

We at JetBrains have spent the last
decade and a half helping developers
code better faster, with intelligent
products like IntelliJ IDEA, ReSharper
and YouTrack. Finally, you too have
a C++ development tool
that you deserve:

Rely on safe C++ code
refactorings to have all usages
updated throughout the whole
code base

Generate functions
and constructors instantly

Improve code quality
with on-the-fly code analysis
and quick-fixes

Find a C++ tool for you
jb.gg/cpp-accu

A Power Language
Needs Power Tools
—

ReSharper C++

Visual Studio Extension
for C++ developers

CLion

Cross-platform IDE
for C and C++ developers

AppCode

IDE for iOS
and OS X development

August 2016 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Some Big-Os are Bigger Than Others
Sergey Ignatchenko reminds us that Big-O applies
to very large data sets.

8 Kill the Clones
Adam Tornhill demonstrates how to detect software
clones and uncover hidden dependencies using
Empear.

11 Implementing SNAAAKE
Thaddaeus Frogley shares a diary of how his
implementation of Snake! developed.

14 C++ Antipatterns
Jonathan Wakely offers some pro-tips to help you
avoid common errors in C++.

17 Testing Propositions
Russel Winder considers how to test propositions
rather than specific examples.

28Afterwood
Chris Oldwood considers varying approaches to
gatekeeping.

OVERLOAD 134

August 2016

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.
uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 135 should be
submitted by 1st September 2016
and those for Overload 136 by
1st November 2016.

EDITORIAL FRANCES BUONTEMPO
Just a minute
Constraints can seem like an imposition.
Frances Buontempo wonders if banning
hesitation, deviation or repetition is a good thing.
The BBC Radio 4 comedy ‘Just a minute’ has been
running since 1967. For those unfamiliar with it, the
contestants are tasked to speak for one minute on a
subject without hesitation, deviation or repetition.
Points are awarded for speaking when the minute
whistle blows, or for correctly spotting a failure to

comply with the rules. “What does this have to do with an editorial for
Overload?” I hear you ask. A good question. Having recently stopped
commuting to work I am now at home in time to catch some of the 18:30
broadcasts of Radio 4 comedy programmes. Previously I could find them
on the BBC iPlayer, but I prefer the set time and structure of certain little
rituals. Having an editorial at the front of Overload is presumably a ritual
some readers pine for, though as ever I hope I may be forgiven for
deviating somewhat, sometimes repeating myself and definitely
hesitating as I try to gather my thoughts every two months and yet again
fail to write an editorial. Perhaps you will award me the occasional point
for making you chuckle from time to time though.

Constraints, such as banning hesitation, repetition, or deviation might
seem to make things harder; however, this can actually aid creativity. For
example, writing a short story for a competition with a strict limit on the
number of words, or filling in a personal statement for a role with a strict
limit on the number of characters (spaces did count apparently) gives a
structure and something to aim for. Adding a deadline may also provide
some impetus. Constraints and structure can be a good thing. Writing a
short story is a vague requirement, whereas writing one in under 500
words, using ‘elephant’, ‘Plank constant’ and ‘denial of service attack’
might focus the mind enough to get the imagination firing.

If you are self-employed or conducting long term research, perhaps a
PhD, then a change from set working hours and a list of tasks to complete,
or from timetabled lectures and weekly homework can be a shock to the
system. On paper, it might sound liberating. Just imagine being free to do
whatever you want, when you feel like it. In practice, a high level of
discipline is required to ensure you do not get distracted, say by listening
to comedy programs or doing a random walk through the internet, and
instead keep focussed on the task in hand. Finding some structure, or
setting a timetable for yourself, can be useful in such circumstances. Now
working with a (very) small start-up, I have found it useful to start the day
with a coffee, of course, and to use the agile style daily stand-up format,
just briefly. What were we doing? What do we plan to do today? What’s
getting in the way? It is far too easy to start by looking at emails and so
on, only to find two hours have vanished once some emails have been

read, others deleted, links to articles have been
followed, proclaiming excit ing new
programming languages and tools, surveys

h a v e suck e d y o u in , a nd o t h e r

distractions, or deviations, if you will, have stolen your time. What was I
saying? Oh yes. Try to stay on target in the face of distractions and lack
of formal structure. It is all too easy to be tempted to stay up far too late
if you are in the middle of something interesting, without the need to be
in the office by 9am sharp the next day. As a student, I frequently pulled
all-nighters. I love having an interesting problem to get my teeth into, and
there is usually no one much around to distract you in the middle of the
night. However, irregular sleep patterns are not a good idea. I have
personally found it really important to try to keep regular bed times,
avoiding reading maths books before putting the light out. If I don’t, then
I find it harder to get a proper night’s sleep. The interesting problem will
still be there in the morning. If you are pulling an all-nighter for work, the
bug will still be there in the morning. In both cases, you might be more
effective after a good night’s sleep. It seems sleep/wake homeostasis and
the circadian biological clock are important [Body Clock]. There have
been suggestions that irregular sleeping patterns, including shift work,
can lead to health problems. J Harrington provides an overview in the
BMJ’s Occupational and Environmental Medicine magazine
[Harrington].

As programmers, hopefully avoiding burning the midnight oil, we
schedule many things, often automatically. Aside from keeping meetings
in regular timeslots, to avoid the disruption of flash-mob style meetings
intruding on moments when you were trying to concentrate on a complex
problem, we may schedule server reboots, or scripts to run when code is
committed, from checking it compiles to checking tests pass or perhaps
to deployment if everything is ok. We may automatically, or manually,
check that coding standards, another form of constraint, have been
adhered to. Hopefully the occasional deviation will be allowed, otherwise
developers have a tendency to find back doors and workarounds where
officious gatekeepers are perceived to stand in the way of productivity. A
known timetable, such as a linux startup sequence; bios, mbr, grub,
kernel, init then runlevel, means we know what will happen in which
order. This constraint makes it easy to set things up and troubleshoot if
required. Every linux installation doing things in a unique and
unpredictable order would cause chaos.

A programming language could be seen as a sequence of constraints.
Either a compiler or interpreter will enforce the syntax of the language
and refuse to do any more if you try the coding equivalent of free-form
jazz where a type-name was expected. Some languages are stricter than
others. The Haskell type system is strongly revered, purporting to be able
to give you code that is correct, rather than defensive. Originally
introduced to solve problems concerning to equality and other numeric
operations, its powerful type classes now allow reasoning about
correctness [Hudak et al]. At the extreme, some languages, such as
Prolog, are purely based on constraints. Where an imperative approach

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad's BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | August 2016

EDITORIALFRANCES BUONTEMPO
would give step by step instructions and a declarative approach would
declare what must be done, logic or constraint programming states
constraints, or facts or rules, a solution must satisfy. This immediately
lends itself to word puzzles like:

 SEND
 + MORE

 = MONEY

where each unique letter corresponds to a unique digit, and the given sum
is correct. Prolog and variants have successfully been used for expert
systems and natural language programming (NLP). GOLEM is an expert
system built on Prolog [Muggleton] which combines examples with rules
supplied by experts that are combined into hypotheses. In turn these can
then be transformed into rules, when validated against further data. NLP
uses include representing a semantic web [Wielemaker et al], to combine
disparate data from various sources allowing a ‘semantic search’ to find
potentially related entries. Constraint programming can also be applied to
planning problems readily. The constraints in these examples all form the
basis of a problem that the language will attempt to solve. I suspect logic
programming is rather more niche than functional programming. More
generally, this little diversion has shown constraints can solve problems.

Forays into niche languages aside, unfamiliarity can be exciting and
uncomfortable in varying measures. A holiday or a new job will offer
novelty but the potential culture shock as you are re-orientated in unusual
places is a reminder that the same-old run-of-the-mill routine had its
benefits. Many C++ programmers, or users of any compiled language,
find dynamic languages unnatural initially. Similarly going from the
constraint of a strongly typed language to duck typing can be confusing.
It is interesting to note that more freedom often tends to coincide with
fear, to begin with. Eventually people tend to embrace these brave new
worlds. As a kitten constantly looks out of the window, seemingly longing
to explore, and then recoils in horror when the back door is finally opened
after a few weeks, the constraints that we are used to provide a familiarity
and sense of safety. This disruption, whether it be changing programming
languages or paradigms, operating systems or going outside for the first
time ever is a thing of note. Constraints help us to be creative, by knowing
what to expect, catching mistakes early, communicating clearly, even if
hesitating when we forget the exact keyword or syntax, but also can
inspire deviation or disruption. What if C++ (03) didn’t require so much
boilerplate just to output the contents of a vector? What if you introduced
structure, via functions or submodules, to a coding language rather than
having to trace gotos around to see what happened when? What if
everything was an object? Maybe that’s a step too far. What if you didn’t
use braces to delineate blocks, but used spacing instead, perhaps inventing
a new language in the process? Constraints can help creativity, but so can
questioning them.

The start-up culture has readily adopted the buzz-word ‘disruptive’.
Clayton Christensen [Christensen] coined the phrase ‘disruptive
innovation’ in 1995 to describe small new companies being able to release
new services and products far more quickly than established companies
thereby being able to take hold of the so-called ‘bottom of the market’ and

eventually stir things up for the ‘big boys’. We see this happening with
apps on mobile phones to book taxis, rather than hailing traditional Black
Cabs, with noise about crypto-currencies stealing a market share off big
banks, Amazon starting to threaten bookshops, and so on. Things do
change and often small companies do disrupt the normal course of things
with innovative ideas. I notice people are tending to just say ‘disruptive‘
rather than using the whole phrase ‘disruptive innovation’. Something got
lost in the meme sharing. Something like the punk anthem ‘Smash it up’
[The Damned] conjures up the sense of pure disruption for disruption's
sake. Disruptive innovation, on the other hand, may create new markets,
or sustain existing products and services, by making them more efficient.

Sometimes rebellion for rebellion’s sake does hail a new beginning. Punk
was a kick against the hippie movement or prog rock, giving short simple
songs anyone could yell along to, or write themselves. It’s tempting to
draw analogies between the punk rock movement and disruptive start-ups,
though like most ideas it’s been done before. The Think Jar Collective
offers such a parallel and reminds us that for all its disruption:

The punk movement and the music ate itself within a few years of
its adrenaline and narcotic inspired inception. But punk morphed
itself into new wave and gradually added itself into the mainstream
of music.[TJC]

Uber and Amazon and the like are now becoming mainstream. New
things do sometimes become old-hat. The abnormal might morph the
world around itself until it becomes the new normal.
This usually happens because people like the new
ideas, rather than through clever marketing schemes.

References
[Body Clock] https://sleepfoundation.org/sleep-

topics/sleep-drive-and-your-body-clock

[Christensen] http://www.claytonchristensen.com/key-concepts/

[The Damned] https://www.youtube.com/watch?v=YZ76LC_l8yk

[Harrington] http://oem.bmj.com/content/58/1/68.full

[Hudak et al] ‘A History of Haskell: Being Lazy With Class’ Paul Hudak,
John Hughes, Simon Peyton Jones, Philip Wadler. Proceedings of
the third ACM SIGPLAN conference on History of programming
languages, Pages 12-1–12-55, 2007
http://dl.acm.org/citation.cfm?id=1238856

[Muggleton] S. Muggleton and C. Feng, ‘Efficient induction of logic
programs’, Inductive Logic Programming, Academic Press, pages
281–297, 1992.

[TJC] http://thinkjarcollective.com/articles/punk-rock-innovation/

[Wielemaker et al] ‘Using Prolog as the fundament for applications on the
semantic web’ Jan Wielemaker , Michiel Hildebrand2 , and Jacco
van Ossenbruggen in Proceedings of the 2nd Workshop on
Applicatiions of Logic Programming and to the web, Semantic Web
and Semantic Web Services, p84–98, 2007
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
287/paper_1.pdf
August 2016 | Overload | 3

https://sleepfoundation.org/sleep-topics/sleep-drive-and-your-body-clock
https://sleepfoundation.org/sleep-topics/sleep-drive-and-your-body-clock
http://www.claytonchristensen.com/key-concepts/
https://www.youtube.com/watch?v=YZ76LC_l8yk
http://oem.bmj.com/content/58/1/68.full
http://dl.acm.org/citation.cfm?id=1238856
http://thinkjarcollective.com/articles/punk-rock-innovation/
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-287/paper_1.pdf

FEATURE SERGEY IGNATCHENKO
Some Big-Os are
Bigger Than Others
Big-O notation is often used to compare
algorithms. Sergey Ignatchenko reminds us that
asymptotic limits might not be generally applicable.

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

ften, when speaking about algorithms, we say things such as, “Hey,
this algorithm is O(n2); it is not as good as that one, which is O(n)”.
However, as with any bold and simple statement, there are certain

very practical applicability limits, which define when the statement can be
taken for granted, and where it cannot. Let’s take a closer look at Big-O
notation and at the real meaning behind it.

Definition
Mathematically, Big-O can be defined as follows:

In other words, if and only if there exist positive constants
c and n0 such that for all , the inequality is
satisfied. We say that f(n) is Big O of g(n), or that g(n) is an asymptotic
upper bound for f(n) [CMPS102].

In addition to O(n), there is a similar notation of Θ(n); technically, the
difference between the two is that O(n) is an upper bound, and Θ(n) is a
‘tight upper bound’. Actually, whenever we’re speaking about Big-Os, we
usually actually mean Big-Thetas.

For the purposes of this article, I prefer the following plain-English sorta-
definition [Wiki.Big-O]:

1. ‘T(n) is O(n100)’ means T(n) grows asymptotically no faster than
n100

2. ‘T(n) is O(n2)’ means T(n) grows asymptotically no faster than n2

3. ‘T(n) is Θ(n2)’ means T(n) grows asymptotically as fast as n2

Note that (as O(n) is just an upper bound), all three statements above can
stand for the very same function T(n); moreover, whenever statement #3
stands, both #1 and #2 also stand.

In our day-to-day use of O(n), we tend to use the tightest bound, i.e. for
the function which satisfies all three statements above, usually we’d say
“it is O(n2)”, while actually meaning Θ(n2).

Admittedly, the preliminaries above are short and probably insufficient if
you haven’t dealt with Big-Os before; if you need an introduction into the
world of complexities and Big-Os, you may want to refer, for example, to
[Orr14].

Everything is O(1)
One interesting observation about O(n) notations is that:

Strictly speaking, for real-world computers, every algorithm which
completes in a finite time can be said to be O(1)

This observation follows from the very definition above. As all real-world
computers have finite addressable data (264, 2256, and the number of
atoms in the observable universe are finite), then for any finite-time
algorithm there is a finite upper bound of time MAXT (as there is only a
finite number of states it can possibly go through without looping). As
soon as we know this MAXT, we can say that for the purposes of our
definition above, c is MAXT, and then the inequality in the definition
stands, technically making ANY real-world finite-time algorithm an O(1).

It should be mentioned that this observation is more than one singular
peculiarity. Instead, it demonstrates one very important property of the
Big-O notation: strictly speaking, all Big-Os apply ONLY to infinite-size
input sets. In practice, this can be relaxed, but we still need to note that

Big-O asymptotic makes sense ONLY for ‘large enough’ sets.

Arguing about O(n) vs O(n2) complexity for a set of size 1 is pretty
pointless. But what about size 2? Size 64? Size 1048576? Or more
generally:

What is the typical size when the difference between different Big-Os
starts to dominate performance in the real world?

Big-O notation itself is of no help in this regard (neither is it intended to
be). To answer this question, we’ll need to get our heads out of the
mathematical sand, and deal with the much more complicated real world.

History: early CPUs

Ancient times
Historically, Big-O notation, as applied to algorithm complexity, goes
back at least 50 years. At that time, most CPUs were very simple, and
more importantly,

Memory access times were considered comparable to CPU
operation times

If we take the MIX machine [Knuth] (which assigns execution times
‘typical of vintage-1970 computers’), we’ll see that ADD, SUB, etc. – as
well as all LOAD/STORES – are counted as 2 CPU clocks, MUL is
counted as 10 CPU clocks, and the longest (besides I/O and floating-
point) operation DIV is counted as 12 CPU clocks. At the same time,
memory-copying MIX operation MOVE goes at the rate of two CPU
clocks per word being moved. In short:

In 1970’s computers – and in the literature of the time too – memory
accesses were considered to have roughly the same CPU cost as
calculations.

As this was the time that most O(n) notation (as applied to computer
science) was developed, it led to quite a number of assumptions and
common practices. One of the most important assumptions (which has
since become a ‘silent assumption’) is that we can estimate complexity by

O

O g n f n c n n n f n cg n(()) { () | , , : () ()}        0 0 0 0

f n O g n() (())
n n 0 0  g n cg n() ()

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He currently holds the position of Security
Researcher and writes for a software blog (http://ithare.com). Sergey
can be contacted at sergey@ignatchenko.com
4 | Overload | August 2016

http://ithare.com

FEATURESERGEY IGNATCHENKO

This discrepancy in speed growth
between CPU core and memory latencies

has caused Very Significant changes to
the CPU architecture
simply counting the number of operations. Back in ancient times, this
worked pretty well; it follows both from the MIX timings above, and from
data on emerging micro-CPUs such as the i8080 (which had R-R ops at 4
clocks, and R-M ops at 6 clocks). However, as CPUs were developed, the
cost difference of different ops has increased A LOT, while the
assumption (being a ‘silent’ assumption) has never really been revised.

Modern CPUs: from 1 to 100 clocks and beyond
From about the 80s till now, the situation has changed in a very significant
way. Since about the early 80s, micro-CPU clocks speeds grew from
~4MHz to ~4GHz (i.e. 1000-fold), while memory latencies only
improved from about 250ns to about 10ns, i.e. only 25-fold1 . This
discrepancy in speed growth between CPU core and memory latencies has
caused Very Significant changes to CPU architecture; in particular, LOTS
of caches were deployed between the core and main RAM, to make things
work more smoothly.

Currently, a typical x64 CPU has three levels of cache, with typical access
times being 4, 12 and 40 clocks for L1, L2 and L3 caches respectively.
Main RAM access costs 100–150 clocks (and up to 300 clocks if we’re
speaking about multi-socket configurations with memory on a different
NUMA node). At the same time, the costs of simple ALU operations
(such as ADD etc.) have dropped below 1 CPU clock.2

This is a Big Fat Contrast with the assumptions used back in the 1970s;
now the difference because of unfortunate ‘jumps’ over (uncached at the
time) memory can lead to a 100+ (!) performance difference. However,
it is still O(1) and is rarely taken into account during performance analysis
.

Real world experiment
Theory is all very well, but what about a little practical experiment to
support it? Let’s take a look at a short and simple program (Listing 1).

Trivial, right? Now let’s see how this program performs in two cases:
first, when run ‘as is’, and second, when we replace list<int> in line
(*) with vector<int>.

As we can see from Listing 1, between moments t0 and t1 we’re only
traversing our lists or vectors, and each inner iteration is O(1). Therefore,
the whole thing between t1 and t0 is clearly O(N*M*P) = O(n) – both for
list and vector. Now, let’s see what is the real-world difference between
these two algorithms with exactly the same Big-O asymptotic.

WARNING: VIEWER DISCRETION ADVISED. The results below can be
unsuitable for some of the readers, and are intended for mature developer
audiences only. Author, translator, and Overload disclaim all the
responsibility for all the effects resulting from reading further, including,
but not limited to: broken jaws due to jaw dropping, popped eyes, and
being bored to death because it is well-known to the reader. (See Table 1.)

As we can see, Big-O(n) for list<> has been observed to be up to
780 bigger than intuitively the same Big-O(n) for vector<>.

And that was NOT a specially constructed case of swapping or something
– it was just an in-memory performance difference, pretty much without
context switching or any other special scenarios; in short – this can easily
happen in a pretty much any computing environment. BTW, you should be
able to reproduce similar results yourself on your own box, please just
don’t forget to use at least some optimization, as debug overhead tends to
mask the performance difference; also note that drastically reducing M
and/or P will lead to different cache patterns, with results being very
different.

In trying to explain this difference, we’ll need to get into educated-
guesswork area. For MSVC and gcc, the performance difference between
vector<> and list<> is pretty much in line with the difference
between typical cached access times (single-digit clocks) and typical
uncached access times (100–150 clocks). As access patterns for

1. I don’t want to get into discussion whether it’s really 10 or 100 – in
any case, it is MUCH less than 1000.

2. Statistically, of course.

Listing 1

constexpr int N=100;
constexpr int M=5000;
constexpr int P=5000;

using Container = list<int>;//(*)

int main() {
 //creating containers
 Container c[M];
 srand(time(0));
 for(int i=0;i<M;++i) {
 for(int j=0;j<P;++j) {
 Container& cc = c[rand()%M];
 cc.push_back(rand());
 }
 }

 clock_t t0 = clock();
 //running over them N times
 int sum = 0;
 for(int i=0;i<N;++i) {
 for(int j=0;j<M;++j) {
 for(int it: c[j]) {
 sum += it;
 }
 }
 }

 clock_t t1 = clock();
 cout << sum << '\n';
 cout << "t=" << (t1-t0) << '\n';
 return 0;
}

August 2016 | Overload | 5

FEATURE SERGEY IGNATCHENKO

any evidence we’ve got represents only a small
subset of all the possible experiments
vector<> are expected to use CPU prefetch fully and list<> under the
patterns in Listing 1 is pretty much about random access to memory,
which cannot be cached due to the size, this 100–150 difference in
access times can be expected to translate into 100–150 difference in
performance.

For clang, however, the extra gain observed is not that obvious. My
somewhat-educated guess here is that clang manages to get more from
parallelization over linear-accessible vector<>, while this optimization
is inapplicable to list<>. In short – when going along the vector<>,
the compiler and/or CPU ‘know’ where exactly the next int resides, so
they can fetch it in advance, and can process it in parallel too. When going
along the list<>, it is NOT possible to fetch the next item until the
pointer is dereferenced (and under the circumstances, it takes a looooong
while to dereference this pointer).

On the other hand, it should be noted that an exact explanation of the
performance difference is not that important for the purposes of this
article. The only thing which matters is that we’ve taken two ‘reasonably
good’ (i.e. NOT deliberately poorly implemented) algorithms, both
having exactly the same Big-O asymptotic, and easily got 100-to-780
performance difference between the two.

Potential difference: 1000x as a starting point
As we can see, depending on the compiler, results above vary greatly;
however, what is clear, is that

These days, real-world difference between two algorithms with
exactly the same Big-O asymptotic behaviour, can easily exceed
500

In other words: we’ve got very practical evidence that the difference can
be over 500. On the other hand, any evidence we’ve got represents only
a small subset of all the possible experiments. Still, lacking any further
evidence at the moment, the following assumption looks fairly
reasonable.

With modern CPUs, if we have two algorithms (neither of which
being specially anti-optimized, and both intuitively perceived to
have the same performance at least by some developers), the
performance difference between them can be anywhere from 0.001
to 1000.

Consequences
Now let’s take a looking at the same thing from a bit different perspective.
The statement above can be rephrased into the following:

with modern CPUs, unknown constants (those traditionally ignored
in Big-O notation) may easily reach 1000.

In turn, this means that while O(n2) is still worse than O(n) for large
values of n, for n’s around 1000 or so we can easily end up in a situation
when:

 algo1() is O(n2), but T(algo1(n)) is actually 1* n2

 algo2() is O(n), but T(algo2(n)) is actually 1000*n

 then  n < 1000, T(algo1(n)) = n2 < 1000*n = T(algo2(n))

This observation is nothing new, and it was obviously obvious to the
Founding Fathers back in the 1970s; what’s new is the real-world
difference in those constants, which has grown Very Significantly since
that time, and can now reach 1000. In other words,

the maximum size when O(n2) can be potentially faster than O(n),
has grown to a very significant n~=1000

If we’re comparing two algos, one with complexity of O(n) and another
with complexity of O(log n), then similar analysis will look as follows:

 algo1() is O(n), but T(algo1(n)) is actually 1* n

 algo2() is O(log n), but T(algo2(n)) is actually 1000*log2(n)

 then  n < 13746, T(algo1(n)) = n < 1000*log2(n) = T(algo2(n))

In other words,

the maximum size when O(n) can be potentially faster than O(log n),
is currently even larger, in the over-10K range

Summary
All animals are equal, but some animals are

more equal than others.
~ George Orwell, Animal Farm

To summarize the findings above:

 Big-O notation still stands ;-)

 All Big-Os are Big, but some Big-Os are bigger than others

Table 1

Box 1

clang -O2

N=100,M=5000,P=5000
RESULT: vector<> is 434x faster

clang -O3
-march=native
N=100,M=5000,P=5000
RESULT: vector<> is 498x faster

clang -O3
-march=native
N=100,M=1000,P=1000
RESULT: vector<> is 780x fastera

Box 2
MSVC Release

N=100,M=1000,P=1000
RESULT: vector<> is 116x faster

MSVC Release

N=100,M=5000,P=5000
RESULT: vector<> is 147x faster

gcc -O2

N=100,M=1000,P=1000
RESULT: vector<> is 120x faster

a. This result is probably attributed to vector<> with M=1000 and P=1000 fitting into L3 cache on this box.
6 | Overload | August 2016

FEATURESERGEY IGNATCHENKO

If in doubt – test it!
Real-world results can be very

different from intuitive expectations
 On modern CPUs, the performance difference between two
reasonably good algos with the same Big-O can easily reach
over 500 (that’s for usual scenarios, without swapping or
context switch thrashing)

 Big-O asymptotic can still be used for large enough values of n.
However, what qualifies as large enough for this purpose, has
changed over the years

 In particular, for modern CPUs, even if the asymptotic
difference is ‘large’ (such as comparing O(n2) to O(n)), then the
advantage of O(n) SHOULD NOT be taken as granted for sizes
< 1000 or so

 If the asymptotic difference is ‘smaller’ (such as comparing
O(n) to O(log n)), then the advantage of O(log n) SHOULD
NOT be taken as granted for sizes < 10000 or so

 Starting from n=10000, we can usually still expect that the better
Big-O asymptotic will dominate performance in practice

 If in doubt – test it! Real-world results can be Very Different
from intuitive expectations (and still Very Different from
estimates based on pure Big-O asymptotic).

References
[CMPS102] CMPS 102, ‘Introduction to Analysis of Algorithms’,

University of California, https://classes.soe.ucsc.edu/cmps102/
Spring04/TantaloAsymp.pdf

[Knuth] Donald E. Knuth, The Art of Computer Programming, Vol.1,
section 1.3.1

[Loganberry04] David ‘Loganberry’ Buttery, ‘Frithaes! – an Introduction
to Colloquial Lapine’, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

[Orr14] Roger Orr, ‘Order Notation in Practice’, Overload #124

[Wiki.Big-O] https://en.wikipedia.org/wiki/Big_O_notation

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.
August 2016 | Overload | 7

https://classes.soe.ucsc.edu/cmps102/Spring04/TantaloAsymp.pdf
https://classes.soe.ucsc.edu/cmps102/Spring04/TantaloAsymp.pdf
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
https://en.wikipedia.org/wiki/Big_O_notation

FEATURE ADAM TORNHILL
Kill the Clones
Problems in code can hide in surprising places. Adam
Tornhill demonstrates how to detect software clones
and uncover hidden dependencies.
Empear Developer only looks for changes in the same commit. However,
Empear’s Enterprise version [Enterprise] presents alternative metrics
where two, or more, files are coupled if:

 they are changed by the same programmer within a specific time
frame, or

 the commits refer to the same Ticket ID (Jira, GitHub, etc).

The first metric is a heuristic while the second one delivers more accurate
results based on the ticket system on top. That means you’re able to find
temporal coupling even if the files are changed by different programmers
(e.g. front-end versus back-end teams) or when you have your code in
multiple repositories.

You use this variant of temporal coupling to identify change patterns that
ripple over repository boundaries. For example, I did a software analysis
for one of our customers a while back. They used a microservices
architecture and we identified some heavy temporal coupling between
some of their services. That was a clear sign that their services weren’t
as autonomous as they should be. Not only is it hard to reason about
system behaviour in that case; It’s also expensive to maintain since you
now need to deploy whole clusters of services at once.

What are the criteria for Temporal Coupling?

our Code as a Crime Scene [Tornhill15] presents around 15
different software analyses. Of all those analyses, Temporal
Coupling is the most exciting one. In this article, we’ll put

the analysis to work on a real-world system under heavy
development: Microsoft’s ASP.NET MVC framework [ASP].
You’ll see why and how Temporal Coupling helps us design better
software as we detect a number of possible quality issues in
ASP.NET MVC. In addition, you get a preview of Empear
Developer [Empear], a new tool to automate software analyses.

What’s temporal coupling?
Temporal Coupling means that two (or more) modules change
together over time. In this version, Empear Developer (see Figure
1) considers two modules coupled in time if they are modified in
the same commit (in future versions you’ll find other options too).

The fascinating thing with Temporal Coupling is that the more experience
we get with the analysis, the more use cases there seem to be. For
example, you can use Temporal Coupling results to:

1. Detect software clones (aka copy-paste code).
2. Evaluate the relevance of your unit tests.
3. Detect architectural decay.
4. Find hidden dependencies in your codebase.

In this article we focus on detecting software clones and uncovering
hidden dependencies.

Explore your physical couples
Let’s fire-up Empear Developer and run an analysis of ASP.NET MVC.
Since we’re interested in exploring Temporal Coupling, we click on the
corresponding button. Figure 2 shows what the result looks like.

Empear Developer presents us with multiple views so that we can
investigate different aspects of the results. The default view above is
based on a visualization technique called Hierarchical Edge Bundling.
You see the names of all involved files as nodes with links between the
ones that are coupled. If we hover over a node, its temporal couples will
light-up in red.

So, why do two source code files change together over time? Well, the
most common reason is that they have a dependency between them; One
module is the client of the other.

Y

Adam Tornhill Adam is a programmer who combines degrees in
engineering and psychology. He’s the author of Your Code as a
Crime Scene, has written the popular ‘Lisp for the Web’ tutorial and
self-published a book on Patterns in C. Adam also writes open-
source software in a variety of programming languages. His other
interests include modern history, music and martial arts.

Figure 1

Empear Developer is a desktop application for programmers and
software architects that gives you unique insights into your codebase:

 Use a Hotspot analysis to identify complicated code that you have
to work with often.

 Discover Temporal Coupling between modules in your code and get
deep design insights.

 Use Complexity Trends to supervise how your code evolves over
time and react early to potential quality issues.

Empear Developer is a tool built on the ideas in the popular book Your
Code as a Crime Scene. Empear Developer analyses data from your Git
source code repository. This gives you a new perspective on your
codebase and unique insights that you cannot get from the code alone.
And it’s information that’s based on actual data from how you’ve worked
with the code so far. You use that information to improve your software
and make it easier to maintain.

Empear Developer
8 | Overload | August 2016

FEATUREADAM TORNHILL
You see a few examples on physical coupling in the picture above, a unit
test tends to change together with the code under test. This is expected. In
fact, we’d be surprised if the temporal coupling was absent – that would
be a warning sign since it indicates that your tests aren’t being kept up to
date or aren’t relevant.

A physical dependency like this is something you can detect from
the code alone. But remember that Temporal Coupling isn’t
measured from code; Temporal Coupling is measured from the
evolution of the code. That means you’ll sometimes make
unexpected findings.

Look for the unexpected
There’s one main heuristic to keep in mind as you analyze a
software system: always look for the unexpected. Look for
surprises, since a surprise in a software design is bound to be

expensive from a cognitive perspective and
therefore expensive to maintain.

As soon as you find a logical dependency that
you cannot explain, make sure to investigate
it. Let me clarify with an example from
ASP.NET MVC (see Figure 3).

The visualization above shows temporal
coupling between a LinkTagHelper.cs
and a ScriptTagHelper.cs. You also see
that their unit tests tend to be changed
together.

While those two classes seem to solve related
aspects of the same problem, there’s no good
reason why a change to one of them should
imply that the other one has to be changed as
well. Let’s get more information on this
potential problem by switching to the detailed
view in Figure 4.

The data above confirms that there’s a strong
d e g re e o f c o u p l i n g b e t w e e n t he
LinkTagHelper.cs an d
ScriptTagHelper.cs, but also between
their unit tests. 9 out of 10 changes we do to
one of the classes will result in a predictable
change to its coupled peer.

When you find an unexpected change pattern like this you need to dig into
the code and understand why. It’s particularly interesting in this case since
there is not any direct physical dependency between the logically coupled
classes! Let’s have a look at the LinkTagHelper.cs and the
ScriptTagHelper.cs to see if we can spot any patterns (see Figure 5).

So you have the ScriptTagHelper.cs to
the left and the LinkTagHelper.cs to
your right. Do you see any pattern? Indeed,
and this is what I tend to find on a regular
basis as I inspect logical coupling – a dear old
friend – copy-paste.

If you take a detailed look, you’ll note
something rare. The variable names and, even
more rare, the comments have been updated
so this is more like copy-paste with a gold
plating (see Figure 6).

Break the logical dependencies
When you have an unexpected temporal
dependency, you’ll often find that there’s
some dup l i ca t ion o f bo th code and
knowledge. Extract ing that common
knowledge into a module of its own breaks
the temporal coupling and makes your code a
bit easier to maintain. You see, temporal
coupl ing of ten sugges t s re fac tor ing
candidates.

At this point it’s important to note that
duplicated code in itself isn’t always a
problem; just because two pieces of code

Figure 2

Figure 3

Figure 4
August 2016 | Overload | 9

FEATURE ADAM TORNHILL
look the same, that doesn’t mean they have to be refactored to use a shared
abstraction. Instead we want to focus on what the code expresses.

In the case of ASP.NET MVC, it’s clear that the two classes model the
same process. So it is indeed a duplication of knowledge and it’s likely
that the code would benefit from a refactoring. This is even more
important since, as the temporal coupling results indicate, we have the
same amount of duplication between their corresponding unit tests.
Avoiding expensive change patterns makes software maintenance much
easier. Duplication of knowledge makes change much more expensive: it
is easy to forget to update one of the copies when the business rules
change or when a bug gets fixed.

Complement your intuition
If you’re an experienced developer who has contributed a lot of code to a
particular project then you probably have a good feeling for where the
most significant maintenance problems will show-up. You may still get
surprised when you run an analysis, but in general several code analysis
findings will match your intuitive guess. Temporal Coupling is different.
We developers seem to completely lack all kind of intuitive sense when it
comes to Temporal Coupling.

Conclusion
Exploring Temporal Coupling in our codebases often gives us deep and
unexpected insights into how well our designs stand the test of time.

In this article we explored how Temporal Coupling detects a DRY
violation in ASP.NET MVC. We ran an analysis with Empear Developer
and looked for unexpected temporal dependencies to identify expensive
change patterns in our code. Used that way, Temporal Coupling suggests
both refactoring candidates and the need for new modular boundaries.

The same analysis principle also helps you catch architectural decay. All
you have to do is to lookout for temporal dependencies that span
architectural boundaries. Temporal Coupling is like bad weather – it gets
worse with the distance you have to travel – and it makes a big difference
if we need to modify two files located in the same package versus
modifying files in different parts of the system. So make it a habit to
investigate the temporal dependencies in your repository on a regular
basis. Your code will thank you for it. 

References
[ASP] https://github.com/aspnet/Mvc

[Empear] http://empear.com/
offerings/developer-edition/

[Enterprise] http://empear.com/
offerings/enterprise-edition/

[Tornhill15] Tornhill, Adam (2015)
Your Code as a Crime Scene,
Pragmatic Bookshelf, ISBN: 978-
1-68050-038-7

Figure 5

Figure 6
10 | Overload | August 2016

https://github.com/aspnet/Mvc
http://empear.com/offerings/developer-edition/
http://empear.com/offerings/developer-edition/
http://empear.com/offerings/enterprise-edition/
http://empear.com/offerings/enterprise-edition/

FEATURETHADDAEUS FROGLEY
Implementing SNAAAKE
Almost everyone knows the game Snake!
Thaddaeus Frogley shares a diary of how his
implementation grew over time.
Snake! Best practise...
Snake is a very old computer game, which appears to date back to an arcade
game from 1976 called Blockade [Snake]. Some of our audience may recall
playing a variant on a BBC machine or similar in the 1980s. Younger readers
may have first encountered this game on an older Nokia mobile phone. You
play by moving a dot (or similar shape) which gradually grows around the
screen and lose when you run into yourself, edge of the screen or obstacle.
There are many variants but I am used to one where ‘eating’ another object
by running over it, makes the dots grow longer, thereby making the game
more difficult as the snake grows.

Andy Balaam demonstrated how he'd implemented ‘Snake!’ in a variety of
different languages at this year's ACCU conference, including Elm (Haskell
for your browser) [Elm], a ZX spectrum emulator, Ruby, Python 3 with Qt5,
Groovy, and Dart [Dart]. The idea of re-implementing something in several
different ways is appealing. You learn by practising, and redoing the same
thing a few times is a common learning technique. If you learn to play the
piano, you practise your scales over and over. Some people try the same
code kata over and over. Each time allows you to concentrate on improving
at a different aspect of the task. Of course, if you implement a game, you
can then play it afterwards. What could be better?

I am therefore inviting people to send their attempts at Snake!, or similar, to
Overload. You had best get practising! In what follows, Thaddeus Frogley
shares a diary of how his implementation in C++ using Emscripten
developed. You can play it here: http://thad.frogley.info/snaaake/

Fran
y implementation of snake was a spare time project, which I
worked on during the evenings after work. A day in the timeline
represents anything from a few minutes to a few hours of work.

Working on this, I made 77 commits over the course of 52 different days
between Feb 11 and Dec 20. This is probably the equivalent of around 2
weeks worth of work at ‘full time job’ hours. Obviously, focus and flow
impact productivity, so making comparisons like that is rather
speculative.

The first 16 days worth of work is purely ‘tech’, none of what I’d call the
‘game’ is done until day 17, from then it’s just 10 days until the game is
basically done. From then until the end it’s polish (fine tuning) and bug
fixing, with no significant changes to how the game looks or feels.

That time breaks down roughly as first 30% on tech investment, then 20%
on making the game and the last 50% on polish & bug fixing.

With unused source files removed, the dependency graph looks like
Figure 1 (overleaf).

Development timeline
Day 1 (Tue Feb 11)
Setting up Emscripten [Emscripten], and getting a simple SDL [SDL]
“hello world” program to compile and run in a browser.

Day 2 (Thu Feb 13)
Cobbled together from code copy-pasted from other projects, I set up an
event loop, some math primitives, and classes for drawing simple shapes
with OpenGL, to display some animated geometry to a window in the
browser.

Day 3 (Sat Feb 15)
Switched from legacy immediate mode OpenGL to ES2 style rendering,
using hard coded vertex and pixel shaders.

Day 4 (Mon Feb 17)
Added support for passing scale and translation through the shaders so
that the shapes can be positioned on screen again. Made the shape classes
hold a reference to their shader programs.

Day 5 (Tue Feb 18)
Added support for passing the colour used to draw into the shaders from
the C++ code as a uniform [OpenGL].

Day 6 (Wed Feb 19)
Changed from passing position and scale as separate uniforms, to passing
in a 4x4 matrix.

Day 7 (Thu Feb 20)
Moved all the math code copy-pasted into src/geometry on Day 2 into
its own git repo, added that as a submodule in libs/geometry
[Geometry].

Day 8 & 9 (Fri Feb 21, & Wed Feb 26)
Improvements to the matrix class interface in src/geometry to make it
easier to integrate with the OpenGL code I’m writing. These changes
introduce the first use of a c++11 feature, the initializer_list.

Day 10 (Sun Mar 2)
Creation of matrixes from separate translation, scale, and rotation values.
The app now displays animated rotating stars and rings.

Day 11, 12, & 14 (Mon Mar 3, Sat Mar 22, & Sun Apr 27)
Improvements to the geometry code,
mostly focused on making it easier to
create matrixes for different uses.

Day 15 & 16 (Mon Apr 28, Tue Apr 29)
Added a ‘quad’ shape class, and set up a
display grid of 84x48 to emulate the classic
Nokia 3310 screen. Up until this point all
the work has been preparatory, but now I
have settled on making my snake clone a
tribute to one of the original mobile phone
versions. Using an array as a framebuffer,
and then render it with single quad per
pixel.

Day 17 (Wed Apr 30)
First gameplay work: Implemented the
tracking of a position, moving in a
direction writing to the framebuffer, and

M

Thaddaeus Frogley Thaddaeus started programming on the ZX81
when he was 7 years old, and has been hooked ever since. He has
been working in the games industry for over 20 years. On Twitter he
is @codemonkey_uk or reach him by email: thad@bossalien.com
August 2016 | Overload | 11

http://thad.frogley.info/snaaake/

12 | Overload | August 2016

FEATURE THADDAEUS FROGLEY

Figure 1

A day in the timeline represents anything from a
few minutes to a few hours of work ... focus and
flow impact productivity

FEATURETHADDAEUS FROGLEY
then detecting self-collisions and resetting the game. Add to that, the
display of a score on screen, and I have a minimal snake game.

Day 18 & 19 (Thu May 1, Fri May 2)
The snake’s tail now only grows when it eats a pick up. Snake wraps
around the sides. Code rate of change slows as I spend more time testing
the game-feel and thinking about making it fun.

Day 20 (Sun May 4)
Design a more compact score font. Each glyph in the font is defined as a
simple array of 6 const char*, and the font is just an array of 10 glyphs.

Day 21 (Tue May 6)
Code and gameplay improvements around spawning food and poison
pills.

Day 22 (Thu May 8)
A very important change to the keyboard event handling so players can u-
turn reliably. Actions are queued, and processed one per frame. Switched
to using std::mt19937 over rand(), as rand was giving inconsistent,
and in some cases highly predictable, behaviour across browsers. Did
code housekeeping around resetting and restarting.

Day 23 (Thu May 15)
Added ability to grow the snake by arbitrary length for each food pick up
collected.

Day 24–28 (Tue May 20, Wed 21, Thurs 22 and Fri 30)
Some refactoring, followed by making the snake 2 pixels thick, instead of
1. Made the spawns fat as well. Cornering with the thick snake was
surprisingly tricky to get right. Played it a lot, then fixed a subtle bug in it.

Day 29 & 30 (Sat May 31, Sun Jun 1)
Optimisation: Performance was not ideal on all browsers. Implemented
pre-calculating the geometry, and then batching the draw calls. OpenGL
and WebGL draw calls can be very expensive. Batching is a common
solution to this problem – we gather things than can be drawn in one call
and submit them together. This reduces the number of calls per frame
from 4032 to 3.

Day 31 (Mon Jun 2)
Moved the text drawing code into its own header and translation unit.
Added a system to remove the poison pills when the snake collects food.
Definitely an improvement. Fun to play.

Day 32 (Tue Jun 3)
Added ability to pause, with on screen status display.

Day 33 (Thu Jun 12)
Added an on screen game title, and improved removal of poison pills so
that single pixel pieces don’t get left behind.

Day 34 (Mon Jun 16)
Minor refactor of score tracking.

Day 35 (Wed Jun 25)
Updated build scripts, and in-game title so that the game is now called
SNAAAKE.

Day 36–37 (Thu Jun 26, Wed Jul 2)
HTML wrapper work. Getting the game ready to be put online.

Day 38 (Sun Jul 6)
Double thickness snake behaviour still wasn’t quite right. Fixed a bug
with edge wrapping.

Day 39 (Fri Jul 11)
Refactoring, and code tidy up, followed by restricting the spawns from
appearing while the snake is growing to improve pacing.

Day 40 (Sat Jul 12)
Changed the food and poison spawning logic to keep them from spawning
on top of each other. Started work on an OS X native build.

Day 41 (Sun Jul 13)
Working on OS X project, icon, etc to have a native OS X binary
distributable.

Day 42 & 43 (Mon Jul 14, Tue Jul 15)
Added on-screen (in-game) instructions, CMD-Q handler to quit in the

OS X build, then added a ‘favicon’ and download link, for the OS X
version, to the HTML5 container.

Day 44 (Wed Jul 16)
Refactoring, bug fixing, and presentation polish including the player-
praise header text.

Day 45 (Fri Jul 18)
Refactoring, bug fixing, and presentation polish.

Day 46 (Mon Jul 21)
Added centre alignment support to the text rendering code to further
improve the presentation of instructions.

Day 47 (Fri Jul 25)
Refactoring: Moved non-game event handling out of the game specific
event handler.

Day 48 (Sat Aug 2)
Refactoring: Separated ‘Controller’ from ‘Model’, then implemented an
AI ‘Controller’ to control the snake for an attract mode, and improved the
instructions.

Day 49 (Sun Aug 3)
Bug fix: Prevented the AI from taking high scores.

Day 50 (Mon Aug 4)
Improved the attract mode AI by making it more natural/fallible and less
predictable.

Day 51 (Tue Sep 2)
Optimised the thumbnail for the website (optipng).

Day 52 (Sat Dec 20)
Added music (web version only).

Addendum, 2 years later …. Day 53 (Sat May 11)
Finished and committed high score persistence and unused source file
removal.

Conclusion
There is no conclusion. Spare time projects don’t end, they just slow down
until movement is undetectable. A space to practise and experiment is
worthwhile for all programmers. But remember

 what’s good for your personal projects isn’t the same as what’s good
for team projects, and

 what’s good for small projects isn’t the same as what’s good for
large projects.

References
[Dart] https://www.dartlang.org/

[Elm] http://elm-lang.org/

[Emscripten] https://github.com/kripken/emscripten

[Geometry] https://github.com/codemonkey-uk/geometry

[OpenGL] https://www.opengl.org/wiki/Uniform_(GLSL)

[SDL] https://www.libsdl.org

[Snake] https://en.wikipedia.org/wiki/Snake_(video_game)

The source code, with full revision history, can be found on github:
https://github.com/codemonkey-uk/snaaake
August 2016 | Overload | 13

https://github.com/codemonkey-uk/snaaake
http://elm-lang.org/
https://en.wikipedia.org/wiki/Snake_(video_game)
https://www.opengl.org/wiki/Uniform_(GLSL)
https://www.dartlang.org/
https://github.com/codemonkey-uk/geometry
https://github.com/kripken/emscripten
https://www.libsdl.org

FEATURE JOANATHAN WAKELY
C++ Antipatterns
Certain mistakes crop up frequently in C++.
Jonathan Wakely offers some pro-tips to
help you avoid common errors.
his article documents some common mistakes that I see again and
again in bug reports and requests for help on si tes l ike
StackOverflow.

Reading from an istream without checking the result
A very frequently asked question from someone learning C++ looks like
this:

I wrote this program but it doesn’t work. It reads from the file correctly
but does the calculation wrong.

 #include <iostream>
 #include <fstream>

 int calculate(int a, int b, int c)
 {
 // blah blah blah complex calculation
 return a + b + c;
 }

 int main()
 {
 std::ifstream in("input.txt");
 if (!in.is_open())
 {
 std::cerr << "Failed to open file\n";
 return 1;
 }

 int i, j, k;
 in >> i >> j >> k;
 std::cout << calculate(i, j, k);
 }

Why doesn’t the calculation work?

In many, many cases the problem is that the in >> ... statement failed,
so the variables contain garbage values and so the inputs to the calculation
are garbage.

The program has no way to check the assumption ‘it reads from the file
correctly’, so attempts to debug the problem are often just based on
guesswork.

The solution is simple, but seems to be rarely taught to beginners: always
check your I/O operations.

The improved version of the code in Listing 1 only calls calculate(i,
j, k) if reading values into all three variables succeeds.

Now if any of the input operations fails you don’t get a garbage result, you
get an error that makes the problem clear immediately. You can choose
other forms of error handling rather than throwing an exception, the
important bit is to check the I/O and not just keep going regardless when
something fails.

Recommendation: always check that reading from an istream
succeeds.

Locking and unlocking a std::mutex
This is always wrong:

 std::mutex mtx;
 void func()
 {
 mtx.lock();
 // do things
 mtx.unlock();
 }

It should always be done using one of the RAII scoped lock types such as
lock_guard or unique_lock e.g.

 std::mutex mtx;
 void func()
 {
 std::lock_guard<std::mutex> lock(mtx);
 // do things
 }

Using a scoped lock is exception-safe, you cannot forget to unlock the
mutex if you return early, and it takes fewer lines of code.

Recommendation: always use a scoped lock object to lock
and unlock a mutex.

T

Listing 1

int i, j, k;

if (in >> i >> j >> k)
{
 std::cout << calculate(i, j, k);
}

else
{
 std::cerr <<
 "Failed to read values from the file!\n";
 throw std::runtime_error("Invalid input file");
}

Jonathan Wakely Jonathan’s interest in C++ and free software
began at university and led to working in the tools team at Red Hat,
via the market research and financial sectors. He works on GCC’s
C++ Standard Library and participates in the C++ standards
committee. He can be reached at accu@kayari.org
14 | Overload | August 2016

FEATUREJOANATHAN WAKELY

The program has no way to check
the assumption ‘it reads from the file correctly’,

so attempts to debug the problem
are often just based on guesswork
Be careful that you don’t forget to give a scoped lock variable a name!
This will compile, but doesn’t do what you expect:

 std::mutex mtx;
 void func()
 {
 std::unique_lock<std::mutex> (mtx); // OOPS!
 // do things, but the mutex is not locked!
 }

This default-constructs a unique_lock object called mtx, which has
nothing to do with the global mtx object (the parentheses around (mtx)
a r e r e du n da n t a n d s o i t ’ s e qu i v a l e n t t o s i m pl y
std::unique_lock<std::mutex> mtx;).

A similar mistake can happen using braces instead of parentheses:

 std::mutex mtx;
 void func()
 {
 std::unique_lock<std::mutex> {mtx}; // OOPS!
 // do things, but the mutex is not locked!
 }

This does lock the global mutex mtx, but it does so in the constructor of
a temporary unique_lock, which immediately goes away and unlocks
the mutex again.

Testing for istream.eof() in a loop
A common mistake when using istreams is to try and use eof() to detect
when there is no more input:

 while (!in.eof())
 {
 in >> x;
 process(x);
 }

This doesn’t work because the eofbit is only set after you try to read
from a stream that has already reached EOF. When all the input has been
read, the loop will run again, reading into x will fail, and then
process(x) is called even though nothing was read.

The solution is to test whether the read succeeds, instead of testing for
EOF:

 while (in >> x)
 {
 process(x);
 }

You should never read from an istream without checking the result
anyway, so doing that correctly avoids needing to test for EOF.

Recommendation: test for successful reads instead of testing
for EOF

Inserting into a container of smart pointers with
emplace_back(new X)
When appending to a std::vector<std::unique_ptr<X>>, you
cannot just say v.push_back(new X), because there is no implicit
conversion from X* to std::unique_ptr<X>.

A popular solution is to use v.emplace_back(new X) because that
compiles (emplace_back constructs an element in-place from the
arguments, and so can use explicit constructors).

However, this is not safe. If the vector is full and needs to reallocate
memory, that could fail and throw a bad_alloc exception, in which case
the pointer will be lost and will never be deleted.

The safe solution is to create a temporary unique_ptr that takes
ownership of the pointer before the vector might try to reallocate:

 v.push_back(std::unique_ptr<X>(new X))

(You could replace push_back with emplace_back but there is no
advantage here because the only conversion is explicit anyway, and
emplace_back is more typing!)

In C++14 you should just use std::make_unique and it’s a non-issue:

 v.push_back(std::make_unique<X>())

Recommendation: do not prefer emplace_back just
because it allows you to call an explicit constructor. There
might be a good reason the class designer made the
constructor explicit that you should think about and not just
take a short cut around it.

(Scott Meyers discusses this point as part of Item 42 in Effective Modern
C++.)

Defining ‘less than’ and other orderings correctly
When using custom keys in maps and sets, a common mistake is to define
a ‘less than’ operation as in Listing 2.

This operator< does not define a valid ordering. Consider how it
behaves for X{1, 2} and X{2, 1}:

 X x1{1, 2};
 X x2{2, 1};
 assert(x1 < x2);
 assert(x2 < x1);

The operator< defined above means that x1 is less than x2 but also that
x2 is less than x1, which should be impossible!

The problem is that the operator< says that l is less than r if any
member of l is less than the corresponding member of r. That’s like
saying that 20 is less than 11 because when you compare the second digits
'0' is less than '1' (or similarly, that the string "20" should be sorted before
"11" because the second character '0' is less than the second character '1').

In technical terms the operator< above fails to define a Strict Weak
Ordering.
August 2016 | Overload | 15

FEATURE JOANATHAN WAKELY

Unordered containers require an equality
operator, but that’s harder to get wrong
Another way to define a bogus order is:

 inline bool operator<(const X& l, const X& r)
 {
 return l.a < r.a && l.b < r.b;
 }

Where the first example gave the nonsensical result:

 x1 < x2 && x2 < 1

this definition gives the result:

 !(x1 < x2) && !(x1 < x2)

In other words, the two values are considered to be equivalent, and so only
one of them could be inserted into a unique associative container such as
a std::set. But then if you compare those values to X x3{1, 0}, you
find that x1 and x3 are equivalent, but x1 and x2 are not. So depending
which of x1 and x2 is in the std::set affects whether or not you can
add x3!

An invalid order like the ones above will cause undefined behaviour if it
is used where the Standard Library expects a correct order, e.g. in
std::sort, std::set, or std::map. Trying to insert the x1 and x2
values above into a std::set<X> will give strange results, maybe even
crashing the program, because the invariant that a set’s elements are
always sorted correctly is broken if the comparison function is incapable
of sorting correctly.

This is discussed further in Effective STL by Scott Meyers, and in the
CERT C++ Coding Standard.

A correct implementation of the function would only consider the second
member when the first members are equal i.e.

 inline bool operator<(const X& l, const X& r)
 {
 if (l.a < r.a)
 return true;
 if (l.a == r.a && l.b < r.b)
 return true;
 return false;
 }

Since C++11 defining an order correctly is trivial, just use std::tie:

 inline bool operator<(const X& l, const X& r)
 {
 return std::tie(l.a, l.b) < std::tie(r.a, r.b);
 }

This creates a tuple referring to the members of l and a tuple referring to
the members of r, then compares the tuples, which does the right thing
(only comparing later elements when the earlier ones are equal).

Recommendation: When writing your own less-than operator
make sure it defines a Strict Weak Ordering, and write tests to
ensure that it doesn’t give impossible results like (a < b &&
b < a) or (a < a). Prefer using std::tie() to create tuples
which can be compared, instead of writing your own error-
prone comparison logic.

Consider whether defining a hash function and using either

 std::unordered_set

 std::unordered_map

would be better anyway than

 std::set

 std::map

Unordered containers require an equality operator, but that’s harder to get
wrong.

In summary
The only common theme to the items above is that I see these same
mistakes made again and again. I hope documenting them here will help
you to avoid them in your own code, and in code you review or comment
on. If you know of other antipatterns that could be covered let me or the
Overload team know about them, so they can be included in a follow-up
piece (or write a follow up piece yourself !). 

Listing 2

struct X
{
 int a;
 int b;
};

inline bool operator<(const X& l, const X& r)
{
 if (l.a < r.a)
 return true;
 if (l.b < r.b)
 return true;
 return false;
}

16 | Overload | August 2016

FEATURERUSSEL WINDER
Testing Propositions
Is testing propositions more important
than having examples as exemplars?
Russel Winder considers this hypothesis.
ith the rise of test-driven development (TDD) in the 1990s as
part of the eXtreme Programming (XP) movement, the role of
example-based testing became fixed into the culture of software

development1. The original idea was to drive development of software
products based on examples of usage of the product by end users. To
support this Kent Beck and others at the centre of the XP community
created test frameworks. They called them unit test frameworks
presumably because they were being used to test the units of code that
were being constructed. This all seemed to work very well for the people
who had been in on the start of this new way of developing software. But
then XP became well-known and fashionable: programmers other than
the original cabal began to claim they were doing XP and its tool TDD.
Some of them even bought the books written by Kent Beck and others at
the centre of the XP community. Some of them even read said books.

Labels are very important. The test frameworks were labelled unit test
frameworks. As all programmers know, units are functions, procedures,
subroutines, classes, modules: the units of compilation. (Interpreted
languages have much the same structure despite not being compiled per
se.) Unit tests are thus about testing the units, and the tools for this are unit
test frameworks. Somewhere along the line, connection between these
tests and the end user scenarios got lost. Testing became an introvert
thing. The whole notion of functional testing and ‘end to end’ testing
seemed to get lost because the label for the frameworks were ‘unit test’.

After a period of frustration with the lack of connection between end user
scenarios and tests, some people developed the idea of acceptance testing
so as to create frameworks and workflows. (Acceptance testing has been
an integral part of most engineering disciplines for centuries; it took
software development a while to regenerate the ideas.) FitNesse
[FitNesse] and Robot [Robot] are examples of the sort of framework that
came out of this period.

However the distance between acceptance testing and unit testing was still
a yawning chasm2. Then we get a new entrant into the game, behaviour-
driven development (BDD). This was an attempt by Dan North and others
to recreate the way of using tests during development. The TDD of XP
had lost its meaning to far too many programmers, so the testing
frameworks for BDD were called JBehave, Cucumber, etc. and had no
concept of unit even remotely associated with them.

Now whilst BDD reasserted the need for programmers and software
developers to be aware of end user scenarios and at least pretend to care
about user experience whilst implementing systems, we ended up with
even more layers of tests and test frameworks.

And then came QuickCheck [QuickCheck], and the world of test was
really shaken up: the term ‘property-based testing’ became a thing.

QuickCheck [Hackage] first appeared in work by John Hughes and others
in the early 2000s. It started life in the Haskell [Haskell] community but
has during the 2010s spread rapidly into the milieus of any programming
language that even remotely cares about having good tests.

Example required
Waffling on textually is all very well, but what we really need is code;
examples are what exemplify the points, exemplars are what we need. At
this point it seems entirely appropriate to make some reuse, which, as is
sadly traditional in software development, is achieved by cut and paste.
So I have cut and paste3 the following from a previous article for
Overload [Winder16]:

For this we need some code that needs testing: code that is small
enough to fit on the pages of this august journal, but which highlights
some critical features of the test frameworks.

We need an example that requires testing, but that gets out of the
way of the testing code because it is so trivial.

We need factorial.

Factorial is a classic example usually of the imperative vs. functional
way of programming, and so is beloved of teachers of first year
undergraduate programming courses. I like this example though
because it allows investigating techniques of testing, and allows
comparison of test frameworks.

Factorial is usually presented via the recurrence relation:

This is a great example, not so much for showing software development
or algorithms, but for showing testing4, and the frameworks provided by
each programming language.

Given the Haskell heritage of property-based testing, it seems only right,
and proper, to use Haskell for the first example. (It is assumed that GHC
7.10 or later (or equivalent) is being used.)

1. Into the culture of cultured developers, anyway.
2. Yes there is integration testing and system testing as well as unit testing

and acceptance testing, and all this has been around in software, in
principle at least, for decades, but only acceptance testing and unit
testing had frameworks to support them. OK, technically FitNesse is an
integration testing framework, but that wasn’t how it was being used,
and not how it is now advertised and used.

W

3. Without the footnotes, so if you want those you’ll have to check the
original. We should note though that unlike that article of this august
journal, this is an August august journal issue, so very august.

4. OK so in this case this is unit testing, but we are creating APIs which
are just units so unit testing is acceptance testing for all intents and
purposes.

f

f nfn n

0

1

1

 

Russel Winder Ex-theoretical physicist, ex-UNIX system
programmer, ex-academic. Now an independent consultant,
analyst, author, expert witness and trainer. Also doing startups.
Interested in all things parallel and concurrent. And build. Actively
involved with Groovy, GPars, GroovyFX, SCons, and Gant. Also
Gradle, Ceylon, Kotlin, D and bit of Rust. And lots of Python
especially Python-CSP.
August 2016 | Overload | 17

FEATURE RUSSEL WINDER

it seems to be idiomatic to have the type
signature ... as a check that the function
implementation is consistent with the
stated signature
Haskell implementation…
There are many algorithms for realizing the Factorial function: iterative,
naïve recursive, and tail recursive are the most obvious. So as we see in
Listing 1 we have three realizations of the Factorial function. Each of the
functions starts with a type signature followed by the implementation.
The type signature is arguably redundant since the compiler deduces all
types. However, it seems to be idiomatic to have the type signature, not
only as documentation, but also as a check that the function
implementation is consistent with the stated signature. Note that in
Haskell there are no function call parentheses – parentheses are used to
ensure correct evaluation of expressions as positional arguments to
function calls. It is also important to note that in Haskell functions are
always curried: a function of two parameters is actually a function of one
parameter that returns a function of one parameter. Why do this? It makes
it really easy to partially evaluate functions to create other functions. The
code of Listing 1 doesn’t make use of this, but we will be using this feature
shortly.

The iterative and naïveRecursive implementations are just
matches with an expression: each match starts with a | and is an
expression of Boolean value then a = followed by the result expression to
evaluate for that match expression. Matches are tried in order and
otherwise is the ‘catch all’ “Boolean” that always succeeds; it should,
of course, be the last in the sequence. The error function raises an
exception to be handled elsewhere. The tailRecursive function has a

match and also a ‘where clause’ which defines the function iteration
by pattern matching on the parameters. The ‘where clause’ definitions are
scoped to the function of definition5,6.

…and example-based test
Kent Beck style TDD started in Smalltalk with sUnit7 and then transferred
to Java with JUnit8. A (thankfully fading) tradition seems to have grown
that the first test framework in any language is constructed in the JUnit3
architecture – even if this architecture is entirely unsuitable, and indeed
not idiomatic, for the programming language. Haskell seem to have neatly
side-stepped the problem from the outset since although the name is
HUnit [HUnit] as required by the tradition, the architecture is nothing at
all like JUnit3. Trying to create the JUnit3 architecture in Haskell would
have been hard and definitely not idiomatic, HUnit is definitely idiomatic
Haskell.

Listing 2 shows the beginnings of a test using a table driven (aka data
driven) approach. It seems silly to have to write a new function for each
test case, hence the use of a table (positiveData) to hold the inputs and
outputs and create all the tests with a generator (testPositive, a
function of two parameters, the function to test and a string unique to the
function so as to identify it). The function test takes a list argument with
all the tests, here the list is being constructed with a list comprehension:
the bit before the | is the value to calculate in each case (a fairly arcane
expression, but lets not get too het up about it) and the expression after is
the ‘loop’ that drives the creation of the different values, in this case create
a list entry for each pair in the table. Then we have a sequence (thanks to
the do expression9) of three calls to runTestTT (a function of one
parameter) which actually runs all the tests.

Of course, anyone saying to themselves “but he hasn’t tested negative
values for the arguments of the Factorial functions”, you are not being
silly; you are being far from silly, very sensible in fact. I am avoiding this
aspect of the testing here simply to avoid some Haskell code complexity10

that adds nothing to the flow in this article. If I had used Python or Java

Listing 1

module Factorial(iterative, naïveRecursive,
 tailRecursive) where
exceptionErrorMessage = "Factorial not defined for
negative integers."

iterative :: Integer -> Integer
iterative n
 | n < 0 = error exceptionErrorMessage
 | otherwise = product [1..n]

naïveRecursive :: Integer -> Integer
naïveRecursive n
 | n < 0 = error exceptionErrorMessage
 | n == 0 = 1
 | otherwise = n * naïveRecursive (n - 1)

tailRecursive :: Integer -> Integer
tailRecursive n
 | n < 0 = error exceptionErrorMessage
 | otherwise = iteration n 1
 where
 iteration 0 result = result
 iteration i result = iteration (i - 1)
 (result * i)

5. If you need a tutorial introduction to the Haskell programming language
then http://learnyouahaskell.com/ and http://book.realworldhaskell.org/
are recommended.

6. If you work with the JVM and want to use Haskell, there is Frege; see
http://www.frege-lang.org or https://github.com/Frege/frege Frege is a
realization of Haskell on the JVM that allows a few extensions to
Haskell so as to work harmoniously with the Java Platform.

7. The name really does give the game away that the framework was for
unit testing.

8. Initially called JUnit, then when JUnit4 came out JUnit was renamed
JUnit3 as by then it was at major version 3. Now of course we have
JUnit5.

9. Yes it’s a monad. Apparently monads are difficult to understand, and
when you do understand them, they are impossible to explain. This is
perhaps an indicator of why there are so many tutorials about monads
on the Web.

10. Involving Monads. Did I mention about how once you understand
monads, you cannot explain them?
18 | Overload | August 2016

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.frege-lang.org
https://github.com/Frege/frege

FEATURERUSSEL WINDER

The proposition of proposition-based testing is to
make propositions about the code and then use

random selection of values from the domain to check
the propositions are not invalid
(or, indeed, almost any language other than Haskell) we would not have
this issue. For those wishing to see the detail of a full test please see my
Factorial repository on GitHub [Winder].

And the proposition is…
The code of Listing 2 nicely shows that what we are doing is selecting
values from the domain of the function and ensuring the result of
executing the function is the correct value from the image of the

function11. This is really rather an important thing to do but are we doing
it effectively?

Clearly to prove the implementation is correct we have to execute the
code under test with every possible value of the domain. Given there are
roughly 264 (about 18,446,744,073,709,551,616) possible values to test
on a 64-bit machine, we will almost certainly decide to give up
immediately, or at least within just a few femtoseconds. The test code as
shown in Listing 2 is sampling the domain in an attempt to give us
confidence that our implementation is not wrong. Have we done that
here? Are we satisfied? Possibly yes, but could we do more quickly and
easily?

The proposition of proposition-based testing is to make propositions
about the code and then use random selection of values from the domain
to check the propositions are not invalid. In this case of testing the
Factorial function, what are the propositions? Factorial is defined by a
recurrence relation comprising two rules. These rules describe the
property of the function that is Factorial with respect to the domain, the
non-negative integers. If we encode the recurrence relation as a predicate
(a Boolean valued function) we have a representation of the property that
can be tested by random selection of non-negative integers.

Listing 3 shows a QuickCheck test of Factorial. The function f_p is the
predicate representing the property being tested. It is a function of two
parameters, a function to test and a value to test, with the result being
whether the recurrence relation that defines Factorial is true for that value
and that function: the predicate is an assertion of the property that any
function claiming to implement the Factorial function must satisfy. Why
is this not being used directly, but instead factorial_property is the
predicate being tested by the calls to quickCheck? It is all about types
and the fact that values are automatically generated for us based on the
domain of the property being tested. f_p is a predicate dealing with
Integer, the domain of the functions being tested, values of which can
be negative. Factorial is undefined for negative values12. So the predicate
called by quickCheck, factorial_property, is defined with
Natural as the domain, i.e. for non-negative integers13. So when we
execute quickCheck on the function under test, it is non-negative
integer values that are generated: The predicate never needs to deal with
negative values, it tests just the Factorial proposition and worries not
about handling the exceptions that the implementations raise on being
given a negative argument. Should we test for negative arguments and
that an exception is generated? Probably. Did I mention ignoring this for
now?

Earlier I mentioned currying and partial evaluation. In Listing 3, we are
seeing this in action. The argument to each quickCheck call is an
expression that partially evaluates factorial_property, binding a

Listing 2

module Main where

import Test.HUnit

import Factorial

positiveData = [
 (0, 1),
 (1, 1),
 (2, 2),
 (3, 6),
 (4, 24),
 (5, 120),
 (6, 720),
 (7, 5040),
 (8, 40320),
 (9, 362880),
 (10, 3628800),
 (11, 39916800),
 (12, 479001600),
 (13, 6227020800),
 (14, 87178291200),
 (20, 2432902008176640000),
 (30, 265252859812191058636308480000000),
 (40,
815915283247897734345611269596115894272000000000)
]

testPositive function comment =
 test [comment ++ " " ++ show i ~: "" ~:
 expected ~=? function i |
 (i, expected) <- positiveData]

main = do
 runTestTT (testPositive Factorial.iterative
 "Iterative")
 runTestTT (testPositive Factorial.naïveRecursive
 "Naïve Recursive")
 runTestTT (testPositive Factorial.tailRecursive
 "Tail Recursive")

11. Pages such as https://en.wikipedia.org/wiki/Domain_of_a_function and
https://en.wikipedia.org/wiki/Image_(mathematics) may be handy if you
are unused to the terminology used here.

12. And also non-integral types, do not forget this in real testing.
13. If you are thinking we should be setting up a property to check that all

negative integers result in an error, you are thinking on the right lines.
August 2016 | Overload | 19

https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Image_(mathematics)

FEATURE RUSSEL WINDER

Shrinking is such a boon ... that it is now
seen as essential for any property-based
testing framework
particular implementation of Factorial, and returning a function that
takes only a Natural value. This sort of partial evaluation is a typical
and idiomatic technique of functional programming, and increasingly any
language that supports functions as first class entities.

By default QuickCheck selects 100 values from the domain, so Listing 3
is actually 300 tests. In the case we have here there are no fails, all 300
tests pass. Somewhat splendidly, if there is a failure of a proposition,
QuickCheck sets about ‘shrinking’ which means searching for the
smallest value in the domain for which the proposition fails to hold. Many
people are implementing some form of proposition testing in many
languages. Any not having shrinking are generally seen as being not
production ready. Shrinking is such a boon to taking the results of the tests
and deducing (or more usually inferring) the cause of the problem, that it
is now seen as essential for any property-based testing framework.

Figure 1 shows the result of running the two test programs: first the HUnit
example based testing – 18 hand picked tests for each of the three
implementations; and second the QuickCheck property-based testing –
100 tests for each case, all passing so no need for shrinking.

But who uses Haskell?
Well, quite a lot of people. However, one of the major goals of Haskell is
to ‘Avoid success at all costs’14. The point here is not un-sensible. Haskell
is a language for exploring and extending ideas and principles of
functional programming. The Haskell committee therefore needs to avoid
having to worry about backward compatibility. This puts it a bit at odds

with many commercial and industrial operations who feel that, once
written, a line of code should compile (if that is appropriate) and execute
exactly the same for all time without any change. Clearly this can be
achieved easily in any language by never upgrading the toolchain.
However, the organizations that demand code works for all time usually
demand that toolchains are regularly updated. (Otherwise the language is
considered dead and unusable. There is irony in here somewhere I
believe.) There is no pleasing some people. Successful languages in the
sense of having many users clearly have to deal with backward
compatibility. Haskell doesn’t. Thus Haskell, whilst being a very
important language, doesn’t really have much market traction.

Frege makes an entry
Frege [Frege] though is actually likely to get more traction than Haskell.
Despite the potential for having to update codebases, using ‘Haskell on
the JVM’ is an excellent way of creating JVM-based systems. And
because the JVM is a polyglot platform, bits of systems can be in Java,
Frege, Kotlin [Kotlin], Ceylon [Ceylon], Scala [Scala], Apache Groovy
[Groovy], etc. For anyone out there using the Java Platform, I can strongly
recommend at least trying Frege. To give you a taste, look at Listing 4,
which shows three Frege implementations of the Factorial function, and
that Frege really is Haskell. The tests (see Listing 5) are slightly different
from the Haskell ones not because the languages are different but because
the context is: instead of creating a standalone executable as happens with
Haskell, Frege create a JVM class to be managed by a test runner. So
instead of a main function calling the test executor, we just declare
property instances for running using the property function, and assume
the test runner will do the right thing when invoked. The three examples
here show a different way of constraining the test domain to non-negative
integers than we saw with Haskell. Function composition (. operator,
must have spaces either side to distinguish it from member selection) of
the property function (using partial evaluation) with a test data generator
(NonNegative.getNonNegative; dot as selector not function
composition) shows how easy all this can be. Instead of just using the
default generator (which would be Integer for this property function
factorial_property, we are providing an explicit generator so as to
condition the values from the domain that get generated.

14. A phrase initially spoken by Simon Peyton Jones a number of years ago
that caught on in the Haskell community.

Listing 3

module Main where

import Numeric.Natural
import Test.QuickCheck

import Factorial

f_p :: (Integer -> Integer) -> Integer -> Bool
f_p f n
 | n == 0 = f n == 1
 | otherwise = f n == n * f (n - 1)

factorial_property :: (Integer -> Integer) ->
 Natural -> Bool
factorial_property f n = f_p f (fromIntegral n)

main :: IO()
main = do
 quickCheck (factorial_property iterative)
 quickCheck (factorial_property naïveRecursive)
 quickCheck (factorial_property tailRecursive)

Figure 1

$./factorial_test_hunit
Cases: 18 Tried: 18 Errors: 0 Failures: 0
Cases: 18 Tried: 18 Errors: 0 Failures: 0
Cases: 18 Tried: 18 Errors: 0 Failures: 0

$./factorial_test_quickcheck
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
20 | Overload | August 2016

FEATURERUSSEL WINDER

it behoves us to consider the proposition of
proposition testing in one or more languages that

have already gained real traction
The result of executing the Frege QuickCheck property-based tests are
seen in Figure 2. As with the Haskell, 100 samples for each test with no
fails and so no shrinking.

But…
With Haskell trying not to have a user base reliant on backward
compatibility, and Frege not yet having quite enough traction as yet to be
deemed popular, it behoves us to consider the proposition of proposition
testing in one or more languages that have already gained real traction.

First off let us consider…Python.

Let’s hypothesize Python
Python [Python_1] has been around since the late 1980s and early 1990s.
During the 2000s it rapidly gained in popularity. And then there was the
‘Python 2 / Python 3 Schism’.15 After Python 3.3 was released, there were
no excuses for staying with Python 2. (Well, except two – and I leave it as
an exercise for the reader to ascertain what these two genuine reasons are
for not immediately moving your Python 2 code to Python 3.) For myself,
I use Python 3.5 because Python now has function signature type
checking [Python_2]16.

Listing 6 shows four implementations of the Factorial function. Note that
the function signatures are advisory not strong type checking. Using the
MyPy [MyPy] program the types will be checked, but on execution it is
just standard Python as people have known for decades.

I suspect the Python code here is sufficiently straightforward that almost
all programmers17 will be able to deduce or infer any meanings that are
not immediately clear in the code. But a few comments to help: the range
function generates a range ‘from up to but not including’. The if
expression is of the form:

Listing 4

module Factorial where

exceptionErrorMessage = "Factorial not defined for
negative integers."

iterative :: Integer -> Integer
iterative n
 | n < 0 = error exceptionErrorMessage
 | otherwise = product [1..n]

naïveRecursive :: Integer -> Integer
naïveRecursive n
 | n < 0 = error exceptionErrorMessage
 | n == 0 = 1
 | otherwise = n * naïveRecursive (n - 1)

tailRecursive :: Integer -> Integer
tailRecursive n
 | n < 0 = error exceptionErrorMessage
 | otherwise = iteration n 1
 where
 iteration 0 result = result
 iteration i result = iteration (i - 1)
 (result * i)

Listing 5

module Factorial_Test where

import Test.QuickCheck(quickCheck, property)
import Test.QuickCheckModifiers(NonNegative)

import Factorial(iterative, naïveRecursive,
 tailRecursive)

factorial_property :: (Integer -> Integer)
 -> Integer -> Bool
factorial_property f n
 | n == 0 = f n == 1
 | otherwise = f n == n * f (n - 1)

factorial_iterative_property =
 property ((factorial_property iterative)
 . NonNegative.getNonNegative)
factorial_naïveRecursive_property =
 property ((factorial_property naïveRecursive)
 . NonNegative.getNonNegative)
factorial_tailRecursive_property =
 property ((factorial_property tailRecursive)
 . NonNegative.getNonNegative)

15. We will leave any form of description and commentary on the schism to
historians. As Python programmers, we use Python 3 and get on with
programming.

16. This isn’t actually correct: Python allows function signatures as of 3.5
but doesn’t check them. You have to have to have a separate parser-
type-checker such as MyPy. This is annoying, Python should be doing
the checking.

17. We will resist the temptation to make some facetious, and likely
offensive, comment about some programmers who use only one
programming language and refuse to look at any others. “Resistance is
futile.” Seven of Nine.

Figure 2

Factorial_Test.factorial_tailRecursive_property:
 +++ OK, passed 100 tests.
Factorial_Test.factorial_iterative_property:
 +++ OK, passed 100 tests.
Factorial_Test.factorial_naïveRecursive_property:
 +++ OK, passed 100 tests.
Properties passed: 3, failed: 0
August 2016 | Overload | 21

FEATURE RUSSEL WINDER

not only are we testing non-negative and
negative integers, we also test other forms of
error that are possible in Python
 <true-value> if <boolean-expression>
 else <false-value>

The nested function iterate in tail_recursive is scoped to the else
block.

But are these implementations ‘correct’? To test them let’s use PyTest
[Pytest]. The test framework that comes as standard with Python (unittest,
aka PyUnit) could do the job, but PyTest is just better18. PyTest provides
an excellent base for testing but it does not have property-based testing.

For this we will use Hypothesis [Hypothesis] (which can be used with
PyUnit as easily as with PyTest, but PyTest is just better).

Listing 7 shows a fairly comprehensive test – not only are we testing non-
negative and negative integers, we also test other forms of error that are
possible in Python. Tests are functions with the first four characters of the
name being t, e, s, t. Very JUnit3, and yet these are module-level

18. For reasons that may, or may not, become apparent in this article, but
relate to PyUnit following JUnit3 architecture – remember the fading
tradition – and PyTest being Pythonic.

Listing 6

from functools import reduce
from operator import mul

def _validate(x: int) -> None:
 if not isinstance(x, int):
 raise TypeError('Argument must be an
integer.')
 if x < 0:
 raise ValueError('Argument must be a
non-negative integer.')

def iterative(x: int) ->int:
 _validate(x)
 if x < 2:
 return 1
 total = 1
 for i in range(2, x + 1):
 total *= i
 return total

def recursive(x: int) -> int:
 _validate(x)
 return 1 if x < 2 else x * recursive(x - 1)

def tail_recursive(x: int) -> int:
 _validate(x)
 if x < 2:
 return 1
 else:
 def iterate(i: int, result: int=1):
 return result if i < 2 else iterate(i - 1,
 result * i)
 return iterate(x)

def using_reduce(x: int) -> int:
 _validate(x)
 return 1 if x < 2 else reduce(mul,
 range(2, x + 1))

Listing 7

from pytest import mark, raises

from hypothesis import given
from hypothesis.strategies import (integers,
 floats, text)

from factorial import (iterative, recursive,
 tail_recursive, using_reduce)

algorithms = (iterative, using_reduce, recursive,
 tail_recursive)

@mark.parametrize('a', algorithms)
@given(integers(min_value=0, max_value=900))
def test_with_non_negative_integer (a, x):
 assert a(x) == (1 if x == 0 else x * a(x - 1))

@mark.parametrize('a', algorithms)
@given(integers(max_value=-1))
def test_negative_integer_causes_ValueError(a, x):
 with raises(ValueError):
 a(x)

@mark.parametrize('a', algorithms)
@given(floats())
def test_float_causes_TypeError(a, x):
 with raises(TypeError):
 a(x)

@mark.parametrize('a', algorithms)
def test_none_causes_TypeError(a):
 with raises(TypeError):
 a(None)

@mark.parametrize('a', algorithms)
@given(text())
def test_string_causes_TypeError(a, x):
 with raises(TypeError):
 a(x)

if __name__ == '__main__':
 from pytest import main
 main()
22 | Overload | August 2016

FEATURERUSSEL WINDER

Figure 3

============================= test session starts ==============================
platform linux -- Python 3.5.1, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: /home/users/russel/Docs/Papers/ACCU/Draft/TestingPropositions/SourceCode/Python, inifile:
plugins: hypothesis-3.4.0, cov-2.2.1
collected 20 items

test_factorial.py

========================== 20 passed in 2.32 seconds ===========================

automated data generation is at the heart of
property-based testing
functions. There are no classes or inheritance in sight: that would be the
PyUnit way. The PyTest way is to dispense with the classes as necessary
infrastructure, swapping them for needing some infrastructure to be
imported in some way or other. (This is all handled behind the scenes
when pytest.main executes.) PyTest is in so many ways more Pythonic19

than PyUnit.

PyTest has the @mark.parametrize decorator that rewrites your code
so as to have one test per item of data in an iterable. In all the cases here,
it is being used to generate tests for each algorithm20.

The @given decorator, which comes from Hypothesis, does not rewrite
functions to create new test functions. Instead it generates code to run the
function it decorates with a number (the default is 100) of randomly
chosen values using the generator given as argument to the decorator,
recording the results to report back. This automated data generation is at
the heart of property-based testing, and Hypothesis, via the supporting
functions such as integers, floats, and text (for generating
integers, floats, and string respectively), does this very well. Notice how
it is so easy to generate just negative integers or just non-negative
integers. Also note the use of the ‘with statement’21 and the raises
function for testing that code does, in fact, raise an exception.

All the test functions have a parameter a that gets bound by the action of
the @mark.parametrize decorator, and a parameter x that gets bound
by the action of the @given decorator. This is all very different from the
partial evaluation used in Haskell and Frege: different language features
lead to different idioms to achieve the same goal. What is Pythonic is not
Haskellic/Fregic, and vice versa. At least not necessarily.

The pytest.main function, when executed, causes all the decorators to
undertake their work and executes the result. The output from an
execution will look very much as in Figure 3. You may find when you try
this that the last line is green.22

Doing the C++ thing
There are many other example languages we could present here to show
the almost complete coverage of property-based testing in the world:
Kotlin [Kotlin], Ceylon [Ceylon], Scala [Scala], Apache Groovy
[Groovy], Rust [Rust], D [D], Go [Go],… However, given this is an
August23 ACCU journal and, historically at least, ACCU members have
had a strong interest in C++, we should perhaps look at C++. Clearly
people could just use Haskell and QuickCheck to test their C++ code, but
let’s be realistic here, that isn’t going to happen24. So what about
QuickCheck in C++? There are a number of implementations, for
example CppQuickCheck [QuickCheck_2] and QuickCheck++
[QuickCheck_3]. I am, though, going to use RapidCheck [RapidCheck]
here because it seems like the most sophisticated and simplest to use of
the ones I have looked at to date25.

There is one thing we have to note straight away: Factorial values are
big26. Factorial of 30 is a number bigger than can be stored in a 64-bit
integer. So all the implementations of Factorial used in books and first
year student exercises are a bit of a farce because they are shown using
hardware integers: the implementations work for arguments [0..20] and
then things get worrisome. “But this is true for all languages and we didn’t
raise this issue for Haskell, Frege and Python.” you say. Well for Haskell
(and Frege, since Frege is just Haskell on the JVM) the Int type is a
hardware number but Integer, the type used in the Haskell and Frege
code, is an integer type the values of which can be effectively arbitrary
size. There is a limit, but then in the end even the universe is finite27. What
about Python? The Python28 int type uses hardware when it can or an
unbounded (albeit finite27) integer when it cannot. What about C++? Well

19. See http://docs.python-guide.org/en/latest/writing/style/
20. There are ways of parameterizing tests in PyUnit (aka unittest), but it is

left as an exercise for the reader to look for these. PyTest and
@pytest.mark.parametrize are the way this author chooses to
do parameterized tests in Python.

21. Context managers and the ‘with statement’ are Python’s way of doing
RAII (resource acquisition is initialization, https://en.wikipedia.org/wiki/
Resource_Acquisition_Is_Initialization) amongst other great things.

22. Whilst this is an August august journal (and so very august), it is
monochrome. So you will have to imagine the greenness of the test
output. Either that or actually try the code out for yourself and observe
the greenness first hand.

23. Or should that be august. Well actually it has to be both.
24. Not least because Haskell’s avowed aim is never to be successful.
25. Also it uses Catch [Catch] for its tests.
26. Factorials are big like space is big, think big in Hitchhiker’s Guide to the

Galaxy terms: “Space,” it says, “is big. Really big. You just won’t believe
how vastly, hugely, mindbogglingly big it is. I mean, you may think it’s
a long way down the road to the chemist, but that’s just peanuts to
space. Listen…?”
https://en.wikiquote.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy
August 2016 | Overload | 23

https://en.wikiquote.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://docs.python-guide.org/en/latest/writing/style/

FEATURE RUSSEL WINDER

Space may be big but the universe (space
being the same thing as the universe as far
as we know) is finite
the language and standard library have only hardware-based types, which
could be taken as rather restricting. GNU has however conveniently
created a C library for unbounded (albeit finite27) integers, and it has a
rather splendid C++ binding [GNU].

So using the GMP C++ API, we can construct implementations of the
Factorial function that are not restricted to arguments in the range [0..20]
but are more generally useful. Listing 8 shows the functions being
exported by the Factorial namespace. We could dispense with the
long overloads, but it seems more programmer friendly to offer them.

Listing 9 presents the implementations. I suspect that unless you already
know C++ (this code is C++14) you have already moved on. So any form
of explanatory note is effectively useless here.29 We will note though that

27. Space may be big (see above) but the universe (space being the same
thing as the universe as far as we know) is finite – assuming the current
theories are correct.

28. Python 3 anyway. Python 2 has effectively the same behaviour, but
with more types. It is left as an exercise for the reader whether to worry
about this.

Listing 8

#include <gmpxx.h>

namespace Factorial {

mpz_class iterative(mpz_class const n);
mpz_class iterative(long const n);
mpz_class reductive(mpz_class const n);
mpz_class reductive(long const n);
mpz_class naive_recursive(mpz_class const n);
mpz_class naive_recursive(long const n);
mpz_class tail_recursive(mpz_class const n);
mpz_class tail_recursive(long const n);

} // namespace Factorial

Listing 9

#include "factorial.hpp"

#include <functional>
#include <iterator>
#include <numeric>

namespace Factorial {
static void validate(mpz_class const n) {
 if (n < 0) {
 throw std::invalid_argument("Parameter must be
a non-negative integer."); }
}
auto const one = mpz_class(1);
auto const two = mpz_class(2);

29. There was some thought of introducing the acronym RTFC (read the
fine code), but this temptation was resisted. “Resistance is futile.”
Seven of Nine.

Listing 9 (cont’d)

mpz_class iterative(mpz_class const n) {
 validate(n);
 mpz_class total {1};
 for (unsigned int i = 2; i <= n; ++i) {
 total *= i; }
 return total;
}
mpz_class iterative(long const n) {
 return iterative(mpz_class(n)); }

class mpz_class_iterator:
 std::iterator<std::input_iterator_tag,
 mpz_class> {
 private:
 mpz_class value;
 public:
 mpz_class_iterator(mpz_class const v) :
 value(v) { }
 mpz_class_iterator& operator++() {
 value += 1; return *this; }
 mpz_class_iterator operator++(int) {
 mpz_class_iterator tmp {
 *this}; ++*this; return tmp; }
 bool operator==(mpz_class_iterator const &
 other) const {
 return value == other.value; }
 bool operator!=(mpz_class_iterator const &
 other) const {
 return value != other.value; }
 mpz_class operator*() const { return value; }
 mpz_class const * operator->() const {
 return &value; }
};

mpz_class reductive(mpz_class const n) {
 validate(n);
 return (n < 2)
 ? one
 : std::accumulate(mpz_class_iterator(two),
 mpz_class_iterator(n + 1), one,
 std::multiplies<>());}
mpz_class reductive(long const n) {
 return reductive(mpz_class(n)); }
mpz_class naive_recursive(mpz_class const n) {
 validate(n);
 return (n < 2) ? one :
 n * naive_recursive(n - 1);
}

24 | Overload | August 2016

FEATURERUSSEL WINDER

You can have any number of parameters
– zero has been chosen here, which

might seem a bit strange at first
there is a class defined in there as well as implementations of the Factorial
function.

Listing 10 presents the RapidCheck-based test code for the Factorial
functions. There is a vector of function pointers30 so that we can easily
iterate over the different implementations. Within the loop we have a
sequence of the propositions. Each check has a descriptive string and a
lambda function. The type of variables to the lambda function will cause
(by default 100) values of that type to be created and the lambda executed
for each of them. You can have any number of parameters – zero has been
chosen here, which might seem a bit strange at first, but think generating
random integers. Some of them are negative and some non-negative and
we have to be careful to separate these cases as the propositions are so
very different. Also some of the calculation for non-negative integers will
result in big values. The factorial of a big number is stonkingly big.
Evaluation will take a while… a long while… a very long while… so long
we will have read War and Peace… a large number of times. So we
restrict the integers of the domain sample by using an explicit generator.
In this case for the non-negative integers we sample from [0..900]. For the
negative integers we sample from a wider range as there should only ever
be a very rapid exception raised, there should never actually be a
calculation.

So that is the Factorial functions themselves tested. I trust you agree that
what we have here is a very quick, easy, and providing good coverage test.
But, you ask, what about that class? Should we test the class? An
interesting question. Many would say “No” because it is internal stuff, not
exposed as part of the API. This works for me: why test anything that is
not observable from outside. Others will say “Yes” mostly because it
cannot hurt. For this article I say “Yes” because it provides another
example of proposition-based testing. We do not test any examples, we
test only properties of the class and its member functions. See Listing 11.

By testing the properties, we are getting as close to proving the
implementation not wrong as it is possible to get in an easily maintainable
way. QED.

And to prove that point, see Figure 4, which shows the Factorial tests and
class test executed. So many useful (passing) tests, so little effort.

The message
Example-based testing of a sample from the domain tells us we are
calculating the correct value(s). Proposition-based testing tells us that our
code realizes the relationships that should exist between different values
from the domain. They actually tell us slightly different things and so
arguably good tests do both, not one or the other. However if we have
chosen the properties to test correctly then zero, one, or two examples are30. Well, actually pairs, with the first being the function pointer and the

second being a descriptive string.

Listing 9 (cont’d)

mpz_class naive_recursive(long const n) {
 return naive_recursive(mpz_class(n)); }

static mpz_class tail_recursive_iterate
 (mpz_class const n, mpz_class const result) {
 return (n < 2) ? result :
 tail_recursive_iterate(n - 1, result * n);
}

mpz_class tail_recursive(mpz_class const n) {
 validate(n);
 return (n < 2) ? one : tail_recursive_iterate(n,
 one);
}
mpz_class tail_recursive(long const n) {
 return tail_recursive(mpz_class(n)); }
} // namespace Factorial

Listing 10

#include "rapidcheck.h"

#include <string>
#include <utility>

#include "factorial.hpp"

std::vector<std::pair<mpz_class (*)(long const),
std::string>> const algorithms {
 {Factorial::iterative, "iterative"},
 {Factorial::reductive, "reductive"},
 {Factorial::naive_recursive, "naïve recursive"},
 {Factorial::tail_recursive, "tail recursive"}
};

int main() {
 for (auto && a: algorithms) {
 auto f = a.first;

 rc::check(a.second + " applied to non-negative
 integer argument obeys the recurrence
 relation.", [f]() {
 auto i = *rc::gen::inRange(0, 900);
 RC_ASSERT(f(i) == ((i == 0) ? mpz_class(1) :
 i * f(i - 1)));
 });

 rc::check(a.second + " applied to negative
 integer raises an exception.", [f]() {
 auto i = *rc::gen::inRange(-100000, -1);
 RC_ASSERT_THROWS_AS(f(i),
 std::invalid_argument);
 });
 }
 return 0;
}

August 2016 | Overload | 25

FEATURE RUSSEL WINDER

property-based testing (with as few examples
as needed) is the future of testing
likely to be sufficient to ‘prove’ the code not incorrect. Hypothesis, for
example, provides an @example decorator for adding those few
examples. For other frameworks in other languages we can just add one
or two example-based tests to the property-based tests.

But, some will say, don’t (example-based) tests provide examples of use?
Well yes, sort of. I suggest that these examples of use should be in the
documentation, that users should not have to descend to reading the tests.
So for me property-based testing (with as few examples as needed) is the
future of testing. Examples and exemplars should be in the
documentation. You do write documentation, don’t you…

An apology
Having just ranted about documentation, you may think I am being
hypocritical since the code presented here has no comments. A priori,
code without comments, at least documentation comments31, is a Bad
Thing™ – all code should be properly documentation commented. All the
code in the GitHub repository that holds the originals from which the code
presented here were extracted is. So if you want to see the properly

commented versions, feel free to visit https://github.com/russel/Factorial.
If you find any improperly commented code, please feel free to nudge me
about it and I will fix it post haste32.

Acknowledgements
Thanks to Fran Buontempo for being the editor of this august33 journal,
especially this August august journal34, and letting me submit a wee bit
late.

Thanks to Jonathan Wakely for not laughing too much when I showed
him the original C++ code, and for making suggestions that made the code
far more sensible.

Thanks to the unnamed reviewers who pointed out some infelicities of
presentation as well as syntax. Almost all the syntactic changes have been
made – I disagreed with a few. Hopefully the changes made to the content
has fully addressed the presentation issues that were raised.

Thanks to all those people working on programming languages and test
frameworks, and especially for those working on property-based testing
features, without whom this article would have been a very great deal
shorter. 

31. Debating the usefulness or otherwise of non-documentation comments
is left as an exercise for the readership.

Listing 11

#include "rapidcheck.h"
#include "factorial.cpp"

int main() {
 using namespace Factorial;

 rc::check("value of operator delivers the right
 value", [](int i) {
 RC_ASSERT(*mpz_class_iterator{i} == i);
 });

 rc::check("pointer operator delivers the right
 value", [](int i) {
 RC_ASSERT(mpz_class_iterator{i}->get_si()
 == i);
 });

 rc::check("equality is value not identity.",
 [](int i) {
 RC_ASSERT(mpz_class_iterator{i}
 == mpz_class_iterator{i});
 });

 rc::check("inequality is value not identity.",
 [](int i, int j) {
 RC_PRE(j != 0);
 RC_ASSERT(mpz_class_iterator{i}
 != mpz_class_iterator{i + j});
 });

32. And request Doctor Who or someone to perform appropriate time travel
with the corrections so that the situation has never been the case.

33. And, indeed, August.
34. “This joke is getting silly, stop this joke immediately.” The Colonel.

Listing 11 (cont’d)

 rc::check("preincrement does in fact increment",
 [](int i) {
 RC_ASSERT(++mpz_class_iterator{i}
 == mpz_class_iterator{i + 1});
 });

 rc::check("postincrement does in fact
 increment", [](int i) {
 RC_ASSERT(mpz_class_iterator{i}++
 == mpz_class_iterator{i});
 });

 rc::check("value of preincrement returns correct
 value", [](int i) {
 RC_ASSERT(*++mpz_class_iterator{i}
 == i + 1);
 });

 rc::check("value of postincrement returns
 correct value", [](int i) {
 RC_ASSERT(*mpz_class_iterator{i}++ == i);
 });
}

26 | Overload | August 2016

https://github.com/russel/Factorial

FEATURERUSSEL WINDER

Thanks to all those people working on programming
languages and test frameworks, and especially for
those working on property-based testing features
References
[Catch] https://github.com/philsquared/Catch

[Ceylon] http://ceylon-lang.org/

[D] http://dlang.org/

[FitNesse] http://www.fitnesse.org/

[Frege] http://www.frege-lang.org or https://github.com/Frege/frege

[GNU] https://gmplib.org/,
https://gmplib.org/manual/C_002b_002b-Interface-General.html

[Go] https://golang.org/

[Groovy] http://www.groovy-lang.org/

[Hackage] https://hackage.haskell.org/package/QuickCheck

[Haskell] https://www.haskell.org/

[HUnit] https://github.com/hspec/HUnit

[Hypothesis] http://hypothesis.works/,
https://hypothesis.readthedocs.io/en/latest/,
https://github.com/HypothesisWorks/hypothesis-python

[Kotlin] http://kotlinlang.org/

[MyPy] http://www.mypy-lang.org/

[Pytest] http://pytest.org/latest/

[Python_1] https://www.python.org/

[Python_2] https://www.python.org/dev/peps/pep-3107/,
https://www.python.org/dev/peps/pep-0484/

[QuickCheck] https://en.wikipedia.org/wiki/QuickCheck

[QuickCheck_2] https://github.com/grogers0/CppQuickCheck

[QuickCheck_3] http://software.legiasoft.com/quickcheck/

[RapidCheck] https://github.com/emil-e/rapidcheck

[Robot] http://robotframework.org/

[Rust] https://www.rust-lang.org/

[Scala] http://www.scala-lang.org/

[Winder] The full Haskell example can be found at https://github.com/
russel/Factorial/tree/master/Haskell.

[Winder16] Overload, 24(131):26–32, February 2016. There are PDF
(http://accu.org/var/uploads/journals/Overload131.pdf#page=27) or
HTML (http://accu.org/index.php/journals/2203) versions available.

Figure 4

$./test_factorial
Using configuration: seed=10731500115167123548

- iterative applied to non-negative integer
argument obeys the recurrence relation.
OK, passed 100 tests

- iterative applied to negative integer raises an
exception.
OK, passed 100 tests

- reductive applied to non-negative integer
argument obeys the recurrence relation.
OK, passed 100 tests

- reductive applied to negative integer raises an
exception.
OK, passed 100 tests

- naïve recursive applied to non-negative integer
argument obeys the recurrence relation.
OK, passed 100 tests

- naïve recursive applied to negative integer
raises an exception.
OK, passed 100 tests

- tail recursive applied to non-negative integer
argument obeys the recurrence relation.
OK, passed 100 tests

- tail recursive applied to negative integer
raises an exception.
OK, passed 100 tests

$./test_mpz_class_iterator
Using configuration: seed=9168594634932513587

- value of operator delivers the right value
OK, passed 100 tests

- pointer operator delivers the right value
OK, passed 100 tests

- equality is value not identity.
OK, passed 100 tests

- inequality is value not identity.
OK, passed 100 tests

- preincrement does in fact increment
OK, passed 100 tests
August 2016 | Overload | 27

http://www.fitnesse.org/
https://en.wikipedia.org/wiki/QuickCheck
http://robotframework.org/
http://www.groovy-lang.org/
https://www.haskell.org/
http://accu.org/var/uploads/journals/Overload131.pdf#page=27
http://accu.org/index.php/journals/2203
https://github.com/hspec/HUnit
https://github.com/russel/Factorial/tree/master/Haskell
https://github.com/russel/Factorial/tree/master/Haskell
http://www.frege-lang.org
https://github.com/Frege/frege
http://kotlinlang.org/
https://www.python.org/
http://www.scala-lang.org/
http://ceylon-lang.org/
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-0484/
http://pytest.org/latest/
http://hypothesis.works/
https://hypothesis.readthedocs.io/en/latest/
https://github.com/HypothesisWorks/hypothesis-python
http://www.mypy-lang.org/
http://dlang.org/
https://golang.org/
https://www.rust-lang.org/
https://github.com/grogers0/CppQuickCheck
http://software.legiasoft.com/quickcheck/
https://github.com/emil-e/rapidcheck
https://github.com/philsquared/Catch
https://gmplib.org/manual/C_002b_002b-Interface-General.html
https://gmplib.org/

FEATURE CHRIS OLDWOOD
Afterwood
Barriers can cause bottlenecks. Chris Oldwood
considers varying approaches to gatekeeping.
very morning, I struggle to get ready on time. No matter how hard I
try I always seem to be leaving the house at 07:22 (+/- 30 seconds)
and cycling like mad to the train station. As a consequence, I then

have about a minute and a half to lock my bike up and run around to the
front of the station, pass through the ticket barrier, and then skip to the last
carriage where I will find a seat waiting for me.

Possibly the least predictable part of this entire journey is passing through
the ticket barrier inside the station. What makes this all the more tense is
that I can see my train on the platform just the other side and the clock
ticking overhead on the departure board, in my head I hear the clock tick
hugely amplified as if I’m Jack Bauer in an episode of 24. I’ve put my
ticket in, it’s been scanned and I know the back-end must have authorised
me all in the blink of an eye but the barrier is mechanical and therefore
subject to the laws of physics. I lift my arms to make myself as small as
possible and eventually it opens wide enough for me to squeeze through
and I’m out onto the platform before another barrier, this time the train
doors, shuts me out.

Let’s wind the clock back a few years to when I was fortunate enough to
be able to travel to Japan to spend the week with a couple of friends at the
Tokyo Game Show. Pretty much all my holidays up to that point had been
within the European continent and so I was expecting to feel like the
proverbial ‘duck out of water’ as I struggled in a country that used a
completely different language for communicating, let alone the difference
in culture and customs. Of course, they drive on the same side of the road
so that was one less thing to worry about, not that we would be driving.

Naturally, to get around Tokyo we relied heavily on walking and public
transport, most notably the rail system. There were many notable
differences here too, such as the different little tune they play at each
station, at which point a whole bunch of seemingly fast-asleep passengers
lurch for the door before the train departs. The other interesting difference
I noticed was the barriers they used at the entrance to the platforms – they
were open by default. Of course initially we applied our usual British Rail
mentality and just tried walking straight through on the assumption that
they clearly must be broken or the ticket inspector is outside having a
smoke or gone for an extended toilet break. As I entered the barrier a small
pair of doors closed swiftly in front of us! At first I was confused, when I
stepped back the doors opened, but as I stepped forward they closed again.
How strange… Taking a moment to watch the natives it soon became
apparent where we needed to touch the machine with our smart card so
that the doors would remain open and we could pass through without any
further disruption.

Aside from the psychological differences, which I’ll come to in a moment,
these two approaches have a very clear operational difference too. In the
British case the barrier has to open and close for every single passenger,
whereas the Japanese approach only requires the barrier to close when the
passenger has forgotten to validate their ticket. This former’s need to
continuously operate the barrier means that it likely requires more energy
to run, has a far shorter maintenance cycle and potentially a higher mean
time-to-fail. The Japanese approach is more optimal simply by doing less
work.

But what raises my ire the most about the British barrier is the implicit
assumption that I am a fare dodger until I have proven myself innocent by
validating my ticket. Far from welcoming me to their facilities my initial
experience is one of confrontation as I am challenged to make myself
worthy. In stark contrast the Japanese barrier welcomes me (literally) with
open arms and invites me to proceed, only barring my entry if I should
accidentally make a mistake. You can almost hear the apology from the
gates as they shut, sorry that they’ve had to temporarily disrupt your
journey. The fact that they’re only knee high and therefore present no real
obstacle means they’re really just a speed-bump rather than a barrier.

If only these kinds of barriers were limited to train stations.

Sadly we bump into the more metaphorical kind every day in the office.
Instead of the culture making it easy to fall into the pit of success we find
ourselves stumbling at every hurdle laid out in our path. The British-style
barrier is the norm in most established organisations – you start from a
position of being disallowed whatever it is you are after until you have
collated enough ‘evidence’ to justify your right to continue with your
intended course of action. In essence the tactic is one of pessimism – make
it hard to do anything and the chance of mistakes happening will be
reduced.

So what’s the alternative? The Japanese-style barrier starts from a
position of trust – it assumes that you are probably trying to do the right
thing. This is one of optimism. But, crucially, it is not a naïve stance; an
act of verification still has to occur. For the purposes of this analogy it
would have been better if the Tokyo barriers had actually scanned my card
after passing through the barrier, but I’ll have to settle for a leakier
metaphor.

The saying ‘trust, but verify’ has its roots in the Cold War where two vast
nations were trying to avoid all-out nuclear war. Surely an organisation
can start from a position of trusting its employees given that their mistakes
will be far less costly? 

E

28 | Overload | August 2016

Chris Oldwood Chris is a freelance programmer who started out
as a bedroom coder in the 80’s writing assembler on 8-bit micros.
These days it’s enterprise grade technology in plush corporate
offices. He also commentates on the Godmanchester duck race
and can be easily distracted via gort@cix.co.uk or @chrisoldwood

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	Just a minute
	Some Big-Os are Bigger Than Others
	Kill the Clones
	Implementing SNAAAKE
	C++ Antipatterns
	Testing Propositions
	Afterwood
	2009-07-01 Care About Code - online.pdf
	Slide 1

