

December 2017 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 CAS (Re)Actor as a Build Block for Non-
Blocking Multithreaded Primitives
Sergey Ignatchenko shows how copy and swap
can work for reactors.

7 A Design Example
Charles Tolman considers an organising
principle to get to the heart of problems.

10 The Last Word in Patterns
Paul Grenyer writes us his single transaction
CrUD pattern.

11 Implementing Type-Classes as OCaml
Modules
Shayne Fletcher implements type classes as
OCaml modules.

14 Evolutionary Computing Frameworks for
Optimisation
Aurora Ramírez and Chris Simons show how
evolutionary algorithms can find optimal
solutions to problems.

20 Afterwood
Chris Oldwood reminds us of tabs’ many guises.

OVERLOAD 142

December 2017
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Andy Balaam
andybalaam@artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson@gmail.com

Klitos Kyriacou
klitos.kyriacou@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover art and design
Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 143 should be submitted by
1st January 2018 and those for
Overload 144 by
1st March 2018.

EDITORIAL FRANCES BUONTEMPO
Too Fast! Too slow! Too right!!
Many products over-promise.
Frances Buontempo muses on
how to get things just right.
I was too slow to start thinking what to write an
editorial on in this issue. The last two months have
flown by in what felt more like a week, though maybe
I wasn’t paying full attention. I should try to keep a
record of all the ideas I start thinking of writing about.
No doubt, trying to decide how to record these and

make sure I could understand my notes later when I wanted to use them
would give me another excuse for not getting round to writing an
editorial. Documentation is a waste of space, right?
Have you ever asked a colleague to demonstrate how to do something,
only to watch them typing at 100wpm, using keyboard shortcuts and
ended up none the wiser as to what they just did. Or possibly worse, they
say, “I just run a script I found on the internet”. Your colleague has
zoomed through what they do and you have learnt nothing from them.
“Too fast!” you mutter under your breath. Perhaps you persuade them to
write documentation, which can cause another set of problems we’ll
come to later. Perhaps they follow the current trend to make a screen
capture of what they are up to, making sure they use mouse clicks to show
what to do, clearly talking through every single step in full detail. The
five minute task now has a 20 minute video. Better than 200 pages of
documentation? Or worse? You can copy and paste the commands from
the docs but not a screencast. If considerate, they may provide scripts too,
but it now takes 20 minutes to watch and you have to make notes on
where the pertinent bits are rather than just highlight a couple of lines in
a document. The cunning may manage to run the talk at ‘chipmunk’
speed (extra fast, making the voice high-pitched and squeaky) so it only
takes 5 minutes to watch. However you work round this, you have gone
from the instructions being way too fast to being way too slow. Sigh
Perhaps new ‘AI’ algorithms combined with speech to text APIs let you
build a table of contents, or just translate their words back into text you
can grep. Over-engineered? Perhaps; there must be a better, quicker way.
Perhaps you are provided with documentation instead. We have moved
away from comprehensive write-ups filling two lever arch files or a print
out of the source code. You’ve seen the pictures of Margaret Hamilton
with the stack of Apollo Guidance Computer source code, forming a pile
of paper as tall as she is [NASA]. Who prints source code out nowadays?
I did get embroiled in an attempt to find a bug in some FORTRAN code
a couple of years ago, and a younger team member did print out the
unstructured ‘function’ but we couldn’t find a corridor long enough for
all the paper. He did find the bug. Respect! Nowadays you probably

expect a short README file showing how to get up
and running quickly when you try new code.

You’ re h appy t o d ig i n to API
documentation, or skim through a wiki or
tutorial if needed. Sometimes just a

README is enough. Sometimes it isn’t. There’s always a sweet-spot
and it depends on the context. How long does it take a new starter on your
team to get up to speed? Can they release new functionality within a
week? Does it take them a month to even get a computer in the first place?
Or two months for a door pass. (True story. Don’t ask.)
Documentation and instructions can be found in various places and
formats. You may find an online discussion group for software you are
using, or failing that, resort to StackOverflow. When do you ask a
question? As soon as you are stuck? Do you immediately get yelled at for
asking a duplicate question? Or do you spend hours reading what’s
already been posted? Do you only resort to online help after spending a
few weeks trying to solve the problem yourself only to find the person
who answers is sitting next to you? More generally, online applications
often have a questions section on their website. How many times does
some rough and ready AI/machine learning algorithm suggest items from
a FAQ section that frankly have nothing to do with your problem, and
you are forced to type it in and promised your query will be responded to
within 24 hours? On the dot of 24 hours later, you get an automated
response assuring you of the importance of your custom and that your
problem is being investigated. To be fair, a timely response is good
manners. Promising someone you’ll just be five minutes and then taking
an hour or two is rude. If you say five minutes, get back in five minutes
with a status update. Conversely, if someone claims they will be “Just
five more minutes,” respect that and give them the space they’ve asked
for. Of course, the “just five more minutes” is often a symptom of over-
optimistic guessing or a play for extra time. Computers can give over-
confident completion times too. You’ve been there:
 1 minute to completion, which then goes up to 1 hour
 0 seconds left, staying in that state for at least five minutes
 Updating Visual Studio – why does it take so long? What is it

doing??
I presume the scripts know how many bytes or steps there are in total and
attempt to report time left by approximating the velocity. It’s often
clearer if the code reports in units it can measure, avoiding the surprising
blur that happens with a conjectured speed or velocity. Using appropriate
units can make things less confusing, clearer and even accurate.
Stating the average fuel consumption in miles per gallon (bearing in mind
varying definitions of gallons and other units) seems sensible. Does your
car have a fuel consumption of 50 miles per gallon? How often do you
manage this? Perhaps the units were correct, but the word ‘average’
needs disclaimers in the small print. What about your CO2 emissions?
Perhaps you have an electric car, so try to calculate a miles per gallon
equivalent. How far can you go on a full tank (gas or electric)? Does it
matter if you have the lights on?? Does it depend on how fast or slow you

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | December 2017

EDITORIALFRANCES BUONTEMPO
drive? Perhaps you don’t have a car. You may have used middleware
though, or have seen statistics on throughput and latency in a datasheet.
Some middleware named “Faster than light” guarantees to deliver one
million messages per second under specific conditions; there are always
conditions, though messages don’t seem to travel faster than light. [Tibco]
Jokes aside, having a ball-park maximum can be useful. This allows you
to do back of the envelope calculations to see what’s possible, and how to
carve up your messages and micro-services or other software. Complexity
notation also provides a way to analyse the possible speed or memory
usage of an algorithm. An amortised or worst-case scenario is as useful as
your average fuel consumption. The worst (or best) case may almost
never happen, but allows you to compare algorithms or automobiles. It
may almost always happen too, if you keep trying to sort already sorted
data with a naive implementation of the Quicksort algorithm. Either way,
if your code is too slow, you may need to start profiling to see what’s
really going on, but big-O notation gave you a starting point.

Many products give upper bounds on performance. Consider a dandruff
shampoo that removes “up to 100% of flakes”. I, for one, am relieved to
know it won’t give 110%, presumably dissolving my skull in the process.
Some maximum limits are enforced by science – as we know the speed of
light, again under specific conditions, is a hard limit. 100% is often the
limit on how much you can remove or lose, unless you trade a contract for
difference (CFD) – in which case losses can exceed original investments.
One product that almost never gives 100% is broadband, at least in the
UK, or certain parts of the UK. How fast is your broadband? Or how
slow? What were you promised? An ‘up to’ I presume. Make sure you
write in and complain if it ever exceeds this!

I recently heard about a new attempt to break the land-speed record
aiming for 1,000 miles per hour. [Bloodhounds] Managing to go over 100
miles per hour back in 1904 [Redbull] was significant. Wikipedia
[Wikipedia_1] tells me the 117 or so miles of a full orbit of M25 (London
Orbital) has been made in under an hour, late at night when no law
enforcement officers were around. The M25 is often more like a car park
than a motorway. In fact, signs often suggest a speed of (up to) 40 miles
per hour due to congestion. Usually no one does what they are told, just
pootling along at 1 mile per hour. Somebody, somewhere needs to invent
a Star-Trek style transporter, quickly. Beside the saving of time and the
lack of pollution, “Transporting really is the safest way to travel,” at least
according to Geordi La Forge [MemoryAlpha]. You may travel faster
than the speed of light, though might miss your target destination by up to
(there it goes again) 4 metres.

Back to reality. Do you need to deal with large data sets on a regular basis?
Or grep giant log files? As you build up a script to find needles in
haystacks, you probably try them out on small data first, to verify they do
what you want. You probably build up regex to hunt in log files gradually,
checking it does match some examples and furthermore doesn’t match
other close but incorrect examples. Under stress, this sounds like it will
slow you down, though the temptation to try it on all your data and
announce, “There are no matches” can take you more time in the long run.
“More haste, less speed” as an old saying goes. Going too quickly can

have the overall effect of slowing you down. If you do try your scripts and
programs on small data sets first, where do you get that data? Some people
are horrified at the thought of using artificial datasets. However, you can
create artificial data to cover all the edge cases and combinations, with
one or two examples of each. Real data may not provide the perfect storm
you need to test, so make some up. Someone somewhere will tell you this
is a waste of time. I disagree. Real data may uncover other problems –
partially filled or invalid fields, fragmented records, formats that don’t
match the thousand page document you read and so on. However, a one
in a million event will break your system nine times out of ten (to
misquote Terry Pratchett), so try out the black swan events in a test setup.
Test your code on small sample data too, but you need both angles to be
better covered.
To build up your understanding of a problem domain or technology, you
probably try a small experiment. Baby steps first. You might even build
an end to end system, and pay attention to the logging and data feeds, just
using static data. Someone might complain that you can’t test end to end
until you have a live data feed. Prove them wrong! When you set up your
logging, watch out for too much noise. If you cry “Warning!” over and
over will anyone take any notice? Does your log file have known,
expected and therefore ignored ‘ERROR’ lines over and over, slowing
down your search for something specific? Do they get archived away too
quickly for you to even search in the first place?
Some things are too fast. Some things are too slow. Some things, once in
a while, are just right. How can you achieve this Goldilocks sweet-spot?
The planet Earth is in the so-called Goldilocks zone – at just the right
distance from our Sun to support life. This circumstellar habitable zone
[Wikipedia_2] has a long history, and gets refined over time. Starting with
supporting liquid water, we’ve added atmosphere requirements and this
will probably continue to change. And yet, of several million planets in
goldilocks zones, we’ve only found one with life on so far. Are you doing
things just right, to allow life, ideas and creativity to
flourish? I’m not suggesting that you need to do
something earth-moving to hit a sweet-spot, but the
analogy with a code-base, project plan or team being
habitable is a recurring theme. Neither too hot, too
cold, but just right.

References
[Bloodhounds] http://www.bloodhoundssc.com/
[MemoryAlpha] http://memory-alpha.wikia.com/wiki/Transporter
[NASA] https://www.nasa.gov/feature/margaret-hamilton-apollo-

software-engineer-awarded-presidential-medal-of-freedom
[Redbull] https://www.redbull.com/gb-en/history-of-land-speed-record-

cars
[Tibco] https://www.tibco.com/sites/tibco/files/resources/ds-ftl.pdf
[Wikipedia_1] https://en.wikipedia.org/wiki/M25_motorway#Racing
[Wikipedia_2] https://en.wikipedia.org/wiki/

Circumstellar_habitable_zone
December 2017 | Overload | 3

http://www.bloodhoundssc.com/
http://memory-alpha.wikia.com/wiki/Transporter
https://www.nasa.gov/feature/margaret-hamilton-apollo-software-engineer-awarded-presidential-medal-of-freedom
https://www.nasa.gov/feature/margaret-hamilton-apollo-software-engineer-awarded-presidential-medal-of-freedom
https://www.redbull.com/gb-en/history-of-land-speed-record-cars
https://www.redbull.com/gb-en/history-of-land-speed-record-cars
https://www.tibco.com/sites/tibco/files/resources/ds-ftl.pdf
https://en.wikipedia.org/wiki/M25_motorway#Racing
https://en.wikipedia.org/wiki/Circumstellar_habitable_zone
https://en.wikipedia.org/wiki/Circumstellar_habitable_zone

FEATURE SERGEY IGNATCHENKO
CAS (Re)Actor for Non-Blocking
Multithreaded Primitives
Lock free programming can be difficult. Sergey Ignatchenko
shows how copy and swap can work for reactors.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

hose of you who happen to follow my ramblings, probably already
know that I am a big fan of so-called (Re)Actors (see, for example,
[NoBugs10], [NoBugs15], and [NoBugs17]).

Very, very briefly, a (Re)Actor is a thing which is known under a dozen
different names, including ‘Actor’, ‘Reactor’, ‘event-driven program’,
and ‘ad hoc state machine’. What is most important for us now is that the
logic within a (Re)Actor is inherently thread-agnostic; in other words,
logic within the (Re)Actor runs without the need to know about inter-
thread synchronization (just as a single-threaded program would do). This
has numerous benefits: it simplifies development a lot, makes the logic
deterministic and therefore testable (and determinism further enables such
goodies as post-mortem production debugging and replay-based
regression testing), tends to beat mutex-based multithreaded programs
performance-wise, etc. etc. And in 2017, I started to feel that the Dark
Ages of mutex-based thread sync were over, and that more and more
opinion leaders were starting to advocate message-passing approaches in
general (see, for example, [Henney17] and [Kaiser17]) and (Re)Actors in
particular.
Next, let’s note that in spite of the aforementioned single-threaded (or,
more precisely, thread-agnostic) nature of each single (Re)Actor, multiple
(Re)Actors can be used to build Shared-Nothing near-perfectly-scalable
multi-threaded/multi-core systems [NoBugs17]. This observation has
recently led me to a not-so-trivial realization that in quite a few cases, we
can use (Re)Actors to… <drumroll /> implement non-blocking
multithreaded primitives. The specific problem I was thinking about at
that point, was a multiple-writer single-reader (MWSR) blocking-only-
when-necessary queue with flow control, but I am certain the concept is
applicable to a wide array of multithreaded primitives.

Basic Idea – CAS (Re)Actor
As noted above, distributed systems consisting of multiple (Re)Actors are
known to work pretty well. Basically, in what I call a (Re)Actor-fest
architecture, all we have is a bunch of (Re)Actors, which exchange
messages with each other, with nothing more than this bunch of

(Re)Actors in sight. Apparently, this model is sufficient to implement any
distributed real-world system I know about (and very practically too).
Now, let’s try to use pretty much the same idea to build a multithreaded
primitive (using (Re)Actors with an ultra-small state). Let’s start with the
following few basic concepts:
 We have one or more (Re)Actors

Each of these (Re)Actors has its state fitting into one CAS block (i.e.
the whole state be processed within one CAS operation). Let’s call
these (Re)Actors ‘CAS (Re)Actors’.

 When we’re saving the state to the CAS block, all kinds of
compression are permissible, as long as we guarantee that the state
always fits into one single CAS block. In particular, all kinds of
bitfields are perfectly fine.

 All interactions between (Re)Actors are implemented as message
exchanges (i.e. no (Re)Actor can access another (Re)Actor’s state,
except via sending a message asking to perform a certain operation).
As for the nature of messages – it depends, and in theory they can be
as complicated as we wish, but in practice most of the time they will
be as simple as a tuple (enum message_type, some_int_t parameter)

As soon as this is in place, we can write and use our (Re)Actors as shown
in Listing 1, annotated with (a), (b), (c) and (d) to correspond with the
following explanation. The logic within the infinite while loop with
compare_exchange_weak inside is very standard for CAS-based
primitives. First, we’re reading the data (in our case, we’re doing it in
constructor). Then, we’re going into an infinite loop: (a) calculating a new
value for the CAS block; (b) executing compare_exchange_weak().
If compare_exchange_weak() returns true (c), our job is done, and
we can return the value. If, however, compare_exchange_weak()
returns false, this guarantees that the CAS block wasn’t changed, so we
can easily discard all our on-stack changes to bring the system to the exact
state which was before we started (but with an up-to-date value for
last_data), and try again (d). In practice, it is extremely rare to have
more than 2–3 rounds within this ‘infinite’ loop, but in theory on a highly
contentious CAS block, any number of iterations is possible.
Another way to see it is to say that what we’re doing here is an incarnation
of the good old optimistic locking: we’re just trying to perform a kinda-
‘transaction’ over our CAS block, with the kinda-‘transaction’ being a
read-modify-write performed in an optimistic manner. If a mid-air
collision (= “somebody has already modified the CAS block while we
w e re wo rk i n g ”) h a p pe n s , i t w i l l be de t ec t ed b y

T

Sergey Ignatchenko has 20+ years of industry experience,
including being an architect of a stock exchange, and the sole
architect of a game with hundreds of thousands of simultaneous
players. He currently writes for a software blog (http://ithare.com),
and translates from the Lapine language a 9-volume book series
‘Development and Deployment of Multiplayer Online Games’.
Sergey can be contacted at sergey.ignatchenko@ithare.com

In computer science, compare-and-swap (CAS) is an atomic instruction
used in multithreading to achieve synchronization. It compares the
contents of a memory location with a given value and, only if they are the
same, modifies the contents of that memory location to a new given
value. This is done as a single atomic operation. [Wikipedia-1]

Compare-and-Swap
4 | Overload | December 2017

FEATURESERGEY IGNATCHENKO
compare_exchange_weak(), and – just as for any other optimistic
locking – we just have to rollback our kinda-‘transaction’ and start over.
That’s pretty much it! We’ve got our multithread-safe event-handling
func t ion OnEventX() f o r ReactorAHandle , wh i l e our
OnEventX_mt_agnostic() function is, well, multithread-agnostic.
This means that we do NOT need to think about multithreading while
writing OnEventX_mt_agnostic(). This alone counts as a Big Fat
Improvement™ when designing correct multithreaded primitives/
algorithms.
Moreover, with these mechanics in place, we can build our multithreaded
primitives out of multiple (Re)Actors using the very-simple-to-follow
logic of “hey, to do this operation, I – as a (Re)ActorA – have to change
my own state and to send such-and-such message to another (Re)ActorB”.
This effectively introduces a layer of abstraction, which tends to provide
a much more manageable approach to designing multithreaded
primitives/algorithms than designing them right on top of CAS (which are
rather difficult to grasp, and happen to be even more difficult to get right).

Of course, as always, it is not a really a silver bullet, and there are certain
caveats. In particular, two things are going to cause us trouble on the way:
these are (a) a limitation on CAS block size, and (b) an ABA problem.

On CAS block size
One thing which traditionally plagues writers of multithreaded primitives
is a limitation on the CAS block size. Fortunately, all modern x64 CPUs
support CMPXCHG16B operations, which means that we’re speaking
about 128-bit CAS blocks for our (Re)Actors. This, while not being much,
happens to be not too shabby for the purposes of our extremely limited
(Re)Actors.
To further help with the limitations, we can observe that (rather unusually
for CAS-based stuff) we can use all kinds of bit-packing techniques
within our CAS_block. In other words, if we have to have a field within
ReactorAData::data, we can use as many bits as we need, and don’t
need to care about alignments, byte boundaries, etc. In addition, we can
(and often should) use indexes instead of pointers (which usually helps to
save quite a few bits), etc. etc.

Solving the ABA problem
Another issue which almost universally rears its ugly head when speaking
about not-so-trivial uses of CAS is the so-called ABA problem. Very,
very roughly it is about the system being in exactly the same state under
CAS, while being in a different semantic state (for examples of ABA in
action, see, for example, [Wikipedia-2]).
Of course, the same problem would apply to our CAS (Re)Actors too.
However, apparently there is a neat workaround. If within our
ReactorAData::data, we keep a special ABAcounter field as a part
of our ReactorAData::data that is a counter of successful
modifications of ReactorAData::data (i.e. we’ll increment this
counter on each and every modification of the ReactorAData::data)
then we’re guaranteed to avoid the ABA problem as long as the
ABAcounter doesn’t overflow. This stands merely because for each
modification we’ll get a different value of the CAS block, and therefore
won’t run into ‘having the same state’ situation, ever.
Now, let’s take a look at the question of workarounds for the counter.
Let’s consider a system with the CPU clock running at 3GHz, and a
maximum lifetime of the running program being 10 years. Let’s also
assume that CAS takes no less than 1 cycle (in practice, it takes 10+ at
least for x64, but we’re being conservative here). Then, the most CAS
operations we can possibly make within one single program run, is 1
CAS/cycle * 3e9 cycles/sec * 86400 sec/day * 365 days/year * 10 years
~= 1e18 CAS operations. And as 1e18 can be represented with mere 60
bits, this means that

by using a 60-bit ABA counter, we’re protected from ABA even
under extremely conservative assumptions.

NB: 40–48 bit counters will be more than enough for most of practical
purposes – but even a 60-bit counter is not too bad, especially as our
whole allocation, as discussed above, is 128 bits (at least for x64).

Relaxing the requirement for ABAcounter modifications
As discussed above (with sufficient sizes of ABACounter) we can
guarantee that no ABA problem occurs as long as we increment
ABAcounter o n e ach an d e ve ry mo d i f i ca t i o n o f ou r
ReactorAData::data. However, there are cases when we can provide
the same guarantees even when we skip incrementing on some of the
modifications. More specifically, we can go along the following lines:
 We divide fields within ReactorAData::data into two

categories: (a) those fields ‘protected’ by ABAcounter, and (b)
those fields ‘unprotected’ by ABAcounter

 Then, we still increment ABAcounter on any modification to
‘protected’ fields, but are not required to increment ABAcounter
on those modifications touching only ‘unprotected’ fields

 Then, we’re still providing ‘no-ABA-problem’ guarantees as long
as all our ‘unprotected’ fields have the property that the same value

Listing 1

using CAS=std::atomic<CAS_block>;
CAS global_cas;//accessible from multiple threads
 //in practice, shouldn’t be global
 //but for the example it will do
class ReactorAData { //state of our ReactorA
 CAS_block data;

 public:
 ReactorAData() { ... }

 private:
 int OnEventX_mt_agnostic(int param) {
 //modifies our data
 //absolutely NO worries about multithreading
 //here(!) MUST NOT have any side effects
 //such as modifying globals etc.
 //...
 }
 //other OnEvent*_mt_agnostic() handlers
 friend class ReactorAHandle;
};

class ReactorAHandle {//’handle’ to the state of
 // ReactorA
 CAS* cas; //points to global_cas
 ReactorAData last_read;

 public:
 ReactorAHandle(CAS* cas_) {
 cas = cas_;
 last_read = cas->load();
 }
 int OnEventX(int param) {
 while(true) {
 ReactorAData new_data = last_read;
 int ret =
 new_data.OnEventX_mt_agnostic(param);//(a)
 bool ok = cas->compare_exchange_weak(
 last_read.data, new_data.data);//(b)
 if(ok)
 return ret;//(c)
 //(d)
 }
 }
 //other OnEvent*() handlers
};
December 2017 | Overload | 5

FEATURE SERGEY IGNATCHENKO
of those ‘unprotected’ fields is guaranteed to have the same
semantic meaning.
 For example, if we have a ‘number of current locks’ field within

our ReactorAData::data – for most of the typical usage
patterns, we don’t really care why this field got this value, but
care only about its current value; this means that whatever we’re
doing with this field, it is ABA-free even without the
ABAcounter, so it can be left ‘unprotected’.

Conclusions and Ongoing Work
We presented a hopefully novel way for building of non-blocking
multithreaded primitives and algorithms, based on ‘CAS (Re)Actors’
(essentially – (Re)Actors with the size fitting into one CAS block).
This approach is practically interesting because it provides an additional
layer of abstraction, and – as a result – allows us to reason about
multithreaded primitives/algorithms in terms which don’t involve
multithreading (in particular, such issues as the semantics of CAS and the
ABA problem are out of the picture completely). Instead, the reasoning
can be done in terms of distributed systems (more specifically – in terms
of Actors, Reactors, event-driven programs, or ad hoc finite state
machines). This, in turn, is expected to enable composing of more
complicated primitives/algorithms than it is currently possible. In
particular, the author is currently working on a MWSR queue with
locking-only-when-necessary and providing different means of flow
control; when the work is completed he hopes to present that in Overload
too.

References
[Henney17] Kevlin Henney, Thinking Outside the Synchronisation

Quadrant, ACCU2017
[Kaiser17] Hartmut Kaiser, The Asynchronous C++ Parallel

Programming Model, CPPCON2017
[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs10] ‘No Bugs’ Hare, Single-Threading: Back to the Future?,
Overload #97, 2010

[NoBugs15] ‘No Bugs’ Hare, Client-Side. On Debugging Distributed
Systems, Deterministic Logic, and Finite State Machines,
http://ithare.com/chapter-vc-modular-architecture-client-side-on-
debugging-distributed-systems-deterministic-logic-and-finite-state-
machines/

[NoBugs17] ‘No Bugs’ Hare, Development and Deployment of
Multiplayer Online Games, Vol. II.

[Wikipedia-1] Wikipedia, Compare-and-Swap,
https://en.wikipedia.org/wiki/Compare-and-swap

[Wikipedia-2] Wikipedia, ABA problem.
https://en.wikipedia.org/wiki/ABA_problem

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague
6 | Overload | December 2017

https://en.wikipedia.org/wiki/ABA_problem
https://en.wikipedia.org/wiki/Compare-and-swap
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATURECHARLES TOLMAN
A Design Example
Design issues cause problems. Charles
Tolman considers an organising principle
to get to the heart of the matter.
 want to underpin the philosophical aspect of this discussion by using
an example software architecture and considering some design
problems that I have experienced with multi-threaded video player

pipelines. The issues I highlight could apply to many video player
designs.
Figure 1 is a highly simplified top-level schematic, the original being just
an A4 pdf captured from a whiteboard, a tool that I find much better for
working on designs than using any computer-based UML drawing tool.
The gross motor movement of hand drawing ‘in the large’ seems to help
the thinking process.

There are 3 basic usual commands for controlling any video player that
has random access along a video timeline:
 Show a frame
 Play
 Stop

In this example, there is a main controller thread that handles the
commands and controlling the whole pipeline. I am going to conveniently
ignore the hard problem of actually reading anything off a disk fast
enough to keep a high resolution high frame-rate player fed with data.
The first operation for the pipeline to do is to render the display frames in
a parallel manner. The results of these parallel operations, since they will
likely be produced out of order, need to be made into an ordered image
stream that can then be buffered ahead to cope with any operating system
latencies. The buffered images are transferred into an output video card,
which has only a relatively small amount of video frame storage. This of
course needs to be modeled in the software so that (a) you know when the
card is full; and (b) you know when to switch the right frame to the output
without producing nasty image tearing artefacts.
These are all standard elements you will get with many video player
designs, but I want to highlight three design issues that I experienced in
order to get an understanding of what I will later term an ‘Organising
Principle’.
First there was slow operation resulting in non real-time playout. Second,
occasionally you would get hanging playout or stuttering frames. Third,
you could very occasionally get frame jitter on stopping.

Slow operation
Given what I said about Goethe and his concept of Delicate Empiricism,
the very first thing to do was to reproduce the problem and collect data,
i.e. measure the phenomenon WITHOUT jumping to conclusions. In this
case it required the development of logging instrumentation software
within the system – implemented in a way that did not disturb the real-
time operation.
With this problem I initially found that the image processing threads were
taking too long, though the processes were doing their job in time once
they had their data. So it was slowing down before they could get to start
their processing.
The processing relied on fairly large processing control structures that
were built from some controlling metadata. This build process could take
some time so these structures were cached with their access keyed by that
metadata, which was a much smaller structure. Accessing this cache
would occasionally take a long time and would give slow operation,
seemingly of the image processing threads. This cache had only one
mutex in its original design and this mutex was locked both for accessing
the cache key and for building the data structure item. Thus when thread
A was reading the cache to get at an already built data item, it would
occasionally block behind thread B which was building a new data item.
The single mutex was getting locked for too long while thread B built the
new item and put it into the cache.
So now I knew exactly where the problem was. Notice the difference
between the original assumption of the problem being with the image
processing, rather than with the cache access.
It would have been all too easy to jump to an erroneous conclusion,
especially prevalent in the Journeyman phase, and change what was
thought to be the problem. Although such a change would not actually fix
the real issue, it could have changed the behaviour and timing so that the
problem may not present itself, thus looking like it was fixed. It would
likely resurface months later – a costly and damaging process for any
business.
In this case the solution here was to have finer grained mutexes: one for
the key access into the cache and a separate one for accessing the data
item. On first access the data item would be lazily built and thus needed a
second mutex to protect the write(build) before read access.

Hanging playout or stuttering frames
The second bug was that the playout would either hang or stutter. This is
a good example because it illustrates a principle that we need to learn
when dealing with any streamed playout system.

I

Figure 1

Charles Tolman earned a degree in Electronic Engineering in the
70s, and then moved into software; progressing through assembler to
Pascal, Eiffel and eventually C++. He’s now involved in large scale C++
development in the CAE domain. Having seen many silver bullets come
and go, his interest is in a wider vision of programmer development that
encompasses more than purely technical competence. You can
contact him at ct@acm.org
December 2017 | Overload | 7

FEATURE CHARLES TOLMAN

the streaming at the output end of the
pipeline was happening out of order, a bad
fault for a video playout design
The measurement technique in this case was extremely ‘old school’,
simply printing data to a log output file. Of course only a few characters
were output per frame, because at 60fps (a typical modern frame-rate) you
will only have 16ms per frame.
In this case the streaming at the output end of the pipeline was happening
out of order, a bad fault for a video playout design. Depending upon how
the implementation was done, it would either cause the whole player to
hang or produce a stuttered playout. Finding the cause of this took a lot of
analysis of the output logs and many changes to what was being logged.
An example of needing to be clear about the limits of one’s knowledge
and of properly identifying the data that next needed to be collected.
I found that there was an extra ‘hidden’ thread added within the output
card handling layer in order to pass off some other output processing that
was required. However it turned out that there was no enforcement of
frame streaming order. This meant that the (relatively) small amount of
memory in the output card would get fully allocated and this would give
rise to a gap in the output frame ordering. The output control stage was
unable to fill the gap in the frame sequence with the correct frame,
because there was no room in the output card for that frame. This would
usually result in the playout hanging.
This is why with a streaming pipeline, where you always have limited
resources at some level, allocation of those resources must be done in
streaming order. This is a dynamic principle that can take a lot of hard
won experience to learn.
The usual Journeyman approach to such a problem is just to add more
memory, i.e. more resource! This will hide the problem because though
processing is still done out of order, the spare capacity has been increased
and it will not go wrong until you next modify the system to use more
resource. At this point the following statement is usually made:

But this has been working ok for years!

The instructions I need to tell less experienced programmers when trying
to debug such problems will usually include the following:
 Do NOT change any of the existing functionality.
 Disturb the system as little as possible.
 Keep the bug reproducible so you can measure what is happening.

Then you will truly know when you have fixed the fault.

Frame jitter on stop
The third fault case was an issue of frame jitter when stopping playout.
The problem was that although the various buffers would get cleared,
there could still be some frames ‘in flight’ in the handover threads. This
is a classic multi-threading problem and one that needs careful thought.
In this case when it came time to show the frame at the current position,
an existing playout had to be stopped and the correct frame would need to
be processed for output. This correct frame for the current position would
make its way through to the end of the pipeline, but could get queued
behind a remnant frame from the original stopped playout. This remnant
frame would most likely have been ahead of the stop position because of

the pre-buffering that needed to take place. Then when it came time to re-
enable the output frame viewing in order to show the correct frame, both
frames would get displayed, with the playout remnant one being shown
first. This manifested on the output as a frame jitter.
One likely fix of an inexperienced programmer would be to make the
system sit around waiting for seconds while the buffers were cleared and
possibly cleared again, just in case! (The truly awful ‘sleep’ fix.) This is
one of those cases where, again due to lack of deep analysis, a defensive
programming strategy is used to try and force a fix of what initially seems
to be the problem. Again, it is quite likely that this may seem to fix the
problem, and will probably happen if the developer is under heavy time
pressure, but this would be an example where the best practice of taking
time to be properly understand the failure mode in a Delicately Empirical
way would be compromised by a rush to a solution.
The final solution to this particular problem was to use the concept of
uniquely identified commands, i.e. ‘command ids’. Thus each command
from the controlling thread, whether it was a play request or a show frame
request, would get a unique id. This id was then tagged on to each frame
as it was passed through the pipeline. By using a low-level globally
accessible (within the player) ‘valid command id set’ the various parts of
the pipeline could decide, by looking at the tagged command id, if they
had a valid frame that could be allowed through or quietly ignored.
When stopping the playout all that had to be done was to clear the buffers,
remove the relevant id from the ‘valid command id set’ and this would
allow any pesky remaining ‘in flight’ frames to be ignored since they had
an invalid command id. This changed the stop behaviour from being an
occasional, yet persistent bug, into a completely reliable operation and
without the need to use ‘sleep’ calls anywhere.

Hidden organising principles
In conclusion the above issues dealt with the following design ideas:
 Separating Mutex Concerns.
 Sequential Resource Allocation.
 Global Command Identification.

But I want to characterize these differently because the names sound a
little like pattern titles. Although as a software community we have had
success using the idea of patterns I think the concept has become rather
more fixed than Christopher Alexander may have intended. Thus I will
rename the solutions as follows in order to expressly highlight their
dynamic behavioural aspect:
 Access Separation.
 Sequential Allocation.
 Operation Filtering.

You might have noticed in the third example the original concept of
‘Global Command Identification’ represents just one possible way to
implement the dynamic issue of filtering operations. Something it has in
common with much of the published design pattern work where specific
8 | Overload | December 2017

FEATURECHARLES TOLMAN

Being able to perceive and ‘livingly think’ these
mobile thought structures is what we need to

do as we make our way to becoming
accomplished programmers
Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178

Co
ur

se
s: Moving Up to Modern C++:

An Introduction to C++11/14/17 for experienced
C++ developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++:
A 4-Day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++
facilities.

An Effective Introduction to the STL:
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++.

n site C++ Training

Mention ACCU and receive the U.S. training
rate for any location in Europe!

example solutions are mentioned. To me design patterns represent a more
fixed idea that is closer to the actual implementation.
But there is a difference between the architecture of buildings – where
design patterns originated – and the architecture of software. Although
both deal with the design of fixed constructs, whether it be a building or
code, the programmer has to worry far more about the dynamic behaviour
of the fixed construct (their code). Yes – a building architect does have to
worry about the dynamic behaviour of people inhabiting their design, but
software is an innately active artefact.
Though others may come up with a better naming for the behavioural
aspects of the ideas, I am trying to use a more mobile and dynamic
definition of the solutions. Looking at the issues in this light starts to get
to the core of why it is so hard to develop an architectural awareness. We
have to deal with a far more, in philosophical terms, ‘phenomenological’
set of thoughts. This is why the historical philosophical context can
enlighten the problematic aspects of our programming careers.

We need to move our thinking forward and understand the ‘Organising
Principles’ that live behind the final design solutions, i.e. how the active
processes need to run. Being able to perceive and ‘livingly think’ these
mobile thought structures is what we need to do as we make our way to
becoming accomplished programmers.
A truly understood concept of the mobile Organising Principle does not
really represent design patterns – not in the way we have them at the
moment. It is NOT a static thing. It cannot be written down on a piece of
paper. Although it informs any software implementation it cannot be put
into the code. If you fix it: You Haven’t Got It. Remember that phrase
because truly getting and understanding it is the real challenge. The
Organising Principle l ives behind the parts of any concrete
implementation.
Despite the slippery nature of the Organising Principle, I shall attempt to
explore this more in a subsequent article and give some ideas about what
we can do as programmers to improve such mobile perception faculties.

Best Articles 2017
Vote for your favourite articles:

 Best in CVu

 Best in Overload

Voting open now at:
https://www.surveymonkey.co.uk/r/3PHRMRZ

December 2017 | Overload | 9

https://www.surveymonkey.co.uk/r/3PHRMRZ

FEATURE PAUL GRENYER
The Last Word in Patterns
What can you do in a single transaction
in a database? Paul Grenyer writes us
his Single CrUD pattern.
oftware patterns have their roots in architecture. In 1978,
Christopher Alexander published a book called A Pattern Language:
Towns, Buildings, Construction about the patterns he’d discovered

designing buildings [Alexander78]. A pattern can be thought of as a tried
and tested way of doing something which can be applied in different
contexts. Think about how the OBSERVER or VISITOR pattern is
implemented across languages such as Java, Ruby and JavaScript, where
the different language idioms dictate slightly different implementations of
the same basic pattern.
Software patterns became popular with the publishing of the Gang of Four
book, Design patterns: elements of reusable object-oriented software
[GoF94]. It contains a number of patterns, most of which every developer
should know, even if it’s to know to avoid the likes of SINGLETON.
However, these aren’t the only patterns! Indeed, patterns are not created,
they are discovered and documented. Whole conferences [Europlop] are
dedicated to software patterns, where delegates are encouraged to bring
their pattern write-ups for appraisal by their peers and the experts.
When I joined ACCU in 2000, I was encouraged by another member to
write for the group’s magazine, but I didn’t think I’d have anything to
contribute that someone hadn’t already thought of and written about. As I
gained experience, I found I had quite a lot to write about and to challenge.
In the same way, you’d have thought that 23 years after the Gang of Four
book most, if not all, of the software patterns had been discovered and
documented. Of course, they haven’t and I believed, from checking with
industry experts, that what I’m calling the SINGLE CRUD TRANSACTION
pattern, although used by many, hadn’t been written up anywhere publicly.
However, after submitting the pattern to Overload for review, it was
pointed out that it is part of the FOREIGN KEY MAPPING pattern as written
up by Martin Fowler [Fowler02]. I’ve just gone into a little more detail.

Name: Single CrUD Transaction
Intent
To create, update and delete items in a datastore within a single
transaction.

Problem
Sometimes it’s necessary to create, update and delete items in a datastore
in a single transaction. Traditional web applications support create,
update and delete in separate transactions and require the page to be
reloaded between each action.
Modern web applications allow the items of a list to be created, updated
and deleted in a browser without any interaction with the server or the
underlying datastore. Therefore when the list is sent to the server side it
must determine which items are new, which already exist and must be
updated and which have been removed from the list and must be deleted.

One simple solution is to delete all of the items from the datastore and
simply replace them with the list of line items passed from the browser to
the server. There are at least two potential drawbacks with this approach:
 If the datastore (such as a relational database) uses unique,

numerical ids to identify each item in the list, the size of the ids can
become very big, very quickly.

 If the datastore (such as a relational database) has other data which
references the ids of the items in the list, the items cannot be deleted
without breaking the referential integrity.

Solution
The SINGLE CRUD TRANSACTION pattern gets around these drawbacks by
performing three operations within a single transaction:
 Delete all of the list items from the datastore whose ids are not in the

list passed from the browser to the server.
 Update each of the items in the datastore whose ids match ids in the

list passed from the browser to the server.
 Create new items in the datastore for each item in the list passed

from the browser to the server which do not yet have ids.
Each action is executed within a single transaction so that if any
individual action fails the list is returned to its original state.

Applicability
Use the SINGLE CRUD TRANSACTION pattern when:
 Datastores cannot have new items added, existing items updated

and/or items removed in separate transactions.
 Creating new ids for each item in the list each time the datastore is

modified is expensive or cumbersome.
 Removing all the items of a list from a datastore and recreating the

list in the datastore breaks referential integrity.

Advantages and disadvantages
 Advantage: Entire update happens within a single transaction.
 Disadvantage: Three separate calls to the datastore within a single

transaction.

References
[Alexander78] Christopher Alexander, 1978, A Pattern Language:

Towns, Buildings, Construction, OUP USA (ISBN-13: 978-
0195019193)

[Europlop] EuropPLoP (European Conference on Pattern Languages of
Programs), http://www.europlop.net/

[Fowler02] Martin Fowler, 2002, Patterns of Enterprise Application
Architecture, Addison Wesley, (ISBN-13: 978-0321127426)

[GoF94] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design patterns: elements of reusable object-oriented
software, 1994, (ISBN-13: 978-0201633610)

S

Paul Grenyer is a husband, father, software consultant, author,
testing and agile evangelist. He can be contacted at
paul.grenyer@gmail.com
10 | Overload | December 2017

http://www.europlop.net/

FEATURESHAYNE FLETCHER
Implementing Type-Classes
as OCaml Modules
Type classes achieve overloading in functional paradigms.
Shayne Fletcher implements some as OCaml modules.
Modular type classes
n this article, we revisit the idea of type-classes first explored in a
previous blog post [Fletcher16a]. This time though, the implementation
technique will be by via OCaml modules inspired by the paper

‘Modular Type Classes’ [Dreyer07] by Dreyer et al.
Starting with the basics, consider the class of types whose values can be
compared for equality. Call this type-class Eq. We represent the class as
a module signature.
 module type EQ = sig
 type t
 val eq : t * t bool
 end
Specific instances of Eq are modules that implement this signature. Here
are two examples.
 module Eq_bool : EQ with type t = bool = struct
 type t = bool
 let eq (a, b) = a = b
 end
 module Eq_int : EQ with type t = int = struct
 type t = int
 let eq (a, b) = a = b
 end
Given instances of class Eq (X and Y say,) we realize that products of
those instances are also in Eq. This idea can be expressed as a functor with
the following type.
 module type EQ_PROD =
 functor (X : EQ) (Y : EQ)
 EQ with type t = X.t * Y.t
The implementation of this functor is simply stated as the following.
 module Eq_prod : EQ_PROD =
 functor (X : EQ) (Y : EQ) struct
 type t = X.t * Y.t
 let eq ((x1, y1), (x2, y2))
 = X.eq (x1, x2) && Y.eq(y1, y2)
 end
With this functor we can build concrete instances for products. Here‘s one
example.
 module Eq_bool_int :
 EQ with type t = (bool * int)
 = Eq_prod (Eq_bool) (Eq_int)
The class Eq can be used as a building block for the construction of new
type classes. For example, we might define a new type-class Ord that
admits types that are equality comparable and whose values can be
ordered with a ‘less-than’ relation. We introduce a new module type to
describe this class.
 module type ORD = sig
 include EQ
 val lt : t * t bool
 end

Here’s an example instance of this class.
 module Ord_int : ORD with type t = int = struct
 include Eq_int
 let lt (x, y) = Pervasives.(<) x y
 end
As before, given two instances of this class, we observe that products of
these instances also reside in the class. Accordingly, we have this functor
type
 module type ORD_PROD =
 functor (X : ORD) (Y : ORD) ORD with type t
 = X.t * Y.t
with the following implementation.
 module Ord_prod : ORD_PROD =
 functor (X : ORD) (Y : ORD) struct
 include Eq_prod (X) (Y)
 let lt ((x1, y1), (x2, y2)) =
 X.lt (x1, x2) || X.eq (x1, x2) &&
 Y.lt (y1, y2)
 end
This is the corresponding instance for pairs of integers.
 module Ord_int_int = Ord_prod (Ord_int) (Ord_int)
Here’s a simple usage example.
 let test_ord_int_int =
 let x = (1, 2) and y = (1, 4) in
 assert (not (Ord_int_int.eq (x, y)) &&
 Ord_int_int.lt (x, y))

I

Shayne Fletcher is a programmer living in New York with 20 years
experience, the last 5 of which in OCaml. He can be reached at
shayne@shaynefletcher.org

In programming languages, there is a particular kind of polymorphism
known formally called ad hoc polymorphism but better known as
overloading. For example with overloading, an operator like + may be
defined that works for many different kinds of numbers.

In the programming language Haskell, a language construction called
type classes provides a structured way to provide for ad hoc
polymorphism. The OCaml programming language does not have type
classes but rather provides a construction called modules. Ad hoc
polymorphism via Haskell-like typeclass style programming can be
supported in OCaml by viewing type classes as a particular mode of use
of modules. Indeed, the module approach can be argued as better in the
sense that programmers can have explicit control over which type class
instances are available in a given scope.

Ad hoc polymorphism
December 2017 | Overload | 11

FEATURE SHAYNE FLETCHER

The existence of the Show class is all that is
required to enable the writing of our first
parametrically polymorphic function
Using type-classes to implement parametric
polymorphism
This section begins with the Show type-class.
 module type SHOW = sig
 type t
 val show : t string
 end
In what follows, it is convenient to make an alias for module values of this
type.
 type 'a show_impl = (module SHOW with type t = 'a)
Here are two instances of this class...
 module Show_int : SHOW with type t = int = struct
 type t = int
 let show = Pervasives.string_of_int
 end
 module Show_bool : SHOW with type t = bool
 = struct
 type t = bool
 let show = function | true "True"
 | false "False"
 end
...and here these instances are ‘packed’ as values:
 let show_int : int show_impl =
 (module Show_int : SHOW with type t = int)
 let show_bool : bool show_impl =
 (module Show_bool : SHOW with type t = bool)
The existence of the Show class is all that is required to enable the writing
of our first parametrically polymorphic function.
 let print : 'a show_impl 'a unit =
 fun (type a) (show : a show_impl) (x : a)
 let module Show =
 (val show : SHOW with type t = a) in
 print_endline@@ Show.show x
 let test_print_1 : unit = print show_bool true
 let test_print_2 : unit = print show_int 3
The function print can be used with values of any type 'a as long as the
caller can produce evidence of 'a’s membership in Show (in the form of
a compatible instance).
Listing 1 begins with the definition of a type-class Num (the class of
additive numbers) together with some example instances.
The existence of Num admits writing a polymorphic function sum that will
work for any 'a list of values if only 'a can be shown to be in Num.
 let sum : 'a num_impl 'a list 'a =
 fun (type a) (num : a num_impl) (ls : a list)
 let module Num =
 (val num : NUM with type t = a) in
 List.fold_right Num.(+) ls (Num.from_int 0)
 let test_sum = sum num_int [1; 2; 3; 4]

This next function requires evidence of membership in two classes.
 let print_incr : ('a show_impl * 'a num_impl)
 'a unit =
 fun (type a) ((show : a show_impl),
 (num : a num_impl)) (x : a)
 let module Num =
 (val num : NUM with type t = a) in
 let open Num
 in print show (x + from_int 1)
 (*An instantiation*)
 let print_incr_int (x : int) : unit
 = print_incr (show_int, num_int) x
If 'a is in Show then we can easily extend Show to include the type 'a
list. As we saw earlier, this kind of thing can be done with an
appropriate functor. (See Listing 2.)
There is also another way: one can write a function to dynamically
compute an 'a list show_impl from an 'a show_impl (see
Listing 3).
The type-class Mul is an aggregation of the type-classes Eq and Num
together with a function to perform multiplication. (Listing 4.)

Listing 1

module type NUM = sig
 type t
 val from_int : int t
 val (+) : t t t
end

type 'a num_impl = (module NUM with type t = 'a)

module Num_int : NUM with type t = int = struct
 type t = int
 let from_int x = x
 let (+) = Pervasives.(+)
end

let num_int = (module Num_int : NUM with
 type t = int)

module Num_bool : NUM with type t = bool = struct
 type t = bool

 let from_int = function | 0 false
 | _ true
 let (+) = function | true fun _ true
 | false fun x x
end

let num_bool =
 (module Num_bool : NUM with type t = bool)
12 | Overload | December 2017

FEATURESHAYNE FLETCHER
A default instance of Mul can be provided given compatible instances of
Eq and Num. (See Listing 5.)
Specific instances can be constructed as needs demand (Listing 6).
Note that in this definition of dot, coercion of the provided Mul instance
to its base Num instance is performed.
Listing 7 provides an example of polymorphic recursion utilizing the
dynamic production of evidence by way of the show_list function
presented earlier.
This article was previously published as a blog post in 2016.
[Fletcher16b] and the source is available at: https://github.com/shayne-
fletcher/overload-2017/blob/master/mod.ml

References
[Dreyer07] Derek Dreyer, Robert Harper and Manuel M. T. Chakravarty,

‘Modular Type Classes’, 2007, available online at
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf

[Fletcher16a] Shayne Fletcher, ‘Haskell type-classes in OCaml and C++’,
available at http://blog.shaynefletcher.org/2016/10/haskell-type-
classes-in-ocaml-and-c.html

[Fletcher16b] Shayne Fletcher, ‘Implementing type-classes as OCaml
modules’, available at http://blog.shaynefletcher.org/2016/10/
implementing-type-classes-as-ocaml.html

[Kiselyov14] Oleg Kiselyov, ‘Implementing, and Understanding Type
Classes’, updated November 2014, available at http://okmij.org/ftp/
Computation/typeclass.html

Listing 2

module type LIST_SHOW =
 functor (X : SHOW)
 SHOW with type t = X.t list

 module List_show : LIST_SHOW =
 functor (X : SHOW) struct
 type t = X.t list

 let show =
 fun xs
 let rec go first = function
 | [] "]"
 | h :: t
 (if (first) then "" else ", ")
 ^ X.show h ^ go false t
 in "[" ^ go true xs
 end

Listing 3

let show_list : 'a show_impl 'a list show_impl
 = fun (type a) (show : a show_impl)
 let module Show =
 (val show : SHOW with type t = a) in
 (module struct
 type t = a list
 let show : t string =
 fun xs
 let rec go first = function
 | [] "]"
 | h :: t
 (if (first) then "" else ", ")
 ^ Show.show h ^ go false t
 in "[" ^ go true xs
 end : SHOW with type t = a list)

let testls : string = let module Show =
 (val (show_list show_int)
 : SHOW with type t = int list) in
 Show.show (1 :: 2 :: 3 :: [])

Listing 4

module type MUL = sig
 include EQ
 include NUM with type t := t

 val mul : t t t
end

type 'a mul_impl = (module MUL with type t = 'a)

module type MUL_F =
 functor (E : EQ) (N : NUM with type t = E.t)
 MUL with type t = E.t

Listing 5

module Mul_default : MUL_F =
 functor (E : EQ) (N : NUM with type t = E.t)
 struct
 include (E : EQ with type t = E.t)
 include (N : NUM with type t := E.t)

 let mul : t t t =
 let rec loop x y = begin match () with
 | () when eq (x, (from_int 0))
 from_int 0
 | () when eq (x, (from_int 1)) y
 | () y + loop (x + (from_int (-1))) y
 end in loop
end

module Mul_bool : MUL with type t = bool =
 Mul_default (Eq_bool) (Num_bool)

Listing 6

module Mul_int : MUL with type t = int = struct
 include (Eq_int : EQ with type t = int)
 include (Num_int : NUM with type t := int)
 let mul = Pervasives.(*)
end

let dot : 'a mul_impl 'a list 'a list 'a
 = fun (type a) (mul : a mul_impl)
 fun xs ys
 let module M =
 (val mul : MUL with type t = a) in
 sum (module M : NUM with type t = a)
 @@ List.map2 M.mul xs ys
let test_dot =
 dot (module Mul_int : MUL with type t = int)
 [1; 2; 3] [4; 5; 6]

Listing 7

let rec replicate : int 'a 'a list =
 fun n x if n <= 0
 then [] else x :: replicate (n - 1) x
let rec print_nested : 'a. 'a show_impl
 int 'a unit = fun show_mod function
 | 0 fun x print show_mod x
 | n fun x print_nested
 (show_list show_mod) (n - 1) (replicate n x)
let test_nested =
 let n = read_int () in
 print_nested (module Show_int : SHOW
 with type t = int) n 5
December 2017 | Overload | 13

http://blog.shaynefletcher.org/2016/10/implementing-type-classes-as-ocaml.html
http://blog.shaynefletcher.org/2016/10/implementing-type-classes-as-ocaml.html
http://blog.shaynefletcher.org/2016/10/haskell-type-classes-in-ocaml-and-c.html
http://blog.shaynefletcher.org/2016/10/haskell-type-classes-in-ocaml-and-c.html
http://okmij.org/ftp/Computation/typeclass.html
http://okmij.org/ftp/Computation/typeclass.html
http://www.cse.unsw.edu.au/~chak/papers/mtc-popl.pdf
https://github.com/shayne-fletcher/overload-2017/blob/master/mod.ml
https://github.com/shayne-fletcher/overload-2017/blob/master/mod.ml

FEATURE AURORA RAMÍREZ AND CHRIS SIMONS
Evolutionary Computing
Frameworks for Optimisation
Evolutionary algorithms can find optimal solutions
to problems. Aurora Ramírez and Chris Simons
give us an overview.
ithin artificial intelligence, there is a category of programming
problems where although the outcomes are known in terms of
maximising or minimising some desired objective, the

corresponding input values required to achieve this outcome are
unknown. Such problems are known as optimisation problems, because
solving the problem requires discovering an optimal solution in terms of
either best quality (i.e. maximisation), or least cost (minimisation).
Optimisation problems are found across a wide range of domains, e.g.
from maximising energy outputs by optimising wind farm or generator
placement, to minimising fuel costs by optimising delivery routes.
To address such optimisation problems in computing, a widely used
approach involves firstly defining the space of all possible solutions to the
problem. Then, with a programmatic encoding of all possible solutions
representing a search space, it’s possible to travel through the space,
searching for optimal solutions.
Perhaps the simplest way to travel through the search space is to
enumerate each possible solution. Such an approach is straightforward
and uninformed insofar as it doesn’t use any information about the
problem domain to steer the search. For small scale search spaces, this
approach can be highly effective. However, some search spaces can get
very large, very quickly.
For example, in the ‘travelling salesman problem’, a number of cities are
to be visited by a salesman. The salesman sets out to visit the cities in turn,
returning to the starting point at the end of the journey, visiting each city
once only. The goal of the salesman is to minimise travelling costs and
CO2 emissions by locating the path of least distance, i.e. the optimal path,
around the cities. The number of possible solution paths, of course,
depends on the number of cities to be visited. The greater the number the
cities, the greater the number of possible solution paths. It just so happens
that the number of possible solution paths is n! where n in the number of
cities. For a few cities, e.g. 4, the number of possible solution paths is 24.
However, for 100 cities, the number rises to approximately 10157, while
for 1000 cities, the number is roughly 102567. In fact, there are many other
optimisation problems that show such scaling characteristics. Examples
include many well-known allocation problems such as course
timetabling, nurse rostering, process scheduling, network routing, vehicle
delivery scheduling, and load balancing etc. For problems of such

increasing scale, exhaustively examining each possible solution path is
beyond reasonable computation time, and so alternative approaches are
required. One alternative approach is inspired by the biology of the
natural world around us, i.e. natural evolution.

Evolutionary algorithms
In nature, there are two biological aspects at the heart of natural evolution.
Firstly, selection of individuals for reproduction according to their fitness
ensures that superior characteristics present in a population are more
likely to survive in future generations. Secondly, sexual reproduction
recombines the genetic information encoding parents’ characteristics,
resulting in offspring that are in some ways different to parents. In
addition, gene mutation can also occasionally occur in nature. A mixture
of recombination and mutation thus ensures a degree of variety in the
population. Of course, all living things exist in environments that are
prone to change. A combination of mechanisms for both selection and
variety promotion enables a population of individuals, over time, to adapt
to any changes in its environment.
Taking inspiration from natural biology, the notion of an evolutionary
computing algorithm was suggested some time ago. Although the origin
of the idea is not known for certain, Turing [Turing52] mentions the
possibility of ‘genetical programming’ in his 1950 article when
considering the question “can machines think?” Perhaps the first
implementation of an evolutionary algorithm was developed by Fraser in
1957 [Fogel02], although this was an attempt to simulate the
characteristics of species in natural evolution, rather than investigating
computational optimisation. An early attempt at optimisation of the
performance of finite state machines was described by Fogel et al. in 1966
[Fogel66] as ‘evolutionary programming’. Subsequently, many proposals
for evolutionary search and optimisation algorithms have emerged, and a
recent article in Overload describes an evolutionary algorithm approach
on how to ‘program your way out of a paper bag’ [Buontempo13].
The first task in applying an evolutionary algorithm for optimisation is to
programmatically encode a representation of solution individuals. In this
regard, evolutionary algorithms are quite flexible – virtually any
representation may be used (although overly complex encodings can
impact algorithm performance and impede understandability). Example
representations can include, for example, vectors of ‘genes’ coding for
solution characteristics, or where a better match to the problem domain
can be found, perhaps encoding genes in graphs or tree structures.
Because the solution representation codes for the ‘genes’ of the
individual, the full expression of the genes is referred to by its biological
meaning as a ‘genotype’. It’s important to draw on the characteristics of
the problem domain to help formulate a solution representation.
The second task is to implement the evolution of a population of solution
individuals over many generations. Listing 1 is a typical evolutionary
outline approach, taken from [Eiben15].
As can be seen, there are a number of algorithm aspects to customise to
the needs of the problem domain. For example, the termination condition
while(not done) for the evolutionary loop could be the point at which

W

Chris Simons lectures at the University of the West of England,
Bristol, in areas such as artificial intelligence and software
development. Chris is interested in how software can learn from
people, and vice versa, for mutual learning. Contact Chris at
chris.simons@uwe.ac.uk

Aurora Ramírez is a Computer Scientist and PhD student in the
Department of Computer Science and Numerical Analysis at the
University of Córdoba, Spain. Her research is focused on innovative
search and optimisation techniques to support software engineers
during software development, especially for architectural analysis of
complex software systems. Contact: aramirez@uco.es
14 | Overload | December 2017

FEATUREAURORA RAMÍREZ AND CHRIS SIMONS

Recombination and mutation ensure variety in
the offspring, which may be particularly

necessary in complex optimisation problems
where exploration of the search space is crucial.
individuals of sufficient fitness have been arrived at, or when a certain
computational budget has been exhausted. The evaluation of each
solution individual is highly problem specific, and relates to the
optimisation being conducted. For maximisation problems, measures of
fitness are typically related to the required quality measures of the
problem. For minimisation problems, measures of fitness typically relate
to the cost or expense of solution individuals. Often, solution fitness
depends on more than one quality/cost measure, in which case
aggregation of individual fitness values to arrive at an overall evaluation
of fitness may be necessary. The algorithm also includes a degree of
randomness in that only a proportion of the population may be selected as
parents for the next generation, and likewise for recombination and
mutation.
Achieving population variety is achieved by recombining and mutating
genetic information. Recombination and mutation ensure variety in the
offspring, which may be particularly necessary in complex optimisation
problems where exploration of the search space is crucial.
Evolutionary algorithms have been applied in a wide variety of
optimisation problem domains. Further information on the application of
evolutionary computing is widely available, although [Eiben15] is a
compact and readable introduction. Given the relative maturity of
evolutionary computing, it’s perhaps not surprising that a number of
frameworks have emerged to provide programmers with reusable
components and interfaces for customisation to a variety of problem
domain applications.

Evolutionary frameworks for optimisation
Evolutionary frameworks for optimisation allow rapid, exploratory
prototyping with evolutionary algorithms by means of generic ‘building
blocks’ (i.e. components and interfaces) [Parejo12] that, when properly
configured or extended, address a domain-specific problem (e.g. such as
the Travelling Salesman Problem). These building blocks usually
correspond to the steps of an evolutionary algorithm. For example, there
may be a component to create a population of solution individuals,
another to select the best ones, others to produce new solution individuals
via recombination and mutation, etc. [Gagné06]. In addition, frameworks
often facilitate the execution and monitoring of the algorithm with general
capabilities such as loading problem-domain specific information from
configuration files, monitoring progress and generating reports.

In short, characteristics of evolutionary computing frameworks for
optimisation include:
 adaptable search components to create customised implementations;
 mechanisms for the integration of problem-specific knowledge,

such as problem constraints and fitness function(s);
 components to configure and monitor the execution, thus allowing

the user to set any required execution parameter and visualise
intermediate results;

 general utilities to conduct experiments, including batch processing
and parallel execution; and

 designed with best practices such design patterns in mind.
The use of such frameworks can bring many advantages for the
programmer seeking to implement optimisation programs. Firstly, coding
effort greatly decreases and, to a certain extent, quality and correctness of
code are both ensured. Additional utilities, such as benchmarks and
graphic environments, might also be important to some users. In general,
the communities behind the development of these frameworks provide us
with complete, open-source programming environments that can also be
easily integrated in external tools. Subject to the learning curve of the
framework, it’s possible to get up and running with evolutionary
optimisation programs very quickly, especially when compared with
programming an evolutionary algorithm from scratch.
However, there are also some challenges to using such a framework. One
is that a considerable number are currently available, making it difficult
to know which one best fits the needs of the problem domain. As is typical
in optimisation problems, a unique global optimal solution may or may
not exist, and so it’s recommended that programmers trial a shortlist of
frameworks and evaluate their performance for a specific problem. This
leads to a second challenge, the learning curve. Some frameworks have
been developed by various open source initiatives, including academics as
part of their on-going research activities. Because of this, a few
evolutionary frameworks may not be regularly maintained, and their
documentation may not always be readily available and up-to-date.
Moreover, some knowledge about the specific algorithm variants and the
influence of setting their execution parameters might be also required to
make the most of the evolutionary techniques. Finally, regarding the
integration of these frameworks with existing tools, there may be some
restrictions in terms of programming languages and platforms available.
Having said that, evolutionary algorithms have been applied to a wide
range of problem domains, so implementations for many widely used
programming languages are available. Table 1 lists some mature and
popular frameworks written in C++, Java, C#, Python and Matlab,
together with their latest available version, and the date of release for the
latest version. Links to further details on each framework are available in
the references section at the end of the paper.
C++ libraries such as Evolving Objects and OpenBeagle were early
attempts to popularise the use of evolutionary algorithms, and precursors
of more up-to-date developments. OptFrame and Evolutionary

initialise population at random
while(not done)
 evaluate each individual
 select parents
 recombine pairs of parents
 mutate new candidate individuals
 select candidates for next generation
end while

Listing 1
December 2017 | Overload | 15

FEATURE AURORA RAMÍREZ AND CHRIS SIMONS

One classic example of a selection mechanism
is performing a tournament between solutions
selected at random, wherein the best one wins
the competition based on fitness
Computation Framework (ECF) are good active examples of this, both
supporting parallelism via MPI (Message Passing Interface). OptFrame
also provides implementations of the MapReduce paradigm, whereas the
particular strength of ECF is straightforward configuration with few
parameters. jMetal is a popular framework, and is the only framework

available in three different programming languages. Originally coded in
Java, it is focused on implementations of evolutionary algorithms to solve
multi-objective problems. MOEA Framework is another recent library to
solve this type of problem, with well-documented and tested code. The
most mature Java library is the Java-based Evolutionary Computation
Research System (ECJ), which offers a great variety of search algorithms.
Although perhaps less known, Java Class Library for Evolutionary
Computation (JCLEC) provides extensible modules for more advanced
techniques including machine learning, whereas Evolutionary Algorithms
Workbench (EvA) and Opt4J include basic graphical user interfaces.
However, the framework with the most complete graphical environment
is probably HeuristicLab, developed under the .NET framework but also
compatible with Linux systems. Finally, new developments are appearing
for Matlab and Python, and among those worthy of mention is the
PyGMO/PaGMO project, initially developed by the European Space
Agency. PaGMO has been recently rebuilt to comply with language
features of C++14 and 17.

Application example
The high-level programming interface of the Java Class Library for
Evolutionary Computation (JCLEC) [Ventura08] is a representative
example of an evolutionary optimisation framework. This open source
library also offers extension modules to develop multi-objective
algorithms and machine learning approaches, as well as a visual
environment to run experiments.
Every evolut ionary a lgori thm in JCLEC extends the c lass
PopulationAlgorithm, which defines the main steps of the
evolutionary process as shown in Listing 2.
To initialise the population, a component named Provider is invoked
with the number of solutions to be created as a parameter. Classes
extending the interfaces IIndividual and ISpecies are those
defining the specific characteristics of the optimisation problem. On the
one hand, each solution individual should contain a fitness object
representing its quality. For the travelling salesman problem, an
individual represents a possible route, while the fitness quality measure is
the total distance to be minimised. General methods to copy and compare
solutions are also required along the search process. The species provides
additional information of the problem and how it is encoded. In our
example, this element will contain the number of cities. Therefore, the

Language Framework Version Date
C++ Evolutionary Computation Framework

(ECF)
1.4.2 2017

Evolving Objects (EO) 1.3.1 2012

jMetalCpp 1.7 2016

Mallba 2.0 2009

Open Beagle 3.0.3 2007

OptFrame 2.2 2017

PaGMO 2.5 2017

ParadisEO 2.0.1 2012

Java Java-based Evolutionary Computation
Research System (ECJ)

24.0,
25.0

2017

Evolutionary Algorithms Workbench
(EvA)

2.2.0 2015

Java Class Library for Evolutionary
Computation (JCLEC)

4.0 2014

jMetal 5.3 2017

Multi-Objective Evolutionary Algorithm
(MOEA) Framework

2.12 2017

Opt4J 3.1.4 2015

C# GeneticSharp (A C# Genetic Algorithm
Library)

On-
going

2017

HeuristicLab (A Paradigm-Independent
and Extensible Environment for
Heuristic Optimization)

3.3.14 2016

Python Distributed Evolutionary Algorithms in
Python (DEAP)

1.1.0 2017

jMetalPy On-
going

2017

Pyevolve 0.6rc_1 2015

PyGMO On-
going

2017

Pyvolution 1.1 2012

Matlab Genetic and Evolutionary Algorithm
Toolbox for Matlab (GEATbx)

3.8 2017

Global Optimisation Toolbox R2017b 2017

Matlab Platform for Evolutionary Multi-
objective Optimisation (PlatEMO)

1.3 2017

Table 1

public abstract class PopulationAlgorithm
 extends AbstractAlgorithm{
 doInit(): void
 doSelection(): void
 doGeneration(): void
 doReplacement(): void
 doControl(): void
}

Listing 2
16 | Overload | December 2017

FEATUREAURORA RAMÍREZ AND CHRIS SIMONS

The next step is to generate new solutions by
recombining and mutating the chosen ones.

Again, independent components will be coded to
perform each task.
species can create random routes, which are stored as permutations of the
cities. (See Listing 3.)
A further component evaluates the quality of random solutions after their
creation. The interface IEvaluator defines methods to evaluate a list of
individuals, counts the number of evaluations (which might be a stopping
criterion) and adapts the comparator to the specific problem. This way,
individuals can be compared in terms of their fitness values for both
maximisation and minimisation problems. The evaluation of the
travelling salesman problem will assess the distance between the
consecutive cities on the route, as defined by the permutation representing
the solution. The total distance is to be minimised.
For clearly defined optimisation problems such as the travelling salesman
problem, the quality of the solution is quantified using a double floating-
point value. In this case, the interface IValueFitness provides the
necessary methods to keep and retrieve the computed value, as well as
additional methods to check if the value ‘is good enough’ against some
criteria, and make copies. These two latter methods are inherited from the
more general interface IFitness. (See Listing 4.)

Once the population has been created, each generation of the evolution is
performed by sequentially invoking the following methods (see Listing 2):
doSelection(), doGeneration(), doReplacement() and
doControl(). For selection, the most common approach is to delegate
the functionality to a ‘selector’, a class implementing the interface
ISelector. In JCLEC, diverse selection methods can be implemented
via polymorphism as shown in the following listing. More specifically,
the first method just picks as many solutions as there is in the received list
(repetition is allowed by default), the second specifies the number of
solutions to be returned, and the third one also allows the programmer to
indicate whether repetition is permitted. One classic example of a
selection mechanism is performing a tournament between solutions
selected at random, wherein the best one wins the competition based on
fitness.
The next step is to generate new solutions by recombining and mutating
the chosen ones. Again, independent components will be coded to
perform each task, using the interfaces IRecombinator and IMutator
as reference. In their most simple form, both genetic operators receive a
list of individuals and return another one with the modified solutions.
Specific classes in JCLEC extend this idea to support the association of
probabilities and transform the solutions depending on how the solutions
are encoded. For the travelling salesman problem, a recombinator can
interchange subroutes of two solutions to produce new ones. Mutation
might just swap two cities for a given route. (See Listing 5.)
Relationships between the various interfaces offered by JCLEC are as
shown in Figure 1.
Both user-defined classes or existing ones can be combined in JCLEC to
run an evolutionary algorithm. To put all the components together, a
configuration file in XML format specifies which class implements each
component. JCLEC uses Java Reflection to instantiate these classes ‘on
the fly’ during the configuration process, and then launches the execution.

public interface IIndividual{
 getFitness(): IFitness
 setFitness(IFitness): void
 copy(): IIndividual
 equals(Object): boolean
}

public interface IProvider{
 provide(int): List<IIndividual>
}

public interface ISpecies{
 createIndividual(T[]): IIndividual
}

Listing 3

public interface IEvaluator{
 evaluate(List<IIndividual>): void
 getNumberOfEvaluations(): int
 getComparator(): Comparator<IFitness>
}

public interface IValueFitness extends IFitness{
 getValue(): double
 setValue(double): void
 isAcceptable(): Boolean
 copy(): IFitness
}

Listing 4

public interface ISelector{
 select(List<IIndividual>)
 : List<IIndividual>
 select(List<IIndividual>, int)
 : List<IIndividual>
 select(List<IIndividual>, int, boolean)
 : List<IIndividual>
}

public interface IRecombinator{
 recombine(List<IIndividual>): List<IIndividual>
}

public interface IMutator{
 mutate(List<IIndividual>): List<IIndividual>
}

Listing 5
December 2017 | Overload | 17

FEATURE AURORA RAMÍREZ AND CHRIS SIMONS
Listeners may be added to generate intermediate reports at a desired
frequency, for example, at a specified number of evolutionary
generations.
Taking the travelling salesman problem as an example, one possible
resulting configuration is shown below. In this experiment, the evolving
population comprises 100 solution individuals, and the termination
criterion is 10000 fitness evaluations. The problem to be optimised in this
experiment relates to 52 locations in the city of Berlin, and the
specification of the 52 locations is held in a file berlin52.tsp. The
genes of the solution genotype are encoded as an ordered array,
containing 52 ordered elements – each element identifying a single
location. The evaluation of each solution individual involves computing
the sum of the distance between each location in the order specified in the
genotype. In evolutionary computing terms, the total distance is the
‘fitness’ of the individual. In this experiment, optimisation involves
minimising the distance to arrive at the least cost solution.
Parent individuals are selected by ‘tournament’ selection, i.e. two
individuals are placed in a tournament where the single fittest wins. The
probability that two selected parents will be recombined is 0.9, while the
probability that recombined individuals will be further mutated is 0.2.
Finally, intermediate reports are generated at every 10 generations of
evolution (see Listing 6).
After running the evolutionary optimisation experiment for the travelling
salesman problem with the above configuration, the JCLEC framework
provides in format ion of the
optimisation, as shown in Figure 2.
A f t e r 1 0 00 gen e r a t i o ns o f
evolution, the best and worst
so lu t i on i nd iv idua l s i n t he
population are shown. The best
solution individual has a fitness
value of 9483.023, i.e. the distance
of the path in metres. The genotype
reveals the travelling order of the
locations (expressed as integer
ident i f iers) resul t ing in th is
distance. The worst solut ion
individual has a fitness value of
12737.531. Because the population
of ind iv idua l s r e t a ins some
d i v e r s i t y (e v e n a f t e r 10 00
g e n e r a t i on s o f ev o l u t i o n) ,
additional information about the
populat ion is also provided.

Information related to the median individual in the
population is also made available, as is the average fitness
of the population, and population fitness variance.

Practicalities and final thoughts
There are a number of practicalities relating to the
application of evolutionary optimisation, including:
 Domain specific information relating to the

optimisation problem is essential. For example,
some notion of maximisation or minimisation is
necessary to implement fitness-based selection.
Also, an understanding of appropriate solution
characteristics is necessary to encode a satisfactory
presentation of the genetic information.

 Evolutionary optimisation is only appropriate for
larger scale problems. If the scale of the solution
search space is such that exhaustive enumeration of
all individuals is possible, then this is preferable
because we can be sure that the optimal solution has
been discovered.

 Since evolutionary optimisation incorporates a degree of
randomness (in selection and diversity preservation), it’s not
possible to prove that the ‘best’ solution(s) discovered are, in fact,
optimal. However, sometimes just getting something that’s ‘good
enough’ can be great, improving the quality of the problem solution
in ways otherwise not possible.

 Benchmarking evolutionary optimisation performance can be
tricky. Firstly, although some comparative studies of optimisation
frameworks exist (e.g. [Parejo12]), standard benchmark problem
instances are less readily available. Secondly, customisation of
optimisation components and parameters must be consistent across
different problem domains and frameworks to ensure a fair
comparison. Thirdly, because of the degree of randomness is present
in the evolutionary frameworks, results can differ over different
evolutionary ‘runs’ for the same optimisation problem. In this case,
it’s useful to execute many evolutionary optimisation ‘runs’ for the
same problem, and perform statistical analysis if appropriate.

 What happens after a population has evolved? It’s possible for
complex optimisation problems that at algorithm termination, a
population of equally optimal solutions has been discovered, but
many individuals are dissimilar. At this point, programmer
preference and judgement might be required to choose among the
available solutions.

Figure 2

Figure 1
18 | Overload | December 2017

FEATUREAURORA RAMÍREZ AND CHRIS SIMONS

<experiment>
 <process algorithm-type="net.sf.jclec.algorithm.classic.SGE">
 <rand-gen-factory type="net.sf.jclec.util.random.RanecuFactory" seed="123"/>
 <population-size>100</population-size>
 <max-of-evaluations>10000</max-of-evaluations>
 <species type="net.sf.jclec.orderarray.OrderArrayIndividualSpecies" genotype-length="52"/>
 <evaluator type="tutorial.TSP" file-name="berlin52.tsp" number-cities="52"/>
 <provider type="net.sf.jclec.orderarray.OrderArrayCreator"/>
 <parents-selector type="net.sf.jclec.selector.TournamentSelector">
 <tournament-size>2</tournament-size>
 </parents-selector>
 <recombinator type="net.sf.jclec.orderarray.rec.OrderPMXCrossover" rec-prob="0.9" />
 <mutator type="net.sf.jclec.orderarray.mut.Order2OptMutator" mut-prob="0.2" />
 <listener type="net.sf.jclec.listener.PopulationReporter">
 <report-frequency>10</report-frequency>
 <report-on-file>true</report-on-file>
 </listener>
 </process>
</experiment>

Listing 6
However, even with these practicalities in mind, evolutionary
optimisation frameworks offer significant ‘off-the-shelf’ optimisation
capabilities for programmers. Given their on-going development and
increasing maturity, they can be attractive option for programmers
working with large scale optimisation problems.

References and resources
[Buontempo13] ‘How to Program Your Way out of a Paper Bag using

Genetic Algorithms’, F. Buontempo, Overload, December 2013,
https://accu.org/index.php/journals/1825

[DEAP] DEAP: Distributed Evolutionary Algorithms in Python.
https://github.com/DEAP (Last accessed: 23/10/17).

[ECF] ECF – Evolutionary Computation Framework.
http://ecf.zemris.fer.hr/ (Last accessed: 23/10/17).

[ECJ] ECJ – A Java-based Evolutionary Computation Research System.
https://cs.gmu.edu/~eclab/projects/ecj/ (Last accessed: 23/10/17).

[Eiben15] Introduction to Evolutionary Computing, 2nd Ed., A.E. Eiben,
and J.E. Smith, Springer, 2015.

[EO] Evolving Objects (EO): an Evolutionary Computation Framework.
http://eodev.sourceforge.net/ (Last accessed: 23/10/17).

[EvA] EvA2 – A Java based framework for Evolutionary Algorithms.
http://www.ra.cs.uni-tuebingen.de/software/eva2/ (Last accessed:
23/10/17).

[Fogel02] ‘In Memoriam: Alex S. Fraser’, D. Fogel, IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 429–430, 2002.

[Fogel66] Artificial Intelligence through Simulated Evolution, L.J. Fogel,
A.J. Owens, and M.J. Walsh, Wiley, 1966.

[Gagné06] ‘Genericity in evolutionary computation software tools:
principles and case-study’, C. Gagné, M. Parizeau, International
Journal of Artificial Intelligent Tools, vol. 15, no. 2, pp. 173–194.
2006.

[GEATbx] GEATbx – The Genetic and Evolutionary Algorithm Toolbox
for Matlab. http://www.geatbx.com/ (Last accessed: 23/10/17).

[GenSharp] GeneticSharp. https://github.com/giacomelli/GeneticSharp
(Last accessed: 23/10/17).

[GOT] Global Optimisation Toolbox. https://www.mathworks.com/
products/global-optimization.html (Last accessed: 23/10/17).

[HL] HeuristicLab – A Paradigm-Independent and Extensible
Environment for Heuristic Optimization.
https://dev.heuristiclab.com/trac.fcgi/ (Last accessed: 23/10/17).

[JCLEC] JCLEC – A Java Class Library for Evolutionary Computation.
http://jclec.sourceforge.net/ (Last accessed: 23/10/17).

[jMetal] jMetal: a framework for multi-objective optimization with
metaheuristics. https://github.com/jMetal (Last accessed: 23/10/17).

[Mallba] MALLBA Library. http://neo.lcc.uma.es/mallba/easy-mallba/
index.html (Last accessed: 23/10/17).

[MOEAFram] MOEA Framework – A Free and Open Source Java
Framework for Multiobjective Optimization.
http://moeaframework.org/ (Last accessed: 23/10/17).

[OB] OpenBeagle – A generic C++ framework for evolutionary
computation. https://github.com/chgagne/beagle (Last accessed: 23/
10/17).

[Opt4J] Opt4J – A Modular Framework for Meta-heuristic Optimization.
http://opt4j.sourceforge.net/ (Last accessed: 23/10/17).

[OptFrame] OptFrame. https://sourceforge.net/projects/optframe/ (Last
accessed: 23/10/17).

[Pagmo] Pagmo – The C++ Scientific Library for Massively Parallel
Optimization. https://esa.github.io/pagmo2/ (Last accessed:
23/10/17)

[Paradiseo] Paradiseo – A Software Framework for Metaheuristics.
http://paradiseo.gforge.inria.fr/ (Last accessed: 23/10/17).

[Parejo12] ‘Metaheuristic Optimization Frameworks: A Survey and
Benchmarking’, J.A. Parejo, A. Ruiz-Cortés, S. Lozano, and P.
Fernandez, Soft Computing, vol. 16, no. 3, pp. 527–561, 2012.

[PlatEMO] PlatEMO – Evolutionary multi-objective optimization
platform. http://bimk.ahu.edu.cn/index.php?s=/Index/Software/
index.html (Last accessed: 23/10/17)

[Pyevolve] Pyevolve. http://pyevolve.sourceforge.net/ (Last accessed:
23/10/17)

[Pygmo] PyGMO – The Python Scientific Library for Massively Parallel
Optimization. https://esa.github.io/pagmo2/ (Last accessed: 23/10/
17)

 [Pyvolution] Pyvolution – A Pure Python Evolutionary Algorithms
Framework. https://pypi.python.org/pypi/Pyvolution (Last accessed:
23/10/17)

[Turing52] ‘Computing Machinery and Intelligence’, A.M. Turing, Mind,
vol. 59, no. 236, pp. 433–460, 1950.

[Ventura08] ‘JCLEC: a Java framework for evolutionary computation’, S.
Ventura, C. Romero, A. Zafra, J.A. Delgado, C. Hervás, Soft
Computing, vol. 12, no.4, pp. 381–392, 2008.
December 2017 | Overload | 19

https://github.com/DEAP
http://ecf.zemris.fer.hr/
https://cs.gmu.edu/~eclab/projects/ecj/
http://eodev.sourceforge.net/
http://www.ra.cs.uni-tuebingen.de/software/eva2/
http://www.geatbx.com/
https://github.com/giacomelli/GeneticSharp
https://www.mathworks.com/products/global-optimization.html
https://www.mathworks.com/products/global-optimization.html
https://dev.heuristiclab.com/trac.fcgi/
http://jclec.sourceforge.net/
https://github.com/jMetal
http://neo.lcc.uma.es/mallba/easy-mallba/index.html
http://neo.lcc.uma.es/mallba/easy-mallba/index.html
http://moeaframework.org/
https://github.com/chgagne/beagle
http://opt4j.sourceforge.net/
https://sourceforge.net/projects/optframe/
https://esa.github.io/pagmo2/
http://paradiseo.gforge.inria.fr/
http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html
http://bimk.ahu.edu.cn/index.php?s=/Index/Software/index.html
http://pyevolve.sourceforge.net/
https://esa.github.io/pagmo2/
https://pypi.python.org/pypi/Pyvolution
https://accu.org/index.php/journals/1825

FEATURE CHRIS OLDWOOD
Afterwood
Tabs are controversial. Chris Oldwood
reminds us of their many guises.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

here can’t be many three-letter words that can cause the average
programmer to break out into a cold sweat, but the word ‘tab’ must
surely feature fairly highly among them. I can imagine the word ‘for’

would cause a functional programming evangelist to give a little shudder
given their dislike for explicit iteration, and the abbreviation ‘int’ must
surely generate a lengthy sigh from anyone who’s had to write cross-
platform code in C or its closest brethren, C++. However, ‘tab’ cuts across
paradigms and languages and holds a special place in our psyche.
A rather popular sci-fi TV programme tells us that ‘space’ is the final
frontier and, for typists around 1900, that was certainly a major challenge
they faced. If you think positioning text with CSS can be arduous at times
try laying out a table of data on an old-fashioned typewriter. Repeatedly
pressing the space bar and backspace keys to line up the cursor is going
test anyone’s patience, and that’s before you factor in the effort each
keystroke requires on such a mechanical device. RSI is an initialism so it’s
exempt from this particular discourse but the tab key must be
congratulated here on its stress reducing measures.
It’s funny to think that something we can’t actually see would cause us
programmers so much distress and yet, like a black hole, it has the ability
to distort that which surrounds it. How many times have you inserted a
space early in a line only for the remainder to spring exponentially further
to the right as a gaping chasm opens up from nowhere; it’s like a kerning
disaster on a grander scale. They also say beauty is in the eye of the
beholder but no one in their right mind would choose to use 8 spaces for
indentation, but apparently, historically, that’s what the world once
thought was considered Good Taste™.
My first foray into the world of Python left me with a scar I still bear to
this very day and which came courtesy of the invisible enemy. After
starting my first non-trivial Python program in the (then) new-fangled
IDLE Python IDE, I quickly switched to the more comfortable Visual
Studio text editor to finish my sysadmin masterpiece. Sadly I wasted the
following hour and a half scratching my head and debugging until I
discovered the cruel lesson from the school of hard knocks about mixing
tabs and spaces in the same Python block. I had forgotten that back then
in Washington the space was out of favour, there, the acronym TARDIS
probably stood for Tabs Are Redmond’s Default Indentation Style, and so
lines of Python code were being skipped or executed in a seemingly
arbitrary fashion. Goto Fail, do not pass Go.
Of course tabs are bad for you. Anyone who grew up in north-east
England knew that because tabs are a slang word for cigarettes. If you
believe the oft-quoted 10 lines of code per developer per day, then,
assuming a low degree of nesting you should easily keep your habit under
20-a-day, but the rock-star programmers are probably chain-smoking
their way to a very early grave. And that’s before we’ve even considered
their late-night coding antics where they might drop a tab or two of some
illicit drug to fuel their spree. To them an ACID guarantee is an entirely
different prospect.
Unsurprisingly I approached F#, another whitespace-sensitive language,
with a little more trepidation. However, learning from the mistakes of
their forefathers, the F# designers just banned tabs by default, which
seems very sensible. If you really want to shoot yourself in the foot and

use tabs you can, but you need a special disclaimer at the top of every file
to waive your rights to any form of support on Stack Overflow. It’s not
just your life you’re wrecking – friends don’t let friends use tabs, ever.
Just when you think the eternal war between tabs and spaces is beginning
to decline as the ever growing list of vets speaks out over the folly of
choice and the remaining battles diminish to a few skirmishes on the outer
rim of the Internet, a new programming language comes along and tips
petrol over the smouldering embers. Google’s Go is a highly opinionated
language that’s not afraid to upset anyone’s apple cart, and the de facto
choice of using tabs for indentation is just one major example of this.
Actually, that’s not entirely true: the language itself is just as tolerant of
ugly code as any other – it’s the community that’s decided to embrace a
common standard. On matters of style the bundled go fmt tool is judge,
jury and re-formatter. Expect your pull requests to become bantha fodder
if your whitespace is not whiter than white.
This isn’t the first time a large corporation has tried to sell the tab to a
sceptical market. Back in the late 1970s, the Coca-Cola Company brought
TaB to the UK in the hope of capturing a slice of the diet soda market. It
was rebranded TaB Clear before I was old enough to appraise it, but it
didn’t last long – disappearing along with Cadbury’s Fuse. I guess the
buying public wants to see something for their money.
It’s not all doom-and-gloom for the humble tab. In the early 2000s, as the
Internet was really taking off big-time, the modern developer found
themselves in a new kind of hell. The ever-growing Internet started to
become the predominant source of developer information and so it was
not uncommon to have multiple browser instances open, switching back-
and-forth as we pieced together the answers to our puzzle. Although
Opera sported an MDI style UI it was not really until the new mainstream
contender to the browser throne – Firefox – appeared that the browser tab
really took off and reduced the number of task bar icons back to a
sustainable cognitive load.
Although heralded as the saviour of the browser, the tab as a UI element
was not without its detractors. The tab fad really started to take off in the
early 90s as the Office suites began to look for alternatives to MDI and
cluttered configuration dialogs. The Interface Hall of Shame has plenty of
examples of where the wheels fell off. For the browser, however, the real
elephant in the room was a poor security record and a need to isolate each
web site into its own process. Suddenly each new tab meant another multi-
megabyte process and ever more strain on the humble computer. But it
isn’t just browsers; even native apps like Slack with essentially a tab per
team are using process-level isolation and hogging resources; it’s not
uncommon to find Chrome and Slack duking it out behind the scenes on
a developer’s laptop apparently striving for global domination.
So, all tabs are evil, right? Well maybe not, there is one category of tab
that actually seems to be useful and pretty much side-effect free – guitar
tabs. For those of us whose only musical ability stems from playing Guitar
Hero, the guitar tab provides a lifeline for learning to
play the classics without having to grok some ancient
music notation first. Maybe the tab has a stairway to
heaven after all.

T

20 | Overload | December 2017

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	Too Fast! Too slow! Too right!!
	CAS (Re)Actor for Non-Blocking Multithreaded Primitives
	A Design Example
	Best Articles 2017
	The Last Word in Patterns
	Implementing Type-Classes as OCaml Modules
	Evolutionary Computing Frameworks for Optimisation
	Afterwood

