

Start a free 30-day trial
jb.gg/cpp-accu

A Power Language
Needs Power Tools

ReSharper C++
Visual Studio Extension
for C++ developers

CLion
Cross-platform IDE
for C and C++ developers

AppCode
IDE for iOS
and OS X development

Smart editor
with full language support
Support for C++03/C++11,
Boost and libc++, C++
templates and macros.

Code generation
and navigation
Generate menu,
Find context usages,
Go to Symbol, and more

Reliable
refactorings
Rename, Extract Function
/ Constant / Variable,
Change Signature, & more

Profound
code analysis
On-the-fly analysis
with Quick-fixes & dozens
of smart checks

GET A C++ DEVELOPMENT TOOL
THAT YOU DESERVE

December 2016 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 The MirAL Story
Alan Griffiths introduces Mir Abstraction Layer as an
alternative to X-Windows.

6 Overloading with Concepts
Andrew Sutton shows us how to use concepts in
function overloading.

12 Ultra-fast Serialization of C++ Objects
Sergey Ignatchenko and Dmytro Ivanchykhin
demonstrate quick serialising and de-serialising.

18 Modern C++ Features:
User-Defined Literals
Arne Mertz walks us through user-defined literals in
C++.

20Python Streams vs Unix Pipes
Thomas Guest presents various ways to deal with
infinite sequences.

24 A Reader Writes
Silas S. Brown comments on an article
by Steve Love.

25Hello World in Go
Eleanor McHugh shares a Go ‘Hello, world!’ tutorial.

36Afterwood
Chris Oldwood fictionalises the day one JavaScript
module was removed and every Node.js build was
knocked for six.

OVERLOAD 136

December 2016

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 137 should be
submitted by 1st January 2017 and
those for Overload 138 by
1st March 2017.

EDITORIAL FRANCES BUONTEMPO
The Font of Wisdom
The choice of typeface can convey a tone.
Frances Buontempo considers the plethora
of dilemmas this presents.
Having just bought a new laptop, I have spent time
installing things and as ever therefore failed to write
an editorial. I noticed once I finally managed to find
a command prompt in this new-fangled version of
Windows, it seemed very unfamiliar. The first thing
that stuck me was the font size, and in fact font itself.

In conjunction with a recent outburst of font related puns on twitter1, I
was left thinking about fonts. First, why is it called a font? It is possible
this comes from original letters for pamphlets and books being cast (think
foundry found fount font) in metal? The roots of this word may
relate to pouring or gushing [found] and we can then find a split between
fountains (founts) and cast containers. For example, I observe a trend
[EnglishSE] towards using the phrase ‘font of wisdom’ (or knowledge)
in place of ‘fount of wisdom’. In the older form, fount, the idea is that of
a fountain, or source, of something. The latter means a container, like a
font or baptismal basin in a church. Wikipedia reminds me that font and
typeface are often confused [Font]; the font is a specific size, weight and
style of a typeface. Which font or typeface do you use to write your
programs and scripts in? Has this been a conscious decision, is it just by
habit, or IDE’s default choice or even company diktat?

A couple of years ago at the ACCU conference, Kevlin Henny [Henney]
observed that certain fonts, for example on book covers, pin down objects
to specific points in history. How do fonts become trendy? Who invents
them? Why are some people trying out using Comic Sans for technical
presentations? Has anyone ever used it for a CV? I saw a CV in Courier,
or at least some fixed width font, which rather impressed my boss at the
time. Each new version of Microsoft Office seems to come with a new
font as the default. This will date a document, to some extent. I recently
saw a PowerPoint presentation and had a brief moment of shock at the
choice of arrow-heads for bullet point. I haven’t seen that used for years.
Of course, all the trendy people have ceased to use PowerPoint anyway.
Right?! Presentation formats have trends falling in and out of fashion.

We could suggest fonts start with the printing press, though having seen
pictures of some very old hand-written books with very uniform
calligraphy I could muse on an earlier history. Prescriptions of the exact
height of hand-written letters such as uncial and half-uncial [Uncials]
would distract us all. I presume having a specific format would make
such documents and books easier to read. I am always surprised by how
dreadful my handwriting tends to be, since I usually type at a computer
and am therefore out of practice. Handwriting is slow, if you try to make
sure it’s readable. My typing is fast, as long as I ignore typos. I’m not

clear how old moveable type is, and I thought

Gutenberg invented the printing press but the internet [Internet] tells me
I am wrong. ‘He is not the inventor of the printing press, or of printing ink,
or even of moveable type. Gutenberg’s Bible was neither the first book
printed using moveable type, nor the first book he printed using moveable
type.’ The same webpage claims he probably didn’t have a beard either.

Early computer programs would be holes in punched card, as we know.
Once we started using letters – say I, J, K – to represent variables or try
to write documents in word processors, we arrive at raster or bitmap
fonts. When these are scaled up it becomes clear they are made of bits,
and have squared steps where they apparently started with a curved line.
This contrasts with a scalable graphic, or font, which is limited by the
device displaying it. Instead of just having pixels in a grid set to a specific
colour, the letter, glyph or whatever is stored as a curve which can then
be scaled as desired. Actually, the common composite Bézier curve will
be stored as control points and are defined by quadratic, cubic or even
higher order equations. Storing the curve itself would require either a
bitmap or something recursive, since we are trying to find a way to store
a curve. Certainly computer screens have led to an explosion of fonts,
from Verdana, Metafont to TrueType and beyond. It would seem that
various fonts are supposed to be easier to read on different media. A
whole slew of fonts designed for web-browsers seem to exist. In fact,
Google Fonts [Google] offers an ‘intuitive and robust directory of open-
source designer web fonts’. I do like my directories to be robust.
Wikipedia has a whole page devoted to web typography [Web
typography]. Some specific issues crop up on webpages, in particular the
need to be fast when rendering and the chance things will be in a variety
of languages and even alphabets. I am still sure alphabet is not the generic
word for glyphs, syllabaries, logographies or graphemes, and should
perhaps just be reversed for the Greek alpha-beta. I digress.

It would be inappropriate to talk of fonts without briefly mentioning
Comic Sans. We are, I hope, all aware that Comic Sans should be
reserved for the appropriate time and place. That could be a child’s party,
or comic, again aimed at children, or a live code demonstration to ACCU
London. (It was by Jon Skeet, so he can do what he wants.) A brief
internet search for Comic Sans turns up many disparaging pages. For
example, http://www.comicsanscriminal.com/ reminds us, ‘All fonts have
a personality and purpose.’ Furthermore, http://bancomicsans.com/
quotes,

There are bad types and good types, and the whole science and art of
typography begins after the first category has been set aside. ~ Beatrice
Warde

Category theory and types are another matter; the way you present your
output sets a tone. The choice of font is just one part of the larger whole,
which includes colour, layout and much more. Comics choose specific
typefaces for different characters, perhaps as a form of leitmotif. The

1. https://twitter.com/chrisoldwood/status/787
400476354605056 ‘I shot the serif’ being
a ‘Capital crime’ apparently
2 | Overload | December 2016

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.

https://twitter.com/chrisoldwood/status/787400476354605056
https://twitter.com/chrisoldwood/status/787400476354605056
http://www.comicsanscriminal.com/
http://bancomicsans.com/

EDITORIALFRANCES BUONTEMPO
visual layout brings the story alive. I wonder how webpages are perceived
by visually-impaired visitors. If an audio description is read, does it take
into account the font? Do websites even have audio descriptions?

Having touched on Comic Sans, this takes us to emojis. A recent ‘news’
story reported the development of a new set of emojis for older people
[BBC], dubbed ‘emoldjis’. I hadn’t realised there is a formal process to
create an emoji. With a bit of web-surfing I found a technical report
[TR51] providing guidelines for interoperability of such characters across
platforms. It appears the first Unicode emoji characters were added to
Unicode 5.2 in 2009. Are there any programmer specific emojis I wonder?
I observe an attempt at emoji domain names. A blog [Domain names]
observes they can be difficult to navigate to without an emoji-dedicated
keyboard. Websites do exist to generate them for an existing site, and you
can then use the proffered hyperlink. Would you want to code in emojis?
Once or twice I have seen proper mathematics symbols in comments in
code, which is right and proper and doesn’t show up properly if the
Unicode used isn’t supported in your editor of choice. If you find an editor
that can cope, you could code in emoji. Or emojicode in fact;
http://www.emojicode.org/

Emoj i code i s a s ta t i c s t rong ly t yped p rog ramming
language…Emojicode is an open source, high-level, multi-paradigm,
object-oriented programming language consisting of emojis, that allows
you to build fast cross-platform applications while having a lot of fun. And
it’s 100% real.

The webpage gives a fine demonstration of Fibonacci number generation,
but first doesn’t seem to have any tests and second I can feel the pain of
trying to correctly get that in print for Overload without even trying.

Aside from the character set, or perhaps together with it, we should
consider punctuation. Early writing had no breaks between the words, let
alone full stops to end sentences. This would make writing hard to parse,
and indeed many programming languages tend to use punctuation to make
the parser’s life easier. Gradually we see spaces being introduced between
words, and then various marks introduced to indicate pauses in the
reading, such as a comma for a shorter pause. Or full stop for greater
emphasis. I have seen many older texts tending to use a semicolon where
a comma or perhaps period would be preferred nowadays. Often a
sentence will last an entire paragraph. Modern writing seems to favour
shorter sentences. In addition, some of our punctuation is used to
disambiguate meanings. An example would be the difference between

Charles the First walked and talked half an hour after his head was
cut off.

versus

Charles the First walked and talked; half an hour after his head was
cut off.

Many other examples exist. Perhaps this just means English is deficient.
I have a sense that Latin, for example, has many precise tenses and verb
declensions which would make the meaning clearer, possibly reducing the
need for punctuation. I wonder if there is an analogy between
programming languages, such as C++, which require a lot of punctuation
contrasted with ones which do not, such as Python, and human languages?
Perhaps. Will we continue to get new punctuation marks, or do we have
sufficient? Really?! Ah yes, interrobang (Unicode character U+203D,
apparently). Developed by one Martin K. Speckter in 1962 [Interrobang],
it hasn’t fully caught on since it was rather difficult to type on a
typewriter. It still begs the question, ‘How would you punctuate a
sentence like this?!’ Do we need more punctuation, or should we return to
simpler times, a lá New Roman?

Look at some code you have written recently. What font are you using to
view it? Is that included in version control? I presume not. Are you using
a fixed width font? There are times when you do want columns to line up,
but many people are using proportional fonts to code instead of fixed-
width ones. There is a brief discussion on Slashdot [Slashdot] about the
use of proportional fonts, noting some claim they are quicker to read.
Being Slashdot, the comments are worth a read, though one CdBee notes,
‘/. is meant to be the font of all knowledge, not the knowledge of all fonts.’
People have fought wars (almost) over layout of braces and whitespace
placement. This is all related to how easy something is to ‘grok’. Some
people cannot cope without colour coding. I suspect any UX style studies
of the ‘one true way’ to present code will fail to take into account diversity
and individual preference. You need something that works for you, but if
you pair, or even mob, program, a setup that works for everyone is ideal,
even if it’s not possible. There is no one true way, or font of all wisdom
on how to present things well. And there’s no editorial either, but what did
you expect? Before I finish, I must share a web article that considers the
use of fonts in Blade Runner [Blade Runner]. It mentions ‘Blade Runner’s
only reported instance of Eurostile Bold Extended’ and that the details of
the replicant Leon are almost in Caslon font, but, and I quote, ‘despite
everything else matching nicely, the top of the 6 is just
wrong. I can only apologize for the discrepancy.’ The
analysis of the serial numbers and date formats that
follow is highly recommended. I suspect I have found
the source of the knowledge of all fonts. The fount of
all things font?!

References
[BBC] http://www.bbc.co.uk/news/uk-england-coventry-warwickshire-

37789947

[Blade Runner] https://typesetinthefuture.com/2016/06/19/bladerunner/

[Domain names] https://blog.uniteddomains.com/it-s-2016-where-are-
our-emoji-domain-names-26215215fbd2#.i44gzyjz5

[EnglishSE] http://english.stackexchange.com/questions/95864/font-
fount-of-information

[Font] https://en.wikipedia.org/wiki/Font

[found] http://www.etymonline.com/index.php?term=found

[Google] https://fonts.google.com/about

[Henney] https://www.infoq.com/presentations/unit-testing-tips-tricks

[Internet] https://www.fonts.com/content/learning/fontology/level-
4/influential-personalities/gutenbergs-invention

[Interrobang] http://www.shadycharacters.co.uk/2011/04/the-
interrobang-part-1/

[Slashdot]
https://developers.slashdot.org/story/10/01/17/0715219/programmi
ng-with-proportional-fonts

[TR51] http://www.unicode.org/reports/tr51/

[Uncials]
http://www.designhistory.org/Handwriting_pages/Uncials.html

[Web typography] https://en.wikipedia.org/wiki/Web_typography
December 2016 | Overload | 3

http://www.bbc.co.uk/news/uk-england-coventry-warwickshire-37789947
http://www.bbc.co.uk/news/uk-england-coventry-warwickshire-37789947
https://typesetinthefuture.com/2016/06/19/bladerunner/
https://blog.uniteddomains.com/it-s-2016-where-are-our-emoji-domain-names-26215215fbd2#.i44gzyjz5
https://blog.uniteddomains.com/it-s-2016-where-are-our-emoji-domain-names-26215215fbd2#.i44gzyjz5
http://english.stackexchange.com/questions/95864/font-fount-of-information
http://english.stackexchange.com/questions/95864/font-fount-of-information
https://en.wikipedia.org/wiki/Font
http://www.etymonline.com/index.php?term=found
https://fonts.google.com/about
https://www.infoq.com/presentations/unit-testing-tips-tricks
https://www.fonts.com/content/learning/fontology/level-4/influential-personalities/gutenbergs-invention
https://www.fonts.com/content/learning/fontology/level-4/influential-personalities/gutenbergs-invention
http://www.shadycharacters.co.uk/2011/04/the-interrobang-part-1/
http://www.shadycharacters.co.uk/2011/04/the-interrobang-part-1/
https://developers.slashdot.org/story/10/01/17/0715219/programming-with-proportional-fonts
http://www.unicode.org/reports/tr51/
http://www.designhistory.org/Handwriting_pages/Uncials.html
https://en.wikipedia.org/wiki/Web_typography
http://www.emojicode.org/

FEATURE ALAN GRIFFITHS
The MirAL Story
The X-Windows system is all-pervasive but
struggles with security and performance graphics.
Alan Griffiths introduces Mir Abstraction Layer to
deal with these issues.
What is Mir?
he project I’m working on is Mir. This is a replacement for the
venerable X Windows (see ‘We need a new windowing system’).
Mir is a set of libraries providing the facilities for the participants in

window management: the ‘servers’ that manage organising the windows
onscreen and the ‘clients’ (or applications) that provide the content of the
windows. In addition there are facilities to load plugin modules for
different ‘graphics platforms’, ‘input platforms’ and renderers. At the
time of writing, the supported platforms are the Mesa and Android
graphics stacks and running the ‘server’ either directly on these drivers or
as a ‘guest’ of either Mir itself or of X11.

There are multiple downstream projects using the ‘client’ side of Mir:
there’s Mir support available in GTK, Qt and SDL2. In addition, there’s
an X11 server that runs on Mir: Xmir, this allows X based applications to
run on Mir servers.

On the server side, Mir hasn’t had a range of projects using it: it has been
in use by the Unity8 window manager used on phones and tablets and
recently made available as a ‘preview’ on the Ubuntu 16.10 desktop.

While having a downstream project that uses Mir on real devices that ship
to real customers has been a big benefit, the close association of the two
projects has had some downsides.

The itch
Because the ‘client’ side of Mir has multiple projects using it, the
importance of a stable API and ABI has been both appreciated and acted
upon. On the server side things haven’t been so disciplined. The API has
evolved gradually and the ABI has broken on almost every release.

The slow evolution of the server API has been managed by maintaining a
‘compatibility branch’ of Unity8 and releasing that at the same time as
every Mir release. (I’m keeping the explanation simple: there are actually
additional projects involved in this dance, which makes it even more
involved and expensive.)

Maintaining and releasing these compatibility branches increases the
effort involved in releasing Mir significantly. Changes need to made and
tested across a family of projects belonging to separate teams. Because the
pain involved increased gradually, this didn’t get the attention I felt it
deserved.

The unstable server API has another, indirect, cost: it makes it impractical
for anyone outside of the few Canonical teams we work with to write and
maintain a Mir server.

This seemed unlikely to change in the normal course of events. The API
was not designed with ABI stability in mind and the development focus
was on delivering more features and not reducing these costs. While some

efforts have been made by the team which reduced the API ‘churn’, they
didn’t affect the underlying issue.

Elevating a system from chaos to order takes energy and conscious effort.
And energy was constantly being drained by managing the release
process.

Scratching the itch
Canonical has a policy of allowing staff to work on projects they choose
for half a day each week (subject to some reasonable conditions). And,
having checked with management, I elected to work on providing an
alternative, stable API and ABI for writing of window managers.

I began by setting up a separate ‘Mir Abstraction Layer’ project (MirAL)
and populating it with a copy of the code from the Mir ‘example’ servers.
This immediately identified a series of bugs in the Mir packaging that had
gone undetected. Nothing hard to fix, but obstacles to using Mir: headers
referenced but not installed, overlooked dependencies on other projects,
incorrect pkg-conf files, and so forth. I filed the Mir bugs and fixed them
in my ‘day job’.

I then started separating out the generic window management logic from
the specifics in the examples and building an API between them. Thus
emerged the three principles interfaces of this library: a ‘window

T

Alan Griffiths Alan has delivered working software and
development processes to a range of organizations, written for a
number of magazines, spoken at several conferences, and made
many friends. He can be contacted at alan@octopull.co.uk

The X-Windows system has been, and remains, immensely successful
in providing a way to interact with computers. It underlies many desktop
environments and graphical user interface toolkits and lets them work
together. But it comes from an era when computers were very different
from now, and there are real concerns that are hard to meet.

In 1980 computers were big things managed by specialists and
connecting them to one another was ‘bleeding edge’. In that era, the cost
of developing software was such that any benefit to be gained by
‘listening in’ on what was happening was negligible: there were few
computers, they were isolated, and the work they did was not open to
exploitation.

X-Windows developed in this environment and, through a series of
extensions, has adapted to many changes. But it is inherently insecure:
any application can find out what happening on the display (and affect
it). You can write applications like Xeyes that tracks the cursor with its
‘eyes’ or ‘Tickeys’ that listens to the keyboard to generate typewriter
noises.

X-Windows is poorly adapted to a world with millions of computers
connected to the Internet, being used for credit card transactions and
online banking, and managed by non-experts who willingly install
programs from complete strangers.

There has been a growing realization that adapting X-Windows to the
new requirements of security and graphics performance isn’t feasible.
There are at least two projects aimed at providing a replacement: Mir and
Wayland/Weston. While some see these as competing, there are a lot
of areas where they have common interests: they both need to interact
with other software that previously assumed X11, and much of the work
needed to introduce support an alternatives benefits both projects.

We need a new windowing system
4 | Overload | December 2016

FEATUREALAN GRIFFITHS

basic window management functionality like the
placement of menus could be shared between
different approaches to window management
management policy’, a ‘basic window manager’ into which a policy
slotted and ‘window management tools’ which provides functionality.

This meant that the basic window management functionality like the
placement of menus could be shared between different approaches to
window management: a ‘normal’ desktop, a ‘tiling’ version and ‘kiosk’
that could support embedded uses while not allowing the user to
manipulate windows.

Having got these in place, along with some other meaningful concepts, I
started rework to protect against the types of ABI breakage that were all
too common with the existing server APIs. Data structures and virtual
function tables in particular are fragile with respect to changes. One
technique I used a lot was the ‘Cheshire Cat’ idiom as that avoids ABI
breaking changes to virtual function tables.

Repurposing MirAL
I’d got to the point where I’d proved to myself that this approach could
work when a new priority arrived in my ‘day job’. This was to provide
window management support for Unity8 on the desktop. Until this point,
Unity8 had only had to deal with the ‘one screen, one active application,
one window’ use case of the phone and then an extension of this to
support ‘sidestage’ on tablets. And in Mir much of the ‘window
management support’ was example and test code.

What was needed was a place to consolidate the existing window
management support and iterate quickly towards a more integrated
approach. Also, to support additional projects beyond Unity8 (both from
within Canonical or from outside) this also needed to be a place where
other shells and desktop environments can leverage this functionality.

It sounded a lot like what I’d started with MirAL. So MirAL switched
from being my hobby to being my ‘day job’ and gained Unity8, a ‘real
world’ shell, as a prospective downstream.

A colleague (Gerry Boland) who had done much of the work integrating
Unity8 with Mir and I started working to make it possible to migrate the
QtMir project (which did the integration) to use the new API and exploit
the window management support it provided.

We copied the code from the ‘QtMir’ project into the MirAL source tree
and started work on joining things together. This proved very helpful in
refining the concepts in the MirAL API, identifying gaps in the
functionality it provides and soon gave us confidence that this was a
workable approach.

The effectiveness of this work has been established and recently work was
started on joining things up the all the way into Unity8 and integrating
with the more sophisticated window management it implements.

Working with applications

Toolkits with Mir backends
Another piece of work happening around the same time was the effort to
get third party applications to work correctly with Mir shells. Most
applications are not written directly against X-Windows but use ‘toolkits’

that provide higher level concepts. And these have requirements on
window management (like putting tooltips in the right place).

Two toolkits of immediate significance are GTK+ (on which gnome
applications are built) and Qt (which is widely used in Canonical) both of
which already have optional Mir ‘backends’. But the amount of testing
these had got was limited whilst Mir work was focussed on the phone.

The window management work I was doing in MirAL and especially the
sample ‘miral-shell’ became a testing ground how window management
features interact with the Mir support in gtk-mir and qtubuntu. (And other
client libraries such as SDL2.)

To aid with testing, MirAL comes with a handy script (miral-run) to set
up the environment needed by these toolkits and run them against a Mir
server.

X11 applications
Not all applications use these toolkits and supporting X11 applications by
running the Xmir an X-server based on Mir is a bit fiddly. To facilitate
testing this approach with MirAL there’s another script ‘miral-xrun’ that
finds a free port, starts an X server, runs the application and then closes
the X server when the application exits.

Debugging window management
While working to track down problems in the interaction between toolkits
and MirAL’s window management I found the time to introduce an
immensely helpful logging facility that logs all calls into the window
management policy and all the calls made to the window management
tools. This has been in discovering why what we see happens, happens. It
has helped diagnose bugs in both MirAL and the toolkit backends. This
can be used with any server based on MirAL by adding --window-
management-trace to the command-line.

The state of MirAL right now
MirAL is available either from the Ubuntu archives, or from Launchpad
[Launchpad] for building from source.

Using MirAL, it is very easy to create Mir based window managers. As
an experiment colleague created this (rather silly) shell in under an hour:
https://github.com/BrandonSchaefer/bad-shell.

Work is continuing to improve the window management capabilities and
offer the ‘missing’ Mir facilities used by QtMir that are not currently
supported by the new API. These will be presented in a form suitable for
consumption by other projects.

For the latest information visit my ‘Canonical Voices’ blog [voices].

References
[Launchpad] https://launchpad.net/miral

[voices] http://voices.canonical.com/alan.griffiths/category/miral/
December 2016 | Overload | 5

https://launchpad.net/miral
http://voices.canonical.com/alan.griffiths/category/miral/
https://github.com/BrandonSchaefer/bad-shell

FEATURE ANDREW SUTTON
Overloading with Concepts
Concepts can play a role in function
overloading. Andrew Sutton shows
us how.
his is the third, and long overdue, article in my series on C++
concepts. The first two articles focused on how concepts are used to
constrain generic algorithms [Sutton15] and how concepts are

defined [Sutton16]. This article describes a sometimes overlooked,
frequently misunderstood, and yet extraordinarily powerful feature of
concepts: their role in function overloading. Concepts are useful for more
than just improving error messages and precise specification of interfaces.
They also increase expressiveness. Concepts can be used to shorten code,
make it more generic, and increase performance.

Before diving in, it’s worth noting a few things that have happened since
the publication of my last article. First, concepts were not included in
C++17. Some committee members felt that there hasn’t been sufficient
time since the publication of the TS [N4549] to be confident that the
design is appropriate, and many were undecided.

Second, GCC 6.2 was released in late August. This version includes a
major update to two components of the concepts implementation. The
diagnostics generator has been significantly revamped to provide precise
diagnostics about the failure of a concept to be satisfied. The support for
overloading on constraints (the topic discussed in this article), was
completely rewritten to provide dramatic performance gains. In GCC,
concepts can now be used for projects of significant size and complexity.

Finally, since concepts was not accepted into C++17, I have seen an
increase in online content promoting concept emulation techniques over
language support and even claims that expression SFINAE, constexpr if,
static_assert, and clever metaprogramming techniques are
sufficient for our needs. That’s analogous to claiming that given if and
goto, we don’t need while, for, and range-for. Yes, it’s logically
correct, but in both cases we drag down the level of abstraction to
specifying how things are to be done, rather than what should be done.
The result is more work for the programmer, more bugs, and fewer
optimization opportunities. C++ is not meant to be just an assembly
language for template metaprogramming. Concepts allows us to raise the
level of programming and simplify the code, without adding run-time
overhead.

Recap
In my previous articles [Sutton15, Sutton16], I discussed a simple generic
algorithm, in(), which determines whether an element can be found in a
range of iterators. Here is an alternative version of the in() algorithm
from the previous article. I’ve modified its constraints for the purpose of
this article and also updated it to match some current naming trends in the
C++ Standard Library (see Listing 1).

This rendition of in() takes a sequence instead of a range as its first
argument, and an equality comparable value for its second. The algorithm
has three constraints:

 the type of the seq must be a Sequence,

 the type of value must be Equality_comparable, and

 the value type must be the same as the element type of seq.

Here, value_type_t is a type alias that refers to the declared or
deduced value type of R. The definitions of the Sequence and Range
concepts needed for this algorithm look like Listing 2.

This specification requires all Ranges to have:

 two associated types named by value_type_t and iterator_t

 two valid operations begin() and end() that return input
iterators,

 and that the value type of the range match that of the iterator.

Most Sequences have the operations front() and back(), which
return the first and last elements of the range. This isn’t a fully developed

T

Listing 1

template<Sequence S, Equality_comparable T>
 requires Same_as<T, value_type_t<S>>
bool in(const S& seq, const T& value) {
 for (const auto& x : range)
 if (x == value)
 return true;
 return false;
}

Listing 2

template<typename R>
concept bool Range() {
 return requires (R range) {
 typename value_type_t<R>;
 typename iterator_t<R>;
 { begin(range) } -> iterator_t<R>;
 { end(range) } -> iterator_t<R>;
 requires Input_iterator<iterator_t<R>>();
 requires Same_as<value_type_t<R>,
 value_type_t<iterator_t<R>>>();
 };
}

template<typename S>
concept bool Sequence() {
 return Range<R>() && requires (S seq) {
 { seq.front() } -> const value_type<S>&;
 { seq.back() } -> const value_type<S>&;
 };
}

Andrew Sutton is an assistant professor at the University of Akron
in Ohio where he teaches and researches programming software,
programming languages, and computer networking. He is also
project editor for the ISO Technical Specification, ‘C++ Extensions
for Concepts’. You can contact Andrew at asutton@uakron.edu.
6 | Overload | December 2016

FEATUREANDREW SUTTON

specifying how things are to be done, rather
than what should be done ... more work for the

programmer, more bugs, and fewer
optimization opportunities
specification of a sequence, but it is sufficient for the discussion in this
paper.

This seems reasonable. We can use the algorithm to determine if an
element is contained within any sequence. Unfortunately, it no longer
works for some collections:

 std::set<int> answers { ... };
 if (in(answers, 42)) // error: no front()
 // or back()
 ...

This is unfortunate. We should clearly be able to determine if a key is
contained within a set. But how do we do this?

Extending algorithms
For someone who knows concepts and the standard library, the solution
in this case is obvious: just add another overload that accepts associative
containers.

 template<Associative_container A,
 Same_as<key_type_t<T>> T>
 bool in(const A& assoc, const T& value) {
 return assoc.find(value) != s.end();
 }

This version of in() has only two constraints: A must be an
Associative_container, and T must be the same as key type of A
(key_type_t<A>). For associative containers, we simply look up
value using find() and then see if we found it by comparing to end().
That’s likely to be much faster than a sequential search.

Note that, unlike the Sequence version, T is not required to be equality
comparable. This is because the precise requirements of T are determined
by the associative container, and those requirements are usually
determined by a separate comparator or hash function.

The concept Associative_container is defined like Listing 3.

That is, an associative container is Regular, defines a Range of
elements, has a key_type (which may differ from the value_type),
and a set of operations including find(), etc.

As with Sequence before, this is clearly not an exhaustive list of
requirements for an associative container. It doesn’t address insertion and
removal, and excludes specific requirements for const iterators.
Moreover, we haven’t really described how we expect size(),
empty(), find() and count() to behave. For now, we’ll just rely on
our existing knowledge of the Standard Library.

This concept includes all of the associative containers in the C++
Standard Library (set, map, unordered_multiset, etc.). It also
includes non-standard-library associative containers, assuming that they
expose this interface. For example, this overload would work for all of
Qt’s associative containers (QSet<T>, QHash<T>, etc.) [Qt].

To use concepts to extend algorithms, we need to understand how the
compi l e r ca n t e l l a p l a in Sequence f r o m an
Associative_container. In other words, what happens when we
call in()?

 std::vector<int> v { ... };
 std::set<int> s { ... };

 if (in(v, 42))// Calls the `Sequence` overload
 std::cout << "found the answer...";
 if (in(s, 42))// Calls the
 // `Associative_container` overload
 std::cout << "found the answer...";

For each call to in(), the compiler determines which function is called
based on the arguments given. This is called overload resolution. This is
an algorithm that attempts to find a single best function (amongst one or
more candidates) to call based on the arguments given.

Both calls of in() refer to templates so the compiler performs template
argument deduction and then form function declaration specializations
based on the results. In both cases, deduction and substitution succeed in
the usual and predictable way, so we have to choose amongst two
specializations at each call site. This is where the constraints enter into the
equation. Only functions whose constraints are satisfied can be selected
by overload resolution.

In order to determine if a function’s constraints are satisfied, we substitute
the deduced template arguments into the associated constraints of the
function’s template declaration, and then we evaluate the resulting
expression. The constraints are satisfied when substitution succeeds, and
the expression evaluates to true.

In the first call to in() , the deduced template arguments are
std::vector<int> and int. These arguments satisfy the constraints
of Sequence but not those of the Associative_container because
a std::vector does not have find() or count(). Therefore, the
Associative_container candidate is rejected, leaving only the
Sequence candidate.

Listing 3

template<typename S>
concept bool Associative_container() {
 return Regular<S> && Range<S>() &&
 requires {
 typename key_type_t<S>;
 requires Object_type<key_type_t<S>>;
 } &&
 requires (S s, key_type_t<S> k) {
 { s.empty() } -> bool;
 { s.size() } -> int;
 { s.find(k) } -> iterator_t<S>;
 { s.count(k) } -> int;
 };
}

December 2016 | Overload | 7

FEATURE ANDREW SUTTON

we can continue extending the definition of a
generic algorithm by adding overloads that
differ only in their constraints
In the second call to in(), the deduced arguments are std::set<int>
and int. The resolution is the opposite of the one before: a std::set is
never a Sequence because it lacks front() and back(), so that
candida te i s re jec ted , and over load reso lu t ion se lec ts the
Associative_container candidate.

In this cases the resolution is straightforward, and many readers will
readily recognize the similarity to the enable_if technique used today.
This works because the constraints on both overloads are sufficiently
exclusive to ensure that a container satisfies the constraints of one
template or the other, but not both.

The situation gets a bit more interesting if we want to add more overloads
of this algorithm. We could extend the algorithm for specific types or
templates like we might have done without concepts. Essentially, we
could enumerate the valid definitions of in() for those types. For
example, extending in() for WinRT’s Map class [WinRT] might require
a declaration like this:

 template<typename K, typename V, typename C>
 bool in(const Platform::Collections
 ::Map<K, V, C>& map, const K& k) {
 return map.HasKey(k);
 }

When there are many such viable definitions, this quickly becomes
tedious and unmanageable. For any data structure that might represent a
set of keys, we need a new overload. This simply does not scale.

If we’re lucky, many of those new enumerated overloads will have
identical definitions. That would certainly be the case for WinRT’s Map
and MapView classes; both would return map.HasKey(k). In that case,
we can unify their definitions into a single, more general template with
appropriate constraints. For example:

 template<WinRtMap M>
 bool in(const M& map, const key_type_t<M>& k) {
 return map.HasKey(k);
 }

Here, WinRtMap would be a concept requiring members common to both
Map and MapView . This would a lso accept any other map
implementations that the library accrues over time, assuming they
satisfied the WinRtMap constraints.

In general, we can continue extending the definition of a generic
algorithm by adding overloads that differ only in their constraints. There
are exactly three cases that we need to consider when overloading with
concepts:

1. Extend a definition by providing an overload that works for a
completely different set of types. The constraints of these new
overloads would either be mutually exclusive or have some minimal
amount of overlap with existing constraints.

2. Provide an optimized version of an existing overload by specializing
it for a subset of its arguments. This entails creating a new overload
that has stronger constraints than it’s more general form.

3. Provide a generalized version that is defined in terms of constraints
shared by one or more existing overloads.

The three cases can easily be thought of in terms of the Venn Diagrams
shown in Figure 1, which shows the possible relationships between the
constraints of overloaded functions.

Each case in the Figure 1 corresponds to one of the cases above. This
section is primarily an example the first case because we generally expect
Sequences and Associative_containers to be fundamentally
different data abstractions.

When constraints are not (mostly) disjoint multiple candidates can be
viable, the compiler must determine the best possible candidate for the
call. I explain this process in the next section. However, if the compiler
can’t determine a best candidate, the resolution is ambiguous. In fact, this
is the reason I changed the first in() algorithm to require Sequences
instead of just Ranges. It minimizes the amount of overlap and therefore
likelihood of ambiguity.

Having disjoint constraints does not guarantee that a call will be
unambiguous. We could, for example, try to define a container that
s a t i s f i e s t h e r e q u i r e m e n t s o f bo t h Sequence an d
Associative_container. In this case, both overloads would be
viable, but neither overload is inherently better than the other. Unless we

Figure 1

1. C1 and C2 are disjoint constraints

2. C1 subsumes the constraint C2

3. C1 and C2 are overlapping constraints

C1 C2

C2C1

C1 C2
8 | Overload | December 2016

FEATUREANDREW SUTTON

Constraint subsumption allows us to
optimize generic algorithms based on the

interfaces provided by their arguments
added new overloads to accommodate this kind of data structure, the
result would be an ambiguous resolution.

That said, Sequence and Associative_container actually do have
overlapping constraints; they both require the Range concept. We could
consider these overloads as being an instance of the third case. This hints
that there may be an algorithm that can be defined in terms of the
intersecting requirements. But it’s not quite so simple. I intend to discuss
these issues in a future article.

The second case is an important feature of generic programming in C++
and is the basis of type-based optimizations in generic libraries.
Constraint subsumption allows us to optimize generic algorithms based
on the interfaces provided by their arguments. This is the topic of the next
section.

Specializing algorithms
For this section, we will leave behind our familiar in() algorithm and
focus on the C++ iterator hierarchy because it naturally lends itself to this
discussion.

In some cases, we can define data structures with an extended set of
properties or operations that can be used to define more permissive or
more efficient versions of an algorithm. This idea is are embodied by the
standard library’s iterator hierarchy of iterators.

Forward iterators can be used to traverse a sequence in only one direction
(forward) by advancing one element at a time using ++. Listing 4 is a
simple concept for forward iterators.

Based on this concept, we can define two useful algorithms: one that
advances multiple steps using a loop and one that computes the number
of steps between two iterators (see Listing 5).

For advance(), n must be non-negative because forward iterators
cannot go backwards. Bidirectional iterators, however, can be used to
traverse a sequence in both directions (forward and backward) by
advancing one element at a time using ++ or --. Here is that concept.

 template<typename I>
 concept bool Bidirectional_iterator() {
 return Forward_iterator<I>() && requires (I i)
 {
 { --i } -> I&;
 };
 }

Bidirectional_iterator i s de f i ne d i n t e r ms o f
Forward_iterator. In other words, a bidirectional iterator is a
forward iterator that can also move backwards.

Bidirectional_iterator’s set of requirements completely
subsumes that of Forward_iterator (case 2 in Figure 1). As a result,
whenever Bidirectional_iterator<X> is true (for all X),
Forward_iterator<X> must also be true. In this case we say that
Bidirectional_iterator refines Forward_iterator.

This refinement lets us define a new version of advance() that can
move in both directions.

 template<Bidirectional_iterator I>
 void advance(I& iter, int n) {
 if (n > 0)
 while (n != 0) { ++iter; --n; }
 else if (n < 0)
 while (n != 0) { --iter; ++n; }
 }

The Bidirectional_iterator concept allows us to relax the
precondition of advance(), so that we can used negative values of n. On
the other hand, Bidirectional_iterator provides no new
information that could help us improve distance().

We can, however, provide optimizations of both advance() and
distance() for random access iterators. These iterators can be used to
traverse a sequence in two directions but can advance multiple elements
in one ‘step’ using += or -=. We can also count the distance between two
iterators by subtracting them. A simplified version of that concept can be
defined like this:

 template<typename I>
 concept bool Random_access_iterator() {
 return Bidirectional_iterator<I>() &&
 requires (I i, int n) {
 { i += n } -> I&;
 { i -= n } -> I&;
 { i - i } -> int;
 };
 }

Listing 4

template<typename I>
concept bool Forward_iterator() {
 return Regular<I>() && requires (I i) {
 typename value_type_t<I>;
 { *i } -> const value_type_t<I>&;
 { ++i } -> I&;
 };
}

Listing 5

template<Forward_iterator I>
void advance(I& iter, int n) {
 // precondition: n >= 0
 while (n != 0) { ++iter; --n; }
}
template<Forward_iterator I>
int distance(I first, I limit) {
 // precondition: limit is reachable from first
 for (int n = 0; first != limit; ++first, ++n)
 ;
 return n;
}

December 2016 | Overload | 9

FEATURE ANDREW SUTTON
The Random_access_iterator concep t r e f i ne s
Bidirectional_iterator; it adds three new required operations. By
providing these operations, we can construct a optimized versions of
advance() and distance() that do not require loops.

 template<Random_access_iterator I>
 void advance(I& iter, int n) {
 iter += n;
 }

 template<Random_access_iterator I>
 int distance(I first, I limit) {
 return limit - first;
 }

We can use these algorithms to define a large number of useful operations.
For example, Listing 6 is an implementation of binary_search.

The algorithm is defined for forward iterators, but of course it can also be
used for bidirectional and random access iterators too. The versions of
advance() and distance() that are used depend on the kind of
iterator passed to the algorithm. When used with forward and
bidirectional iterators, the algorithm is linear in the size of the input range.
For random access iterators, the algorithm is much faster since
distance() and advance() don’t require extra traversals of the input
sequence.

The ability to specialize algorithms by constraints and by types is critical
for the performance of C++ generic libraries. Simply put, this is the killer
app of templates and generic programming. Concepts make it much easier
to define and use these specializations. But how does the compiler know
which overload to choose?

In the previous examples using sequences and associative containers, only
one overload of in() was ever viable since the arguments were either one
or the other, but not both. However, if we call binary_search() with
random access iterators, say pointers into an array, all three overloads of
advance() and both overloads of distance() will be viable. This
makes sense. Every implementation of those functions are perfectly well
defined for pointers.

In this case, the compiler must choose the best amongst the viable
candidates. Roughly speaking, C++ considers one function to be ‘better’
than another using the following rules:

1. Functions requiring fewer or ‘cheaper’ conversions of the
arguments are better than those requiring more or costlier
conversions.

2. Non-template functions are better than function template
specializations.

3. One function template specialization is better than another its
parameter types are more specialized. For example, T* is more
specialized than T, and so is vector<T>, but T* is not more
specialized than vector<T>, nor is the opposite true.

The Concepts TS adds one more rule:

4. If two functions cannot be ranked because they have equivalent
conversions or are function template specializations with equivalent
parameter types, then the better one is more constrained. Also,
unconstrained functions are the least constrained.

In other words constraints act as a tie-breaker for the usual overloading
rules in C++. The ordering of constraints (more constrained) is essentially
determined by the comparing sets of requirements for each template to
determine if one is a strict superset of another.

In order to compare constraints, the compiler first analyzes the associated
constraints of the function in order to build a set of so-called atomic
constraints. They are ‘atomic’ because they cannot be broken down into
smaller bits. Atomic constraints includes C++ constant expressions (e.g.,
type traits) and requirements in a requires-expression.

For example, in the resolution of advance(), when called with a random
access iterator, the set of constraints for each overload are:

For brevity, I excluded the Regular<I> constraint appearing in
Forward_iterator since it (and its requirements) are common to all
i t e r a to r concep t s . Compar ing t he se , we f i nd tha t
Bidirectional_iterator has a strict superset of the requirements of
Forward_iterator, and Random_access_iterator has a strict
superset of the requirements of Bidirectional_iterator.
Therefore, Random_access_iterator is the most constrained, and
that overload is selected.

The new overloading rule does not guarantee that overload resolution will
succeed. In particular if the two viable candidates have overlapping or
logically equivalent constraints, the resolution will be ambiguous. There
are a few of reasons this might happen.

Semantic refinement
In some cases, refinements are purely semantic. They do not not provide
operations that the compiler can use to differentiate overloads. In fact, this
problem appears in the standard iterator hierarchy: input and forward
iterators share exactly the same set of operations.

Conceptually an input iterator is an iterator that represents a position in an
input stream. As an input iterator is incremented, previous elements are
consumed. That is, previously accessed elements are no longer reachable
through that iterator or any copy of that iterator. In contrast, forward
iterator do not consume their elements when incremented. Previously
accessed elements can be accessed by copies. This is typically referred to
as the multipass property. This is a purely semantic property. Listing 7 is
a concept for input iterators and an revised concept for forward iterators.

All of the syntactic requirements are defined in the Input_iterator
concep t . The Forward_iterator concep t jus t inc ludes
Input_iterators. In other words, Forward_iterator’s set of
requirements is exactly the same as that of Input_iterator’s. If we
tried to define overloads requiring these concepts, the result would always
be ambiguous (neither is better than the other).

Listing 6

template<Forward_iterator I, Ordered T>
 requires Same_as<T, value_type_t<I>>()
bool binary_search(I first, I limit,
 T const& value) {
 if (first == limit)
 return false;
 auto mid = first;
 advance(mid, distance(first, limit) / 2);
 if (value < *mid)
 return search(first, mid, value);
 else if (*mid < value)
 return search(++mid, limit, value);
 else
 return true;
}

Concept Atomic requirements

Forward_iterator value_type_t<I>
{ *i } -> value_type_t<I> const&
{ ++i } -> I&

Bidirectional_iterator value_type_t<I>
{ *i } -> value_type_t<I> const&
{ ++i } -> I&
{ --i } -> I&

Random_access_iterator value_type_t<I>
{ *i } -> value_type_t<I> const&
{ ++i } -> I&
{ --i } -> I&
{ i += n } -> I&
{ i -= n } -> I&
{ i - j } -> int
10 | Overload | December 2016

FEATUREANDREW SUTTON
Differentiating between these concepts is actually useful. For example,
one of vector’s constructors (see Listing 8) has a more efficient
implementation for forward iterators than for input iterators.

This doesn’t work if the compiler can’t tell a Forward_iterator from
an Input_iterator.

We can fix this by adding new syntactic requirements to the
Forward_iterator concept that relate to its rank in the iterator
hierarchy. This has traditionally been done using tag dispatch: associating
a tag class (an empty class in an inheritance hierarchy) with iterator type
for the purpose of selecting appropriate overloads. That associated type is
its iterator_category. A revised Forward_iterator might look
like this:

 template<typename I>
 concept bool Forward_iterator() {
 return Input_iterator<I>() && requires {
 typename iterator_category_t<I>;
 requires Derived_from<I,
 forward_iterator_tag>();
 };
 }

With this definition, Forward_iterator’s requirements now subsume
those of Input_iterator, and the compiler can now differentiate the
overloads above. As an added benefit, using random access iterators will
be even more efficient since distance() requires only a single integer
operation.

As another example, C++17 adds a new iterator category: contiguous
iterators. A contiguous iterator is a random access iterator whose
referenced objects are allocated in adjacent regions of memory whose
addresses increase with each increment of the iterator. This opens the door
to a number of low-level memory optimizations. It’s also quite obviously
a purely semantic property. So if we want to define a new concept, we’ll
need to differentiate it from Random_access_iterator. Fortunately,
we just defined the machinery to do so.

Tag classes are not the only way to solve this problem. I’m just reusing
existing standard library infrastructure to solve the problem in this paper.
In fact, the only concepts that require these tag classes are
Forward_iterator and Contiguous_iterator. We don’t actually
need any of the other tag classes. We could simply use an associated type
trait, variable template, or even an extra operation. In other words, we
could do something like Listing 10 for forward iterators.

All of these approaches would yield the same result; the ability for the
compiler to differentiate overloads requiring these concepts.

As a general rule, this technique should only be used to differentiate
concepts that vary only in their semantics. Prefer to define concepts so
that their interfaces reflect their different semantics.

Conclusions
In this article, we took a first look at how concepts can be used to extend
and specialize algorithms through overloading. These ideas have been
around for a long time, and in that time, we’ve developed some fairly
advanced type-based techniques to manipulate overload outcomes. With
concepts, these ideas are codified as part of the language; you simply
write appropriate constraints for your algorithms and overload resolution
does all the hard work for you.

At least, that’s the ideal. Sometimes it can be a bit tricky to avoid
ambiguities when there are overlapping constraints. Case in point, I’ve
had to massage the constraints on the in() algorithm to make these
examples work, but they do work. The next article in this series will be
dedicated to the generalization of constrained algorithms and techniques
for untangling ambiguous resolutions.

Acknowledgements
Bjarne Stroustrup provided a number of suggestions to improve the
structure and content of this article.

References
[N4549] Sutton, Andrew (ed). ISO/IEC Technical Specification 19217.

Programming Languages – C++ Extensions for Concepts, Aug 2015.

[Qt] Qt. ‘Qt Documentation: Container Classes’. http://doc.qt.io/qt-4.8/
containers.html.

[Sutton15] ‘Introducing concepts’. ACCU Overload. Vol 129. Oct 2015.

[Sutton16] ‘Defining concepts’. ACCU Overload. Vol 131. Oct 2105.

[WinRt] ‘WinRT Documentation: Platforms::Collections::Map Class’.
https://msdn.microsoft.com/en-us/library/hh441508.aspx.

Listing 7

template<typename I>
concept bool Input_iterator() {
 return Regular<I>() && requires (I i) {
 typename value_type_t<I>;
 { *i } -> value_type_t<I> const&;
 { ++i } -> I&;
 };
}

template<typename I>
concept bool Forward_iterator() {
 return Input_iterator<I>();
}

Listing 8

template<Object_type T, Allocator_of<T> A>
class vector {
 template<Input_iterator I>
 requires Same_as<T, value_type_t<I>>()
 vector(I first, I limit) {
 for (; first != limit; ++first)
 push_back(*first); // O(log n) allocations
 }

 template<Forward_iterator I>
 requires Same_as<T, value_type_t<I>>()
 vector::vector(I first, I limit) {
 reserve(distance(first, limit));
 // 1 allocation
 insert(begin(), first, limit);
 }
 // ...

Listing 9

template<typename I>
concept bool Contiguous_iterator() {
 return Random_access_iterator<I>() && requires {
 requires Derived_from<I,
 contiguous_iterator_tag>();
 };
}

Listing 10

template<typename T>
constexpr bool is_forward_iterator_v = false;

template<typename T>
constexpr bool is_forward_iterator_v<T*> = true;

template<typename I>
concept bool Forward_iterator() {
 return Input_iterator<I>() &&
 is_forward_iterator_v<T*>;
}

December 2016 | Overload | 11

https://msdn.microsoft.com/en-us/library/hh441508.aspx
http://doc.qt.io/qt-4.8/containers.html
http://doc.qt.io/qt-4.8/containers.html

FEATURE SERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
Ultra-fast Serialization of
C++ Objects
Serialising and de-serialising is a common problem.
Sergey Ignatchenko and Dmytro Ivanchykhin
demonstrate one way to do this quickly.

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

Task definition
ecently, we were working on a system which required an extremely
fast (ideally, the fastest possible) serialization of the state of the
Reactor/Finite State Machine (FSM). In addition, we knew for sure

that deserialization would happen with exactly the same executable; in
other words, we didn’t care at all about either (a) cross-platform issues or
(b) extensibility.

Where it came from
The whole task comes from exploiting deterministic Reactors/FSMs. As
discussed in [NoBugs15] and [NoBugs16], as soon as we have a
deterministic Reactor/FSM, it is possible to use this determinism to
achieve such things as production post-mortem analysis, and low-latency
fault tolerance. For example, for post-mortem analysis, it is sufficient to
write all the inputs of the deterministic Reactor/FSM, and in the case of a
crash to replay it from the very beginning.

On the other hand, keeping the whole history of the Reactor inputs is
usually impractical, so we need to resort to some kind of ‘circular buffer’
[NoBugs15]. To be able to observe the last N seconds of the life of the
Reactor/FSM before the crash, the ‘circular buffer’ needs to contain (a) a
snapshot of the current state of the Reactor/FSM, and (b) all the inputs
received after this snapshot is taken. To achieve low-latency determinism-
based fault tolerance, the logic is more complicated, but the snapshot of
the current state is still required.

And as soon as we’ve said ‘we need to make a snapshot’, we need to
serialize our state one way or another. Moreover, we need to do it Damn
Fast – otherwise this debugging/fault tolerance feature would become too
expensive. On the positive side – in practice, serialization will happen to
memory (and in case of a production post-mortem – it won’t even be used

in any way until program crashes), so we’ll be dealing with purely
serialization code, with very little overhead to mask any of our
performance blunders.

Note that in both these cases we can be 100% sure that we’ll be
deserializing this state on the executable which is identical to the
executable which serialized the state. In other words, all the usual
serialization/marshalling problems such as different alignments,
endianness, etc. – do NOT apply here.

One more case when we know for sure that it is exactly the same
executable is when we’re serializing data for inter-thread transfers within
the same process; as a result, techniques discussed below will work in this
case too. However, whether our serialization is optimal in such scenarios
is not that obvious. In some cases – specifically, if you do NOT need to
reconstruct a modifiable state on receiving side and are just passing
messages around – flattening techniques such as those by FlatBuffers,
MAY still happen to be faster (on the deserialization side, that is).

The fastest way to serialize – C
Now, as we have our task defined as ‘the fastest possible serialization for
in-memory structure, assuming that it will be deserialized by exactly the
same executable’, we can start thinking about implementing it.

First, let’s consider serializing a state in a C program.

Usually, FSM/Reactor state can be described as a kind of generalized tree,
with each of the nodes being a C struct, and containing ‘owning’ pointers
to other allocated C structs. As a simple example, see Listing 1.

And the fastest way to serialize struct X, will be something along the lines
of Listing 2. Unless we’re resorting so some trickery with allocators or
‘flattening’ of our original structure, it is extremely difficult to beat this
code performance-wise.

Deserialization would work along the lines of Listing 3. Deserialization is
inevitably slower than serialization (there is an expensive malloc()
within, ouch) – but it is pretty much inevitable for the kind of data
structure we’re working with. Also, for our use cases described above,
deserialization will happen MUCH more rarely than serialization (on
program crash or on hardware catastrophic failure), so we don’t really
care too much about the performance of deserialization – we just need it
to work.

R Listing 1

struct Y {
 int yy;
};
struct X {
 int xx;
 struct Y* y; // allocated via
 // malloc(); 'owning' pointer
 int z;
};

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
and Dmytro Ivanchykhin using the classic dictionary collated by
Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He currently holds the position of
Security Researcher and writes for a software blog (http://ithare.com).
Sergey can be contacted at sergey@ignatchenko.com

Dmytro Ivanchykhin has 10+ years of development experience,
and has a strong mathematical background (in the past, he taught
maths at NDSU in the United States). Dmytro can be contacted at
d_ivanchykhin@yahoo.com
12 | Overload | December 2016

http://ithare.com
[Loganberry04]

FEATURESERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN

as soon as we’ve said ‘we need to make a
snapshot’, we need to serialize our state

one way or another
From C to C++

C++ serialization
Ok, now let’s try to rewrite it into C++ (where we’re no longer restricted
to Plain Old Data a.k.a. POD). To make things closer to reality, let’s
serialize the class X in Listing 4, which contains (directly or indirectly)
two std::strings, a std::vector, and a std::unique_ptr.

Once again, it is very difficult to beat this serialization (that is, unless
playing some dirty tricks with flattening or allocators). Nonetheless, it

Listing 2

struct OutMemStream {
 uint8_t* pp;
 uint8_t* ppEnd;
};
inline void writeToStream(OutMemStream* dst,
 void* p, size_t sz) {
 assert(dst->pp + sz < ppEnd);
 //in the real-world, think what to do here
 memcpy(dst->pp, p, sz);
 dst->pp += sz;
}
void serializeX(OutMemStream* dst, X* x) {
 writeToStream(dst, x, sizeof(X));
 writeToStream(dst, x->y, sizeof(Y));
 //that's it!
}

Listing 3

struct InMemStream {
 uint8_t* pp;
 uint8_t* ppEnd;
};
inline void readFromStream(InMemStream* src,
 void* p, size_t sz) {
 assert(src->pp + sz < ppEnd);
 memcpy(p, src->pp, sz);
 src->pp += sz;
}
void deserializeX(SomeMemStream* src, X* x) {
 readFromStream(src, x, sizeof(X));
 // x->y contains garbage at this point(!)
 // ok, not exactly garbage - but a pointer
 // which is utterly invalid in our current space
 x->y = malloc(sizeof(Y));
 //phew, no garbage anymore
 assert(x->y);
 readFromStream(src, x->y, sizeof(Y));
}

Listing 4

class OutMemStream {
 public:
 inline void write(const void* p, size_t sz);
 // implemented along the lines of the
 // writeToStream() above
 inline void writeString(const std::string& s)
 {
 size_t l = s.length();
 write(&l, sizeof(size_t));
 write(s.c_str(), l);
 }

 template<class T>
 inline
 void writeVector(const std::vector<T>& v) {
 // NB: can be further optimized by writing the
 // whole v.data() at once.
 size_t sz = v.size();
 write(&sz, sizeof(size_t));
 for(auto it : v)
 it.serialize(this);
 }
};
class Y {
 public:
 int yy;
 std::string zz;
 std::string zz2;
 void serialize(OutMemStream* dst) const;
 Y(const PreDeserializer&);
 //pre-deserializing constructor, see below
 Y(InMemStream* src);
 //deserializing constructor
};
class X {
 int xx;
 std::unique_ptr<Y> y;
 std::vector<Y> vy;
 void serialize(OutMemStream* dst) const;
 X(const PreDeserializer&) const;
 //pre-deserializing constructor
 X(InMemStream* src);
 //deserializing constructor
};
void Y::serialize(OutMemStream* dst) const {
 dst->write(this, sizeof(Y));
 dst->writeString(zz);
 dst->writeString(zz2);
 // NB: we do NOT serialize POD members
 // such as 'yy' separately
}

December 2016 | Overload | 13

FEATURE SERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN

When deserializing inherited/
polymorphic objects ... we cannot really
overwrite the whole object without the risk
of overwriting virtual table pointer(s)
contains all the necessary information (in fact, a little bit more than that)
to deserialize our object when/if we need it.

C++ deserialization – Take 1
However, deserialization in C++ is not going to be that simple. The
problem here is that as we didn’t store data on a per-field basis, which
means that unless we do something, on deserialization we’ll be
overwriting ‘owning’ pointers with their values in the old program (and
rewriting this garbage with a pointer to allocated data later). While this
was ok for POD types in C, in C++ it can cause all kinds of trouble (such
as an attempt to free a non-allocated pointer) unless we’re careful. The
approach in Listing 5, however, is very clean in this regard.

Overall, deserialization of a class T goes as follows:

Listing 4 (cont’d)

void X::serialize(OutMemStream* dst) const {
 dst->write(this, sizeof(X));
 y->serialize(dst);
 dst->writeVector(vy);
 // NB: we do NOT serialize POD members
 // such as 'xx' separately
}

Listing 5

class PreDeserializer {
}; // just an empty class, to be used as a flag
 // to constructor

class InMemStream {
 uint8_t* pp;
 uint8_t* ppEnd;
 public:
 inline void read(void* p, size_t sz);
 // implemented along the lines
 // of the readFromStream() above
 inline void constructString(std::string* s) {
 size_t l;
 read(&l, sizeof(size_t));
 assert(pp+l < ppEnd);
 new(s) std::string(
 reinterpret_cast<const char*>(pp), l);
 pp += l;
 }

 template<class T>
 inline void constructVector(std::vector<T>* v)
 {
 size_t sz;
 read(&sz, sizeof(size_t));
 new(v) std::vector<T>;

Listing 5 (cont’d)

 for(size_t i=0; i < sz ; ++i) {
 v->push_back(T(this));
 }
 }
};
Y::Y(const PreDeserializer&) {
 // here we need to construct a valid object
 // just ANY valid object, preferably the
 // cheapest one to be constructed-destructed,
 // as it will be destructed right away :-)
}

Y::Y(InMemStream* src) {
 // at this point 'zz' and 'zz2' are already
 // constructed we cannot call src->read(this) as
 // it will overwrite valid 'zz'/'zz2' causing all
 // kinds of trouble.
 zz.~basic_string<char>();
 //no idea why zz.~string() doesn't work
 zz2.~basic_string<char>();
 // now 'zz'/'zz2' are no longer constructed,
 // and we can overwrite them safely. On the
 // other hand, starting from this point, we're
 // NOT exception-safe
 src->read(this, sizeof(Y));
 //at this point 'zz'/'zz2' contain garbage
 src->constructString(&zz);
 src->constructString(&zz2);
 // phew, no garbage anymore,
 // 'this' is once again a valid object
 // and we're again exception-safe
}

X::X(const PreDeserializer&){
 // nothing here; we do NOT really need
 // anything from here
}

X::X(InMemStream* src) {
 // at this point 'y' is already constructed
 // we cannot call src->read(this) as it will
 // overwrite valid 'y' and 'vy' causing all
 // kinds of trouble.
 vy.~vector<Y>();
 y.~unique_ptr<Y>();
 // now 'y' and 'vy' are no longer constructed,
 // and we can overwrite them safely. On the other
 // hand, starting from this point, we're NOT
 // exception-safe
 src->read(this, sizeof(X));
 //at this point 'y' and 'vy' contain garbage
14 | Overload | December 2016

FEATURESERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
 We construct an object of our class T, constructing all its non-POD
members using Pre-Deserialization constructors (we don’t need to
construct the members at all, but there is no way to avoid it in C++)

 Within the object deserializing constructor, we have the following
‘sandwich’:

 We destruct all non-POD members by explicitly calling their
respective destructors. It gives us the right to overwrite them.

 We overwrite the whole object T via memcpy(). At this point,
non-POD members will contain garbage (more precisely,
pointers which are invalid in our current space).

 We re-construct all the non-POD members via their
deserializing constructor. No garbage anymore, and we’re ready
to go.

Our Take 1 approach will work well – that is, until we need to deal with
base classes, and especially polymorphic classes. Polymorphic objects,
among other things, contain a so-called ‘Virtual Table Pointer’, and
overwriting it almost universally qualifies as a ‘pretty bad idea’. Which
leads us to the following...

C++ deserialization – Take 2, inheritance-friendly
Let’s consider the same classes X and Y, with class X having a
unique_ptr<Y>, but let’s say that Y is a polymorphic base class, so
unique_ptr<Y> can be either an instance of Y, or an instance of YY.

Strictly speaking, our original serialization already has all the information
we need; however, extracting it can be quite cumbersome without
knowing the exact class layout (and this is compiler-specific). So, we’ll
modify our serialization a bit (see Listing 6).

Here, we’re sacrificing a tiny bit of performance on serialization (sigh) to
keep things very cross-platform and not to depend on the exact class
layout; on the other hand, the penalty here is pretty small (we’re speaking
a t mo s t a b ou t 1– 2 C P U c l ock s p l u s a p i p e l i ne s t a l l pe r
polymorphicSerialize(), though in practice usually it will be much
less than that due to branch predictions).

Now to deserialization. When deserializing inherited/polymorphic
objects (and let’s not forget about multiple inheritance and virtual bases)
we cannot really overwrite the whole object without the risk of
overwriting virtual table pointer(s)1. As a result, the best way we can see
for deserializing such objects is on a per-field basis (see Listing 7).

Phew. This kind of code should be able to handle pretty much any kind of
inheritance – and at extremely high serialization speeds too. Still, a virtual
call to serializationID() is a slowdown (however minor it is), and
apparently it can be avoided.

C++ deserialization – Take 2.1, deducing object type from VMT
pointers
Strictly speaking, when we’re writing the whole object it already contains
everything we need to deserialize. In particular, it already contains a
Virtual Method Table (VMT) pointer which is equivalent to
serializationID(); in other words, it is not really necessary to
invoke a rather expensive virtual serializationID() on
serialization. The only problem is how to deduce object type from the
VMT pointers (and that’s without making too many assumptions about
object layout, which is very platform- and compiler-dependent).

1. Yes, there can be more than one virtual pointer per object – at least, in
the case of virtual base classes.

Listing 5 (cont’d)

 new(&y) std::unique_ptr<Y>(new Y(src));
 src->constructVector(&vy);
 // phew, no garbage anymore,
 // 'this' is once again a valid object
 // and we're again exception-safe
}

Listing 6

class Y { //polymorphic base
 public:
 int yy;
 std::string zz;
 std::string zz2;

 void
 polymorphicSerialize(OutMemStream* dst) const;
 void serialize(OutMemStream* dst) const {
 dst->write(this, sizeof(Y));
 serializeAsBase(dst);
 }
 void serializeAsBase(OutMemStream* dst) const
 {
 // non-POD ONLY for serializeAsBase()
 dst->writeString(zz);
 dst->writeString(zz2);
 }
 explicit Y(InMemStream* src);
 explicit Y(const Y* that);
 // constructor from struct serialized by
 // child class
 void deserializeAsBase(InMemStream* src);
 static std::unique_ptr<Y>
 polymorphicCreateNew(InMemStream* src);

 virtual size_t serializationID() const
 { return 0; }
 virtual ~Y() {}
};
class YY : public Y {
 public:
 int yy2;

 void serialize(OutMemStream* dst) const {
 dst->write(this, sizeof(YY));
 Y::serializeAsBase(dst);
 }
 explicit YY(InMemStream* src);

 virtual size_t serializationID() { return 1; }
};

void Y::polymorphicSerialize(OutMemStream* dst)
{
 size_t id = serializationID();
 dst->write(&id, sizeof(size_t));
 serialize(dst);
}

class X {
 int xx;
 std::unique_ptr<Y> y;
 std::vector<Y> vy;

 void serialize(OutMemStream* dst) const;
 X(InMemStream* src);
 //deserializing constructor
};

void X::serialize(OutMemStream* dst) const {
 dst->write(this, sizeof(X));
 y->polymorphicSerialize(dst);
 dst->writeVector(vy);
 // we still do NOT serialize non-POD objects
 // explicitly in Take 2, we will deserialize
 // them explicitly though
}

December 2016 | Overload | 15

FEATURE SERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
One thing which seems to work (still to be double-checked) to deduce
object type from VMT pointers is as follows:

 At some point (say, when our program starts), we’re creating an
instance of each polymorphic objects we’re interested in

 To avoid dealing with garbage, we’re creating these instances over
zeroed memory (for example, using placement new over pre-zeroed
buffer)

 When creating a child object, we’re initializing the parent object
within the child, in exactly the same manner as we’re initializing
standalone parent object

 We memcpy() each of such objects, creating an ‘object dump’ of
each of the polymorphic objects

 Then, as soon as we have a child object and a parent object and their
respective dumps, we can:

 Cast child pointer to parent pointer to determine offset at which
parent sits within the child

 Now we can compare byte-by-byte dumps of the parent-within-
child (using the offset mentioned above) and standalone-parent.

Normally, the only different bytes within the parent-within-
child, and standalone-parent (given that they were created as
described above), are VMT pointers; moreover, the dumps
should differ in at least one byte. Therefore, we can distinguish
between a polymorphic child and polymorphic parent (by one of
them having certain byte(s) at certain offset(s) as certain pre-
defined value(s)).

Bingo! These bytes are equivalent to the
serializationID().

Therefore, we can avoid writing the serializationID() during
serialization, saving a few more CPU cycles (and bringing performance
back to the C structure performance level) – all of that without any
priorknowledge about class layout(s).

It should be noted that we didn’t try this approach ourselves, but it still
looks perfectly plausible ;-).

Other stuff
Of course, this is not really an exhaustive list of problems you can
encounter during ultra-high-speed serialization. However, most of the
other problems you’ll run into are typical for any kind of C++
serialization. In particular, non-owning pointers (and abstract graphs)
need to be handled in pretty much the same manner as for any other C++
serialization (see, for example, [ISOCPP] for a relevant discussion).

Listing 7

class InMemStream {
 uint8_t* pp;
 uint8_t* ppEnd;

 public:
 inline void read(void* p, size_t sz);
 //same as before
 inline void* readInPlace(size_t sz) {
 assert(pp + sz < ppEnd);
 void* ret = pp;
 pp += sz;
 return ret;
 }
 inline void* fetchInPlace(size_t sz) const {
 assert(pp + sz < ppEnd);
 return pp;
 }
 inline std::string readString() {
 size_t l;
 read(&l, sizeof(size_t));
 assert(pp+l < ppEnd);
 pp += l;
 return std::string(
 reinterpret_cast<const char*>(pp - l), l);
 }
 template< class T >
 inline void readVector(std::vector<T>& v) {
 size_t sz;
 read(&sz, sizeof(size_t));
 v.clear();//just in case
 for(size_t i=0; i < sz ; ++i) {
 v.push_back(T(this));
 }
 }
};

Y::Y(InMemStream* src) {
 Y* that = reinterpret_cast<Y*>(
 src->readInPlace(sizeof(Y)));
 yy = that->yy;

 deserialiseAsBase(src);
}

std::unique_ptr<Y> Y::polymorphicCreateNew(
InMemStream* src) const {
 size_t id;
 src->read(&id, sizeof(size_t));
 switch(id) {
 case 0:
 return std::unique_ptr<Y>(new Y(src));
 case 1:
 return std::unique_ptr<Y>(new YY(src));
 default:
 assert(false);
 }
}
Y::Y(Y* that) {
 // NB: on non-x86/x64 CPUs, there may be a need
 // to memcpy 'that' into a temporary aligned
 // variable, along the lines of:
 // alignas(Y) uint8_t tmp[sizeof(Y)];
 // memcpy(tmp,that,sizeof(Y));
 // and then use 'tmp' instead of 'that'
 // this applies to ALL the cases where
 // readInPlace()/fetchInPlace() are involved
 yy = that->yy;
}

Listing 7 (cont’d)

void Y::deserializeAsBase(InMemStream* src) {
 //non-POD ONLY for deserializeAsBase()
 zz = src->readString();
 zz2 = src->readString();
}
YY::YY(InMemStream* src) : Y(
reinterpret_cast<YY*>(
 src->fetchInPlace(sizeof(YY)))) {
 YY* that = reinterpret_cast<YY*>(
 src->readInPlace(sizeof(YY)));
yy2 = that->yy2;
 Y::deserializeAsBase(src);
}
X::X(InMemStream* src) {
 X* that = reinterpret_cast<X*>(
 src->readInPlace(sizeof(X)));
 xx = that->xx;
 y = Y::polymorphicCreateNew(src);
 src->readVector(vy);
}

16 | Overload | December 2016

FEATURESERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
Performance
From what we’ve seen, this kind of Ultra-Fast Serialization is extremely
fast; it is pretty much on par with C raw-structure-dump serialization, and
is around 5–10 times faster than FlatBuffers (this is also consistent with
the numbers provided by FlatBuffers themselves here: [FlatBuffers]).
Even when comparing with home-grown code with per-field serialization,
our Ultra-Fast Serialization still wins (up to 1.5x-2x) due to memcpy()
over the whole struct having significant advantage over per-field copying.

However, comparing the performance of our Ultra-Fast Deserialization
with FlatBuffers is neither very interesting nor really relevant. It is not
very interesting because, for the use cases described above, we’ll be doing
serialization orders of magnitude more frequently than deserialization (as
deserialization occurs only when something goes wrong). It is not really
relevant, because (unlike FlatBuffers) we need to restore a data structure
to exactly the same as its original state (which is usually built in the
manner described above, and is not easily flattenable); as a result, we’re
bound to make all those expensive allocations (and they will eat most of
the CPU clocks on deserialization).

On code generation
It is always a good idea to move all this mundane serialization code into
some kind of code generator; as described in [NoBugs16a], writing a code
generator which will generate code along the lines above is not rocket
science.

Still, even in a manually-written form, this technique is actually usable in
practice (that is, unless your data structures are very elaborate).

Limitations
One all-important caveat of our Ultra-Fast Serialization technique is the
following:

DON’T even think of using it unless you can GUARANTEE that the
serialized data will be deserialized by EXACTLY the same
executable as the one which serialized it.

This explicitly prohibits ALL of the following:

 Deserializing using the same code compiled by a different compiler/
for different platform

 Deserializing using the same library within different executables
(well, this MIGHT fly, but we’d rather not risk it). Exactly the same
.so/.dll library is ok, however.

 Deserializing by different version of the same executable/shared
library

If you do one of these things, most likely, Ultra-Fast Serialization will
work for some time – but using it under these conditions is akin to sitting
on a powder keg with a fuse already lit. Still, if you know for 100% sure
that all the serialization/deserialization will happen in EXACTLY the
same executable, it will be very difficult to beat this serialization
technique performance-wise.

If the ‘same executable’ prerequisite doesn’t apply to your case, use
FlatBuffers (or any of their competitors) instead. As usual, there is no
such thing as ‘The Best Technique for Everything in Existence’, so you
DO need different tools for different types of job. And ‘serialization for
transfer over the network for client code compliant with the protocol’ and
‘serialization for exactly the same executable’ are two rather different
beasts.

References
[Loganberry04] David ‘Loganberry’, Frithaes! – An Introduction to

Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs15] Modular Architecture: Client-Side. On Debugging
Distributed Systems, Deterministic Logic, and Finite State
Machines, ‘No Bugs’ Hare, http://ithare.com/chapter-vc-modular-
architecture-client-side-on-debugging-distributed-systems-
deterministic-logic-and-finite-state-machines/

[NoBugs16] Deterministic Components for Distributed Systems, ‘No
Bugs’ Hare, Overload #133

[ISOCPP] Serialization and Unserialization, https://isocpp.org/wiki/faq/
serialization

[FlatBuffers] Flatbuffers Benchmarks, https://google.github.io/
flatbuffers/flatbuffers_benchmarks.html

[NoBugs16a] IDL: Encodings, Mappings, and Backward Compatibility,
‘No Bugs’ Hare, http://ithare.com/idl-encodings-mappings-and-
backward-compatibility/

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.
December 2016 | Overload | 17

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
http://ithare.com/chapter-vc-modular-architecture-client-side-on-debugging-distributed-systems-deterministic-logic-and-finite-state-machines/
https://isocpp.org/wiki/faq/serialization
https://isocpp.org/wiki/faq/serialization
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
https://google.github.io/flatbuffers/flatbuffers_benchmarks.html
http://ithare.com/idl-encodings-mappings-and-backward-compatibility/
http://ithare.com/idl-encodings-mappings-and-backward-compatibility/

FEATURE ARNE MERTZ
Modern C++ Features:
User-Defined Literals
User-defined literals were introduced in C++11.
Arne Mertz walks us through their use.
ser-defined literals are a convenient feature added in C++11.

C++ always had a number of built-in ways to write literals: pieces of
source code that have a specific type and value. They are part of the

basic building blocks of the language:

 32 043 0x34 // integer literals, type int
 4.27 5E1 // floating point literals,
 // type double
 'f', '\n' // character literals, type char
 "foo" // string literal, type const char[4]
 true, false // boolean literals, type bool

These are only the most common ones. There are many more, including
some newcomers in the newer standards. Other literals are nullptr and
different kinds of prefixes for character and string literals. There also are
suffixes we can use to change the type of a built-in numeric literal:

 32u // unsigned int
 043l // long
 0x34ull // unsigned long long
 4.27f // float
 5E1l // long double

Suffixes for user-defined literals
With C++11, we got the option of defining our own suffixes. They can be
applied to integer, floating point, character and string literals of any
flavor. The suffixes must be valid identifiers and start with an underscore
– those without an underscore are reserved for future standards.

Using the literals
User-defined literals are basically normal function calls with a fancy
syntax. I’ll show you in a second how those functions are defined. First,
let’s see some examples of how they are used:

 user-defined integer literal with suffix _km

45_km

 user-defined floating point literal with suffix _mi

17.8e2_mi

 user-defined character literal with suffix _c

'g'_c

 user-defined character literal (char32_t) with suffix _c

U'%'_c

 user-defined string literal with suffix _score

"under"_score

 user-defined string literal (raw, UTF8) with suffix _stuff

u8R"##("(weird)")##"_stuff

Defining literal operators
The functions are called literal operators. Given an appropriate class for
lengths, the definition of literal operators that match the first two
examples above could look like this:

 Length operator "" _km(unsigned long long n) {
 return Length{n, Length::KILOMETERS};
 }

 Length operator ""_mi(long double d) {
 return Length{d, Length::MILES};
 }

More generally, the syntax for the function header is <ReturnType>
operator "" <Suffix> (<Parameters>). The return type can be
anything, including void. As you see, there can be whitespace between
the "" and the suffix – unless the suffix standing alone would be a
reserved identifier or keyword. That means, if we want our suffix to start
with a capital letter after the underscore, e.g. _KM, there may be no white
space. (Identifiers with underscores followed by capitals are reserved for
the standard implementation.)

The allowed parameter lists are constrained: for a user-defined integral or
floating point literal, you can already see an example above. The compiler
first looks for an operator that takes an unsigned long long or long
double, respectively. If such an operator can not be found, there has to
be either one taking a char const* or a template<char...>
operator taking no parameters.

In the case of the so-called raw literal operator taking a const char, the
character sequence constituting the integral or floating point literal is
passed as the parameter. In the case of the template, it is passed as the list
of template arguments. E.g. for the _mi example above this would
instantiate and call:

 operator ""_mi<'1', '7', '.', '8', 'e', '2'>()

Use cases
The example with the units above is a pretty common one. You will have
noted that both operators return a Length. The class would have an
internal conversion for the different units, so with these user defined
literals it would be easy to mix the units without crashing your spaceship
[Wikipedia]:

 auto length = 32_mi + 45.4_km;
 std::cout << "It's " << length.miles()
 << " miles\n"; //60.21
 std::cout << "or " << length.kilometers()
 << " kilometers.\n"; //96.899

The standard library also contains a bunch of these (and yes, they still are
called ‘user-defined’ in standard speak). They are not directly in
namespace std but in subnamespaces of std::literals:

U

Arne Mertz is a self-taught C++ and clean code enthusiast who has
been using C++ for over a decade. He continues to deepen his
understanding by writing and speaking about C++, e.g. in his weekly
"Simplify C++!" blog. You can contact Arne via
arne.mertz@zuehlke.com or @arne_mertz.
18 | Overload | December 2016

FEATUREARNE MERTZ

In theory, we could write literal
operators that have side effects and do

anything we want, like a normal function
 From std::literals::complex_literals, the suffixes i,
if and il are for the imaginary part of std::complex numbers.
So, 3.5if is the same as std::complex<float>{0, 3.5f}

 From std::literals::chrono_literals, the suffixes h,
min, s, ms, us and ns create durations in std::chrono for hours,
minutes, seconds, milli-, micro- and nanoseconds, respectively.

 In std::literals::string_literals, we have the suffix s
to finally create a std::string right from a string literal instead
of tossing around char const*.

A word of caution
While user defined literals look very neat, they are not much more than
syntactic sugar. There is not much difference between defining and
calling a literal operator with "foo"_bar and doing the same with an
ordinary function as bar("foo"). In theory, we could write literal
operators that have side effects and do anything we want, like a normal
function.

However, that is not what people would expect from something that does
not look like ‘it does something’. Therefore it is best to use user defined
literals only as obvious shorthand for the construction of values.

Playing with other modern C++ features
A while ago I came across a case where I had to loop over a fixed list of
std::strings defined at compile time. In the old days before C++11,
the code would have looked like this:

 static std::string const strings[] =
 {"foo", "bar", "baz"};
 for (std::string const* pstr = strings;
 pstr != strings+3; ++pstr) {
 process(*pstr);
 }

This is horrible. Dereferencing the pointer and the hard-coded 3 in the
loop condit ion just don’t seem right . I could have used an
std::vector<std::string> here, but that would mean a separate
function to prefill and initialize the const vector since there were no
lambdas.

Today we have range based for, initializer_list, auto and user-
defined literals for strings:

 using namespace std::literals::string_literals;
 //...
 for (auto const& str : {"foo"s, "bar"s, "baz"s})
 {
 process(str);
 }

And the code looks just as simple as it should.

References
[Wikipedia] The Mars Climate Orbiter: Cause of Failure

https://en.wikipedia.org/wiki/
Mars_Climate_Orbiter#Cause_of_failure

Best Articles 2016

Vote for your favourite articles:

 Best in CVu

 Best in Overload

Voting open now at:
https://www.surveymonkey.co.uk/r/WHYZG5P

December 2016 | Overload | 19

https://www.surveymonkey.co.uk/r/WHYZG5P
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

FEATURE THOMAS GUEST
Python Streams vs Unix Pipes
Dealing with an infinite sequence requires
some thought. Thomas Guest presents
various ways to approach such a problem.
 chanced upon an interesting puzzle:

Find the smallest number that can be expressed as the sum of 5, 17,
563 and 641 consecutive prime numbers, and is itself a prime number.

Here, the prime numbers are an infinite steam:

2, 3, 5, 7, 11, 13 ...

and sums of N consecutive primes are similarly infinite. For example, the
sum of 2 consecutive primes would be the stream:

2+3, 3+5, 5+7, 7+11, 11+13 ...

which is:

5, 8, 12, 18, 24 ...

and the sum of 3 consecutive primes is:

10 (=2+3+5), 15, 23, 31 ...

Had we been asked to find the smallest number which can be expressed
as the sum of 3 consecutive primes and as the sum of 5 consecutive primes
and is itself prime, the answer would be 83.

>>> 23 + 29 + 31

83

>>> 11 + 13 + 17 + 19 + 23

83

Infinite series and Python
My first thought was to tackle this puzzle using Python iterators and
generators. Here’s the outline of a strategy:

 starting with a stream of primes

 tee the stream to create 4 additional copies

 transform these copies into the consecutive sums of 5, 17, 563 and
641 primes

 merge these consecutive sums back with the original primes stream

 group the elements of this merged stream by value

 the first group which contains 5 elements must have occurred in
every source, and is therefore a prime and representable as the
consecutive sum of 5, 17, 563 and 641 primes

 which solves the puzzle!

Note that when we copy an infinite stream we cannot consume it first. We
will have to be lazy or we’ll get exhausted.

Courtesy of the Python Cookbook, I already had a couple of useful recipes
to help implement this strategy (see Listing 1).

Both these functions merit a closer look for the cunning use they make of
standard containers, but we’ll defer this inspection until later. In passing,

note that stream_merge()’s docstring suggests we might try using it as
basis for primes():

1. form the series of composite (non-prime) numbers by merging the
streams formed by multiples of prime numbers;

2. the primes remain when you remove these composites from the
series of natural numbers.

This scheme is hardly original – it’s a variant of Eratosthenes’ sieve – but
if you look carefully you’ll notice the self-reference. Unfortunately
recursive definitions of infinite series don’t work well with Python1,
hence primes() requires a little more finesse. We’ll take a look at it
later.

Moving on, to solve the original puzzle we need a consecutive sum filter.
Listing 2 will transform a stream of numbers into a stream of consecutive
sums of these numbers.

Here we can think of the summed elements as lying within a sliding
window: each time we slide the window an element gets added to the top
and an element gets removed from the bottom, and we adjust csum
accordingly.

So, now we have:

 the series of prime numbers, primes()

 a stream_merge() connector

 a consecutive_sum() filter

The remaining stream adaptors come from the standard itertools module.
Note that the stream_merge() works here since all the consecutive
sum series are strictly increasing. Note also that the stream of prime
numbers can be treated as consecutive_sum(s=primes(), n=1),
handling the ‘and is itself a prime number’ requirement. (See Listing 3.)

I

1. CPython, more precisely — I don’t think anything in the Python
language itself prohibits tail recursion. Even using CPython, yet another
recipe from the online Python Cookbook explores the idea of an
@tail_recursion decorator

Listing 1

def primes():
 '''Generate the sequence of prime numbers: 2,
 3, 5 ... '''

def stream_merge(*ss):
 '''Merge a collection of sorted streams.
 Example: merge multiples of 2, 3, 5
 >>> from itertools import count, islice
 >>> def multiples(x):
 return (x * n for n in count(1))
 >>> s = stream_merge(multiples(2),
 multiples(3), multiples(5))
 >>> list(islice(s, 10))
 [2, 3, 4, 5, 6, 6, 8, 9, 10, 10]
 '''

Thomas Guest is an experienced and enthusiastic software
developer who likes puzzles, programming, running and noodles.
His website is http://wordaligned.org. He can be contacted at
tag@wordaligned.org
20 | Overload | December 2016

http://wordaligned.org

FEATURETHOMAS GUEST

Haskell makes no compromises when it comes to functional
programming. Its lazy evaluation and inductive recursion

make it a perfect fit for this kind of puzzle
Here, solns is yet another stream, the result of merging the N input
consecutive sum streams then filtering out the numbers which appear N
times; that is, the numbers which can be expressed as sums of 1, 5, 17, 563
and 641 consecutive primes.

The first such number solves the original puzzle.

 >>> next(solns)
 7002221

Figure 1 is a picture of how these stream tools link up to solve this
particular puzzle. The great thing is that we can reconnect these same
tools to solve a wide range of puzzles, and indeed more practical
processing tasks. To use the common analogy, we direct data streams
along pipes.

Infinite series in other languages
Python is the language I find most convenient most of the time, which
explains why I reached for it first. It’s an increasingly popular language,
which helps explain why I didn’t need to write the tricky parts of my
solution from scratch: they’d already been done. Python is also a language
which makes compromises. Having used Python to find a solution to the
puzzle I wondered if there wasn’t some other language better suited to this
kind of problem.

Haskell makes no compromises when it comes to functional
programming. Its lazy evaluation and inductive recursion make it a
perfect fit for this kind of puzzle – but my approach of teeing, filtering and
merging made me consider the Unix Shell. Now, I use Bash every day and
page through its manual at least once a week. Scripting appeals and I’m
comfortable at the command line. How hard could it be to solve this
puzzle using Bash? After all, I already knew the answer!

Partial sums
Here’s a simple shell function to generate partial sums. I’ve used awk, a
little language I gave up on a long time ago in favour of more rounded
scripting languages like Perl and then Python. Now I look at it again, it
seems to fill a useful gap. Awk processes a file sequentially, applying
pattern-action rules to each line, a processing template which I’ve
reinvented less cleanly many times. Despite my rediscovery of awk, I’ll
be keeping its use strongly in check in what follows.

 $ psum() { awk '{ print s += $1 }'; }

Much like Perl, awk guesses what you want to do. Here, it conjures the
summation variable, s, into existence, assigning it a default initial value
of 0. (Good guess!) Since we’re doing arithmetic awk converts the first
field of each input line into a number. We can test psum by using jot to
generate the sequence 1, 2, 3, 4, 5 (this is on a Mac – on a Linux platform
use seq instead of jot).

 $ jot 5 | psum
 1
 3
 6
 10
 15

Consecutive sums
You may be wondering why we’ve bothered creating this partial sum
filter since it’s the sums of consecutive elements we’re after, rather than
the sum of the series so far. Well, notice that if P[i] and P[i+n] are two
elements from the series of partial sums of S, then their difference,
P[i+n] - P[i], is the sum of the n consecutive elements from S.

So to form an n-element consecutive sum series we can tee the partial
sums streams, advance one of these by n, then zip through them in parallel
finding their differences. An example makes things clear – see Listing 4.

Here, jot 5 generates the sequence 1, 2, 3, 4, 5, which psum
progressively accumulates to 1, 3, 6, 10, 15. We then tee this partial sum

Listing 2

def consecutive_sum(s, n):
 '''Generate the series of sums of n
 consecutive elements of s
 Example: 0, 1, 2, 3, 4 ... => 0+1, 1+2,
 2+3, 3+4, ...
 >>> from itertools import count, islice
 >>> list(islice(consecutive_sum(count(), 2),
 10))
 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
 '''
 lo, hi = itertools.tee(s)
 csum = sum(next(hi) for _ in range(n))
 while True:
 yield csum
 csum += next(hi) - next(lo)

Listing 3

>>> lens = 1, 5, 17, 563, 641
>>> N = len(lens)
>>> from itertools import tee, groupby
>>> ps = tee(primes(), N)
>>> csums = [consecutive_sum(p, n) for p, n in
zip(ps, lens)]
>>> solns = (n for n, g in
groupby(stream_merge(*csums))
 if len(list(g)) == N)

Figure 1
December 2016 | Overload | 21

FEATURE THOMAS GUEST
series through two pipes: the first, pipe, is an explicitly created named
pipe created by mkfifo, the second is implicitly created by the pipeline
operator, |. The remainder of the command line delays one series by one
(note that tail numbers lines from 1, not 0, so tail -n +1 is the identity
filter) then pastes the two series back together.2

By appending a single awk action to the pipeline we get a consecutive
sum series (see Listing 5).

The output 2, 3, 4, 5 is the series of consecutive sums of length 1 taken
from the original series 1, 2, 3, 4, 5. The trailing 15 and the 1 missed from
the start are edge case problems, and easily corrected.

Accumulating an increasing series of numbers in order to find the
differences between elements lying a given distance apart on this series
isn’t a very smart idea on a computer with a fixed word-size, but it’s good
to know (e.g.) that awk doesn’t stop counting at 32 bits. (See Listing 6.)

Exactly if and when awk stops counting, I’m not sure. The documentation
doesn’t say and I haven’t looked at the source code.

Bug fixes
Let’s capture these tiny functions and name them. In Listing 7, then, are
revised psum() and sdiff() filters. The edge case problems should
now be fixed.

A quick test:

 $ jot 5 | psum | sdiff 3
 6
 9
 12

The output is, as expected, the series
of sums of consecutive triples taken
from 1, 2, 3, 4, 5 (6=1+2+3, 9=2+3+4,
12=3+4+5).

There’s a pernicious bug, though.
These functions can’t handle infinite
series so they are of limited use as
pipeline tools. For example, if we
stream in the series 0, 1, 2, …
(generated here as the partial sums of
the series 1, 1, 1, …) nothing gets
output and we have to interrupt the
process.

 # This command appears
 # to hang
 $ yes 1 | psum | sdiff 1
 ^C

To work around this is, we can use
Gnu stdbuf to prohibit tail and
paste from using output buffers (see
Listing 8).

Now the data flows again:

 # Accumulate the stream 1
1 1 ... and print the
 # difference between
successive elements
 $ yes 1 | psum | sdiff 1
 1
 1
 1
 1
 ^C

Merging streams
The Unix shell merges streams rather more succinctly than Python. Sort
-m does the job directly. Note that a standard sort cannot yield any
output until all its inputs are exhausted, since the final input item might
turn out to be the one which should appear first in the output. Merge sort,
sort -m, can and does produce output without delay.3

 $ yes | sort
 ^C
 $ yes | sort -m
 y
 y
 y
 y
 y
 ^C

Generating primes
No doubt it’s possible to generate the infinite series of prime numbers
using native Bash code, but I chose to reuse the Python Cookbook recipe
(Listing 9) for the job.

This is a subtle little program which makes clever use of Python’s native
hashed array container, the dictionary. In this case dictionary values are
the primes less than n and the keys are composite multiples of these
primes. The loop invariant, roughly speaking, is that the dictionary values
are the primes less than n, and the corresponding keys are the lowest2. Tail is more commonly used to yield a fixed number of lines from the

end of the file: by prefixing the line count argument with a + sign, it skips
lines from the head of the file. The GNU version of head can similarly
be used with a - prefix to skip lines at the tail of a file. The notation is
{compact,powerful,subtle,implementation dependent}.

3. Sort -m is a sort which doesn’t really sort — its inputs should already be
sorted — rather like the +n option turning tail on its head.

Listing 5

$ jot 5 | psum | tee pipe | tail -n +2 | paste - pipe | awk '{print $1 - $2}'
 2
 3
 4
 5
 15

Listing 4

$ mkfifo pipe
$ jot 5 | psum | tee pipe | tail -n +2 | paste - pipe
3 1
6 3
10 6
15 10
 15

Listing 6

$ let "N=1<<32" && echo $N | tee >(awk '{print $1 * $1}')
 4294967296
 18446744073709551616

Listing 7

$ psum() { awk 'BEGIN { print 0 }{print s += $1 }'; }
$ delay() { let "n = $1 + 1" && tail +$n; }
$ sdiff() { mkfifo p.$1 && tee p.$1 | delay $1 | paste - p.$1 | \
 awk 'NF == 2 {print $1 - $2 }'; }

Listing 8

$ psum() { awk 'BEGIN { print 0 }{print s += $1 }'; }
$ delay() { let "n = $1 + 1" && stdbuf -o 0 tail +$n; }
$ sdiff() { mkfifo p.$1 && tee p.$1 | delay $1 | \
 stdbuf -o 0 paste - p.$1 | \
 awk 'NF == 2 {print $1 - $2 }'; }
22 | Overload | December 2016

FEATURETHOMAS GUEST
multiples of these primes greater than or equal to n. It’s a lazy, recursion-
free take of Eratosthenes’ sieve.

For the purposes of this article the important things about this program
are:

 it generates an infinite series of numbers to standard output4, making
it a good source for a shell pipeline

 by making it executable and adding the usual shebang incantation,
we can invoke this Python program seamlessly from the shell.

Pipe connection
Recall the original puzzle:

Find the smallest number that can be expressed as the sum of 5, 17,
563 and 641 consecutive prime numbers, and is itself a prime number.

First, let’s check the connections by solving a simpler problem which we
can manually verify: to find prime numbers which are also the sum of 2
consecutive primes. As we noted before, this is the same as finding primes
numbers which are the consecutive sums of 1 and 2 primes.

In one shell window we create a couple of named pipes, c.1 and c.2,
which we’ll use to stream the consecutive sum series of 1 and 2 primes
respectively. The results series comprises the duplicates when we merge
these pipes.

 $ mkfifo c.{1,2}
 $ sort -mn c.{1,2} | uniq -d

In another shell window, stream data into c.1 and c.2:

 $ for i in 1 2; do (primes | psum | sdiff $i >
 c.$i) & done

In the first window we see the single number 5, which is the first and only
prime number equal to the sum of two consecutive primes.

Prime numbers equal to the sum of three consecutive primes are more
interesting. In each shell window recall the previous commands and
switch the 2s to 3s (a simple command history recall and edit, ̂ 2^3^, does
the trick). The merged output now looks like this:

 $ sort -mn c.1 c.3 | uniq -d
 23
 31
 41
 ...

We can check the first few values:

 23 = 5 + 7 + 11
 31 = 7 + 11 + 13
 41 = 11 + 13 + 17

At this point we’re confident enough to give the actual puzzle a try. Start
up the solutions stream.

$ mkfifo c.{1,5,17,563,641}
$ sort -mn c.{1,5,17,563,641} | uniq -c | grep "5 "

Here, we use a standard shell script set intersection recipe: uniq -c
groups and counts repeated elements, and the grep pattern matches those
numbers common to all five input streams.

Now we can kick off the processes which will feed into the consecutive
sum streams, which sort is waiting on.

 $ for i in 1 5 17 563 641; do (primes | psum |
 sdiff $i > c.$i) & done

Sure enough, after about 15 seconds elapsed time, out pops the result:

$ sort -mn c.{1,5,17,563,641} | uniq -c | grep "5 "
 5 7002221

15 seconds seems an eternity for arithmetic on a modern computer (you
could start up a word processor in less time!), and you might be inclined
to blame the overhead of all those processes, files, large numbers, etc. In
fact it took around 6 seconds for the Python program simply to generate
prime numbers up to 7002221, and my pure Python solution ran in 9
seconds.

Portability
One of the most convenient things about Python is its portability. I don’t
mean ‘portable so long as you conform to the language standard’ or
‘portable if you stick to a subset of the language’. I mean that a Python
program works whatever platform I use without me having to worry about it.

Non-portability put me off the Unix shell when I first encountered it: there
seemed too many details, too many platform differences – which shell are
you using? which extensions? which implementation of the core utilities,
etc, etc? Readily available and well-written documentation didn’t help
much here: generally I want the shell to just do what I mean, which is why
I switched so happily to Perl when I discovered it.

Since then this situation has, for me, improved in many ways. Non-Unix
platforms are declining as are the different flavours of Unix. Bash seems
to have become the standard shell of choice and Cygwin gets better all the
time. GNU coreutils predominate. As a consequence I’ve forgotten
almost all the Perl I ever knew and am actively rediscovering the Unix
shell.

Writing this article, though, I was reminded of the platform dependent
behaviour which used to discourage me. On a Linux platform close to
hand I had to use seq instead of jot, and awk formatted large integers in
a scientific form with a loss of precision.

 $ echo '10000000001 0' | awk '{print $1 - $2}'
 1e+10

On OS X the same command outputs 10000000001. I couldn’t tell you
which implementation is more correct. The fix is to explicitly format these
numbers as decimal integers, but the danger is that the shell silently

4. The series is infinite in theory only: at time n the number of items in the
has_prime_factors dictionary equals the number of primes less
than n, and each key in this dictionary is larger than n. So resource use
increases steadily as n increases.

Listing 9

primes
#!/usr/bin/env python
import itertools

def primes():
 '''Generate the prime number series: 2, 3, 5
 ... '''
 D = {}
 for n in itertools.count(2):
 p = D.pop(n, None)
 if p is None:
 yield n
 D[n * n] = n
 else:
 x = n + p
 while x in D:
 x += p
 D[x] = p

for p in primes():
 print(p)

I used a MacBook laptop used to run these scripts.

Model Name: MacBook

Model Identifier: MacBook1,1

Processor Name: Intel Core Duo

Processor Speed: 2 GHz

Number Of Processors: 1

Total Number Of Cores: 2

L2 Cache (per processor): 2 MB

Memory: 2 GB

Bus Speed: 667 MHz
December 2016 | Overload | 23

FEATURE THOMAS GUEST
swallows these discrepancies and you’ve got a portability problem you
don’t even notice.

 $ echo '10000000001 0' | awk '{printf "%d\n",
 $1 - $2}'
 10000000001

Stream merge
I mentioned stream_merge() at the start of this article, a general
purpose function written by Raymond Hettinger which I originally found
in the Python Cookbook. As with the prime number generator, you might
imagine the merge algorithm to be recursively defined:

1. to merge a pair of streams, take items from the first which are less
than the head of the second, then swap;

2. to merge N streams, merge the first stream with the merged (N-1)
rest.

Again the Python solution does it differently, this time using a heap as a
priority queue of items from the input streams. It’s ingenious and
efficient. Look how easy it is in Python (Listing 10) to shunt functions and
pairs in and out of queues.

A more sophisticated version of this code has made it into the Python
standard library, where it goes by the name of heapq.merge (I wonder
why it wasn’t filed in itertools?)

Alternative solutions
As usual Haskell wins the elegance award, so I’ll quote in full a solution
(Listing 11) built without resorting to cookbookery which produces the
(correct!) answer in 20 seconds.

Listing 10

from heapq import heapify, heappop, heapreplace

def stream_merge(*ss):
 '''Merge a collection of sorted streams.'''
 pqueue = []
 for i in map(iter, ss):
 try:
 pqueue.append((i.next(), i.next))
 except StopIteration:
 pass
 heapify(pqueue)
 while pqueue:
 val, it = pqueue[0]
 yield val
 try:
 heapreplace(pqueue, (it(), it))
 except StopIteration:
 heappop(pqueue)

Listing 11

module Main where

import List

isPrime x = all (\i -> 0/=x`mod`i) $ takeWhile (\i
-> i*i <= x) primes

primes = 2:filter (\x -> isPrime x) [3..]

cplist n = map (sum . take n) (tails primes)

meet (x:xs) (y:ys) | x < y = meet xs (y:ys)
 | y < x = meet (x:xs) ys
 | x == y = x:meet xs ys
main = print $ head $ \
(primes `meet` cplist 5) `meet` (cplist 17 `meet`
cplist 563) `meet` cplist 641
24 | Overload | December 2016

Letter
Silas S. Brown comments on Steve Love’s recent article.

Hi Steve,

Just read your article ‘A Lifetime in Python’ in Overload 133 and the
sentence ‘It will (probably) be garbage collected at some
indeterminate point in the future’. That’s true of the Java
implementation of Python, but the C implementation does reference
counting, so it is able to delete objects as soon as the last reference to
them falls out of scope; the garbage collector is used only as a backup
in case of cyclic references. So in this case the db object will be
deleted when addCustomerOrder returns, unless its internal
structure contains references back to the parent object, in which case
yes it will be garbage collected when the gc next runs (which is
usually once every fixed number of bytecode instructions).

But that’s only a small observation on an excellent article.

Thanks.

Silas S. Brown

And Steve replies:
Hi Silas,

Thanks for the feedback. I was trying to convey the idea that the
object may or may not be garbage collected, but I guess it’s not that
clear that some platforms don’t use a gc routinely.

But whether the object is ref counted, gc’d or anything else, it still
won’t have close called on it.

In any case, I think this is a nice clarification on the python lifetime
management, and would be happy to see it as a letter, if you're happy
with that.

Cheers,

Steve
If you read something that you
particularly enjoyed, you
disagreed with or that has just
made you think, why not put pen
to paper (or finger to keyboard)
and tell us about it?

FEATUREELEANOR MCHUGH
Hello World in Go
Go provides a way to write efficient concurrent
programs in a C-like language. Eleanor McHugh
shares a "Hello, world!" tutorial.
t’s a tradition in programming books to start with a canonical ‘Hello
World’ example and whilst I’ve never felt the usual presentation is
particularly enlightening, I know we can spice things up a little to

provide useful insights into how we write Go programs.

Let’s begin with the simplest Go program that will output text to the
console (Listing 1).

The first thing to note is that every Go source file belongs to a package,
with the main package defining an executable program whilst all other
packages represent libraries.

 1 package main

For the main package to be executable it needs to include a main()
function, which will be called following program initialisation.

 2 func main() {

Notice that unlike C/C++, the main() function neither takes parameters
nor has a return value. Whenever a program should interact with
command-line parameters or return a value on termination, these tasks are
handled using functions in the standard package library. We’ll examine
command-line parameters when developing Echo.

Finally let’s look at our payload.

 3 println("hello world")

The println() function is one of a small set of built-in generic
functions defined in the language specification and which in this case is
usually used to assist debugging, whilst "hello world" is a value
comprising an immutable string of characters in utf-8 format.

We can now run our program from the command-line (Terminal on
MacOS X or Command Prompt on Windows) with the command

 $ go run 01.go
 hello world

Packages
Now we’re going to apply a technique which I plan to use throughout my
book by taking this simple task and developing increasingly complex
ways of expressing it in Go. This runs counter to how experienced
programmers usually develop code but I feel this makes for a very
effective way to introduce features of Go in rapid succession and have
used it with some success during presentations and workshops.

There are a number of ways we can artificially complicate our hello world
example and by the time we’ve finished I hope to have demonstrated all
the features you can expect to see in the global scope of a Go package. Our
first change is to remove the built-in println() function and replace it
with something intended for production code (see Listing 2).

The structure of our program remains essentially the same, but we’ve
introduced two new features.

 2 import "fmt"

The import statement is a reference to the fmt package, one of many
packages defined in Go’s standard runtime library. A package is a
library which provides a group of related functions and data types we can
use in our programs. In this case, fmt provides functions and types
associated with formatting text for printing and displaying it on a console
or in the command shell.

 4 fmt.Println("hello world")

One of the functions provided by fmt is Println(), which takes one or
more parameters and prints them to the console with a carriage return
appended. Go assumes that any identifier starting with a capital letter is
part of the public interface of a package whilst identifiers starting with any
other letter or symbol are private to the package.

In production code we might choose to simplify matters a little by
importing the fmt namespace into the namespace of the current source
file, which requires we change our import statement.

 2 import . "fmt"

And this consequently allows the explicit package reference to be
removed from the Println() function call.

 4 Println("hello world")

In this case we notice little gain; however, in later examples we’ll use this
feature extensively to keep our code legible (Listing 3).

I

Listing 1

 1 package main
 2 func main() {
 3 println("hello world")
 4 }

Listing 2

 1 package main
 2 import "fmt"
 3 func main() {
 4 fmt.Println("hello world")
 5 }

Listing 3

 1 package main
 2 import . "fmt"
 3 func main() {
 4 Println("hello world")
 5 }

Eleanor McHugh London-based hacker Ellie has a passion for all
things computational and has worked on mission critical systems
ranging from cockpit avionics to banking security and digital trust
arbitration. She’s the co-founder of Innovative Identity Solutions
Limited and author of A Go Developer’s Notebook along with
numerous esoteric talks on programming in Ruby and Go. As a
responsible parent Ellie enjoys polyhedral dice, home brewing and
gothic music.
December 2016 | Overload | 25

FEATURE ELEANOR MCHUGH

its syntax allows a function to return more
than one value and as such each function
takes two sets of (), the first for parameters
and the second for results
One aspect of imports that we’ve not yet looked at is Go’s built-in support
for code hosted on a variety of popular social code-sharing sites such as
GitHub and Google Code. Don’t worry, we’ll get to this in later chapters
of my book.

Constants
A significant proportion of Go codebases feature identifiers whose values
will not change during the runtime execution of a program and our ‘Hello
World’ example is no different (Listing 4), so we’re going to factor these
out.

Here we’ve introduced two constants: Hello and world. Each identifier
is assigned its value during compilation, and that value cannot be changed
at runtime. As the identifier Hello starts with a capital letter the
associated constant is visible to other packages – though this isn’t relevant
in the context of a main package – whilst the identifier world starts with
a lowercase letter and is only accessible within the main package.

We don’t need to specify the type of these constants as the Go compiler
identifies them both as strings.

Another neat trick in Go’s armoury is multiple assignment so let’s see
how this looks (see Listing 5).

This is compact, but I personally find it too cluttered and prefer the more
general form (Listing 6).

Because the Println() function is variadic (i.e. can take a varible
number of parameters) we can pass it both constants and it will print them
on the same line, separate by whitespace. fmt also provides the
Printf() function which gives precise control over how its parameters
are displayed using a format specifier which will be familiar to seasoned
C/C++ programmers.

 8 Printf("%v %v\n", Hello, world)

fmt defines a number of % replacement terms which can be used to
determine how a particular parameter will be displayed. Of these %v is the

most generally used as it allows the formatting to be specified by the type
of the parameter. We’ll discuss this in depth when we look at user-defined
types, but in this case it will simply replace a %v with the corresponding
string.

When parsing strings the Go compiler recognises a number of escape
sequences which are available to mark tabs, new lines and specific
unicode characters. In this case we use \n to mark a new line (Listing 7).

Variables
Constants are useful for referring to values which shouldn’t change at
runtime; however, most of the time when we’re referencing values in an
imperative language like Go we need the freedom to change these values.
We associate values which will change with variables. What follows is a
simple variation of our Hello World program which allows the value of
world to be changed at runtime by creating a new value and assigning it
to the world variable (Listing 8).

Listing 4

1 package main
2 import . "fmt"
3 const Hello = "hello"
4 const world = "world"
5 func main() {
6 Println(Hello, world)
7 }

Listing 5

1 package main
2 import . "fmt"
3 const Hello, world = "hello", "world"
4 func main() {
5 Println(Hello, world)
6 }

Listing 6

 1 package main
 2 import . "fmt"
 3 const (
 4 Hello = "hello"
 5 world = "world"
 6)
 7 func main() {
 8 Println(Hello, world)
 9 }

Listing 7

 1 package main
 2 import . "fmt"
 3 const (
 4 Hello = "hello"
 5 world = "world"
 6)
 7 func main() {
 8 Printf("%v %v\n", Hello, world)
 9 }

Listing 8

 1 package main
 2 import . "fmt"
 3 const Hello = "hello"
 4 var world = "world"
 5 func main() {
 6 world += "!"
 7 Println(Hello, world)
 8 }
26 | Overload | December 2016

FEATUREELEANOR MCHUGH
There are two important changes here. Firstly we’ve introduced syntax for
declaring a variable and assigning a value to it. Once more Go’s ability to
infer type allows us assign a string value to the variable world without
explicitly specifying the type.

 4 var world = "world"

However if we wish to be more explicit we can be.

 4 var world string = "world"

Having defined world as a variable in the global scope we can modify its
value in main(), and in this case we choose to append an exclamation
mark. Strings in Go are immutable values so following the assignment
world will reference a new value.

 6 world += "!"

To add some extra interest, I’ve chosen to use an augmented assignment
operator. These are a syntactic convenience popular in many languages
which allow the value contained in a variable to be modified and the
resulting value then assigned to the same variable.

I don’t intend to expend much effort discussing scope in Go. The point of
my book is to experiment and learn by playing with code, referring to the
comprehensive language specification available from Google when you
need to know the technicalities of a given point. However, to illustrate the
difference between global and local scope we’ll modify this program
further (see Listing 9).

Here we’ve introduced a new local variable world within main() which
takes its value from an operation concatenating the value of the global
world variable with an exclamation mark. Within main(), any
subsequent reference to world will always access the local version of the
variable without affecting the global world variable. This is known as
shadowing.

The := operator marks an assignment declaration in which the type of the
expression is inferred from the type of the value being assigned. If we
chose to declare the local variable separately from the assignment we’d
have to give it a different name to avoid a compilation error (Listing 10).

Another thing to note in this example is that when w is declared it’s also
initialised to the zero value, which in the case of string happens to be
"". This is a string containing no characters.

In fact, all variables in Go are initialised to the zero value for their type
when they’re declared and this eliminates an entire category of
initialisation bugs which could otherwise be difficult to identify.

Functions
Having looked at how to reference values in Go and how to use the
Println() function to display them, it’s only natural to wonder how we
can implement our own functions. Obviously we’ve already implemented
main() which hints at what’s involved, but main() is something of a
special case as it exist to allow a Go program to execute and it neither
requires any parameters nor produces any values to be used elsewhere in
the program. (See Listing 11.)

In this example we’ve introduced world(), a function which to the
outside world has the same operational purpose as the variable of the same
name that we used in the previous section.

The empty brackets () indicate that there are no parameters passed into
the function when it’s called, whilst string tells us that a single value is
returned and it’s of type string. Anywhere that a valid Go program
would expect a string value we can instead place a call to world() and
the value returned will satisfy the compiler. The use of return is
required by the language specification whenever a function specifies
return values, and in this case it tells the compiler that the value of
world() is the string "world".

Go is unusual in that its syntax allows a function to return more than one
value and as such each function takes two sets of (), the first for
parameters and the second for results. We could therefore write our
function in long form as

 7 func world() (string) {
 8 return "world"
 9 }

In this next example we use a somewhat richer function signature, passing
the parameter name which is a string value into the function message(),
and assigning the function’s return value to message which is a variable
declared and available throughout the function. (See Listing 12.)

As with world(), the message() function can be used anywhere that
the Go compiler expects to find a string value. However, where world()
simply returned a predetermined value, message() performs a
calculation using the Sprintf() function and returns its result.

Sprintf() is similar to Printf() which we met when discussing
constants, only rather than create a string according to a format and
displaying it in the terminal it instead returns this string as a value which
we can assign to a variable or use as a parameter in another function call
such as Println().

Listing 9

 1 package main
 2 import . "fmt"
 3
 4 const Hello = "hello"
 5 var world = "world"
 6
 7 func main() {
 8 world := world + "!"
 9 Println(Hello, world)
10 }

Listing 10

 1 package main
 2 import . "fmt"
 3 const Hello = "hello"
 4 var world = "world"
 5 func main() {
 6 var w string
 7 w = world + "!"
 8 Println(Hello, w)
 9 }

Listing 11

 1 package main
 2 import . "fmt"
 3 const Hello = "hello"
 4 func main() {
 5 Println(Hello, world())
 6 }
 7 func world() string {
 8 return "world"
 9 }

Listing 12

 1 package main
 2 import "fmt"
 3 func main() {
 4 fmt.Println(message("world"))
 5 }
 6 func message(name string) (message string) {
 7 message = fmt.Sprintf("hello %v", name)
 8 return message
 9 }
December 2016 | Overload | 27

FEATURE ELEANOR MCHUGH
Because we’ve explicitly named the return value, we don’t need to
reference it in the return statement as each of the named return values is
implied. (See Listing 13.)

If we compare the main() and message() functions (Listing 14), we
notice that main() doesn’t have a return statement. Likewise if we
define our own functions without return values we can omit the return
statement, though later we’ll meet examples where we’d still use a
return statement to prematurely exit a function.

In Listing 15, we’ll see what a function which uses multiple return values
looks like.

Because message() returns two values we can use it in any context
where at least two parameters can be consumed. Println() happens to
be a variadic function, which we’ll explain in a moment, and takes zero
or more parameters so it happily consumes both of the values
message() returns.

For our final example (Listing 16) we’re going to implement our own
variadic function.

We have three interesting things going on here which need explaining.
Firstly I’ve introduced a new type, interface{}, which acts as a proxy
for any other type in a Go program. We’ll discuss the details of this shortly

but for now it’s enough to know that anywhere an interface{} is
accepted we can provide a string.

In the function signature we use v …interface{} to declare a
parameter v which takes any number of values. These are received by
print() as a sequence of values and the subsequent call to
Println(v…) uses this same sequence as this is the sequence expected
by Println().

So why did we use …interface{} in defining our parameters instead of
the more obvious …string? The Println() function is itself defined
as Println(…interface{}) so to provide a sequence of values en
masse we likewise need to use …interface{} in the type signature of
our function. Otherwise we’d have to create a []interface{} (a
slice of interface{} values, a concept we’ll cover in detail in a later
chapter of my book) and copy each individual element into it before
passing it into Println().

Encapsulation
In this tutorial, we’ll for the most part be using Go’s primitive types and
types defined in various standard packages without any comment on their
structure; however, a key aspect of modern programming languages is the
encapsulation of related data into structured types and Go supports this via
the struct type. A struct describes an area of allocated memory
which is subdivided into slots for holding named values, where each
named value has its own type. A typical example of a struct in action
would be Listing 17, which gives:

 $ go run 17.go
 Hello world

Here we’ve defined a struct Message which contains two values: X and
y. Go uses a very simple rule for deciding if an identifier is visible outside
of the package in which it’s defined which applies to both package-level
constants and variables, and type names, methods and fields. If the
identifier starts with a capital letter it’s visible outside the package,
otherwise it’s private to the package.

The Go language spec guarantees that all variables will be initialised to
the zero value for their type. For a struct type this means that every
field will be initialised to an appropriate zero value. Therefore when we
declare a value of type Message the Go runtime will initialise all of its
elements to their zero value (in this case a zero-length string and a nil
pointer respectively), and likewise if we create a Message value using a
literal

 19 m := &Message{}

Listing 13

 1 package main
 2 import . "fmt"
 3 func main() {
 4 Println(message("world"))
 5 }
 6 func message(name string) (message string) {
 7 message = Sprintf("hello %v", name)
 8 return
 9 }

Listing 14

 1 package main
 2 import . "fmt"
 3 func main() {
 4 greet("world")
 5 }
 6 func greet(name string) {
 7 Println("hello", name)
 8 }

Listing 15

 1 package main
 2 import . "fmt"
 3 func main() {
 4 Println(message())
 5 }
 6 func message() (string, string) {
 7 return "hello", "world"
 8 }

Listing 16

 1 package main
 2 import . "fmt"
 3 func main() {
 4 print("Hello", "world")
 5 }
 6 func print(v ...interface{}) {
 7 Println(v...)
 8 }

Listing 17

 1 package main
 2 import "fmt"
 3 type Message struct {
 4 X string
 5 y *string
 6 }
 7 func (v Message) Print() {
 8 if v.y != nil {
 9 fmt.Println(v.X, *v.y)
10 } else {
11 fmt.Println(v.X)
12 }
13 }
14 func (v *Message) Store(x, y string) {
15 v.X = x
16 v.y = &y
17 }
18 func main() {
19 m := &Message{}
20 m.Print()
21 m.Store("Hello", "world")
22 m.Print()
23 }
28 | Overload | December 2016

FEATUREELEANOR MCHUGH
Having declared a struct type we can declare any number of method
functions which will operate on this type. In this case we’ve introduced
Print() which is called on a Message value to display it in the
terminal, and Store() which is called on a pointer to a Message value
to change its contents. The reason Store() applies to a pointer is that we
want to be able to change the contents of the Message and have these
changes persist. If we define the method to work directly on the value
these changes won’t be propagated outside the method’s scope. To test
this for yourself, make the following change to the program:

 14 func (v Message) Store(x, y string) {

If you’re familiar with functional programming then the ability to use
values immutably this way will doubtless spark all kinds of interesting
ideas.

There’s another struct trick I want to show off before we move on and
that’s type embedding using an anonymous field. Go’s design has upset
quite a few people with an inheritance-based view of object orientation
because it lacks inheritance; however, thanks to type embedding we’re
able to compose types which act as proxies to the methods provided by
anonymous fields. As with most things, an example (Listing 18) will
make this much clearer.

 $ go run 18.go
 Hello world
 Hello world
 Hello world

Here we’re declaring a type HelloWorld which in this case is just an
empty struct, but which in reality could be any declared type.
HelloWorld defines a String() method which can be called on any
HelloWorld value. We then declare a type Message which embeds the
HelloWorld type by defining an anonymous field of the HelloWorld
type. Wherever we encounter a value of type Message and wish to call
String() on its embedded HelloWorld value we can do so by calling
String() directly on the value, calling String() on the Message
value, or in this case by allowing fmt.Println() to match it with the
fmt.Stringer interface.

Any declared type can be embedded, so in Listing 19, we’re going to base
HelloWorld on the primitive bool boolean type to prove the point.

In our final example (Listing 20) we’ve declared the Hello type and
embedded it in Message, then we’ve implemented a new String()
method which allows a Message value more control over how it’s
printed.

 $ go run 20.go
 Hello
 Hello world

In all these examples we’ve made liberal use of the * and & operators. An
explanation is in order.

Go is a systems programming language, and this means that a Go program
has direct access to the memory of the platform it’s running on. This
requires that Go has a means of referring to specific addresses in memory

and of accessing their contents indirectly. The & operator is prepended to
the name of a variable or to a value literal when we wish to discover its
address in memory, which we refer to as a pointer. To do anything with
the pointer returned by the & operator we need to be able to declare a
pointer variable which we do by prepending a type name with the *
operator. An example (Listing 21) will probably make this description
somewhat clearer, and we get:

 $ go run 21.go
 name = Ellie stored at 0x208178170
 pointer_to_name references Ellie

Go allows user-defined types to declare methods on either a value type or
a pointer to a value type. When methods operate on a value type the value
manipulated remains immutable to the rest of the program (essentially the
method operates on a copy of the value) whilst with a pointer to a value
type any changes to the value are apparent throughout the program. This
has far-reaching implications which we’ll explore in later chapters.

Listing 18

 1 package main
 2 import "fmt"
 3 type HelloWorld struct {}
 4 func (h HelloWorld) String() string {
 5 return "Hello world"
 6 }
 7 type Message struct {
 8 HelloWorld
 9 }
10 func main() {
11 m := &Message{}
12 fmt.Println(m.HelloWorld.String())
13 fmt.Println(m.String())
14 fmt.Println(m)
15 }

Listing 19

 1 package main
 2 import "fmt"
 3 type HelloWorld bool
 4 func (h HelloWorld) String() (r string) {
 5 if h {
 6 r = "Hello world"
 7 }
 8 return
 9 }
10 type Message struct {
11 HelloWorld
12 }
13 func main() {
14 m := &Message{ HelloWorld: true }
15 fmt.Println(m)
16 m.HelloWorld = false
17 fmt.Println(m)
18 m.HelloWorld = true
19 fmt.Println(m)
20 }

Listing 20

 1 package main
 2 import "fmt"
 3 type Hello struct {}
 4 func (h Hello) String() string {
 5 return "Hello"
 6 }
 7 type Message struct {
 8 *Hello
 9 World string
10 }
11 func (v Message) String() (r string) {
12 if v.Hello == nil {
13 r = v.World
14 } else {
15 r = fmt.Sprintf("%v %v", v.Hello, v.World)
16 }
17 return
18 }
19 func main() {
20 m := &Message{}
21 fmt.Println(m)
22 m.Hello = new(Hello)
23 fmt.Println(m)
24 m.World = "world"
25 fmt.Println(m)
26 }
December 2016 | Overload | 29

FEATURE ELEANOR MCHUGH
Generalisation
Encapsulation is of huge benefit when writing complex programs and it
also enables one of the more powerful features of Go’s type system, the
interface. An interface is similar to a struct in that it combines
one or more elements but rather than defining a type in terms of the data
items it contains, an interface defines it in terms of a set of method
signatures which it must implement.

As none of the primitive types (int, string, etc.) have methods they
match the empty interface (interface{}) as do all other types, a
property used frequently in Go programs to create generic containers.

Once declared, an interface can be used just like any other declared type,
allowing functions and variables to operate with unknown types based
solely on their required behaviour. Go’s type inference system will then
recognise compliant values as instances of the interface, allowing us to
write generalised code with little fuss.

In Listing 22, we’re going to introduce a simple interface (by far the
most common kind) which matches any type with a func String()
string method signature.

 $ go run 22.go
 Hello
 Hello world
 Hello Hello
 world Hello
 Hello world

This interface is copied directly from fmt.Stringer, so we can
simplify our code a little by using that interface instead:

 11 type Message struct {
 12 X fmt.Stringer
 13 Y fmt.Stringer
 14 }

As Go is strongly typed interface values contain both a pointer to the
value contained in the interface, and the concrete type of the stored
value. This allows us to perform type assertions to confirm that the value
inside an interface matches a particular concrete type (see Listing 23).

Listing 21

 1 package main
 2 import . "fmt"
 3 type Text string
 4 func main() {
 5 var name Text = "Ellie"
 6 var pointer_to_name *Text
 7 pointer_to_name = &name
 8 Printf("name = %v stored at %v\n", name,
 pointer_to_name)
 9 Printf("pointer_to_name references %v\n",
 *pointer_to_name)
10 }

Listing 22

 1 package main
 2 import "fmt"
 3 type Stringer interface {
 4 String() string
 5 }
 6 type Hello struct {}
 7 func (h Hello) String() string {
 8 return "Hello"
 9 }
10 type World struct {}
11 func (w *World) String() string {
12 return "world"
13 }
14 type Message struct {
15 X Stringer
16 Y Stringer
17 }
18 func (v Message) String() (r string) {
19 switch {
20 case v.X == nil && v.Y == nil:
21 case v.X == nil:
22 r = v.Y.String()
23 case v.Y == nil:
24 r = v.X.String()
25 default:
26 r = fmt.Sprintf("%v %v", v.X, v.Y)
27 }
28 return
29 }

Listing 22 (cont’d)

30 func main() {
31 m := &Message{}
32 fmt.Println(m)
33 m.X = new(Hello)
34 fmt.Println(m)
35 m.Y = new(World)
36 fmt.Println(m)
37 m.Y = m.X
38 fmt.Println(m)
39 m = &Message{ X: new(World), Y: new(Hello) }
40 fmt.Println(m)
41 m.X, m.Y = m.Y, m.X
42 fmt.Println(m)
43 }

Listing 23

 1 package main
 2 import "fmt"
 3 type Hello struct {}
 4 func (h Hello) String() string {
 5 return "Hello"
 6 }
 7 type World struct {}
 8 func (w *World) String() string {
 9 return "world"
10 }
11 type Message struct {
12 X fmt.Stringer
13 Y fmt.Stringer
14 }
15 func (v Message) IsGreeting() (ok bool) {
16 if _, ok = v.X.(*Hello); !ok {
17 _, ok = v.Y.(*Hello)
18 }
19 return
20 }
21 func main() {
22 m := &Message{}
23 fmt.Println(m.IsGreeting())
24 m.X = new(Hello)
25 fmt.Println(m.IsGreeting())
26 m.Y = new(World)
27 fmt.Println(m.IsGreeting())
28 m.Y = m.X
29 fmt.Println(m.IsGreeting())
30 m = &Message{ X: new(World), Y: new(Hello) }
31 fmt.Println(m.IsGreeting())
32 m.X, m.Y = m.Y, m.X
33 fmt.Println(m.IsGreeting())
34 }
30 | Overload | December 2016

FEATUREELEANOR MCHUGH
 go run 23.go
 false
 true
 true
 true
 true
 true

Here we’ve rep laced Message ’ s String() method wi th
IsGreeting(), a predicate which uses a pair of type assertions to tell
us whether or not one of Message’s data fields contains a value of
concrete type Hello.

So far in these examples we’ve been using pointers to Hello and World
so the interface variables are storing pointers to pointers to these
values (i.e. **Hello and **World) rather than pointers to the values
themselves (i.e. *Hello and *World). In the case of World we have to
do this to comply with the fmt.Stringer interface because String()
is defined for *World and if we modify main to assign a World value to
either field (see Listing 24) we’ll get a compile-time error:

 $ go run 24.go
 # command-line-arguments
 ./24.go:36: cannot use World literal (type World)
 as type fmt.Stringer in assignment:
 World does not implement fmt.Stringer (String
 method has pointer receiver)

The final thing to mention about interfaces is that they support
embedding of other interfaces. This allows us to compose a new, more
restrictive interface based on one or more existing interfaces.
Rather than demonstrate this with an example, we’re going to look at code
lifted directly from the standard io package which does this (Listing 25).

Here io is declaring three interfaces, the Reader and Writer, which are
independent of each other, and the ReadWriter which combines both.
Any time we declare a variable, field or function parameter in terms of a
ReaderWriter, we know we can use both the Read() and Write()
methods to manipulate it.

Startup
One of the less-discussed aspects of computer programs is the need to
initialise many of them to a pre-determined state before they begin
executing. Whilst this is probably the worst place to start discussing what
to many people may appear to be advanced topics, one of my goals in this
chapter is to cover all of the structural elements that we’ll meet when we
examine more complex programs.

Every Go package may contain one or more init() functions specifying
actions that should be taken during program initialisation. This is the one
case I’m aware of where multiple declarations of the same identifier can
occur without either resulting in a compilation error or the shadowing of
a variable. In the following example we use the init() function to
assign a value to our world variable (Listing 26).

However, the init() function can contain any valid Go code, allowing
us to place the whole of our program in init() and leaving main() as
a stub to convince the compiler that this is indeed a valid Go program
(Listing 27).

When there are multiple init() functions, the order in which they’re
executed is indeterminate so in general it’s best not to do this unless you
can be certain the init() functions don’t interact in any way. Listing 28
happens to work as expected on my development computer but an
implementation of Go could just as easily arrange it to run in reverse order
or even leave deciding the order of execution until runtime.

HTTP
So far our treatment of Hello World has followed the traditional route of
printing a preset message to the console. Anyone would think we were
living in the fuddy-duddy mainframe era of the 1970s instead of the shiny
21st Century, when web and mobile applications rule the world.

Turning Hello World into a web application is surprisingly simple, as
Listing 29 demonstrates.

Listing 24

29 func main() {
30 m := &Message{}
31 fmt.Println(m.IsGreeting())
32 m.X = Hello{}
33 fmt.Println(m.IsGreeting())
34 m.X = new(Hello)
35 fmt.Println(m.IsGreeting())
36 m.X = World{}
37 }

Listing 25

67 type Reader interface {
68 Read(p []byte) (n int, err error)
69 }
78 type Writer interface {
79 Write(p []byte) (n int, err error)
80 }
106 type ReadWriter interface {
107 Reader
108 Writer
109 }

Listing 26

 1 package main
 2 import . "fmt"
 3 const Hello = "hello"
 4 var world string
 5 func init() {
 6 world = "world"
 7 }
 8 func main() {
 9 Println(Hello, world)
10 }

Listing 27

 1 package main
 2 import . "fmt"
 3
 4 const Hello = "hello"
 5 var world string
 6
 7 func init() {
 8 world = "world"
 9 Println(Hello, world)
10 }
11
12 func main() {}

Listing 28

 1 package main
 2 import . "fmt"
 3 const Hello = "hello"
 4 var world string
 5 func init() {
 6 Print(Hello, " ")
 7 world = "world"
 8 }
 9 func init() {
10 Printf("%v\n", world)
11 }
12 func main() {}
December 2016 | Overload | 31

FEATURE ELEANOR MCHUGH
Our web server is now listening on localhost port 1024 (usually the first
non-privileged port on most Unix-like operating systems) and if we visit
the url http://localhost:1024/hello with a web browser our server will
return Hello World in the response body.

The first thing to note is that the net/http package provides a fully-
functional web server which requires very little configuration. All we
have to do to get our content to the browser is define a handler, which
in this case is a function to call whenever an http.Request is received,
and then launch a server to listen on the desired address with
http.ListenAndServe(). http.ListenAndServe returns an
error if it’s unable to launch the server for some reason, which in this case
we print to the console.

We’re going to import the net/http package into the current namespace
and assume our code won’t encounter any runtime errors to make the
simplicity even more apparent (Listing 30). If you run into any problems
whilst trying the examples which follow, reinserting the if statement will
allow you to figure out what’s going on.

HandleFunc() registers a URL in the web server as the trigger for a
function, so when a web request targets the URL the associated function
will be executed to generate the result. The specified handler function is
passed both a ResponseWriter to send output to the web client and the
Request which is being replied to. The ResponseWriter is a file
handle so we can use the fmt.Fprint() family of file-writing functions
to create the response body.

Finally we launch the server using ListenAndServe(), which will
block for as long as the server is active, returning an error if there is one
to report.

In this example (Listing 30) I’ve declared a function Hello and by
referring to this in the call to HandleFunc() this becomes the function
which is registered. However, Go also allows us to define functions
anonymously where we wish to use a function value, as demonstrated in
the following variation on our theme.

Functions are first-class values in Go and in Listing 31 HandleFunc()
is passed an anonymous function value which is created at runtime. This
value is a closure so it can also access variables in the lexical scope in
which it’s defined. We’ll treat closures in greater depth later in my book,
but for now Listing 32 is an example which demonstrates their basic
premise by defining a variable messages in main() and then accessing
it from within the anonymous function.

This is only a very brief taster of what’s possible using net/http so
we’ll conclude by serving our hello world web application over an SSL
connection (see Listing 33).

Before we run this program we first need to generate a certificate and a
public key, which we can do using crypto/tls/generate_cert.go
in the standard package library.

 $ go run $GOROOT/src/pkg/crypto/tls/
 generate_cert.go -ca=true -host="localhost"
 2014/05/16 20:41:53 written cert.pem
 2014/05/16 20:41:53 written key.pem
 $ go run 33.go

Listing 29

 1 package main
 2 import (
 3 . "fmt"
 4 "net/http"
 5)
 6 const MESSAGE = "hello world"
 7 const ADDRESS = ":1024"
 8 func main() {
 9 http.HandleFunc("/hello", Hello)
10 if e := http.ListenAndServe(ADDRESS, nil);
 e != nil {
11 Println(e)
12 }
13 }
14 func Hello(w http.ResponseWriter,
 r *http.Request) {
15 w.Header().Set("Content-Type", "text/plain")
16 Fprintf(w, MESSAGE)
17 }

Listing 30

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 6 const MESSAGE = "hello world"
 7 const ADDRESS = ":1024"
 8 func main() {
 9 HandleFunc("/hello", Hello)
10 ListenAndServe(ADDRESS, nil)
11 }
12 func Hello(w ResponseWriter, r *Request) {
13 w.Header().Set("Content-Type", "text/plain")
14 Fprintf(w, MESSAGE)
15 }

Listing 31

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 6 const MESSAGE = "hello world"
 7 const ADDRESS = ":1024"
 8 func main() {
 9 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
10 w.Header().Set("Content-Type",
 "text/plain")
11 Fprintf(w, MESSAGE)
12 })
13 ListenAndServe(ADDRESS, nil)
14 }

Listing 32

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 6 const ADDRESS = ":1024"
 7 func main() {
 8 message := "hello world"
 9 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
10 w.Header().Set("Content-Type",
 "text/plain")
11 Fprintf(w, message)
12 })
13 ListenAndServe(ADDRESS, nil)
14 }
32 | Overload | December 2016

FEATUREELEANOR MCHUGH
This is a self-signed certificate, and not all modern web browsers like
these. Firefox will refuse to connect on the grounds the certificate is
inadequate and not being a Firefox user I’ve not devoted much effort to
solving this. Meanwhile both Chrome and Safari will prompt the user to
confirm the certificate is trusted. I have no idea how Internet Explorer
behaves. For production applications you’ll need a certificate from a
recognised Certificate Authority. Traditionally this would be purchased
from a company such as Thawte for a fixed period but with the increasing
emphasis on securing the web a number of major networking companies
have banded together to launch Let’s Encrypt. It’s a free CA issuing short-
duration certificates for SSL/TLS with support for automated renewal.

If you’re anything like me (and you have my sympathy if you are) then
the next thought to idle through your mind will be a fairly obvious
question: given that we can serve our content over both HTTP and HTTPS
connections, how do we do both from the same program?

To answer this we have to know a little – but not a lot – about how to
model concurrency in a Go program. The go keyword marks a goroutine
which is a lightweight thread scheduled by the Go runtime. How this is
implemented under the hood doesn’t matter, all we need to know is that
when a goroutine is launched it takes a function call and creates a separate
thread of execution for it. In Listing 34, we’re going to launch a goroutine
to run the HTTP server then run the HTTPS server in the main flow of
execution.

When I first wrote this code it actually used two goroutines, one for each
server. Unfortunately no matter how busy any particular goroutine is,
when the main() function returns our program will exit and our web

servers will terminate. So I tried the primitive approach we all know and
love from C (see Listing 35).

Here we’re using an infinite for loop to prevent program termination: it’s
inelegant, but this is a small program and dirty hacks have their appeal.
Whilst semantically correct this unfortunately doesn’t work either
because of the way goroutines are scheduled: the infinite loop can
potentially starve the thread scheduler and prevent the other goroutines
from running.

 $ go version
 go version go1.3 darwin/amd64

In any event an infinite loop is a nasty, unnecessary hack as Go allows
concurrent elements of a program to communicate with each other via
channels, allowing us to rewrite our code as in Listing 36.

For the next pair of examples we’re going to use two separate goroutines
to run our HTTP and HTTPS servers, yet again coordinating program
termination with a shared channel. In Listing 37, we’ll launch both of the
goroutines from the main() function, which is a fairly typical code
pattern.

For our second deviation (Listing 38), we’re going to launch a goroutine
from main() which will run our HTTPS server and this will launch the
second goroutine which manages our HTTP server.

Listing 33

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 6 const SECURE_ADDRESS = ":1025"
 7 func main() {
 8 message := "hello world"
 9 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
10 w.Header().Set("Content-Type",
 "text/plain")
11 Fprintf(w, message)
12 })
13 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem",
 "key.pem", nil)

Listing 34

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 6 const ADDRESS = ":1024"
 7 const SECURE_ADDRESS = ":1025"
 8 func main() {
 9 message := "hello world"
10 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
11 w.Header().Set("Content-Type",
 "text/plain")
12 Fprintf(w, message)
13 })
14 go func() {
15 ListenAndServe(ADDRESS, nil)
16 }()
17 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem",
 "key.pem", nil)
18 }

Listing 35

 8 func main() {
 9 message := "hello world"
10 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
11 w.Header().Set("Content-Type",
 "text/plain")
12 Fprintf(w, message)
13 })
14 go func() {
15 ListenAndServe(ADDRESS, nil)
16 }()
17 go func() {
18 ListenAndServeTLS(SECURE_ADDRESS,
 "cert.pem", "key.pem", nil)
19 }()
20 for {}
21 }

Listing 36

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 7 const ADDRESS = ":1024"
 8 const SECURE_ADDRESS = ":1025"
 9 func main() {
10 message := "hello world"
11 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
12 w.Header().Set("Content-Type",
 "text/plain")
13 Fprintf(w, message)
14 })
15 done := make(chan bool)
16 go func() {
17 ListenAndServe(ADDRESS, nil)
18 done <- true
19 }()
20 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem",
 "key.pem", nil)
21 <- done
22 }
December 2016 | Overload | 33

FEATURE ELEANOR MCHUGH
There’s a certain amount of fragile repetition in this code as we have to
remember to explicitly create a channel, and then to send and receive on
it multiple times to coordinate execution. As Go provides first-order
functions (i.e. allows us to refer to functions the same way we refer to
data, assigning instances of them to variables and passing them around as
parameters to other functions), we can refactor the server launch code as
in Listing 39.

However, this doesn’t work as expected, so let’s see if we can get any
further insight

 $ go vet 39.go
 39.go:23: range variable s captured by func literal
 exit status 1

Running go with the vet command runs a set of heuristics against our
source code to check for common errors which wouldn’t be caught during
compilation. In this case we’re being warned about this code

 21 for _, s := range f {
 22 go func() {
 23 s()
 24 done <- true
 25 }()
 26 }

Here we’re using a closure so it refers to the variable s in the for...range
statement, and as the value of s changes on each successive iteration, so
this is reflected in the call s().

To demonstrate this, we’ll try a variant where we introduce a delay on
each loop iteration much greater than the time taken to launch the
goroutine (see Listing 40).

When we run this we get the behaviour we expect with both HTTP and
HTTPS servers running on their respective ports and responding to
browser traffic. However, this is hardly an elegant or practical solution
and there’s a much better way of achieving the same effect (Listing 41).

By accepting the parameter server to the goroutine’s closure we can
pass in the value of s and capture it so that on successive iterations of the
range our goroutines use the correct value.

Spawn() is an example of how powerful Go’s support for first-class
functions can be, allowing us to run any arbitrary piece of code and wait
for it to signal completion. It’s also a variadic function, taking as many or
as few functions as desired and setting each of them up correctly.

If we now reach for the standard library we discover that another
alternative is to use a sync.WaitGroup to keep track of how many
active goroutines we have in our program and only terminate the program

Listing 37

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 6 const ADDRESS = ":1024"
 7 const SECURE_ADDRESS = ":1025"
 8 func main() {
 9 message := "hello world"
10 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
11 w.Header().Set("Content-Type",
 "text/plain")
12 Fprintf(w, message)
13 })
14 done := make(chan bool)
15 go func() {
16 ListenAndServe(ADDRESS, nil)
17 done <- true
18 }()
19 go func () {
20 ListenAndServeTLS(SECURE_ADDRESS,
 "cert.pem", "key.pem", nil)
21 done <- true
22 }()
23 <- done
24 <- done
25 }

Listing 38

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 6 const ADDRESS = ":1024"
 7 const SECURE_ADDRESS = ":1025"
 8 func main() {
 9 message := "hello world"
10 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
11 w.Header().Set("Content-Type",
 "text/plain")
12 Fprintf(w, message)
13 })
14 done := make(chan bool)
15 go func () {
16 go func() {
17 ListenAndServe(ADDRESS, nil)
18 done <- true
19 }()
20 ListenAndServeTLS(SECURE_ADDRESS,
 "cert.pem", "key.pem", nil)
21 done <- true
22 }()
23 <- done
24 <- done
25 }

Listing 39

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5)
 6 const ADDRESS = ":1024"
 7 const SECURE_ADDRESS = ":1025"
 8 func main() {
 9 message := "hello world"
10 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
11 w.Header().Set("Content-Type",
 "text/plain")
12 Fprintf(w, message)
13 })
14 Spawn(
15 func() { ListenAndServeTLS(SECURE_ADDRESS,
 "cert.pem", "key.pem", nil) },
16 func() { ListenAndServe(ADDRESS, nil) },
17)
18 }
19 func Spawn(f ...func()) {
20 done := make(chan bool)
21 for _, s := range f {
22 go func() {
23 s()
24 done <- true
25 }()
26 }
27 for l := len(f); l > 0; l-- {
28 <- done
29 }
30 }
34 | Overload | December 2016

FEATUREELEANOR MCHUGH
when they’ve all completed their work. Yet again this allows us to run
both servers in separate goroutines and manage termination correctly.
(See Listing 42.)

As there’s a certain amount of redundancy in this, let’s refactor a little by
packaging server initiation into a new Launch() function. Launch()
takes a parameter-less function and wraps this in a closure which will
be launched as a goroutine in a separate thread of execution. Our
sync.WaitGroup variable servers has been turned into a global
variable to simplify the function signature of Launch(). When we call
Launch() we’re freed from the need to manually increment servers prior
to goroutine startup, and we use a defer statement to automatically call
servers.Done() when the goroutine terminates even in the event that
the goroutine crashes. See Listing 43.

Listing 40

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5 "time"
 6)
 7 const ADDRESS = ":1024"
 8 const SECURE_ADDRESS = ":1025"
 9 func main() {
10 message := "hello world"
11 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
12 w.Header().Set("Content-Type",
 "text/plain")
13 Fprintf(w, message)
14 })
15 Spawn(
16 func() { ListenAndServeTLS(SECURE_ADDRESS,
 "cert.pem", "key.pem", nil) },
17 func() { ListenAndServe(ADDRESS, nil) },
18)
19 }
20 func Spawn(f ...func()) {
21 done := make(chan bool)
22 for _, s := range f {
23 go func() {
24 s()
25 done <- true
26 }()
27 time.Sleep(time.Second)
28 }
29 for l := len(f); l > 0; l-- {
30 <- done
31 }
32 }

Listing 42

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5 "sync"
 6)
 7 const ADDRESS = ":1024"
 8 const SECURE_ADDRESS = ":1025"
 9 func main() {
10 message := "hello world"
11 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
12 w.Header().Set("Content-Type",
 "text/plain")
13 Fprintf(w, message)
14 })
15 var servers sync.WaitGroup
16 servers.Add(1)
17 go func() {
18 defer servers.Done()
19 ListenAndServe(ADDRESS, nil)
20 }()
21 servers.Add(1)
22 go func() {
23 defer servers.Done()
24 ListenAndServeTLS(SECURE_ADDRESS,
 "cert.pem", "key.pem", nil)
25 }()
26 servers.Wait()
27 }

Listing 43

 1 package main
 2 import (
 3 . "fmt"
 4 . "net/http"
 5 "sync"
 6)
 7 const ADDRESS = ":1024"
 8 const SECURE_ADDRESS = ":1025"
 9
10 var servers sync.WaitGroup
11 func main() {
12 message := "hello world"
13 HandleFunc("/hello", func(w ResponseWriter,
 r *Request) {
14 w.Header().Set("Content-Type",
 "text/plain")
15 Fprintf(w, message)
16 })
17 Launch(func() {
18 ListenAndServe(ADDRESS, nil)
19 })
20 Launch(func() {
21 ListenAndServeTLS(SECURE_ADDRESS,
 "cert.pem", "key.pem", nil)
22 })
23 servers.Wait()
24 }
25 func Launch(f func()) {
26 servers.Add(1)
27 go func() {
28 defer servers.Done()
29 f()
30 }()
31 }

Listing 41

26 for _, s := range f {
27 go func(server func()) {
28 server()
29 done <- true
30 }(s)
31 }

This is an extract from A Go Developer’s Notebook, a living eBook
about Go and programming.

Living eBooks are purchased once and freely updated when the
author has something new to say.

You can purchase your copy at http://leanpub.com/GoNotebook
December 2016 | Overload | 35

http://leanpub.com/GoNotebook

FEATURE CHRIS OLDWOOD
Afterwood
One JavaScript module was removed and every Node.js build
was knocked for six. Chris Oldwood fictionalises the tale.
he alarm punctuated the morning silence and brought Norman to an
abrupt state of consciousness. After the disturbing buzzer was itself
silenced the room was then gently brought to life with the sound of

gurgling as the teasmade continued the morning ritual by making a fresh
cuppa. Norman always liked to start the day with a fresh brew.

The rest of the day began much like any other with the usual bowl of high-
fibre cereal, an invigorating shower and the precision buttering of bread
for his home-made packed lunch. As he cycled to work he thought about
the impending cricket match at the weekend. The team had played well all
season and only lost a single game so far and Norman, as team manager,
felt he had been instrumental in their success by giving the players plenty
of freedom.

As Norman approached the office his thoughts began to switch from the
cricket pitch to the day ahead. He made a mental note to check the cricket
kitbag during lunchtime and then his personal life faded-out and his
working life came into focus as the bicycle shed came closer into view.
He reached into his rucksack and pulled out a couple of different locks,
both fairly chunky, and with a padlock that Fort Knox would be proud of.
With the bike firmly restrained he reached into his pocket to find a
security pass which he proudly presented to the guard.

Norman took security very seriously. Prior to taking his current position
at SeaPan Ltd he had himself worked as a security guard at a museum in
the city. Initially he’d only been entrusted with the less valuable works of
art such as the Roman pottery and textiles, but his exemplary work ethic
and timekeeping had quickly earned him promotion. Within only a few
months he found himself responsible for the safe-keeping of the
museum’s prized collection of precious stones. Whilst he could appreciate
the workmanship of the ceramics there was always something a little more
special about the way the light would sparkle from the gems.

Alas the hours were unsociable and this interfered with his desire to play
in, and eventually manage, the local cricket team. While recounting his
tale of woe to another member of the team it transpired there was an
opening at SeaPan Ltd which might be of interest. Norman quickly
impressed in the interview and by the evening the job was already his.

The route to the department took in various twists and turns and like many
postal rooms the décor was drab and functional. It was a far cry from the
beautiful galleries of the museum but the job had its benefits and best of
all he had his own office. He paused for a moment to admire his name on
the door, ‘Normal P. Marshall, Package Manager’, then gave a wry smile
and stepped inside prepared for the challenges of another day.

The morning largely passed by without undue concern. There was the
usual assortment of queries from various members of staff complaining
about the intolerable lack of service despite the fact that the problem was
one of their own making. One rather irate salesman called Conan was
becoming increasingly agitated over the delay of his parcel. He descended
all five floors to the postal room demanding to know what imbecile was
in charge, and what they were going to do about finding his missing
packet. Norman nonchalantly stepped over to the large basket in the

corner and pulled out a parcel they received a few days earlier which had
been badly addressed. He asked Conan whether it was the one he had been
expecting and, after grudgingly receiving a confirmation, took a moment
to calmly re-educate his colleague on the most effective technique for
ensuring packages are correctly identified.

Lunchtime finally arrived and Norman took his rucksack down from the
top of the filing cabinet. He pulled out the make-shift lunchbox recycled
from an old margarine tub and started to munch away whilst flicking
through the discarded newspaper Conan had brought along in a rather
pathetic attempt to look a little more menacing.

One further benefit of his new role was that the office was only a few
minutes away from the cricket pavilion where the team played. This made
popping over there to check the kit was in order for the weekend match
easy to squeeze within his lunch break; after all he wasn’t expecting any
surprises, just check the items off his mentally stored list and get back to
the office for the afternoon shift.

He opened the pavilion door, rested his cycle up against the bar and
headed into the home team dressing room. The long leather bag was
already open and there had definitely been signs of some rummaging
around. Norman knelt down and began to sift through the bag checking
off the balls, gloves, bails, etc. Reaching the bottom his face slowly turned
pale as he realised he was an item short – one of the left pads was missing!

Norman quickly rationalised that this wasn’t an opportunistic thief at
work, but probably just one of the other players taking a few liberties. He
quickly searched the pavilion to be sure it hadn’t been haphazardly
returned, but found no trace. With his lunch hour about to expire he locked
the pavilion back up and headed over to the office.

He knew he didn’t have time to personally ring everyone until the
following evening so decided to broadcast his plight via social media in
the hope that someone would own up, or at least take up the mantle on his
behalf. Various replies came in during the afternoon with a few offering
support, but the majority were just sarcastic comments. Norman had
pretty thick skin but when people who didn’t even play in the team began
trolling it started to grate on him.

Fortunately the mystery was soon resolved. The team captain had decided
to get some extra batting practice in and, finding the groundsman had
temporarily unlocked the pavilion, had helped himself to the pad. (It takes
ages to put them on so decided just to protect his leading leg.) Having
donated them to the club in the first place he felt he was probably within
his right to borrow them whenever he pleased. The groundsman
unexpectedly locked up soon after and so he couldn’t return it to the
kitbag later.

Norman swung by the captain’s house on the way home to give him a
piece of his mind. He didn’t want to have to store the cricket kit under
lock-and-key, but he felt if some members couldn’t be trusted to look after
what belonged to the entire team, then that’s what he’d have to resort to.

Another win for the team at the weekend tempered Norman’s animosity
towards the captain and his knee jerk reaction to regulate access quickly
began to fade. Instead he crafted a polite notice for the wall in the home
team dressing room which reminded the players to consider the needs of
the club before their own. The incident had clearly struck a chord as some
of them pooled together and bought spares to ensure they would never
again be short on match day.

T

Chris Oldwood Chris is a freelance programmer who started out
as a bedroom coder in the 80’s writing assembler on 8-bit micros.
These days it’s enterprise grade technology in plush corporate
offices. He also commentates on the Godmanchester duck race
and can be easily distracted via gort@cix.co.uk or @chrisoldwood
36 | Overload | December 2016

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	The Font of Wisdom
	The MirAL Story
	Overloading with Concepts
	Ultra-fast Serialization of C++ Objects
	Modern C++ Features: User-Defined Literals
	Best Articles 2016
	Python Streams vs Unix Pipes
	Letter
	Hello World in Go
	Afterwood

