faux pas
in the past, as I would have other spelling mistakes, but I now see it as the
result of laziness on my part – the very least I can do is pay attention and
address someone correctly without making assumptions about their
gender. Details matter, especially when the repercussions reinforce such
an imbalance.

By making a special effort to listen to conference talks on diversity,
inclusion, mental health, etc. and through following other people that
freely mix their technical and personal experiences, I’m slowly turning
more of my unconscious incompetence into some form of competence.
The Geek Feminism Wiki [GeekFeminism] has been an excellent starting
point, especially the topics of micro-aggressions, silencing and derailment
which tend to be quite subtle in nature. Hopefully, along the way I’ll try
to balance out my technical and social skills somewhat more evenly so that
I can use my new found position of privilege to better effect. 

With thanks to Jez Higgins, a fellow middle-aged white dude.

Reference
[GeekFeminism] https://geekfeminism.wikia.org/wiki/

Geek_Feminism_Wiki

W

https://geekfeminism.wikia.org/wiki/Geek_Feminism_Wiki
https://geekfeminism.wikia.org/wiki/Geek_Feminism_Wiki




 
CODE
MAXIMIZED

Develop high performance parallel applications from 
enterprise to cloud, and HPC to AI using Intel® Parallel 
Studio XE. Deliver fast, scalable and reliable, parallel code.

  

#HighPerformance

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en. 

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others. 
© Intel Corporation

from
£510

 

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner

To find out more about Intel products please contact us:

020 8733 7101  |  sales@qbs.co.uk  |  www.qbssoftware.com/parallelstudio

QBS A4-Intel-PSXE-Code-Maximized.pdf   1   24/09/2018   17:31


	Predictions and Predilections
	Scenarios Using Custom DSLs
	OOP Is not Essential
	I Come Here Not to Bury Delphi, But to Praise It
	C++ Pipes
	Afterwood

