

December 2015 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Once Again on TCP vs UDP
Sergey Ignatchenko weighs up TCP and UDP.

8 Type Mosaicing with Consultables and
Delegates
Nicolas Bouillot introduces type mosaicing to avoid
boilerplate code.

13 The Universality and Expressiveness of
std::accumulate
Paul Keir uses polymorphic lambdas for folding.

16 QM Bites – The two sides of Boolean
Parameters
Matthew Wilson advises us to avoid Boolean
parameters.

18 Identify your Errors better with char[]
Patrick Martin and Dietmar Kühl demonstrate how to
use char arrays for better error information.

23CPU Clocks and Clock Interrupts, and Their
Effects on Schedulers
Bob Schmidt tells us what sleep(10) does
under the hood.

OVERLOAD 130

December 2015

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 131 should be submitted by
1st January 2016 and those for
Overload 132 by 1st March 2016.

EDITORIAL FRANCES BUONTEMPO
Reduce, reuse, recycle
The introduction of a carrier bag tax has caused
a little fuss. Frances Buontempo considers if it
has lessons for programmers.
As some readers may be aware England recently
introduced a tax on plastic carrier bags, barring
exceptional circumstances such as buying an axe or a
chicken. Other parts of the UK had done this a while
ago, without so much fuss, as far as I could tell. I
became mesmerised by various comedians on the

television and radio talking about this. In particular, it seems that a writer
in possibly the Daily Mail had given a Viz-style ‘Top Tip’ [citation
needed] of avoiding the new tax by taking your own shopping bags to the
supermarket. This led to much ridicule from topical comedy shows, since
the more astute among us realise the point of the 5p ‘tax’ is to encourage
the reduction in the use of the plastic bags which harm the environment.
I suspect using the excuse of watching or listening to comedians and
thinking about the environment might sound like a very poor excuse for
not getting round to writing an editorial. I am told consistency is a virtue,
and you must have expected this by now.

The ‘green’ or perhaps ‘clean’ campaigners have been pushing the three
R’s for a while; reduce, reuse, recycle. This campaign started off in the
1980s, and I suspect most people have heard of the three Rs, not to be
confused with the British education system’s three Rs – reading, writing,
and ’rtihmetic. The internet [all-recycling] tells me “Recycling has a
history that dates back to the historic times.” That’s the kind of history I
like. In all seriousness, what struck me while reading about recycling is
that if you spoke to Turkish people in about 400 BC about recycling glass
they would possibly ask what a cycle was and then say “But we’re just
using it.”

In between my hectic schedule of not writing an editorial and listening to
comedy, I have started to read some of the books on our book cases that
I’ve never read before. Prior to starting my Dad’s algebra book
[shameless_plug], I read Ruminations on C++ [Koenig]. I rediscovered
people talking about the promise of object-oriented (OO) code allowing
you to reuse code easily. One of our three Rs. Have you ever reused a
class? Certainly, if your class were to be a singleton [GoF] then you would
only be able to make one of them ever, during the course of one run of
your program. If you had two cores and ran two instances of your program,
you might end up with two, though as ever I digress. You still might use
the singleton a few times during the course of the program. Just using it
once would seem single-mindedly satirical. In the long run, you may find
it very difficult to unit test or manage lifetimes and start considering never
using any singleton ever again let alone reusing that one. Reducing the

use of singletons is one nudge towards greener,
cleaner code: our second R. Reduce. We will

return to this thought later. Apart from
singletons, the OO coders among us have
probably written several classes. Have

you ever put them in a library and referenced that library from a variety
of projects? Or decided your AbstractFactoryBuildManager was
very specific to your last project, and had a terrible name, so you just copy
and paste some of the better parts into your new project, and rebuild it
having learnt to be a better programmer. Rebuild is not one of the three
Rs. Perhaps programmers need four. Though we haven’t decided what
recycle means yet. We will, dear reader.

Ruminations [op cit] talked about being able to reuse C++ classes more
easily than C code. The authors tell us they had a C program for
distributing other programs, which needed revision to handle larger loads.
They decided to, “Try the revisions in C++ instead. The result was
successful: My rewrite increased the speed of the old version
dramatically, without compromising reliability. Although C++ programs
are innately no faster than corresponding C programs, C++ made it
intellectually manageable to use techniques that would have been too
hard to ... implement reliably in C.” The book then explores the
possibilities C++ gave over C. Some of the main points include data
abstractions, avoiding conventions by making it impossible to use these
structures incorrectly – e.g. C++ strings versus C-style char arrays,
templates, inheritance and many other features. We even find a section
entitled ‘Recycling software’ in the first chapter which talks about easily
extracting a string library from one project for reuse in theirs. Note that
this pre-dates C++98 and the official STL. Perhaps reuse and recycling
are slightly blurred in any context. Where reuse might mean just using
something as it is, recycling might mean taking something and changing
its form slightly to be better suited for a similar task. You can reuse or
recycle C code too. I worked at a place that had a small library of useful
things, such as a doubly-linked list, which was reused in various projects.
C++ would have allowed us to use a generic type rather than the traditional
void * yet we could reuse it as it stood. Library code might be the
ultimate way to reuse code. A large part of Ruminations [op cit] talks about
OO and specific foibles to be aware of in C++ such as virtual destructors,
assignment operators and copy constructors, encouraging you to write
easy to use library code. Though OO was hailed as a way to reuse code
there are many articles bemoaning this as a failed promise. For example,
Ambler [Dr Dobbs] tells us “Reusability is one of the great promises of
object-oriented technology. Unfortunately, it's a promise that often goes
unrealized.” He digs into various ways in which code can be reused,
beyond just ‘inheritance reuse’. Worth a read. As an aside, I note that
languages like Java and C# do constantly reuse at least one thing – Object,
not something you find in standard C++.

Different languages have different paradigms. C++ is often described as
a multi-paradigm language. Specifically, the STL contains classes but
does not use OO as such, rather using generic programming. Never try to
inherit from std::vector, for example. Stepanov, the so-called ‘Father

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She works at
Bloomberg, has been a programmer since the 90s, and learnt to program by reading the manual for her
Dad's BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | December 2015

EDITORIALFRANCES BUONTEMPO
of the STL’, talks of starting with an algorithm, including the complexity
requirements and allowing that to drive the implementation, always
keeping the algorithm and the data it operates on separate. Actually, to be
precise, he talks about a bacterial infection, algebra and the associativity
of addition but people seem to be more interested in using the STL than
understanding the mathematical foundations of his work or his health
problem at the time. Now, I am aware of many other types of containers
and various algorithms which are not in the STL. It is possible to code up
your own, following the pattern of using iterators to access the data you
wish to operate on generically rather than using OO. I started to wonder
how the committee decided what to include. I see an R – reduce – in play
again.

Bjarne is personally responsible for reducing the number of
components in STL by a factor of two. He was trying to make it as
small as possible to placate the opposition. [Stepanov]

In order to arrive at a usable library, which is therefore reusable, the scope
was reduced. Reduced scope or even reducing the amount of code is
frequently a winning formula. Furthermore, it is often possible to fix bugs
by deleting code. Reducing the number of Boolean flags is my personal
favourite.

What have we learnt so far? It is possible to reuse code, and not just by
copying and pasting it, however tempting that may be. It is frequently
desirable to reduce the amount of code, either deleting chunks of unused
legacy code, or making something more generic so you just have an
algorithm once, rather than once for every type. You can take genericity
too far, ending up with terse statements that are difficult to read.
Sometimes a plain old for loop is simpler to understand that C#’s LINQ
or similar. There’s no point in reducing it down so far that the code is never
used. Nonetheless, the ‘Don’t repeat yourself’ (DRY) principle
encourages us to refactor, yet another R, by abstracting repeated blocks.
Given reduce, and reuse where does this leave recycle? Once upon a time,
not that long ago in fact, I encountered a python file entitled
NewMerge5.py. This very much suggested that there had been a 4, 3, 2
NewMerge.py and possible just a Merge.py at some point. We have all
done something similar. Eventually, sense prevails and a programmer
might start using version control. At this point you could be tempted to

rename the file Merge.py, to cover up the chequered history prior to
version control. Or not. Version control is an excellent tool to help us
become cleaner coders. We can reuse something, just by invoking git
clone, or the specific incantation for our flavour of version control. We
can reduce the lines of code, and rollback easily if something goes wrong.
We can recycle (or perhaps refactor) code easily – particular if we can find
it in version control, rather than lying around in someone’s home
directory. Don’t forget proper refactoring should be done with the safety
of tests. How many times have you found copied and pasted code in a large
code base that came from the internet, but the tests weren’t pulled over
too? Schoolboy error.

It seems to me that there’s a strong parallel between the three Rs and the
TDD cycle. Consider both parts in Figure 1. On the left we have the reduce,
reuse, recycle in order to be greener, while on the right we have the test
fails, test passes then refactor steps – also known as the red/green/refactor
cycle. Many things come in threes.

I may have stretched the analogy a little far, but while the environmental
activists have started a move towards calling themselves ‘clean’ rather
than ‘green’, perhaps we coders should consider striving to be green, as
well as clean. Reducing code is a delight. Reusing code is possible, if it is
well written. And finally, recycling is possible, given version control,
libraries that are platform independent, and a
willingness to use someone else’s code rather than
feeling the need to rewrite your own version. If we fail
to be green, we could always consider a 5p copy and
paste tax. Every little helps.

References
[all-recycling] http://www.all-recycling-facts.com/history-of-

recycling.html

[Dr Dobbs] ‘A Realistic Look at Object-Oriented Reuse’ Scott Ambler,
January 01, 1998 from http://www.drdobbs.com/a-realistic-look-at-
object-oriented-reus/184415594

[GoF] Design patterns : elements of reusable object-oriented software
Gamma, Helm, Johnson, Vlissides, Addison Wesley, 1994.

[Koenig] Ruminations on C++: Reflections on a Decade of C++
Programming, Koenig and Moo, Addison Wesley, 1996

[shameless_plug] A Foundation Course In Modern Algebra, David
Buontempo, Macmillan, 1975.

[Stepanov] ‘An Interview with A. Stepanov’ by Graziano Lo Russo from
http://www.stlport.org/resources/StepanovUSA.html

Figure 1
December 2015 | Overload | 3

http://www.all-recycling-facts.com/history-of-recycling.html
http://www.all-recycling-facts.com/history-of-recycling.html
http://www.drdobbs.com/a-realistic-look-at-object-oriented-reus/184415594
http://www.drdobbs.com/a-realistic-look-at-object-oriented-reus/184415594
http://www.stlport.org/resources/StepanovUSA.html

FEATURE SERGEY IGNATCHENKO
Once Again on TCP vs UDP
TCP and UDP have different
properties. Sergey Ignatchenko weighs
up their pros and cons.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have
prevented an exact translation. In addition, the translator and Overload
expressly disclaim all responsibility from any action or inaction resulting
from reading this article.

iscussion on the advantages of TCP vs UDP (and vice versa) has a
history which is almost as long as the eternal Linux-vs-Windows
debate. As I have long been a supporter of the point of view that both

UDP and TCP have their own niches (see, for example, [NoBugs15]), here
are my two cents on this subject.

Note for those who already know the basics of IP and TCP: please skip to
the ‘Closing the Gap: Improving TCP Interactivity’ section, as you still
may be able to find a thing or two of interest.

IP: just packets, nothing more
As both TCP and UDP run over IP, let’s see what the internet protocol (IP)
really is. For our purposes, we can say that:

 we have two hosts which need to communicate with each other

 each of the hosts is assigned its own IP address

 the internet protocol (and IP stack) provides a way to deliver data
packets from host A to host B, using an IP address as an identifier

In practice, of course, it is much more complicated than that (with all kinds
of stuff involved in the operation of the IP, from ICMP and ARP to OSPF
and BGP), but for now we can more or less safely ignore the complications
as implementation details.

What we need to know, though, it is that IP packet looks as follows:

One very important feature of IP is that it does not guarantee packet
delivery. Not at all. Any single packet can be lost, period. It means that
any number of packets can also be lost.

IP works only statistically; this behaviour is by design; actually, it is the
reason why backbone Internet routers are able to cope with enormous
amounts of traffic. If there is a problem (which can range from link
overload to sudden reboot), routers are allowed to drop packets.

Within the IP stack, it is the job of the hosts to provide delivery
guarantees. Nothing is done in this regard en route.

UDP: datagrams ~= packets
Next, let’s discuss the simpler one of our two protocols: UDP. UDP is a
very basic protocol which runs on top of IP. Actually, it is that basic, that
when UDP datagrams run on top of IP packets, there is always 1-to-1
correspondence between the two, and all UDP does is add a very simple
header (in addition to IP headers), the header consisting of 4 fields: source
port, destination port, length, and checksum, making it 8 bytes in total.

So, a typical UDP packet will look as follows:

The UDP ‘Datagram’ is pretty much the same as an IP ‘packet’, with the
only difference between the two being the 8 bytes of UDP header; for the
rest of the article we’ll use these two terms interchangeably.

As UDP datagrams simply run on top of IP packets, and
IP packets can be lost, UDP datagrams can be lost too.

TCP: stream != packets
In contrast with UDP, TCP is a very sophisticated protocol, which does
guarantee reliable delivery.

The only relatively simple thing about TCP is its packet:

Usually, the size of a TCP header is around 20 bytes, but in relatively rare
cases it may reach up to 60 bytes.

As soon as we’re past the TCP packet, things become complicated. Here
is an extremely brief and sketchy description of TCP working1:

 TCP interprets all the data to be communicated between two hosts
as two streams (one stream going from host A to host B, and another
going in the opposite direction)

 whenever the host calls the TCP function send(), the data is
pushed into the stream

 the TCP stack keeps a buffer (usually 2K–16K in size) on the
sending side; all the data pushed to the stream goes to this buffer. If
the buffer is full, send() won’t return until there is enough space
in the buffer2

 Data from the buffer is sent over the IP as TCP packets; each TCP
packet consists of an IP packet, a TCP header, and TCP data. TCP
data within a TCP packet is data from the sending TCP buffer; data
is not removed from the TCP buffer on the sending side at the

IP Header (20 to 24 bytes for IPv4)

IP Payload

D IP Header (20 to 24 bytes for IPv4)

UDP Header (8 bytes)

UDP Payload

IP Header (20 to 24 bytes for IPv4)

TCP Header (20 to 60 bytes)

TCP Payload

1. For simplicity, the discussion of flow control and TCP windows is
omitted; so are the optimizations such as SACK and fast retransmit

2. Alternatively, if the socket is non-blocking, in this situation send() can
return EWOULDBLOCK

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko using
the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He currently holds the position of Security
Researcher and writes for a software blog (http://ithare.com). Sergey
can be contacted at sergey@ignatchenko.com
4 | Overload | December 2015

FEATURESERGEY IGNATCHENKO
moment when
TCP packet is
sent (!)

 After the
receiving side
gets the TCP
packet, it sends
a TCP packet in
the opposite
direction, with a
TCP header with
the ACK bit set – an
indication that a
certain portion of the data
has been received. On
receiving this ACK packet,
the sender may remove
the corresponding
piece from its
TCP sending
buffer.3

 Data received goes to
another buffer on the receiving side; again, its size is usually of the
order of 2K–16K. This receiving buffer is where the data for the
recv() function comes from.

 If the sending side doesn’t receive an ACK in a predefined time – it
will re-send the TCP packet. This is the primary mechanism by
which TCP guarantees delivery in case of the packet being lost.4

So far so good. However, there are some further caveats. First of all, when
re-sending because of no-ACK timeouts, these timeouts are doubled for
each subsequent re-send. The first re-send is usually sent after time T1,
which is double the so-called RTT (round-trip-time, which is measured by
the host as a time interval between the moment when the packet was sent
and another moment when the ACK for the packet was received); the second
re-send is sent after time T2=2*T1, the third one after T3=2*T2, and so
on. This feature (known as ‘exponential back-off’) is intended to avoid the
Internet being congested due to too many retransmitted packets flying
around, though the importance of exponential back-off in avoiding Internet
congestion is currently being challenged [Mondal]. Whatever the
reasoning, exponential back-off is present in every TCP stack out there (at
least, I’ve never heard of any TCP stacks which don’t implement it), so
we need to cope with it (we’ll see below when and why it is important).

Another caveat related to interactivity is the so-called Nagle algorithm.
Originally designed to avoid telnet sending 41-byte packets for each

character pressed (which constitutes a 4000%
overhead), it also allows the hiding of more

packet-related details from a ‘TCP as stream’
perspective (and eventually became a way to

allow developers to be careless and push
data to the stream in as small
chunks as they like, in the hope
that the ‘smart TCP stack will

do all the packet assembly
for us’). The Nagle

algorithm avoids
sending a new
packet as long as
there is (a) an
unacknowledged
ou t s t an d i ng

packet and (b) there
isn’t enough data in the buffer to fill the whole packet. As we

will see below, it has significant implications on
interactivity (but, fortunately for interactivity, usually
Nagle can be disabled).

TCP: Just the ticket? No so fast :-(
Some people may ask: if TCP is so much more sophisticated and more
importantly, provides reliable data delivery, why not just use TCP for
every network transfer under the sun?

Unfortunately, it is not that simple. Reliable delivery in TCP does have a
price tag attached, and this price is all about loss of interactivity :-(.

Let’s imagine a first-person shooter game that sends updates, with each
update containing only the position of the player. Let’s consider two
implementations: Implementation U which sends the player position over
UDP (a single UDP packet every 10ms, as the game is fast and the position
is likely to change during this time anyway), and Implementation T which
sends the player position over TCP.

First of all, with Implementation T, if your application is calling send()
every 10 ms, but RTT is, say, 50ms, your data updates will be delayed
(according to the Nagle algorithm, see above). Fortunately, the Nagle
algorithm can be disabled using the TCP_NODELAY option (see the section
‘Closing the gap: improving TCP interactivity’ for details).

If the Nagle algorithm is disabled, and there are no packets lost on the way
(and both hosts are fast enough to process the data) – there won’t be any
difference between these implementations. But what will happen if some
packets are lost?

With Implementation U, even if a packet is lost, the next packet will heal
the situation, and the correct player position will be restored very quickly
(at most in 10 ms). With Implementation T, however, we cannot control
timeouts, so the packet won’t be re-sent until around 2*RTT; as RTT can
easily reach 50ms even for a first-person shooter (and is at least 100–

3. In practice, ACK is not necessarily a separate packet; efforts are taken
by the TCP stack to ‘piggy-back’ an ACK on any packet going in the
needed direction

4. There are other mechanisms of re-sending, which include re-sending
when an ACK was received, but was out-of-order, but they are beyond
the scope of present article
December 2015 | Overload | 5

FEATURE SERGEY IGNATCHENKO

when implementing reliable UDP, the more
TCP features you implement, the more
chances there are that you end up with an
inferior implementation of TCP
150ms across the Atlantic), the retransmit won’t happen until about 100ms,
which represents a Big Degradation compared to Implementation U.

In addition, with Implementation T, if one packet is lost but the second one
is delivered, this second packet (while present on the receiving host) won’t
be delivered to the application until the second instance of the first packet
(i.e. the first packet retransmitted on timeout) is received; this is an
inevitable consequence of treating all the data as a stream (you cannot
deliver the latter portion of the stream until the former one is delivered).

To make things even worse for Implementation T, if there is more than one
packet lost in a row, then the second retransmit with Implementation T
won’t come until about 200ms (assuming 50ms RTT), and so on. This, in
turn, often leads to existing TCP connections being ‘stuck’ when new TCP
connections will succeed and will work correctly. This can be addressed,
but requires some effort (see ‘Closing the gap: improving TCP
interactivity’ section below).

So, should we always go with UDP?
In Implementation U described above, UDP worked pretty well, but this
was closely related to the specifics of the messages exchanged. In
particular, we assumed that every packet has all the information necessary,
so loss of any packet will be ‘healed’ by the next packet. If such an
assumption doesn’t hold, using UDP becomes non-trivial.

Also, the whole schema relies on us sending packets every 10ms; this may
easily result in sending too much traffic even if there is little activity; on
the other hand, increasing this interval with Implementation U will lead to
loss of interactivity.

What should we do then?
Basically, the rules of thumb are about the following:

 If characteristic times for your application are of the order of many
hours (for example, you’re dealing with lengthy file transfers) –
TCP will do just fine, though it is still advisable to use TCP built-in
keep-alives (see below).

 If characteristic times for your application are below ‘many hours’
but are over 5 seconds – it is more or less safe to go with TCP.
However, to ensure interactivity consider implementing your ‘Own
Keep-Alives’ as described below.

 If characteristic times for your application are (very roughly)
between 100ms and 5 seconds – this is pretty much a grey area. The
answer to ‘which protocol to use’ question will depend on many
factors, from “How well you can deal with lost packets on
application level” to “Do you need security?”. See both ‘Closing the
gap: reliable UDP’ and ‘Closing the gap: improving TCP
Interactivity’ sections below.

 If characteristic times for your application are below 100ms – it is
very likely that you need UDP. See the ‘Closing the gap: reliable
UDP’ section below on the ways of adding reliability to UDP.

Closing the gap: reliable UDP
In cases when you need to use UDP but also need to make it reliable, you
can use one of the ‘reliable UDP’ libraries [Enet] [UDT] [RakNet].
However, these libraries cannot do any magic, so they’re essentially
restricted to retransmits at some timeouts. Therefore, before using such a
library, you will still need to understand very well how exactly it achieves
reliable delivery, and how much interactivity it sacrifices in the process
(and for what kind of messages).

It should be noted that when implementing reliable UDP, the more TCP
features you implement, the more chances there are that you end up with
an inferior implementation of TCP. TCP is a very complex protocol (and
most of its complexity is there for a good reason), so attempting to
implement ‘better TCP’ is extremely difficult. On the other hand,
implementing ‘reliable UDP’ at the cost of dropping most of TCP
functionality, is possible.

Closing the gap: improving TCP interactivity
There are several things which can be done to improve interactivity of
TCP.

Keep-alives and ‘stuck’ connections
One of the most annoying problems when using TCP for interactive
communication is ‘stuck’ TCP connections. When you see a browser page
which ‘stuck’ in the middle, then press ‘Refresh’ – and bingo! - here is your
page, then chances are you have run into such a ‘stuck’ TCP connection.

One way to deal with ‘stuck’ TCP connections (and without your customer
working as a freebie error handler) is to have some kind of ‘keep alive’
messages which the parties exchange every N seconds; if there are no
messages on one of the sides for, say, 2*N time – you can assume that TCP
connection is ‘stuck’, and try to re-establish it.

TCP itself includes a Keep-Alive mechanism (look for SO_KEEPALIVE
option for setsockopt()), but it is usually of the order of 2 hours (and
worse, at least under Windows it is not configurable other than via a global
setting in the Registry, ouch).

So, if you need to detect your ‘stuck’ TCP connection earlier than in two
hours, and your operating systems on both sides of your TCP connection
don’t support per-socket keep alive timeouts, you need to create your own
keep-alive over TCP, with the timeouts you need. It is usually not rocket
science, but is quite a bit of work.

The basic way of implementing your own keep-alive usually goes as
follows:

 You’re splitting your TCP stream into messages (which is usually a
good idea anyway); each message contains its type, size, and
payload

 One message type is MY_DATA, with a real payload. On receiving it,
it is passed to the upper layer. Optionally, you may also reset a
‘connection is dead’ timer.
6 | Overload | December 2015

FEATURESERGEY IGNATCHENKO
 Another message type is MY_KEEPALIVE, without any payload. On
receiving it, it is not passed to the upper layer, but a ‘connection is
dead’ timer is reset.

 MY_KEEPALIVE is sent whenever there are no other messages
going over the TCP connection for N seconds

 When a ‘connection is dead’ timer expires, the connection is
declared dead and is re-established. While this is a fallacy from
traditional TCP point of view, it has been observed to help
interactivity in a significant manner.

As an optimization, you may want to keep the original connection
alive while you’re establishing a new one; if the old connection
receives something while you’re establishing the new one, you can
resume communication over the old one, dropping new one.

TCP_NODELAY
One of the most popular ways to improve TCP interactivity is enabling
TCP_NODELAY over your TCP socket (again, as a parameter of
setsockopt() function).

If TCP_NODELAY is enabled, then the Nagle algorithm is disabled (usually
TCP_NODELAY also has some other effects such as adding a PSH flag,
which causes the TCP stack on the receiving side to deliver the data to the
application right away without waiting for ‘enough data to be gathered’,
which is also a Good Thing interactivity-wise. Still, it cannot force packet
data to be delivered until previous-within-the-stream packet is delivered,
as stream coherency needs to be preserved).

However, TCP_NODELAY is not without its own caveats. Most
importantly, with TCP_NODELAY you should always assemble the whole
update before calling send(). Otherwise, each of your calls to send()
will cause the TCP stack to send a packet (with the associated 40–84 bytes
overhead, ouch).

Out-of-Band Data
TCP OOB (Out-of-Band Data) is a mechanism which is intended to break
the stream and deliver some data with a higher priority. As OOB adds
priority (in a sense that it bypasses both the TCP sending buffer and TCP
receiving buffer), it may help to deal with interactivity. However, with
TCP OOB being able to send only one byte (while you can call
send(...,MSG_OOB) with more than one byte, only the last byte of the
block will be interpreted as OOB), its usefulness is usually quite limited.

One scenario when MSG_OOB works pretty well (and which is used in
protocols such as FTP), is to send an ‘abort’ command during a long file
transfer; on receiving OOB ‘abort’, the receiving side simply reads all the
data from the stream, discarding it without processing, until the OOB
marker (the place in the TCP stream where send(...,MSG_OOB) has
been called on sending side) is reached. This way, all the TCP buffers are
effectively discarded, and the communication can be resumed without
dropping the TCP connection and re-establishing a new one. For more
details on MSG_OOB see [Stevens] (with a relevant chapter available on
[Masterraghu]).

Residual issues
Even with all the tricks above, TCP is still lacking interactivity-wise. In
particular, out-of-order data delivery of over-1-byte-size is still not an
option, stale-and-not-necessary-anymore data will still be retransmitted
even if they’re not necessary, and dealing with ‘stuck’ connections is just
a way to mitigate the problem rather than to address it. On the other hand,
if your application is relatively tolerant to delays, ‘other considerations’
described below may easily be a deciding factor in your choice of protocol.

Other considerations
If you’re lucky enough and the requirements of your application can be
satisfied by both TCP and UDP, other considerations may come into play.
These considerations include (but are not limited to):

 TCP guarantees correct ordering of packets, UDP as such doesn’t
(though ‘Reliable UDP’ might).

 TCP has flow control, UDP as such doesn’t.

 TCP is generally more firewall- and NAT-friendly. Which can be
roughly translated as ‘if you want your user to be able to connect
from a hotel room, or from work – TCP usually tends to work better,
especially if going over port 80, or over port 443’.

 TCP is significantly simpler to program for. While TCP is not
without caveats, not discussed here (see also [Nobugs15a]), dealing
with UDP so it works without major problems generally takes
significantly longer.

 TCP generally has more overhead, especially during connection
setup and connection termination. The overall difference in traffic
will usually be small, but this might still be a valid concern.

Conclusions
The choice of TCP over UDP (or vice versa) might not always be obvious.
In a sense, replacing TCP with UDP is trading off reliability for
interactivity.

The most critical factor in selection of one over another one is usually
related to acceptable delays; TCP is usually optimal for over-several-
seconds times, and UDP for under-0.1-second times, with anything in
between being a ‘grey area’. On the other hand, other considerations
(partially described above) may play their own role, especially within the
‘grey area’.

Also, there are ways to improve TCP interactivity as well as UDP
reliability (both briefly described above); this often allows to close the gap
between the two.

References
[Enet] http://enet.bespin.org/

[Loganberry04] David ‘Loganberry’ Buttery, ‘Frithaes! – an Introduction
to Colloquial Lapine’, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

[Masterraghu] http://www.masterraghu.com/subjects/np/introduction/
unix_network_programming_v1.3/ch24lev1sec2.html

[Mondal] Amit Mondal, Aleksandar Kuzmanovic, ‘Removing
Exponential Backoff from TCP’, ACM SIGCOMM Computer
Communication Review

[NoBugs15] ‘64 Network DO’s and DON’Ts for Game Engines. Part IV.
Great TCP-vs-UDP Debate’ http://ithare.com/64-network-dos-and-
donts-for-game-engines-part-iv-great-tcp-vs-udp-debate/

[NoBugs15a] ‘64 Network DO’s and DON’Ts for Game Engines. Part
VI. TCP’ http://ithare.com/64-network-dos-and-donts-for-multi-
player-game-developers-part-vi-tcp/

[RakNet] https://github.com/OculusVR/RakNet

[Stevens] W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, UNIX®
Network Programming Volume 1, Third Edition: The Sockets
Networking API

[UDT] http://udt.sourceforge.net/

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.
December 2015 | Overload | 7

http://udt.sourceforge.net/
https://github.com/OculusVR/RakNet
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/64-network-dos-and-donts-for-multi-player-game-developers-part-vi-tcp/
http://ithare.com/64-network-dos-and-donts-for-multi-player-game-developers-part-vi-tcp/
http://ithare.com/64-network-dos-and-donts-for-game-engines-part-iv-great-tcp-vs-udp-debate/
http://ithare.com/64-network-dos-and-donts-for-game-engines-part-iv-great-tcp-vs-udp-debate/
http://www.masterraghu.com/subjects/np/introduction/unix_network_programming_v1.3/ch24lev1sec2.html
http://www.masterraghu.com/subjects/np/introduction/unix_network_programming_v1.3/ch24lev1sec2.html
http://enet.bespin.org/

FEATURE NICOLAS BOUILLOT
Type Mosaicing with
Consultables and Delegates
If several classes need to work together lots of
boilerplate code is often needed. Nicolas Bouillot
introduces type mosaicing to avoid this.
hen assembling a class with complex behaviour out of several
other feature classes, the most common approaches are multiple
inheritance1 and object composition.2 This article introduces an

other alternative called type mosaicing which enables the assembly of
multiple object interfaces, all being visible independently to the class user
without the need for writing wrappers. This is achieved using an update
of previously described making and forwarding of consultables and
delegates [Bou15], which use C++ template meta-programming for
automating the wrapping of delegate’s public methods, possibly enabling
const only methods (consultable) or all public methods (delegate).

Consider for instance a base class called Element being composed of
members offering complex features, such as a documentation tree with
serialization and deserialization, an event system, a state system and
others. All these features and their interfaces already exist independently
(or are wanted to be kept independent). Feature being class members are
not enough: how to use them remains to be specified. It is wanted for
instance that the user has a read-only (const methods) access to the
documentation tree interface, while the base class and subclasses has read/
write access. How can this kind of behaviour be implemented? Several
approaches can be used: writing wrappers gives full control, but while the
event system interface is powerful, it also very detailed and requires many
wrappers. A less verbose approach could be writing simple feature
accessors for feature members, but this introduces ownership related
issues. One could instead use multiple inheritance, but both the
documentation three member and the state system member have a get
method. Would it be easier if the Element class could ‘import’ read-only
or read/write member interfaces into its public and/or protected
declarations, with a compile time generated wrapper that avoid possible
conflicts? This would allow expressive design of feature assembled classes
without ownership related issue, no wrapper to maintain, no conflicts
among feature interfaces and no constraint imposed on feature classes.

So the motivation here is the assemblage of feature classes interfaces.3 In
this context, there are some issues with common approaches. With C++
multiple inheritance, base classes interfaces are visible to the subclass user
as if they were inside in the subclass, requiring explicit specification of a
method scope name only when method name is ambiguous. Accordingly,
including a new feature with multiple inheritance may add ambiguity and
therefore may break already present code. Another issue occurs when two
features of the same type are wanted in the same assemblage: inherit
directly twice from the same base class does not import two isolated
interfaces, but rather conflicts and fail to compile.

With object composition, the assemblage is achieved declaring features as
members, and then delegate them manually writing boilerplate wrappers,

resulting (according to my experience) in a task prone to errors and muscle
pains, with a very likely incomplete wrapping of delegated methods.
However, unlike inheritance, object composition is avoiding ambiguity
among feature's methods and allows for manual hooking of wanted calls
for various purpose, such and thread safety, log, etc.

Type mosaicing with consultable and delegate aims at avoiding the
previously described limitations, while keeping flexibility of object
composition. Ambiguity avoiding is achieved using automated wrapper
generation that makes delegate methods accessible through an accessor
method (see Listing 1) that isolate delegated features from each other.
Additionally, the possibility of specifying particular behaviour around
delegate invocation is enabled through two new additions to consultable.
They are described here: selective hooking allows for replacing the
invocation of a delegated method wrapper by a delegator method sharing
the same signature. This enables either bypassing the invocation, or adding
a particular behaviour when the hook is subcalling the delegated method
(log and call, count and call, etc). The second addition is the global
wrapping feature that allows to user-defined code to be executed before
and after delegate method invocation.

Compared to a simple accessor, the consultable and delegate method
provides a much safer approach with a more powerful control over feature
use. Suppose the use of a simple accessor for a feature member: once the
user has the object, invocation on it cannot be handled by the assembled
class. The second reason is ownership: if the simple accessor returns as
reference or a pointer to the feature object, the obtained reference or pointer
can be saved by the user. Moreover, with a reference or a pointer, a read-
only object can be made writable with const_cast. With wrapper
generation in consultable and delegate, the class user does not have access
to the object (ownership remains with the assembled class) and each call
to its methods can be controlled from the assembled class if wanted.

W

Nicolas Bouillot is a research associate at the Society for Arts and
Technology ([SAT], Montreal, Canada). He likes C++
programming, team-based working, writing research papers,
networks and distributed systems, data streaming, distributed
music performances, teaching, audio signal processing and many
other unrelated things.

1. From [GHJV95], “class inheritance lets you define the implementation
of one class in terms of another’s. Reuse by subclassing is often
referred to as white-box reuse. The term ‘white-box’ refers to visibility:
With inheritance, the internals of parent classes are often visible to
subclasses.”

2. From [GHJV95], “object composition is an alternative to class
inheritance. Here new functionality is obtained by assembling or
composing objects to get more complex functionality. Object
composition requires that the objects being composed have well-
defined interfaces. This style of reuse is called black-box reuse,
because no internal details of objects are visible. Objects appear only
as ‘black boxes’.”

3. While the decorator pattern intent is to ‘attach additional responsibilities
to an object dynamically’ and seems close to the motivation of
assembling feature interfaces, the decorator pattern [GHJV95] does
not apply here. Indeed, it requires a decorator object’s interface to
conform to the interface of the component it decorates. Accordingly, a
decorator’s interface is not added to the decorated component, but
used in order to add a specific behaviour to the already existing
interface.
8 | Overload | December 2015

FEATURENICOLAS BOUILLOT

the consultable and delegate method
provides a much safer approach with a more

powerful control over feature use
The following will provide a more in-depth view of type mosaicing use
and implementation, providing first a description/reminder of the updated
initial design of consultables and delegates. Then selective hooking and
global wrapper are introduced with example code. After, a more complete
example of type mosaicing is given, where a class Element will have
several templated properties Prop installed. Finally, brief explanations
about implementation will be given.

Update about consultables & delegates
Consultables and delegates basically provide automated class member
delegation. This is implemented using C++ templates, generating wrapper
in user code. The generated wrapper is actually a templated method (called
the accessor method) taking the original delegated method pointer as
parameter. Accordingly, declaring a member as consultable or delegate
(see Listing 1) results in the declaration of the accessor method templates.
Make_delegate enables the invocation of all public methods, and
Make_consultable enables the invocation of public const methods
only.

The previous implementation of consultables and delegates [Bou15] used
a delegated method pointer as the accessor method’s first argument.
However, the implementation of selective hooking needs to detect which
delegated method is invoked at compile time. The updated implementation
now takes delegate method pointer as template parameter, with invocation
arguments only aimed at being forwarded to the delegated method.

The new syntax for invocation is shown with Listing 1, lines 22 & 23.
Notice the use of the MPtr(X) (for method pointer) macro that shortcuts
decltype(X), X. Indeed, with pointer to method as a template
parameter, the method type must be specified before the method pointer.
This however does not handle ambiguity among possibly overloaded
methods in the delegator. Handling this case, additional shortcut macros
are provided: OPtr (for overloaded method pointer) and COPtr (for const
overloads). They however require the specification of return and
arguments types, along with the method pointer. For instance, if the print
method (line 5) would have been overloaded, a user could have specified
it using COPtr(&Name::print, void). For this reason, it is preferable
to avoid overloaded methods when writing a class that will be delegated
with a consultable or a delegate.

Forwarding a consultable or a delegate has the same meaning as in the
previous implementation: an accessor method of a class member can be
forwarded to a local class accessor method. Listing 2 shows an example
of Forward_consultable: the NameOwner member (line 6) accessor
methods first and second are forwarded as Box accessor methods,
respectively fwd_first (line 3) and fwd_second (line 4).

Listing 1

 // 'Name' is the class delegated twice by the
 // 'NameOwner' class, as declared lines 13 and
 // 14. The two delegated member are used lines 22
 // and 23, invoking their 'print' method.

 1 class Name {
 2 public:
 3 Name(const string &name): name_(name){}
 4 string get() const { return name_; }
 5 void print() const { cout << name_; }
 6 // ...
 7 private:
 8 string name_{};
 9 };
10
11 class NameOwner {
12 public:
13 Make_consultable(NameOwner, Name, &first_,
 first);
14 Make_consultable(NameOwner, Name, &second_,
 second);
15 private:
16 Name first_{"Augusta"};
17 Name second_{"Ada"};
18 };
19
20 int main() {
21 NameOwner nown;
22 nown.first<MPtr(&Name::print)>(); // Augusta
23 nown.second<MPtr(&Name::print)>(); // Ada
24 }

Listing 2

 // 'first' and 'second' are accessor methods
 // declared in the 'NameOwner' class and
 // therefore available as methods of 'nown_'
 // member. Forward_consultable (lines 3 and 4)
 // allows them to be forwarded as Box methods,
 // respectively 'fwd_first' and 'fwd_second'.

 1 class Box {
 2 public:
 3 Forward_consultable(Box, NameOwner, &nown_,
 first, fwd_first);
 4 Forward_consultable(Box, NameOwner, &nown_,
 second, fwd_second);
 5 private:
 6 NameOwner nown_{};
 7 };
 8
 9 int main() {
10 Box b;
11 b.fwd_first<MPtr(&Name::print)>(); // Augusta
12 b.fwd_second<MPtr(&Name::print)>(); // Ada
13 }
December 2015 | Overload | 9

FEATURE NICOLAS BOUILLOT
As with previous implementation, a delegate (read/write access) can
forwarded as a consultable (read-only), blocking then write access to the
feature.

Accessor method hooks
Making and forwarding consultable reduces code size and allows for
automating delegation without giving reference to the delegated member.
However, when making or forwarding, a class might want to implement
some specific behaviour for all (or for a given) delegated method. This is
achieved with selective hooking and global wrapping described here.

Selective hooking
Sometimes one wants to forward all methods of a delegate, but also wants
to change or augment the behaviour of one particular method. Motivations
can be testing performance of a new algorithm, emulating a behaviour
during debug, counting the calls, measuring the call duration of the
delegate method, etc. As presented in Listing 3, this is achieved declaring
a selective hook (lines 5-8). The selective hook applies to a particular
delegated method, here Name::get, and is attached to a particular
accessor method, here fwd_second.

The last argument of Selective_hook is a method that will be invoked
instead of the or iginal delegated method, here the pr ivate
Box2::hooking_get method. It must therefore have an identical
signature (not merely compatible) as the original delegated method. In this
hook, the original method is invoked (line 13) and the returned string
("Ada") is placed into an other string, resulting in the printing of a new
string "hooked! (was Ada)" when invoked on line 21.

Notice the type of the delegated method is given as second argument (line
6). This allows consultable internals to support overloaded delegate
methods, whose type is the only way to distinguish them from other

overloaded methods. This argument might have been made not required,
but at the cost of not supporting overloads.

Global wrapping
A Global wrap is specified for a particular accessor method, but is applied
regarding the delegated method invoked. It basically allows for invoking
code before and after any delegate invocation, with the exception of
delegate methods having a selective hook attached.

Listing 4 shows a use of a global wrap. As seen line 11, the fwd_first
acce s so r me t hod has a g l oba l wrap t ha t w i l l i nvoke t he
make_TorPrinter method, which returns a TorPrinter object. As seen
in lines 6–9, a TorPrinter object prints "ctor" when constructing, and
"dtor" when destructing. As a result, the invocation of Name::print (line
16) first constructs a TorPrinter (printing "ctor"), then invokes print
(printing "Augusta"), and then destructs TorPrinter (printing "dtor").

Notice that global wrapping is here used with the custom type
(TorPrinter) but can be used with other types, as for instance
std::unique_lock. The use of a delegate can then be made thread safe
with the declaration of a global wrapper that returns a lock applied to a
mutex member of the assembled class.

Type mosaicing with consultables and delegates
Listing 5 is an example of type mosaicing. The public interface of the class
Element is built as the assembly of interfaces from its private members,
declaring class members as delegates and/or consultables (lines 15–19).
An equivalent assembly would be impossible with inheritance since two
members share the same type (info_ and last_msg_). With
composition, such an assemblage would require the writing of many
wrappers, increasing significantly class definition size.

Before entering the listing details, suppose that a new feature is eventually
wanted, such as log set invocation on last_msg (as invoked line 35).
Then you would declare a selective hook for the set method applied to

Listing 3

 // 'Box2' is having a 'NameOwner' member, from
 // which it is forwarding accessor methods.
 // However, for a particular invocation, i.e.
 // '&Name::get' with 'fwd_second' (declared
 // lines 5-8), the call is hooked and replaced by
 // the invocation of 'hooking_get' (declared
 // lines 11-15).

 1 class Box2 {
 2 public:
 3 Forward_consultable(Box2, NameOwner, &nown_,
 first, fwd_first);
 4 Forward_consultable(Box2, NameOwner, &nown_,
 second, fwd_second);
 5 Selective_hook(fwd_second,
 6 decltype(&Name::get),
 7 &Name::get,
 8 &Box2::hooking_get);
 9 private:
10 NameOwner nown_{};
11 string hooking_get() const {
12 return "hooked! (was "
13 + nown_.second<MPtr(&Name::get)>()
14 + ")";
15 }
16 };
17
18 int main() {
19 Box2 b;
20 cout << b.fwd_first<MPtr(&Name::get)>()
 // Augusta
21 << b.fwd_second<MPtr(&Name::get)>()
 // hooked! (was Ada)
22 << endl;
23 } Listing 4

 // the 'Box3' class is forwarding (line 3)
 // accessor method of the 'nown_' member (line 5).
 // A global wrap is declared for this particular
 // forwarding (line 11), that will cause the
 // wrapper to call 'make_TorPrinter' and store
 // the result (a 'TorPrinter') before invoking the
 // delegated method. The result will be destructed
 // when the wrapper will be unstacked.

 1 class Box3 {
 2 public:
 3 Forward_consultable(Box3, NameOwner, &nown_,
 first, fwd_first);
 4 private:
 5 NameOwner nown_{};
 6 struct TorPrinter{
 7 TorPrinter(){ cout << " ctor "; }
 8 ~TorPrinter(){ cout << " dtor "; }
 9 };
10 TorPrinter make_TorPrinter() const {
 return TorPrinter();}
11 Global_wrap(fwd_first, TorPrinter,
 make_TorPrinter);
12 };
13
14 int main() {
15 Box3 b;
16 b.fwd_first<MPtr(&Name::print)>();
 // ctor Augusta dtor
17 cout << b.fwd_first<MPtr(&Name::get)>()
 // ctor dtor Augusta
18 << endl;
19 }
10 | Overload | December 2015

FEATURENICOLAS BOUILLOT
last_msg accessor method that would invoke set and log. This feature
addition would consist only in adding a selective hook without modifying
existing methods.

With a closer look at the listing, it can be seen that the use of the Element
class is achieved through creation of a Countess subclass instance line
34. The last_msg_ can be updated (line 35) through invocation of the
last_msg accessor method. num_ can be used at line 36 since num_ has
been declared as a consultable line 16.

Things are a little different for the member info_. It has two accessor
methods declared: one as consultable for public use (line 15) and one as
delegate for subclasses (line 19). As it is it, the class user has a read only
access to info_. In other words, Prop<string>::get is allowed for
info_ and return "programmer" when invoked line 38. Then, invocation
of the mutate method (declared in the Countess subclass) is updating
info_ to "mathematician". This mutate method is allowed to write
info_ since the Countess class have access to the prot_info access
method. A new call to info_ getter (line 40) is accordingly returning
"mathematician".

The info_ related part of the code demonstrates how declaration of
consultables and delegates makes explicit which part of the interface can
be invoked by a subclass or by a user, without the noise introduced by
wrapper declaration when wrapping multiple features. Achieving the same
with manually written wrappers would have resulted into wrapping non-
const methods for subclasses and wrapping info_ const methods once or
twice (if protected and public wrappers need to have different
implementations). Moreover, suppose a const method is added latter into
the Prop class, then additional wrapper(s) need to be written in the
Element class. At the inverse, with type mosaicing, the Element class
stays unchanged, but the addition is visible to the user and the subclass(es).

Implementation
My previous paper [Bou15] gave several details about consultable and
delegate implementation. The focus here is about description of selective
hooking and global wrapping implementation and a discussion about the
use of macros.

About the use of macros
All previously presented features are implemented using macro declaring
types and templates in the class definition. It is argued here that making,
forwarding and hooking of consultable and delegates follows a declarative
programming paradigm. Indeed, when declaring consultables, delegates
and hooks, the programmer is describing what the program should
accomplish (which wrappers are generated), rather than describing how to
go about accomplishing (writing wrappers). Unfortunately, C++11 offers
very few (or nothing excepted macros?) that enable such a paradigm.

While I have read on the Internet that the use of macro is almost always
bad, there might be no other option for approaching declarative
programming. Here, making consultable if very close to the declaration of
a member qualifier (such as const for instance). For instance, (and naively),
if one could add custom qualifier to class members, a consultable could
have been declared as follow:

 Prop<string> info_{} : public consultable info,
 protected delegate prot_info;

Which would have the same meaning for info_ than related declarations
in Listing 5, generating two accessor methods, info and prot_info.

This is not possible with C++ (and maybe not desirable), but as
demonstrated with consultable implementation, this can be approached
using macros.

Notice also that the use of macro for building declarative statement in C++
has already be promoted, for instance by Andrei Alexandrescu for
implementation of scope_exit, scope_fail and scope_success.4

Selective hook
Selective hooking is implemented using template specialization. When
declaring a consultable or delegate, a primary template for the
get_alternative method is declared. The parameter of this template
is the delegated method pointer, allowing specialization per delegated
method. This primary template returns nullptr. However, when a
selective_hook is declared, an explicit specialization for
get_alternative is declared, returning the pointer to the hook method.

In the generated wrapper (see Listing 6), the pointer to the hook pointer is
stored into the alt variable (line 1). Then, if a method for hooking has4. See Andrei Alexandrescu’s ‘Declarative flow control’ talk at the NDC

2014 conference: https://vimeo.com/97329153

Listing 5

 // the 'Element' class interface is an assemblage
 // of several private members interfaces, using
 // 'Make_consultable' and 'Make_delegate'.

 1 template<typename T> class Prop {
 2 public:
 3 Prop() = default;
 4 Prop(const T &val) : val_(val){}
 5 T get() const { return val_; }
 6 void set(const T &val) { val_ = val; }
 7 // ...
 8 private:
 9 T val_{};
10 };
11
12 class Element {
13 public:
14 Element(string info, int num) : info_(info),
 num_(num){}
15 Make_consultable(Element, Prop<string>,
 &info_, info);
16 Make_consultable(Element, Prop<int>, &num_,
 num);
17 Make_delegate(Element, Prop<string>,
 &last_msg_, last_msg);
18 protected:
19 Make_delegate(Element, Prop<string>, &info_,
 prot_info);
20 private:
21 Prop<string> info_{};
22 Prop<int> num_{0};
23 Prop<string> last_msg_{};
24 };
25
26 struct Countess : public Element {
27 Countess() : Element("programmer", 1){}
28 void mutate(){
29 prot_info<MPtr(&Prop<string>::set)>
 ("mathematician");
30 }
31 };
32
33 int main() {
34 Countess a;
35 a.last_msg<MPtr(&Prop<string>::set)>
 ("Analytical Engine");
36 a.num<MPtr(&Prop<int>::get)>(); // "1"
37 // a.info<MPtr(&Prop<string>::set)>("...");
 // does not compile
38 a.info<MPtr(&Prop<string>::get)>();
 // "programmer"
39 a.mutate();
40 a.info<MPtr(&Prop<string>::get)>();
 // "mathematician"
41 }
December 2015 | Overload | 11

https://vimeo.com/97329153

FEATURE NICOLAS BOUILLOT
been declared, alt is holding a non null pointer. In this case, the hook is
invoked instead of delegated method (line 3).

Global wrapper
Global wrapping is implemented with the internal_encaps method,
used by the accessor method (line 4 of Listing 6). When declaring a
Global_wrap, the internal_encaps method is declared, wrapping
the user method and returning its result. When the consultable or delegate
is declared, a dummy internal_encaps returning nullptr is
declared if none has been declared. This is achieved with the use of
enable_if and a template testing existence of a specific class method.

As a result, when the accessor method is invoked, internal_ encaps
returns either nullptr or the object produced by the global wrapper,
which is stored in the stack with the encap variable. encap will then be
freed when the accessor method will be unstacked, after invocation of the
delegated method (line 5).

Summary
The notion of type mosaicing has been introduced as an alternative to
multiple inheritance and object composition when a class interface is
designed as an assembly of several other feature interfaces. Type
mosaicing is made possible thanks to consultables and delegates which
allow for automated wrapper generation with C++ templates. New
additions to consultables and delegates are introduced: selective hooking
for attaching a specific behaviour to a given feature’s method wrapper, and
global wrapping for attaching code to execute before and after any wrapper
invocation of a given feature. This results in an automated interface
assembly with full control over feature wrappers.

With type mosaicing, being feature classes (consultable or delegate) does
not require for compliance with particular constrains like inheriting from
a specific base class or implementing one or several specific method(s). It
is therefore easier to reuse an existing class as a feature class, and reuse a
feature class in a different context. In addition, features are used through
wrappers that control read/write accesses with constness, encouraging
const-correct feature classes. Moreover, there is no way for a user to access
the feature object by copy, reference or address, which helps avoid
ownership related issues with features.

As with previous implementation, samples and source code are available
on github5 and have been compiled and tested successfully using with gcc
4.8.4-2ubuntu1, clang 3.4-1ubuntu3 & Apple LLVM version 6.0.

Design and development of type mosaicing with consultable and delegate
has been initially made into production code in which major refactoring
has been engaged several times: updating wrappers became a major
concern. In this production code, the addition of new features is also
required periodically and is sometimes necessitating modifications/
additions in the core. In this context, feature assembly with minimal
boilerplate code became critical.

After searching for similar approaches, comparable techniques have been
published. Alexandrescu’s policies [Ale01], based on template-controlled
inheritance, “fosters assembling a class with complex behaviour out of
many little classes”. MorphJ [HS11] is a Java-derived languages for
“specifying general classes whose members are produced by iterating over
members of other classes” (Morphing), with possible inlining of delegate
into the delegator and optional selecting all members or a subset. DelphJ
[GBS13] is extending Morphing with possible transformation of delegated
methods (including exposed signature). Delegation proxy in Smalltalk
[WNTD14] is comparable to consultable and delegate forwarding,
allowing to implement “variations that propagate to all objects accessed
in the dynamic extent of a message send. [...] With such variations, it is for
instance possible to execute code in a read-only manner”.

Acknowledgement
Many thanks to Frances Buontempo and the Overload review team for
providing constructive comments. This work has been done at the Société
des Arts Technologiques and funded by the Ministère de l'Économie, de
l'Innovation et des Exportations (Québec, Canada).

References
[Ale01] Andrei Alexandrescu. Modern C++ Design: Generic

Programming and Design Patterns Applied. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[Bou15] Nicolas Bouillot. Make and forward consultables and delegates.
Overload (127):20–24, 2015.

[GBS13] Prodromos Gerakios, Aggelos Biboudis, and Yannis
Smaragdakis. Forsaking inheritance: Supercharged delegation in
DelphJ. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA ’13, pages 233–252, New York, NY, USA,
2013. ACM.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[HS11] Shan Shan Huang and Yannis Smaragdakis. Morphing:
Structurally shaping a class by reflecting on others. ACM Trans.
Program. Lang. Syst., 33(2):6:1–6:44, February 2011.

[WNTD14] Erwann Wernli, Oscar Nierstrasz, Camille Teruel, and
Stéphane Ducasse. Delegation proxies: The power of propagation. In
Proceedings of the 13th International Conference on Modularity,
MODULARITY ’14, pages 1–12, New York, NY, USA, 2014.
ACM.

Listing 6

// 'fun' is the delegate method pointer, 'args' the
// arguments passed for invocation and 'BTs' their
// types. '_member_raw_ptr' is the pointer to the
// delegated member.

1 auto alt = get_alternative<decltype(fun),
 fun>();
2 if(nullptr != alt)
3 return (this->*alt)
 (std::forward<BTs>(args)...);
4 auto encap = internal_encaps();
5 return ((_member_rawptr)
 ->*fun)(std::forward<BTs>(args)...);

5. Source code and examples are available at https://github.com/nicobou/
cpp_make_consultable
12 | Overload | December 2015

https://github.com/nicobou/cpp_make_consultable
https://github.com/nicobou/cpp_make_consultable

FEATUREPAUL KEIR
The Universality and
Expressiveness of std::accumulate
Folding is a highly generic operation available through
std::accumulate. Paul Keir goes beyond reduction, with
the help of C++14’s polymorphic lambdas.
1. Note that most of Hutton’s Haskell fold examples can also be found in
[Bird88] or [Gill93].

2. This is described as the third duality theorem in [Bird88, p68].
3. Assume a vector default; i.e. C(1,2) becomes:

C<vector,int>(1,2).

raham Hutton’s 1999 monograph: A tutorial on the universality and
expressiveness of fold [Hutton99] provides a fascinating and
eminently readable analysis of an elementary reduction operator

from functional programming: fold. Hutton’s tutorial is punctuated by
increasingly compelling examples, written in Haskell, of the use of fold to
implement common list operations, including summation; concatenation;
reversal; function composition; left folds; and concluding with the
Ackermann function. The fold combinator is directly comparable to the
C++ standard library function: std::accumulate. In this article, I focus
on the fold examples from Hutton, and present equivalent generic C++
incarnations of each; making thorough use of appropriate C++14 library
and language features, including polymorphic lambda functions1.

The four-parameter accumulate function constructs a result from the
repeated pairwise application of a given binary function, to elements
supplied from both an iterator range; and a single “zero” value, having the
type of the result. A canonical example is summation; the value returned
from the call to accumulate in listing 1 is 10.

Hutton’s first four examples use fold to implement arithmetic and logic
operations using built-in functions to specify the relevant binary
operations. Similar function objects are provided by the C++ standard
library within the <functional> header. The example above
demonstrates the use of plus<> for operator+; while operator*,
operator&&, and operator|| correspond to multiplies<>,
logical_and<>, and logical_or<> respectively. Note that C++14
conveniently defines a default template argument for such function
objects; std::plus<> invokes a specialisation which infers the relevant
types from its arguments.

Accommodating std::accumulate
A binary operator is said to be associative when an expression involving
a sequence of its applications produces the same result, regardless of the
order of evaluation. The four C++ function objects from the previous
section all denote associative operations. Consider addition: both (1+ 2)+3
and 1+(2+3) produce the same result; 6. Operator precedence is irrelevant
when faced with a b c; the question is whether to evaluate from the
left; or from the right. In particular, which order does accumulate use?
It uses a left ordering.

An elementary non-associative binary operation is subtraction. The call
to accumulate in listing 2 would then produce a result equal to
((0-1)-2)-3, i.e. -6; evaluating from the left. In contrast, an evaluation

ordered from the right, say 1-(2-(3-0)), produces a result of 2. Alas, the
remaining examples from Hutton [Hutton99] firmly assume the fold
operation evaluates from the right.

Producing a result from accumulate equal to a right fold requires two
interventions: we need the order of traversal across the container elements
reversed; and for the order of the arguments given to the binary operation
to be switched2. Listing 3 defines such a wrapper for accumulate, called
foldr. The C++14 functions crbegin and crend return const
iterators to the reverse beginning and reverse end of the container
argument c. Meanwhile, the flip function, uses std::bind to reverse
th e a rg u men t o r de r fo r t h e b i na ry f u nc t io n o b j ec t ; e . g .
flip(minus<>{})(0,1) evaluates to 1; not -1.

The definition of foldr in listing 3 removes the need to call crbegin,
crend and flip. It also allows a single container argument to drive the
C++ fold; much as with C++ ranges [Niebler15]. This allows listings here
to remain concise; while also facilitating a comparison of the syntactical
differences between Haskell and C++. We can now invoke a right fold.
Assuming `C` creates an arbitrary standard sequence container, with
inferred value type3, the call to foldr in listing 4 returns the integer 2.

Non-reducing folds
Using a fold to concatenate two containers first requires a small helper
function, which should return a new container, by adding a single element
to the front of an existing one. Haskell provides the (:) operator for this
job. Listing 5 defines this using its traditional Lisp name: “cons”.

G

Listing 1

int xs[]{1,2,3,4};
accumulate(cbegin(xs), cend(xs), 0, plus<>{});

Listing 2

vector<double> xs{1,2,3};
accumulate(cbegin(xs), cend(xs), 0, minus<>{});

Listing 3

template <typename F>
auto flip(const F &f) { return bind(f,_2,_1); }

template <typename F, typename T, typename C>
T foldr(const F &f, const T &z, const C &c) {
 return accumulate(crbegin(c), crend(c), z,
 flip(f));
}

Listing 4

foldr(minus<>{}, 0, C(1,2,3))

Paul Keir is a lecturer in the School of Engineering and Computing
atars of industry development experience, along with an M.Sc. in
HPC; an M.Sc. in Computer Graphics; and a Ph.D. in compilation
for heterogeneous multicore. Drop him a mail at
paul.keir@uws.ac.uk
December 2015 | Overload | 13

FEATURE PAUL KEIR

Ackermann’s function is commonly cited as a
recursive function which is not primitive
recursive in a first-order programming language
Like subtraction, the cons function is non-associative; and non-
commutative. cons though, expects two different argument types.
Listing 6 provides foldr with cons as the binary function, and an empty
container as the “zero” or starting value; to define an identity fold. That is,
id(C(1,2,3)) will return a container object of the same type; with the
same 3 elements. Meanwhile, the genericity of C++ allows a similar
invocation which only changes the container type: foldr(cons,
list<int>{}, C(1,2,3)).

To append one container to another, listing 7 again uses cons for foldr’s
first argument; while providing the second, a container, as its “zero” value.
Note that while the elements of, say, append(C('a'),C('b')) and
C('a','b') a r e equa l , so t oo a r e t hey equa l t o
append(C<list>('a'),C<vector>('b')); as the definition is
sufficiently generic.

Folding with lambda arguments
The three functions4 of listing 8 provide each corresponding foldr
invocation with a binary lambda function, as, like Haskell, no equivalents
exist within the standard library. The length function returns the size of
its container argument, using a lambda function with unnamed first
argument. Both reverse and map return a container5; with map utilising
the closure aspect of lambda expressions to capture f.

Tuples allow a single fold to perform more than one calculation. For
example, listing 9 defines a function which returns both the size of a
container, and the sum of its elements6.

Functions from folds
The result of applying the composition of two functions f and g to an
argument x can be achieved in C++ with the expression: f(g(x)). In
Haskell an elementary binary operator, (.), can also be used; accepting
two functions as arguments, and returning a new function representing
their composition. In listing 10, the fold’s binary function argument is a
comparable lambda expression for composition. The result of invoking
compose with a container of callable elements is a function object
representing the chained composition of each function in sequence. The
“zero” argument of foldr uses a simple lambda identity function; though
notice it is wrapped by the type of the container element: an instantiation
of std::function. Why? While the type of each lambda expression is
unique, the type of each container element is the same. std::function
provides exactly the required homogeneity; each lambda accepting and
returning say an int, becomes simply std::function<int(int)>.
The “zero”, meanwhile, needs the same wrapper, as it provides the type
of the fold’s result.

One of the most intriguing functions capable of definition by a right fold,
such as our foldr, is a left fold. Listing 11 provides such a definition. As

4. A definition of filter from [Hutton99] appears in the appendix.
5. Note that map returns a vector object here solely for brevity.
6. A similar tuple-based definition of dropWhile appears in the

appendix.

Listing 5

auto cons = [=](auto x, auto xs) {
 decltype(xs) ys{x};
 copy(begin(xs), end(xs), back_inserter(ys));
 return ys;
};

Listing 6

auto id = [=](auto xs) {
 return foldr(cons, decltype(xs){}, xs);
};

Listing 7

auto append = [=](auto xs, auto ys) {
 return foldr(cons, ys, xs);
};

Listing 8

auto length = [=](auto xs){
 return foldr(
 [=](auto, auto n){ return 1+n; },
 0,
 xs);
};
auto reverse = [=](auto xs){
 return foldr(
 [=](auto y, auto ys)
 { return append(ys,decltype(xs){y}); },
 decltype(xs){},
 xs);
};
auto map = [=](auto f, auto xs){
 return foldr(
 [=](auto y, auto ys){ return cons(f(y),ys); },
 vector<decltype(f(*xs.begin()))>{},
 xs);
};

Listing 9

auto sumlength = [=](auto xs){
 return foldr(
 [=](auto n, auto p){
 return make_pair(n + p.first, 1 + p.second);
 },
 make_pair(0,0),
 xs);
};
14 | Overload | December 2015

FEATUREPAUL KEIR
before, an identity function is required for the fold’s starting value, and
again this wild lambda needs the guiding hand of std::function;
though the type in question is calculated in a different manner. Unlike
compose, the function object returned by foldr is invoked within
foldl; upon z. Our journey has brought us full circle to a left fold, akin
to std::accumulate; an invocation such as foldl(minus<>{}, 0,
C(1,2,3)) will produce -6; much as listing 2.

One last comment regarding left and right folds: should you ever be in the
embarrassing situation of being uncertain of the handedness of your fold
definition, the expression in listing 12 could be useful. Simply replace
fold with either foldr or foldl; for a true or false evaluation
respectively.

Our final fold example, and so too in [Hutton99], is Ackermann’s function
[Ackermann28]. Ackermann’s function is commonly cited as a recursive
function which is not primitive recursive in a first-order programming
language. John Reynolds, however, demonstrated [Reynolds85] that the
function is primitive recursive in a higher-order programming language.
The C++ implementation in listing 13 includes similar idioms to previous
examples, but is given additional treatment to avoid the use of currying
seen in Hutton’s definition. While the binary lambda function provided to
the innermost fold in the curried original appears unary, y g, the C++
version must be uncurried: y as g(as). Note too, that these Ackermann
folds encode the traditional natural number arguments within the size of
the input and output container values.

Summary
C++ lambda functions, including the polymorphic variety now available
in C++14 , a l low the gener ic fo ld opera t ion suppor ted by
std::accumulate to extend well beyond simple reductions. While a
complex fold can be less readable or idiomatic than the traditional form,
the approach can be refined to construct and transform programs, as well
as prove specific program properties; while building on established
software engineering principles of reuse and abstraction.

The article places less emphasis on performance considerations, instead
focusing on pedagogy and algorithmic aspects; while maintaining parity
with the equivalent Haskell, with consistent use of auto for type
inference.

C++17 will introduce fold expressions [Sutton14]. Here, a finite set of
operators, will share the brevity of the comma in pack expansion; consider
* versus std::multiplies<>{}. One restriction is the variadic
template pack length must be known at compile-time.

Appendix
All examples, along with code for dropWhile, filter and other folds
are available at https://bitbucket.org/pgk/accumulate.

References
[Ackermann28] W. Ackermann. Zum Hilbertschen Aufbau der reellen

Zahlen Mathematische Annalen, 1928.

[Bird88] R. Bird and P. Wadler. Introduction to Functional
Programming Prentice Hall, 1988.

[Gill93] A. Gill, J. Launchbury and S.P. Jones. A Short Cut to
Deforestation. ACM Press, 1993.

[Hutton99] G. Hutton. A tutorial on the universality and expressiveness
of fold Cambridge University Press, 1999.

[Niebler15] E. Niebler. Working Draft, C++ extensions for Ranges. The
C++ Standards Committee, 2015.

[Reynolds85] J.C. Reynolds. Three approaches to type structure
Springer-Verlag, 1985.

[Sutton14] A. Sutton and R. Smith. Folding expressions. The C++
Standards Committee, 2014.

Listing 10

auto compose = [=](auto fs){
 using fn_t = typename decltype(fs)::value_type;
 return foldr(
 [=](auto f, auto g)
 { return [=](auto x){ return f(g(x)); }; },
 fn_t([=](auto x){ return x; }),
 fs);
};

Listing 11

auto foldl = [=](auto f, auto z, auto xs){
 using z_t = decltype(z);
 using fn_t = std::function<z_t(z_t)>;
 return foldr(
 [=](auto x, auto g){
 return [=](auto a){ return g(f(a,x)); };
 },
 fn_t([=](auto x){ return x; }),xs)(z);
};

Listing 12

fold([](auto x, auto){ return x; },
 false, C(true))

Listing 13

auto ack = [=](auto xs, auto ys){
 using ys_t = decltype(ys);
 using fn_t = std::function<ys_t(ys_t)>;
 return [=](auto zs){
 return foldr(
 [=](auto, auto g){
 return [=](auto ws){
 return foldr(
 [=](auto, auto as){ return g(as); },
 g(ys_t{1}),
 ws
);
 };
 },
 fn_t([=](auto bs){ return cons(1,bs); }),
 zs
);
 }(xs)(ys);
};

Best Articles 2015

Vote for your favourite articles:

 Best in CVu

 Best in Overload

Voting open now at:
https://www.surveymonkey.co.uk/r/M67K9Y3

December 2015 | Overload | 15

https://bitbucket.org/pgk/accumulate
https://www.surveymonkey.co.uk/r/M67K9Y3

FEATURE MATTHEW WILSON
QM Bites – The two sides of
Boolean Parameters
Boolean parameters are tempting but make
life difficult. Matthew Wilson advises us to
avoid them (almost) all the time.
TL;DR
Writing fns with bool params quick&easy; costs maintainers of cli-code
far more effort than U save

Bite
s I’ve discussed previously on a number of occasions ([XSTLv1,
QM#1, QM#2]) and as is evident from deductive reasoning alone,
combinations of characteristics of software quality are often in

conflict: expressiveness vs efficiency; efficiency vs portability; and so
forth. This is not always the case, however, and usually the sub-divisions
of the composite characteristic discoverability & transparency (see
sidebar) collaborate well and, further, tend to also to work well with others,
especially modularity, but also (depending on how good is the design of
the given component) with expressiveness, flexibility, portability,
correctness/robustness/reliability, and, even, efficiency.

However, sometimes these very collegial subdivisions work against each
other. In my experience, the most common example of this is when it
comes to using Boolean parameters.

Consider a programmer tasked with writing an API for the manipulation
of fonts, such that one is able to create a font from a base family along with
selecting emboldenment, italicisation, underlining, and superscripting.
The API might look like the following:

 Font CreateFont(string family, bool bold, bool
 italicised, bool underlined, bool superscripted);

From the perspective of discoverability of the API, this is great: As a user
I specify the family, then each of my (Boolean) choices as to whether it is
emboldened, italicised, underlined, and superscripted. What could be
clearer?

Similarly, the transparency of the implementation of this is likely to be
high, since the name of each of the parameters clearly indicates its intent.

However, the problem comes in the transparency of the client code. What
does any of us know of the majority of the intended semantics of the
following statement:

 Font f = CreateFont("Courier", true, false,
 false, false);

This violates one of the most important of the Principles of UNIX
Programming (PoUP) [AoUP, XSTLv1]:

Principle of Transparency: Design for visibility to make
inspection and debugging easier.

If I want to understand the statement in the client code, I have to look at
the API. The use of booleans has made me do work I should not need to
do in an ideal world. Thus, there’s another PoUP violation:

Principle of Economy: Programmer time is expensive; conserve it
in preference to machine time.

A

Matthew Wilson Matthew is a software development consultant
and trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of articles
and books that attempt to do the same. He can be contacted at
matthew@synesis.com.au.

Discoverability is how easy it is to understand a component in order to
be able to use it.

Transparency is how easy it is to understand a component in order to
be able to change it.

Definition of Discoverability & Transparency

QM Bites – Introduction
Welcome to QM Bites!

Those gentle readers of patience and good memory will remember
that I write the Quality Matters column in this journal, only I haven’t
done so in quite some time. The problem is a simple one: I’m stuck
halfway in my exceptions series, I’m a perfectionist (and not in a
good way, in truth), and I haven’t been able to get past my
commitment to finish the series and move on to the many other
topics I’d planned (and still intend) to cover.

Our patient editor, Frances Buontempo, has offered gentle
encouragement from time to time, and very recently had the
liberating (for me) insight that I should write about other things until
my exception-mojo is fully charged. Further, I’ve just taken on a new
long-term role as Application Architect for a company that does
extremely high-performance software (in many technologies, but
mainly C++), with a remit to transform and modernise. This means
I’m going to have a tremendous amount of new material to draw on
and huge motivation to rekindle my previous intentions to wander
the software quality landscape dropping my magic pixie dust.

Thus: QM Bites. This new vehicle will let me guarantee my
contributions to every (or most) Overload issue, usually two or three
Bites and the occasional full-size Quality Matters instalment when
I’m able. It’s win-win, baby! ;-)

Recap
I’ll be relying on a host of previously discussed topics in the Bites.
As I examine each one, I’ll provide a short definition, reference to
previously discussed points in QM, and relevant references to
established works.

TL;DR
Even prior to the advent of the Twitter age I was informed with
disheartening frequency that my written prolixity was enervating to
an unsettling and, often, self-defeating degree. As a consequence,
not only will I be putting very real effort into being succinct, I will also
pander to the 140-character generation by including a pithiest-
possible executive summary at the head of each Bite. (Sigh!)
16 | Overload | December 2015

FEATUREMATTHEW WILSON
(NOTE: I’m not even going to touch on the nightmare of what happens if
the API designer decides to reorder some of the parameters …)

So what’s the humble programmer to do? The answer is simple to state
and, at least for those languages that support enumeration(-like) types,
straightforward to implement: make each parameter be of a different type.

API:

 Font CreateFont(string family, Emboldenment bold,
 Italicisation italicised, Underlining underlined,
 Superscripting superscripted);

Client-code:

 Font f = CreateFont("Courier", Emboldenment.Bold,
 Italicisation.None, Underlining.None,
 Superscripting.None);

For certain, this is somewhat more effort to write (although if you have an
Intellisense-like editor it may well be less effort and faster). But without
a doubt your maintenance efforts will be massively less.

Note that this phenomenon doesn’t even have to involve multiple
parameters. One of my longest standing mistakes in this respect was in the
constructors of reference-counting smart pointers, as seen in listing 1.

To be sure, when looking at uses of this in client code you don’t have the
ambiguity of multiple parameters, but you still have to know what the
second parameter of stlsoft::ref_ptr’s constructor does. And it’s
harder to grep your code for reference copying vs owning in a codebase.

So, the advice is: Avoid Boolean parameters (almost) all the time.

References
[AoUP] The Art of UNIX Programming, Eric S. Raymond, Addison-

Wesley, 2003

[QM#1] Quality Matters: Introductions and Nomenclature, Matthew
Wilson, Overload 92, August 2009

[QM#2] Quality Matters: Correctness, Robustness, and Reliability,
Matthew Wilson, Overload 93, October 2009

[XSTLv1] Extended STL, volume 1: Collections and Iterators, Matthew
Wilson, Addison-Wesley, 2007

Listing 1

// namespace stlsoft
 template <typename T>
 class ref_ptr
 {
 . . .
 public: // Construction
 ref_ptr(
 T* pt
 , bool addRef
);
 . . .
December 2015 | Overload | 17

FEATURE PATRICK MARTIN AND DIETMAR KÜHL
Identify your Errors
better with char[]
Error codes still get used instead of exceptions.
Patrick Martin and Dietmar Kühl consider how to
use char arrays for better information.
he use of exceptions isn’t a viable error handling approach in all cases
and returning codes for error handling is sometimes preferable.
However, using integral types for error identification is problematic

as there is no good mechanism to guarantee that each value uniquely
identifies a specific error. This article proposes the use of char arrays
instead as these are unique straight away. In addition char arrays also
yield a simple way to get an indication of the cause of an error.

Problem statement
High quality software requires a well defined and straightforward error
handling strategy to allow a system to protect or verify its invariants in the
face of invalid input or runtime state. There are many positions taken on
how to achieve this (see [Google15], [Bloomberg15] [Mozilla15]
[Wikipedia15]). It seems clear that there is not yet a consensus on the issue.

Nevertheless, error handing is everyone’s responsibility and particularly
so for applications coded in C++ and C. In this article we will make a
proposal, which we’ll call error_id, that can be used as an identity
concept (concept with a little ‘c’) to ensure when a specific course of action
is desired, the error state reported by an API can be unambiguously
recognised at arbitrarily remote call sites.

Review of C++ and C approaches
A very common style for reporting from functions in C and C++ is using
enum or int values to enumerate all possible reported statuses and
returning these values from library calls. An extension of this approach is
to encode a value and some additional category info into an integral value,
forming a system of return statuses like HRESULT [Wikipedia 2015].
However these different sets of independent enum and int return values
cause significant issues from the mapping of these independent sets when
interfaces must be composed into new interfaces that themselves must
define new return statuses. HRESULT-style status values do not have this
issue, but a given system must have all possible error return statuses
registered, so that they can be reported and handled consistently. This
scales poorly to larger software system. Note that in COM/DCOM
HRESULTs can be the outcome of IPC calls, thus extending into other
universes of HRESULT values.

It is possible to define even more complex error handling schemes, such
as registering callbacks or having an explicit error stack. And finally,
global or thread-local system library variables for an errno style approach
are of course available, with the usual basket of caveats.

Fundamentally, the problem when library boundaries are crossed is that
without access to a shared identity type whose value describes the status
the solutions all tends towards the familiar ‘a non zero return indicates an
error’, which is sensibly enough indeed the position of many error handling
schemes employing return codes exclusively. Schemes have been
constructed to allow additional information relevant to that status to be
extracted, but composing them can be difficult or verbose.

The concern is that a large amount of code becomes devoted to merely
mapping values between the return code sets of various libraries; this has
a number of critiques on how this will scale:

 claiming to handle the return codes from dependency systems (and
transitively via their dependencies) is a forward commitment, which
may or may not remain valid over time

 the amount of code written / code paths will result in issues

 the most prudent approach is to have a consistent ‘non-zero return
code indicates an error’ policy, which has the deficiency of requiring
all library clients ‘opt into’ the steps required to obtain more
information on a failed operation

C++11’s std::error_code
C++11 introduced an interesting approach to deal with errors through the
classes std::error_code and std::error_condition: the idea of
these classes is that error values are represented as enumerators with the
enum type identifying an error category. The difference between
std::error_code and std::error_condition is that the former
is for implementation specific handling of errors while the latter is portable
handing of error messages. Although the two classes are different we only
refer to std::error_code below: the same concepts apply to
std::error_condition.

Each enum type used with an std::error_code is mapped to a different
er ror ca tegory . An er ror ca tegory i s a c lass der ived f rom
std::error_category. An std::error_code object holds an
enumerator value stored as int and a reference to the corresponding
std::error_category. When comparing std::error_code
objects both the stored int and the std::error_category can be taken
in to account , a l lowing fo r a mechan ism to c rea te un ique
std::error_code values.

The standard C++ library defines error enums and corresponding
std::error_categorys defined for typical system domain. Users can
create new error enums and corresponding std::error_categorys to
cover non-standard errors. Unfortunately, creating new error categories is
relatively involved: an enum needs to be created and registered as an error
enum by specializing std::is_error_code_enum<E>, an error
category needs to be created by inheriting from std::error_category
and imp lemen t ing i t s pu re v i r t ua l fu nc t i ons , and
std::make_error_code() needs to be overloaded for the error enum.

Although std::error_code can address uniqueness of errors
propagated in a system, its use is unfortunately fairly complicated.

T

Patrick Martin Patrick’s github repo was classified using a machine
learning gadget as belonging to a ‘noble corporate toiler’. He can’t
top that. Patrick can be contacted at patrickmmartin@gmail.com.

Dietmar Kühl Dietmar is a senior software developer at Bloomberg
L.P. working on the data distribution environment used both
internally and by clients. In the past, he has done mainly consulting
for software projects in the finance area. He is a regular attendee of
the ANSI/ISO C++ standards committee and a moderator of the
newsgroup comp.lang.c++.moderated.
18 | Overload | December 2015

FEATUREPATRICK MARTIN AND DIETMAR KÜHL

 a constant of this type can be used as an
identity concept, whose values can be passed

through opaquely from any callee to any caller
Especially when people are not easily convinced that meaningful errors
need to be returned a much simpler approach is needed.

error_id type proposal
The proposed type for error_id is typedef char const
error_id[] which is the error constant whereas the variable is of course
typedef char const* error_value. The idea is that each
error_id is made unique by the linker in a process without any need of
registration. Note that functions returning an error_id need to be
declared to return an error_value because functions can’t return arrays.

We strongly recommend this value should be printable and make sense in
the context of inspecting system state from logs, messages, cores etc.

Interestingly, a brief search for prior art in this area reveals no prior
proposals, though we’d love to hear of any we have overlooked. An
honourable mention should be made of the second example in the rogues’
gallery of exception anti-patterns we present later as that author was part
of the way towards our proposal.

As such, we contend that a constant of this type can be used as an identity
concept, whose values can be passed through opaquely from any callee to
any caller. Caller and callee can be separated by any number of layers of
calls and yet the return values can be passed transparently back to a caller
without any need of translating error codes, resulting in less effort and less
opportunity for inappropriate handling.

To compare with prior art in this area: note that Ruby’s symbols [Ruby15]
and Clojure’s keywords [Clojure15] supply similar concepts supported at
the language level.

error_id desirable properties
An error_id has a number of good properties, in addition to being a
familiar type to all C and C++ programmers.

 it is a built in type in C and C++ – and has the expected semantics:
the comparison if (error) will test for presence of an error
condition.

 default use is efficient

 safe for concurrent access

 usage is exception free

 globally registered, the linker handles it [If patching your binary is
your thing, then enjoy, but please beware what implications that
process has]

 if the content is a printable string constant, (which we strongly
recommend) then it inherently supports printing for logging
purposes and can be read for debugging. Sadly, printing the ‘missing
error_id’ (NULL) results in undefined behaviour for streams and
printf, i.e., upon success the ‘error result’ can’t be printed
directly.

For the last point it is helpful to use a simply utility function which arranges
to turn the result into always printable values:

 error_value error_string(error_value ret) {
 return ret? ret: "<no error>";
 }

error_id usage examples – ‘C style’
As a consequence of these good properties, we can see the following styles
are available

 Listing 2 – manual error handling (Mozilla style)

 Listing 3 – error conditions can be composed dynamically

Use of error_id with exception based error handling
So far, all the previous code examples would have worked almost as well
if error_id were an integral type, however the identity of an error_id
is exploitable to provide good answers to a number of the issues that come

Listing 1

// declaration of an error_id:
extern error_id MY_KNOWN_ERROR;
extern error_value get_an_error();
...
// definition of an error_id:
error_id MY_KNOWN_ERROR = "My Foo Status";
...
// you can't do this (no existential forgery)

error_value ret = get_an_error();
/*
if (ret == "My Foo Status")
 // does not compile with -Wall -Werror
 // "comparison with string literal results in
 // unspecified behaviour"
{
 ...
}
*/

if (ret)
{
 if (ret == MY_KNOWN_ERROR)
 // this is how to test
 {
 // for this interesting case, here we might
 // need to do additional work
 // for logging, notification and the like
 }
 mylogger << "api_call returned " << ret
 << "\n";
}
return ret; // we can always do this with no
 // loss of information
December 2015 | Overload | 19

FEATURE PATRICK MARTIN AND DIETMAR KÜHL
with using exceptions while retaining the known established good
practices and features of exception handling.

Not everyone uses exceptions, and not everyone has used exceptions well;
to be fair there has been a history of dubious prior art in this area. All the
following are real world examples of code that went to production, or can
be found in patent submissions, etc. The names of the guilty parties have
been removed while we await the expiry of any relevant statutes.

 throw 99

 catch (const char * err)

 reliance upon catch (...)

 reliance upon checking what()

 every exception is std::runtime_error

However, making use of error_id while simultaneously inheriting from
a standard exception class in the std::exception hierarchy is useful
for the same reasons as for using the raw value. As an example: exception
class templates specialised on error_id are very apt:

 Listing 4 – exception template allowing exceptions with identity

 Listing 5 – define and handle exceptions concisely based upon an
error_id

This approach has some rather neat properties: we can avoid ‘false
matches’ caused by code handling exception types too greedily. The
parameter has to be an error_id, not a string literal.

Having a unified set of identities allows callees to throw an exception,
relying upon callers higher in the stack to make the decision on how to

Listing 2

error_value ret;

ret = in();
if (ret)
 return ret;

ret = a_galaxy();
if (ret)
 return ret;

ret = far_far_away();
if (ret)
 return ret;

ret = awaken_force();

if (ret)
{
 // list known continuable errors here
 if ((ret == e_FORD_BROKEN_ANKLE) ||
 (ret == e_FORD_TRANSPORTATION_INCIDENT) &&
 (Ford::scenes::in_the_can()))
 {
 print_local_failure(ret); // whoops!
 }
 else
 {
 panic(ret); // THIS FUNCTION DOES NOT RETURN
 }
}
order_popcorn();

Listing 3

error_value ret;
for (test_step : test_steps)
{
 ret = test_step(args);
 if (ret)
 {
 log << "raised error [" << ret << "] "
 "in test step " <<
 test_step << '\n';
 return ret;
 }
 // alternatively we might run all,
 // or more and produce a nicely formatted
 // table for debugging / monitoring
}

Listing 4

// we can define a simple template parameterised
// upon the error_id value
template <error_id errtype>
class typed_error_lite : public std::exception {};

// or we can go a little further and allow for
// some additional information this one has a base
// type and additional info
template <error_id errtype>
class typed_error : public std::runtime_error {
public:
 typed_error(const char* what = errtype):
 std::runtime_error(what) {}
 const char *type() const { return errtype; }
 operator const char *() { return errtype; }
};

Listing 5

// somewhere
struct FooErrors {
 static constexpr error_id eFOO =
 "FOOlib: Foo error";
 static error_id eBAR;
 //...
};
// elsewhere
constexpr error_id FooErrors::eFOO;
 // a definition is still required
error_id FooErrors::eBAR = "FOOlib: Bar error";
...
// we can define new unique exception instances
typedef typed_error<FooErrors::eFOO> foo_err;
typedef typed_error<FooErrors::eBAR> bar_err;
void f() {
 try
 {
 // something that throws a typed_error
 }
 catch (typed_error<FooErrors::eFOO> const &e)
 {
 // use the template
 }
 /* you can't even write this
 catch (typed_error<"FOOlib: Foo error"> &e)
 {
 // use the template
 }
 */
 catch (bar_err &e)
 {
 // or a typedef
 }
 catch (...)
 {
 // we don't get here
 }
}

20 | Overload | December 2015

FEATUREPATRICK MARTIN AND DIETMAR KÜHL
handle that status, and avoiding the need to re-throw the exception. Even
if re-thrown – if the same error_id is used, the identity is of course
preserved even if the stack at the point of re-throw is different from the
originating thrower. Listing 6 shows exception handling with fall-through.

There is one responsibility that is granted along with the benefit of
universality: since everyone could receive an error code, there is a need to
approach declaring error_id instances to some standard of consistency.
This may well require defining a scheme to generate standard formats and
help ensure unique values, perhaps based upon library, component, etc. –
see Listing 7, which is a simple example for generating a ‘standard’
error_id value.

In summary, the primary risk from identical strings in two logically distinct
error_id declarations is when these error_id symbols need to be
distinguishable by some calling code when an error_value may receive
a value of either identity. error_id does not have an issue and ‘does the
right thing’ from the viewpoint of reading the code. However it should be
remembered the identity of an error_id is intended to derive entirely
from its content, and in the prior case, the printed values will be the same,
further reinforcing the utility of a rule requiring error_id content which
is printable and distinct for each unique identity.

No existential forgery of error_id
So, what is meant by ‘existential forgery’? There are two types:

 the first is caused innocently enough by interfacing C++ client code
with a C style API which define an enum for the return status type
from an interface. This forces us to make a mapping some status to

another – clearly this is a good place for incorrect logic to creep in,
on the basis on the nature of the code.

 the second is caused by the problems caused by a policy of not
documenting return values; integral values cannot be made an
implementation detail and in large systems it is all too common for
code to handle the return -99 to appear when clients perceive a need
to perform handling for that situation.

This problem is addressed by error_id in multiple ways:

 possibly most valuably, we can break out of the cycle because the
moderate level of self-description in the string of the raw value
should facilitate implementing a better approach as trivially the
component, file and issue can be delivered

 additionally, error_id values can be made internal or for public
consumption, enforcing a consistent discipline using the language,
again the string contents can back this up, but the clear contract
supplied by the library can be ‘please feel free to interpret these error
states, but any others must be handled using the “Internal Error”
strategy’

 note also that exposing an error_id is no longer a forward
commitment to support that value for all future time, in contrast to
integral value return codes, as prior values can be removed in new
revisions of the interface, in addition to new ones being introduced
and clients addressing removed values will simply fail to compile.

Listing 8 shows the generation of identities and unique identities.

What error_id cannot do
No solution is perfect, and this approach is no exception. In the spirit of
allowing people to choose for themselves, let us attempt to list some of the
common concerns one would come up with and address them:

 error_ids cannot be cases in switch statements

we do not see this as much of an issue as this restriction only applies
to code using raw error_id, and not exceptions and there are two
main use cases:

 hand crafting the mapping between incompatible return
statuses. This use should not be necessary as error_id values
would ideally only need to be thrown/returned and consumed

 finally reaching code responsible for handling a set of specific
codes differently. In this case, chained if/else if blocks for
integral types should suffice.

 return additional info

Listing 6

try
{
 // something that throws a
 // typed_error<LibA::ePOR>
 // if LibA::ePOR is not a publicly visible
 // value, it is not possible to write a handler
 // for that specific case nor throw one, except
 // for the code owning that identity
}
catch (typed_error<LibA::eBAR> &e)
{
 // not caught
}
catch (std::runtime_error &e)
{
 // typed_error<LibA::ePOR> is caught here,
 // conveniently
}

Listing 7

#define SCOPE_ERROR(grp, pkg, error_str) \
 grp "-" pkg ": " error_str
// this can be used thus
const char LibA::ePOR[] =
 SCOPE_ERROR("GRP", "FOO", "Foo not reparable");
// which give us the string:
// "GRP-FOO: Foo not reparable"

// Organisations can exploit other preprocessor
// features to ensure uniqueness of output
#define TOSTRING(x) #x

#define SCOPE_ERROR_LOCATION(grp, pkg, \
 error_str) \
 __FILE__ ":" TOSTRING(__LINE__) " " grp "-" \
 pkg ": " error_str " "
// which give us a string like
// ../test_error_id.cpp:39 GRP-FOO: Foo not Bar

Listing 8

const char N::new_bar[] =
 SCOPE_ERROR("GRP", "FOO", "Foo not Bar");
assert(strcmp(N::new_bar, FooErrors::eBAR) == 0);
assert((N::new_bar != FooErrors::eBAR));
try
{
 throw typed_error<N::new_bar>
 ("bazong not convertible to bar");
}
catch (typed_error<FooErrors::eBAR> &e)
{
 assert(0 == "in typed_error<FooErrors::eBAR>
 handler");
}
catch (typed_error<N::new_bar> &e)
{
 // ok!
}
catch (...)
{
 assert(0 == "Fell through to catch all
 handler");
}

December 2015 | Overload | 21

FEATURE PATRICK MARTIN AND DIETMAR KÜHL
 this restriction is of course a natural consequence of using a pure
error_id as an identity

 exception classes similar to typed_error of course allow as
much context as one is prepared to pay for in each object
instance

 if status need more context – conditions like ‘[file|table|foo] not
found’ being the most infuriating – then we have to leave it to
the user to code up a solution to pass back more context. The
same restriction applies when using integral results.

 defend against abuse

in a C / C++ application, there is no way to completely prevent abuse
such as error_id values being appropriated and used
inappropriately; the intent of the proposal is to illustrate the benefits
arising from the simplicity and effectiveness of using error_id.
We hope that the solution would be adopted widely upon its own
merits.

 yield stable values between processes / builds

 firstly, it should be remembered the value is not be inspected –
only what it points to

 secondly, this is unavoidable and the solution of course stops
working at the boundary of the process – marshalling status
codes between different processes, binaries and even different
aged builds of the same code cannot rely upon the address. This
is a job for some marshalling scheme layered on top of an
existing status code system.

 be used as translatable strings

 the most important point to make here is that these strings
should never be treated as trusted output safe to be displayed to
system end users. An error_id can travel as an opaque value,
and hence there is no rigorous mechanism that could prevent
information leakage

 finally error_id is a pointer to a const array of char: dynamic
translation into user readable strings can only be done by
mapping values to known translations. For even a modest size
system it becomes more effective to have a facility for text
translation which would offer more features relevant to that task
than just an error_id.

Comparison of error_id and std::error_code
The proposed error_id and std::error_code have some common
features. In particular, both address error propagation with and without
exceptions, both provide uniquely identified errors, and both can be
globally consumed without requiring declarations of all errors.

There are also important differences. For std::error_code the
category yields one level or hierarchical grouping while there is no
grouping of error_ids at all. On the other hand, creating new errors with
std::error_codes requires definition of multiple entities while
creating an error_id is just one definition. If the respective specific error
should be detectable by users suitable declarations in headers are needed
in both cases.

A major difference is that error_id can be used both with C and C++
code while std::error_code only works with C++ code. In code bases
where different languages are used in the same executable it is helpful to
use an error reporting scheme available to all of these languages.

Wrap up
In summary, once the perhaps slightly odd feeling of using error_id
fades, we hope it is a technique that people will adopt in composing larger

systems when the error handling strategy is being designed. The process
wide identity concept allows for composition of large-scale applications
comprising many components, while affording the opportunity of an
exception-like error handling with or without employing actual exceptions,
and maintaining a high level of usability for debugging. This approach will
allow both C and C++ libraries to become first class citizens in a design
where error handling need never be left to chance or assumption.

Please note that it is implementation defined whether identical string
literals use identical or different addresses [c++ std lex.string para 13]. In
fact, constant folding where one string literal becomes the data for many
identical declarations of string literals in code occurs in many current
compilers. Hence it is key to use char arrays where this does not happen.

Recommendations
 Define your identities for system states

 Define how you wish to expose these identities and distribute them.
For example, component level, subsystem level, application wide?

 Use them rigorously!

Curate’s eggs
There are yet some potentially interesting ramifications that fall out from
error_id that have not been demonstrated in the interest of brevity, but
which we’ll touch upon here to pique your interest.

 missing switch: it is possible to write template metaprograms that
will

 allow statically typed handlers to be registered for a switch
statement to ensure values are always handled, with various
outcomes for a fall-through, (Fail, Pass, etc.)

 even prevent compilation if handlers are not located for specific
error_id instances

 private values: it is possible to define an error_id with an value
not visible to clients

 for typed error this would allows a standard ‘abort via
exception’ for reporting those error conditions not understood
explicitly by callers

 for raw error id this can allow a crude hierarchy of error
conditions to be defined.

Footnote
Michael Maguire discovered that due to an apparent compiler bug in IBM's
xlC V11.1 the arrays of unspecified size char[] need to be explicitly
decayed. The fix is to use +eFOO instead of eFOO when eFOO is to be
passed to a function template.

References
Code illustrating the concept can be found at https://github.com/
patrickmmartin/errorcodeNX/tree/article_nov_2015

[Bloomberg15] https://github.com/bloomberg/bde/wiki/
CodingStandards.pdf

[Clojure15] http://clojure.org/data_structures#toc8

[Google15] http://google.github.io/styleguide/cppguide.html

[Mozilla15] https://developer.mozilla.org/en-US/docs/Mozilla/
Developer_guide/Coding_Style#Error_handling

[Ruby15] http://ruby-doc.org/core-1.9.3/Symbol.html

[wikipedia15] https://en.wikipedia.org/wiki/HRESULT
22 | Overload | December 2015

https://github.com/bloomberg/bde/wiki/CodingStandards.pdf
https://github.com/bloomberg/bde/wiki/CodingStandards.pdf
http://clojure.org/data_structures#toc8
http://google.github.io/styleguide/cppguide.html
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style#Error_handling
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style#Error_handling
http://ruby-doc.org/core-1.9.3/Symbol.html
https://en.wikipedia.org/wiki/HRESULT
https://github.com/patrickmmartin/errorcodeNX/tree/article_nov_2015
https://github.com/patrickmmartin/errorcodeNX/tree/article_nov_2015

FEATUREBOB SCHMIDT
CPU Clocks and Clock Interrupts,
and Their Effects on Schedulers
Instructions to sleep for a second almost never result
in precisely one second’s sleep. Bob Schmidt walks
us through the mechanics of why.
uppose you are walking down the hallway of your office, and a
Summer Intern (SI) intercepts you and asks, “If I put a line of code in
my program that simply reads sleep(10), how long will my program

sleep?”1

You look at the harried SI and reply, “It depends,” and you continue on
your way.

The SI rushes to catch up with you, and asks, “It depends on what?”

And you answer, “That, too, depends,” as you continue walking.

At this point our young SI is frantic (and in immediate danger of going
bald). “Stop talking in riddles, grey hair! I’m in real need of help here.”

Your stroll has taken you to the entrance of the break room, so you grab
your interlocutor, duck inside, grab two cups of your favourite caffeinated
beverage, and sit down.

“It depends,” you say, “on many things, so let’s start with first things first.”

First things first
To understand what’s going on ‘under the hood’ when a sleep() is
executed, it helps to know a little about how CPUs work, and that means
knowing something about CPU clocks, interrupts, and schedulers. The
former two are hardware concepts; the latter is a software concept.

But before we get tucked into those details, we should be clear on what
sleep() we are talking about. There is quite a variety:

 The Posix function sleep() (with a lower-case ess) takes a
parameter that specifies the number of seconds to sleep;

 The Posix function usleep() takes a parameter that specifies the
number of microseconds to sleep;

 The Posix function nanosleep() takes a parameter that specifies
the number of nanoseconds to sleep;

 Boost has the boost::this_thread::sleep() function,
which accepts an object specialized from the
date_time::subsecond_duration template;

 C++ 11 has the std::this_thread::sleep_for() function
that accepts an object specialized from the duration template;

 The Windows Platform SDK function Sleep() (with an upper-
case ess) takes a parameter that specifies the number of milliseconds
to sleep;

 Other, operating system variations too numerous to list.

For the purposes of this discussion I’m going to assume a generic version
of sleep() that accepts a parameter representing time in milliseconds.
The concepts scale up or down with the scale of the parameter.

Schedulers
In order to discuss schedulers, I will first define two terms: process and
thread. A process is a unit of execution that, within the context of its
operating system, contains all of the resources to execute as a stand-alone
entity. A thread is usually a subset of a process, and is the smallest unit of
executable code that can be scheduled on its own. (A process has at least
one thread, but a thread is not necessarily a process.) Processes are
sometimes considered ‘heavy-weight’ while threads are considered ‘light-
weight’, referring to the amount of resources allocated to each type.
Processes have unique address spaces; threads within a process share the
address space of the process.

There are several common types of operating environments in the
computer world. A single process, non-threaded (SPNT) OS runs one
process at a time; Microsoft’s DOS is a good example of this type. A single
process, multi-threaded (SPMT) OS, such as General Software’s
Embedded DOS, runs only one process at a time, but supplies an interface
that allows for multiple threads to execute in that process. A multi-process,
non-threaded (MPNT) OS, such as those used in ModComp mini-
computers, may have many processes with a single thread of execution.
Linux and Windows are examples of multi-process, multi-threaded
(MPMT) environments.

A SPNT OS has no real need of a scheduler. The process is started, it runs
until completion, and while it is running no other processes can be
executed. The other three types have schedulers of varying complexity.
What they have in common is a requirement to determine what should be
executing at any given time.

Again, depending on the OS, a scheduler may run at a fixed interval, when
needed, or both. We’ll come back to this after discussing clocks and
interrupts.

CPU clocks
Most CPUs have some sort of circuitry that generates a periodic waveform
of alternating ones and zeros. (Clock-less CPUs exist – this discussion is
not about them.) The easiest way to represent this signal is shown in Figure
1a. Horizontal lines represent logic levels, with the lower horizontal line
typically representing a zero, and the higher horizontal line representing a
one. (In reality these horizontal lines represent voltage levels, with the
lower line typically at approximately 0 volts DC, and the higher horizontal
line typically representing 3.3 VCD or 5.0 VDC, depending on the
operating voltage of the logic.) Vertical lines represent the rise and fall of
the clock.

S

Bob Schmidt Bob Schmidt is president of Sandia Control
Systems, Inc. in Albuquerque, New Mexico, a company he founded
20 years ago when he had nothing else to do. When he’s not
writing software he often can be found brandishing a hot soldering
iron threateningly at some recalcitrant piece of prototype hardware.
He can be contacted at bob@sandiacontrolsystems.com.

1. I shamelessly have stolen two different rhetorical devices here. My first
semester calculus professor (whose name I have long since forgotten)
used to ask questions by starting off “Suppose you are walking down
the street and a stranger asks you…” The idea of using the Summer
Intern as a convenient target for all manner of mayhem comes from
Stephen Dewhurst, one of my favourite speakers at past Software
Development and Embedded Systems conferences
December 2015 | Overload | 23

FEATURE BOB SCHMIDT

Whatever your CPU was doing is, well,
interrupted, and the CPU branches off to do
some other, ostensibly important, function
In logic datasheets this type of waveform is often represented by Figure
1b. The waveform represented by Figure 1b takes into account the fact that
the rise and fall of the clock is not instantaneous; it takes some very small
but none-the-less non-zero amount of time. The slope of the rise and fall
of the clock is usually exaggerated in these diagrams to make it easy to
see; there often are other lines superimposed on the clock signal to indicate
logic level hysteresis and timing. (An example can be found at [TI393],
Figure 1, Page 6.)

Both of these diagrams are idealized versions of the waveform. In reality,
clock signals are much messier. For a good example of an actual
waveform, see [McArdell15]. The rising and falling edges overshoot their
levels, then dampen out toward the nominal voltage level.

I’m going to use the idealized clock drawing in Figure 1a for the remainder
of this discussion.

Interrupts
A CPU interrupt is a signal that causes some out-of-band processing to
occur. Your CPU is chugging along merrily, and then BAM – an interrupt
occurs. Whatever your CPU was doing is, well, interrupted, and the CPU
branches off to do some other, ostensibly important, function. When that
important function is complete, the interrupt is released (or cleared), and
your CPU goes back to what it was doing, right where it left off.

(There’s a lot that goes on under the hood when processing interrupts, and
different CPU architectures implement those details in differing ways.
Those details are not important to this discussion.)

Interrupts originate from two places: internal and external to the CPU.
Internal interrupts are generated by the CPU hardware itself, or
commanded by software. External interrupts are those caused by
peripheral devices. These types of interrupts are non-deterministic – they
can occur at any time relative to anything else occurring in the CPU. (As
an example, consider the input from a keyboard. The CPU cannot predict
when a mere human might press a key. The act of pressing a key causes
an interrupt in the CPU, so the encoded data can be read from the keyboard
and stored for later retrieval by a process.)

Schedulers, part deux
The raw clock rate of today’s CPUs is blisteringly fast, even for low-power
embedded cores.2 There are some things that a CPU needs to do that occur

at a fraction of that speed, and one of those things is scheduling. (I told
you we’d get back to this.)

If we consider a CPU with only one core, and no hyper-threading, it is only
possible for one process, and one thread in that process, to be executing at
any one time. In a multi-process and/or multi-threaded environment the
scheduler is responsible for allocating this limited CPU resource,
temporarily suspending the execution of one process and/or thread, and
temporarily resuming the execution of a different process and/or thread.
(This is called a context switch.)

A scheduler contains a list of all of the processes (and their threads)
currently executing. The list contains the context in which each process is
running. This context is saved when a process or thread is suspended, and
restored just before the process or thread is resumed.

A process or thread can be in one of several states. If a process or thread
is executing, it is the current context. A process or thread that is suspended
is waiting for something to occur. A process or thread that is ready to
execute (but is not executing) is one that can become the current context
at any time.

Schedulers determine which process or thread to execute next based on
their nature. Two common scheduler types are real-time and time-sharing.
In a real-time scheduler, processes are assigned priorities, and the process
with the highest priority that is ready to execute will become the current
context (and execute) the next time the scheduler runs. A time-sharing
scheduler allocates CPU time on a round-robin basis, where each process
gets a certain fraction of the available CPU time. A real-time scheduler
might allocate time to processes of equal priority on a round-robin basis,
or a run-until-completion basis.

Clock interrupts
So how and when, you might ask, does the scheduler run? Mostly, the
scheduler runs when an interrupt fires, but it may run at other times, too.

An operating system typically will have some sort of clock interrupt, which
causes code to execute that takes care of tasks that need to be processed
periodically. One of those tasks is the scheduler.

In the absence of any other (external) interrupt, the scheduler will run
whenever the clock interrupt fires. At that time the scheduler will look at
its list of processes, figure out which one should be executing, and
(possibly) execute a context switch to that process.

Clock interrupts fire at a rate much slower than the underlying speed of
the CPU. The rate at which the clock executes is a balancing act: the more
often a scheduler runs, the easier it is to balance the load between processes
(in a time-sharing scheduler), or the faster a higher priority process will
actually execute when it is ready (in a real-time scheduler). On the other
hand, the more the clock interrupt fires, the less time there is for actual

2. I use RabbitCore modules for some of my embedded designs, and the
slowest clock speed they offered was around 20 MHz. Compare that to
the clock on the ModComp mini-computers I maintained for 30 years,
which ran at only 5 MHz.

Figure 1
24 | Overload | December 2015

FEATUREBOB SCHMIDT

When you call sleep(), its operating system-
dependent implementation most likely calls an

operating system function that suspends the process
work to get done, until at its most absurd the only code that is executing
is the clock interrupt code.

Looking at Figure 2, the box labelled TCXO at the left is a clock oscillator.
It generates a clock at the oscillator’s specified frequency. The box labelled
74LS393 is a 4-bit decade and binary counter [TI393]. The clock signal
drives the CLK input of the 74LS393; the resulting four outputs show how
the clock frequency is divided: QA is the clock divided by two; QB is the
clock divided by four; QC is the clock divided by eight; and QD is the clock
divided by 16.3

A modern clock oscillator divided by 16 may not be much good, but QD
could be directed to be the input to another binary counter, whose QD
output would be the clock divided by 256. Run the signal through two more
binary counters, and you have divided the clock by 65 536. If your CPU’s
clock is running at 6 553 600 Hz (slow by today’s standards), you get a
clock interrupt 100 times a second, which was a fairly common frequency
for a scheduler (modern x86 architecture clock interrupts execute at a faster
rate).4 [Linux2] (I am going to assume a 100 Hz clock interrupt for the
remainder of this discussion. I am also going to assume a multi-process,
non-threaded environment to simplify the examples.)

Earlier I said that a scheduler may run independent of the interrupt.
Consider the case where a high-priority process is suspended waiting for
I/O to complete. While it is suspended lower priority processes are getting
a chance to execute; however, when the I/O completes we want the high-
priority process to resume immediately. This typically is accomplished by

having the I/O interrupt handler change the state of the process to ready-
to-execute and invoke the scheduler.

Delays
“We’ve got all of the pieces of the puzzle now,” you say to the SI, who is
getting restless. “It’s just a matter of putting them all together to get the
answer to your question.”

When you call sleep(), its operating system-dependent implementation
most likely calls an operating system function that suspends the process
and causes a context switch – independent of the clock interrupt. In
implementations I’ve seen, the parameter to sleep() – the number of
milliseconds to sleep – is converted to an integer equal to the parameter
divided by the clock interrupt period. (A 1000 millisecond sleep is equal
to 100 clock interrupts.) It is easy for the scheduler to decrement a count
every time it is executed as the result of the interrupt firing, and change
the state of the process to ready-to-execute when the value reaches zero.

You should be starting to see that the accuracy of the sleep() call is only
as good as the underlying clock interrupt frequency. If the scheduler only
runs every 10 milliseconds, you cannot get sub-10 millisecond accuracy
from your call to sleep().

Let us consider a system where the clock interrupt fires at our assumed rate
– 100 times a second, for a period of 10 milliseconds. If your process is
such that it is possible to call sleep() at any time between clock
interrupts, a 10 millisecond sleep() call will, on average, cause your
process to sleep for 5 milliseconds (in the absence of any other process
activity). A 20 millisecond sleep() call will, on average, cause your
process to sleep for 15 milliseconds. Take a look at Figure 3 to see why.

In Figure 3 the horizontal line represents time, increasing from left to right,
and the vertical lines represent the firing of the clock interrupt. If you can

3. There are inputs to the 74LS393 that are not shown.
4. This is meant only as an example. There are other, more efficient ways

to derive a ‘slow’ clock interrupt, such as using a second, slower clock
oscillator as part of the clock interrupt circuitry.

Figure 2

Figure 3
December 2015 | Overload | 25

FEATURE BOB SCHMIDT

a single-process, non-threaded operating
system may result in the most accurate delays
call sleep() at any time, then it is just as likely that
sleep() will be called immediately after a clock
interrupt (point A) as immediately before a clock
interrupt (point B). When sleep() is called at point
A the result is an almost 10 millisecond delay; at point
B the result is almost no delay at all. Over time this
averages out.

If you want to guarantee a minimum amount of delay,
you must call sleep() with a value that is at least
twice the clock interrupt period. For a minimum 10
millisecond delay that means calling sleep() with a
parameter equal to 20, which results in a delay from
10 to 20 milliseconds, and an average delay of 15 milliseconds. (I’m
assuming that the intermediate values 11 through 19 round down to 10
milliseconds, since that has been my experience.)

Exceptions to this rounding rule-of-thumb include the Posix routines
mentioned above (there may be others). The functions sleep(),
usleep() and nanosleep() all guarantee a delay that is at least as long
as the value of their respective parameters, unless a SIGALARM signal is
generated for the calling process. [POSIX] The delays are still subject to
the limitations of the underlying clock interrupt period, so for these
functions the delay will be, on average, one half-period longer than the
clock interrupt period (15 milliseconds for a 10 millisecond delay, 25
milliseconds for a 20 millisecond delay, etc.)

Ironically, a single-process, non-threaded operating system may result in
the most accurate delays. The reason is that the sleep() function may
just have to waste CPU cycles by spinning in a loop (a busy wait), since
there are no other processes or threads to which to switch.5 In a pseudo-
assembly language that might look like Listing 1.

It is possible to guarantee a minimum delay by specifying the value (or
next higher value) needed, but in a multi-process (multi-threaded)
environment it is not possible to guarantee a maximum delay. The reason
for this should be clear – there is no guarantee that your process will be
executed on the next clock interrupt context switch. If your process is not
the highest priority in a real-time system, or your process is in a round-
robin list, one or more other processes may get to execute before the
scheduler gets back to your process. Even if your process is the highest
priority process, and should be expected to be scheduled on the next clock
interrupt, another interrupt higher in priority than the scheduler's may
occur, delaying the execution of the scheduler and by extension further

delaying your process. This is the ‘other activity’ alluded to several
paragraphs ago.

 sleep(0)

A sleep() call with a parameter equal to zero often devolves into a
relinquish. Calling sleep(0) indicates to the scheduler that your
process wants to cause a context switch to allow a lower priority process
(or other process in the round-robin list) to execute. Your process remains
ready-to-execute, so that it can be executed on the next context switch,
assuming no other higher priority process also is ready-to-execute.

Synching to the clock
There is a common pattern in process control software, represented by the
following code fragment:

 while (true)
 {
 // do something, over and over again
 sleep (some_value);
 }

The first pass through this loop can occur at any time relative to the clock
interrupt; however, the second and subsequent passes through the loop are
somewhat synched to the clock interrupt. The higher the priority of the
process, the more synched to the clock interrupt it will be.

How is this useful? Suppose you have a system that needs to generate
regular output pulses to some bit of external hardware in response to some
asynchronous (to the clock interrupt) input. (Assume the system’s clock
interrupt frequency is adequate to space the pulses.) As in Figure 3, the
input can occur any time relative to the clock interrupt. Looking at Figure
4, if the interrupt occurs at point A, and the first pulse is generated
immediately, you end up with a short duration between the first and second
pulses. If the interrupt occurs at point B, you may get a long duration
between the first and second pulses; alternatively, you can get a long pulse.
Which one you get is based on the priority of the process. You get the
regular-width pulse followed by the long gap if your process is high
enough priority to remain scheduled after the clock interrupt. You get the
long-width pulse if your process is context switched away from executing.

If you synch to the clock, you have a much better chance of getting the
result that you want.6

5. The Linux documentation for nanosleep(), under Old Behavior,
indicates that delays of less than 2 milliseconds were handled with a
busy wait in kernels prior to 2.5.39. [Linux1]
This documentation also refers to the different clocks available in
modern x86 hardware and their effects on timing. [Linux2] A modern
x86 CPU running at 3.0 GHz (3.0x109) has a 0.3333… nanosecond
(3.333x10-10) period. That means that a call to nanosleep with a
parameter equal to one nanosecond will take more time to make the
call and return from it than the delay calls for.

Listing 1

 load register1,number_of_milliseconds_to_delay
 load register2,iterations_per_millisecond
outer: decrement register2
 jump_not_zero register2,outer
inner: decrement register1
 jump_zero register1,end
 load register2,iterations_per_millisecond
 jump outer
 end: no_op
26 | Overload | December 2015

FEATUREBOB SCHMIDT

If we have a 10 Hz clock oscillator, we expect
there to be 10 cycles per second, and we

expect that each cycle will have a period of
exactly one tenth of a second
 sleep (10) // This synchs to the clock
 // interrupt for each pulse
 {
 Set signal high
 waste clock cycles for the width of the pulse
 (busy wait)
 Set signal low
 sleep (10)
 }

But again, getting these regularly spaced pulses is only possible for high
priority processes, or processes running on SPNT systems.

Jitter
If we have a 10 Hz clock oscillator, we expect there to be 10 cycles per
second, and we expect that each cycle will have a period of exactly one
tenth of a second. Jitter is the deviation from the exact periodicity of that
periodic signal. Temperature compensated clock oscillators do a good job
of minimizing jitter; unfortunately, the same can’t be said about
schedulers.

Figure 5 illustrates this point. Here we have the same waveform, synched
to the clock, as Figure 4, just expanded in size a bit to make it easier to
visualize. The black lines represent the ideal waveform; this is what our
process hopes to achieve. The grey boxes represent one possible example
of the areas in which the rising or falling edges might actually occur.

6. In this example the pulse width is generated by busy waiting – wasting
clock cycles by executing a tight loop. This is generally not a good idea
in any multi-process or multi-threaded system – while your process is
spinning nothing else is executing, either, but it is sometimes
necessary.

Figure 4
December 2015 | Overload | 27

Figure 5

FEATURE BOB SCHMIDT
In general, for a real-time scheduler the lower the priority of the process
the higher the jitter is likely to be.7 In a round-robin scheduler jitter is the
norm rather than the exception. (See Dealing with Jitter the Hard Way.)

Afterword
“So you see, young intern, the amount of time you sleep does depend on
many things,” you conclude. The intern gets up and wanders off, muttering
something about asking the time and being told how to build a watch.
“That’s a clock, not a watch… oh, never mind,” you say to the retreating
SI. “And my hair is not grey, it’s blond!”8

Acknowledgments
As always, thanks to Fran and the reviewers. They always make my stuff
so much better. I am particularly indebted to the reviewer who pointed me
to the Posix sleep routines. I was not familiar with these functions and their
minimum delay guarantees. Special thanks to Szymon Gatner for his
feedback (see Update on the Monostate NVI Proto-Pattern). References

[Linux1] nanosleep()– http://linux.die.net/man/2/nanosleep

[Linux2] time(7)– http://linux.die.net/man/7/time

[McArdell15] ‘Raspberry Pi Linux User Mode GPIO in C++ [Part 2]’ in
CVu, Volume 27, Issue 4, Pg. 17

[POSIX] sleep ()– http://pubs.opengroup.org/onlinepubs/009695399/
functions/sleep.html

usleep()– http://pubs.opengroup.org/onlinepubs/009695399/
functions/usleep.html

Nanosleep()– http://pubs.opengroup.org/onlinepubs/009695399/
functions/nanosleep.html

[Schmidt15] ‘Alternatives to Singletons and Global Variables’ in
Overload 126, April 2015, Pgs. 9–13

[TI123] SN54122, SN54123, … SN74LS123: Retriggerable Monostable
Multivibrators, http://www.ti.com/lit/ds/symlink/sn54123.pdf

[TI393] SN54930, SN54LS390, … SN74LS393: Decade, Divide-By-
Twelve and Binary Counters, http://www.ti.com/lit/ds/symlink/
sn54ls393.pdf

7. The exception to this is a hard real-time system tuned such that every
process always meets its deadline. There should be very little jitter in
such a system. I personally have worked on only one hard real-time
system – an airplane flight control system; all of the other systems have
been soft real-time systems where jitter was an issue.

8. For a given value of blond.

Several years ago I developed a new interface to an old hardware
subsystem. The old hardware had been designed to interface to a DEC
PDP-11 through a DEC DRV11 parallel input/output board, using a pair
of ribbon cables. For the new implementation I used an Advantech PCI-
1739U 48-bit input/output board installed in a PC running Windows.

The DRV11 had input and output signals on the same ribbon cable. The
bits on the PCI-1739U were configurable as input or output in groups of
eight bits, so I designed a little circuit board that connected the signals
at each end. The PCI-1739U had one group of outputs on one ribbon
cable and a group of inputs on the other ribbon cable. The circuit board
placed the signals on the appropriate conductors of the ribbon cables that
connected to the old hardware.

Data was sent to the hardware by loading the data into bits configured
as output bits on the I/O board, then toggling a dedicated signal to tell
the hardware to load the bits. Most of the timing wasn’t critical, and a lot
of the jitter didn’t matter, but the width of the signal to load the data had
to be within certain limits. No matter what I tried, I couldn’t toggle that
signal in software and reliably hit the time window.

I ended up putting a 74LS123 one-shot timer on the custom board
[TI123]. The rising edge of my software-generated signal triggered the
74LS123 to generate an output pulse of exactly the right width, using an
R-C circuit. The falling edge of my software-generated signal had no
effect on the output of the 74LS123. My software generated pulse could
be wildly varying in width, while the output pulse of the 74LS123 was a
constant width.

Dealing with Jitter the Hard Way
My last article in Overload [Schmidt15] generated a response from
Szymon Gatner. Szymon suggested that all of the functions duplicated
from the abstract base class to the Mono NVI class could be replaced
with an overloaded pointer operator.

The set of functions represented by foo() from listing 3 (page 11),
implemented like this:

 inline void foo ()
 {
 mp->foo (); // call to the virtual function
 // in the concrete class
 }

could be replaced with one pointer operator overload function

 T* operator-> ()
 {
 return mp.get ();
 }

and used something like this instead of the method used in Listings 5 and
11 (pages 11 and 13):

 typedef mono_nvi_template< abstract_base >
 mono_nvi;
 void nested_function (void)
 {
 mono_nvi mnvi; // assumes its non-default
 // constructor has mnvi->foo ();
 // been called
 }

My first impression focused on the unusual way that the pointer operator
was being used with a non-pointer variable. Szymon pointed out that “for
classes of pointer semantics I think it is something C++ are used to by
now. We already have unique_ptr and shared_ptr (and
auto_ptr for a long time), also iterators have pointer semantics.”

I encouraged Szymon to write up his idea for Overload. (Fran is always
looking for good material; sometimes she has to settle for mine.) He said
he would be “happy if you would like to side-note it in your next article”.
Here it is, Szymon. Thanks, Bob.

Update on the Monostate NVI Proto-Pattern
28 | Overload | December 2015

http://linux.die.net/man/2/nanosleep
http://linux.die.net/man/7/time
http://pubs.opengroup.org/onlinepubs/009695399/functions/sleep.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/sleep.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/usleep.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/usleep.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/nanosleep.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/nanosleep.html
http://www.ti.com/lit/ds/symlink/sn54123.pdf
http://www.ti.com/lit/ds/symlink/sn54ls393.pdf
http://www.ti.com/lit/ds/symlink/sn54ls393.pdf

	Overload_130.pdf
	Reduce, reuse, recycle
	Once Again on TCP vs UDP
	Type Mosaicing with Consultables and Delegates
	The Universality and Expressiveness of std::accumulate
	Best Articles 2015
	QM Bites – The two sides of Boolean Parameters
	Identify your Errors better with char[]
	CPU Clocks and Clock Interrupts, and Their Effects on Schedulers

