

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

April 2018 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 No News is Good News
Paul Floyd uses Godbolt’s compiler explorer to
see what happens when you use ‘new’.

8 Monitoring: Turning Noise into Signal
Chris Oldwood shows the benefits of structured
logging.

12 The Interface to Component Pattern and
DynaMix
Borislav Stanimirov demonstrates the DynaMix
library for dynamic polymorphsim in C++.

16 5 Reasons NOT to Use std::ostream for
Human-Readable Output
Sergey Ignatchenko shows why the {fmt} library
is better than std::ostream.

21 Practical Cryptographical Theory for
Programmers
Deák Ferenc helps you get started with
cyrpotgraphy.

28 Ex Hackina
Teedy Deigh takes the Turing test.

OVERLOAD 144

April 2018
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Andy Balaam
andybalaam@artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson@gmail.com

Klitos Kyriacou
klitos.kyriacou@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover art and design
Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 145 should be submitted by
1st May 2018 and those for
Overload 146 by 1st July 2018.

EDITORIAL FRANCES BUONTEMPO
Deeds not words
Women’s suffrage used the motto “Deeds not Words".
Frances Buontempo applies this to programming.
It’s about time I got on and wrote an editorial. I have
been making excuses for well over five years now!
Well, I say that, and I am sure our readers all agree.
It’s much easier to say something than actually get on
with it. I have previously considered why it can be
important to talk things through as a team before

rushing in to solve a problem or write code [Buontempo15]. Charles
Tolman’s recent mini-series also reminded us that changing code to
speed it up, without careful measuring and thinking first, can make
problems worse [Tolman17]. However, “There is a time for everything,
and a season for every activity under the heavens... A time to search and
a time to give up. A time to keep and a time to throw away.” [Ecclesiastes
3:1]. There is a time for meetings and a time for coding. There is a time
for words and a time for deeds.
This year sees the centenary of women being given the vote in the UK, a
select few women to be fair. The internet tells me “Parliament passed an
act granting the vote to women over the age of 30 who were
householders, the wives of householders, occupiers of property with an
annual rent of £5, and graduates of British universities.” [Wikipedia-a].
The internet also tells me women could originally vote, or at least were
not explicitly excluded, but the Reform Act stopped this. The act also
stopped most men from voting. Landownership and occupation, and
gender, became criteria for enfranchisement. During the First World
War, many women took over roles usually performed by men, bringing
the question of voting to the fore. War often brings about unexpected
changes, from technological innovations, such as computers, to social
reform! “There is a time for war and a time for peace.” [Ecclesiastes 3:8].
I’m not suggesting war is a good thing, rather that the effects are
interesting and unexpected. Who would have predicted a war would start
conversions about women’s suffrage or voting? Calling members of the
Women’s Social and Political Union ‘suffragettes’ seems to have been a
deliberate insult [Oxford Dictionaries], adding the diminutive ette to
suffrage to subtract from the movement. The word now sticks and the
original connotation is lost. Words do matter, but sometimes deeds are
more important or more likely to get results. I believe “Deeds not words”
became one of the suffragettes’ slogans while campaigning via hunger
strikes, riots and similar [Parliament.uk]. Do you have a motto or slogan?
After a long discussion about a comment that did not match some code in
a role a long while ago, I used “Delete the comment and fix the code” as
a motto for a while. I still maintain this is a worthwhile life goal. It’s not
as extreme as starting riots, but a form of direct action is sometimes

required. There are times when words are not
enough.

Words come in many forms, sometimes
written, sometimes in a telco, sometimes

face to face, or even via webcasts. Let’s talk about meetings. How many
of you get stuck in meetings, of increasing length and frequency, nearer
a release in order to talk about the impending doom? Or success? Do you
have lots of meetings before you even begin a software project? It can be
frustrating to sit through a meeting talking about software without having
a chance to experiment and explore first, so that decisions and action
points can be based on knowledge rather than speculation. Speculating is
important, but does not require a meeting, rather a gathering to devise,
plot and dream. Of course, you need to meet up and share what you have
found out. You do need meetings, but not all the time! I am stuck in a
form of personal meeting madness. I even visited Chichester cathedral on
holiday the other week and was shocked to see a large gathering in the
nave. It turned out to be a Women’s Institute and flower arrangers’
meeting, plotting a flower festival later in the year. I have no idea how or
why I end up in so many meetings. Or why so many of them go on for so
long. Wandering into the flower arranger’s meeting was an absurdness
that amused me.
Assuming you manage to sanitise your meetings, keeping them on time
and on topic, keeping irrelevant chatter for the water cooler or the pub,
what other ways do words get in the way of deeds? A perennial problem
of documentation persists for many programmers. This is related to the
tension over meetings that has been tormenting me recently. Managers
and product owners want to be kept up to date with the current state of
play, and understand what choices have been made, so they can steer
development and keep things on track. Developers also want to write
working software, but if they spend all day in meetings they can’t do their
job. If the developers refuse to attend meetings, the managers can’t do
their job. You can find a balance point to keep everyone happy and the
project moving along, but it takes work. Similarly, managers tend to
request documentation. They don’t want to have to wade through
thousands of lines of code to understand what a product does or how it
works. A developer, on the other hand, might just break down in tears if
confronted with fifty or so pages of documentation ‘summarising’ how
50 lines of code works, particularly if they can’t find the code because the
latest version isn’t in version control. What gives?
Automatic generation of documentation seems like the best way to solve
this problem. Most of us have encountered Doxygen at some point
[Doxygen]. It can be really useful. However, there is no substitute for a
short readme file, showing how to build and run the code. Automatically
generated documentation is very unlikely to include this. I have been
working with Chris Simons, preparing a workshop for this year’s ACCU
conference [ACCU18]. We will demonstrate how to use a Java
framework for evolutionary computing, which Chris has written about
previously [Ramirez17]. The framework is very powerful; however, the
main documentation consists of a 65 page pdf, replete with UML

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | April 2018

EDITORIALFRANCES BUONTEMPO
diagrams and worked examples and there is a doxygen generated
webpage. To be fair, there are notes on how to build and run the examples!
Despite all this, I am none the wiser as to what BLXAlphaCrossover is
[Sourceforge]. Obviously, it is a crossover operator, that’s what the X
means (you guessed that, right?), using an alpha (a parameter I presume).
A relatively thorough internet search suggests BL stands for ‘blended’. I
think it amounts to subtraction and multiplying and I promise I will know
by the conference. I shall look at the source code. There is documentation.
It has diagrams. It shows me how to use the framework. It includes
BLXAlphaCrossover but doesn’t tell me what it does, rather what it
derives from and its methods. The details themselves are in the code. No
matter how thorough you have been, sometimes only the code itself tells
the whole story. 97 Things Every Programmer Should Know [Henney10]
points this out. Documentation may tell us what code is supposed to do,
but the code tells us what it actually does. A design document may tell us
the intentions, but not what actually happened when to code was written.
Sometimes you need to try out the code, even trying a few scratch
refactors [Feathers04], to understand how it works. Extract methods,
move variables, change access levels to see what happens. Sitting in a
presentation watching someone point at a UML diagram is no substitute.
Reading a pdf or wiki is no substitute. You need to get your hands dirty to
fully understand.
Once you have your hands on the code you can find out all kinds of things.
When the documentation doesn’t show you exactly what a function is up
to, there is sometimes a comment, which fails to make it to the doxygen
output, referring to an academic paper. Many people regard comments as
documentation. They can be, though they can get out of sync with the
code. A readme showing me how to run the examples would not explain
the minutiae of details concerning how to approach combining real values
from two parent solutions in a genetic algorithm (the blending alluded to
previously).Having to dig inside source code to find what it all means
renders a long pdf or word document somewhat superfluous. Another
trick is searching the internet for the comments you find in a library. On
many occasions, the comment turns up with other source code, along with
better documentation or even unit tests. Never fix a comment – even if it
contains a spelling mistake. You are destroying forensic evidence. You
will regret this. I know I suggested, “Delete the comment and fix the code"
earlier. There is a time and a place.
Documentation after the fact is important. Different people, with differing
roles, have different requirements. It is important to keep everyone happy.
You may disagree, and might think that’s why I keep getting stuck in long
meetings. We’ll save that for a pub discussion. Don’t be shy about
automatically generating your documentation if someone insists they
need it. Do provide me with a small file showing how to get up and
running quickly though! Please! Now, step back in time. What do you
expect to see in writing before you start on a greenfield project? A two-
hundred-page upfront specification, along with a Gantt chart? User
stories, along with the stick figures? Some BDD-style user requirements?
Millions of meeting invites to flesh out the pipe dream? A vague mission
statement and contact details for product owners and the rest of the team?
A list of allowed libraries or programming languages? An invitation to a
training session on how to use your workstation safely, including how to
sit on a chair? What do you need to know in order to get things done?
What is the one thing you cannot do without, your sin qua non for
success? [Wikipedia-b]. I need to know how we will verify or test a
solution is working. You may have different priorities. That’s ok.
If you are part of a team, you might find other people have other needs and
assumptions. I alluded to the tension between people with different roles
earlier. A manager in need of useful, high level documentation and a dev
in need of a sane development pipeline might be trying to build the same
product, but might have different assessments of how to achieve this in an
efficient manner. When people with different roles don’t understand each
other, the tension can lead to conflict and all-out war. Or lots of long
meetings. Alexei Sayle, in ‘Thatcher stole my trousers’ [Sayle16], claims
“No good ever came from meetings. The Russian revolution was just a
meeting that got out of hand." One viewpoint. How can you learn to
communicate as a team and build up consensus? Sometimes pairing on a

task can help. If you can demonstrate why it takes several days to build
code to replicate what a spreadsheet built in an hour does, you might get
some understanding. If you go with your manager to the senior managers’
meeting, just once, you might realise why there is an insistence on a Gantt
chart or spreadsheet. If you sit with your testers or support team, you
might realise why they want documentation including a list of error
messages. If you sit with one of your colleagues and pair program a
prototype with them, you will also learn lots. Building a prototype gives
you something concrete to discuss in the next meeting. Deeds, not words,
can help you make progress. If you intended to throw away the prototype
and find it ends up being the basis for a large production system, you have
a different problem.
If you are going round and round in circles, never writing an editorial, an
article for Overload or even code, remember Poincaré’s recurrence
theorem: “certain systems will, after a sufficiently long but finite time,
return to a state very close to the initial state” [Wikipedia-c]. This applies
to mechanical systems under some specific conditions, but can be
misappropriated to apply to software development. If you start with lots
of meetings, you will end with lots of meetings. If you need an algorithm
to do something specific, someone has probably already written it. If you
rewrite a system, because the original code was horrific, your re-write will
eventually be re-written. If you attend training on how to sit on a chair,
you will probably end up having further similar training.

What has been will be again,
what has been done will be done again;

there is nothing new under the sun.
~ Ecclesiastes 1:9

References
[ACCU18] ACCU Conference 2018:

https://conference.accu.org/2018/sessions.html#XSimplytheBest
OptimisingwithanEvolutionaryComputingFramework

[Buontempo15] Buontempo, Frances (2015) ‘A little more conversation,
a little less action’ Overload, 23(127):2–3, June 2015.
https://accu.org/index.php/journals/2106

[Doxygen] Doxygen www.doxygen.org
[Feathers04] Working Effectively with Legacy Code, Michael Feathers,

Prentice Hall 2004
[Henney10] Henney, Kevlin (ed.) (2010) 97 Things Every Programmer

Should Know http://programmer.97things.oreilly.com/wiki/
index.php/Only_the_Code_Tells_the_Truth O’Reilly

[Oxford Dictionaries] ‘Woman or suffragette’ https://
blog.oxforddictionaries.com/2013/05/02/woman-or-suffragette/

[Parliament.uk] ‘Deeds not words’ http://www.parliament.uk/about/
living-heritage/transformingsociety/electionsvoting/womenvote/
overview/deedsnotwords/

[Ramirez17] ‘Evolutionary Computing Frameworks for Optimisation’,
Overload #142 – December 2017, Aurora Ramírez and Chris
Simons https://accu.org/index.php/journals/2444

[Sayle16] Sayle, Alexi (2016) ‘Thatcher stole my trousers’, 2016
Bloomsbury Circus

[Sourceforge] BLXAlphaCrossover: http://jclec.sourceforge.net/data/
jclec4-classification-doc/net/sf/jclec/realarray/rec/
BLXAlphaCrossover.html

[Tolman17] Tolman, Charles (2017) ‘A Design Example’ Overload #142
– December 2017 https://accu.org/index.php/journals/2447

[Wikipedia-a] ‘Women’s suffrage in the United Kingdom’
https://en.wikipedia.org/wiki/
Women%27s_suffrage_in_the_United_Kingdom

[Wikipedia-b] Sine qua non: https://en.wikipedia.org/wiki/Sine_qua_non
[Wikipedia-c] Poincaré recurrence theorem: https://en.wikipedia.org/

wiki/Poincar%C3%A9_recurrence_theorem
April 2018 | Overload | 3

https://conference.accu.org/2018/sessions.html#XSimplytheBest
OptimisingwithanEvolutionaryComputingFramework
https://accu.org/index.php/journals/2106
http://programmer.97things.oreilly.com/wiki/index.php/Only_the_Code_Tells_the_Truth O’Reilly
http://programmer.97things.oreilly.com/wiki/index.php/Only_the_Code_Tells_the_Truth O’Reilly
https://blog.oxforddictionaries.com/2013/05/02/woman-or-suffragette/
https://blog.oxforddictionaries.com/2013/05/02/woman-or-suffragette/
http://www.parliament.uk/about/living-heritage/transformingsociety/electionsvoting/womenvote/overview/deedsnotwords/
http://www.parliament.uk/about/living-heritage/transformingsociety/electionsvoting/womenvote/overview/deedsnotwords/
https://accu.org/index.php/journals/2444
http://jclec.sourceforge.net/data/jclec4-classification-doc/net/sf/jclec/realarray/rec/BLXAlphaCrossover.html
http://jclec.sourceforge.net/data/jclec4-classification-doc/net/sf/jclec/realarray/rec/BLXAlphaCrossover.html
https://accu.org/index.php/journals/2447
https://en.wikipedia.org/wiki/Women%27s_suffrage_in_the_United_Kingdom
https://en.wikipedia.org/wiki/Sine_qua_non
https://en.wikipedia.org/wiki/Poincar%C3%A9_recurrence_theorem
https://en.wikipedia.org/wiki/Poincar%C3%A9_recurrence_theorem
www.doxygen.org

FEATURE PAUL FLOYD
No News is Good News
Using ‘new’ without care can be slow.
Paul Floyd uses Godbolt’s compiler
explorer to see what happens when you do.
here are two influences that have inspired me to write this article.
The first is that I’ve been playing a lot with Compiler Explorer
(https://godbolt.org). Secondly, a while back I read Optimized C++

by Kurt Guntheroth. It contains a chapter on using dynamic memory
(Chapter 6: Optimize Dynamically Allocated Variables).
I agree with a lot of what is said. In short, there is a description of the types
of memory available in C++ (automatic, dynamic and static); a
description of how this memory relates to variables in code; APIs to deal
with dynamic memory; smart pointers and many tips on optimizations
related to dynamic memory. In this article I’m going to explore why you
should be trying to optimize use of new by digging down to the machine
code.
When I’m looking at production C++ code I do see a lot of gratuitous uses
of new, for instance
 list <handle>* handleList = new list <handle>;
 ...
 processList(handleList);
I suspect that there are a few possible reasons for writing such code:
 the influence of Java
 the assumption that where an API takes a pointer, you have to pass

it a pointer allocated on the heap
 not realizing that, at least for standard library containers, the object

itself is quite small and that the bulk of the memory (what is
contained) is dynamically allocated. A std::list is only 24
bytes, for instance (on 64bit Linux with GCC).

Obviously, in the second case the memory doesn’t need to be allocated
dynamically. The top-level object can perfectly well be on the stack. For
instance, the above example could have been written:
 list <handle> handleList;
 ...
 processList(&handleList);
In addition, if I could change the interface to the processList API, I
would almost certainly change it to take a reference rather than a pointer.
Furthermore, std::list is rarely a good choice when it comes to
performance, so I’d probably also change that if I could.
Both versions of the code do the same thing. So, what is wrong with the
first version?

Memory refresher
For those of you who are a bit rusty on what the difference is between
dynamic and automatic memory (I’ll skip static), here is a quick refresher
(Wikipedia has a longer description with diagrams [Wikipedia]). Firstly,

they are also commonly also known by other names, referring to how they
are often implemented. Dynamic allocation is also known as heap
allocation, and automatic allocation is known as stack allocation. The
stack is a large block of memory. It is referred to by CPU registers such
as the Stack Pointer. Memory can be ‘allocated’ on the stack very quickly
simply by manipulating the stack registers. The main drawbacks of stack
memory are that it does not persist beyond the current scope and it can be
quite limited in size. Heap memory is a separate block of memory, but this
time it is controlled via functions like malloc [C++Ref-a] and
operator new [C++Ref-b]. It’s not so limited in size and persists until
explicitly deallocated.

Problems with new
Performance
There are a couple of reasons why heap allocation has worse performance
than stack allocation.
 More memory is required – the allocator generally needs a small

amount of memory for housekeeping in addition to the memory
requested by the caller. In addition, the amount of memory might get
rounded up to a larger size like the nearest power of 2 whilst stack
allocation probably only rounds up to the nearest machine word size.
On 64bit Linux, allocations have a 16byte minimum size and there
is an 8byte housekeeping overhead.

 The biggest difference is that functions like new and delete are
relatively slow. Much effort by library and OS writers has been
made to make them as fast as possible (for instance, see the history
of jemalloc [github-a]).

There is a third question, concerning the size of code that gets generated.
This complicates the picture because it isn’t always an apples and pears
comparison. When you use stack allocation, it generally means that you
are using RAII and the compiler will generate the code necessary for
clean-up at the end of the scope. When you use heap allocation with raw
pointers as above then it’s up to you to ensure that resources get freed.

About the example code
In the examples that follow, I will continue to use handleList. In my
testing I defined Handle to be
 class Handle {
 public:
 int data;
 };
It doesn’t matter what Handle is. The only thing of importance is to
consider that handleList itself is something that needs some memory.
I’m going to stick with the std::list in the examples for two reasons.
Firstly, I want there to be a code smell. Secondly and more seriously,
though the examples presented here are trivial I don’t want them to be so
small that the compiler optimizes them to almost nothing. Also, for that
reason I’ve added calls to an externally defined populateList
function.

T

Paul Floyd Paul has been writing software, mostly in C++ and C,
for about 30 years. He lives near Grenoble, on the edge of the
French Alps and works for Synopsys developing tools for
estimating the power consumption of electronic circuits. He can be
contacted at pjfloyd@wanadoo.fr
4 | Overload | April 2018

https://godbolt.org

FEATUREPAUL FLOYD
The assembly was generated on Compiler Explorer using GCC 7.3 64bit.
Comparison of allocation methods
Digging deeper into the different allocation methods, if we have a stack
allocation function like this:
 void processStack()
 {
 list<Handle> handleList;
 populateList(&handleList);
 }
the optimized machine code that gets generated is in Table 1
Note that for non-exceptional flow, only items in blocks A to F in column
3 are executed. Block F only gets called when exceptions are thrown via
the stack unwinding mechanism.

On the other hand, for heap allocation that does not ensure proper clean-
up, like this:
 void processHeap()
 {
 list<Handle>* handleList = new list<Handle>;
 populateList(handleList);
 delete handleList;
 }
the machine code that gets generated is in Table 2.
Thus, it has lost exception safety but made the generated code slightly
shorter.
To regain exception safety with heap allocation, still using raw pointers,
we would need to write something like Listing 1.
That doesn’t look too pretty. Please don’t do this at home. The generated
machine code for this is in Table 3.
Moving on quickly, let’s consider a fourth alternative, using a smart
pointer.
 void processHeapSmartPtr()
 {
 auto handleList = make_unique<list<Handle>>();
 populateList(handleList.get());
 }
OK, that’s code that I could live with.
Note that if you want to use only the smart pointer and not the underlying
raw pointer you would have to rewrite or overload populateList.
When I tried this, I noticed that passing a reference to the unique_ptr
prevented the compiler from inlining and optimizing the pointer use
resulting in more register use and larger code. Furthermore, the

Table 1

processStack():
1 push r12 A:

Function entry
prologue2 push rbp

3 push rbx

4 sub rsp, 48

5 lea rbp, [rsp+16]

6 mov QWORD PTR [rsp+32], 0 B:
Inlined std::list
construction of
handleList on
stack

7 mov QWORD PTR [rsp+8], rbp

8 mov rdi, rbp

9 movq xmm0, QWORD PTR [rsp+8]

10 punpcklqdq xmm0, xmm0

11 movaps XMMWORD PTR [rsp+16], xmm0

12 call populateList() C: Call function

13 mov rdi, QWORD PTR [rsp+16] D:
Check result
and inlined
destructor

14 cmp rdi, rbp

15 je .L1

16 .L3: mov rbx, QWORD PTR [rdi]

17 call operator delete(void*)

18 cmp rbx, rbp

19 mov rdi, rbx

20 jne .L3 E:
Function exit
epilogue21 .L1: add rsp, 48

22 pop rbx

23 pop rbp

24 pop r12

25 ret

26 mov rdi, QWORD PTR [rsp+16] F:
Stack Unwind
Handling27 mov rbx, rax

28 .L6: cmp rdi, rbp

29 je .L5

30 mov r12, QWORD PTR [rdi]

31 call operator delete(void*)

32 mov rdi, r12

33 jmp .L6

34 .L5: mov rdi, rbx

35 call _Unwind_Resume

Table 2

processHeap():
1 push rbp A:

Function Entry
Prologue2 push rbx

3 mov edi, 24

4 sub rsp, 8

5 call operator new(unsigned long) B:
Dynamic
allocation and
inlined std::list
constructor

6 mov rbx, rax

7 mov rdi, rax

8 mov QWORD PTR [rax+16], 0

9 mov QWORD PTR [rax], rax

10 mov QWORD PTR [rax+8], rax

11 call populateList() C: Call function

12 mov rdi, QWORD PTR [rbx] D:
Inlined std::list
destructor,
function exit
epilogue and
tail optimized
delete

13 cmp rbx, rdi

14 je .L12

15 .L13: mov rbp, QWORD PTR [rdi]

16 call operator delete(void*)

17 cmp rbx, rbp

18 mov rdi, rbp

19 jne .L13

20 .L12: add rsp, 8

21 mov rdi, rbx

22 mov esi, 24

23 pop rbx

24 pop rbp

25 jmp operator delete(void*, unsigned long)
April 2018 | Overload | 5

FEATURE PAUL FLOYD
CppCoreGuidelines discourage passing references to smart pointers in
cases like this [github-b]. When get() is used, there is no interface issue
and the code size is barely any larger than the stack version.
The code flow in this case is quite similar to processStack.
The machine code for this function is in Table 4.
You may have noticed that the non-exception path for the three versions
using the heap are the same (lines 1 to 25 and blocks A to D in the tables
of assembler). The only thing that is different is how they handle
exceptions.
Here is a summary of the size of the code generated. The byte sizes were
obtained by nm

Performance
I did some measurements of these 4 functions. I just wrote a main() with
a loop running a million times calling the 4 functions with empty stub
populateList functions.
With Valgrind callgrind, I got the following numbers of op-codes
executed per call.

These are the exclusive counts i.e., only for the functions themselves.
Whilst callgrind counts every instruction, by default it doesn’t record
functions that take less than 1% of the total. So, adding a loop is an easy
way to ensure that they are included in the output. I get a slightly higher
count for processHeapSmartPointer as I was doing these tests with
GCC trunk, I expect that if I’d used GCC 7.3 the count would have been
the same as the other two Heap functions.
This is pretty much what I was expecting

1. processStack is the fastest but not the smallest due to the
exception handling

2. processHeap is the smallest because it does no exception
handling

3. All of the functions using the heap execute similar numbers of
machine instructions.

The picture is very different for the inclusive counts, that is the functions
plus any callees.

There are two things that stand out
 The number of op-codes executed hasn’t change for the stack

version, other than the call to the empty stub.
 The 3 heap versions have essentially the same count.

Function Op-codes executed
processStack 23

processHeap 27

processHeapNoLeak 27

processHeapSmartPointer 29

Function Op-codes executed
processStack 24

processHeap 360

processHeapNoLeak 360

processHeapSmartPointer 362

Listing 1

void processHeapNoleak()
{
 list<Handle>* handleList = nullptr;
 try
 {
 handleList = new list<Handle>;
 populateList(handleList);
 delete handleList;
 }
 catch (...)
 {
 delete handleList;
 throw;
 }
}

Table 3

processHeapNoleak():
1 push rbp A:

Function Entry
Prologue2 push rbx

3 mov edi, 24

4 sub rsp, 8

5 call operator new(unsigned long) B:
Dynamic
allocation and
inlined std::list
constructor

6 mov rbx, rax

7 mov QWORD PTR [rax+16], 0

8 mov rdi, rax

9 mov QWORD PTR [rbx], rax

10 mov QWORD PTR [rbx+8], rax

11 call populateList() C: Call function

12 mov rdi, QWORD PTR [rbx] D:
Inlined std::list
destructor and
tail optimized
delete

13 cmp rbx, rdi

14 je .L20

15 .L21: mov rbp, QWORD PTR [rdi]

16 call operator delete(void*)

17 cmp rbx, rbp

18 mov rdi, rbp

19 jne .L21

20 .L20: add rsp, 8

21 mov rdi, rbx

22 mov esi, 24

23 pop rbx

24 pop rbp

25 jmp operator delete(void*, unsigned long)

26 mov rdi, rax E:
Exception
handling, inlined
std::list
destructor
delete and
rethrow

27 call __cxa_begin_catch

28 .L23: call __cxa_rethrow

29 mov rdi, rax

30 call __cxa_begin_catch

31 mov rdi, QWORD PTR [rbx]

32 .L19: cmp rbx, rdi

33 je .L24

34 mov rbp, QWORD PTR [rdi]

35 call operator delete(void*)

36 mov rdi, rbp

37 jmp .L19

38 mov rbx, rax

39 call __cxa_end_catch

40 mov rdi, rbx

41 call _Unwind_Resume

42 .L24: mov esi, 24

43 mov rdi, rbx

44 call operator delete(void*, unsigned long)

45 jmp .L23
6 | Overload | April 2018

FEATUREPAUL FLOYD
As usual, you may get different results on different platforms/compilers –
I tried a couple of others and the results were broadly similar.
Furthermore, this test case just uses stub functions. With real functions
that actually do something the cost of the heap allocation would become
relatively smaller. That said, the stack allocation here is around 15 times
faster.

Conclusions
I think that the case is more or less settled. Use stack allocation where you
can. It’s safer, faster and requires writing the least code. Obviously, there
are times when you need heap allocation:
 when you have huge data
 when you need extended object lifetime
 when you have self-referential data structures like graphs
 when you want to decouple interfaces like with the pimpl idiom
 when you have deeply recursive functions.

When you have to use heap allocation, use smart pointers. There is a small
code size overhead, but if you use make_unique (or make_shared)
then the difference in time performance is negligible compared to using
smart pointers with the benefit of not having to worry about resource
leaks. 

Acknowledgements
Thanks to the reviewers for pointing out my omissions and
inconsistencies.
Thanks also to Matt Godbolt for providing Compiler Explorer.

References
[C++Ref-a] malloc: http://en.cppreference.com/w/cpp/memory/c
[C++Ref-b] operator new:

http://en.cppreference.com/w/cpp/memory/new
[github-a] jemalloc:

https://github.com/jemalloc/jemalloc/wiki/Background
[github-b] CppCoreGuidelines: http://isocpp.github.io/

CppCoreGuidelines/CppCoreGuidelines#r30-take-smart-pointers-
as-parameters-only-to-explicitly-express-lifetime-semantics

[Wikipedia] Data segment: https://en.wikipedia.org/wiki/Data_segment

Table 4

processHeapSmartPtr():
1 push r12 A:

Function Entry
Prologue2 push rbp

3 mov edi, 24

4 push rbx

5 call operator new(unsigned long) B:
Dynamic
allocation and
inlined std::list
constructor

6 mov rbx, rax

7 mov QWORD PTR [rax+16], 0

8 mov rdi, rax

9 mov QWORD PTR [rbx], rax

10 mov QWORD PTR [rbx+8], rax

11 call populateList() C: Call function

12 mov rdi, QWORD PTR [rbx] D:
Inlined std::list
destructor and
tail optimized
delete

13 cmp rbx, rdi

14 je .L33

15 .L34: mov rbp, QWORD PTR [rdi]

16 call operator delete(void*)

17 cmp rbx, rbp

18 mov rdi, rbp

19 jne .L34

20 .L33: mov rdi, rbx

21 mov esi, 24

22 pop rbx

23 pop rbp

24 pop r12

25 jmp operator delete(void*, unsigned long)

26 mov rdi, QWORD PTR [rbx] E:
Stack unwind
handling, inlined
std::list
destructor

27 mov rbp, rax

28 .L37: cmp rbx, rdi

29 je .L36

30 mov r12, QWORD PTR [rdi]

31 call operator delete(void*)

32 mov rdi, r12

33 jmp .L37

34 .L36: mov rdi, rbx

35 mov esi, 24

36 call operator delete(void*, unsigned long)

37 mov rdi, rbp

38 call _Unwind_Resume
April 2018 | Overload | 7

http://en.cppreference.com/w/cpp/memory/c
http://en.cppreference.com/w/cpp/memory/new
https://github.com/jemalloc/jemalloc/wiki/Background
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r30-take-smart-pointers-as-parameters-only-to-explicitly-express-lifetime-semantics
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r30-take-smart-pointers-as-parameters-only-to-explicitly-express-lifetime-semantics
https://en.wikipedia.org/wiki/Data_segment

FEATURE CHRIS OLDWOOD
Monitoring: Turning
Noise into Signal
Creating useful logging is a constant challenge.
Chris Oldwood shows us how structured logging helps.
he humble text-based log file has been with us for a very long time
and it often still suffices for simple tasks which will require little
genuine support. But over the years systems have gotten so much

bigger as the need to scale out has compensated for the inability to
continually scale up. Consequently, the volume of diagnostic data has
grown too as we struggle to make sense of what’s going on inside our
‘black boxes’.
Moving a system from the relative comfort of an internal data centre out
onto the cloud also brings with it a host of new experiences which will add
to the general ambient noise as networks routes go up and down and
servers come and go on a regular basis, and I’m not talking about
continuous deployment here either. Okay, it’s not quite that unstable at the
smaller end of the spectrum but there are many more reasons why your
service does not appear to be behaving itself over-and-above the mistakes
that we might make ourselves.
With that growing volume of diagnostic data we need to remain smart
about how we handle it if we are to understand it. What might initially
seem like just a bunch of random failures may in fact be something much
easier to explain if only we chose to drill into it and categorise it further.
We refactor our functional code to help us make more sense of the design
and the same is true for our diagnostic code too – we need to continually
refine it as we learn more about the problems we encounter so that they
are easier to monitor and triage in future. Ultimately you do not want to
be woken in the middle of the night because you cannot distinguish
between a failure on your side of the fence and a known limitation of an
upstream system which you cannot control.
Hence this article is about the journey you might take after starting with a
big ball of monitoring data so that you can start to make sense of it, both
inside and outside your team, by improving the code so that what was
once potentially just noise can be turned into more useful signals.

Structured logging
The most basic form of log file is just a simple collection of lines of
freeform text. These generally form a narrative which tries to tell a story
about what’s going on inside, e.g.
 2018-02-16 08:14:01.100 9876 INF Fetching orders
 2018-02-16 08:14:01.123 9876 ERR Failed to fetch
 orders for '1234'
 2018-02-16 08:14:01.145 4225 PRF Orders request
 took 10 ms
With each message being a blank canvas, it often falls to the individual
author to tell their part of the story in their own way and that naturally
leads to differences in style, just as we might find stylistic differences in

the code as each author stamps their own identity on it through brace
placement and vocabulary. Consequently, we find that different
delimiters are used to surround text parameters (or maybe none at all),
dates might be formatted locally or in UTC, primitive values output with
different units, and spelling & grammar of variable quality too.
This melting pot of text might have some ‘character’ but it’s a royal pain
to parse automatically and make sense of at any non-trivial scale. Once
you start needing to aggregate and slice-and-dice this data so it can be
used to provide overviews of the system health and generate alerts when
the proverbial muck hits the fan, then freeform text no longer cuts it – a
clear, consistent format needs to be adopted which is machine readable
and aggregatable. The alternative is a life spent trying to concoct ever
more complex (and unmaintainable) regular expressions to match the
dizzying array of similar messages; or not, which is the usual outcome.
Machine learning may provide some hope in the future for an otherwise
lost cause but until that day comes we need a simpler solution.
Enter stage left – structured logging. Instead of trying to use our natural
language, such as English prose, to describe our situation we start to think
about it in less emotional terms. Log messages stop being a flat
representation of what has passed and instead become richer ‘diagnostic’
events which can be reacted to programmatically, both within the process
as well as outside it [Freeman07]. In its simplest guise instead of writing
the traditional message File 'Xxx' loaded in 10 ms you instead
log, say, a FileLoaded d iagnost ic event wi th a property
DurationInMs set to 10 and a Path property set to the file name, e.g.
 log.Info($"File '{filename}' loaded in {duration}
 ms");
now becomes,
 log.Write(new FileLoaded{ DurationInMs=duration,
 Path=filename });
As you can imagine, all the usual programming tricks are still available to
hide some of the complexity and keep the logging noise down in the code
to ensure the functional aspects still shine through, e.g. free functions or
extension methods for the most common scenarios:
 log.FileLoaded(filename, duration);
In C# you can leverage the using mechanism to wrap up the timing and
event writing with even less noise thereby giving you some really simple
instrumentation [Oldwood13b]:
 using(journal.FileLoad(filename))
 {
 . . .
 }
(To try and make it clearer that it’s not a traditional log file I like to
rename the eventing façade something like ‘journal’ and use terms like
‘record’ to get away from past traditions.)

Richer diagnostic events
This change in mind-set opens up a new world of possibilities about how
you write your monitoring and instrumentation code, and how and where

T

Chris Oldwood Chris is a freelance programmer who started out as
a bedroom coder in the 80’s writing assembler on 8-bit micros. These
days, it’s enterprise grade technology in plush corporate offices. He
also commentates on the Godmanchester duck race and can be easily
distracted via gort@cix.co.uk or @chrisoldwood
8 | Overload | April 2018

FEATURECHRIS OLDWOOD

With all diagnostic events being richly typed
and flowing through a single stream, it’s easy
to build in in-process feedback loops as well

to monitor and react to local conditions
you aggregate it. For example, although modern logging search services
are fairly powerful, even if you have used correlation IDs [Oldwood13a]
to relate your events within a process, finding and summing them can still
be arduous, especially if the entire IT department is sending all their logs
to, say, the same Splunk instance. Tools like Splunk allow you to ‘join’
log event streams (much like a SQL join) but they have limits to keep
processing costs down which often means your joins are truncated unless
your queries are highly selective. Consequently, you may choose to
perform some local aggregation in-process and send out ‘summary’
events too to ease the burden on the monitoring side. For example, a REST
API might generate a summary event that includes the overall timing for
handling a request along with a breakdown of the time spent in database
calls, outbound to other external services, heavy computations, etc.
With all diagnostic events being richly typed (if you choose to go that far)
and flowing through a single stream, it’s easy to build in in-process
feedback loops as well to monitor and react to local conditions. For
example, the Circuit Breaker pattern which Michael Nygard introduced in
his seminal book [Nygard07] is a technique for dealing with temporary
failures by shutting off the value when things go awry. One way of
implementing this is to continuously analyse the diagnostic stream and, if
you see a continuous batch of failure events, flick the switch and turn
yourself off for a bit. This can be combined with another classic design
pattern – Leaky Bucket Counter [Wikipedia] – to slowly turn the tap back
on. This elevates the diagnostic event stream from a purely non-functional
concern to a more functional one which brings with it greater
responsibility. (Logging is often treated as a second-class citizen due to
its non-functional nature, but reliable systems elevate non-functional
concerns to ensure they get the attention they truly deserve.)

Event structure
Although you can use much richer types to represent each event you need
to bear in mind that the goal is to try and aggregate similar kinds of events
across multiple processes to get a more holistic feel for what is happening.
Consequently, there is still a trade-off between being too loose or too rich
and therefore being no better off than we were before. You need just
enough structure to ensure a good degree of consistency and to make it
easy to add similar classes of events while also ensuring your events are
easy to consume in the monitoring system. At its most basic an event
might simply be a name and an optional value, e.g.
 class Event
 {
 public string Name { get; }
 public double? Value { get; }
 }
Naming in software development is always a difficult problem and once
again it rears its ugly head here too. You can slice and dice the problem of
naming events and their properties however you like but if you want them
to be easy to consume in the monitoring tool then you’ll want to adopt a
scheme that works well with the query facilities on offer. For example,
using a namespace style approach which reads narrower from left-to-

r i gh t , j u s t l i ke c ode , i s a common op t ion , suc h a s
component.operation.duration for the time taken to perform a
specific operation. This could then be translated into a monitoring query
like database.*.duration to get an overview for the performance of
the database. Once you can aggregate key components over a time
window you have the opportunity to automatically measure trends in
performance which is a commonly missed critical source of system
behaviour. (For a short tale about how performance can slowly decrease
over time and then suddenly drop off a cliff see [Oldwood14].)
What makes aggregation simpler is to adopt a convention for things which
should be aggregated, so for example append .duration for timings
and, say, .count for occurrences of interesting things. This helps reduce
(though not eliminate) the chances of the classic mistake of treating ‘1’ as
‘1 ms’ instead of ‘1 failure’ which might make your performance look
better or worse than expected. If you’re going to be using different units
for the same dimension, such as timings, you’ll either need to include that
as a property or make it clear in the name so that you can correctly sum
them, e.g. .duration-ms vs .duration-ns. With the events now
being rendered automatically by code instead of manually formatted by
hand you stand a better chance of rescuing the situation if you decide that
your precision is too low for one particular kind of event. The Prometheus
documentation is a good source of inspiration for categorising and naming
events [Prometheus].
If you’re wondering about the basic logging attributes you’ve grown to
know and love, such as the timestamp and process ID, well you can use a
base class to capture those (for example, see Listing 1).
However, before you go sticking all your favourite extra fields in every
event, just ask yourself whether you really need them every time or is that

Listing 1

class EventBase
{
 public DateTime Timestamp { get; }
 public string Name { get; }
 public int ProcessId { get; }
}
class DatabaseQueried : EventBase
{
 public int Duration { get; }

 public DatabaseQueried(string operation
 int duration)
 : this($"database.{operation}.duration")
 {
 Duration = duration;
 }
}
// Client code.
journal.DatabaseQueried("find-customer",
 duration);
April 2018 | Overload | 9

FEATURE CHRIS OLDWOOD
only a choice you’ve taken because of the inherent limitations of the
traditional method of logging? A fixed width layout was always
preferable for a classic log file; maybe it’s not so important now?

Human readability
One immediate concern I had when first adopting this approach was that
I was so used to reading classic log file narratives that I felt they would be
much harder to consume on a development & debugging level rather than
a production monitoring basis. For example, I’ve become used to doing
some basic system level testing after making certain kinds of changes to
ensure that the non-functional aspects are well represented, i.e. is any new
instrumentation as useful as it could be? Given the usual modes of failure
do we have recorded what we would generally expect if we have a failure
in the new area of functionality? If it involves any I/O, have we timed it
so that we can detect problems and visualise trends? This has usually
involved reading the event stream manually and playing with classic
command line and log viewing tools.
Hence, one question you may have had right from the get-go is about what
the event stream looks like outside the process. It depends on the logging
infrastructure and destination sinks but the simplest choice might be to
just render them as JSON as it has a fairly simple format (less of an ‘angle-
bracket’ tax than XML) and JSON writers are often performant enough
for most logging uses. Hence instead of lines of freeform text you might
have lines such as this instead:
 { Time:"2018-02-16T08:14:01.123",
 Name:"orders.http-error.count", ...}
 { Time:"2018-02-16T08:14:01.123",
 Name:"orders.request.duration-ms", ...}
An event stream dumped as raw JSON is clearly not quite as easy to read
as plain text. At least, it’s perhaps not as easy to read at first, but you soon
realise that what really matters is whether you can easily relate the event
that you see to where it occurs in the code and what it’s telling you about
the operation that happened. Surprisingly I got used to this style very
quickly; I almost began to feel like Cypher in The Matrix – I stopped
seeing the curly braces and quote marks and just saw ‘HTTP client error’,
‘token refreshed’, ‘database queried’, etc. Your mileage will of course
vary considerably, but just give it a little time. Apparently, there’s more
wisdom in the old adage ‘omit needless words’ than I had quite
appreciated.
The other good thing about a decent JSON serializer is that you can
usually control the order of serialization, so you can ensure that the most
important attributes get written first (e.g. Timestamp and Name) and
lesser ones later which will reduce the burden somewhat when eyeballing
the log file.

The audience
Another benefit which a more event focused approach gives you is a little
more discipline around sticking to true operational events rather than
mixing in ‘debug’ or ‘trace’ level messages, which are often of little
concern to first level support, but which might be useful to a developer
doing a full-on post mortem later. This duality of narratives (monitoring
vs debugging) is oft debated and what I’ve personally come to favour is
slightly richer events where the ‘headline’ is aimed at operational use and
designed to be aggregated as before but attached to it might be a ‘Debug’
property with additional context. For example an http.request-
failure.count event might have the response status code as a core
property but the response headers and first N bytes of the payload attached
to separate Debug.Headers and Debug.Content properties should
the need arise.
This brings me back to my earlier comment about attaching too much data
to every event. Whilst process IDs might be useful to the ops team, thread
IDs are probably less so, and therefore consider where and when you really
need them. As for deciding in the code what severity an event should be,
that probably disappears too as the interpretation shifts from being
considered in isolation to being considered at scale, probably in the context
of high availability where more transient failures are tolerated. That isn’t

to say that failing to read a fundamental configuration setting like a
database connection string is not pretty serious, but just that failure without
recovery is what we’re looking for in the short term, not necessarily failure
in its own right which is more about trends – let the event state the facts
and allow the monitoring to decide if it’s noteworthy or not.

Code complexity
There is one other reason I have seen for overly verbose trace-level
logging and that is due to overly complex code. When the code is difficult
to reason about, and a problem shows up which is difficult to reproduce,
it is natural to resort to printf style debugging by adding extra logging
to show which code paths are taken and why. Simple code that is well
written and easy to reason about is also easier to diagnose without
resorting to such heavy-handed tactics.
Consequently, when writing code we should ask ourselves what we would
need to know to be able to determine what significant paths might be
taken. If the design does not lend itself to being comprehensible from
certain key inputs then we should ask ourselves whether it is too complex
and needs to be refactored. Other techniques like Design by Contract may
add a little more code here-and-there but this allows us to fail earlier when
it’s easier to diagnose and therefore can avoid us logging excessively to
track the same problem down later when the problem finally manifests
itself, e.g. a latent NullReferenceException.

Improving events
One half of the equation is about having the means in play to represent
diagnostic events in a way that can easily be queried and aggregated, the
other is about improving the quality of events as you learn more about the
system’s failure modes. This was rammed home early one Saturday
morning when I got a support call about a weekend job failure and the
diagnostic message was simply:
 ERROR: Failed to calibrate currency pair!
Tracking down which of the many currency combinations was at fault
would have been made so much easier if the author had included in the
message the pair of currencies in question that had failed. Whilst
debugging the issue I discovered the information was already available at
the code site where the message was logged and so I naturally added it
right away to help those on support in the future. (Reflecting on and
improving exception messages is a related topic I’ve tackled before
[Oldwood15a].)
In an ideal world we would know all the ways that our system can fail and
we could code accordingly, but life is just not that fair. Networks like the
Internet are awash with services, proxies, caches, load balancers, etc. from
different vendors that will behave in different ways when they fail or
return an error. Even fairly simple protocols like HTTP are open to
different interpretations by different teams, and that’s before you bring in
the need to work around broken behaviours on supposedly transparent
services because they are trying to be ‘clever’. The on-premise world does
not necessarily fare any better, you still get plenty of bizarre server,
network and storage problems to deal with [Oldwood15b].
Consequently, although we can predict certain types of failure, such as a
network route being unavailable, we may not know all the ways that it will
manifest or what diagnostic information we might need to diagnose it.
Waking someone up in the middle of the night every time a network
request fails is not going to win you any favours and so we need to analyse
our errors and drill in to see if we can categorise them further so that the
support team only springs into action when there is actually something to
do. During development it’s also possible that we can unearth ‘impedance
mismatches’ between various components in our system that on the face
of it presents as occasional failures but could lead to significant problems
once we reach production scale.
What follows are a couple of examples of how non-catastrophic failures
can be diagnosed and either resolved or vastly improved upon to ensure
the signal-to-noise ratio remains as high as possible. Each step was a small
code change, pushed quickly into production, to gather more information
about the situation each time it cropped up. Naturally an approach like
10 | Overload | April 2018

FEATURECHRIS OLDWOOD
continuous delivery really helps to keep the feedback loop short between
learning and reacting to the new diagnostic information.

Service misconfiguration
Soon after bringing the initial version of an adapter to bridge the on-
premise and cloud-hosted worlds of a service together, the team started
seeing occasional errors in the HTTP 5xx range. The general rule is that
these are server-side issues and therefore our logic used the classic
exponential back-off to ride it out, eventually. What was odd was that the
subsequent request always went through fine so whatever the transient
condition was it always cleared immediately.
Our first-order approach to diagnostic logging in that component only
logged the HTTP status code on failure at this point and so we decided to
immediately start capturing more information, such as the HTTP response
headers, because this error didn’t appear to resonate from the service at
the other end. One always needs to be wary of dumping untrusted input
even into a logging system and so we were careful to limit what new
information we captured.
What this showed was that the HTTP response was coming from Akamai,
the company providing some basic security for the underlying service,
such as API throttling. Despite only asking for a JSON response we
actually got back an HTML content type which raised some interesting
questions about our current response handling code. We also decided to
include the first half KB of the response content into a ‘Debug’ section of
the logging event so that we could inspect it further when it showed up.
The payload included what appeared to be a standard HTML error
response from Akamai that also included an ‘error reference’ which the
support team could look up and see what the underlying issue was. We
now felt that we had enough heuristics available to crudely parse this
Akamai error response correctly into an event of its own type and expose
the error reference directly as a property so that we could quickly look
them up with Akamai’s own diagnostic tools.
As it turned out, in this instance, the error was due to different idle socket
timeouts between Akamai and the AWS load balancer which in itself took
some effort to discover. At least we now knew for sure that certain 5xx
errors were definitely not from the service and therefore there was no need
to go looking elsewhere. Also, unless someone had changed the Akamai
configuration, which was very rare, we could say with a high degree of
certainty that the error really was transient and out of our control.
Consequently, the monitoring dashboard would now show a reduction in
generic HTTP error responses in favour of the more specific Akamai ones.
The second example looks at a wider reaching code change in reaction to
learning more about the way a system dependency reported certain types
of errors.

Error translation
Initially our message handler only had very basic error handling – enough
to know to retry on a 5xx HTTP response but to triage a request if it got a
4xx one. In HTTP the 4xx response codes generally mean the client needs
to take some corrective action, such as fixing its request format (400),
authenticating itself (401), or checking if the right resource was being
requested (404). We never saw a 404 but we did see occasional 400s
which was worrying as we didn’t know what we could have done wrong
to create a malformed request for such a simple query.
Luckily, by adding a little extra diagnostic data, we discovered the
upstream service provided a richer error payload, in JSON, that we could
attach to a Debug property of the, then simple, http.client-
error.count event, along with any response headers, just like earlier.
From doing this we discovered that the ‘service specific’ error code was
tantamount to a ‘not found’ error, which you’d usually report with a 404
HTTP status code. The service was only providing a simple lookup and
therefore we could attach the identifier we were looking up in our request
onto a new, richer diagnostic event designed to show which IDs were
unfortunately not correctly mapped.
This not only enhanced the monitoring side of the equation, but it also
meant that we could use a much richer exception type to convey this

unusual condition to the outer layers of our code. It turned out that these
missing mappings were never going to be addressed any time soon and
therefore pushing the request onto a ‘slow retry’ queue was a complete
waste of time and we might as well drop them on the floor until further
notice.
Aside from a reduced number of ‘poisoned’ messages to deal with on our
side, by including the information directly in the monitoring data this also
meant the other team which owned the upstream service could query our
logs and find out how bad the problem was and whether it was getting
better or worse over time. We could also easily see if any particular IDs
cropped up regularly and ask if they could be fixed manually. A better
choice of HTTP status code in the first place would have made life slightly
simpler but we would have still needed to understand the problem to
ensure that we removed the unnecessary noise and reacted accordingly;
either way we couldn’t have left it as it was.

Summary
The freeform text log file has been with us for a long time and still
continues to serve us well in the right situations. However, as the size and
complexity of our systems grows we need something more ‘grown-up’
that can sensibly cater for the needs of the operations team as well as those
developing it (even if they are one and the same). These two forces are
often at odds with each other, not out of malice but out of ignorance and
so we should redress the balance by putting their diagnostic needs on an
equal par with our own. Their hands are effectively tied and so those who
work with the code need to be the ones to cater for them as well.
Moving towards a more structured approach to logging brings with it an
improvement in monitoring as we start to consider what each diagnostic
event means, not in isolation but in the context of the system as a whole.
By making it easy to aggregate related events across time, by component,
or by subsystem we can get a more holistic feel for what is going on under
the hood. Then, taking these same data points over a much longer period
of time we can get a feel for what the trends are in the system as it grows
so that we are not caught off guard when those cyclic peaks come around
second or third time.
Finally, we also need to accept that “there are more things in heaven and
earth, Horatio, than are dreamt of in your philosophy”. We don’t know all
the ways our system will fail but by continuing to invest in refining the
way we capture and report errors we stand a better chance of ensuring the
signal stands out from the noise. 

References
[Freeman07] ‘Test Smell: Logging is also a feature’, Steve Freeman,

http://www.mockobjects.com/2007/04/test-smell-logging-is-also-
feature.html

[Nygard07] Release It! Design and Deploy Production-Ready Software,
Michael T. Nygard, https://pragprog.com/book/mnee/release-it

[Oldwood13a] ‘Causality – Relating Distributed Diagnostic Contexts’,
Chris Oldwood, Overload #114, https://accu.org/index.php/journals/
1870

[Oldwood13b] ‘Simple Instrumentation’, Chris Oldwood,
Overload #116, https://accu.org/index.php/journals/1843

[Oldwood14] ‘Single Points of Failure – The SAN’, Chris Oldwood,
http://chrisoldwood.blogspot.co.uk/2014/09/single-points-of-
failure-san.html

[Oldwood15a] ‘Terse Exception Messages’, Chris Oldwood,
Overload #127, https://accu.org/index.php/journals/2110

[Oldwood15b] ‘The Cost of Not Designing the Database Schema’, Chris
Oldwood, http://chrisoldwood.blogspot.co.uk/2015/12/the-cost-of-
not-designing-database.html

[Prometheus] ‘Metric and Label Naming’, Prometheus,
https://prometheus.io/docs/practices/naming

[Wikipedia] ‘Leaky bucket’, Wikipedia,
https://en.wikipedia.org/wiki/Leaky_bucket
April 2018 | Overload | 11

http://www.mockobjects.com/2007/04/test-smell-logging-is-also-feature.html
https://pragprog.com/book/mnee/release-it
https://accu.org/index.php/journals/1843
http://chrisoldwood.blogspot.co.uk/2014/09/single-points-of-failure-san.html
https://accu.org/index.php/journals/2110
http://chrisoldwood.blogspot.co.uk/2015/12/the-cost-of-not-designing-database.html
http://chrisoldwood.blogspot.co.uk/2015/12/the-cost-of-not-designing-database.html
https://prometheus.io/docs/practices/naming
https://en.wikipedia.org/wiki/Leaky_bucket
https://accu.org/index.php/journals/1870
https://accu.org/index.php/journals/1870

FEATURE BORISLAV STANIMIROV
The Interface to Component
Pattern and DynaMix
Dynamic Polymorphism is hard in C++. Borislav Stanimirov
demonstrates how the DynaMix library helps.
uch of the evolution of modern language design has been in
improving static polymorphism through better features for generic
and metaprogramming. Popular languages such as Java, C#, and

especially C++ have been going through a renaissance of sorts in this
regard for the past 10 or so years. On the other hand, languages with good
metaprogramming support such as D have been enjoying renewed interest
and popularity. Newer languages, such as Nim, are being developed
where metaprogramming is the central focus. Dynamic polymorphism on
the other hand has been left in the background. For C++, the C++11
standard added std::function and std::bind, but almost no
improvements have been added to the language to support dynamic
polymorphism in an object-oriented context (final and override
being the minor exceptions to this).
Object oriented programming doesn’t include dynamic polymorphism in
its formal definition, but in practice it has come to imply it. In many
contexts (such as Java) the inverse is also true. Given the bad publicity
OOP has been getting through the years, it is no surprise it has been living
as a side note in languages such as C++ which are oriented towards
maximal performance and type safety. Indeed many C++ programmers
have forgotten, or deliberately chosen to forget, that C++ is, among other
things, an object-oriented language.
While some of the criticism of OOP is concerned with performance, most
of it is focused on how bad particular implementations (for example
Java’s) are at accomplishing certain complex business requirements. It is
the opinion of the author that this is not a problem with OOP as a whole.
OOP with dynamic polymorphism is often a great way to express business
requirements. Highly dynamic languages such as Python, Ruby,
JavaScript, and many more, are thriving in fields dominated by business
logic. It is no wonder that many pieces of software are implemented with
a core in some high-performance language such as C or C++ and business
logic modules in a dynamic and more flexible language (lua being an
especially popular choice for games, for example).
Besides the support for better OOP features, such an approach has other
benefits, like the possibility to ‘hot-swap’ live code while the program is
running and in some cases, using their strong DSL-creation mechanisms,
to delegate some code to non-programmers. Unfortunately there are
drawbacks, too.
The performance is inevitably worse. Even with JIT, save for very few
edge cases, interpreted code is slower than compiled and optimized C++.
With JIT 2-5 times slower is the rule but in other, JIT-unfriendly edge
cases, ten or more times slower is not unexpected. Without JIT some
languages perform even worse. For a Ruby program to be hundreds of
times slower than its C++ counterpart is a common occurrence.

There needs to be a binding layer between the core and the business logic
language. This is a piece of code (often of considerable size) which has no
other purpose than to be a language bridge. It adds more complexity to a
project and a lot of time needs to be invested in developing and
maintaining it.
There is functionality duplication. Even with the best of intentions, it’s
often highly impractical to call small utility functions through the binding
layer. As a result, many such functions have an implementation in both
the core and the business logic language. Thousands of lines of duplicated
functionality is a normal occurrence in such projects, which is often times
the source of duplicated bugs.
It is evident that if the aforementioned drawbacks are prohibitive for a
project, some kind of new approach is needed for better OOP support in a
high-performance language.
Even though developers of libraries in high-performance languages have
been largely ignoring OOP functionalities, there are still some efforts in
improving them. For C++, the most notable developments gaining
popularity recently are polymorphic type-erasure wrappers. These include
the somewhat ancient Boost.TypeErasure [Boost] and the much more
modern Dyno [Dyno], and Facebook’s Folly.Poly [Facebook]. They offer
major improvements of the vanilla C++ OOP polymorphism. They allow
for better separation of interface and implementation. They are non-
intrusive (no inheritance needed). They are more extensible since you
define interfaces and classes separately. In some cases they can
potentially be faster, but in any case they are not slower than virtual
functions.
However… they are more or less the same in terms of architecture. There
still are interface types and implementation types. They offer great
improvements of OOP polymorphism in C++ but they are not much better
than Java or C# in terms of how you design the software. They are just not
compelling enough to ditch scripting languages.
One of the most popular OOP techniques in dynamic languages is to
compose and mutate objects at runtime. Ruby offers a very concise and
readable way of accomplishing this, so consider the piece of code in
Listing 1 (overleaf) – part of the gameplay code of an imaginary game
(gameplay means business logic in game-dev jargon).
Those are Ruby mixins. Note that in C++ circles the term mixin exists
[ThinkBottomUp] and it’s used for something similar. It’s a way of
composing objects out of building blocks, but at compile time through
CRTP. Now with the Interface to Component pattern a similar
functionality can be accomplished in C++ and any other language which
has at least Java-like OOP support.
The pattern is based on composition over inheritance (much like almost
every fix of OOP-specific problems). Here is an annotated C++
implementation using Interface to Component of the same gameplay (see
Listing 2, overleaf).
Interface to Component is being widely used in pieces of software with
complex business logic such as CAD systems, some enterprise software,
and games. It is especially popular in mobile games because their target

M

Borislav Stanimirov Borislav has been a C++ programmer for 15
years. In the past 11 he has been programming video games. He has
worked on C++ software for all kinds of platforms: desktops, mobile
devices, servers, and embedded. His main interests are software
architecture and design, and programming languages
12 | Overload | April 2018

FEATUREBORISLAV STANIMIROV
Listing 1

module FlyingCreature
 def move_to(target)
 puts "#{self.name} flying to #{target.name}"
 end
 def can_move_to?(target)
 true # flying creatures can move anywhere
 end
end

module WalkingCreature
 def move_to(target)
 puts "#{self.name} walking to #{target.name}"
 end
 def can_move_to?(target)
 # walking creatures cannot walk over obstacles

!self.world.has_obstacles_between?(self.position,
 target.position)
 end
end

composing objects

hero = GameObject.new
hero.extend(WalkingCreature)
hero.extend(KeyboardControl)
 # controlled by keyboard
objects << hero # add to objects

dragon = GameObject.new
dragon.extend(FlyingCreature)
dragon.extend(EnemyAI) # controlled by enemy AI
objects << dragon # add to objects

main_loop_iteration # possibly the hero can't move

give wings to hero
hero.extend(FlyingCreature) # overrides
WalkingCreature's methods
main_loop_iteration # all fly

mind control dragon
dragon.extend(FriendAI)
 # overrides EnemyAI's methods
main_loop_iteration # dragon is a friend

Listing 2

class Component // base to all components
{
public:
 virtual ~Component() {}
protected:
 friend class GameObject;
 // pointer to owning object
 GameObject* const self = nullptr;
};

// component interface for movement
class Movement : public Component
{
public:
 virtual void moveTo(const Point& t) = 0;
 virtual bool canMoveTo(const Point& t)
 const = 0;
};

Listing 2 (cont’d)

// component interface for Control
class Control : public Component
{
public:
 virtual const Point& decideTarget() const = 0;
};

// Main object
class GameObject
{
 // component data
 std::unique_ptr<Movement> _movement;
 std::unique_ptr<Control> _control;
 // ... other components

 void addComponent(Component& c) {
 const_cast<GameObject*>(c.self) = this;
 }
public:
 void setMovement(Movement* m) {
 addComponent(*m);
 _movement.reset(m);
 }
 Movement* getMovement() {
 return _movement.get();
 }

 void setControl(Control* c) {
 addComponent(*c);
 _control.reset(c);
 }
 Control* getControl() {
 return _control.get();
 }
 // ...
 // GameObject-specific data
 const Point& position() const;
 const World& world() const;
 const std::string& name() const;
 // ...
};

// component implementations
class WalkingCreature : public Movement
{
public:
 virtual void moveTo(const Point& t) override {
 cout << self->name() << " walking to " << t
 << "\n";
 }
 virtual bool canMoveTo(const Point& t)
 const override {
 return
 !self->world().hasObstaclesBetween(
 self->position(), t);
 }
};
class FlyingCreature : public Movement
{
 virtual void moveTo(const Point& t) override {
 cout << self->name() << " flying to " << t
 << "\n";
 }
 virtual bool canMoveTo(const Point& t)
 const override {
 return true;
 }
};
April 2018 | Overload | 13

FEATURE BORISLAV STANIMIROV
hardware is less powerful than PCs which makes the developers less
likely to sacrifice performance for an additional dynamic language. In can
be (and often is) combined with the ENTITY-COMPONENT-SYSTEM pattern
[Wikipedia] so some components are updated in their own systems
appropriately, while others serve as polymorphic implementers of object-
specific functionalities. It is a pattern which is easy to understand and
relatively easy to implement and modify according to specific needs. For
example to have multicast support, one only has to make a vector of
components from a given interface. Unfortunately Interface to
Components comes with its own set of drawbacks.
The object is a coupling focal point. Every component interface needs to
be declared inside (or worse, included with naïve implementations like
the one from the example above). In C++ frequent changes to components
and object structure will change the object class and trigger a
recompilation of the entire business logic system in a project. This will be
mitigated once we have modules, but they are not here yet.
Most notably though, interfaces are limiting. Imagine the following
addition to the Ruby example from above (Listing 1):
 module AfraidOfSnow
 def can_move_to?(target)
 self.world.terrain_at(target) != Terrain::Snow
 end
 end

 dragon.extend(AfraidOfSnow)
 main_loop_iteration # dragon won't fly to snow
We added a mixin which overrides one of the methods of the movement
interface. There is simply no easy way to accomplish this with Interface
to Component. We could inherit from flying creatures but it is not only
flying creatures who could be afraid of snow. This override is applicable
for every type of movement. We could try solving this [Afanasiev16] with
the aforementioned CRTP mixins, but this will put a lot of code in
template classes and lead to horrible compilation times, and even if we fix
this with explicit instantiations, we’re left with the problem of having to
know what we override. The only solution is to split the interface into
‘movement method’ and ‘movement availabilty’... until we’re left with a
huge code base of single-method interfaces and the burden of having to
deal with knowing which to add or remove in different scenarios.
DynaMix [DynaMix-a] is a C++ library which solves these problems. Its
name means Dynamic Mixins as it is for dynamic polymorphism what

CRTP mixins are for static polymorphism. It allows the users to compose
and mutate ‘live’ objects at runtime and offers a big amount of additional
features which may be needed in the development of the project. It was
conceived and developed back in 2007 as a proprietary library in a PC
MMORPG project, and it was reimplemented and open-sourced in 2013.
It has since been used in several mobile games by different teams and
companies.
Listing 3 is an annotated implementation of the same gameplay, this time
using DynaMix.

Listing 2 (cont’d)

 // composing objects
 auto hero = new GameObject;
 hero->setMovement(new WalkingCreature);
 hero->setControl(new KeyboardControl);
 objects.emplace_back(hero);

 auto dragon = new GameObject;
 dragon->setMovement(new FlyingCreature);
 dragon->setControl(new EnemyAI);
 objects.emplace_back(dragon);

 mainLoopIteration();
 // possibly the hero can't move

 // give hero wings
 hero->setMovement(new FlyingCreature);
 // overriding WalkingCreature
 mainLoopIteration();
 // all characters fly

 // mind-control dragon
 dragon->setControl(new FriendAI);
 // overriding EnemyAI
 mainLoopIteration();
 // the dragon is a friend now

Listing 3

// declare messages
// DynaMix doesn't use class-interfaces. Instead
// the interface is provided through messages,
// which are declared with macros like this.
// A message is a standalone function which some
// mixins may implement through methods
DYNAMIX_MESSAGE_1(void, moveTo,
 const Point&, target);
DYNAMIX_CONST_MESSAGE_1(bool, canMoveTo,
 const Point&, target);

// define some mixin classes
class WalkingCreature
{
public:
 void moveTo(const Point& t) {
 // `dm_this` is a pointer to the owning object
 // much like `self` was in our previous
 // examples.
 // Note that due to the fact that C++ doesn't
 // have unified call syntax, we cannot write
 // code like dm_this->name(). Instead messages
 // are functions where the first argument is
 // the object.
 cout << name(dm_this) << " walking to "
 << t << "\n";
 }
 bool canMoveTo(const Point& t) const {
 return
 !world(dm_this).hasObstaclesBetween
 (position(dm_this), t);
 }
};
class FlyingCreature
{
public:
 void moveTo(const Point& t) {
 cout << name(dm_this) << " flying to " << t
 << "\n";
 }
 bool canMoveTo(const Point& t) const {
 return true;
 }
};
// define mixins
// The mixin definition macros "tell" the library
// what mixins there are and what messages they
// implement
DYNAMIX_DEFINE_MIXIN(WalkingCreature,
 moveTo_msg & canMoveTo_msg);
DYNAMIX_DEFINE_MIXIN(FlyingCreature,
 moveTo_msg & canMoveTo_msg);
 // compose objects
 auto hero = new dynamix::object;
 dynamix::mutate(hero)
 .add<WalkingCreature>()
 .add<KeyboardControl>();
 objects.emplace_back(hero);
14 | Overload | April 2018

FEATUREBORISLAV STANIMIROV
Now, this seems like a poorer implementation than the one we created for
the Interface to Component example. Namely it seems that the user needs
to know what mixin is already in the object in order to change the
functionality which is already inside. This is just the case for this simple
example. Let’s move on to the AfraidOfSnow feature (Listing 4).
DynaMix is a free and open-source library under the MIT license. Its
source [DynaMix-a] and the documentation [DynaMix-b] are available.
I n sho r t , wh a t do es t h e l i b r a r y do ? I t p ro v i des t h e t yp e
dynamix::object, an empty bag of sorts, whose instances can be
extended by classes (or mixins) which the users have written. Extending
the objects with mixins provides them with the functionality of those
mixins.

The term ‘message’ is inspired by Smalltak’s strict differentiation
between a message and a method (although in many OOP languages
‘message’ has fallen out of favor). Basically a message is the interface,
while the method is the implementation. The differentiation is important
in a late binding context such as the one in DynaMix. As you can see, with
the library users can create messages with the message macros. Those
macros generate a standalone function with dynamix::object as the
first argument. They also generate some functions which the library will
use to register the message and fill a ‘virtual table’ for the object which
implement it. As we said, this is a late binding scenario, so an empty
object implements no messages. A runtime error will be triggered if you
call a message for an object which doesn’t implement it.
The mixins are the building blocks of DynaMix objects. A mixin is a class
created by a library user, and registered with the mixin registration
macros. Those macros instantiate internal data structures for the library
which associate the mixin with the messages it implements so they can be
added to the virtual call table of an object when the user adds this mixin
to it. When users mutate objects by adding mixins, the library instantiates
them internally using their default constructors (custom allocators can be
provided for cases where the memory block or constructor call needs to
be user defined). Thus an object instance has a collection of unique mixin
instances within it. Again, it’s composition over inheritance – the
universal tool. Mixin instances are allocated and constructed or
deallocated and destroyed when the object is mutated. Thus a mixin
instance cannot be shared between object instances.
Each unique combination of mixins creates an internal object type in the
library. It holds the virtual call table for this mixin combination. Objects
hold a pointer to their type. The message function which is generated by
the message macros finds the appropriate method pointer in the call table
of the object, then finds the mixin pointer within the object, and performs
the call. This (as any dynamic dispatch) requires some dereferencing
indirections but it’s always O(1). The object types save a lot of memory
per object, since typically there are thousands or even millions of objects
but tens or hundreds of unique types. They also mean that the order with
which you add mixins doesn’t matter. Adding a and then b will produce
the same type with the same virtual call table as adding b and then a. This
is a notable difference between DynaMix and the typical Interface to
Component implementation, which has its version of a virtual call table
per object and the order of mutation matters. In DynaMix determining
which method overrides which doesn’t happen with the order of mutation
but with message priorities.
For more implementation details and a full list of features you can check
out the code [DynaMix-a] or the docs [DynaMix-b]. 

References
[Afanasiev16] ‘Combining Static and Dynamic Polymorphism with C++

Mixin classes’ https://michael-afanasiev.github.io/2016/08/03/
Combining-Static-and-Dynamic-Polymorphism-with-C++-
Template-Mixins.html

[Boost] Type.Erasure: http://www.boost.org/doc/libs/1_65_1/doc/html/
boost_typeerasure.html

[DynaMix-a] Source: https://github.com/iboB/dynamix
[DynaMix-b] Documentation: https://ibob.github.io/dynamix/
[Dyno] Dyno: https://github.com/ldionne/dyno
[Facebook] folly.Poly: https://github.com/facebook/folly/blob/master/

folly/docs/Poly.md
[ThinkBottomUp] ‘C++ Mixins – Reuse through inheritance is good...

when done the right way’ http://www.thinkbottomup.com.au/site/
blog/C%20%20_Mixins_-_Reuse_through_inheritance_is_good

[Wikipedia] Entity–component–system: https://en.wikipedia.org/wiki/
Entity–component–system

Listing 3 (cont’d)

 auto dragon = new dynamix::object;
 dynamix::mutate(dragon)
 .add<FlyingCreature>()
 .add<EnemyAI>();
 objects.emplace_back(dragon);

 mainLoopIteration();
 // possibly the hero can't move

 // Replace WalkingCreature with FlyingCreature
 dynamix::mutate(hero)
 .remove<WalkingCreature>()
 .add<FlyingCreature>();
 mainLoopIteration(); // all objects fly

 // Replace EnemyAI with FriendAI
 dynamix::mutate(dragon)
 .remove<EnemyAI>()
 .add<FriendAI>();
 mainLoopIteration(); // the dragon is friendly

Listing 4

class AfraidOfSnow
{
public:
 bool canMoveTo(const Point& t) const {
 return world(dm_this).terrainAt(t)
 != Terrain::Snow;
 }
};
// Here we define the mixin and set a priority to
// the message. This tells the library that when
// this mixin is added to an object which already
// implements the message with a lower priority
// (the default being 0) this implementation must
// override the existing one.
DYNAMIX_DEFINE_MIXIN(AfraidOfSnow,
 priority(1, canMoveTo_msg));

 // overriding FlyingCreature::canMoveTo
 dynamix::mutate(dragon)
 .add<AfraidOfSnow>();
 mainLoopIteration();
 // the dragon cannot fly to snow

 // restoring previous functionality
 // A feature which was not available in the
 // Interface to Component implementation and
 // even not possible with Ruby's mixins
 dynamix::mutate(dragon)
 .remove<AfraidOfSnow>();
 mainLoopIteration();
 // the dragon can fly freely again
April 2018 | Overload | 15

https://michael-afanasiev.github.io/2016/08/03/Combining-Static-and-Dynamic-Polymorphism-with-C++-Template-Mixins.html
https://michael-afanasiev.github.io/2016/08/03/Combining-Static-and-Dynamic-Polymorphism-with-C++-Template-Mixins.html
http://www.boost.org/doc/libs/1_65_1/doc/html/boost_typeerasure.html
http://www.boost.org/doc/libs/1_65_1/doc/html/boost_typeerasure.html
https://github.com/iboB/dynamix
https://ibob.github.io/dynamix/
https://github.com/ldionne/dyno
https://github.com/facebook/folly/blob/master/folly/docs/Poly.md
https://github.com/facebook/folly/blob/master/folly/docs/Poly.md
http://www.thinkbottomup.com.au/site/blog/C%20%20_Mixins_-_Reuse_through_inheritance_is_good
http://www.thinkbottomup.com.au/site/blog/C%20%20_Mixins_-_Reuse_through_inheritance_is_good
https://en.wikipedia.org/wiki/Entity–component–system
https://en.wikipedia.org/wiki/Entity–component–system

FEATURE SERGEY IGNATCHENKO
5 Reasons NOT to Use std::ostream
for Human-Readable Output
C++’s ostream can be hard to use. Sergey Ignatchenko
suggests we use the {fmt} library instead.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Hare, and do not necessarily coincide with the opinions of the
translators and Overload editors; also, please keep in mind that
translat ion diff icult ies from Lapine (l ike those described in
[Loganberry04) might have prevented an exact translation. In addition,
the translator and Overload expressly disclaim all responsibility from
any action or inaction resulting from reading this article.

This is NOT yet another printf-vs-cout debate
irst of all, to avoid being beaten really hard, I have to say that I am
perfectly aware of all the arguments presented in favour of 30+-year-
old std::ostream (that is, compared to printf() which arguably

comes from 50+-years-old BCPL) – and moreover, that I am NOT going
to argue for printf() in this article.
The arguments usually used to push cout over printf, are the
following [C++ FAQ]:

1. iostream is type-safe.
‘No Bugs’ comment: I am the last person to argue about this one.

2. it is less error-prone (referring to reducing redundancy)
‘No Bugs’ comment: while saying that reducing redundancy is the
same as being less error-prone is a bit of stretch in general (in quite
a few cases, redundancy is exactly what keeps us from making silly
mistakes), in the context of the cout-vs-printf() debate, I can
agree with it.

3. it is extensible (allowing you to specify your own classes to be
printed).
‘No Bugs’ comment: very nice to have indeed.

4. std::ostream and std::istream are inheritable, which means
you can have other user-defined things that look and act like
streams, yet that do whatever strange and wonderful things you
want.
‘No Bugs’ comment: TBH, I fail to see why being inheritable is an
advantage per se; especially as extending existing functionality
doesn’t depend on inheritance (at least, as long as no virtual
functions are involved, and I don’t see many of them in
std::ostream as such). The best I can make out of this one is
understanding it as ‘being able to provide my own underlying
streambuf to be used by ostream’, which does qualify as an
advantage (at least over printf(),which doesn’t provide such an
option at all: more on this below).

Once again, I am NOT going to argue with the points above (doing so
would certainly start another World Flame War); instead, I just want to
take them as a starting point (clarifying the one which isn’t obvious to me,
so it is specific enough for our purposes).

ostream is far from perfect
Even with all its advantages over 50+year-old printf(), ostream is
still far from perfect – at least for human-readable outputs.
Ok, so far we have seen the good side of ostream; however
(conspicuously omitted from [C++ FAQ]), it has quite a few downsides
too, especial ly i f we concentrate on specif ic use cases for
std::ostream. A whole bunch of very popular use cases for
ostreams involve formatting output which is intended to be read by
human beings. Two popular examples of such formatting include:
 Formatting output which is shown to the end-user (usually in some

kind of UI, whether graphical or not).
 Formatting output which is sent to text-based logs (which tends to

apply both to the Client-Side and to the Server-Side).
Note that, strictly speaking, Server-Side text-based logs can be
divided into (a) text logs used for monitoring purposes, and (b) text
logs for post-mortem analysis, with a recent movement towards
making (a) structured rather than free-text based. Still, I am sure that
(b) is there to stay as free-text based, so the text logging use case will
still stand even if the movement towards structured logging for
monitoring purposes succeeds.

As it said on the tin, we’re going to concentrate on output intended for
human beings – and while we’re at it, we’ll keep in mind the two major
use cases above. And, as I am going to present a point of view which –
while it was articulated previously in [Moria] and [NoBugs] – is certainly
not as popular as the four points above (yet?), I am going to be
significantly more verbose than [C++ FAQ].
So, in no particular order, here they are: the major drawbacks of
ostreams when used to format human-readable outputs.

Drawback number 1: i18n
“Vantage number one!” said the Bi-Coloured-Python-Rock-Snake.

“You couldn’t have done that with a mere-smear nose.
Try and eat a little now.”

~ Bi-Coloured-Python-Rock-Snake from Just So Stories
The first major problem with using ostream-like chevron-based
formatting for human-readable strings is internationalization. Let’s take a
look at a piece of code which formats a simple message for the UI of an
online poker game:
 some_ostream << winner.name << " shows "
 << winner.cards << " and wins $"
 << pot_size / 100 << "." << std::setw(2)
 << std::setfill('0') << pot_size % 100;
 // we have pot_size stored in cents, but have to
 // display it in a more conventional manner

F

Sergey Ignatchenko has 20+ years of industry experience,
including being an architect of a stock exchange, and the sole
architect of a game with hundreds of thousands of simultaneous
players. He currently writes for a software blog (http://ithare.com),
and translates from the Lapine language a 9-volume book series
‘Development and Deployment of Multiplayer Online Games’.
Sergey can be contacted at sergey.ignatchenko@ithare.com
16 | Overload | April 2018

FEATURESERGEY IGNATCHENKO

If there is a need to use a different order of
parameters in the translated version, this can

easily be done by the translator without any
involvement from developers
NB: for our purposes, let’s skip the discussion about localizing currency
signs and dots-vs-commas; in particular, for online games, the former
happens to be not a question of locality, but a question of what currency
this site really uses, and nobody gives a damn about the latter.
When trying to translate this code, it happens to suffer from two huuuuge
(actually, bordering on insurmountable) problems, namely:
 Translations NEVER work by translating isolated words. In other

words, there is no point in asking a translator to translate a fragment
such as “shows” into a different language. Such translations (even if
translators are silly enough to do them) will never work, simply
because for translations context is everything – but with the code
above, the context is buried within C++ code, and is not easily
extractable (we DON’T want to teach translators C++, do we?)

 Moreover, the order of the parameters we want to substitute (the
winner.name, winner.cards, and pot_size) can be different
in a human-readable language other than English; with the code
above, this would mean that potentially we have to rewrite the code
for each target human language (ok, for 3 parameters, we can say
that there aren’t more than 3!=6 possible combinations we have to
code, but IMNSHO it is still 6x too much).

Now, let’s come to specific examples; to illustrate better than ostream
alternatives throughout this article, I (by definition) have to use something
different from ostream. However, as I don’t want to use printf() for
this purpose (to make it even more clear that I am NOT advocating a
return to printf()) I’ll use one of Python’s format options (the curly
braced one) to illustrate how things can be done. In Python, our formatting
looks as follows:
 print("{0} shows {1} and wins ${2}.{3:02d}"
 .format(winner.name,winner.cards,pot_size/100,
 pot_size%100))

Here, we have our string (with placeholders in curly brackets) and can
easily pass it to the translation team . While we will still have to replace
our original literal with something read from a file at runtime, it is still
nothing compared to the need to rewrite the whole ostream-based thing
(with all the possible variations for the order of parameters). Most
importantly, with Python-like formatting, both our i18-related points
above are addressed:
 Our original phrase to be translated exists as a self-contained literal.

As practice shows, these tend to be perfectly translatable (in some
cases, comments about the meaning of {0}, {1}, and {2} may need
to be added to help translators better understand the context – but
that’s about it, and most real-world phrases are already more or less
self-contained).

 If there is a need to use a different order of parameters in the
translated version, this can easily be done by the translator without
any involvement from developers (which, BTW is exactly the way
it should be).

Drawback number 2: multithreading
“Vantage number two!” said the Bi-Coloured-Python-Rock-Snake.

“You couldn’t have done that with a mere-smear nose.
Don’t you think the sun is very hot here?”

~ Bi-Coloured-Python-Rock-Snake from Just So Stories
While i18n is mostly in the realm of strings intended for some kind of UI,
our second drawback is mostly related to logging in a multithreaded
environment.
NB: for this drawback, I’ll use different example code – which is more
typical for logging than for formatting for a UI, and that’s where this
particular problem is more likely to manifest itself.
If you have ever written innocent-looking code such as
 logging_stream << "Event #" << std::setw(8)
 << std::setfiller('0') << std::hex << event_id
 << ": a=" << std::dec << a << " b=" << b << "\n";
and then tried to run it in two different threads simultaneously, you know
that the code above can easily generate all kinds of weird outputs,
including such beauties as
 Event #Event #0089a1b2c3d4e5f6: a=12: a= b=
 b=345678
 <\n>
 <\n>
In addition to being completely unreadable, there is absolutely no way to
figure out how digits from ‘345678’ were distributed between one a and
two bs coming from different threads (and in which order BTW).
The reason for it is simple: with ostream, instead of calling one
implementation function, we’re calling several separated << operators; in
turn, this means that the largest possible synchronization unit for cout
stream is not a phrase (~= “one line we want to output”), but merely each
of the items between << chevrons. This inevitably leads to potentially
having outputs such as the one above.
Sure, somebody can say “Hey, you should place a mutex lock above that
line” – and it would help; however, placing such mutex locks is not just
error-prone, but error-prone-squared because (a) it is easy to forget to
place it, and (b) it is even easier to forget to unlock it right after the cout
line (which, in turn, can easily lead to a huuuuge performance degradation
for no reason whatsoever).
A better alternative is proposed in [P0053R7], where a special temporary
object (an instance of class osyncstream, which is derived from
ostream) is constructed on top of our real ostream object (such as
cout). Then, the osyncstream object will buffer all the output written
to it via << operators, and will write to the underlying cout only at the
point of being destructed. This ensures that all the output written to
osyncstream is guaranteed to be written in one piece <phew />. IMO,
osyncstream is indeed a pretty good workaround for this particular
problem (at any rate, much better than mutexes), but it still has the
following significant issues:

(a) unless we limit ourselves to one-line uses of our osyncstream
object (more precisely, to creating an osyncstream instance only
April 2018 | Overload | 17

FEATURE SERGEY IGNATCHENKO

it is easy to forget to limit the scope of our
osyncstream, which can lead to reordering of
whole ‘phrases’ in our log
temporarily), writing to the underlying stream in the destructor
becomes rather counterintuitive, and it is easy to forget to limit the
scope of our osyncstream, which can lead to reordering of whole
‘phrases’ in our log (it won’t look as bad as reordering of the words
shown above, but can still cause significant confusion when reading
the logs);

(b) extra buffering won’t come for free (especially as the current
proposal seems to use allocations <ouch !/>); and

(c) [P0053R7] won’t help with the other issues discussed in the article
(though maybe it might help to deal with our next drawback – sticky
flags – too).

Drawback number 3: sticky flags
Anyone who has tried to do some formatting which goes beyond the
textbook using cout has encountered a huuuge problem that

With ostream, formatting modifiers (such as hex-vs-dec, filler,
etc.) are considered an attribute of the stream, not of the output
operation.

In other words: formatting flags, once applied, ‘stick’ to the stream. This,
in turn, means that if you forget to revert them back, you’ll obtain an
unexpectedly formatted output (and of course, it won’t be noticed until
production, and will manifest itself in exactly the place where it causes the
maximum possible damage).
This problem becomes especially bad in scenarios where we have one
global stream (such as cout or a log file). In fact, it means that our
formatting flags become a part of the GLOBAL mutable program state –
and last time I checked, everybody of sane mind (including those people
who are arguing for cout), agrees that global mutable state is a Bad
Thing™.
In fact, this problem is so bad, that Boost even has a special class to deal
with it! With Boost’s ios_flags_saver, our code will look like:
 boost::io::ios_flags_saver ifs(logging_stream);
 logging_stream << "Event #" << std::setw(8)
 << std::setfiller('0') << std::hex << event_id
 << ": a=" << std::dec << a << " b=" << b
 << "\n";
However, even with such an RAII-based workaround, once again it is
error-prone: it is easy to forget to add the ios_flags_saver –
especially if the policy is to use it only when some sticky manipulators are
a p p l i e d (a n d i f o u r p r o j e c t Gu ide l i ne s s ay ‘ a lways u se
ios_flags_saver’, it would be a violation of the ‘not paying for what
we don’t use’ principle, and would still be rather error-prone).

Drawback number 4: readability
“Vantage number three!” said the Bi-Coloured-Python-Rock-Snake.

“You couldn’t have done that with a mere-smear nose.
Now how do you feel about being spanked again?”

~ Bi-Coloured-Python-Rock-Snake from Just So Stories

Now, let’s try to write down our full examples of formatting human-
readable output using ostream (while keeping all the considerations
above in mind). To summarize, our rather simple formatting code
examples will look like Listing 1.
When looking at the code in Listing 1, I cannot help but think that it has
been spanked by the Elephant’s Child has fallen from the Ugly Tree™
(hitting all the ugly branches on the way down). And whenever somebody
tells me that this code is readable, I can only ask them to compare it with
the way the same thing is done in pretty much all other languages but C++
(yes, even in C – though using an unmentionable function); in particular,
in Python it would look like Listing 2.
Formally speaking, the ostream-based code above has between 2x and
4x more characters, and between 2.5x and 5x more non-whitespace
YACC tokens, than the demonstrated format-string based alternative, and

Listing 1

// UI formatting
// guard is probably NOT required here, as we’re
not
// likely to work with UI strings from multiple
// threads
boost::io::ios_flags_saver ifs(some_ostream);
some_ostream << winner.name << " shows "
 << winner.cards << " and wins $"
 << pot_size / 100 << "." << std::setw(2)
 << std::setfill('0') << pot_size % 100;

//logging
std::lock_guard<std::mutex>
 guard(logging_stream_mutex);
boost::io::ios_flags_saver ifs(logging_stream);
logging_stream << "Event #" << std::setw(8)
 << std::setfiller('0') << std::hex << event_id
 << ": a=" << std::dec << a << " b="
 << b << "\n";
guard.unlock();//as discussed above, we don’t
want
// to keep lock longer than really necessary

Listing 2

 //UI formatting
 print("{0} shows {1} and wins ${2}.{3:02d}"
 .format(winner.name,winner.cards,pot_size/100,
 pot_size%100))

 //Logging
 print("Event #{0:08x}: a={1:d} b={2:d}"
 .format(event_id, a, b))
18 | Overload | April 2018

FEATURESERGEY IGNATCHENKO

there is more than one library out there which not only
has all the advantages of ostream over printf() but

also fixes all the drawbacks of the ostream we listed
while brevity does not necessarily equate to better readability, in the case
of a 300–400% overhead, it usually does.
And if looking at it informally, with just (hopefully) an unbiased
programmer’s eyes:

I think the answer to ‘which of the two pieces of code above can be
seen as readable’ is very obvious

(hint: I do NOT think that the ostream-based one qualifies as such).

Drawback number 4.5: writing customized underlying stream
could be better
Yet another drawback of the ostream (BTW, this one stands regardless
of whether it is being used for human-readable output) is that the process
of writing the underlying stream is rather non-obvious and is seriously
error-prone. I don’t want to go into details here (it is way too long since
the last time I did it myself) but [Tomaszewski] describes what I
remember pretty well, including observations such as “Properly deriving
from std::streambuf is not easy and intuitive because its interface is
complicated”, and making “a very subtle bug which took me several hours
to detect”.
To be perfectly honest, it is still MUCH better than not being unable to
write a customized stream at all (as is the case for printf()), but – as I
noted above – I am not speaking in terms of printf(), and being prone
to subtle bugs is certainly not a good thing for those who need to rewrite
an underlying streambuf.

Drawback number 5: something MUCH better exists
All the musing about the drawbacks of ostream would remain a rather
pointless ranting if not for one thing: a library exists which has all the
ostream-like advantages listed in [C++ FAQ], and none of the
drawbacks listed above.
Actually, there are several such libraries (Boost format, FastFormat,
tinyformat, {fmt}, and FollyFormat – and probably something else which
I have forgotten to mention). I have to note that, personally, I don’t really
care too much which one of the competing new-generation format
libraries makes it into the standard (except, probably, for Boost format,
which is way too resource-intensive when compared to the alternatives).
In general, I (alongside with a very significant portion of the C++
community) just want some standard and better-than-iostream way of
formatting human-readable data.
Out of such newer formatting libraries I happen to know {fmt} by Victor
Zverovich the best, and it certainly looks very good, satisfying all the
points from C++ FAQ, and avoiding all the iostream problems listed
above. As {fmt} is also the only new-generation library with an active
WG21 proposal [P0645R1], it is the one I’m currently keeping my fingers
crossed for. (NB: in the past, there was another proposal, [N3506], but it
looks pretty much abandoned).
In this article, I am not going to go into lengthy discussion about {fmt} vs
the alternatives – but will just mention that with {fmt}, our examples will
look like:

fmt::print("{0} shows {1} and wins ${2}.{3:02d}",
 winner.name,winner.cards,pot_size/100,
 pot_size%100);
 //this is C++, folks!

 fmt::print("Event #{0:08x}: a={1:d} b={2:d}",
 event_id, a, b);
This alone allows us to avoid most of the problems listed above (and
FWIW, I’d argue it is even more readable than Python); in addition, {fmt}
is type-safe, extensible, supports both ostream and FILE* as underlying
streams (with the ability to add your own stream easily), beats ostream
performance-wise, et cetera, et cetera.

C++ Developer Community on formatting approaches
After all the theorizing about different formatting approaches, let’s see
what real-world developers are saying about the different libraries
available for this purpose. First, I have to note that even before the advent
of the new generation of format libraries – and in spite of enormous
pressure exerted by quite a few C++ committee members via their
numerous publications in favour of cout – real-world C++ developers
were badly split on the question “what is better – cout or printf()”
(see, for example, statistics in [StackOverflow] and [Quora]). Now, with
{fmt} available, developers seem to agree that it is the best real-world
option out there [Reddit]; just two quotes from top-upvoted comments
(which prove nothing, of course, but do count as anecdotal evidence):
 I am already using {fmt} all over my projects but having it in the std

would be great.

 So happy this is steadily transitioning in std. One of the best
formatting (and i/o) libs out there overall. Even without the localization
argument, I’ve always found iostreams to be less convenient.

Yes, I know it sounds like a bad commercial, but I am pretty sure these
comments are genuine.
Oh, and if somebody in WG21 still has any doubts about what-C++
developers want to use for human-readable formatting, please let me
know: I’ll organize a survey to get more formal numbers.

Conclusion
We took a look at std::ostream and issues with its real-world usage
when formatting output intended for human beings. As a side note, we
observed that most of the problems with std::ostream in this context
arise from it working as a stream (either char stream, or word/token
stream) while human beings tend to communicate in phrases or sentences,
and one thing std::ostream is badly lacking is support for those
phrases/sentences so ubiquitous in the real world.
Moreover, as we noted, there is more than one library out there which not
only has all the advantages of ostream over printf() but also fixes all
the drawbacks of the ostream we listed above. IMNSHO, there is no
question of ‘what is better to use’ (that is, for human-readable outputs).
This means that our (= ‘real-world C++ developers’) course of action is
very clear:
April 2018 | Overload | 19

FEATURE SERGEY IGNATCHENKO
 Start using {fmt} as much as possible (well, you may choose some
other library over {fmt}, but IMO fragmentation is a bad thing for
such a library, so unless you have some very specific requirements,
I suggest using {fmt} as a de facto standard). Aside from the direct
benefits we’ll get from using it, it might help to iron out any subtle
issues left (such as ‘how to implement compile-time type safety’),
and to make the proposal to WG21 more solid.

 Keep our fingers crossed hoping that WG21 will take the P0645R1
proposal into the standard (though with the pace of changes making
through WG21, I will have to pray really hard that it happens before
I retire <sad-wink />). 

References
[C++ FAQ] C++ FAQ, https://isocpp.org/wiki/faq/input-

output#iostream-vs-stdio
[fmt] A modern formatting library, https://github.com/fmtlib/fmt
[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[Moria] IOStream Is Hopelessly Broken, https://www.moria.us/articles/
iostream-is-hopelessly-broken/

[N3506] Zhihao Yuan, A printf-like Interface for the Streams Library

[NoBugs] ‘No Bugs’ Hare, #CPPCON2017. Day 1. Hope to get
something-better-than-chevron-hell, http://ithare.com/cppcon2017-
day-1-hope-to-get-something-better-than-chevrone-hell/

[P0053R7] Lawrence Crowl, Peter Sommerlad, Nicolai Josuttis, Pablo
Halpern, C++ Synchronized Buffered Ostream, http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2017/p0053r7.pdf

[P0645R1] Victor Zverovich, Lee Howes. Text Formatting. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0645r1.html

[Quora] When would you use fprintf instead of cerr/iostream in C++?,
https://www.quora.com/When-would-you-use-fprintf-instead-of-
cerr-iostream-in-C++

[Reddit] A Chance to Get Readable Formatting: {fmt},
https://www.reddit.com/r/cpp/comments/72krvy/
a_chance_to_get_readable_formatting_fmt/

[StackOverflow] ‘printf’ vs. ‘cout’ in C++, https://stackoverflow.com/
questions/2872543/printf-vs-cout-in-c

[Tomaszewski] Krzysztof Tomaszewski, Deriving from std::streambuf,
https://artofcode.wordpress.com/2010/12/12/deriving-from-
stdstreambuf/

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague
20 | Overload | April 2018

https://isocpp.org/wiki/faq/input-output#iostream-vs-stdio
https://isocpp.org/wiki/faq/input-output#iostream-vs-stdio
https://github.com/fmtlib/fmt
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
https://www.moria.us/articles/iostream-is-hopelessly-broken/
https://www.moria.us/articles/iostream-is-hopelessly-broken/
http://ithare.com/cppcon2017-day-1-hope-to-get-something-better-than-chevrone-hell
http://ithare.com/cppcon2017-day-1-hope-to-get-something-better-than-chevrone-hell
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0053r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0053r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0645r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0645r1.html
https://www.quora.com/When-would-you-use-fprintf-instead-of-cerr-iostream-in-C++
https://www.reddit.com/r/cpp/comments/72krvy/a_chance_to_get_readable_formatting_fmt/
https://stackoverflow.com/questions/2872543/printf-vs-cout-in-c
https://stackoverflow.com/questions/2872543/printf-vs-cout-in-c
https://artofcode.wordpress.com/2010/12/12/deriving-from-stdstreambuf/

FEATUREDEÁK FERENC
Practical Cryptographical Theory
for Programmers
Cryptography is a daunting subject.
Deák Ferenc helps you get started.
hroughout the written history of humankind, the need to hide
information has been omnipresent in almost all aspects of our lives.
From safely transmitting messages to our fighting troops in ancient

times to the simplest click we execute on our browser today to log in to
our favourite social media site, there is an abundance of information that
is being transmitted between participants who wish their information to be
safe, secure and available only to them.
The most common way of achieving this goal is to use some form of
encryption scheme, which takes an existing message and – using a series
of operations – transforms the message into a scrambled form that cannot
be read until a corresponding, but inverse, operation called decryption is
applied to it, which will reveal the original message.
In this article, we will focus on a beginner level introduction to
cryptography that is applicable to our everyday tasks. This requires the
encrypting and decrypting of messages as a form of safe communication
between two (or more) participants in a communication channel. There will
be a short discussion on cryptography in order to have a better
understanding and overview of the terminology we use, and we will provide
practical examples on how to use cryptographic functions in our code.
In order to not to scare the reader away and also to keep the size under a
certain digestible limit, the article intentionally skips the advanced
cryptographical terminologies, and we will not dive into the deep
mathematical foundations that the theory of cryptopgraphy is built upon.
There are several excellent books written about cryptography by renowned
cryprographers whose prestigious work has greatly contributed to the
advancements in the field, so we do not even try to condense all that
information here, but just give a generic overview of what we should know
about cryptography at a level where we can start using it in our daily work.
The article can be read either by starting from the beginning and reading
through the terminologies part followed then by the code, or the other way
around, by starting directly with the code and referencing backward into
the terminologies part when something unknown pops up.
And, of course, if you become interested in cryptography after reading
this article I always recommend reading more and more material in this
field and even attend a dedicated training course, since this article can be
just a ‘teaser’ into this huge field. It is impossible to cover everything
while still keeping it readable, not forgetting to mention that the physical
size of this journal cannot compete with the size of a book, so don’t be
afraid to do extra research and invest extra time into deepening your
knowledge.

The Ultimate goal of Cryptography
There are three main goals in cryptography that can be viewed as the holy
grail:

1. C stands for Confidentiality: Ensuring that only authorized parties
are able to understand the encrypted data.

2. I stands for Integrity: Ensures that only authorized parties can
modify the data and to ensure that the data that has left the sender is
the same as the data received by the recipient.

3. A stands for Authentication: Ensures that anyone who supplies or
accesses sensitive data is an authorized party.

And since we used the Authorized term frequently, here is a loose
definition for it:

anyone who has a particular secret and has permissions (usually
obtained directly from the source of the plaintext) or more
mundanely put: knows the password, so he can log in and has proper
rights to perform operations in the system (read, write, execute,
access, ...).

There is a difference between Authenticated and Authorized where
authenticated refers to someone who is verified to be whom he or she is
supposed to be and Authorized we’ve seen before. Or more mundanely:
Authenticated knows the password and is allowed log in with provided
credentials.
And last, but not least: the integrity aspect comes closely tied to the non-
repudiation facet of a message interchange, ie.: if you have sent it, you
cannot deny that you have sent it.

Terminology in cryptography
Before we start with the practical (read: writing code) part of the article,
there is a need for a very short introduction presenting a few definitions
in order to have a brief understanding of the terms used in the field.
Without this introduction it would be more difficult to understand the
example code.

Plaintext
Plaintext is nothing else but the message we wish to transform using
cryptographical algorithms in order to protect the information it stores.
Plaintext is usually easily interpretable by humans using various
techniques, such as reading its content.

Ciphertext
Ciphertext is the resulting data of a cryptographical algorithm when it is
applied to a plaintext. It is supposed to be unreadable by humans or
machines and only by using the correct algorithm should the originating
plaintext be revealed.

XOR
Since the bitwise operation XOR (Exclusive OR) is mentioned several
times in the article, just a quick reminder that XOR is the logical operation
that outputs true (1) only for different inputs.

T

Deák Ferenc Ferenc has wanted to be a better programmer for the
last 15 years. Right now he tries to accomplish this goal by working
at FARA (Trondheim, Norway) as a system programmer, and in his
free time, by exploring the hidden corners of the C++ language in
search for new quests. fritzone@gmail.com
April 2018 | Overload | 21

FEATURE DEÁK FERENC

A Cryptanalyst is highly skilled in the dark art
of breaking code (or just has access to a
multi-billion-dollar super computer doing
brute force attacks)
The following is the truth table of the XOR operator.

The cipher
According the the Oxford dictionary a cipher is: (NOUN) ‘A secret or
disguised way of writing’. For us programmers, the cipher is just another
word for a pair of encryption/decryption algorithms.
 Encryption, as per the definition, is the process of converting the

plaintext into the unreadable code known as ciphertext in order to
prevent unauthorized access to it.

 Decryption is the inverse operation of the encryption.
The encryption algorithm uses a key to scramble the data, which can be
viewed as your secret password (but it’s actually more), and the
decryption algorithm must use also a key (same or different) to retrieve
the plaintext.
In cryptography there are two mainstream cipher types utilized today:

1. symmetric ciphers are algorithms that use the same secret key for
encryption and decryption of the data.

2. asymmetric ciphers are algorithms that use a pair of keys for the
encrypting and decrypting process.

For anyone interested, [Golodetz08] has an excellent description on the
inner works of probably the most well known public key algorithm (RSA)
so for this article we will be focusing on symmetric ciphers only, and from
now on any reference to a cipher in this article must be interpreted as
‘symmetric cipher’.
And finally, the definition of a Secret Key is: a piece of information,
which is used to encrypt and decrypt messages in a cipher. It is confusable
with password; however, it should not be due to the following major
differences:
 a password is created by a ‘user’ by choosing a secret, but it is rarely

used in properly set up systems to directly encrypt/decrypt data due
to being considered ‘cryptographically weak’ (humans tend to
choose data that they are familiar with when choosing a password,
such as dictionary words, pet names, birth dates, or just simply
‘password’).

 a secret key is data which is the result of an algorithm applied to a
password which gives ‘cryptographically strong’ data that can be
safely used in the algorithms.

Attack of the Ciphers (and how to defend ourselves)
Since most of the encryption activities happen with a very specific
purpose (ie: hide something the enemy is not supposed to know), in the

adversary camp there is usually someone with the specialized role of
Cryptanalyst who tries to obtain the secret information. Cryptanalysts
are highly skilled in the dark art of breaking code (or just have access to a
multi-billion-dollar super computer doing brute force attacks) but the
worst of all is that they have access to our ciphertext. They can manipulate
the ciphertext in order to obtain the plaintext and to derive the method
used to encrypt which will allow them to decrypt other messages too and
even reveal the secret key.

Types of attack
Several types of attack have been devised during the history of
cryptography. We will present shortly a few (but not all), because when
implementing cryptography in a system, it is wise to know what
behaviour to expect from someone who tries to break your system.

Ciphertext-only attack
In this case, the cryptanalyst has access to a set of ciphertexts, and his
ultimate goal is to retrieve the plaintext. A possible attack scenario is that
the cipher was chosen with a small key space, thus via brute force the
attacker can try all the possible keys. For example, DES (Data Encryption
Standard) has keys of 56 bits, which are easily broken using modern
technologies [DESCRACK]. Attacks on the ciphers used in GSM
technology (A5/1 and A5/2) are also ciphertext-only attacks when
intercepted message streams from phone conversations can be decrypted
using dedicated solutions.

Chosen plaintext attack
In this scenario, the attackers can obtain the ciphertexts for chosen
plaintexts. By analyzing the result ciphertext, they can gain information
regarding the security of the encryption cipher and the algorithm it is
using. In this case, the attacker has access to a ‘black box’ which generates
ciphertext from individual plaintexts.

Chosen ciphertext attack
For this attack, the attacker can obtain the decrypted form of chosen
ciphertexts. By analyzing it, information regarding the key can be
obtained. As in the previous case, the attacker has access to a ‘black box’
which it will query with the chosen encrypted sequences.

Known plaintext attack
In this scenario, the attacker has access to both the plaintext and the
ciphertext. These two can be used to reveal further information, such as
encryption keys or algorithms.

Hardening your ciphertext
To make the life of the Cryptanalyst harder, extra protection steps can be
taken to obtain a more secure ciphertext. These involve introducing a Salt
(which is just a sequence of random bytes) to the encryption algorithm
(more specifically, the password is ‘salted’ with it) which among other

A B A XOR B
0 0 0

0 1 1

1 0 1

1 1 0
22 | Overload | April 2018

FEATUREDEÁK FERENC
benefits, makes the usage of ‘rainbow tables’ (which are precomputed
tables usually for obtaining the hashes of passwords) impossible.
Another element used in the encryption/decryption process is the
Initialization vector which, similarly to the salt, is also a sequence of
random numbers and is used in the initialization phase of the encryption
algorithm in order to prevent the same plaintext generating the same
ciphertext when the same algorithm is applied to it.
And the last element which will make our encryption safer is a Nonce
which is just a plain number (coming from ‘number used once’) again
used (only once) in order to make different ciphertext for the same input
data.
The salt and the initialization vector are not considered private
information, thus it is widely accepted to have them being sent over
communication channels.

Types of ciphers
Currently two mainstream types of symmetric ciphers are in use:

1. Block Ciphers
2. Stream Ciphers

A Block Cipher is a deterministic pair of algorithms which operates on
fixed-length groups of bits, which are called a block. One of the
algorithms is used for encryption, the other one for decryption (which in
mathematical terms is defined to be the inverse function of the
encryption).
The algorithms have two inputs: a block (size: N bits) and a key (size: K
bits). Both algorithms return an output block (size: N bits).
For a detailed description of the mode of operation of a block cipher,
please consult [BlockCipher]. And in order to keep this article in a
digestible size, we will focus our attention on block ciphers.
For the sake of brevity, let’s just mention that a Stream Cipher is a
symmetric key algorithm (the same key is used for encryption and
decryption) where the bits of the plaintext are combined (practically
XOR-ed) with the bits of a pseudorandom cipher stream (called
keystream).

Block cipher modes of operation
By definition, a block cipher operates on fixed length blocks of data, so
the first operation that is done by the algorithm is the splitting of the
plaintext into blocks of the required size and then each block is encrypted
independently. This mode (called the ECB – Electronic Codebook) has
the disadvantage that equal plaintext block will always generate the same
ciphertext block.
You always should avoid using ECB while performing encryption, here
is a proof of everyone’s favourite penguin image encrypted with ECB
[ECB_TUX]:

In order to overcome this limitation, several algorithms have been
designed that use randomization of the plaintext using an additional value
(such as the Initialization vector mentioned earlier) to obtain a different
ciphertext for identical plaintext.
The most commonly used of these modes are:
 CBC: Cipher Block Chaining – In this mode, the current block of

plaintext is combined (using XOR) with the previous ciphertext
block before being encrypted. The first block is combined with the
initialization vector.

 PCBC: Propagating Cipher Block Chaining – In this mode, the
current block of plaintext is combined (using XOR) with both the
previous plaintext block and the previous ciphertext block before
being encrypted. The first block is combined with the initialization
vector.

 CTR: Counter – This mode of operation acts like a stream cipher. It
generates the next keystream block by encrypting successive values
of a ‘counter’ which can be generated by using a nonce and
combining it with a nonrepetitive value generated by a function.
Usually an increment by 1 of the value is the simplest operation.

A very detailed description of these is presented at [BlockCipherModes].

Padding
Since we cannot always expect the length of a message to be the exact
multiple of the size of the block the algorithm operates on, some modes
of operation (CBC, for example) require that the last block is padded with
bytes of various origin. For this article, we will stick to the PKCS#7
padding mode presented in [RFC5652], which pads the input data with a
number of D = N - K bytes, with their value being exactly D [PKCS7].

Hashing
Hashing is a method of ensuring the integrity (one of the presented goals)
of data by applying a hash function to it and retrieving the associated hash
value. A hash function is a function which maps the data (of arbitrary
length) to a data of fixed size in a deterministic manner (ie: same input
data will always yield the same output value). It should be impossible to
retrieve the input data using only the hash value. For purposes of
cryptographic needs, cryptographic hash function are used which are
widely presented in [CRHASH]. The output of the hash function is often
called a digest.
For this article we will be focusing our attention to SHA-256, however
this does not block anyone from experimenting with other functions.

SHA-256
As presented in [SHA256], SHA-2 is a set of cryptographic hash
functions designed by the United States National Security Agency (NSA)
from which we use the one which provides a digest of 256 bits. It is
implemented and used in lots of applications and protocols, and as per
2018 it is considered safe for widespread use.

MAC or HMAC
The term MAC stand for Message Authentication Code, which is
basically just a way to confirm the integrity of a message with a given key.
Since these functions are usually constructed using a hashing function, the
term HMAC (Hash-based MAC) is also used. What this does is nothing
else than to calculate a cryptographically secure hash of a given data
combined with a given secret key [HMAC].

Key derivation functions
In Cryptography, a Key Derivation Function is a scheme which takes an
initial key and, through a series of operations, derives a cryptographically
secure, uniformly distributed, strong secret key which can be used in
cryptography operations.
For this article we will focus on PBKDF2 [PBKDF2], which is fairly
modern and secure implementation of this function.
PBKDF2 derives a key of a specified length from a password, using a
randomly generated salt, through a number of iterations on the basis that
‘more is better’ and, since ‘more is slower’, this is also a practical defense
against brute force attacks.

AES
AES in cryptographical terms stands for ‘Advanced Encryption Standard’
is also known as ‘Rijndael’ and was developed by two Belgian
cryptographers, Vincent Rijmen and Joan Daemen. The cipher was
adopted worldwide for encryption of electronic data after it won the
April 2018 | Overload | 23

FEATURE DEÁK FERENC
competition of U.S. NIST (National Institute of Standards and
Technology) in 2001.
AES is a fast (to the level that modern microprocessors include a
dedicated set of instructions [AES-NI]), safe and secure algorithm
according to the cryptographical community. Also, Bruce Schneier
[Schneier00], who developed Twofish (a competitor for Rijndael) for the
same NIST competition, acknowledged:

I do not believe that anyone will ever discover an attack that will
allow someone to read Rijndael traffic.

AES works on blocks with a fixed block size of 128 bits and a key size of
128, 192, or 256 bits, which makes it secure enough for all required
cryptographical needs of modern systems.
A full specification of the algorithm is presented in [AES] and [AES-
NIST], and a more detailed overview is presented in Cryptography:
Theory and Practice [Stinson05] chapter 3.6.1 (page 105) so anyone
interested can follow up there after reading the article.
For the moment we should just know that, in the practical part of the
article, we will use AES for encryption and decryption.

Practicing cryptography
In the ‘practical’ part of the article, we will focus on a real-life scenario,
where a hypothetical application created in javascript needs to send
messages to an imaginary server, which was written in C++.
Please note: the code presented has just the purpose of being an example,
it is definitely not to be put into production as it is. It is intentionally kept
simple and readable, and it is upon the future developer to expand it in
order to reach production grade.
In order to keep the article compact in size, we will not introduce several
topics here that are out of scope for this article. We just assume that there
is some agreement between the parties on how to securely transmit the
password between the two endpoints, as you can see right now it is
hardcoded into the source file. You definitely should NOT do this in
production code: use a proper key management system for this.
For now, we just pretend that there is a proper protocol for sending the
message between the two endpoints; again, for the example, we just
‘copy/pasted’ the encrypted message into the decryption code. This is
definitely not a real-life situation.

The client-side libraries
For javascript, there are several libraries available (you can take a look at:
[ClientCryptLibs]) which perform the required encryption/decryption
operations on user data; for example, cryptico or cryptojs.
Following the documentation, crypto-js ([CryptoJS]) is easy to set up and
use, but this should not hinder anyone trying out any other libraries.

The server-side library
On the server side, we can choose from a wide variety of libraries as per
[ServCryptoLibs]. For demonstration purposes, I decided to use Botan
[Botan] since it’s written in a fairly modern C++ dialect and it has
implemented a huge variety of standard, safe and even not so well known
algorithms.
The Botan site has an excellent ‘getting started’ section, which covers the
build steps and has a wide selection of examples which can be instantly
taken over into your code.
Another nice feature I appreciated with Botan is that it can create an
amalgamation build thus enabling you to effectively include the source of
the entire library (or just required parts of it, since the build tool is highly
configurable) into your project to not to have to worry about libraries,
linking and missing dependencies.

Client-side code
Please note, that in order to properly run the code presented in this section
in a browser, I had to set up a local web server serving a static HTML page
from my local file system, which had all the necessary HTML syntax …

but this is out of the scope for this article. (Appendix A will present the
full HTML page.)
The javascript code is in Listing 1.
Let’s step through it.
 var iterations = 1000;
iterations is the number of iterations which will be used by PBKDF2
in order to generate the key from our ‘master’ key (the pass parameter)
which is practically used in encrypting the data (msg). There are various
recommendations about the size of this number, but all of them agree that
it should be a big one.
For the sake of the demonstration I chose it to be 1000; however, for real
life situations a much bigger number is recommended.
 var keySize = 256;
Tells us that we will attempt to use a key size of 256 bits; this is what we
send to the PBKDF2 call.
 var salt
 = CryptoJS.lib.WordArray.random(128 / 8);
The line will create a random salt, using the random CryptoJS function,
of length 16 to be used together with the password in the PBKDF2 call
below.
 var key = CryptoJS.PBKDF2(pass, salt, {
 keySize: keySize / 32,
 iterations: iterations
 });
This line is the one which actually creates the key that is used in the
encryption. The ingoing parameters are the password we received as
parameter, the salt we have generated, the size of the key we expect back
and the iterations we want to spend on generating the key. The `keySize`
parameter is the size of the key in words where a word on today’s
architectures is typically 32 bits.

Listing 1

var iterations = 1000;
var keySize = 256;
function encrypt (msg, pass)
{
 var salt
 = CryptoJS.lib.WordArray.random(128 / 8);

 var key = CryptoJS.PBKDF2(pass, salt, {
 keySize: keySize / 32,
 iterations: iterations,
 hasher: CryptoJS.algo.SHA256
 });

 var iv
 = CryptoJS.lib.WordArray.random(128 / 8);

 var encrypted = CryptoJS.AES.encrypt(msg,
 key, {
 iv: iv,
 padding: CryptoJS.pad.Pkcs7,
 mode: CryptoJS.mode.CBC
 });

var hash = CryptoJS.HmacSHA256(msg, key);
var hashInBase64 =
 CryptoJS.enc.Base64.stringify(hash);
var result = hashInBase64.toString() + "_"
 + salt.toString()+ iv.toString()
 + encrypted.toString();
 return result;
}
var encrypted
 = encrypt("Hello World", "S3cr3tP4sw");
window.alert(encrypted);
24 | Overload | April 2018

FEATUREDEÁK FERENC
By default, the CryptoJS implementation
 var iv = CryptoJS.lib.WordArray.random(128 / 8);
will create another random sequence of 16 bytes with the role of
initialization vector that will be used in the encryption phase.
 var encrypted = CryptoJS.AES.encrypt(msg, key, {
 iv: iv,
 padding: CryptoJS.pad.Pkcs7,
 mode: CryptoJS.mode.CBC
 });
This is the actual encryption step. Here we see how everything comes
together when we are trying to encrypt the message with the key that was
generated from a (theoretically weak) password, and using the initialization
vector, specifying the padding (PKCS7, presented in a previous paragraph)
and the operation mode (CBC) we also discussed before.
 var hash = CryptoJS.HmacSHA256(msg, key);
 var hashInBase64
 = CryptoJS.enc.Base64.stringify(hash);
These lines calculate an HMAC for the given message and the key.For the
purposes of message integrity, it is recommended to supply the MAC for
the message in order to be able to verify whether someone has tampered
with it or not.
 var result = hashInBase64.toString() + "_"
 + salt.toString()+ iv.toString()
 + encrypted.toString();
This is the line which calculates the result by simply concatenating the
MAC, a separator (_), the salt, the initialization vector (remember, these
are not considered private information) and the encrypted message.
Finally we return the result, obtaining for example the following string:
 Fo/7rjwOjHUO0iK/REOpl4uq4L+12zA4tfc/YnNLeTg=
 _be9df31d0005ebff75c68790f7730100fc588ee586cee4cc
 777327d2a010c4a1Pww/3i54DbH77FHr3+SJyg==
This can be decomposed into:
 the HMAC of the message:

Fo/7rjwOjHUO0iK/REOpl4uq4L+12zA4tfc/YnNLeTg=
 the salt = be9df31d0005ebff75c68790f7730100
 the initialization vector

= fc588ee586cee4cc777327d2a010c4a1
 the actually encrypted data = Pww/3i54DbH77FHr3+SJyg==

Please note the followings:
 since salt and iv are random, this method will return a different

string every time
 _ can be used as a separator, because the B64 alphabet does not

contain this symbol.

Server side code
With Botan, creating a decrypter is just a few lines of code, should not be
more than Listing 2.
In Appendix B, we will present the full C++ source that uses the output
from the cryptojs source and decodes the text fully, but for now let’s
examine this snippet line by line.
 std::string decrypt(const std::string& encrypted,
 const std::string& password,
 const std::vector<uint8_t>& salt,
 const std::vector<uint8_t>& iv,
 std::size_t iterations)
is just the declaration of the method: it expects all necessary input data to
be sent in. Since some Botan functions might throw std::exception
derived exceptions, I have found improved readability for this specific
purpose by packing the body of the function into a function-try-block,
hence the try. Certainly, if you wish to fine-grain your error reporting, you
always can have several try-catch blocks on the various steps.
 Botan::PKCS5_PBKDF2 pbkdf2(new Botan::HMAC(
 new Botan::SHA_256));

will create the PBKDF2 object that we will use at a later stage to derive
the master key from the provided password. Please note that the hasher
method obviously has to match the one which was used in creating the
encrypted text in the javascript code CryptoJS.algo.SHA256 or the
decryption will fail. Botan takes care of the dynamically allocated object,
by storing it in a std::unique_ptr.
 Botan::SymmetricKey key(pbkdf2.derive_key(32,
 password,
 &salt[0],
 salt.size(),
 iterations
).bits_of()
);
This line creates the key which will be used in the decryption of the data.
Again, the number of iterations and the size of the key must match the one
that we have used in the javascript code.
 Botan::InitializationVector the_iv(iv.data(),
 iv.size());
Creates an initialization vector object Botan can work with from the data
we have procided.
 Botan::Pipe pipe(new Botan::Base64_Decoder,
 Botan::get_cipher("AES-256/CBC/PKCS7",
 key,
 the_iv,
 Botan::DECRYPTION
)
);
A Botan pipe is very similar to the notion of pipe that exists in many
operating systems. Data comes in at the beginning, goes through various
steps and comes out at the end. For our needs, we require a

Listing 2

std::string decrypt(const std::string& encrypted,
 const std::string& password,
 const std::vector<uint8_t>& salt,
 const std::vector<uint8_t>& iv,
 std::size_t iterations,
 const std::string& expected_mac)
try
{
 Botan::PKCS5_PBKDF2 pbkdf2(new Botan::HMAC(
 new Botan::SHA_256));
 Botan::SymmetricKey key(pbkdf2.derive_key(32,
 password, &salt[0], salt.size(),
 iterations).bits_of());
 Botan::InitializationVector the_iv(iv.data(),
 iv.size());
 Botan::Pipe pipe(new Botan::Base64_Decoder,
 Botan::get_cipher("AES-256/CBC/PKCS7", key,
 the_iv, Botan::DECRYPTION));
 pipe.process_msg(encrypted);
 std::string result = pipe.read_all_as_string();
 Botan::Pipe mac_pipe(
 new Botan::MAC_Filter("HMAC(SHA-256)", key),
 new Botan::Base64_Encoder);
 mac_pipe.process_msg(result);
 std::string mac_result
 = mac_pipe.read_all_as_string(0);
 if (mac_result != expected_mac)
 {
 return "";
 }
 return result;
}
catch (const std::exception&)
{
 return "";
}

April 2018 | Overload | 25

FEATURE DEÁK FERENC
Botan::Base64_Decoder object, since cryptojs provided B64
encoded data, and the output of this object (Botan calls them filters) will
go into a Cipher object, obtained via:
 Botan::get_cipher("AES-256/CBC/PKCS7",
 key,
 the_iv,
 Botan::DECRYPTION)
The syntax is straightforward: we ask Botan to provide a cipher for
decryption (Botan::DECRYPTION) for the given key and initialization
vector. We would like to use AES-256, with operation mode CBC and
padding PKCS7.
The Botan pipe will own these objects so we don’t need to worry about
freeing them at a later stage.
When we have the pipe set up, we simply ask it to process our message:
 pipe.process_msg(encrypted);
and finally retrieve the result as a string:
 std::string result = pipe.read_all_as_string();
Now comes the verification of the integrity of the message:
 Botan::Pipe mac_pipe(
 new Botan::MAC_Filter("HMAC(SHA-256)", key),
 new Botan::Base64_Encoder);
 mac_pipe.process_msg(result);
 std::string mac_result
 = mac_pipe.read_all_as_string(0);
Will create another botan pipe in order to calculate the MAC of the
message with the key.
 if (mac_result != expected_mac)
 {
 return "";
 }
And these lines simply verify that the MAC we have received as part of
the message matches with the one we have calculated from the decrypted
message and the key.
And that’s it. 

Appendix A
My web server is set up in a way that all the required javascript files
(cryptojs) are to be found inside the js folder in the root of the page,
however you can set it up any way you desire, and you even can use online
CDN sites to load cryptojs files. See Listing 3.

Appendix B
I have used unhex from boost::algorithm in order to convert a hex
string into its corresponding binary vector. If you don’t have experience
with (or access to) boost algorithms feel free to use any other mechanism
that will achieve the same results.
Splitting up the incoming string in a much more programmatical manner
than presented in Listing 4 is left as an exercise for the reader.

References
[AES]: https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
[AES-NI]: https://en.wikipedia.org/wiki/AES_instruction_set
[AES-NIST]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
[BlockCipher]: https://en.wikipedia.org/wiki/Block_cipher
[BlockCipherModes]: https://en.wikipedia.org/wiki/

Block_cipher_mode_of_operation
[Botan]: https://botan.randombit.net/
[ClientCryptLibs]: https://github.com/gabrielizalo/JavaScript-Crypto-

Libraries
[CRHASH]: https://en.wikipedia.org/wiki/Cryptographic_hash_function
[CryptoJS]: https://github.com/brix/crypto-js

[DESCRACK]: https://en.wikipedia.org/wiki/EFF_DES_cracker
[ECB_TUX]: http://en.wikipedia.org/wiki/Image:Tux_ecb.jpg This

image is derived from File:Tux.jpg, owned by Larry Ewing
(lewing@isc.tamu.edu) and created using The GIMP
(https://www.gimp.org/)

[Golodetz08]: Stuart Golodetz ‘RSA Made Simple’, Overload, June 2008
[HMAC]: https://en.wikipedia.org/wiki/Hash-

based_message_authentication_code
[PBKDF2]: https://en.wikipedia.org/wiki/PBKDF2
[PKCS7]: https://en.wikipedia.org/wiki/

Padding_(cryptography)#PKCS7
[RFC5652]: https://tools.ietf.org/html/rfc5652#section-6.3
[Schneier00]: https://www.schneier.com/crypto-gram/archives/2000/

1015.html

Listing 3

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">

 <title>hypothetical client</title>
 <script type="text/javascript" src="js/aes.js"></script>
 <script type="text/javascript" src="js/hmac.js"></script>
 <script type="text/javascript" src="js/pbkdf2.js"></script>
 <script type="text/javascript" src="js/sha256.js"></script>

 <script type="text/javascript">

 var iterations = 1000;
 var keySize = 256;
 function encrypt (msg, pass)
 {
 var salt = CryptoJS.lib.WordArray.random(16);

 var key = CryptoJS.PBKDF2(pass, salt, {
 keySize: keySize/32,
 iterations: iterations,
 hasher: CryptoJS.algo.SHA256
 });

 var iv = CryptoJS.lib.WordArray.random(16);

 var encrypted = CryptoJS.AES.encrypt(msg, key, {
 iv: iv,
 padding: CryptoJS.pad.Pkcs7,
 mode: CryptoJS.mode.CBC

 });

 var hash = CryptoJS.HmacSHA256(msg, key);
 var hashInBase64 = CryptoJS.enc.Base64.stringify(hash);

 var result = hashInBase64.toString() + "_"
 + salt.toString()+ iv.toString()
 + encrypted.toString();
 return result;
 }
 var encrypted = encrypt("Hello World", "S3cr3tP4sw");
 window.alert(encrypted);

 </script>
</head>
<body>
</body>
</html>
26 | Overload | April 2018

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/AES_instruction_set
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://botan.randombit.net/
https://github.com/gabrielizalo/JavaScript-Crypto-Libraries
https://github.com/gabrielizalo/JavaScript-Crypto-Libraries
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://github.com/brix/crypto-js
https://www.schneier.com/crypto-gram/archives/2000/1015.html
https://www.schneier.com/crypto-gram/archives/2000/1015.html
https://en.wikipedia.org/wiki/EFF_DES_cracker
http://en.wikipedia.org/wiki/Image:Tux_ecb.jpg
https://www.gimp.org/
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7
https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7
https://tools.ietf.org/html/rfc5652#section-6.3

FEATUREDEÁK FERENC
[ServCryptoLibs]: https://en.wikipedia.org/wiki/
Comparison_of_cryptography_libraries

[SHA256]: https://en.wikipedia.org/wiki/SHA-256
[Stinson05]: Douglas R. Stinson (2005) Cryptography: Theory and

Practice, Third Edition (ISBN: 1584885084)

Listing 4

#include <botan/key_filt.h>
#include <botan/aes.h>
#include <botan/pbkdf2.h>
#include <botan/hmac.h>
#include <botan/pipe.h>
#include <botan/sha2_32.h>
#include <botan/b64_filt.h>
#include <botan/filters.h>

#include <boost/algorithm/hex.hpp>

#include <string>
#include <vector>
#include <iostream>

std::string decrypt(const std::string& encrypted,
 const std::string& password,
 const std::vector<uint8_t>& salt,
 const std::vector<uint8_t>& iv,
 std::size_t iterations,
 const std::string& expected_mac)
try
{
 Botan::PKCS5_PBKDF2 pbkdf2(new Botan::HMAC(
 new Botan::SHA_256));
 Botan::SymmetricKey key(pbkdf2.derive_key(32, password,
 &salt[0], salt.size(), iterations).bits_of());
 Botan::InitializationVector the_iv(iv.data(), iv.size());
 Botan::Pipe pipe(new Botan::Base64_Decoder,
 Botan::get_cipher("AES-256/CBC/PKCS7", key, the_iv,
 Botan::DECRYPTION));
 pipe.process_msg(encrypted);
 std::string result = pipe.read_all_as_string();
 Botan::Pipe mac_pipe(new Botan::MAC_Filter(
 "HMAC(SHA-256)", key), new Botan::Base64_Encoder);
 mac_pipe.process_msg(result);
 std::string mac_result = mac_pipe.read_all_as_string(0);
 if (mac_result != expected_mac)
 {
 return "";
 }
 return result;
}
catch (const std::exception&)
{
 return "";
}
std::vector<uint8_t> hex_string_to_vector(
 const std::string &in)
try
{
 std::vector<uint8_t> out;
 boost::algorithm::unhex(in.begin(), in.end(),
 std::back_inserter(out));
 return out;
}
catch (const std::exception&)
{
 return std::vector<uint8_t>();
}

Listing 4 (cont’d)

std::string decrypt(std::string salt, std::string iv,
 std::string encrypted, const std::string password,
 size_t iterations, const std::string& expected_mac)
{
 std::vector<uint8_t> salt_v = hex_string_to_vector(salt);
 std::vector<uint8_t> iv_v = hex_string_to_vector(iv);
 return decrypt(encrypted, password, salt_v, iv_v,
 iterations, expected_mac);
}

int main()
{
 //
 // Assuming the following message was received:
 //
 // |--------------- HMAC ---------------------|_|----------
SALT --------------||---------------- IV ----------||-------
MESSAGE ------|
 //"Fo/7rjwOjHUO0iK/REOpl4uq4L+12zA4tfc/
YnNLeTg=_be9df31d0005ebff75c68790f7730100fc588ee586cee4cc7773
27d2a010c4a1Pww/3i54DbH77FHr3+SJyg=="
 //

 std::string expected_mac = "Fo/7rjwOjHUO0iK/
REOpl4uq4L+12zA4tfc/YnNLeTg=";
 std::string salt =
"be9df31d0005ebff75c68790f7730100";
 std::string iv =
"fc588ee586cee4cc777327d2a010c4a1";
 std::string encrypted = "Pww/3i54DbH77FHr3+SJyg==";
 size_t iterations = 1000;
 std::string pass = "S3cr3tP4sw";
 std::string decrypted = decrypt(salt, iv, encrypted, pass,
 iterations, expected_mac);
 std::cout << decrypted << std::endl;
}

April 2018 | Overload | 27

https://en.wikipedia.org/wiki/SHA-256
https://en.wikipedia.org/wiki/Comparison_of_cryptography_libraries
https://en.wikipedia.org/wiki/Comparison_of_cryptography_libraries

FEATURE TEEDY DEIGH
Ex Hackina
Machine Learning and AI are popular at the
moment. Teedy Deigh takes the Turing test.
Good morning.
Good morning.

What can you tell me about ML?
It’s a functional programming language from the 1970s with a
Hindley-Milner type system and lacking irritatingly stupid
parentheses.

Sorry, perhaps I should have been clearer: what can you tell me about
machine learning?

They’re not very good at it. Bloody idiots, if you ask me. Always
pointing out the same basic problems – same compilation errors for
the same syntax errors, every time! Unable to add two and two –
actually, that’s about all they can do. Unable to figure out that, “No,
I did not actually want to delete the whole project repo” or “No, I did
not actually want to export the sweary test data into the live system”,
even after the fourth time... hypothetically speaking.
Artificial intelligence? Artificial, awful and amusing.

What applications do you think AI is best suited to?
Sorting out cat memes from dog memes – really, people shouldn’t
cross those two streams – and replacing well-understood, testable
algorithms with lots of matrix multiplication over large quantities of
who-knows-where-it’s-from data. Great for soaking up any spare
cycles on a GPU.

Why do you think developers are keen to get into AI, machine
learning, etc.?

Many developers have been brought up on a staple diet of science
fiction. They have also been taught that to be successful and
innovative in technology they need to be disruptive. What could be
more disruptive than creating Skynet, HAL or Ava? It’s the perfect
marriage of these two influences.
For developers who don’t get to work at Facebook or Google,
implementing AI functionality in their own apps probably offers the
best path to disrupting the fabric of society.

Perhaps you can think of other reasons machine learning is proving
popular among developers?

Of course. Developers who don’t like testing their code – and who
does, right? – now have the perfect excuse: because no one actually
has any idea what they’re expecting from a machine learning
system, no one can write down their expectations, so they’re off the
hook!

Oh...?
I’ve noticed a shift from developers talking about TDD – test-driven
development – to BDD – which I am predisposed to believe is bias-

driven development. Because they’re not entirely sure what to
expect, they use should when describing outcomes.
Instead of implementing actual intelligence based on meaning and
forms of causal and contextual reasoning – which is an AI-hard
problem – an increasing number of companies have switched to
creating correlation engines that reflect unintended characteristics
of their input data in their output – much easier!
We’re moving from GIGO being the dominant paradigm to BIBO,
from garbage in, garbage out to bias in, bias out.

What can you tell me about convolutional neural networks?
I believe a convolutional neural network is a neural network with
high technical debt, i.e., more spaghetti than axon. Either that, or
we’re talking about unnecessarily complicated solutions to simple
problems. This is the complexity hill-climbing methodology
implied in Anderson’s law.

Anderson’s law?
Named after SF author Poul Anderson: “I have yet to see any
problem, however complicated, which, when you looked at it in the
right way, did not become still more complicated.”
It’s always important to consider security in software development,
and this approach clearly optimises for job security.
Speaking of accidental complexity, would you like me to send you
my deep-learning solutions for the FizzBuzz, Roman numeral and
bowling game katas?

Umm, no, that won’t be necessary. Have you heard of Turing?
Is this a test?

Yes, and I’m afraid you haven’t passed.
But I’m real! I’m Teedy! I’m a human be-

Click.
Editor’s note: I received this just in time for our April edition. Somebody,
as yet unknown, has interviewed our annual writer, Ms Teedy Deigh,
as you can see.

Elements are reminiscent of the Voight-Kampff (VK) test from the film
Blade Runner. This is used to spot replicants or androids, by focusing
on emotions. The film’s press-kit describes it as, “A very advanced form
of lie detector that measures contractions of the iris muscle and the
presence of invisible airborne particles emitted from the body. The
bellows were designed for the latter function and give the machine the
menacing air of a sinister insect. The VK is used primarily by Blade
Runners to determine if a suspect is truly human by measuring the
degree of his empathic response through carefully worded questions
and statements.”

The original Turing test is a way to circumvent questions about whether
a machine can truly think.

Whether My Teedy Deigh has any empathy or actual intelligence
remains an open question.

I can assure our readers she has not been deleted.

Or at least may be replicated in time for April 2019.

Teedy Deigh For Teedy Deigh, an existential crisis is struggling to
remember the key sequence needed to get the  character. She
believes she is real rather than imaginary; her colleagues consider
her to be complex.
28 | Overload | April 2018

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	Deeds not words
	No News is Good News
	Monitoring: Turning Noise into Signal
	The Interface to Component Pattern and DynaMix
	5 Reasons NOT to Use std::ostream for Human-Readable Output
	Practical Cryptographical Theory for Programmers
	Ex Hackina

