

Fast.
Reliable.
Responsive.
Since 1987, QBS Software have
been the link supporting
developers with the latest software.
We pride ourselves on having the
widest selection of developer tools
available from initial design to
testing, computer programming
ththrough to deployment.

Key partners include:

Plus many more on www.qbssoftware.com/Developer_Tools/ACCU

sales@qbs.co.uk020 8733 7100

For your latest software needs, contact our team on:

August 2019 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 A Low-Latency Logging Framework
Wesley Maness and Richard Reich demonstrate a
framework that avoids common problems.

9 Empty Scoped Enums as Strong Aliases for
Integral Types
Lukas Böger demonstrates the use of
scoped enums as strong types of numbers.

11 C++ Reflection for Python BInding
Russell Standish shows how Classdesc can be
used to generate Python bindings in C++.

19 Trip Report: Italian C++ 2019
Hans Vredeveld reports on Italy’s largest
C++ conference.

20Afterwood
Chris Oldwood reminds us that many people are
risk-averse.

OVERLOAD 152

August 2019

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 153 should be
submitted by 1st September 2019
and those for Overload 154 by
1st November 2019.

EDITORIAL FRANCES BUONTEMPO
Reactive or Proactive
Reactive systems are all the rage. Frances Buontempo
compares them with a proactive approach.
Having just moved house, I am writing this with a pen
on a bit of paper. My PC is not yet set up, and I broke
my desk, so have solid excuse for not writing an
editorial this time. Having ordered a new desk, we
noticed we have no door bell, so spent a day hovering
by the front door, keeping our eyes open for a delivery

van. In the end, it turned out that next day delivery meant the day after
the company were ready, not the day after the customer placed the order.
We ordered a door bell, which did turn up and I do now have a desk. Some
internet may follow shortly.

We discovered the temporary lack of doorbell could be worked round with
a note along with our mobile numbers explaining the predicament. A
genius idea that took a couple of days to think of. In order to communicate,
whether between people or computers, something like a doorbell or
understood protocol is required. If the doorbell rings, you know someone
is at the door. The cat thinks the world is about to end and he must run
somewhere, anywhere, away from the noise. The same message will be
handled differently, depending on the audience. The communication is the
bing-bong and the response is up to the listener.

Even a single machine, running a single multithreaded process or several
processes may need to communicate. For threaded code with shared
mutable state, synchronisation points are required. More like a door, or
gate, than a doorbell, to be honest; however, in order to deal with writers
writing when readers may be trying to read, action must be taken. Barriers
must be in place. Locks must be acquired. Deadlocks must be avoided. In
contrast to this seemingly old-school approach, various Reactive
frameworks are now taking hold. Our regular writer Sergey Ignatchenko
has also written about Actors on various occasions [Ignatchenko18]
[Ignatchenko16]. At a high level, this approach involves registering
observers for specific messages, for example a doorbell ringing. A
producer will announce its news, and any interested parties will act
accordingly; for example, the cat will leg it. You could argue the low-level
approach with locks and so on, is proactive, putting things in place in
advance to cover various eventualities, while Actors/Reactive is just that:
reactive. Code reacts when things happen, rather than setting things up to
stop things happening. Is one approach better than the other? It depends.

A surprising number of setups I have used make it hard to unsubscribe,
including an events/delegates methodology, emails, phone calls from my
network service provider insisting I need to buy a new tablet with SIM
card, and similar. Attempting to poll my emails from my phone, while

awaiting proper internet, makes me realise how
much nonsense I get. I am sure I had
previously attempted to unsubscribe from

many of them. A few are periodically

interesting, when I have time to look, but I don’t want to be cornered into
an immediate response, or get further emails reminding me I have an
email, and the offer ends at midnight. Which time zone? Or Google assist
reminding me about deadlines for conference submissions I don’t have
time to submit to. In fact, on many occasions an unsubscribe event
generates further emails, asking, “Are you sure?”, “We miss you already!”
I am sure you have similar experiences.

To be honest, unsubscribing from an event in .Net has proved difficult, at
least for me [Skeet15]. I’ve only recently tried using the .Net Reactive
framework [Github], so haven’t fully explored how it works yet. I may
find unsubscribing easier here once I’ve investigated more. Most of the
time, I tend to have a listener listening for the lifetime of the program, so
it doesn’t really matter. However, it is something that I expect to be
possible. I expect symmetry. What starts can stop. What subscribes can
unsubscribe. Each action has an equal and opposite reaction. However,
defining opposite and equal can be difficult [Love11]. Furthermore,
expectations tend to be based on experience.

Most of my experience does come from the more old-school ‘proactive’
approach. I wonder if people’s lives tend to fall into one of these two
camps. Some ‘fly by the seat of their pants’, as it were, not planning much
and managing to respond or react as things happen. Others might try to
plan an itinerary or todo list, and include backup plans for several
scenarios. When I behave like this, I can dream up worst case scenarios
better than most. It isn’t always helpful to spend so long plotting for every
‘What if’ you can think of. In code, as in life, it can come to the point where
simply reporting what happened and stopping is more sensible than trying
to dig your way out of a hole. You cannot handle every exceptional
circumstance [Sutter19].

Now, if you are trying to write robust software, you do want to throw every
scenario you can think of at the system. This can be in a logical, ordered
fashion, or via a formal proofs’ methodology, such as Z, for specification,
development and verification [Wikipedia-1]. It could also be powered by
a bit of randomness, such as fuzzers, property-based testing, mutation
testing or something akin to Netflix’s Chaos Monkey [Netflix]. Either
approach can flush out problems and increase confidence that the code
works as intended. Furthermore, seeing what happens if things go wrong
gives you practice operating the system you built. You can see if the logs
and error messages make any sense. You can try out turning everything
off and on again, and see if the order matters or not. You will discover
what happens if people disobey instructions, which is usually good to
know. This is exactly why larger offices have fire drills. Proactively
training participants, just in case, so people don’t respond in a panic if
something bad does happen. It is worth planning for some outcomes. It’s
worth discussing an escape plan if there’s a fire in your own home, but

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | August 2019

EDITORIALFRANCES BUONTEMPO
you might not need to practise fire drills every Wednesday morning. You
don’t need to plan every single thing in meticulous detail. Some things can
be figured out on the spot, and therefore spending time panicking about
unlikely outcomes is a waste of time, and can lead to some very unhealthy
states of mind. Some kind of sense is required. Be proactive, and organised,
to a point.

Perhaps something similar goes for project management. Certainly, a
waterfall approach compared to an agile approach might at first glance
seem to be proactive, detailed forward planning as opposed to a just-in-
time, reactive method. This is not entirely accurate. An agile method will
have some kind of backlog of work. Some forethought about things that
need to be done will happen. They may get fleshed out in more detail later
on, rather than up front, but it’s not all purely reactive. A just-in-time
Kanban [Wikipedia-2] scheme in a manufacturing setting will be more
reactive: when parts are needed the system reacts and orders them, instead
of planning at the start of a production run, and ordering everything up
front, thereby needing storage space for all the components ordered in
advance. Furthermore, a waterfall project will end up moving around
blocks of work on the Gantt chart or project plan, and everyone expects
this to happen. We used a Kanban board for our house move. It was useful
to have the TODO list in one place, and be able to find updates without
having to search through mountains of emails. We did end up with four
columns: to do, doing, done, can’t be bothered any more. Much more
sensible that some Kanban boards I’ve seen, that sprawl into something
more like a tree structure.

The trouble with planning things out in detail in advance is the unexpected
things that happen. Or don’t happen. If the builders need some scaffolding,
but the scaffolders forget to put it up on both sides of the house, delays
happen. The order in which work happens needs to be re-ordered. If the
completion date for the house buying ends up beyond the original estimate,
you might need to find a new removal firm who are free at the time. In
many ways, moving home is like project management. A mixture of
forward planning and being agile enough to react as things changed got us
through. Having packed important things in an overnight bag meant we
didn’t have to rake through boxes for coffee, wine or other important
elements. Reacting to the contents of the boxes as we opened them was
another matter. And that was ok. A note on each box in marker pen
indicating which room items had come from helped. Who knew we had
so many coats? Yes, we have lots of books and cables, but coats?!

This is all a matter of pipelining and logistics. The same is true for
communicating processes or threads. In fact, Communicating Sequential
Processes (CSP) offer an alternative, or at least different slant to Actors
and Reactive approaches. CSP is a formal language for describing patterns
of interaction in concurrent systems, according to Wikipedia
[Wikipedia-3]. CSP’s design suited the transputer, with its pipeline
processor. CSP allows modelling and analysis nearer formal proofs that
can find errors testing may miss. It is built from primitives, defined as
events and processes, and an algebra, think adding up – making new
primitives, choosing, interleaving and hiding (according to Wikipedia).
Now, some say [Vernon15] sequential processes will be a bottleneck, so
Actors are much better. Specifically, it says “Sequential processes can’t
create other sequential processes” (page 11), going on to suggest that
Actors are powerful than sequential approaches. However, the Wikipedia
article claims

the ‘Sequential’ part of the CSP name is now something of a
misnomer, since modern CSP allows component processes to be
defined both as sequential processes, and as the parallel
composition of more primitive processes

Now, CSP are similar to Actors but made “fundamentally different choices
with regard to the primitives they provide”:

 CSP processes are anonymous, while actors have identities.

 CSP uses explicit channels for message passing, whereas actor
systems transmit messages to named destination actors.

 CSP message-passing fundamentally involves a rendezvous
between the processes involved in sending and receiving the
message, while message-passing in actor systems is fundamentally
asynchronous.

Each approach has different pros and cons, but all deal with things
happening in an unknown order. Different languages may use different
words, for example ‘yield’ for coroutines in Python [Ramalho15], or
rendezvous in Ada [Miranda04]. In .Net, adding ‘async’ to circumspect
places in code moves from proactive to reactive. The original CSP paper
[Hoare78] talks about solving various problems including how to
communicate, how to synchronise, and how to choose between
synchronisation methods. How ever you approach code, or life, you will
need to communicate, meetup, and decide a suitable method for each. You
need to make a decision, and whatever you choose may work well some
of the time, and be more difficult other times. There is no One True Way.
Sometimes, proactive planning helps, but you need to be able to react on
the spot too. Sometimes a deadlock can be solved by a sleep. If anyone
wants to write up different ways of communicating or synchronising, do
get in touch. I suspect most of you have tried at least
one of the many approaches. Tell us about it.

References
[Github] Rx.Net: https://github.com/dotnet/reactive

[Hoare78] C.A.R. Hoare (1978) ‘Communicating Sequential Processes’
in Communications of the ACM 21:8 on pages 666– 677, available at
https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf

[Ignatchenko16] Sergey Ignatchenko ‘On Zero-Side-Effect Interactive
Programming, Actors, and FSMs’ Overload 131 pages 9–12,
February 2016, available at https://accu.org/index.php/journals/2199

[Ignatchenko18] Sergey Ignatchenko, Dmytro Ivanchykhin and Marcos
Bracco ‘(Re)Actor Allocation at 15 CPU Cycles’ Overload 146
pages 14–19, August 2018, available at https://accu.org/index.php/
journals/2533

[Love11] Steve Love and Roger Orr ‘Some Objects Are More Equal Than
Others’ Overload 103 pages 4–9, June 2011, available at
https://accu.org/index.php/journals/1971

[Miranda04] Javier Miranda and Edmond Schonberg (2004) ‘The
Rendezvous’ in GNAT: The GNU Ada Compiler, online at
https://www2.adacore.com/gap-static/GNAT_Book/html/
node22.htm

[Netflix] Chaos Monkey: https://netflix.github.io/chaosmonkey/

[Ramalho15] Luciano Ramalho (2015) Fluent Python: Clear, Conise and
Effective Programming published by O’Reilly, Aug 2015

[Skeet15] Jon Skeet ‘Clean Event Handler winvocation with C# 6’
https://codeblog.jonskeet.uk/2015/01/30/clean-event-handlers-
invocation-with-c-6/

[Sutter19] Herb Sutter ‘De-fragmenting C++: Making exceptions more
affordable and usable’ at ACCU19: https://www.youtube.com/
watch?v=os7cqJ5qlzo

[Vernon15] Vaughn Vernon (2015) Reactive Messaging Patterns with the
Actor Model: Applications and Integration in Scala and Akka
published by Addison-Wesley Professional, August 2015

[Wikipedia-1] ‘Formal methods’: https://en.wikipedia.org/wiki/
Formal_methods

[Wikipedia-2] ‘Kanban’: https://en.wikipedia.org/wiki/Kanban

[Wikipedia-3] ‘Communicating sequential processes’:
https://en.wikipedia.org/wiki/Communicating_sequential_processes
August 2019 | Overload | 3

Increase Zoom
https://www.cs.cmu.edu/~crary/819-f09/Hoare78.pdf
https://www2.adacore.com/gap-static/GNAT_Book/html/node22.htm
https://netflix.github.io/chaosmonkey/
https://codeblog.jonskeet.uk/2015/01/30/clean-event-handlers-invocation-with-c-6/
https://www.youtube.com/watch?v=os7cqJ5qlzo
https://www.youtube.com/watch?v=os7cqJ5qlzo
https://en.wikipedia.org/wiki/Formal_methods
https://en.wikipedia.org/wiki/Formal_methods
https://en.wikipedia.org/wiki/Kanban
https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://accu.org/index.php/journals/2533
https://accu.org/index.php/journals/2533
https://accu.org/index.php/journals/1971
https://accu.org/index.php/journals/2199

FEATURE WESLEY MANESS AND RICHARD REICH
A Low-Latency Logging
Framework
Logging can be a bottleneck in systems. Wesley Maness
and Richard Reich demonstrate a low-latency logging
framework that avoids common problems.
 If anybody wants to build highly scalable systems, I
recommend you study logging systems and then do completely
the opposite. You got some hope of making a scalable system

or high performance system at that stage.
Martin Thompson in Designing for Performance. [Thompson16]

ith that in mind we hope the idea proposed in this article is an
exception to Martin’s observation.

We wish to utilize some of our findings related to cache-line
awareness in a previous publication [Maness18] to solve a more practical
real world problem often encountered by many developers: a low latency
logging frame work (LLLF). What is an LLLF? One could ask five
software engineers and probably get ten different answers. The same
question about the concept of low latency can have numerous definitions
and ranges as well as acceptable deterministic behaviors. Before we get
into absolute measurements, we can instead focus on the basic concepts
of an LLLF. In general, an LLLF could be thought of as a framework that
allows you to capture a minimally complete set of information at run time
in a path of execution. This path of execution is often referred to as a hot
path or critical path. Ideally this path of execution has the properties of
being as fast as possible and deterministic. The goal of the critical path is
to execute business logic while at the same time capturing data about the
state of business logic at important points in the execution.

One of the more common building blocks for achieving concurrent
execution is a ring buffer. In our case, we are separating critical and non-
critical paths of execution. The ring-buffer is a general purpose tool, which
can be customized for many different use-cases. In this article, the use-case
will be the LLLF. We will pay special attention to the entry into the ring-
buffer, or the produce method; this is where the focus of our analysis will
take place as this could potentially be the major bottleneck in the
performance of the critical path. Delivering information from one thread
to another is one of the fundamental operations of concurrent execution.
Doing so with low latency, high determinism is paramount in an LLLF.
Later, in the code section of the paper, we provide a complete source code
listing of the ring buffer utilized in all analyses.

Once the state has been captured in the critical path of your process, it must
be efficiently stored in memory for another thread and/or process to
serialize the information to be archived. This could be in a human-readable
format or in binary (and another process could perform the binary to
human-readable conversion later). There are numerous ways in which
information is passed from the thread that is executing the fast path to a
secondary process and/or thread performing the serialized output as shown
in Figure 1. The critical path LLLF could write into shared memory,
memory, messaging infrastructure, or some shared queue. Once written to
the transport medium the LLLF in the critical path would then need to
notify or inform the secondary process to process the written information
and write to disk. The notification is often handled by the form of an atomic
increment, but there are other techniques to relay this information. The
process writing to disk could have a busy loop checking the atomic variable
and simply notices the value has increased and will process that
information from the transport medium and serialize to disk. These are the
basic building blocks of a LLLF.

Intel intrinsics [Intel] are used in this article as a way of executing Intel
specific instructions. The first _mm_prefetch is used to load the first part
of logging memory upon initialization and helps with performance at the
95th percentile and above. The second, _mm_clflush, is used at
initialization to push all the logging memory out of the cache hierarchy to
leave as much of the cache free as possible; this is a serializing instruction
and is well suited for initialization purposes. Lastly _mm_clflushopt is
used to clear populated cache lines when the consumer thread has
completed its usage of the cache lines.

Definitions
In this article, the parts in an LLLF that we want to address are cache-line
awareness, cache pollution and memory ordering. We will focus on
optimizing the critical path’s insertion of minimally complete information
into some shared queue, for generating a log of operations. We need to first
define some core concepts in our design and their potential impact on our
LLLF. Cache-line awareness was addressed in our first article [Maness18].

W

Figure 1

Wesley Maness has been programming C++ for over 15 years,
beginning with missile defense in Washington, D.C. and most
recently for various hedge funds in New York City. He has been a
member of the C++ Standards Committee and SG14 since 2015.
He enjoys golf, table tennis, and writing in his spare time and can
be reached at wesley.maness@gmail.com

Richard Reich has 25 years of experience in software engineering
ranging from digital image processing/image recognition in the 90s
to low latency protocol development over CAN bus in early 2000s.
Beginning in 2006, he entered the financial industry and since has
developed seven low latency trading platforms and related
systems. He can be reached at richard@rdrtech.com
4 | Overload | August 2019

FEATUREWESLEY MANESS AND RICHARD REICH

Both the critical path and the non-critical path
are generally spinning threads. Each thread is

pinned to a different core, and the cores do not
necessarily need to be on the same NUMA node
1. Cache pollution – Occupying space in the cache when not necessary.

 When accessing or creating data that will not be used in an
amount of time that it will reasonably exist in the cache. The
data is evicted due to other activity before it is accessed again.

 When accessing data that will not be accessed again, such as
data that has been sent over the network.

 When accessing large amounts of data that will only be used
once.

2. Memory ordering – Memory ordering is vital for the creation of
critical sections to ensure state is maintained between concurrent
threads. More information can be found in the reference here [CPP].

3. Explicit atomics – when using non-default memory ordering in C++
atomic operations, careful attention must be applied to their use.
However, in some cases, significant performance gains can be
realized.

4. CPU pipeline – The process of executing many instructions
independently of each other and discarding results that have
dependencies.

5. Structure.

In Figure 1, we illustrate a very common approach to logging in low
latency environments and it is the same approach we have taken for our
work in this article. Both the critical path and the non-critical path are
generally spinning threads. Each thread is pinned to a different core, and
the cores do not necessarily need to be on the same NUMA node. There
was no performance difference in the critical path if the logging thread was
on another NUMA node. The queue can exist in memory, shared memory
or perhaps NVDIMM.

The critical path is the path of execution that must carry out a series of well-
defined operations under very specific performance criteria. These metrics
are often measured in terms of latency or CPU cycles under various
percentiles. For example, you would want to know how many
microseconds it would take to execute a complete cycle in the critical path,
or some segment of the critical path, at the 99th percentile. This measured
time also includes the time it takes to place a work item onto the queue for
later consumption by the non-critical thread. The work item should be a
minimally complete set of information necessary to capture state at that
spot in the critical path.

The non-critical thread is spinning and once it can determine there is a work
item in the queue for consumption, it pops the work item off the queue,
does any mappings or lookups in needs to perform, translates the work item
into some human readable format and serializes to a destination, often to
disk based storage.

Code
Listing 1 takes the ring buffer as an argument and casts the data to the
payload type defined using the parameter pack type. This is not intended
for production use, but simply demonstrate functionality.

The snippet below shows a type that extracts underlying types from the
r-value. The NR in TupleNR means no reference.

 template <typename... T>
 using TupleNR_t = std::tuple
 <typename std::decay<T>::type...>;

Listing 2 is the structure that is created in the ring buffer. It contains the
function pointer to the method containing the parameter pack type. It is
aligned to the pointer size.

Listing 3 simply constructs the payload using placement new within the
ring buffer. It is worth pointing out that the code here will drop payloads
that are newest in the queue, not the oldest ones. We chose this approach
as it is often a requirement in financial systems to prioritize retaining older
log messages over newer ones. This is because of certain regional
regulatory requirements (although all should be captured and saved off).
We could construct a drop policy where we can specify which to drop,
older or newer payloads, and measure each policy’s impact on
performance (not shown here).

Listing 4 (on page 8) shows the ring buffer in its entirety.

Results
The graph shown in Figure 2 (on page 7) captures the number of cycles it
takes to push the number of arguments (each argument is an 8-byte integer)

Listing 1

using TimeStamp_t = uint64_t;

template <template<typename> typename A,
 typename... Args>
uint64_t writeLog (RingBuff& srb)
{
 using Payload_t = Payload<Args...>;
 A<Args...> arch;
 Payload_t *a =
 reinterpret_cast<Payload_t*>(
 srb.pickConsume(sizeof(Payload_t)));
 if (a == nullptr)
 return 0;
 // detect empty parameter pack
 if constexpr(sizeof...(Args) != 0)
 {
 arch.seralize(a->data);
 // properly deconstruct, may have
 // complex objects
 a->~Payload_t();
 memset((char*)a, 0, sizeof(Payload_t));
 srb.consume(sizeof(Payload_t));
 }
 return sizeof(Payload_t);
}

August 2019 | Overload | 5

FEATURE WESLEY MANESS AND RICHARD REICH

The critical path is the path of execution that must
carry out a series of well-defined operations under
very specific performance criteria
into the ring buffer for the percentiles shown for the G10 machine.
Specifications for the G10 are shown in the references section.

The graph in Figure 3 captures the number of cycles it takes to push the
number of arguments into the ring buffer for the percentiles shown for the
Linux laptop machine in the references section.

Clearly the benefits of a more modern architecture are shown. For
example, comparing G10 to the personal laptop at 99.99th percentile, the
number of cycles for 16 arguments was more than cut in half from 1132
to 576. Both systems are locked at 3GHz with CPU and IRQ isolation.

Conclusions/Summary
If you not have access to the CLFLUSHOPT [Intel19a] [Intel19b] calls,
please contact us so that we can provide an auxiliary path implementation
with compiler options, which we have not shown here.

Another point to make, that isn’t shown here, is that if we didn’t utilize
the CLFLUSHOPT calls to minimize the cache pollution, we observed (in
production code) much higher latencies, at 90th percentile and above. We
observed no noticeable improvements in latency due to CLFLUSHOPT in
micro benchmarking. It’s important to note also that due to the test

performances themselves, we noticed some numbers jumping around,
most attributed to pipelining and branch prediction.

There are several logging frameworks [GitHub-1] [GitHub-2] that are
open sourced and target the low latency crowd. We have decided not to
compare them in this paper, but instead reference the loggers here and
leave it as an exercise for the reader to do their own analysis and come to
their own conclusions.

Acknowledgments
Special thanks to Frances and the review board of ACCU Overload.

References
[CPP] ‘Memory model’ on cppreference.com:

https://en.cppreference.com/w/cpp/language/memory_model

[GitHub-1] ‘Super fast C++ logging library’, available at:
https://github.com/KjellKod/spdlog

[Github-2] ‘G3log’, available at: https://github.com/KjellKod/g3log

[Intel] Intel Intrinsics Guide at https://software.intel.com/sites/
landingpage/IntrinsicsGuide/

[Intel19a] Intel 64 and IA-32 Architectures Optimization Reference
Manual, published April 2019 by the Intel Corporation, available at:
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-
32-architectures-optimization-manual.pdf

Listing 2

template <typename... Args>
struct alignas(sizeof(void*)) Payload
{
 using Func_t = uint64_t (*)(RingBuff&);
 Payload(Func_t f, Args&&... args)
 : func_(f)
 , data(args...)
 {
 // all of this washes away at compile time.
 auto triv_obj = [](auto a)
 {
 static_assert(
 std::is_trivially_default_constructible
 <decltype(a)>::value,
 "Trivial Default Ctor required");
 static_assert(
 std::is_trivially_constructible
 <decltype(a)>::value,
 "Trivial Ctor required");
 static_assert(std::is_trivially_destructible
 <decltype(a)>::value,
 "Trivial Dtor required");
 };
 std::apply([triv_obj](auto&&... a)
 {((triv_obj(a), ...));}, data);
 }
 Func_t func_;
 TupleNR_t<Args...> data;
};

Listing 3

template <typename... Args>
uint64_t userLog (Args&&... args)
{
 auto timeStamp = __rdtsc();
 using Payload_t = Payload<TimeStamp_t, Args...>;
 char* mem = data.pickProduce(sizeof(Payload_t));
 if (mem == nullptr)
 {
 ++logMiss_;
 return 0;
 }
 // The beauty of placement new!
 // A simple structure is created and memory is
 // reused as ring buffer progresses
 [[maybe_unused]]Payload_t* a = new(mem)
 Payload_t(
 writeLog<TimeStamp_t, Args...>
 , std::forward<TimeStamp_t>(timeStamp)
 , std::forward<Args>(args)...);
 data.produce(sizeof(Payload_t));
 // Consider RIAA
 data.cleanUpProduce();
 return timeStamp;
}

6 | Overload | August 2019

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://github.com/KjellKod/g3log
https://github.com/KjellKod/spdlog
https://en.cppreference.com/w/cpp/language/memory_model

August 2019 | Overload | 7

FEATUREWESLEY MANESS AND RICHARD REICH

Figure 2

Figure 3

FEATURE WESLEY MANESS AND RICHARD REICH
[Intel19b] Intel 64 and IA-32 Architectures Software Developer’s
Manual, published May 2019 by Intel Corporation, available at:
https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf

[Maness18] Wesley Maness and Richard Reich (2018) ‘Cache-Line
Aware Data Structures’ in Overload 146, published August 2018,
available at: https://accu.org/index.php/journals/2535

[Thompson16] Martin Thompson (2016) ‘Designing for Performance’
from the Devoxx conference, published to YouTube on 10 November
2016: https://youtu.be/03GsLxVdVzU

G10 specifications
https://h20195.www2.hpe.com/v2/getpdf.aspx/a00008180ENUS.pdf

GCC 7.1. was used on the G10 with the flags std+c++17 -Wall -O3. Dual
socket 18 core (36 total) Intel ® Gold 6154 CPU @ 3GH. Hyper-threading
was not enabled. CPU isolation is in place.

Laptop specifications
Gentoo with GCC 8.2

Linux localhost 4.19.27-gentoo-r1 #1 SMP Tue Mar 19 10:23:15 -00 2019
x86_64 Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz GenuineIntel
GNU/Linux

Listing 4 (cont’d)

 // eject log memory from cache
 for (int i = 0;
 i <ringBuffSize_+ringBuffOverflow_;
 i+= cacheLine)
 _mm_clflush(ringBuff_+i);
 // load first 100 cache lines into memory
 for (int i = 0; i < 100; ++i)
 _mm_prefetch(ringBuff_ + (i*cacheLine),
 _MM_HINT_T0);
 }
 ~RingBuff()
 {
 }
 int32_t getHead(int32_t diff = 0)
 { return (head_+diff) & ringBuffMask_; }
 int32_t getTail(int32_t diff = 0)
 { return (tail_+diff) & ringBuffMask_; }
 char* pickProduce (int32_t sz = 0)
 {
 auto ft = atomicTail_.load(
 std::memory_order_acquire);
 return (head_ - ft > ringBuffSize_ -
 (128+sz)) ? nullptr :
 ringBuff_ + getHead();
 }
 char* pickConsume (int32_t sz = 0)
 {
 auto fh = atomicHead_.load(
 std::memory_order_acquire);
 return fh - (tail_+sz) < 1 ? nullptr :
 ringBuff_ + getTail();
 }
 void produce (uint32_t sz) { head_ += sz; }
 void consume (uint32_t sz) { tail_ += sz; }

 uint32_t clfuCount{0};
 void cleanUp(int32_t& last, int32_t offset)
 {
 auto lDiff = last - (last & cacheLineMask);
 auto cDiff = offset -
 (offset & cacheLineMask);
 while (cDiff > lDiff)
 {
 _mm_clflushopt(ringBuff_ +
 (lDiff & ringBuffMask_));
 lDiff += cacheLine;
 last = lDiff;
 ++clfuCount;
 }
 }
 void cleanUpConsume()
 {
 cleanUp(lastFlushedTail_, tail_);
 atomicTail_.store(tail_,
 std::memory_order_release);
 }
 void cleanUpProduce()
 {
 cleanUp(lastFlushedHead_, head_);
 // signifigant improvement to fat tails
 _mm_prefetch(ringBuff_ +
 getHead(cacheLine*12), _MM_HINT_T0);

 atomicHead_.store(head_,
 std::memory_order_release);
 }
 char* get() { return ringBuff_; }
};

Listing 4

#pragma once
#include <iostream>
#include <atomic>
#include <emmintrin.h>
#include <immintrin.h>
#include <x86intrin.h>
constexpr uint64_t cacheLine = 64;
constexpr uint64_t cacheLineMask = 63;

class RingBuff
{
 public:
 using RingBuff_t = std::unique_ptr<char[]>;
 private:
 const int32_t ringBuffSize_{0};
 const int32_t ringBuffMask_{0};
 const int32_t ringBuffOverflow_{1024};
 RingBuff_t ringBuff0_;
 char* const ringBuff_;
 std::atomic<int32_t> atomicHead_{0};
 int32_t head_{0};
 int32_t lastFlushedHead_{0};
 std::atomic<int32_t> atomicTail_{0};
 int32_t tail_{0};
 int32_t lastFlushedTail_{0};
 public:
 RingBuff() : RingBuff(1024) {}
 RingBuff(uint32_t sz)
 : ringBuffSize_(sz)
 , ringBuffMask_(ringBuffSize_-1)
 , ringBuff0_(new
 char[ringBuffSize_+ringBuffOverflow_])
 , ringBuff_{(char*)(((intptr_t)
 (ringBuff0_.get()) + cacheLineMask) &
 ~(cacheLineMask))}
 {
 for (int i = 0;
 i < ringBuffSize_+ringBuffOverflow_;
 ++i)
 memset(ringBuff_, 0,
 ringBuffSize_+ringBuffOverflow_);
8 | Overload | August 2019

https://youtu.be/03GsLxVdVzU
https://accu.org/index.php/journals/2535
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://h20195.www2.hpe.com/v2/getpdf.aspx/a00008180ENUS.pdf

FEATURELUKAS BÖGER
Empty Scoped Enums as Strong
Aliases for Integral Types
Scoped enums have many advantages. Lukas Böger
demonstrates their use as strong types of numbers.
coped enumerations were one of the easy-to-grasp C++11 features
that quickly spread and became the intended, superior alternative to
their unscoped siblings. Local enumerator scope and forward

declarations reduce namespace pollution and compilation dependencies,
while prohibited implicit conversions to integral types promote type safety.

 enum class Season {winter, spring, summer,
 autumn};

 Season s1 = Season::spring; // Ok

 // Error, no conversion to int:
 int s2 = Season::summer;
 // Error, must be Season::summer:
 Season s3 = summer;

As with unscoped enums, it is possible to create an enumerator object from
objects of its underlying type. In C++14, this is the way to go:

 auto s4 = Season(1);
 auto s5 = static_cast<Season>(2);

Both versions are equivalent; an explicit type conversion on the right hand
side (functional notation and cast expression) is used for copy initializing s4
and s5. The necessity to detour via copy initialization seems clumsy though,
the static_cast version even looks like someone forced the compiler to
perform a dubious conversion without warnings. Thanks to P0138 [Reis16],
C++17 mitigates this scenario by allowing for direct list initialization of
scoped enums (braces mandatory, no narrowing conversions).

 Season s6{1};

But why even try to construct an enumeration from a literal? Does such
an initialization not defeat the whole purpose of an enum, i.e., accessing
a set of constants via comprehensible names instead of magic numbers?
This concern is justified, and auto s = Season::spring should
indeed be the preferable way to initialize the above enumerator. But recall
that enumerations without any explicit enumerator are valid, too, and then,
there is no comprehensible name at hand. Empty scoped enumerations can
be extraordinarily useful as strong type aliases for integral types, and the
new list initialization adds the missing piece for their mainstream usage
as such. But let’s first cover some ground.

What is a strong type alias and what
problem does it solve?
Type aliases in C++ (via the typedef or using keyword) introduce new
type names, but not new types. They are transparent: various type aliases
referring to the same underlying type can be interchanged without errors
or even warnings.

 using InventoryId = int;
 using RoomNumber = int;

 void store(InventoryId what, RoomNumber where);

 // Ok, nothing but ints (bad!):
 store(RoomNumber{2}, InventoryId{10});

Strengthening the restrictions on a type alias with respect to substitutability
and computational base (its associated functionality) renders it a strong
type alias or a strong typedef. This requires a distinct type and is used to
enforce semantics at compile time and to improve the expressiveness of
function parameters. Assuming a StrongTypeDef template at hand, the
above example could be written as

 // Use a tag type as 2nd template parameter to
 // create unique types:
 using InventoryId = StrongTypeDef<int,
 struct InventoryIdTag>;
 using RoomNumber = StrongTypeDef<int,
 struct RoomNumberTag>;

 void store(InventoryId what, RoomNumber where);

 // Error, types don't match (good!):
 store(RoomNumber{2}, InventoryId{10});

References to such techniques are numerous, see e.g. Matthew Wilson’s
early outline and example implementation [Wilson03], Scott Meyer’s
‘Make interfaces easy to use correctly and hard to use incorrectly’ in
Effective C++ [Meyers05] or Ben Deane’s talk ‘Using Types Effectively’
[Deane16]. Exemplary implementations for internal purposes can be found
in the Boost Serialization library [Ramey], Llvm [Lattner04] or Chromium
[Chromium], while distinct libraries with strong type templates are e.g.
type_safe [Müller] and Named Type [Boccara].

What is the design space of strong type aliases?
The smallest and most restrictive set of operations is explicit construction
from the underlying type and explicit conversion to it. The other extreme
is a mirror of the complete computational base of the wrapped type (in case
of an int, this includes bitshifting, modulo operators and so on). Most
approaches are somewhere in the middle. Their design requires answers
to the following questions.

 Type safety and constructability: allow implicit conversions from or
to the underlying type (both doesn’t make any sense)? Provide a
default constructor?

 Uniqueness upon reuse: create a new type by an additional tag type
template parameter or wrap the strong typedef definition into a
macro?

 Comparison and arithmetic operators: when wrapping types that
support those, mirror a subset? When construction is explicit, should
binary functions be duplicated for one parameter of the underlying
type?

S

Lukas Böger is a civil engineer who stuck with Fortran77 during
his PhD program and started a C++ side project to alleviate his
frustration. This worked out, and he now develops power
electronics simulation software for Plexim, Zürich. He likes reading,
brass music, Newton mechanics and his family. Reach him via
mail@lboeger.de.
August 2019 | Overload | 9

FEATURE LUKAS BÖGER

The smallest and most restrictive set of
operations is explicit construction from the
underlying type and explicit conversion to it
 Hashing, serialization, parsing: support insertion into
std::unordered_set/map? Offer operator<< and/or
operator>> for standard library streams? Support the upcoming
fmt library?

Finding agreeable answers for these questions is hard. An attempt to
standardize ‘Opaque Typedefs’ as first-class C++ citizens could not
succeed, see N3741 [Brown18], and hence, when a strong typedef is
needed, we must choose a library solution or ship our own – except when
the wrapped type is an integral one.

How do empty scoped enumerators fit in?
Let’s clearly state that once again: scoped enumerators are restricted with
respect to the wrapped type: it must be an integral type (bool, int,
unsigned short, etc.). When a double or a std::string are
involved, you are out of luck. But it turns out that integral types are the
most commonly used ones; a quick-and-dirty regex scan of the Chromium
sources showed that around half of all strong types wrap integral values.
This is what the above example looks like with an empty enumeration:

 enum class InventoryId {};
 enum class RoomNumber {};

 void store(InventoryId what, RoomNumber where);

 // Error, types don't match (good!):
 store(RoomNumber{2}, InventoryId{10});

Scoped enumerators must be explicitly constructed. Narrowing
conversions during construction are invalid (which cannot even be
enforced with a generic library type), default construction is allowed and
yields zero or false. Retrieval of the underlying type requires a cast
(functional, C-style or static_cast), so no laziness here. By default,
the underlying type of a scoped enumeration is int, but this can be
adjusted. Every definition creates a completely new type, but their
definition is trivial – this is a clean, built-in solution, requiring neither a
macro nor an additional tag type. Objects of one type are totally ordered
through the usual comparison operators, and std::hash works out of the
box. Standard arithmetic or IO operations are not supported. Manually
adding them as needed is straightforward, though admittedly, with many
such enumerators, you will either end up polluting some namespace with
greedy operator templates or go with a macro to not repeatedly implement
the same functions for different types1.

So when am I supposed to use empty scoped
enumerations?
Every time a strong integral type seems handy for a function signature, an
API, a vocabulary type in your project – empty scoped enums should be
your first consideration. These types are dead simple, they are as efficient
as expressive and require no external dependency. C++17 makes them
easy to instantiate, there is no burden left that keeps you from leveraging
their strengths. Just keep that in mind for the next time you write an
interface that uses integral parameters!

References
[Boccara] Jonathan Boccara et al., Named Type, a header-only library for

strong types. On GitHub at https://github.com/joboccara/
NamedType/blob/master/named_type_impl.hpp

[Brown18] Walter Brown (2018) ‘Toward Opaque Typedefs for C++1Y’,
v2 ISO/IEC JTC1/SC22/WG21 document N3741, 2018-08-30.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/
n3741.pdf

[Chromium] Chromium Project, sources as retrieved in June 2019 from
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/
master/base/util/type_safety/strong_alias.h

[Deane16] Ben Deane (2016) ‘Using Types Effectively’ from CppCon
2016, available at https://www.youtube.com/watch?v=ojZbFIQSdl8

[Lattner04] Chris Lattner and Vikram Adve (2004) ‘Llvm: A Compilation
Framework for Lifelong Program Analysis and Transformation’ in
Proc. of the 2004 International Symposium on Code Generation and
Optimization, Palo Alto, California, 2004. The implementation on
GitHub is available: https://github.com/llvm/llvm-project/blob/
master/llvm/include/llvm/Support/YAMLTraits.h

[Meyers05] Scott Meyers (2005) Effective C++: 55 Specific Ways to
Improve Your Programs and Designs, 3rd. edition, Addison-Wesley.

[Müller] Jonathan Müller et al., type_safe: Zero overhead utilities for
preventing bugs at compile time. The implementation on GitHub is
available: https://github.com/foonathan/type_safe/blob/master/
include/type_safe/strong_typedef.hpp

[Ramey] Robert Ramey et al., Boost Serialization Library, Version 1.70.
BOOST_STRONG_TYPEDEF (documentation) available at
https://www.boost.org/doc/libs/1_70_0/libs/serialization/doc/
strong_typedef.html

[Reis16] Gabriel Dos Reis, Construction Rules for enum class Values’,
ISO/IEC JTC1/SC22/WG21 document P0138, 2016-03-04.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/
p0138r2.pdf

[Wilson03] Matthew Wilson (2003) ‘True typedefs’ in Dr. Dobb’s
Journal, dated 01 March 2003. Available at:
http://www.drdobbs.com/true-typedefs/184401633

1. Strong type alias templates scale better here, as they provide operators
through the Barton-Nackmann trick. This can get out of hand, though;
ambitious solutions risk duplicating the Boost Operator Library.
10 | Overload | August 2019

https://github.com/joboccara/NamedType/blob/master/named_type_impl.hpp
https://github.com/joboccara/NamedType/blob/master/named_type_impl.hpp
http://www.drdobbs.com/true-typedefs/184401633
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0138r2.pdf
https://www.boost.org/doc/libs/1_70_0/libs/serialization/doc/strong_typedef.html
https://github.com/foonathan/type_safe/blob/master/include/type_safe/strong_typedef.hpp
https://github.com/foonathan/type_safe/blob/master/include/type_safe/strong_typedef.hpp
https://github.com/llvm/llvm-project/blob/master/llvm/include/llvm/Support/YAMLTraits.h
https://github.com/llvm/llvm-project/blob/master/llvm/include/llvm/Support/YAMLTraits.h
https://www.youtube.com/watch?v=ojZbFIQSdl8
https://chromium.googlesource.com/chromium/src.git/+/refs/heads/master/base/util/type_safety/strong_alias.h
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3741.pdf

FEATURERUSSELL STANDISH
C++ Reflection for
Python Binding
There are various approaches to generating
Python bindings in C++. Russell Standish shows
how Classdesc can be used to achieve this.
ince 2000, Classdesc has provided reflection capability for C++
objects, with no dependencies other than the standard C++ library.
Typical applications include serialisation of objects to a variety of

different stream formats, and language bindings to non-C++ languages.
With the increased popularity of Python, this work looks at automatically
providing Python bindings to C++ objects using the Classdesc system.

Introduction
Classdesc is a mature C++ reflection system with nearly two decades of
continuous development [Madina01], [Standish16]. It has often been used
to implement automatic serialisation of objects, but also for the automatic
creation of language bindings, in particular for Objective C [Leow03]
(largely obsoleted by the Objective C++ language), TCL [Standish03] and
Java, leveraging the JNI API [Liang99].

At its core, Classdesc is a C++ preprocessor that reads C++ header files
and generates overloaded functions that recursively call themselves on
members of the class. The collection of overloaded functions is called a
descriptor. More details can be found in [Standish16].

With the recent popularity of Python as a scripting language, and also this
author’s adoption of Python as a general purpose scripting language, this
work seeks to apply Classdesc to the problem of automatically generating
Python language bindings for C++ objects.

The CPython implementation supplies a C language API [Rossum02]
which is quite low level. The Boost library provides a much higher level
API over the top of the C API [Abrahams03], more closely suited to
reflecting C++ objects into Python objects, providing a much appreciated
leg up for creating a Python binding descriptor.

Background

Boost Python
The ever popular Boost library contains a C++ abstraction layer over the
top of Python’s C API [Abrahams03]. This provides a mapping between
C++ objects and equivalent Python objects. Since C++ does not provide
native reflection capability, a programmer using Boost.Python must
explicitly code bindings for methods and attributes to be exposed to
Python. This is made as simple as possible, using C++ templates, but still
involves quite a bit of boilerplate code on behalf of the user, with the
concommitent maintenance overhead as class definitions evolve during
software development. This work seeks to extend the Classdesc library to
automatically provide these bindings from the Classdesc processor. In this
section I summarise the features of Boost.Python used for the Classdesc
Python descriptor.

 Exposing C++ classes to Python

To start defining a Python class, the programmer needs to instantiate
an object of the type class_<T>, where T is the C++ class type
being exposed, and the single string argument is used to give the
Python type name. By default, T is assumed to be default
constructible and copyable. If either one of these assumptions is not

true, then the boost::python::no_init object or the
boost::noncopyable type must be passed to the class_
constructor as appropriate. No particular reason is given why it is an
object in one case, and a type in the other. In this Classdesc library,
we use standard C++ type traits to pass these additional arguments
to Boost.Python, according to the type T being processed. This will
be discussed in more detail in ‘Default and Copy constructibility’ on
page 15.

 Exposing methods

With the previously defined class object, you can expose methods
with the def method, for example:

 class<Foo>("Foo").
 def("bar", &Foo::bar).
 def("foobar", &Foo::foobar);

The def method (as well as the equivalent attribute methods)
returns a reference to this, so that the calls can be chained as
shown above.

It should be noted that by default, the exposed methods return a copy
of the returned object. This is not always what you want –
particularly if the method returns a reference to an internally
contained object, such as the indexing method of a vector or map. In
such a case, you would want to be able to call mutating method or
set attributes of the returned object, not a copy.

Boost.Python does provide a method for manually specifying return
by reference, but this requires additional manual specification by
means of passing an additional argument of type
boost::python::return_internal_reference<> to def.
In this Classdesc library, we use C++-11 metaprogramming
techniques to distinguish methods returning a reference, and those
returning a value, and supply the extra Boost.Python specification
automatically. This will be described in more detail in ‘Reference
returning methods’ on page 14.

 Overloaded methods

Boost.Python does support overloaded methods. In order for this to
work, you need to specify the functional signature for the method
pointer, eg:

 void (Foo::*bar0)()=&Foo::bar;
 void (Foo::*bar1)(int)=&Foo::bar;
 class_<Foo>("Foo").
 def("bar",bar0).
 def("bar",bar1);

S

Russell Standish gained a PhD in Theoretical Physics, and has
had a long career in computational science and high performance
computing. Currently, he operates a consultancy specialising in
computational science and HPC, with a range of clients from
academia and the private sector. Russell can be contacted at
hpcoder@hpcoders.com.au
August 2019 | Overload | 11

FEATURE RUSSELL STANDISH

Surprisingly, Boost.Python does not
provide any way of exposing global
variables to the module namespace
will expose the overloaded bar method to Python. In this work, the
Classdesc processor, which hitherto ignored overloaded methods, is
extended to provide these functional signatures in order to support
overloaded methods. This is described in more detail in ‘Handling
overloaded methods’ on page 13.

 Exposing attributes

Similar to exposing methods, attributes are exposed using the specific
boost::python::class_<T> methods def_readwrite and
def_readonly. Similar to the case with return reference values,
we use metaprogramming techniques to automatically distinguish
between const attributes and mutable ones. Details can be found in
‘Reference returning methods’ on page 14.

 Global functions

Global or namespace scope functions can be exposed to the python
module namespace via a global def function.

 Global variables

Surprisingly, Boost.Python does not provide any way of exposing
global variables to the module namespace. In the Classdesc Python
descriptor, a method python_t::addObject is provided that
explicitly adds a reference to the global object to the __dict__ of
the namespace C++ objects are being added to. More details to come
in ‘Global objects’ on page 15.

 Python object wrappers

Boost.Python provides the boost::python::object class,
which wraps the Py_Object type from the C API. There is an
boost::python::extract<T>() template which attempts to
downcast the object to a C++ object of type T, rather analogous to
C++’s dynamic_cast operator. An exception is thrown (which is
automatically converted to a Python exception if propagated into
python) if the object doesn’t refer to the named type T. Various C++
wrapper types are provided to represent native Python types such as
tuple, list and dict, each of which support the usual Python
operations such as a [] operation or len function, using C++
operator overloading where necessary.

Classdesc
Classdesc is a C++ processor that parses user defined types (classes,
structs, unions and enums), and emits definitions of descriptors, which are
overloaded functional templates that recursively call the descriptors on the
members of the structured type. For enums, a table of symbolic name
strings to enum label values is constructed. A hand written descriptor needs
to be provided for dependent library types for which you don’t want to run
Classdesc on. Classdesc provides implementations of these for most of the
base language and standard library types.

In earlier versions of Classdesc, descriptors were quite literally overloaded
global functions. However because functions do not support partial
specialisation, and the difficulty in generating templated friend statements
for functions, in more recent versions of Classdesc, descriptors are
templated functor objects. A global template function is provided to

instantiate and call into the functor objects. In the explanation that follows,
the function form of the descriptor will be used, as conceptually that is
easier to understand.

Classdesc has been in active development since 2000 [Madina01],
[Standish16].

Extending the Classdesc processor

Modification of Classdesc to emit descriptors for unbound
member pointers
Traditionally, Classdesc’s descriptors work by being passed an instance
of an object, and the automatically generated descriptors recursively call
that descriptor on references to the members of that instance object.
Boost.Python, however is oriented around defining class objects,
registering C++ member pointers for the attributes and methods of the
class. This allows Python to potentially control the lifetime of C++ objects,
for example to create temporary copies for value returning methods.

So fairly early on, it became clear that Classdesc needed to be extended to
define descriptors for classes, rather than instance objects. So the
traditional Classdesc descriptor

 template <class T> void python(python_t&,
 const string&,T& obj);

needs to be augmented with an additional form:

 template <class T> void python(python_t&,
 const string&);

The former descriptor is used like:

 Foo f;
 python_t p;
 python(p,"f",f);

The latter form requires the explicit specification of the class:

 python_t p;
 python<Foo>(p,"");

In the traditional mode, the Classdesc processor emits definitions of the
form:

 void python(python_t& p, const string& d, Foo& a)
 {
 python(p,d+".bar",a.bar);
 python(p,d+".method1",a,&Foo::method1);
 }

we need definitions that do not pass an instance object:

 template <class C=Foo>
 void python<C,Foo>(python_t& p, const string& d)
 {
 python_type<C,Foo>(p,d+".bar",&Foo::bar);
 python_type<C,Foo>(p,d+".method1",
 &Foo::method1);
 }
12 | Overload | August 2019

FEATURERUSSELL STANDISH

it was decided for consistency to change the
form of instance descriptors for object attributes

to pass both object and member pointer
where python_type is a type descriptor, as opposed to the traditional
instance object descriptor. The reason why two type arguments are
required in the template arguments is to handle inheritance. If Bar is
derived from Foo, then we would see

 template <> void python<Bar,Bar>(python_t& p,
 const string& d)
 {
 python<Bar,Foo>(p,d); // process base class
 ...
 }

As part of the process of adding support for type descriptors, it was decided
for consistency to change the form of instance descriptors for object
attributes to pass both object and member pointer, just like how method
pointers are handled. This mode is enabled by the Classdesc processor
switch -use_mbr_ptrs, and this will become the default way things are
done in the next major version (4.x) of Classdesc. Support for the old way
o f d o i ng th i n gs i s en a b l e d w i t h a m a c r o
CLASSDESC_USE_OLDSTYLE_MEMBER_OBJECTS defined in the
use_mbr_pointers.h header file. So

 CLASSDESC_USE_OLDSTYLE_MEMBER_OBJECTS(pack)

creates a descriptor overload that binds the member pointer to the object,
and calls the traditional overload:

 template <class C, class M>
 void pack(pack_t& p, const string& d, C& o, M y)
 {pack(p,d,o.*y);}

Handling overloaded methods
Given:

 void (Foo::*bar0)()=&Foo::bar;
 void (Foo::*bar1)(int x)=&Foo::bar;
 python(py,"bar",bar0);
 python(py,"bar",bar1);

the first descriptor is called on argumentless method and the second on the
single integer argument one.

Method overloading support was added to Classdesc by modifying the
processor to emit these function signature qualified method pointers,
instead of the inline ‘address of’ traditionally used. This required parsing
the method declaration lines to extract the return type, the method name,
the method arguments and the method type. For example:

 virtual const Bar& foo(const FooBar& x={}) const;

In this example, the return type is const Bar&, the method name foo,
the argument list const FooBar& x and the type const. Some support
for extracting this information had been added to Classdesc for the
Objective C work [Leow03]; however, that was deficient in a number of
ways. In particular keywords like virtual, inline, static and
override need to be filtered out. So the member name is immediately
recognisable as the token prior to the first parenthesis, however we must
take all tokens preceding the member name (minus those keywords) as the
return type. Similarly for the argument list, we must strip out all initialisers

present. We can leave the argument name in place (if present), which is
fortunate, as we cannot assume the last token of an argument is a name,
and not part of the type. Finally, the type is important, as the emitted
declaration must vary accordingly:

The constructor case will be discussed in ‘Constructors’, below.

Overloading support is enabled by the -overload command line switch.
It is not enabled by default (nor will it be in Classdesc 4.x) because
Classdesc is not aware of the full context of the class it is processing. Type
Bar may be declared in the current namespace, but in a different header
file to what Classdesc is processing, it may come into scope by inheritance.
In which case, the type name will not be in scope at the site of the descriptor
declaration. Classdesc tries to import symbols it knows about – so publicly
defined types of the current class are explicitly imported, as are types
defined in the enclosing namespace the class is defined in. However, there
will always be situations it cannot work out where a type is defined, and
so a compilation error will ensue. The answer is that you need to explicitly
qua l i fy t he se t ypes such t ha t t hey ca n b e found i n t he
classdesc_access namespace – for example you may need to change
the above declaration to

 virtual const FooBase::Bar&
 foo(const FooBar& x={}) const;

in the case where Bar is defined in the base class FooBase.

Of course, if the descriptor ignores methods (eg any of the serialisation
descriptors), then it is not necessary to enable overloading, eliminating this
problem.

At the time of writing no effort is made to parse default arguments. If you
wish to emulate default arguments in the Python interface, then you will
need to provide explicit method overloads. This may change in the future.

Constructors
Traditionally, all constructors were ignored by Classdesc, as it is
impossible to obtain a method pointer to a constructor. But it is such a
powerful feature to be able to construct a C++ object by whatever
constructors it provides (and to construct objects that have no default
constructor), that this work added the ability to expose constructors. We
use the code for parsing method signatures, and declare a temporary
function pointer with the same arguments as the constructor, initialised to
NULL.

type declaration

none const Bar& (Foo::*m)(const FooBar&
x)=&Foo::foo;

const const Bar& (Foo::*m)(const FooBar&
x)const=&Foo::foo;

static const Bar& (*m)(const FooBar&
x)=&Foo::foo;

constructor void (*m)(const FooBar& x)=0;
August 2019 | Overload | 13

FEATURE RUSSELL STANDISH

we use the Classdesc-provided logical
metaprogramming operations for combining
different type traits
When passed to the python descriptor, we need to extract the types of each
argument and construct a boost::python::init<> specialisation
with those argument types. Instantiating an object of this type and passing
it to def() is all that is required to expose the constructor to Python.

Metaprogramming is used for this purpose, leveraging the
classdesc::functional metaprogramming library and modern C++
variadic templates. The code implementing this is in Listing 1.

The idea is that M is the type of the function pointer passed to the descriptor,
and the second argument being the number of arguments to process,
initialised by default template argument set to the function’s arity. This
value is decremented as the arguments are unpacked into the variadic type
argument pack A..., and when finally reaching 0, defines the output type
to boost::python::init<A...>.

This technique does require a helper template class to carry the argument
pack – in this instance called InitArgs. An initial attempt at repurposing
boost::python::init failed because that class carried too much
baggage.

The python descriptor

Reference returning methods
As mentioned in ‘Boost Python’ on page 11, Boost.Python wrapped
methods return a copy of the returned object, even if the method returns a
reference to an object intended for mutating the object state. Boost.Python
provides an alternate version of def that handles this case using the
following syntax:

 class_<Foo>.def("bar",&Foo::bar,
 return_internal_reference<>());

In order to emit this alternative syntax, we use the std type_traits library,
the enable_if metaprogramming trick (Classdesc provides its own
implementation of this, modelled on the version supplied as part of the
Boost metaprogramming library) and the Classdesc functional library,
which provides metaprogramming templates returning a function object’s
arity, its return value and the types of all its arguments. So we see code
like that in Listing 2.

Here we use the Classdesc-provided logical metaprogramming operations
for combining different type traits, as you can see in the default def case,
where we want to exclude both reference and pointer returning methods
from being exposed via a copied return object.

The third case corresponds to pointer returning methods. Because
ownership of pointees may or may not be passed with the pointer being
returned, calling these functions from python potentially creates a memory

Listing 1

template <class M,
 int N=functional::Arity<M>::value> struct Init;
template <class... A> struct InitArgs;
template <class A, class... B>
struct InitArgs<InitArgs<B...>, A>:
 public InitArgs<B...,A> {};

template <class M, int N, class... A>
struct InitArgs<Init<M,N>, A...>:
 public InitArgs<Init<M,N-1>,
 typename functional::Arg<M,N>::T,A...>
{};

template <class M, class... A>
struct InitArgs<Init<M,0>, A...>
{typedef boost::python::init<A...> T;};

template <class M, int N>
struct Init: public InitArgs<Init<M, N>>
 {};

Listing 2

// value returns
template <class C, class M>
typename enable_if<
 And<
 Not<is_reference<typename
 functional::Return<M>::T>>,
 Not<is_pointer<typename
 functional::Return<M>::T>> >,
 void>::T
addMemberFunction(const string& d, M m)
{
 auto& c=getClass<C>();
 if (!c.completed)
 c.def(tail(d).c_str(),m);
 DefineArgClasses<M, functional::Arity<M>
 ::value>::define(*this);
}
// reference returns
template <class C, class M>
typename enable_if<is_reference
 <typename functional::Return<M>::T>,void>::T
addMemberFunction(const string& d, M m)
{
 auto& c=getClass<C>();
 if (!c.completed)
 c.def(tail(d).c_str(),m,
 boost::python::return_internal_reference<>());
 DefineArgClasses<M,functional::Arity<M>::
 value>::define(*this);
}
// ignore pointer returns
template <class C, class M>
typename enable_if<is_pointer
 <typename functional::Return<M>::T>,void>::T
addMemberFunction(const string&, M) {}
14 | Overload | August 2019

FEATURERUSSELL STANDISH

The ClassBase base class is a non-
templated virtual base class, allowing

the use of this type in containers
leak, or worse. So if you want to expose a pointer returning function to
python, do it the old-fashioned way, ie explicitly, not automatically. Better
is to recode the method to return a reference, for which it is clear by
language semantics that ownership remains with the method’s C++ object,
if that is your intention.

Another point of interest is that the python descriptor is called recursively
on the return type, and on the types of each argument which ensures that
a python definition for those types exists. To do this, we again leverage
the Classdesc functional library, and use template recursion to call the
python descriptor on each argument. Care must be taken to avoid an
infinite loop caused when the method takes an argument of the same type
as the class being processed. For this purpose, we use a single shot
singleton pattern to return false the first time it is called and true thereafter
for a given type:

 template <class T>
 inline bool classDefStarted()
 {
 static bool value=false;
 if (value) return true;
 value=true;
 return false;
 }

This is adequate for when each class needs to exposed just once per
execution (such as on loading a dynamic library).

The code for recursively exposing the types of each argument is in
Listing 3 and is called from within a python_t method by

 DefineArgClasses<F,functional::Arity<F>::value>
 ::define(*this);

Const and mutable attributes
We can similarly deal with the different syntactic requirements of const
or noncopyable versus non const at tr ibutes, using standard
metaprogramming techniques (see Listing 4).

In this case, not only do we check whether an attribute is declared const,
but we also need to check whether the attribute is even copy assignable.

Default and Copy constructibility
By default, Boost.Python assumes that an exposed C++ object is default
constructible and copy constructible. As already mentioned in ‘Boost
Python’ on page 11, non-default constructible classes can be handled by
passing an object of type boost::python::no_init to its constructor.
Noncopyable objects can be exposed if the class_ template takes an extra
template parameter of boost::noncopyable. To make the code more
symmetric, and shareable in these cases, in Classdesc the class_
template is subclassed as shown in Listing 5.

The ClassBase base class is a non-templated virtual base class, allowing
the use of this type in containers, and the use of a boolean template
parameter allows us to instantiate the Class object via a factory function:

 template <class T>
 Class<T,is_copy_constructible<T>::value>&
 getClass();

Use of the default constructor is deliberately suppressed by the no_init
argument to the class_ constructor, but then added back in by the call to
addDefaultConstructor if T is default constructible.

At the same time, an equality operator is defined that at minimum returns
true if the same C++ object is referenced by two different python objects,
but also calls into the C++ equality operation if that is defined.

Global objects
Surprisingly, Boost.Python doesn’t provide any means of exposing a
global object. Unlike the global def() function which exposes functions
to python, there is no equivalent global def_readwrite() or
def_readonly(), nor is the module available as a class object that we
could run those as methods.

Instead, we can use more primitive objects – the module is available as
Boost.Python object via the default constructor of scope. We can extract
the __dict__ attribute of this object, and insert the global object into the
module dictionary via a pointer proxy:

Listing 3

// recursively define classes of arguments
template <class F, int N>
struct DefineArgClasses {
 static void define(python_t& p) {
 typedef typename remove_const<
 typename remove_reference<
 typename functional::Arg<F,N>::T>
 ::type>
 ::type T;
 if (!pythonDetail::classDefStarted<T>())
 p.defineClass<T>();
 DefineArgClasses<F,N-1>::define(p);
 }
};
template <class F>
struct DefineArgClasses<F,0> {
 static void define(python_t& p) {
 typedef typename remove_const<
 typename remove_reference<
 typename functional::Return<F>::T>
 ::type>
 ::type T;
 if (!pythonDetail::classDefStarted<T>())
 // define return type
 p.defineClass<T>();
 }
};
August 2019 | Overload | 15

FEATURE RUSSELL STANDISH
 extract<dict>(scope().attr("__dict__"))
 ()[tail(d).c_str()]=ptr(&o);

Thus exposing a global object to Python is a matter of calling the
python_t::addObject(string name, T& obj) method.

Containers
Boost.Python does not explictly support standard containers, such as
std::vector or std::list. In Classdesc, the philosophy is to support
standard containers, or better still the concepts behind standard containers.
I n C l a s sdesc , two concep t s a r e d e f ined : se quence an d
associative_container. Sequences include std::vector, std::list
and std::deque. Associative containers include std::set,
std::map, std::multimap, and the unordered versions of these, such
as std::unordered_map.

Users can exploit these concepts for their own containers by defining the
appropriate type trait: is_sequence or is_associative_array
(see Listing 6).

In the case of the python descriptor, we want containers to support the
Python sequence protocol. It suffices to define the methods __len__,
__getitem__ and __setitem__. This is sufficient to support Python
operations such as len(), [] and to iterate over a container like:

 for i in someVector:
 print(i)

Additionally, it is useful to be able to assign lists of objects to sequence
containers. For this, we create an assign method, which takes
boost::python::object as an argument, and attempt to assign each
component of the boost object (if it supports the sequence protocol).

Finally, it is desirable to construct a new C++ container from a Python list
or tuple. Doing this is not well documented in Boost.Python, but involves
def’ing the __init__ method with a very special function:

 template <class T>
 boost::shared_ptr<T>
 constructFromList(const boost::python::list& y)
 {
 boost::shared_ptr<T> x(new T);
 assignList(*x,y);
 return x;
 }

 getClass<std::vector<T> >().
 def("__init__",boost::python::make_constructor
 (constructFromList<std::vector<T>>);

The crucial key is that the actual constructor implementation must return
a boost::shared_ptr<T>.

Finally, standard container are archetypical template types, and after
Classdesc processing, the class names are not syntactically valid Python
types. For example, a std::vector<int> cannot be directly
instantiated, however it is possible to reference that type from within
Python. Assuming the C++ classes are exposed within namespace
example, then you can rename the constructor functions within Python
like:

 IntVector=example.std.__dict__['vector<int>']
 x=IntVector([1,2,3,4])

One final nice to have feature not currently implemented is to directly pass
a list or tuple to a C++ sequence parameter of a method. For now, you have
to explicitly instantiate a C++ object of the appropriate type to pass to the
argument, as above, or alternatively code an overloaded method in C++
that takes a boost::python::object in place of the sequence
parameter, and then use the python sequence protocol (len(),
operator[]) to construct an appropriate C++ container. The difficulty
in arranging this to happen is that it is an area poorly documented in
Boost.Python, so is still a subject of future research.

Smart Pointers
The standard library smart pointers implement a concept smart_ptr, which
has the following methods and attributes:

 target is the object being referenced by the smart pointer. You can
access or assign that smart pointer’s target via this attribute. So

 x.target.foo()

is equivalent to the C++ code

 x->foo();

Listing 4

template <class X>
typename enable_if<
 And<
 std::is_copy_assignable <typename
 pythonDetail::MemberType<X>::T>,
 Not<is_const<typename
 pythonDetail::MemberType<X>::T>>
 >,void>::T
addProperty(const string& d, X x)
 {this->def_readwrite(d.c_str(),x);}

template <class X>
typename enable_if<
 Or<
 Not<std::is_copy_assignable<typename
 pythonDetail::MemberType<X>::T>>,
 is_const<typename
 pythonDetail::MemberType<X>::T>
 >,void>::T
addProperty(const string& d, X x)
{this->def_readonly(d.c_str(),x);}

Listing 5

template <class T, bool copiable> struct PyClass;
template <class T> struct PyClass<T,true>:
 public boost::python::class_<T>
{
 PyClass(const char* n):
 boost::python::class_<T>(n,
 boost::python::no_init()){}
};
template <class T> struct PyClass<T,false>:
 public
 boost::python::class_<T,boost::noncopyable>
{
 PyClass(const char* n):
 boost::python::class_<T,boost::noncopyable>(n,
 boost::python::no_init()){}
};
template <class T, bool copiable> struct Class:
 public ClassBase,
 public ClassBase::PyClass<T,copiable>
 {
 addDefaultConstructor(*this);
 def("__eq__",
 pythonDetail::defaultEquality<T>);
 }

Listing 6

namespace classdesc
{
 template<>
 struct is_sequence<MySequence>
 {
 static const bool value=true;
 };
}

16 | Overload | August 2019

FEATURERUSSELL STANDISH
and

 x.target=y

is equivalent to the C++ code

 *x=y;

If the object is null for either of these operations, a null dereference
exception is thrown.

 reset() sets the smart pointer to null, deleting the target object if the
reference count goes to zero.

 new(args) creates a new target object by its default constructor, or
with args if an init method exists for that object.

 = assigning a smart pointer will cause the reference to be shared to
the new variable (in the shared_ptr case) or transferred (in the
unique_ptr case).

 refCnt() returns the reference count pointing to the current target.
For unique_ptr this will be 1. This can be of use for debugging
why a destructor is not being called when expected.

Conversion of an existing codebase
In order to test these ideas out and to harden the implementation, it is
necessary to use them in a real world application. The SciDAVis plotting
application [Benkert14] was chosen for this purpose, as the author is the
project manager, and it already sports a python interface via the SIP
reflection system [Riverbank] by Riverbank Computing for exposing C++
objects to Python. SIP was exploited to expose Qt [Blanchette06] and Qwt
[Rathmann] classes, in the form of the library PyQt library.

This work also hopefully addresses a problem with using SIP in that the
MXE (http://mxe.cc) cross-compiler build environment does not readily
build PyQt (the build process requires a working python interpreter for the
target system, which is not so useful for cross compilers). This has led to
the lack of python scriptability on the Windows build of SciDAVis.

A second problem, hopefully addressed with this work, is that the API
change from Qwt5 to Qwt6 does not interact well with SIP. It could be
argued that the API change is a backward step – the new API is harder to
use and more error prone, but suffice it to say it becomes important to wrap
the new Qwt6 classes with ones that have a more C++ style, supporting
RAII semantics for example. This wrapping will insulate the Python layer
from the Qwt layer.

Neither of these last two advantages have been realised yet – that is the
scope of future work. However, the full Python interface, as documented
in the SciDAVis manual has been implemented, in a feedback process that
led to many additional features in the Classdesc python descriptor, such
as supporting method overloading and constructor support.

qmake project file changes
SciDAVis uses the qmake [Blanchette06] build system. Unlike GNU
make, which can exploit the C++ compiler to automatically generate
dependencies of object files on the included header files, qmake requires
all header files to be explicitly listed. Whilst qmake does understand the
dependency relations between object files and headers, it doesn’t appear
to have any way of specifying a dependency between a Classdesc
descriptor implementation file (.cd) and its header (.h). Instead, a separate
list of header files to be processed by Classdesc is maintained, and if any
of those header files change, then all classdesc’d headers are processed
again by Classdesc. This does cause more compilation work than is
necessary, but in practice was not a major problem for SciDAVis, which
has fairly modest build times. It should be noted that a direct make solution,
such as used by the Minsky project does not have this problem.

Qt meta object compiler
SciDAVis is a Qt project, which has certain implications. The first is that
Qt has a form of reflection called moc, short for meta object compiler. Qt
header files are written in a superset of C++, the most significant change
being keywords supporting Qt’s signals and slots mechanism. The
keywords signals and slots appear in class definitions in the same

place that the class access specifiers public, protected and private
are used. Signals are always protected, but slots may be declared public,
private or protected. Additional code was added to the Classdesc processor
to parse these declarations, and set the is_private flag appropriately.

The other aspect of Qt code is specific macros used to indicate things to
the moc preprocessor. These are Q_OBJECT, Q_PROPERTY() and
Q_ENUMS(), which are filtered out by the Classdesc processor.

This additional processing is enabled with the -qt flag on the Classdesc
processor.

Organising the use of the python descriptor in SciDAVis
Most of the python support code is handled in the one f i le
PythonScripting.cpp. So exposing class definitions involved adding
the SciDAVis header file and the Classdesc descriptor definition file for
each exposed class to the beginning of that file. We started with exposing
the ApplicationWindow class, which is the main omnibus class
implementing the SciDAVis application. The code to expose this class
becomes:

 BOOST_PYTHON_MODULE(scidavis)
 {
 classdesc::python_t p;
 p.defineClass<ApplicationWindow>();
 }

As mentioned in ‘Reference returning methods’ on page 14, this will
automatically expose classes referenced by each exposed method,
provided the appropriate header files have been included. The compiler
will let you know if the header file is not present.

As the full API support was developed, additional classes needed to be
added, mainly for things like the various fitting algorithm, and filter
algorithms such as integration and interpolation. These options can be
instantiated from Python, and then passed to methods taking a fit or filter
base class reference. In all, 21 classes needed to be added to the
BOOST_PYTHON_MODULE block.

I decided not to process the Qt library headers, as these tended to use a lot
of conditional macros that Classdesc doesn’t have the context to deal with.
The alternative strategy of preprocessing the Qt headers to remove macros
was rejected, as this typically leads to an uncontrollable explosion of
classes that Classdesc must process. Instead, for each Qt class exposed on
the SciDAVis python interface, a wrapper class was created, with
delegated methods. Whilst a bit of work, by starting from a copy of the
class taken from the relevant Qt header file, it is a fairly mechanical process
creating the delegated methods inlined in the class.

Static objects in the Qt namespace, such as Qt’s global colours, could be
reimplemented in local code. I grouped these into a single class (called
QtNamespace, as the identifier Qt clashes with the global Qt
namespace). A single line was added to the BOOST_PYTHON_MODULE
block creating an alias of this object to Qt in python's global namespace:

 modDict("__main__")["Qt"]=modDict("scidavis")
 ["QtNamespace"];

This pretty much implements the needed functionality from the PyQt
library, eliminating the latter from SciDAVis’s software dependency list.

The final pieces were supporting the typeName functionality for Qt types.
For any type derived from QObject, this was easily implemented as a call
to the moc generated staticMetaObject::className() method,
however there were numerous Qt classes not derived from QObject, such
as QString. These were implemented individually for each one, although
the common cases were easily handled with a macro to reduce the amount
of boilerplate code.

Code changes to SciDAVis
The biggest code changes involved methods that return pointers to objects.
For the reasons outlined in ‘Reference returning methods’ on page 14,
pointer returning methods are never exposed by Classdesc, so instead they
must be converted to methods return a reference. However, these methods
typically return null when an error condition is encountered. So these
August 2019 | Overload | 17

FEATURE RUSSELL STANDISH
methods were refactored to throw an exception (a handy NoSuchObject
exception type was created for this purpose). The Boost.Python library
converts all C++ exceptions propagated through the C++/Python interface
into Python exceptions, so this was clearly the right thing to do. One could
take the lazy way out, and simply provide a wrapper method that converts
a pointer returning method into one returning a reference, or throwing on
null pointer return, but I took the opportunity to refactor caller code to use
the reference interface too, in line with conventional C++ practices.

The second set of changes revolved around making the Python API
consistent with C++ API, as Classdesc will faithfully expose the C++
interface to the equivalent Python one. In the original SciDAVis code, the
API is specified in 2 places. It is documented in the manual, and specified
in the scidavis.sip specification file. As might be expected, these two
definitions were sometimes contradictory, and also were not consistent
with C++. When resolving these inconsistencies, I chose to follow what
was documented in the manual, even though it potentially introduces
breaking changes for scripts that rely on how the API was actually defined.
The most significant change were in methods that took arguments that
satisfy Python’s sequence semantics, such as lists or tuples. So such a
method call should look like:

 foo.bar((1,2,3))

or

 foo.bar([1,2,3])

but instead the SIP implementation did it in a variadic way:

 foo.bar(1,2,3)

Whilst it is possible to supply a variadic definition from within
Boost.Python, it needs to be coded explicitly, as Classdesc ignores variadic
methods.

Ideally, in C++, one should be able to initialise a C++ sequence with one
of these python sequence objects, but currently that is not possible. So for
now, supporting this call from Python involves adding an addition
overloaded method taking a pyobject reference. The pyobject type is
defined boost::python::object, which implements operator[]
and len(), which suffices for constructing a C++ sequence object. In the
future, I hope to be able to automatically generate this code. In the case
where python support is disabled, pyobject is declared as a class, but
otherwise not defined. In the C++ implementation file, the body of the
method is simply #ifdef’d out.

Most of the code changes were then to make the C++ API consistent with
the published Python API.

Originally, in order to get a runnable executable as quickly as possible, all
unrecognised types were given a null python descriptor. However, that
proved to be a mistake – it was better just to define dependent library
classes (Qt, Qwt) as having null descriptors, and ensure Classdesc was run
on all necessary SciDAVis defined classes.

Results
The core SciDAVis code (libscidavis directory) consisted of 100,466 lines
of code, and after the conversion to Classdesc weighed in at 100,838 lines
of code. The saving from eliminating the 2K loc scidavis.sip file was
mostly eaten up by having to implement shim classes to expose Qt and Qwt
classes. There is room for improvement by eliminating dead code that has
been made redundant in the classdesc-boost.python way of doing things.

The result on compile times though is rather disappointing. On a quad core
Intel i5-8265U CPU, the original SciDAVis code takes 1'25'' to compile
and link the application. The refactored classdesc-enabled code takes 6'3''
to do the same thing, much of which is spent compiling the one module
PythonScripting.cpp. This could be improved by splitting the classdesc
descriptor calls for the different classes into different compilation units.
In further work, the ApplicationWindow class python support was
compiled into a separate object file from other classes, and the build time
was reduced to 5'7''. Further build time optimisations will be needed too.

The resulting binary is larger too, at 15.6 MiB versus the original 6.0 MiB,
probably because classdesc exposes a fatter interface than the manually
crafted SIP interface. Indeed, the approach is to expose a maximally fat
interface – all SciDAVis public classes are exposed to Python, as well as
select Qt and Qwt classes historically exposed to Python, via SciDAVis
implemented wrapper classes. The compiler and python regression test
together defined what these needed to be. Also, the equivalent PyQt
functionality is inlined into the executable, rather than in a dynamically
loaded library % get the size of PyQt dynamically loaded % lib...

Executable times, running the tests scripts appears to be much of a
muchness between classdesc and SIP, the runtime differences between the
two versions within experimental noise.

References
[Abrahams03] David Abrahams and Ralf W Grosse-Kunstleve (2003)

‘Building hybrid systems with Boost.Python’ in C/C++ Users
Journal, 21(7).

[Benkert14] T Benkert, K Franke, D Pozitron, and R Standish (2014)
Scidavis 1. D005 (Free Software Foundation, Inc: 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301 USA), 2014.

[Blanchette06] Jasmin Blanchette and Mark Summerfield (2006) C++
GUI programming with Qt 4 Prentice Hall Professional.

[Leow03] Richard Leow and Russell K. Standish (2003) ‘Running C++
models under the Swarm environment’ in Proceedings SwarmFest
2003. arXiv:cs.MA/0401025.

[Liang99] Sheng Liang (1999) The Java Native Interface: Programmer’s
Guide and Specification Addison-Wesley Professional.

[Madina01] Duraid Madina and Russell K. Standish (2001) ‘A system for
reflection in C++’ in Proceedings of AUUG2001: Always on and
Everywhere, page 207. Australian Unix Users Group.

[Rathmann] Josef Wilgen Uwe Rathmann ‘Qwt - Qt widgets for technical
applications’ on https://qwt.sourceforge.io/ (retrieved 13 June 2019).

[Riverbank] Riverbank Computing ‘What is SIP?’
https://www.riverbankcomputing.com/software/sip/intro (retrieved
13 June 2019).

[Rossum02] Guido Van Rossum and Fred L Drake Jr. (2002) Python/C
API reference manual Python Software Foundation.

[Standish03] Russell K. Standish and Richard Leow (2003) ‘EcoLab:
Agent based modeling for C++ programmers’ in Proceedings
SwarmFest 2003 arXiv:cs.MA/0401026.

[Standish16] Russell K. Standish (2016) ‘Classdesc: A reflection system
for C++11’ in Overload 131 pages 18–23, published February 2016
http://accu.org/index.php/journals/c358/
18 | Overload | August 2019

http://accu.org/index.php/journals/c358/
https://qwt.sourceforge.io/
https://www.riverbankcomputing.com/software/sip/intro

FEATUREHANS VREDEVELD
Trip Report: Italian C++ 2019
Milan held Italy’s largest C++ conference.
Hans Vredeveld reports back.
n June 15th I was in Milan, Italy, to attend the Italian C++ conference
[ItalianC++Conf19]. It was not the first time the Italian C++
community had held a conference, but it was the first time that I

attended.

The day started with registration and the welcome message from Marco
Arena, followed by the keynote. This time, the keynote speaker was Andrei
Alexandrescu. With the usual Alexandrescu humour, he talked about
sorting algorithms. He started by comparing a couple of standard
algorithms, looking for the one with best performance. After he found a
good one, he started tweaking it, performing all kinds of theoretical
optimizations that, when measured, only resulted in worse performance.
Finally he made some changes that should result in worse performance (at
least theoretically), but that actually improved performance.

After the coffee break, the two tracks with sessions started. The first talk
I attended was Rainer Grimm’s talk about concepts in C++20. He started
with the motivation for concepts and how they were inspired by Haskell.
Next he explained what concepts are and how they can be used. Having
run into the problem that I needed something more generic than functions,
but that templates left too much open and were too generic, I cannot wait
and look forward to using concepts in my code.

The next talk I went to was Vector++17 by Davide Bianchi. The talk was
not about std::vector, but about the vector that we all know from
mathematics. Although it was not directly relevant for my day-to-day
programming, I was intrigued and wanted to know more about it. Davide’s
goal was a class Vector that behaves like the mathematical vector and
that can be used with the operators on vectors that we all know from
mathematics. He made good use of fold expressions and constexpr if to
get clean code that supports SIMD like operations and also resulted in
better error messages. In the end, I found the 30 minutes for this talk too
short and would have preferred a 60 minute talk on the subject.

Next it was time for the lunch break and some more networking. During
the lunch break there was a bonus talk that I missed, because I was caught
up in a conversation.

After the lunch break, I went to Dmitry Kozhevnikov’s talk about the
future of C++ with modules. If you have already delved into the subject
of modules, most of what Dmitry talked about is already known to you. I
knew that they were coming, but hadn’t spent much time on them yet. For
me, this was a nice overview of what they will give us, solving a lot of the

problems we have with include files and the current compilation model that
we inherited from C and its preprocessor.

Then it was time for ‘Custom Clang Tooling’ with James Turner. He
introduced us to Clazy [GitHub], a static analyser based on Clang
[Clang-1]. In many ways it is similar to clang-tidy [Clang-2], but Clazy
specializes in Qt and enforcing Qt best practices. It can automatically fix
issues found, it has support for your own coding conventions, it automates
code refactoring and it integrates into CI. It was a good presentation that
gave me a decent overview of the tool. As always with this kind of tool, I
have to play with it to fully understand its usefulness. I don’t know when
that will happen.

Finally we had another break and the last talk of the day. Arne Mertz
missed his connecting flight the day before and could not make it. That
made the choice simple. Do I or don’t I go to Michele Caini’s talk ‘ECS
back and forth’? I did. ECS stands for Entity Component System
[Wikipedia] and it is an architectural pattern. It favours composition over
inheritance, sacrificing encapsulation. Unfortunately, my attention started
wavering, in part because we already had a full day of talks and in part
because I had no idea how I could use it in my daily programming
practices. But, if I want to play with it, there is an open source library that
implements the pattern: EnTT. [Caini]

Marco Arena and Alessandro Vergani concluded the day with the closing
message. During the day attendees were encouraged to tweet about the
conference, and in the closing message they handed out the prizes for the
best tweets. They also invited the other member of the organizing
committee and the speakers to come forward. The room thanked both
groups with a heart-warming applause.

All in all, it was an excellent day and I look forward to go to Milan again
next year.

References
[Caini] Michele Caini (skypjack) EnTT library on GitHub:

https://github.com/skypjack/entt

[Clang-1] Clang: http://clang.llvm.org/

[Clang-2] Clang-tidy: https://clang.llvm.org/extra/clang-tidy/

[GitHub] Clazy: https://github.com/KDE/clazy (A mirror of the KDE
project.)

[ItalianC++Conf19] Italian C++ Conference 2019:
https://www.italiancpp.org/event/itcppcon19/

[Wikipedia] Entity Component System: https://en.wikipedia.org/wiki/
Entity_component_system

O

Hans Vredeveld started working in the software industry 20+
years ago as a system administrator. Via application administration
he soon moved into software development, where he was bitten by
the C++ virus. Not wanting to be cured, he is always searching for
the next cool C++ thing. He can be contacted at
accu@closingbrace.nl
August 2019 | Overload | 19

https://github.com/skypjack/entt
http://clang.llvm.org/
https://clang.llvm.org/extra/clang-tidy/
https://github.com/KDE/clazy
https://www.italiancpp.org/event/itcppcon19/
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system

FEATURE CHRIS OLDWOOD
Afterwood
Many people are risk-averse. Chris Oldwood
considers this position – in verse.
20 | Overload | August 2019

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

on’t change the specification!
We made a plan, we should follow it to the letter,
so what if customer feedback can make the product better.

The schedule’s secured
and the team’s been chosen,
from here on in the deadline’s frozen.

Don’t refactor the code!
The code isn’t broken, there’s nothing to fix,
so what if the author used incomprehensible tricks.
If it was hard to write
it will be hard to read,
a 10x developer doesn’t come cheap.

Don’t upgrade the libraries!
We already use all the features we require
switching versions is tantamount to playing with fire.
We can save on testing
when things stay the same,
minimizing QA is the name of the game.

Don’t switch compilers!
We know how the tool works, we’ve got the build stable,
so what if compliance makes the code more maintainable
We’re here to add features
not become a language fanatic,
idealism needs tempering; look to favour pragmatic.

Don’t alter the configuration!
The support team have a play-book, it covers all cases,
tinkering with settings from now only leads to red faces.
The set-up has hardened
it took weeks to achieve,
now is the time to demand a system-wide freeze.

Don’t change the platform!
The architecture’s formalized and infrastructure’s mature,
we have an enterprise contract which is there to ensure
that there’s someone on call
when things go awry
while we’re paying good money it’s not going to die.

But change is inevitable!
Heraclitus said: everything changes and nothing stands still,
for some it’s an assertion to swallow, a bitter-tasting pill.
You can’t mitigate risk
by instilling fear,
instead embrace it, and make change something the team will revere.

D

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

CODE
MAXIMIZED

Develop high performance parallel applications from
enterprise to cloud, and HPC to AI using Intel® Parallel
Studio XE. Deliver fast, scalable and reliable, parallel code.

#HighPerformance

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
© Intel Corporation

from
£510

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner

To find out more about Intel products please contact us:

020 8733 7101 | sales@qbs.co.uk | www.qbssoftware.com/parallelstudio

QBS A4-Intel-PSXE-Code-Maximized.pdf 1 24/09/2018 17:31

	Reactive or Proactive
	A Low-Latency Logging Framework
	Empty Scoped Enums as Strong Aliases for Integral Types
	C++ Reflection for Python Binding
	Trip Report: Italian C++ 2019
	Afterwood

