

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

April 2019 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 NullableAttribute and C# 8
Jon Skeet investigates the metadata
representation of Nullable Reference Types.

7 lvalues, rvalues, glvalues, prvalues,
xvalues, help!
Anders Schau Knatten explains his way of
thinking about value categories.

8 Modern SAT solvers: fast, neat and
underused (part 1 of N)
Martin Hořeňovský demonstrates how SAT
solvers can solve arbitrary Sudoku puzzles.

14 The Duality…
Anders Modén discussed the use of genetic
algorithms in conjunction with back-
propagation for finding better solutions.

24 Blockchain-Structured Programming
Teedy Deigh shares her angle on the
technology underpinning cryptocurrencies.

OVERLOAD 150

April 2019

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson@gmail.com

Klitos Kyriacou
klitos.kyriacou@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 151should be submitted by
1st May 2019 and those for
Overload 152 by 1st July 2019.

EDITORIAL FRANCES BUONTEMPO
This means war!
Careless use of language can upset people.
Frances Buontempo asks what we can do to
make the developer experience better.
Being the 150th edition of Overload, an editorial was
called for. However, I have not managed to think for
long enough to write one. Instead, we have waged war
on our house, in an attempt at a long overdue spring
clean. Why do I say ‘waged war’? It was the first
phrase that sprang to mind, and it did feel like a battle.

We can now find things in the cupboard under the stairs. Previously, I was
afraid to open the door, for fear of being buried under a pile of goodness
knows what. Injuries were sustained, well I broke a nail. However, it was
worth the fight. We did well.

Could I describe the tidy up in less military terms? Certainly. We had a
tidy up. That doesn’t sound as attention grabbing, click-baity, or exciting.
Is this the only reason we use clichéd phrases for titles, talks or even code?
Niels Dekker’s lightning talk at C++ On Sea, ‘noexcept considered
harmful???’, ended up on reddit [Dekker19a], accused of being a
‘snowclone headline’. I personally loved the talk, and am curious to see
the discussion continue. Does noexcept slow your code down? Niels has
asked an interesting question, in a considered manner. I personally think
this was exactly the right title for his talk. He’s shared resources on his
github page if you want to investigate further [Dekker19b]. The meme
title, ‘X considered harmful’ has a long history, and was originally click-
bait. Dijkstra’s short letter to the Communication of the ACM in 1968 was
given the title by the editor, presumably because that sounds more punchy
than the suggested ‘A Case Against the Goto Statement’ [Wikipedia-1].
I say ‘punchy’, which sounds a tad violent. Why do we use the terms we
use? And why are so many of them violent or warlike in nature?

Much of the history of computing is based in military research. Wars and
rumours of wars can produce magic money trees, or at least extra sources
of funding, for research and development into new technology. Bletchley
Park became a hub of industrious innovation during the Second World
War. I suspect these roots lead us to use military phrases, often without
realising. Why do we have variables or functions named foo and bar in
our code? Kate Gregory’s ‘Oh the humanity!’ keynote at C++ On Sea
[Gregory19] reminded us the original spelling was ‘fubar’, meaning
something like fouled up beyond all recognition. At what point this
became ‘foo’ instead of ‘fu’ is not clear. ‘Snafu’ is another related term.
Situation normal, all fouled up. In fact, it seems the American military
created a series of cartoons, entitled Private Snafu, [Wikipedia-2] to train
service personnel about security, safety and protocol. There’s a suggestion
that these terms were partly introduced to ridicule military acronyms

[Wikipedia-3]. You can certainly hide some horror
behind TLAs (three letter acronyms), and

encourage people to use them without
thinking. “Ours is not to reason why, ours
is but to do and die,” as the saying goes.

Not literally true for most programmers. Literally true for the light
brigade, whom Tennyson was writing about in his poem. Sometimes we
use whole words rather than TLAs. Kill script, anyone? Deadline? To be
fair, there is only sketchy evidence this originally referred to shooting
prisoners who tried to cross boundaries, or even imaginary lines [Online
Etymology Dictionary]. So much violence.

Despite software teams tending to use military terms, we are not in a war
room. I watched a talk by Portia Tung a while ago, called ‘Enterprise
Gardening’ [Tung12]. She discussed the use of bullying, dehumanising
terminology, with roots in warfare. Her main point was metaphor gives
shapes to our thoughts, language and behaviour. “It’s important we do
gardening instead of pick fights.” Allowing plants, or people to grow and
thrive is a much better aim than fighting a battle. Plants need light, water
and food. So do people. Kate’s keynote touched on similar points, for
example, changing a variable name from errorMessage to
helpMessage might give you a clearer perspective on what to write in
it. What happens in your head if you say ‘user help’ instead of PEBKAC
or ‘user error’? RTFM seems harsh. Though I do remind myself to do this
sometimes, and make sure I’m reading the correct version of a manual.
How many times have I tried something in Python while reading v2.x
instead of 3.x, or ElasticSearch, though I’ve lost track of ES version
numbers, since they move so fast. I have used the phrase RTFM on many
occasions. In fact, one of my favourite books is called RTFM: Red Team
Field Manual. [Clark14]. There is a blue team field manual too. It has lots
of clearly written scripts, for use in cyber-security CTF (Capture The Flag)
training sessions [CTF]. The blue team defends the ‘flag’ – system,
network or similar – while the red team tries to take over. Now there’s a
thing. Cyber-security is absolutely full of military jargon. And computer
gaming. Offensive? Humorous? To be considered harmful? I love the
book because it has a glider on the cover and is small. Many books are far
too big. This fits in my handbag easily. Five stars.

Military terms do have a place. I was surprised to find some people didn’t
know the origins of ‘foobar’. I don’t remember how I discovered its
background. I do have a tendency to speak up when I don’t understand
something, so probably asked what on earth someone was on about when
they first used the phrase at me. If you don’t know something, speak up.
Or look it up. Finding the origins of meaning of words, AKA etymology,
is informative. And helps me concentrate on how to spell words from time
to time. I wonder what the etymology of etymology is? Will I break the
universe if I look that up? Nope. All still there. The internet mentioned
something about PIE. I digress. Anyway, many programmers’ language
involves war stories, fire-fighting and Foo, Bar as well as Baz.

This warfare and fire-fighting talk isn’t always negative though. I recently
saw a conversation on twitter between parents with fire-fighters in their

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | April 2019

EDITORIALFRANCES BUONTEMPO
family. They were discussing protocols for handing over a small baby. It
went something like, “I’m handing you the baby” to which the response “I
have the baby” was required before the first person would let go. This
ensures a vulnerable person, or small baby, is held securely. Protocols, pre-
flight/commit/release checklists have a place. They make sure you are
communicating clearly, and paying attention in high pressure situations.
Using a protocol or procedure to keep things running smoothly is a good
thing.

Broadening out the discussion, the problem with waging war in a software
context is the potential collateral damage. People can get hurt. Maybe no-
one dies, but feelings get hurt. Shouting and swearing happens. Blame gets
attributed, while problems don’t get fixed. Svn blame or praise; that is the
question. People have been talking about and measuring user experience,
Ux, for a long time and its value is well recognised. I’ve recently noticed
developer experience, Dx, being talked about too. What is your experience
as a developer like? What does this involve? Team structure? Ways of
working? Your office? Your desk and keyboard? Perhaps that’s more DI;
developer interface. Your toolchain? How confident you are when you
commit code? How code reviews are conducted? Is the rebuild button right
next to the build button in your IDE? If you use Visual Studio and have
ever hit the wrong button wasting hours, consider adding to the Developer
Community ‘Option to confirm rebuild or clean all’ [VS Dev Community].
You are not alone.

I can’t find a precise definition for Dx, though many blog posts talk more
about the toolchain than the overall developer experience. For me, Dx
includes the team you work with. Kind, supportive team members count
as much as, if not more than, stable build tools, quick-running tests and a
comfortable chair. That said, you can still make your life easier if you
observe what is slowing you down, or making you annoyed. If you change
one line of code and two projects build, ask why. Find out and fix it. If you
come to a project with an old FORTRAN code base and a word document
showing how to build it, create a make file instead. Typing ‘make’ is much
simpler than having to re-read a large document and copy/paste
commands, which end up with non-Unicode characters in. If the Wiki
instructions are out of date, update them.

A podcast about Dx [Boak] talks about developers being people too. Ux
came about to make sure people have a good experience using software.
Well, probably to ensure buy-in and customer loyalty, if you are a cynic.
If you download something on your phone and can’t get it working in 30
seconds, you will probably give up and find a different one. How many
dev tools have you got working in a matter of seconds? How long does the
on-boarding process take for a new team member? How do you know when
they are on-board? This podcast hinted at many developers not liking quick
start wizard tools, preferring to figure out complicated stuff by themselves,
thereby gaining some pride. I’m not sure how generally true that is. Some
people do tend towards building up their secret knowledge, becoming the
team wizard or warlock for specific problems. Some people are better at
sharing the knowledge and leaving simple-to-use tools for others.

If you are a developer on a live product, is it too easy to break things? Do
you have root permissions? How easy is it to follow the logging from your
system? Do errors leave you confused? Are most of your errors ‘normal’?
Are warnings actually critical? What about compiler errors? To quote a
recent Valentine’s tweet:

Roses are red
Violets are blue
initializing argument 1 of std::_Rb_tree_iterator<_Val, _Ref,
_Ptr>::_Rb_tree_iterator(std::_Rb_tree_node<_Val>*)[with _Val=
std::pair<const int, double>, _Ref= std::pair<const int, double>&, _Ptr
= std::pair<const int, double>*]
On line 22

Does a failing test give you a clear message? If you see “Expected True,
actual false” that might not be much help. Instead of adding a breakpoint
to find out the values, consider including the values in the assert, so you
can see immediately what happened. Wage war against the things that
cause you grief, not people. Instead of fixing the blame, fix the problems.
What can you do you make your own Dx better?

Many developers I know put up with the process being harder than it has
to be. Perhaps there is an element of feeling like a tenth Dan wizard master
if you figure out how to do something complicated, which might leave you
tempted to keep things as they are. Other times, I suspect fear stops people
changing things. I’ve frequently heard people saying, “It only takes a
couple of minutes.” That sounds reasonable, but if you can automate that
down to a few seconds, it’s worth considering. All the seconds add up.
Chris Oldwood wrote about keeping things clean and tidy in a recent
edition of the magazine [Oldwood18]. He mentioned lashing out, and
generally unpleasant behaviour. He even mentioned the Second World
War. Perhaps Chris’ piece encouraged me to tidy up our house a bit, and
start musing on warfare, though trying to blame him for my continued
failure to write an editorial might be taking it too far. If you want to see a
proper editorial in Overload, remember anyone is welcome to try their
hand as a guest editor. Get in touch. Remember, Overload is available
online so is read by many non-ACCU members, which is fine. If you’d
rather do something a little less public, you can also volunteer to be guest
editor for CVu instead. Get in touch.

So, war – what is it good for? Absolutely nothing, apart from technical
innovations, and thinking about clear ways of communicating. Pick your
battles. Be kind. Be aware of the language you are using, and its history
and real meaning. If you can’t follow all of the strange in-house acronyms
when you start a new gig, or panic while learning something new as soon
as ‘foo’ or ‘widget’ gets mentioned, take a breath. You
are not alone. Let’s see what we can do to ensure we
all have a great developer experience.

We have met the enemy and he is us
~ Pogo Possum [Wikipedia-4]

References
[Boak] Steve Boak, David Dollar and Justin Baker ‘Don’t Make Me

Code: Ep. #5, Developers Are People Too’, available at:
https://soundcloud.com/heavybit/dont-make-me-code-ep-5-
developers-are-people-too

[Clark14] Ben Clark (2014) RTFM: Red Team Field Manual CreateSpace
Independent Publishing Platform; 1.0 edition (11 Feb. 2014)

[CTF] https://ctf.hacker101.com/ (for example)

[Dekker19a] Niels Dekker (2019) ‘noexcept considered harmful???’,
presented at Cpp On Sea 2019, available at:
https://www.reddit.com/r/cpp/comments/apg0yk/
noexcept_considered_harmfull_benchmark_and

[Dekker19b] Niels Dekker (2019), resources on github:
https://github.com/N-Dekker/noexcept_benchmark

[Gregory19] Kate Gregory (2019) ‘Oh the humanity!’, presented at Cpp
On Sea 2019, available at: https://cpponsea.uk/sessions/keynote-oh-
the-humanity.html, and search on YouTube for CppOnSea

[Oldwood18] Chris Oldwood (2018) ‘Afterwood’, Overload 148, Dec
2018, available at: https://accu.org/index.php/journals/2584

[Online Etymology Dictionary] https://www.etymonline.com/word/
deadline

[Tung12] Portia Tung (2012) ‘Enterprise Gardening’, available at:
https://www.slideshare.net/portiatung/enterprise-gardening

[VS Dev Community] https://developercommunity.visualstudio.com/
content/idea/432348/option-to-confirm-rebuild-or-clean-all.html

[Wikipedia-1] https://en.wikipedia.org/wiki/Considered_harmful

[Wikipedia-2] https://en.wikipedia.org/wiki/Private_Snafu

[Wikipedia-3] https://en.wikipedia.org/wiki/SNAFU

[Wikipedia-4] Pogo (comic strip): https://en.wikipedia.org/wiki/
Pogo_(comic_strip)#%22We_have_met_the_enemy_and_he_is_us.%22
April 2019 | Overload | 3

https://en.wikipedia.org/wiki/Pogo_(comic_strip)#%22We_have_met_the_enemy_and_he_is_us.%22
https://en.wikipedia.org/wiki/Pogo_(comic_strip)#%22We_have_met_the_enemy_and_he_is_us.%22
https://en.wikipedia.org/wiki/SNAFU
https://en.wikipedia.org/wiki/Private_Snafu
https://en.wikipedia.org/wiki/Considered_harmful
https://developercommunity.visualstudio.com/content/idea/432348/option-to-confirm-rebuild-or-clean-all.html
https://developercommunity.visualstudio.com/content/idea/432348/option-to-confirm-rebuild-or-clean-all.html
https://www.slideshare.net/portiatung/enterprise-gardening
https://www.etymonline.com/word/deadline
https://www.etymonline.com/word/deadline
https://accu.org/index.php/journals/2584
https://cpponsea.uk/sessions/keynote-oh-the-humanity.html, and search on YouTube for CppOnSea
https://cpponsea.uk/sessions/keynote-oh-the-humanity.html, and search on YouTube for CppOnSea
https://github.com/N-Dekker/noexcept_benchmark
https://www.reddit.com/r/cpp/comments/apg0yk/noexcept_considered_harmfull_benchmark_and
https://ctf.hacker101.com/
https://soundcloud.com/heavybit/dont-make-me-code-ep-5-developers-are-people-too

FEATURE JON SKEET
NullableAttribute and C# 8
C# 8 will bring many new features. Jon Skeet
investigates the metadata representation of
Nullable Reference Types.
Background: Noda Time and C# 8
is nearly here. At least, it’s close enough to being ‘here’
that there are preview builds of Visual Studio 2019
available that support it. Unsurprisingly, I’ve been

playing with it quite a bit.

In particular, I’ve been porting the Noda Time source code [Skeet-1] to
use the new C# 8 features. The master branch of the repo is currently the
code for Noda Time 3.0, which won’t be shipping (as a GA release) until
after C# 8 and Visual Studio 2019 have fully shipped, so it’s a safe
environment in which to experiment.

While it’s possible that I’ll use other C# 8 features in the future, the two
C# 8 features that impact Noda Time most are nullable reference types and
switch expressions. Both sets of changes are merged into master now, but
the pull requests are still available so you can see just the changes:

 PR 1240: Support nullable reference types [Skeet-2]

 PR 1264: Use switch expressions [Skeet-3]

The switch expressions PR is much simpler than the nullable reference
types one. It’s entirely an implementation detail… although admittedly
one that confused docfx, requiring a few of those switch expressions to be
backed out or moved in a later PR.

Nullable reference types are a much, much bigger deal. They affect the
public API, so they need to be treated much more carefully, and the
changes end up being spread far wide throughout the codebase. That’s why
the switch expression PR is a single commit, whereas nullable reference
types is split into 14 commits – mostly broken up by project.

Reviewing the public API of a nullable
reference type change
So I’m now in a situation where I’ve got nullable reference type support
in Noda Time. Anyone consuming the 3.0 build (and there’s an alpha
available for experimentation purposes [NodaTime]) from C# 8 will
benefit from the extra information that can now be expressed about
parameters and return values. Great!

But how can I be confident in the changes to the API? My process for
making the change in the first place was to enable nullable reference types
and see what warnings were created. That’s a great starting point, but it
doesn’t necessarily catch everything. In particular, although I started with
the main project (the one that creates NodaTime.dll), I found that I needed
to make more changes later on, as I modified other projects.

Just because your code compiles without any warnings with nullable
reference types enabled doesn’t mean it’s ‘correct’ in terms of the API
you want to expose.

For example, consider this method:

 public static string Identity(string input)
 => input;

That’s entirely valid C# 7 code, and doesn’t require any changes to
compile, warning-free, in C# 8 with nullable reference types enabled. But
it may not be what you actually want to expose. I’d argue that it should
look like one of the options in Listing 1.

If you were completely diligent when writing tests for the code before
C# 8, it should be obvious which is required – because you’d presumably
have something like:

 [Test]
 public void Identity_AcceptsNull()
 {
 Assert.IsNull(Identity(null));
 }

That test would have produced a warning in C# 8, and would have
suggested that the null-permissive API is the one you wanted. But maybe
you forgot to write that test. Maybe the test you would have written was
one that would have shown up a need to put that precondition in. It’s
entirely possible that you write much more comprehensive tests than I do,
but I suspect most of us have some code that isn’t explicitly tested in terms
of its null handling.

The important part take-away here is that even code that hasn’t changed
in appearance can change meaning in C# 8… so you really need to review
any public APIs. How do you do that? Well, you could review the entire

C# 8

Listing 1

// Allowing null input, producing nullable output
public static string? Identity(string? input)
 => input;

// Preventing null input, producing non-nullable
// output
public static string Identity(string input)
{
 // Convenience method for nullity checking.
 Preconditions.CheckNotNull(input,
 nameof(input));
 return input;
}

Jon Skeet is a Staff Software Engineer at Google, working on
making Google Cloud Platform rock for C# developers. He’s a big
C# nerd, enjoying studying the details of language evolution. He is
@jonskeet on Twitter, and his email address is on his Stack
Overflow profile.

C# 8 introduces nullable reference types, which complement reference
types the same way nullable value types complement value types. You
declare a variable to be a nullable reference type by appending a ? to
the type. For example, string? represents a nullable string. You can
use these new types to more clearly express your design intent: some
variables must always have a value, others may be missing a value.
[Microsoft]

Nullable reference types
4 | Overload | April 2019

FEATUREJON SKEET

It would be oh-so-simple if each parameter or
return type could just be nullable or non-

nullable. But life gets more complicated than
that, with both generics and arrays
public API surface you’re exposing, of course. For many libraries that
would be the simplest approach to take, as a ‘belt and braces’ attitude to
review. For Noda Time that’s less appropriate, as so much of the API only
deals in value types. While a full API review would no doubt be useful in
itself, I just don’t have the time to do it right now.

Instead, what I want to review is any API element which is impacted by
the C# 8 change – even if the code itself hasn’t changed. Fortunately, that’s
relatively easy to do.

Enter NullableAttribute
The C# 8 compiler applies a new attribute to every API element which is
affected by nullability. As an example of what I mean by this, consider the
code in Listing 2, which uses the #nullable directive to control the
nullable context of the code.

The C# 8 compiler creates an internal NullableAttribute class within
the assembly (which I assume it wouldn’t if we were targeting a framework
that already includes such an attribute) and applies the attribute anywhere
it’s relevant. So the code in Listing 2 compiles to the same IL as this:

 using System.Runtime.CompilerServices;
 public class Test
 {
 public void X([Nullable((byte) 1)]
 string input) {}
 public void Y([Nullable((byte) 2)]
 string input) {}
 public void Z(string input) {}}
 }

Note how the parameter for Z doesn’t have the attribute at all, because that
code is still oblivious to nullable reference types. But both X and Y have
the attribute applied to their parameters – just with different arguments to
describe the nullability. 1 is used for not-null; 2 is used for nullable.

That makes it relatively easy to write a tool to display every part of a
library’s API that relates to nullable reference types – just find all the
members that refer to NullableAttribute, and filter down to public
and protected members.

It’s slightly annoying that NullableAttribute doesn’t have any
properties; code to analyze an assembly needs to find the appropriate
CustomAttributeData and examine the constructor arguments. It’s
awkward, but not insurmountable.

I’ve started doing exactly that in the Noda Time repository, and got it to
the state where it’s fine for Noda Time’s API review. It’s a bit quick and
dirty at the moment. It doesn’t show protected members, or setter-only
properties, or handle arrays, and there are probably other things I’ve
forgotten about. I intend to improve the code over time and probably move
it to my Demo Code repository at some point, but I didn’t want to wait
until then to write about NullableAttribute.

But hey, I’m all done, right? I’ve explained how NullableAttribute
works, so what’s left? Well, it’s not quite as simple as I’ve shown so far.

NullableAttribute in more complex scenarios
It would be oh-so-simple if each parameter or return type could just be
nullable or non-nullable. But life gets more complicated than that, with
both generics and arrays. Consider a method called GetNames()
returning a list of strings. All of these are valid:

// Return value is non-null, and elements aren't null
List<string> GetNames()

// Return value is non-null, but elements may be null
List<string?> GetNames()

// Return value may be null, but elements aren't null
List<string>? GetNames()

// Return value may be null, and elements may be null
List<string?>? GetNames()

So how are those represented in IL? Well, NullableAttribute has one
constructor accepting a single byte for simple situations, but another one
accepting byte[] for more complex ones like this. Of course,
List<string> is still relatively simple – it’s just a single top-level
generic type with a single type argument. For a more complex example,
imagine Dictionary<List<string?>, string[]?>. (A non-
nullable reference to a dictionary where each key is a not-null list of
nullable strings, and each value is a possibly-null array of non-nullable
elements. Ouch.)

The layout of NullableAttribute in these cases can be thought of in
terms of a pre-order traversal of a tree representing the type, where generic
type arguments and array element types are leaves in the tree. The above
example could be thought of as the tree in Figure 1.

The pre-order traversal of that tree gives us these values:

 Not null (dictionary)

 Not null (list)

 Nullable (string)

Listing 2

public class Test
{
#nullable enable
 public void X(string input) {}

 public void Y(string? input) {}
#nullable restore

#nullable disable
 public void Z(string input) {}
#nullable restore
}

April 2019 | Overload | 5

FEATURE JON SKEET

When all the elements in the tree are ‘not null’
or all elements in the tree are ‘nullable’, the
compiler simply uses the constructor with the
single-byte parameter instead
 Nullable (array)

 Not null (string)

So a parameter declared with that type would be decorated like this:

 [Nullable(new byte[] { 1, 1, 2, 2, 1 })]

But wait, there’s more!

NullableAttribute in simultaneously-complex-and-
simple scenarios
The compiler has one more trick up its sleeve. When all the elements in
the tree are ‘not null’ or all elements in the tree are ‘nullable’, it simply
uses the constructor with the single-byte parameter instead. So
Dictionary<List<string>, string[]> would be decorated with

Nullable[(byte) 1] and Dictionary<List<string?>?,
string?[]?>? would be decorated with Nullable[(byte) 2].

(Admittedly, Dictionary<,> doesn’t permit null keys anyway, but
that’s an implementation detail.)

Conclusion
The C# 8 feature of nullable reference types is a really complicated one. I
don’t think we’ve seen anything like this since async/await. This article
has just touched on one interesting implementation detail. I’m sure there’ll
be more on nullability over the next few months… 

References
[Microsoft] Background information: https://devblogs.microsoft.com/

dotnet/nullable-reference-types-in-csharp/

[NodaTime] Alpha build: https://www.nuget.org/packages/NodaTime/
3.0.0-alpha01

[Skeet-1] https://github.com/nodatime/nodatime

[Skeet-2] PR1240: Support nullable reference types, available at:
https://github.com/nodatime/nodatime/pull/1240

[Skeet-3] PR 1264: Use switch expressions, available at:
https://github.com/nodatime/nodatime/pull/1264

Figure 1

This article was first published on Jon Skeet’s coding blog on
10 February 2019 at https://codeblog.jonskeet.uk/2019/02/10/
nullableattribute-and-c-8/

Write for us!
C Vu and Overload rely on article contributions from both members and non-members. That’s you! Without
articles there are no magazines. We need articles at all levels of software development experience; you don’t
have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
6 | Overload | April 2019

https://www.nuget.org/packages/NodaTime/3.0.0-alpha01
https://www.nuget.org/packages/NodaTime/3.0.0-alpha01
https://github.com/nodatime/nodatime
https://github.com/nodatime/nodatime/pull/1240
https://github.com/nodatime/nodatime/pull/1264
https://codeblog.jonskeet.uk/2019/02/10/nullableattribute-and-c-8/
https://codeblog.jonskeet.uk/2019/02/10/nullableattribute-and-c-8/
https://devblogs.microsoft.com/dotnet/nullable-reference-types-in-csharp/
https://devblogs.microsoft.com/dotnet/nullable-reference-types-in-csharp/

FEATUREANDERS SCHAU KNATTEN
lvalues, rvalues, glvalues,
prvalues, xvalues, help!
C++11 introduced new value categories. Anders Schau
Knatten explains his way of thinking about them.
id you used to have some sort of intuition for what ‘lvalue’ and
‘rvalue’ mean? Are you confused about glvalues, xvalues and
prvalues, and worry that lvalues and rvalues might also have

changed? This article aims to help you develop a basic intuition for all five
of them.

First, a warning: This article does not give a complete definition of the five
value categories. Instead, I give a basic outline, which I hope will help to
have in the back of your mind the next time you need to look up the actual
details of one of them.

Back before C++11, there were two value categories, lvalue and rvalue.
The basic intuition was that lvalues were things with identities, such as
variables, and rvalues were expressions evaluating to temporaries (with no
identity). Consider these definitions:

 Widget w;
 Widget getWidget();

If we now use the expression w anywhere,
it evaluates to the object w, which has
ident i ty . I f we use the express ion
getWidget(), it evaluates to a temporary
return value with no identity. Let’s
visualise it like the diagram on the right.

However, along came rvalue references and
move semantics. On the surface, the old
lvalue/rvalue distinction seems sufficient:
Never move from lvalues (people might
still be using them), feel free to move from
rvalues (they’re just temporary anyway).
Let’s add movability to our diagram.

Why did I put ‘Can’t move’ and ‘lvalue’ in
italics in that diagram? It turns out that you
might want to move from certain lvalues!
For instance, if you have a variable you won’t be using anymore, you can
std::move() it to cast it to an rvalue reference. A function can also
return an rvalue reference to an object with identity.

So as it turns out, whether something
has identity, and whether something
can be moved from, are orthogonal
properties! We’ll solve the problem of
moving from lvalues soon, but first,
let’s just change our diagram to reflect
our new orthogonal view of the world.

Clearly, there’s a name missing in the
lower left corner here. (We can ignore
the top right corner, temporaries
which can’t be moved from is not a
useful concept.)

C++11 introduces a new value category ‘xvalue’, for lvalues which can
be moved from. It might help to think of ‘xvalue’ as ‘eXpiring lvalue’,

since they’re probably about to end their lifetime and be moved from (for
instance a function returning an rvalue reference).

In addition, what was formerly called
‘rvalue’ was renamed to ‘prvalue’,
meaning ‘pure rvalue’. These are the
three basic value categories, shown in
the diagram on the right.

But we’re not quite there yet, what’s a
‘glvalue’, and what does ‘rvalue’
mean these days? It turns out that
we’ve al ready explained these
concepts! We just haven’t given them
proper names yet.

A glvalue, or ‘generalized lvalue’, covers exactly the ‘has identity’
property, ignoring movability. An rvalue covers exactly the ‘can move’
property, ignoring identity. And that’s it! You now know all the five value
categories.

If you want to go into further detail about this topic, cppreference has a
very good article [cppreference]. 

Reference
[cppreference] Value categories: https://en.cppreference.com/w/cpp/

language/value_category

D

Anders Schau Knatten makes robot eyes at Zivid, where he strives
for simplicity, stability and expressive code. He’s also the author of
CppQuiz and @AffectiveCpp, which strive for none of the above.
Anders can be contacted at anders@knatten.org

This article was first published on Anders Schau Knatten’s C++ on
a Friday blog on 9 March 2019 at https://blog.knatten.org/2018/03/
09/lvalues-rvalues-glvalues-prvalues-xvalues-help/
April 2019 | Overload | 7

https://blog.knatten.org/2018/03/09/lvalues-rvalues-glvalues-prvalues-xvalues-help/
https://blog.knatten.org/2018/03/09/lvalues-rvalues-glvalues-prvalues-xvalues-help/
https://en.cppreference.com/w/cpp/language/value_category
https://en.cppreference.com/w/cpp/language/value_category

FEATURE MARTIN HOŘEŇOVSKÝ
Modern SAT solvers: fast, neat
and underused (part 1 of N)
SAT solvers can quickly find solutions to Boolean Logic
problems. Martin Hořeňovský demonstrates how this can
be used to solve arbitrary Sudoku puzzles.
efore I started doing research for Intelligent Data Analysis (IDA)
group at FEE CTU, I saw SAT solvers as academically interesting
but didn’t think that they have many practical uses outside of other

academic applications. After spending ~1.5 years working with them, I
have to say that modern SAT solvers are fast, neat and criminally
underused by the industry.

Introduction
Boolean satisfiability problem (SAT) is the problem of deciding whether
a formula in boolean logic is satisfiable. A formula is satisfiable when at
least one interpretation (an assignment of true and false values to
logical variables) leads to the formula evaluating to true. If no such
interpretation exists, the formula is unsatisfiable.

What makes SAT interesting is that a variant of it was the first problem to
be proven NP-complete, which roughly means that a lot of other problems
can be translated into SAT in reasonable1 time, and the solution to this
translated problem can be converted back into a solution for the original
problem.

As an example, the often-talked-about dependency management problem
is also NP-Complete and thus translates into SAT2,3, and SAT could be
translated into dependency manager. The problem our group worked on,
generating key and lock cuttings based on user-provided lock-chart and
manufacturer-specified geometry, is also NP-complete.

To keep this article reasonably short, we will leave master-key systems for
another article and instead use Sudoku for practical examples.

Using SAT solvers
These days, SAT almost always refers to CNF-SAT4, a boolean satisfaction
problem for formulas in conjunctive normal form (CNF) [Wikipedia-1].
This means that the entire formula is a conjunction (AND) of clauses, with
each clause being a disjunction (OR) of literals. Some examples:

 (A ˅ B) ˄ (B ˅ C)

 (A ˅ B) ˄ C

 A ˅ B

 A ˄ C

There are two ways to pass a formula to a SAT solver: by using a semi-
standard file format known as DIMACS, or by using the SAT solver as a
library. In real-world applications, I prefer using SAT solver as a library
(e.g. MiniSat for C++ [MiniSAT]), but the DIMACS format lets you
prototype your application quickly, and quickly test the performance
characteristics of different solvers on your problem.

DIMACS format
DIMACS is a line oriented format, consisting of 3 different basic types of
lines.

1. A comment line. Any line that starts with c is comment line.
2. A summary line. This line contains information about the kind and

size of the problem within the file. A summary line starts with p,
continues with the kind of the problem (in most cases, cnf), the
number of variables and the number of clauses within this problem.
Some DIMACS parsers expect this line to be the first non-comment
line, but some parsers can handle the file without it.

3. A clause line. A clause line consists of space-separated numbers,
ending with a 0. Each non-zero number denotes a literal, with
negative numbers being negative literals of that variable, and 0
being the terminator of a line.

As an example, this formula

(A ˅ B ˅ C) ˄ (¬A ˅ B ˅ C) ˄ (A ˅ ¬B ˅ C) ˄ (A ˅ B ˅ ¬C)

would be converted into DIMACS as

 c An example formula
 c
 p cnf 3 4
 1 2 3 0
 -1 2 3 0
 1 -2 3 0
 1 2 -3 0

Minisat’s C++ interface
MiniSat is a fairly simple and performant SAT solver that also provides a
nice C++ interface and we maintain a modernised fork with CMake
integration. The C++ interface to MiniSat uses 3 basic vocabulary types:

 Minisat::Solver – Implementation of the core solver and its
algorithms.

 Minisat::Var – Representation of a variable.

B

Martin Hořeňovský is currently a researcher at Locksley.CZ,
where he works on solving large master-key systems. In his (rare)
free time, he also maintains Catch2, a popular C++ unit testing
framework, and he used to teach a course on modern C++ at
Czech Technical University in Prague. He can be reached at
martin.horenovsky@gmail.com

1 This means polynomial, because when it comes to complexity theory,
algorithms with polynomial complexity are generally considered
tractable, no matter how high the exponent in the polynomial is, and
algorithms with exponential complexity are considered intractable.

2 At least as long as we assume that:
 To install a package, all its dependencies must be installed
 A package can list specific versions of other packages as

dependencies
 Dependency sets of each version of a package can be different
 Only one version of a package can be installed

3 In fact, various dependency managers in the wild already use SAT
solvers, such as Fedora’s DNF, Eclipse’s plugin manager, FreeBSD’s
pkg, Debian’s apt (optionally), and others.

4 There are some extensions like XOR-SAT, which lets you natively
encode XOR clauses, but these are relatively rare and only used in
specialist domain, e.g. cryptanalysis.
8 | Overload | April 2019

FEATUREMARTIN HOŘEŇOVSKÝ

Very few problems are naturally expressed
as a logical formula in the CNF format
 Minisat::Lit – Representation of a concrete (positive or
negative) literal of a variable.

The difference between a variable and a literal is that the literal is a concrete
‘evaluation’ of a variable inside a clause. As an example, formula
(A ˅ B ˅ ¬C) ˄ (¬A ˅ ¬B) contains 3 variables, A, B and C, but it contains
5 literals, A, ¬A, B, ¬B and ¬C.

MiniSat’s interface also uses one utility type: Minisat::vec<T>, a
container similar to std::vector, that is used to pass clauses to the
solver.

The example in Listing 1 uses MiniSat’s C++ API to solve the same clause
as we used in the DIMACS example.

Because all of our clauses have length , we can get away with just using
utility overloads that MiniSat provides, and don’t need to use
Minisat::vec for the clauses.

We will also need to build the binary. Assuming you have installed our
fork of MiniSat (either from GitHub [MiniSAT] or from vcpkg [vcpkg]),
it provides proper CMake integration and writing the CMakeLists.txt
is trivial (see Listing 2).

Building the example and running it should5 give you this output:

 SAT
 Model found:
 A := 0
 B := 1
 C := 1

Conversion to CNF
Very few problems are naturally expressed as a logical formula in the CNF
format, which means that after formulating a problem as a SAT, we often
need to convert it into CNF. The most basic approach is to create an
equivalent formula using De-Morgan laws, distributive law and the fact
that two negations cancel out. This approach has two advantages: one, it
is simple and obviously correct. Two, it does not introduce new variables.
However, it has one significant disadvantage: some formulas lead to
exponentially large CNF conversion.

The other approach is to create an equisatisfiable6 CNF formula, but we
won’t be covering that in this article.

Some common equivalencies are in Table 1, overleaf.

Listing 1

// main.cpp:
#include <minisat/core/Solver.h>
#include <iostream>
int main() {
 using Minisat::mkLit;
 using Minisat::lbool;

 Minisat::Solver solver;
 // Create variables
 auto A = solver.newVar();
 auto B = solver.newVar();
 auto C = solver.newVar();
 // Create the clauses
 solver.addClause(mkLit(A), mkLit(B), mkLit(C));
 solver.addClause(~mkLit(A), mkLit(B), mkLit(C));
 solver.addClause(mkLit(A), ~mkLit(B),
 mkLit(C));
 solver.addClause(mkLit(A), mkLit(B),
 ~mkLit(C));
 // Check for solution and retrieve model if found
 auto sat = solver.solve();
 if (sat) {
 std::clog << "SAT\n"
 << "Model found:\n";
 std::clog << "A := "
 << (solver.modelValue(A) == l_True)
 << '\n';
 std::clog << "B := "
 << (solver.modelValue(B) == l_True)
 << '\n';
 std::clog << "C := "
 << (solver.modelValue(C) == l_True)
 << '\n';
 } else {
 std::clog << "UNSAT\n";
 return 1;
 }
}

5. When using the library interface of MiniSat, it defaults to being entirely
deterministic. This means that if you are using the same version of
MiniSat, the result will always be the same, even though there are
different models.

6. Two formulas, f1 and f2, are equisatisfiable when f1 being satisfied
means that f2 is also satisfied and vice versa.

Listing 2

cmake_minimum_required (VERSION 3.5)
project (minisat-example LANGUAGES CXX)

set(CMAKE_CXX_EXTENSIONS OFF)

find_package(MiniSat 2.2 REQUIRED)

add_executable(minisat-example
 main.cpp
)
target_link_libraries(minisat-example
 MiniSat::libminisat)
April 2019 | Overload | 9

FEATURE MARTIN HOŘEŇOVSKÝ

you don’t have to remember these identities, but
knowing at least some of them is much faster than
deriving them from the truth tables every time
Obviously, you don’t have to remember these identities, but knowing at
least some of them (implication) is much faster than deriving them from
the truth tables every time.

Solving Sudoku using SAT
With this background, we can now look at how we could use a real-world
problem, such as Sudoku, using a SAT solver. First, we will go over the
rules of Sudoku [Wikipedia-2] and how they can be translated into (CNF-
)SAT. Then we will go over implementing this converter in C++ and
benchmarking the results.

Quick overview of Sudoku
Sudoku is a puzzle where you need to place numbers 1–9 into a 99 grid
consisting of 9 33 boxes7, following these rules:

1. Each row contains all of the numbers 1–9
2. Each column contains all of the numbers 1–9
3. Each of the 33 boxes contains all of the numbers 1–9

We can also restate these rules as:

1. No row contains duplicate numbers
2. No column contains duplicate numbers
3. No 33 box contains duplicate numbers

Because these rules alone wouldn’t make for a good puzzle, some of the
positions are pre-filled by the puzzle setter, and a proper Sudoku puzzle
should have only one possible solution.

Translating the rules
The first step in translating a problem to SAT is to decide what should be
modelled via variables, and what should be modelled via clauses over these
variables. With Sudoku, the natural thing to do is to model positions as
variables, but in SAT, each variable can only have 2 values: true and
false. This means we cannot just assign each position a variable, instead

we have to assign each combination of position and value a variable. We
will denote such variable as . If variable is set to true, then the
number in r-th row and c-th column is v.

Using this notation, let’s translate the Sudoku rules from the previous
section into SAT.

Rule 1 (No row contains duplicate numbers)

In plain words, for each row and each value, we want exactly one column
in that row to have that value. We do that by using a helper called exactly-
one, that generates a set of clauses that ensure that exactly one of the
passed-in literals evaluate to true.

We will see how to define exactly-one later. First, we will translate the
other Sudoku rules into these pseudo-boolean formulas.

Rule 2 (No column contains duplicate numbers)

This works analogically with Rule 1, in that for each column and each
value, we want exactly one row to have that value.

Rule 3 (None of the 3x3 boxes contain duplicate numbers)

This rule works exactly the same way as the first two: for each box and
each value, we want exactly one position in the box to have that value.

Even though it seems to be enough at first glance, these 3 rules are in fact not
enough to properly specify Sudoku. This is because a solution like this one:

where x denotes a position where all variables are set to true and . denotes
a position where no variables are set to true, is valid according to the rules
as given to the SAT solver.

7. There is also a notion of generalised sudoku, where you have to fill in
numbers 1-N in NxN grid according to the same rules. It is proven to be
NP-complete.

Table 1

Original clause Equivalent clause

¬¬α α

α β ¬α ˅ β

¬ (α ˄ β) ¬α ˅ ¬β

¬ (¬α ˄ ¬β) α ˅ β

 (α ˄ β) ˅ γ (α ˅ γ) ˄ (β ˅ γ)

α β (α β) ˄ (α β)

0 1 2 3 4 5 6 7 8

0 x

1 . . . x

2 x . .

3 . x

4 x

5 x .

6 . . x

7 x . . .

8 x

xr c
v
, xr c

v
,

  (,) () : (, , ,), , ,r v rows values x x xr
v

r
v

r
vexactly-one 0 1 8

  (,) () : (, , ,), , ,c v columns values x x xc
v

c
v

c
vexactly-one 0 1 8

  (,) ()

: (

box value boxes values

boexactly-one literals-in-box(xx value,))
10 | Overload | April 2019

FEATUREMARTIN HOŘEŇOVSKÝ

There is no way to encode numeric constraints
natively in boolean logic, but often you can
decompose these constraints into simpler

terms and encode these
This is because we operate with an unstated assumption, that each position
can contain only one number. This makes perfect sense to a human, but
the SAT solver does not understand the meaning of the variables, it only
sees clauses it was given.

We can fix this simply by adding one more rule.

Rule 4 (Each position contains exactly one number)

With this rule in place, we have fully translated the rules of Sudoku into
SAT and can use a SAT solver to help us solve sudoku instances. But
before we do that, we need to define the helper our description of Sudoku
relies on.

Exactly-one helper
There is no way to encode numeric constraints natively in boolean logic,
but often you can decompose these constraints into simpler terms and
encode these. Many research papers have been written about the efficient
encoding of specific constraints and other gadgets, but in this article, we
only need to deal with the most common and one of the simplest constraints
possible: exactly one of this set of literals has to evaluate to true. Everyone
who works with SAT often can write this constraint from memory, but we
will derive it from first principles because it shows how more complex
constraints can be constructed.

The first step is to decompose the constraint x == n into two parts: x  n
and x  n, or for our specific case, x  1 and x  1, or, translated into the
world of SAT, at least 1 literal has to evaluate to true, and no more than
1 literal can evaluate to true. Forcing at least one literal to be true is easy,
just place all of them into one large disjunction:

Forcing at most one literal to be true seems harder, but with a slight
restating of the logic, it also becomes quite easy. At most one literal is true
when there is no pair of literals where both of the literals are true at the
same time.

This set of clauses says exactly that, but it has one problem: it is not in CNF.
To convert them into CNF, we have to use some of the identities in the
previous section on converting formulas to CNF. Specifically, the fact that
negating a disjunction leads to a conjunction of negations, and negating a

conjunction leads to a disjunction of negations. Using these, we get the
following CNF formula:

We can also use the fact that both conjunction and disjunction are
commutative (there is no difference between x ˄ y and y ˄ x) to halve the
number of clauses we create, as we only need to consider literal pairs where
i < j.

Now that we know how to limit the number of ‘true’ literals to both at least
1 and at most 1, limiting the number of ‘true’ literals to exactly 1 is trivial;
just apply both constraints at the same time via conjunction.

C++ implementation
Now that we know how to describe Sudoku as a set of boolean clauses in
CNF, we can implement a C++ code that uses this knowledge to solve
arbitrary Sudoku. For brevity, this post will only contain relevant excerpts,
but you can find the entire resulting code on GitHub8 [Sudoku].

The first thing we need to solve is addressing variables, specifically
converting a (row, column, value) triple into a specific value that
represents it in the SAT solver. Because Sudoku is highly regular, we can
get away with linearizing the three dimensions into one, and get the number
of variable corresponding to as r  9  9 + c  9 + v. We can also use
the fact that Minisat::Var is just a plain int numbered from 0 to avoid
storing the variables at all because we can always compute the
corresponding variable on-demand:

 Minisat::Var toVar(int row, int column,
 int value)
 {
 return row * columns * values
 + column * values + value;
 }

Now that we can quickly retrieve the SAT variable from a triplet of (row,
column, value), but before we can use the variables, they need to be
allocated inside the SAT solver:

 void Solver::init_variables() {
 for (int r = 0; r < rows; ++r) {
 for (int c = 0; c < columns; ++c) {
 for (int v = 0; v < values; ++v) {
 static_cast<void>(solver.newVar());
 }
 }
 }
 }

With the variables allocated, we can start converting the SAT version of
Sudoku rules into C++ code.

 Rule 1 (No row contains duplicate numbers) is shown in Listing 3.

  (,) () : (, ,), , ,r c rows columns x x xr c r c r cexactly-one 1 2 9


lit Literals

lit

 
  i n j n i j

i jlit lit
1 1.. , .. ,

8. The real code differs in places, especially in that it is coded much more
defensively and contains more validity checking in the form of
assertions.


  

 
i n j n i j

i jlit lit
1 1.. , .. ,

xr c
v
,

When translating problems into SAT, be very careful not to rely on
unstated assumptions. While an assumption might seem common sense
to a human, SAT solvers (and computers in general) do not operate on
common sense, and will happily find a solution that is valid according to
your specification of the problem but does not make sense in the context
of human expectations.

Unstated assumptions
April 2019 | Overload | 11

FEATURE MARTIN HOŘEŇOVSKÝ

Because only one of the variables for any given
position can be set to true, the value
corresponding to that specific variable is the
value of the given position
 Rule 2 (No column contains duplicate numbers) is shown in
Listing 4.

 Rule 3 (None of the 3x3 boxes contain duplicate numbers)

This rule results in the most complex code, as it requires two
iterations – one to iterate over all of the boxes and one to collect
variables inside each box. However, the resulting code is still fairly
trivial (see Listing 5).

 Rule 4 (Each position contains exactly one number) is shown in
Listing 6.

We also need to define the exactly_one_true helper (Listing 7).

With these snippets, we have defined a model of Sudoku as SAT. There
are still 2 pieces of the solver missing: a method to specify values in the
pre-filled positions of the board and a method that extracts the found
solution to the puzzle.

Fixing the values in specific positions is easy, we can just add a unary
clause for each specified position (see Listing 8).

Because the only way to satisfy a unary clause is to set the appropriate
variable to the polarity of the contained literal, this forces the specific
position to always contain the desired value.

To retrieve a solution, we need to be able to determine a position’s value.
Because only one of the variables for any given position can be set to true,
the value corresponding to that specific variable is the value of the given
position (see Listing 9).

With the solver finished, we can go on to benchmarking its performance.

Listing 3

for (int row = 0; row < rows; ++row) {
 for (int value = 0; value < values; ++value) {
 Minisat::vec<Minisat::Lit> literals;
 for (int column = 0; column < columns;
 ++column) {
 literals.push(Minisat::mkLit(toVar(row,
 column, value)));
 }
 exactly_one_true(literals);
 }
}

Listing 4

for (int column = 0; column < columns; ++column) {
 for (int value = 0; value < values; ++value) {
 Minisat::vec<Minisat::Lit> literals;
 for (int row = 0; row < rows; ++row) {
 literals.push(Minisat::mkLit(toVar(row,
 column, value)));
 }
 exactly_one_true(literals);
 }
}

Listing 5

for (int r = 0; r < 9; r += 3) {
 for (int c = 0; c < 9; c += 3) {
 for (int value = 0; value < values; ++value) {
 Minisat::vec<Minisat::Lit> literals;
 for (int rr = 0; rr < 3; ++rr) {
 for (int cc = 0; cc < 3; ++cc) {
 literals.push(Minisat::mkLit(toVar
 (r + rr, c + cc, value)));
 }
 }
 exactly_one_true(literals);
 }
 }
}

Listing 6

for (int r = 0; r < 9; r += 3) {
 for (int c = 0; c < 9; c += 3) {
 for (int value = 0; value < values; ++value) {
 Minisat::vec<Minisat::Lit> literals;
 for (int rr = 0; rr < 3; ++rr) {
 for (int cc = 0; cc < 3; ++cc) {
 literals.push(Minisat::mkLit(toVar(
 r + rr, c + cc, value)));
 }
 }
 exactly_one_true(literals);
 }
 }

}

for (int row = 0; row < rows; ++row) {
 for (int column = 0; column < columns; ++column)
 {
 Minisat::vec<Minisat::Lit> literals;
 for (int value = 0; value < values; ++value) {
 literals.push(Minisat::mkLit(toVar(
 row, column, value)));
 }
 exactly_one_true(literals);
 }
}

12 | Overload | April 2019

FEATUREMARTIN HOŘEŇOVSKÝ
Benchmarks
As far as I could tell from a cursory search, there are no standard test suites
for benchmarking Sudoku solvers. I decided to follow Peter Norvig’s blog
post [Norvig] about his own Sudoku solver and use a set of 95 hard
Sudokus [Sudoku-data]for measuring the performance of my solver.

The measurements were done on PC with factory-clocked i5-6600K CPU
@ 3.5 GHz, the code was compiled using g++ under Windows Subsystem
for Linux, and each input was run 10 times. After that, I took the mean of
the results for each problem and put all of them into a boxplot. Since I am
a proponent of LTO builds, I also compiled the whole thing, including
MiniSat, with LTO enabled, and then benchmarked the binary.

Figure 1 shows the results.

As you can see, the LTO build performed somewhat better, but not
significantly so. What is interesting, is that the number of outliers above
the box, and the relative lengths of the whiskers, suggest that the
underlying distribution of solver’s running time over all of the inputs is

heavy-tailed. This means that the longest-running inputs will need
significantly longer to be solved than the others, and it is a common
attribute of solvers for NP-complete problems. This is because a single
wrong decision during the search for a solution can lengthen the total
runtime significantly.

There is one more question to answer, namely, how does this performance
compare with high-performance Sudoku-specialized solvers? I picked
two, ZSolver [Zhouyundong12] and fsss2 [Dobrichev], and tried running
them on the same set of problems. Not too surprisingly, they both
outperformed our SAT-based solver badly. The sort of ‘converting’ solver
we wrote will always be slower than a well-tuned specialised solver, but
they do have some advantages that can make them desirable. As an
example, I have no prior domain-specific knowledge about solving
Sudokus, but I was able to write the SAT-based Sudoku solver in less than
2 hours. It is also much more readable and extendable9.

That is all for part 1, but I have much more I want to say about SAT solvers,
so you can expect more posts on my blog both about using them, and about
their internals and the theory behind why are they so fast. 

References
[Dobrichev] fsss2: https://github.com/dobrichev/fsss2

[MiniSAT] Production-ready MiniSAT: https://github.com/master-
keying/minisat/

[Norvig] Peter Norvig ‘Solving Every Soduko Puzzle’, available at:
http://norvig.com/sudoku.html

[Sudoku] Sudoku example code: https://github.com/horenmar/sudoku-
example

[Sudoku-data] https://raw.githubusercontent.com/horenmar/sudoku-
example/master/inputs/benchmark/top95.txt

[vcpkg] Installation of MiniSAT: https://github.com/Microsoft/vcpkg

[Wikipedia-1] ‘Conjunctive normal form’: https://en.wikipedia.org/wiki/
Conjunctive_normal_form

[Wikipedia-2] ‘Sudoku’: https://en.wikipedia.org/wiki/Sudoku

[Zhouyundong12] ZSolver: http://forum.enjoysudoku.com/3-77us-
solver-2-8g-cpu-testcase-17sodoku-t30470-90.html#p216748

Listing 7

void Solver::exactly_one_true(
 Minisat::vec<Minisat::Lit> const& literals) {
 solver.addClause(literals);
 for (size_t i = 0; i < literals.size(); ++i) {
 for (size_t j = i + 1; j < literals.size();
 ++j){
 solver.addClause(~literals[i],
 ~literals[j]);
 }
 }
}

Listing 8

bool Solver::apply_board(board const& b) {
 for (int row = 0; row < rows; ++row) {
 for (int col = 0; col < columns; ++col) {
 auto value = b[row][col];
 if (value != 0) {
 solver.addClause(Minisat::mkLit(toVar(row,
 col, value - 1)));
 }
 }
 }
 return ret;
}

Listing 9

board Solver::get_solution() const {
 board b(rows, std::vector<int>(columns));
 for (int row = 0; row < rows; ++row) {
 for (int col = 0; col < columns; ++col) {
 for (int val = 0; val < values; ++val) {
 if (solver.modelValue(toVar(row, col,
 val)).isTrue()) {
 b[row][col] = val + 1;
 break;
 }
 }
 }
 }
 return b;
}

9. Try reading through the code of the linked solvers and imagine
extending them to work with 18x18 boards. With our solver, it is just a
matter of changing 3 constants on top of a file from 9 to 18.

Figure 1
April 2019 | Overload | 13

This article was first published on Martin Hořeňovský’s blog, The
Coding Nest, on 3 August 2018 at https://codingnest.com/modern-
sat-solvers-fast-neat-underused-part-1-of-n/

http://forum.enjoysudoku.com/3-77us-solver-2-8g-cpu-testcase-17sodoku-t30470-90.html#p216748
http://forum.enjoysudoku.com/3-77us-solver-2-8g-cpu-testcase-17sodoku-t30470-90.html#p216748
https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://en.wikipedia.org/wiki/Conjunctive_normal_form
https://github.com/Microsoft/vcpkg
https://raw.githubusercontent.com/horenmar/sudoku-example/master/inputs/benchmark/top95.txt
https://raw.githubusercontent.com/horenmar/sudoku-example/master/inputs/benchmark/top95.txt
https://github.com/horenmar/sudoku-example
https://github.com/horenmar/sudoku-example
http://norvig.com/sudoku.html
https://github.com/master-keying/minisat/
https://github.com/master-keying/minisat/
https://github.com/dobrichev/fsss2
https://codingnest.com/modern-sat-solvers-fast-neat-underused-part-1-of-n/
https://codingnest.com/modern-sat-solvers-fast-neat-underused-part-1-of-n/

FEATURE ANDERS MODÉN
The Duality…
Genetic algorithms can find solutions that other algorithms
might miss. Anders Modén discusses their use in conjunction
with back-propagation for finding better solutions.
Back then…
any years ago, I was working on a numerical problem. I needed to
solve an optimization problem in my work and I had a lot of trouble
finding a good solution. I tried a lot of algorithms like the Gauss-

Newton [Wikipedia-1] equation solver for least-square problems and I
tried the Levenberg-Marquardt algorithm (LM) [Wikipedia-2] to improve
the search for local optima.

All the time, my solution solver got stuck in some local optima. It was like
being blind and walking in a rocky terrain, trying to find the lowest point
just by touching the ground around you with a stick and guessing whether
the terrain went up or down.

My intuition told me that the problem was related to the inability to look
further away for low ground at the same time as looking for slopes nearby.

So I started to look for other solutions. I tried random searches and similar
methods that use some sort of random trial, but in a problem with very large
dimensionality, the random searches tried never found any ‘good’ random
values.

I needed some kind of method that had a high probability of searching in
places close to ‘old’ good solutions. If I found a local min going
downwards I should continue to explore that solution. But at the same time,
I needed to look far away in places I had never looked before at some
random distance away. Not infinitely far away but at a normal distributed
distance away. A normal distance has a mean value but can jump very far
away [Wikipedia-3].

Evolution
In my search for a suitable algorithm, I was eventually inspired by the
evolution principles in Genetic Algorithms (GA) [Wikipedia-4]. GA are
a set of well-established methods used in the Genetic Evolution of
Software and have been around since 1980. Initially used in simple tree-
based combinations of logical operations, GA have the ability to define a
large set of individual solutions. In this case, each solution is represented
a local position in the rocky landscape with parameters in a non-linear
polynomial equation. By building new solutions in new generations based
on crossover and mutations, GA provided an iterative way both to explore
local minima and to find new candidates further away. By setting up a
normal distributed random function, I got a good balance between looking
near and looking far away [Springer19].

Cost function (or, how we reward our equation)
In order to solve a non-linear equation, we need to establish a criterion of
how large an error a particular solution has. We usually identify this with
different metrics like total least-squares using different norms. A simple
least-square norm will do in this case [Wikipedia-5]. By looking at the
error (cost function) [Wikipedia-6] in a large dimensional space, we get
this rocky landscape. The LM method uses the gradient of this landscape
to go along the slope to find a better solution. Furthermore, all the methods
in back-propagation are also based on this stochastic gradient descent
principle. Basically, it’s just a Newton-Raphson solver.

Solution
I wrote an algorithm to solve non-linear optimization problems using GA
and I had a lot of fun just looking at the landscape of solutions where you
could follow the progress of the algorithm. In the start there was just a large
bunch of individual solutions randomly distributed in the numerical
landscape.

In a while, some solutions were found that actually were better than the
average and other solutions started to gather around these solutions. As the
survival of the fittest kicked in, only the best solutions were saved. These
clusters of solutions walked down the path to the lowest local point. At the
same time, solutions started to be found further away. Sometimes they died
out but sometimes they found new local optima. It was like following tribes
of native inhabitants that settled, lived and died out.

Eventually the algorithm found better solutions than the LM algorithm. It
wasn’t fast but it worked and solved my problem. When the job was done,
I also forgot about it…

Almost present time
In 2013 I was impressed by the amazing results of AI and the start of deep
learning. The technique behind convolution networks was so simple but
very elegant. I felt I had to explore this domain and quite soon I recognized
the behavior of the optimization problem. It was the same as my old non-
linear optimization problems. I saw that the steepest gradient descent
locally was just the same gradient descent as in LM and the rocky
landscape was there. Lots of local minima, large plateaus of areas with
little descent and the very large dimensionality of the solutions made my
decision obvious. I needed to try to solve this by evolution…

I started to design a system that allowed me to try both traditional back-
propagation as well as genetic evolution. I also wanted to build a system
that allowed not only the optimization parameters to evolve but also the
topology of the network. The structure of DNA inspired me as a key to
both parameter values and to topology. By having an ordered set of tokens
representing both parameters and connections, I could define an entire
network by just using different tokens in a specific order.

The birth of Cortex API
I decided to build a software ecosystem both to verify my thoughts and to
create a platform for experiments in genetic programming combined with

M

Anders Modén is a Swedish inventor working with software
development at Saab Dynamics, which is a Swedish defence
company building fighter aircraft and defence equipment. In his
spare time he likes solving math problems and he plays jazz in a
number of bands. He is also a 3D programmer and has written the
Gizmo3D game engine (www.gizmosdk.se). He also develops the
Cortex SDK in his private company, ToolTech Software.
14 | Overload | April 2019

FEATUREANDERS MODÉN

A simulation is basically a loop running the
genetic reproduction laws on a large

number of successive generations
neural networks. I named the software ecosystem Cortex, inspired by the
neurons in our brain [Modén16a]. The requirements for the system were
to be able to use both back-propagation and genetic evolution. I also
wanted the system to allow any interconnectivity between neurons as our
brain does and not only forward feed as most systems today do. The design
should be based on DNA-like genetic elements.

Genetic element classes
In my design of Cortex, there are two classes of genetic elements (the
smallest type of building block). The first class is the topology element. It
defines the actual algorithm to be used in evaluation as a large connectivity
graph. It is typically a chain of low level execution elements which we call
the ‘topology DNA’. It is described as a fully generic network topology
in high-level terms but can also be regarded as a sequence of DNA-based
functions from input to output. These elements represent the connections
between axons and dendrites in the human brain or in other animals.

The second element class is the activation or parameter class. It’s a set of
variables that defines the activation and control of the first class network
topology. It is also seen as a chain of ‘parameter DNA’, which is more or
less the actual state of the brain. It represents the chemical levels that
trigger the different synapses in the brain.

Toplogy DNA
The topology DNA is defined in my Cortex engine as a set of low-level
instructions which all execute in a very defined sequence just like a stack-
based state machine. The instructions are constructed so they can be
randomly generated, communicate through registers and have local
memory. The topology DNA is executed by a virtual machine just like a
JVM, and a JIT compiler in the backend part can also accelerate it
[Modén18].

Parameter DNA
The parameter DNA is a set of register values used by the topology DNA
for memory access and parameter control. Different algorithms in a
population can have the same topology but individual parameter DNA.
Maybe you can regard the topology DNA as the definition of the ‘creature’
and the parameter DNA is its personal skill or personality.

Genetic laws
The reproduction of a new generation of DNA is based on three basic
genetic rules that affect parameter DNA

1. Crossover

Two parents’ DNA are combined in a number of ways. Some will
be just new random outcomes but some will eventually inherit the
good parts from both parents. Crossover can occur in one or multiple
split points of the DNA chains. The dimensionality in a correctly
constructed crossover is a subspace aligned with the gradients.

2. Mutation

A DNA position can be altered to a completely new DNA value.
Typically created by chemical processes or radiation in real life. The
dimensionality of this is high unless you limit the number of
possible mutations in a DNA.

3. Biased crossover or breeding

This is a new term defined by the Cortex project but it is a very
strong function. It uses two parents in a standard crossover but the
results are biased towards a parent DNA value but not necessarily
the same one. A crossover selects the same values from either
parent. A breeding can be a linear combination with both positive
and negative factors. An interpretation of the genetic law could be
that it represents the ‘environmental’ effect (education, breeding or
life experience) as you grow and it is not used in common GA as
they are purely defined by genetic inheritance. This law allows a
child to have genomes inherited as a function of parent’s genome.
The dimensionality of this linear combination is still a subspace with
a bounding volume aligned with the gradient as a convex hull which
is extremely important.

There is also one genetic rule for topology DNA

1. Connectivity changes

The topology DNA is defined by instructions. The topology can be
though of as an infinite number of neurons where all neurons are
interconnected but with all weight factors set to zero. The Cortex
Assembly Language simulates these neurons and their connectivity.
By adding or removing instructions, you can simulate different
topologies. Just like the other genetic laws, there are random
additions of new routes between neurons. When the weights in the
parameter topology are close to zero, the connections are removed.

These 4 rules are used to create new individuals in a new generation. The
parameter DNA changes each new generation while the topology
connectivity change seldom occur.

Simulation
A simulation is basically a loop running the genetic reproduction laws on
a large number of successive generations. You start out with a start
population that is a random set of individuals with random-generated
DNA. The random values must have a normal distribution.

The number of individuals in the first generation represents the ‘survivor
of the fittest’ and each new generation of new individuals will compete
against this set. If their evaluated fitness function scores a value which is
better that the worst fitness value in the first generation, the new individual
will get into the ‘survivors set’ and the worst individual will die.

If the simulation is run in multiple instances on a distributed network, they
all have different sets but the new candidates will be distributed if they
manage to get in on the survivors list and then they will be able to get into
other instances’ ‘survivor sets’. Eventually the sets will converge to a
common set of individuals. Notice that this part doesn’t need any closed
April 2019 | Overload | 15

FEATURE ANDERS MODÉN

This sudden emergence of a new group is
really the strength of the evolution principle
loop. Only the best DNA are broadcast and this is a huge benefit compared
to back-propagation as you can scale this up without any limit.

Fitness function
In order to successfully rank the solutions in each generation, you need a
global fitness function that can be evaluated for each individual. One cost
isn’t enough as you are in this large multidimensional-parameter
landscape. Instead you need a distribution of costs that can be compared.
If your input/output contains a large set of input values and expected
outputs and they follow the same statistical distribution, you can evaluate
a statistical cost function using a large number of representative samples
from a subset. The subset will follow the same distribution and can
therefore be compared using different metrics like Frobenius norm, L2
norm or cost functions like SoftMax in back-propagation.

The Cortex engine combines the same cost functions used in back-
propagation with the sampled cost function for the GA, which makes them
use the same input/output and the same distribution of data.

Flow
In the beginning of a simulation, you may notice a high degree of chaos.
Not that many individuals score really well, but after a while you will
see a number of groups emerge. They represent a local max on the high-
degree function surface. The mathematical solution is a very high-degree
nonlinear function with multiple local min/max. In a traditional solver,
you interpolate the gradients in the function to step towards the best local
max value and this is seen as a successive improvement of the fittest in
each local group generation by generation. BUT you will also eventually
see new groups started far away from existing groups within completely
new local min/max. A traditional LM solver will then not be able to find
in its gradient search state, and many times this is also true for a deep
neural network in its back-propagation when the problem is very flat with
lots of local min/max, since this is a problem for the stochastic gradient
search too.

This sudden emergence of a new group is really the strength of the
evolution principle. A new ‘feature’ can be so dominant that new
individuals now replace all offspring that were previously part of the
‘survivor’ groups. Some old strong genomes are often preserved for a
number of generations but if they don’t lead to new strong individuals, they
will be drained and disappear.

By having larger populations, the old strong genomes will survive longer
and there is a higher probability that an old strong genome will combine
with a future very new strong genome.

Building DNA
Let’s start with building a fixed topology network and select a very basic
model.

To compare with other existing neural network APIs, we select a basic
[input-4-4-output] network (see Figure 1, overleaf).

The code to realize this network in Cortex is shown in Listing 1.

The cortex layers are now defined and the connections (synapses) are
connected using the forward feed pattern. All neurons between each layer
are fully connected to each other.

Generating the code
We will now tell the network to generate an assembly a like program from
the network that can be used to evaluate the network. First, we compile it…

 // Compile it and clear all internal data,
 // possibly optimize it
 // cortex->compile(TRUE,optimize);

And then we set some random values in the DNA parameters…

 // Provide some random start values
 cortex->getContext()->
 randomParameters(1.0f/(neurons));

We now have generated an assembly-like program that in the future could
possibly be run by a dedicated HW. We can take a look at the
‘disassembler’ of this program to understand the content.

The disassembly looks like Listing 2. The first section contains
information about instructions and parameters. There are 33 value states.
One for each node and one for each synapse. There is one input register
and 33 parameter registers. These correlate to the node's different internal
attributes. Compare with bias and weights in a normal network.

Listing 1

// Create a brain
ctxCortexPtr cortex=new ctxCortex;

// define input output as derived classes of
// my input and output
ctxCortexInput *input=new MyCortexInput();
ctxCortexOutput *output=new MyCortexOutput();

// Create an output layer that has the right size
// of output
output->addLayerNeurons(output->getResultSize());

// Add input/output to brain
cortex->addInput(input);

// Add input to brain
cortex->addOutput(output);

// create internal layers. two layers with
// 4 neurons in each
cortex->addNeuronLayers(2,4);

// Connect all neurons feed forward
cortex->connectNeurons
 (CTX_NETWORK_TYPE_FEED_FORWARD);
16 | Overload | April 2019

FEATUREANDERS MODÉN

All mutations and crossovers and breeding are
performed on the parameter DNA
As you see above, the topology of synapses and neurons is translated into
reading values from specific registers, doing some functions on the values
and storing the value result in a new register.

Now this is an important statement. If we had an infinitely large network
where all nodes were interconnected, we could model all networks just by
the parameter values and set all weights to zero where we don’t have any
synapses. This would result in an infinitely huge parameter DNA with just
some sparse values and the rest being zeros. Instead, we divide the DNA
into parameter DNA that has non-zero values most of the time and use a
topology based on random interconnections modelled by the CAL
instructions.

These two DNA parts are then kind-of exchangeable, where you can look
at the parameters only or parameters and instructions together. This forms
an important criterion in the evolving of the network. All mutations and
crossovers and breeding are performed on the parameter DNA. During a
simulation, the parameter DNA are evaluated and updated a lot. Then,
every now and then, a network update occurs in an individual. A synapse
is added with weight 0. This gives the same result as all the other cost-

Figure 1

Listing 2

-- Compiled Cortex Program --
Instructions:311
ValueStates:33
Parameters:33
LatencyStates:0
SignalSources:1
InputSignals:1

------------ SubRoutines ---------------
 Threads:1
--

---- Thread:0 ----
 Offset:0
 Length:310
 Pass:0
April 2019 | Overload | 17

FEATURE ANDERS MODÉN

…a parameter that represents a weight that
stays at zero for several generations could be
exchanged for a removed synapse…
function evaluations but now we have a new parameter to play with. In the
same fashion, a parameter that represents a weight that stays at zero for
several generations could be exchanged for a removed synapse but in my
simulations, I have chosen to let them stay so my network keeps growing
but with more zeros.

Duality between GA and Neural Network
Gradient Descent
As stated before, the strength of GA is in finding a new set of survivors
far away from the current solutions. This is hard using a traditional LM
but the LM is very good at incrementing the last steps to the best local
solution; that is also true for the back-propagation method for Neural
Networks using stochastic gradient descent. The GA takes a long time to
find the ‘optimal local min/max’. It will find new solutions but they rely
on random changes and not as targeted as the LM is.

So the duality exists between them. The GA will find new start points and
the back-propagation of Neural Networks will find local min/max points.
Cortex implements a hybrid mechanism that jumps between the two search
modes.

Duality example
To exemplify the strength of the duality between Genetic Algorithms (GA)
and Neural Network (NN) back-propagation a simple example is used
[Modén16c].

In this example we use a simple target function like sin(x). We want the
neural network when given an input [0,2PI] to generate a sin(x) curve. A
sin(x) curve is easy for us humans to recognize and we know that it can be
described as a Taylor series of higher dimensions

The network knows nothing about the actual function but only the target
value output for each x. We can choose any other function or non-
continuous transfer function. It doesn’t matter. We are just interested in
how a neuron network will simulate this and that it should be easy for us
to look at it and understand it.

We start with a simple neural network with 20 neurons in each layer and
just one mid layer. Listing 3 (overleaf) is the code to set up our start
topology. We do no topology evolution in this example.

The input layer is a single neuron and the output is also a single neuron.
We use the ELU (exponential linear unit) activation function and we train
in batches of 10 samples in each batch. In total, we sample the sin function
with 1000 steps, which gives us 100 iterations then for each epoch.

We initialize the neurons with zero mean and standard deviation of 1/20
(the number of neurons in each layer) and use a back-propagation step of
0.1. This is the result of the back-propagation…

Let me explain the charts (see Figure 2, overleaf)…

The most important chart is the ‘Error Magnitude’ chart (top right). It
shows the error of the cost function for each iteration. This function should
decrease as an indication of that we are learning. In this case we use a
magnitude cost function L2 norm so it basically the sum of all squaredListing 2 (cont’d)

---- Commands ----
RCL Input (0) { Recall input register SP: +1 }
MULT Param (0) { multiply with param register }
TEST Drop Value (0) { Test drop value register }
STO Value (0) { Store value register SP: -1 }
RCL Value (0) { Recall value register SP: +1 }
ADD Param (1) { add param register }
NFU (7) { Neuron function }
STO Value (1) { Store value register SP: -1 }
RCL Value (1) { Recall value register SP: +1 }
MULT Param (2) { multiply with param register }
TEST Drop Value (2) { Test drop value register }
STO Value (2) { Store value register SP: -1 }
RCL Value (2) { Recall value register SP: +1 }
RCL Input (0) { Recall input register SP: +1 }
MULT Param (3) { multiply with param register }
TEST Drop Value (3) { Test drop value register }
STO Value (3) { Store value register SP: -1 }
RCL Value (3) { Recall value register SP: +1 }
ADD Param (4) { add param register }
NFU (7) { Neuron function }
STO Value (4) { Store value register SP: -1 }
RCL Value (4) { Recall value register SP: +1 }
MULT Param (5) { multiply with param register }
TEST Drop Value (5) { Test drop value register }
.
. (CUT, see [Modén16b])
.
ADD Param (30) { add param register }
NFU (7) { Neuron function }
STO Value (30) { Store value register SP: -1 }
RCL Value (30) { Recall value register SP: +1 }
MULT Param (31) { multiply with param register }
TEST Drop Value (31){ Test drop value register }
STO Value (31) { Store value register SP: -1 }
CL Value (31) { Recall value register SP: +1 }
SUM Stack (4) { Sum stack values SP: -3 }
ADD Param (32) { add param register }
NFU (7) { Neuron function }
STO Value (32) { Store value register SP: -1 }
RCL Value (32) { Recall value register SP: +1 }
DROP { drop stack value SP: -1 }
RCL Value (32) { Recall value register SP: +1 }
DROP { drop stack value SP: -1 }
--
 Passes:1
 MinLen:310
 MaxLen:310
 TotLen:310
 AvgLen:310
 Pass:0 Threads:1 Len:310 AvgLen:310
18 | Overload | April 2019

FEATUREANDERS MODÉN

The strength of GA is in finding a new set of
survivors far away from the current solutions
errors in the estimated output function(x) compared to sin(x). When the
cost function is zero, we have the correct output.

The next important chart is the ‘delta-err’ chart (bottom centre). It shows
the error for each sample as a function of (x) compared to the sin(x) target
function. Optimally this will be zero for all values when the trained
function is near or equal the target function sin(x). As we define the
function with 1000 values for x, we want the graph to show delta error =
0 for each x.

And the ‘value’ chart (bottom right) actually shows the estimated output
function, which should be sin(x) for each x. Right now we can see that the
output is starting to get the shape of a straight line with some bends in the
ends. As we just defined it using one layer, we have typically a network
of parallel neurons that handles local segments of the transfer function.

The ‘delta’ chart (bottom left) shows the error propagated through the
network for each iteration to the last node, which is the input node. Look
at the delta values in back-propagation [Wikipedia-7]. One delta for each
connection but only the 5 first deltas are drawn. In a shallow network, it
is quite easy to propagate delta to the last node so the magnitude are ‘rather’
high in this case. That means that the last layer is updated with ‘training’
information. If a network starts to learn, the deltas will increase.

After a small number of iterations (20–100) we can see that the target
function is looking like a sin(x) curve. (See Figure 3, opposite.)

Listing 3

// Create a brain
ctxCortexPtr cortex=new ctxCortex;

// define input output as derived classes of
// my input and output
ctxCortexInput *input=new MyCortexInput();
ctxCortexOutput *output=new MyCortexOutput();

// Create an output layer that has the right size
// of output
output->addLayerNeurons(output->getResultSize());

// Add input/output to brain
cortex->addInput(input);

// Add input to brain
cortex->addOutput(output);

// create internal layers. one layer with
// 20 neurons in each
cortex->addNeuronLayers(1,20);

Figure 2
April 2019 | Overload | 19

FEATURE ANDERS MODÉN

In genetic training, the probabilities of finding
solutions are not randomly equally distributed.
The delta error of the output is rippling around 0 but with pretty large
values (1/100–1/10). We can draw the conclusion the network is learning.
The cost error magnitude is continuously decreasing. As we have 20
neurons in parallel in the mid layer, we can continue to iterate to get better
precision with smaller back-propagation steps. To make the neural
network more sensitive to deep layers (making it less likely to get stuck
in local optima), we just use a simple momentum as the gradient function.
RMS or Adam would improve performance.

This first step shows that the back-propagation mechanism is very fast at
finding solutions in the NN that converge to a sin function. This is done
in seconds. The conclusion is that this feature is trained very easily in a
shallow network using simple batch gradient descent.

But let’s see what happens in a deep network – or, at least, a deeper network
– when we increase the layers and neurons. We now use 6 layers instead.

After a large number of iterations, the output is still just random (see
Figure 4). The output doesn’t resemble the sin(x) target function. The delta
error shows that the output is pretty much a noisy dc level, which makes
the error a noisy sin(x). The deltas propagated through the network are now
very low because each hidden layer kind-of reduces the energy in the back-
propagation. The cost magnitude isn’t really decreasing and the system
isn’t learning much at the beginning.

After a while, the training finally is able to kick some data through the
network. Figure 5 shows the information after 14700 iterations.

The error magnitudes start to drop and the deltas propagated through the
network start to increase. If we had selected a ReLU or a tanh activation
function, it would have taken even longer to reach this state.

A deep network has a larger number of parameters and a larger ‘equation’
with many more minimums and saddle points, and therefore the gradient
search mechanism – even if it is boosted with speed and momentum and
other smart features – will take longer to iterate to a proper solution.
Gradient selection methods like Adam and RMSProp are really good but
they still struggle in deeper networks.

Now let’s introduce genetic training. In genetic training, the probabilities of
finding solutions are not randomly equally distributed. There is a higher
probability of finding solutions where the previous generations succeeded,
which is the fundamental property of evolution. ‘The survival of the fittest’.

Figure 6 on page 22 shows what genetic training can look like.

Genetic training uses evolution to find new candidates in the population.
In the beginning, the first populations just contain garbage but very quickly
(in this case in seconds) even if there are 6 layers and 20 neurons in each
layer, the genetic algorithm finds a bit better candidate. The genetic
algorithm doesn’t care about delta levels, so the innermost layers can
instantaneously be updated by the genetic evolution.

The solutions found first have a value curve far from a sine and the delta-
err is still a sine. But pretty quickly, the value curve starts showing sine-
like shapes.

Figure 3
20 | Overload | April 2019

FEATUREANDERS MODÉN

The genetic algorithm doesn’t care about delta
levels, so the innermost layers can instantaneously

be updated by the genetic evolution.
Figure 4

Figure 5
April 2019 | Overload | 21

FEATURE ANDERS MODÉN

The solutions found first have a value curve far
from a sine and the delta-err is still a sine
In this case (Figure 7) the genetic solver actually finds a
better solution in a shorter time than the back-propagation
mechanism.

The genetic solution will be a good one but perhaps not the
very best we can find. It finds ‘global’ good solutions very
quickly but the fine-grained tuned solutions will take a
longer time to find (see Figure 8 on next page).

But the NN back-propagation, as noted before, was very
efficient to iterate when a good solution was found. Can
we use this to improve our genetic result?

We put the result from the genetic evolution into the NN
back-propagation and we get Figure 9 (on the next page).

Instantly we can see that the NN back-propagation picks
up a very good solution from the beginning. In this case we
find a better solution than we previously found using only
traditional back-propagation. The deltas are large from the
start and the magnitude of error drops immediately. This
shows that the solution found by the genetic evolution was
a very good candidate and that the NN back-propagation is capable of
iterating this solution to a better solution immediately.

This clearly shows the duality in one direction. The other direction is more
trivial. You can feed better solutions into the GA using results from the
NN and therefore improve the fittest solutions.

This result then defined the duality (state machine) between NN and GA.

I do believe the strong mechanisms of GA and the capability to run almost
infinitely large parallel simulation either in the cloud or in Quantum
Computers in the future will evolve the techniques of using GA.

Thanx for reading

Further reading
 Genetic Programming and Evolvable Machines,

ISSN: 1389-2576
https://link.springer.com/journal/10710

 Link to Sebastian Ruder’s excellent pages on
various gradient optimization methods
http://ruder.io/optimizing-gradient-descent/

 Link to article about CAL. The Cortex Assembler
Language: https://www.linkedin.com/pulse/cortex-
assembler-language-20-anders-modén/

 Article about Sussex GA Robotic SAGA framework
http://users.sussex.ac.uk/~inmanh/MonteVerita.pdf

 Full source for CAL execution example
http://tooltech-software.com/CorTeX/
execution_example.pdf

 The Cortex Engine
https://www.linkedin.com/pulse/cortex-genetic-
engine-anders-modén/

 Deep Genetic Training
www.tooltech-software.com/CorTeX/Deep_Genetic_Training.pdf

References
[Modén16a] Modén, A. (2016) CorTeX Genetic Engine, LinkedIn,

14 April 2016: https://www.linkedin.com/pulse/cortex-genetic-
engine-anders-modén/

[Modén16b] Modén, A. (2016) CAL Execution Example, ToolTech
Software, 1 June 2016: http://tooltech-software.com/CorTeX/
execution_example.pdf

[Modén16c] Modén, A. (2016) Deep Genetic Training, ToolTech
Software, 1 June 2016: www.tooltech-software.com/CorTeX/
Deep_Genetic_Training.pdf

Figure 6

Figure 7
22 | Overload | April 2019

https://link.springer.com/journal/10710
http://ruder.io/optimizing-gradient-descent/
https://www.linkedin.com/pulse/cortex-assembler-language-20-anders-modén/
https://www.linkedin.com/pulse/cortex-assembler-language-20-anders-modén/
http://users.sussex.ac.uk/~inmanh/MonteVerita.pdf
http://tooltech-software.com/CorTeX/execution_example.pdf
https://www.linkedin.com/pulse/cortex-genetic-engine-anders-modén/
www.tooltech-software.com/CorTeX/Deep_Genetic_Training.pdf
https://www.linkedin.com/pulse/cortex-genetic-engine-anders-modén/
https://www.linkedin.com/pulse/cortex-genetic-engine-anders-modén/
http://tooltech-software.com/CorTeX/execution_example.pdf
http://tooltech-software.com/CorTeX/execution_example.pdf

FEATUREANDERS MODÉN

The strong mechanisms of GA and the
capability to run almost infinitely large

parallel simulation … will evolve the
techniques of using GA
[Modén18] Modén, A. (2018) Cortex Assembler
Language 2.0, LinkedIn, 10 July 2018:
https://www.linkedin.com/pulse/cortex-assembler-
language-20-anders-modén/

[Springer19] (2019) ‘Genetic Programming and
Evolvable Machines’ on Springer Link:
https://link.springer.com/journal/10710

[Wikipedia-1] Gauss-Newton algorithm:
https://en.wikipedia.org/w/index.php?title=Gauss%
E2%80%93Newton_algorithm&oldid=886266631

[Wikipedia-2] Levenberg-Marquardt algorithm:
https://en.wikipedia.org/w/index.php?title=
Levenberg%E2%80%93Marquardt_algorithm&
oldid=888015378

[Wikipedia-3] Normal distribution:
https://en.wikipedia.org/w/index.php?title=
Normal_distribution&oldid=887884220

[Wikipedia-4] Genetic algorithm: https://en.wikipedia.org/w/
index.php?title=Genetic_algorithm&oldid=887643125

[Wikipedia-5] Lp space: https://en.wikipedia.org/w/
index.php?title=Lp_space&oldid=887448344

[Wikipedia-6] Artificial neural network: https://en.wikipedia.org/w/
index.php?title=Artificial_neural_network&oldid=887630632

[Wikipedia-7] Backpropagation: https://en.wikipedia.org/w/
index.php?title=Backpropagation&oldid=886645221

Figure 9

Figure 8
April 2019 | Overload | 23

https://www.linkedin.com/pulse/cortex-assembler-language-20-anders-modén/
https://link.springer.com/journal/10710
https://en.wikipedia.org/w/index.php?title=Gauss%
E2%80%93Newton_algorithm&oldid=886266631
https://en.wikipedia.org/w/index.php?title=
Levenberg%E2%80%93Marquardt_algorithm&
oldid=888015378
https://en.wikipedia.org/w/index.php?title=
Normal_distribution&oldid=887884220
https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&oldid=887643125
https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&oldid=887643125
https://en.wikipedia.org/w/index.php?title=Lp_space&oldid=887448344
https://en.wikipedia.org/w/index.php?title=Lp_space&oldid=887448344
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=887630632
https://en.wikipedia.org/w/index.php?title=Artificial_neural_network&oldid=887630632
https://en.wikipedia.org/w/index.php?title=Backpropagation&oldid=886645221
https://en.wikipedia.org/w/index.php?title=Backpropagation&oldid=886645221

FEATURE TEEDY DEIGH
Blockchain-Structured
Programming
Coins are a wedge-shaped piece used for some purpose.
Teedy Deigh shares her angle on the technology
underpinning cryptocurrencies.
henever a new programming paradigm is hailed it is more often
of a blend of existing paradigms than being genuinely novel. For
example, what do you get when cross reactive programming (Rx)

with functional programming? Functional reactive programming (FRP),
which is essentially a prescription without side effects.

Or acclaimed new paradigms are simply existing paradigms with a twist.
For example, what do you get when you take procedural programming and
eliminate side effects? Functional programming.

Sometimes such a twist may be a cynical corruption. For example, what
do you get when take a pragmatic approach to functional programming,
such as allowing some side effects? Pragmatic functional programming
(a.k.a. procedural programming).

And so it is that cynicism and corruption bring us to the new kid on the
block. What do you get when you cross the elegant and reasoned
hierarchies of block-structured programming with the clarity, fairness and
accountability of unregulated capitalism? Blockchain-structured
programming.

In one sense, this blended paradigm represents a new mix, yet in another
it can claim a long history. For example, pyramid schemes date back to
ancient Egyptian times. The privateering (a.k.a. piracy, theft, government-
backed enterprise) that kicked off Europe’s imperial age popularised
pieces of eight as a currency. In modern computing terms, the division of
a byte into pieces of eight results in bits, hence Bitcoin. Another
cryptocurrency, Ether, is named for the insubstantial and fictitious medium
that, in the 19th century, was believed to propagate light.

Naming offers many insights: Litecoin is named for its lack of financial
weight; PotCoin is dope; and Namecoin has yet to be named – as
developers know, naming is hard. As for blockchain itself, although the
term clearly describes a list structure, it also seems to double up as the seed
word in a word association game, to which the most obvious response
would be flushplunger.

In traditional computer science, algorithms and data structures are
described in terms of performance costs. Insertion into a conventional
linked list has a cost of O(1), for instance. A similar theme underpins
blockchains, but the measures are more generous. Insert a record into a list
using a cryptographic hash and you can be talking a cost of 1 MWh. Indeed,
the costs are so severe that instead of using IDEs (Integrated Development
Environments), blockchain-structured programmers favour DIED (Doing
Insertions with Environmental Destruction).

The energy consumption of Bitcoin, for example, is on a par with that of
a nation like Switzerland. But unlike Switzerland, which uses its utilities
to support a well-regulated banking system, CERN and chocolate, Bitcoin

has so far eluded utility. Often touted as a currency, it behaves more like
a speculative asset – mostly, people speculating as to whether or not it’s
actually an asset. The specific mechanism in Bitcoin that has proven so
costly is its proof-of-work algorithm (POW, see also Prisoner of War).
Proving that Bitcoin works has taken more time and energy than expected
– unlike rigorous, reasoned and environmentally neutral high-energy
physics experiments, it’s not going well.

Data structures in the blockchain world have many superficial similarities
to more conventional data structures. For example, instead of lists having
a head, they have a blockhead. The same word substitution can also apply
to those who head blockchain companies. Classic singly linked lists, such
as found in Lisp, are often created using cons. This is the same in
blockchain-structured programming.

There appear to be many operators in blockchain-structured programming,
but many seem to have dubious reputations – cryptocurrencies have proven
surprisingly popular in the kinds of international trade frowned upon by
less entrepreneurial individuals hindered by decency and morals.

Perhaps one of the most popular operators is the exchange operator.
Where exchange and swap are similar in conventional programming, in
blockchain-structured programming an exchange involves gambling with
speculative assets cryptographically, whereas the swaps market involves
gambling with speculative assets without the assistance of cryptography.
Exchange operators are therefore defined on Bitcoin-set as opposed to bit-
set structures. These are often password-protected by a charismatic
founder (or head, see above) who may drop dead at any moment –
cryptonite that adds a certain frisson to chaining one’s finances to blocks.
In such cases the underlying architecture of a distributed, tolerant and
anonymous ledger model is considered ironic.

As with any programming paradigm in the 21st century, blockchain-
structured programming addresses distribution and concurrency.
Blockchains are inherently distributed and their transactions make much
more sense if you drop ACID. Concurrency is typically addressed through
smart contracts. As with most other things labelled smart, they’re not, and
still accommodate many classes of error that programmers have come to
expect – even demand! – from their concurrency models, such as race
conditions and re-entrancy problems. Being able to have a race fits well
with the competitive ethos of blockchain-structured programming.

We can conclude that underpinning many cryptocurrencies is a simple
design pattern: the Blockchain of Irresponsibility. Blockchain-structured
programmers are quick to counter that the inefficiencies and lack of
accountability inherent in many cryptocurrencies and blockchain models
should not be used to judge all blockchain applications. They contend that
blockchain is a good solution, albeit one in need of a good problem. 

W

Teedy Deigh Devoted as she is to her Fiat Uno, Teedy Deigh is not
as much a fan of fiat currency, preferring instead to keep her
investments spread across Amazon vouchers, Linden dollars, the
gold of Azeroth and other ersatz mattresses.
24 | Overload | April 2019

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

CODE
MAXIMIZED

Develop high performance parallel applications from
enterprise to cloud, and HPC to AI using Intel® Parallel
Studio XE. Deliver fast, scalable and reliable, parallel code.

#HighPerformance

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
© Intel Corporation

from
£510

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner

To find out more about Intel products please contact us:

020 8733 7101 | sales@qbs.co.uk | www.qbssoftware.com/parallelstudio

QBS A4-Intel-PSXE-Code-Maximized.pdf 1 24/09/2018 17:31

	This means war!
	NullableAttribute and C# 8
	lvalues, rvalues, glvalues, prvalues, xvalues, help!
	Modern SAT solvers: fast, neat and underused (part 1 of N)
	The Duality…
	Blockchain-Structured Programming
	2009-07-01 Care About Code - online.pdf
	Slide 1

