

June 2015 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Meet the Social Side of Your Codebase
Adam Tornhill suggests some ways to uncover
communication paths in your organisation.

8 Mocks are Bad, Layers are Bad
Andy Balaam champions independent units for
testing instead of mocking tightly coupled layers.

12 Non-Superfluous People: Architects
Sergey Ignatchenko continues his series of non-
superfluous people by looking at the role of
architects.

15 Terse Exception Messages
Chris Oldwood reflects on the importance of clear
error messages.

18 Get Debugging Better!
Jonathan Wakely demonstrates ways to improve
your use of the GNU debugger.

20Make and Forward Consultables and
Delegates
Nicolas Bouillot introduces consultables and
delegates to automate boilerplate forwarding code.

OVERLOAD 127

June 2015

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony.ajw@gmail.com

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 128 should be submitted
by 1st July 2015 and those for
Overload 129 by 1st September
2015.

EDITORIALFRANCES BUONTEMPO
Kloss talked about ‘Polyglot programming’ at the conference [Kloss]. In
the preview to the ACCU London chapter, he talked about differing human
languages and reminded us of the Bible story of the Tower of Babel,
emphasising that using different languages can stand in the way of working
well together. He then considered how to get various programming
languages communicating. The words you use matter and various
protocols can help. Don’t speak over people. Say what you mean and mean
what you say. Try to find out what others think you mean when they listen
to what you say.

It is important to listen as well. We are told, “In space, no-one can hear
you scream.” We may also have been asked, “If a tree falls in an empty
forest, does it make a sound?” Bishop Berkeley asked a more fundamental
question. “If a tree, growing in a quadrangle at a university is not being
observed, does it continue to exist?” Esse est percipi – to be, is to be
perceived [Berkeley]. As I said, don’t ignore the quieter people on your
team. Berkeley himself needs to be understood in the context of
Descartes’s dualism and Hobbes’ insistence that only material things exist,
perhaps meaning there can be no ideas. Clearly this is completely off-topic,
even for an editorial avoidance exercise. Nonetheless, some of Berkeley’s
ideas may be pertinent. When studying his writing at University, I was left
wondering what people heard and understood when others spoke. When
we describe colour, or taste, are we discussing the same experience or do
we all have our own world view? If my husband tells me the blue light is
flashing on the coffee machine, I may observe it looks orange to me. If the
guy beside me at work states that, “All coffee tastes disgusting” while
others claim mushrooms are disgusting, does this mean mushrooms are
coffee flavoured? Or none of these people have any taste? Even when using
the same human language, our experiences and our physiology affect our
perceptions. What is blue anyway? Perhaps everyone else is just seeing in
shades of grey. Children appear to learn words by repeating what those
around them say until they manage to reformulate the sounds into phrases
of their own, eventually appearing to be understood. All words are a
convention, which can change over time or end up as parallel forks, such
as differences between American and British English. Even if you appear
to be speaking the same dialect of the same language, communication often
seems like a best guess. You need to assume ‘blue’ means the same thing
to someone else. Sometimes you need to add extra clarification, as in “That
would be a black coffee WITHOUT milk,” or “No, the other left.”
Sometimes you seem to be ‘in sync’ with the people you are trying to
commune with – you finish each other’s sentences. You grab the keyboard
and sort the typos out or refactor the code to something that makes you
both nod; hopefully in agreement. This presupposes you are pair
programming – some may complain that this is a form of action, not
communication. It does suggest they may be more apposite than opposite.
It is possible to communicate without words – a band can jam together
seemingly spontaneously, without talking it through for hours first. It is
possible to express something through mime. Or just pointing and
shouting. Or banging your head on the desk.

Looking at the etymology of ‘action’ and ‘conversation’ is revealing. For
those who claim they want a little less of the yacky-yack, chatter, natter

or to put in more succinctly, in fewer works, talk, and a little more action,
don’t forget that an action can also be a lawsuit – a written communication.
It also relates to the word ‘deed’, involving legal documents too. With a
beautiful symmetry, I notice an etymology website suggests conversation
stems from ‘the act of living with’ [Etymonline]. Conversation is
something you do, not something you talk about. Acting is putting on a
performance, perhaps by reading aloud words someone has written. If we
ask for more action and less conversation, or vice versa, the lines are
blurred. Sometimes ideas are communicated more effectively by diagrams
or precise symbols, say mathematics, or by working on a small code
sample together than by vocalising thoughts. Things are not always clear
cut. In the end, acting is not enough. There needs to be interaction. This
might need to be through some form of conversation. As geeks we might
not always do this face to face. An email is ok. Some demo code, or notes
on a wiki count. Writing an article can be good. Once in a while, do
consider talking to those around you though. Try to listen to others, if you
expect them to listen to you. Make an effort to understand their perspective,
and try to learn to communicate clearly. If someone really won’t listen, try
putting some tests on your CI box and making that email the offender for
you when the tests fail. I know I did, and it worked. And always recall the
sage advice

“Omit needless words.” [Style]

But don’t take it too far.

“Omit needless words.” [anon]

References
[BDFL] ‘Benevolent dictator for life’ originally used to refer to Guido van

Russom, inventor of Python: http://en.wikipedia.org/wiki/
Benevolent_dictator_for_life

[Berkeley] http://plato.stanford.edu/entries/berkeley/

[Etymonline] http://www.etymonline.com/index.php?term=conversation

[GOTW] http://herbsutter.com/2013/05/13/gotw-2-solution-temporary-
objects/

[Inigo Montoya] The Princess Bride http://www.imdb.com/title/
tt0093779/quotes

[Kloss] ‘Thriving in a polyglot world.’ ACCU2015 http://accu.org/
index.php/conferences/accu_conference_2015/
accu2015_sessions#thriving_in_a_polyglot_world

[Monty Python] The Life of Brian http://montypython.50webs.com/
scripts/Life_of_Brian/23.htm

[Pope] Alexander Pope An essay on criticism, 1709.

[Rule9] C++ Coding Standards Sutter and Alexandrescu. 2004.

[Style] The Elements of Style Strunk. 1918.
June 2015 | Overload | 3

http://en.wikipedia.org/wiki/Benevolent_dictator_for_life
http://en.wikipedia.org/wiki/Benevolent_dictator_for_life
http://plato.stanford.edu/entries/berkeley/
http://www.etymonline.com/index.php?term=conversation
http://accu.org/index.php/conferences/accu_conference_2015/accu2015_sessions#thriving_in_a_polyglot_world
http://accu.org/index.php/conferences/accu_conference_2015/accu2015_sessions#thriving_in_a_polyglot_world
http://montypython.50webs.com/scripts/Life_of_Brian/23.htm
http://montypython.50webs.com/scripts/Life_of_Brian/23.htm
http://herbsutter.com/2013/05/13/gotw-2-solution-temporary-objects/
http://herbsutter.com/2013/05/13/gotw-2-solution-temporary-objects/
http://www.imdb.com/title/tt0093779/quotes
http://www.imdb.com/title/tt0093779/quotes

FEATURE ADAM TORNHILL
Meet the Social Side
of Your Codebase
Programming requires collaboration. Adam Tornhill
suggests some ways to uncover communication paths
in your organisation.
et’s face it – programming is hard. You could spend an entire career
isolated in a single programming language and still be left with more
to learn about it. And as if technology alone weren’t challenging enough,

software development is also a social activity. That means software
development is prone to the same social biases that you meet in real life.
We face the challenges of collaboration, communication, and team work.

If you ever struggled with these issues, this article is for you. If you haven’t,
this article is even more relevant: The organizational problems that we’ll
discuss are often misinterpreted as technical issues. So follow along, learn
to spot them, react, and improve.

Know your true bottlenecks
Some years ago I did some work for a large organization. We were close
to 200 programmers working on the same system. On my first day, I got
assigned to a number of tasks. Perfect! Motivated and eager to get things
done, I jumped right in on the code.

I soon noticed that the first task required a change to an API. It was a
simple, tiny change. The problem was just that this API was owned by a
different team. Well, I filed a change request and walked over to their team
lead. Easy, he said. This is a simple change. I’ll do it right away. So I went
back to my desk and started on the next task. And let me tell you: that was
good because it took one whole week to get that ‘simple’ change done!

I didn’t think much about it. But it turned out that we had to modify that
shared API a lot. Every time we did, the change took at least one week.
Finally I just had to find out what was going on — how could a simple
change take a week? At the next opportunity, I asked the lead on the other
team. As it turned out, in order to do the proposed change, he had to modify
another API that was owned by a different team. And that team, in turn,
had to go to yet another team which, in turn, had the unfortunate position
of trying to convince the database administrators to push a change.

No matter how agile we wanted to be, this was the very opposite end of
that spectrum. A simple change rippled through the whole organization
and took ages to complete. If a simple change like that is expensive, what
will happen to larger and more intricate design changes? That’s right —
they’ll wreak havoc on the product budget and probably our codebase and
sanity too. You don’t want that, so let’s understand the root causes and see
how you can prevent them.

Understand the intersection between people
and code
In the story I just told, the problem wasn’t the design of the software, which
was quite sound. The problem was an organization that didn’t fit the way
the system was designed (see Figure 1).

When we have a software system whose different components depend
upon each other and those components are developed by different
programmers, well, we have a dependency between people too. That alone
is tricky. The moment you add teams to the equation, such dependencies
turn into true productivity bottlenecks accompanied by the sounds of
frustration and miscommunication.

Such misalignments between organization and architecture are common.
Worse, we often fail to recognize those problems for what they are. When
things go wrong in that space, we usually attribute it to technical issues
when, in reality, it’s a discrepancy between the way we’re organized versus
the kind of work our codebase supports. These kind of problems are more
severe since they impact multiple teams and it’s rare that someone has a
holistic picture. As such, the root cause often goes undetected. That means
we need to approach these issues differently. We need to look beyond code.

Revisit Conway’s Law
This common problem of an organization that’s misaligned with its
software architecture isn’t new. It has haunted the software industry for
decades. In fact, it takes us all the way back to the 60’s to a famous
observation about software: Conway’s Law. Conway’s Law basically
claims that the way we’re organized will be mirrored in the software we
design; Our communication structure will be reflected in the code we write.

Conway’s Law has received a lot of attention over the past years, and there
are just as many interpretations of it as there are research papers about it.
To me, the most interesting interpretation is Conway’s Law in reverse.
Here we start with the system we’re building: given a proposed software
architecture, what’s the optimal organization to develop it efficiently?

When interpreted in reverse like that, Conway’s Law becomes a useful
organizational tool. But, most of the time we aren’t designing new
architectures. We have existing systems that we keep maintaining,
improving, and adding new features to. We’re constrained by our existing
architecture. How can we use Conway’s Law on existing code?

Let Conway’s Law guide you on legacy systems
To apply Conway’s Law to legacy code, your first step is to understand
the current state of your system. You need to know how well your codebase

 L

Figure 1

Adam Tornhill Adam is a programmer who combines degrees in
engineering and psychology. He’s the author of Your Code as a
Crime Scene, has written the popular ‘Lisp for the Web’ tutorial and
self-published a book on Patterns in C. Adam also writes open-
source software in a variety of programming languages. His other
interests include modern history, music and martial arts.
4 | Overload | June 2015

FEATUREADAM TORNHILL

No matter how agile we wanted to be, this was the
very opposite end of that spectrum. A simple

change rippled through the whole organization
and took ages to complete.
supports the way you work with it today. It’s a tricky problem — we
probably don’t know what our optimal organization should look like. The
good news is that your code knows. Or, more precisely, its history knows.

Yes, I’m referring to your version-control data. Your version-control
system keeps a detailed log of all your interactions with the codebase. That
history knows which developers contributed, where they crossed paths,
and how close to each other in time they came by. It’s all social information
— we’re just not used to thinking about version-control data in that way.
That means we can mine our source code repositories to uncover hidden
communication structures. Let’s see how that looks.

Uncover hidden communication paths
According to Conway, a design effort should be organized according to
the need for communication. This gives us a good starting point when
reasoning about legacy systems. Conway’s observation implies that any
developers who work in the same parts of the code need to have good
communication paths. That is, if they work with the same parts of the
system, the developers should also be close from an organizational point
of view.

As you see in Figure 2, we follow a simple recipe. We scan the source code
repository and identify developers who worked on the same modules:

1. Every time two programmers have contributed to the same module,
these developers get a communication link between them.

2. If another programmer contributes to the same code, she gets a
communication link as well.

3. The more two programmers work in the same parts of the code, the
stronger their link.

Once you’ve scanned the source code repository, you’ll have a complete
graph over the ideal communication paths in your organization. Note the
emphasis on ideal here; These communication paths just show what should
have been. There’s no guarantee that these communication paths exist in
the real world. That’s where you come in.

Now that you have a picture over the ideal communication paths, you want
to compare that information to your real, formal organization. Any
discrepancies are a signal that you may have a problem. So let’s have a
look at what you might find.

Know the communication paths your code wants
In the best of all worlds, you’ll be close to what Conway recommended.
Have a look at Figure 3. It shows one example of an ideal communication
diagram.

The example in Figure 3 illustrates three teams. You see that most of the
communication paths go between members of the same teams. That’s a
good sign. Let’s discuss why.

Remember that a communication diagram is built from the evolution of
your codebase. When most paths are between members on the same team,
that means the team members work on the same parts of the code. Everyone
on such a team has a shared context, which makes communication easier.

As you see in the picture above, there’s the occasional developer who
contributes to code that another team works on (note the paths that go
between teams). There may be different reasons for those paths. Perhaps
they’re hinting at some component that’s shared between teams. Or
perhaps it’s a sign of knowledge spread: while cohesive teams are
important, it may be useful to rotate team members every now and them.
Cross-pollination is good for software teams too. It often breeds
knowledge.

The figure above paints a wonderful world. A world of shared context with
cohesive teams where we can code away on our tasks without getting in
each other’s way. It’s the kind of communication structure you want.

However, if you haven’t paid careful attention to your architecture and its
social structures you won’t get there. So let’s look at the opposite side of
the spectrum. Let’s look at a disaster so that you know what to avoid.

A man-month is still mythical
About the same time as I started to develop the communication diagrams,
I got in contact with an organization in trouble. I was allowed to share the
story with you, so read on — what follows is an experience born in
organizational pain.Figure 2

Figure 3
June 2015 | Overload | 5

FEATURE ADAM TORNHILL

Now, how do you take something you know takes
a year and compress it down to just three
months? Easy – just throw four times as many
developers at it.
The trouble I met at that organization was a bit surprising since that
company had started out in a good position. The company had set out to
build a new product. And they were in a good position because they had
done something very similar in the past. So they knew that the work would
take approximately one year.

A software project that’s predictable? I know – crazy, but it almost
happened. Then someone realized that there was this cool trade-show
coming up in just three months. Of course, they wanted the product ready
by then. Now, how do you take something you know takes a year and
compress it down to just three months? Easy – just throw four times as
many developers at it.

So they did.

The project was fast-paced. The initial architecture was already set. And
in shorter time than it would take to read The Mythical Man-Month, 25
developers were recruited to the project. The company chose to organize
the developers in four different teams.

What do you think the communication paths looked like on this project?
Well, they are in Figure 4.

It’s a cool-looking figure, we have to agree on that. But let me assure you:
there’s nothing cool about it in practice. What you see is chaos. Complete
chaos. The picture above doesn’t really show four teams. What you see is
that in practice there was one giant team of 29 developers with artificial
organizational boundaries between them. This is a system where every
developer works in every part of the codebase – communication paths
cross and there’s no shared context within any team. The scene was set for
a disaster.

Learn from the post-mortem analysis
I didn’t work on the project myself, but I got to analyze the source code
repository and talk to some of the developers. Remember that I told you
that we tend to miss organizational problems and blame technologies
instead? That’s what happened here too.

The developers reported that the code had severe quality problems. In
addition, the code was hard to understand. Even if you wrote a piece of

code yourself, two days from now it looked completely different since five
other developers had worked on it in the meantime.

Finally, the project reported a lot of issues with merge conflicts. Every time
a feature branch had to be merged, the developers spent days just trying
to make sense of the resulting conflicts, bugs, and overwritten code. If you
look at the communication diagram above you see the explanation. This
project didn’t have a merge problem – they had a problem that their
architecture just couldn’t support their way of working with it.

Of course, that trade show that had been the goal for the development
project came and went by without any product to exhibit. Worse, the
project wasn’t even done within the originally realistic time frame of one
year. The project took more than two years to complete and suffered a long
trail of quality problems in the process.

Simplify communication by knowledge maps
When you find signs of the same troubles as the company we just
discussed, there are really just two things you can do:

1. Change your architecture to support your way of working with it.
2. Adapt your organization to fit the way your architecture looks.

Before you go down either path you need to drill deeper though. You need
to understand the challenges of the current system. To do that efficiently,
you need a knowledge map.

Build a knowledge map of your system
In Your Code as a Crime Scene, we develop several techniques that help
us communicate more efficiently on software projects. My personal
favorite is a technique I call Knowledge Maps.

A knowledge map shows the distribution of knowledge by developer in a
given codebase. The information is, once again, mined from our source
code repositories. Figure 5 is an example of how it looks.

In Figure 5, each developer is assigned a color. We then measure the
contributions of each developer. The one who has contributed most of the
code to each module becomes its knowledge owner. You see, each colored
circle in the figure above represents a design element (a module, class, or
file).

You use a knowledge map as a guide. For example, the map in Figure 5
shows the knowledge distribution in the Scala compiler. Say you join that
project and want to find out about the Backend component in the upper
right corner. Your map immediately guides you to the light blue developer
(the light blue developer owns most of the circles that represent modules
in the backend part). And if she doesn’t know, it’s a fairly good guess the
green developer knows.

Knowledge maps are based on heuristics that work surprisingly well in
practice. Remember the story I told you where a simple change took a week
since the affected code was shared between different teams? In that case
there were probably at least 10 different developers involved. Knowledge
maps solve the problem by pointing you to the right person to talk to.
Remember – one of the hardest problems with communication is to know
who to communicate with.Figure 4
6 | Overload | June 2015

FEATUREADAM TORNHILL
Scale the knowledge map to teams
Now that we have a way of identifying the individual knowledge owners,
let’s scale it to a team level. By aggregating individual contributions into
teams, you’re able to view the knowledge distribution on an organizational
level. As a bonus, we get the data we need to evaluate a system with respect
to Conway’s Law. How cool is that?

From the perspective of Conway, the map in Figure 6 looks pretty good.
We have three different teams working on the codebase. As you see, the
Red team have their own sub-system. The same goes for the Pink team
(yes, I do as the mob boss Joe in Reservoir Dogs and just assign the colors).
Both of these teams show an alignment with the architecture of the system.

But have a look at the component in the lower right corner. You see a fairly
large sub-system with contributions from all three teams. When you find
something like that you need to investigate the reasons. Perhaps your
organization lacks a team to take on the responsibility of that sub-system?
More likely, you’ll find that code changes for a reason: If three different
teams have to work on the same part, well, that means the code probably
has three different reasons to change. Separating it into three distinct
components may just be the right thing to do as it allows you to decouple
the teams.

Identify expensive change patterns
Mapping out the knowledge distribution in your codebase is one of the
most valuable analyses in the social arsenal. But there’s more to it. What
if you could use that information to highlight expensive change patterns?
That is, change patterns that ripple through parts of the code owned by
different teams. Figure 7 show how it looks.

The picture in Figure 7 highlights a modification trend that impacts all
three teams. Where does the data come from? Well, again we turn to our
digital oracle: version-control data.

There’s an important reason why I recommend the history of your code
rather than the code itself. The reason that dependencies between multiple
teams go unnoticed is because those dependencies aren’t visible in the code
itself. This will just become even more prevalent as our industry moves
toward distributed and loosely coupled software architectures as
evidenced by the current micro-services trend.

The measure I propose instead is temporal coupling. Temporal coupling
identifies components that change at (approximately) the same time. Since
we measure from actual modifications and not from the code itself,
temporal coupling gives you a radically different view of the system. As
such, the analysis is able to identify components that change together both
with and without physical dependencies between them.

Overlaying the results of a temporal coupling analysis with the knowledge
map lets you find team productivity bottlenecks. Remember the
organization I told you about, the one where a small change took ages?
Using this very analysis technique lets you identify cases like that and react
on time.

Explore the evolution
We’re almost through this whirlwind tour of software evolutionary
techniques now. Along the way, you’ve seen how to uncover the ideal
communication paths in your organization, how to evaluate your
architecture from a social perspective, and how you can visualize the
knowledge distribution in your codebase.

We also met the concept of temporal coupling. Temporal coupling points
to parts of your code that tend to change together. It’s a powerful technique
that lets you find true productivity bottlenecks.

As we look beyond the code we see our codebase in a new light. These
software evolutionary techniques are here to stay: the information we get
from our version-control systems is just too valuable to ignore.

Figure 5

Figure 6

Figure 7

Everything in the article is explained in detail with worked
examples from real projects in Adam’s new book, Your
Code as a Crime Scene (https://pragprog.com/book/
atcrime/your-code-as-a-crime-scene)

The techniques are available as a command line tool at
https://github.com/adamtornhill/code-maat.
June 2015 | Overload | 7

FEATURE ANDY BALAAM
Mocks are Bad, Layers are Bad
Many people use mocks in their unit
tests. Andy Balaam asks if there’s a
better way.
t’s time we admitted something: use of complex mocks is a code smell,
and must be eliminated from a healthy code base.

Sometimes mocks are necessary, but I will argue that we need to
structure our code to minimise their use, and to make them simple when
they are needed. Let’s start with a feeling.

Some days the tests just feel bad.

We've all written the unit tests I’m talking about – they are painful to write
because you have to construct layers of mocks to satisfy your module’s
dependencies, and when you’ve written them you notice a strange sense
of unease: you don’t get that safe feeling tests usually give you.

It’s almost like writing those tests was a waste of time.

Because let’s face it, all you did was check that your code calls the methods
you think it should call. If you ever change the details of the
implementation, the tests will need to change to match.

At this moment, your colleague (you know, the one who ‘doesn’t see the
point of tests’) leans over your shoulder and whispers: “You’re just writing
the code twice.”

That sense of unease indicates a smell: we must expunge it.

How can we do things differently?

How do we get rid of mocks?
We want to avoid complex mocks, especially those that embody
implementation details of the code under test.

Of course, we could just stop writing unit tests: then we can have that sense
of unease all the time. Alternatively, we could adopt ‘Classical TDD’
[Fowler-1], where tests cover several layers of functionality at once, rather
than being restricted to a single unit. This makes our tests quite effective,
since they cover the interactions between layers, but can make it much
harder to debug when something fails.

What I want to argue is that we should do something different: avoid layers.

Reject layering
I hope to convince you that thinking of our software as a series of layers
is damaging.

I’m going to start with an example. Imagine you are asked to implement
a very simple markup rendering engine that accepts a subset of HTML
(involving only text in paragraphs) and renders the result as an image. A
layered approach might lead us to write an HTML parsing layer, consumed
by a font rendering layer, consumed by a flow layout layer.

[If this design seems crazy to you, you’re way ahead of me. Consider: is
the complexity of our day-to-day work hiding decisions that are actually
as crazy as this one?]

Let’s write down some classes and interfaces. We’ll make our code look
a bit like Java, since the Java community can be quite keen on layers (see
Listing 1).

Each layer of this code works at its own layer of abstraction, and does a
single well-focussed job. Each layer consumes objects of the layer below.
We know that there will be many different fonts to choose from, so we
ensure the details of font rendering are abstracted behind an interface.

When we come to consider tests for this code, we will find we need to
introduce some more seams [Feathers], where we can insert mocks: now
ComicSansFontCalculator will take an IHtmlParser in its
constructor, so we can test it without needing to instantiate the real parser.

With this in place, we have a layered architecture similar to what many of
us work with day-to-day. Notice that each time we want to test any layer,
we need to write mocks for the layer below. Each layer of the system is
dependent on the details of the layer below it. When a system becomes
much more complex than our example, even if each layer is well-defined

 I

Listing 1

class ParsedHtml {
 List<Paragraph> paragraphs()
}

class HtmlParser {
 // Argument naming in honour of [Hilton]
 HtmlParser(String data)
 ParsedHtml parse()
}

interface IFontCalculator {
 void setFontSize()
 void setFontFamily()
 List<Bitmap> render()
}

class ComicSansFontCalculator {
 ComicSansFontCalculator(HtmlParser htmlParser)
 void setFontSize()
 void setFontFamily()
 List<Bitmap> render()
}

class LayoutManager {
 LayoutManager(IFontCalculator fontCalculator,
 int pageWidth)
 Bitmap layOut()
}

Andy Balaam Andy is happy as long as he has a programming
language and a problem. He finds over time he has more and more
of each.

You can find his many open source projects at artificialworlds.net
or contact him on andybalaam@artificialworlds.net
8 | Overload | June 2015

FEATUREANDY BALAAM

Enterprise forwarding aside, it is generally
agreed that a particular piece of code should be

written at a single layer of abstraction
and kept to its own level of abstraction, the coupling between layers can
become extremely complex and wide-ranging.

Coupling between parts of our code that ought to be separate is bad. When
we define ‘layers’ we have good motivations: we aim to simplify our code,
making each layer deal with a single set of concepts (or ‘layer of
abstraction’). However, often when we define layers we are really
specifying a complex coupling between two separate areas of code:
although the internals of a layer may be simple, the interfaces between
layers are wide and complex, with many moving parts. Layers, like sheets
of paper, are wide and flat. When sheets of paper are stacked on top of each
other, adjacent sheets touch each other in lots of places.

Enterprise forwarding
We will start with the easy part, by arguing against a common layering
technique: what I will call ‘enterprise forwarding’. In our example, it might
look like Listing 2.

And so on and so on for each object in the system. By repeating ourselves
many times in different languages, we eventually achieve that pinnacle of
layering: a multi-tiered system (see Figure 1).

But let’s move on: everyone agrees that layer upon layer of identical
method-declaration code alternating between Java and XML is horribly,
horribly wrong. The only thing that could make things worse would be if

the code did absolutely nothing at all until it was hooked up by some
opaque, undebuggable blob of magic XML. But we would never do that.

Onion skins
Enterprise forwarding aside, it is generally agreed that a particular piece
of code should be written at a single layer of abstraction [Henney-1], and
we see that certain areas of our code operate at the same level as each other,
so we may find ourselves defining layers like onion skins, each building
on the one beneath. If we test the outer layers together with the inner ones
we may be Classical TDDers (Figure 2) and if we write mocks to go under
each layer we may be Mockist TDDers [Fowler-1] (Figure 3).

Whether classical or mockist in style, the onion skin approach leads us
towards having wide and complex interfaces between parts (‘layers’) of
our program. In our example, IFontCalculator classes depend on
HtmlParser, and LayoutManager depends on IFontCalculator.

If we choose to isolate each layer during unit testing, we must write the
kinds of complex mocks described in the introduction. Finding ways to
keep our mocks simple enough that we can be confident they are not simply
a second copy of the code under test becomes increasingly difficult.

Instead of onion skins, we should strive to write small, genuinely self-
contained units of code, that interact with other parts via simple, narrow
interfaces. We will see some techniques and examples to help us with this
later.

Some other things that are bad
As a side note, it’s worth saying that we are touching on some explanations
for why many people are beginning to view anything described as a
‘framework’ with caution.

A framework is itself a layer (or series of layers) that surrounds your code,
requiring you to plug your code into predefined slots. Often this means
your code can’t be used outside the framework (possibly even in tests), and
can’t work in a straightforward way, as it would if it were written as an
independent module.

Listing 2

class HtmlParser {
 HtmlParser(String data)
 ParsedHtml parse()
}

<layerDefinition>
 <object class="HtmlParser">
 <constructor args="String" argNames="data"/>
 <method name="parse" valueType="ParsedHtml"
 args="" argNames=""/>
 </object>
<layerDefinition>

Figure 1

Figure 2 Figure 3
June 2015 | Overload | 9

FEATURE ANDY BALAAM

If we are able to stick to types provided by the
programming language we are working in then
we completely eliminate dependencies between
different areas of our program
Similarly, a complex inheritance hierarchy is precisely an example of the
kind of layering that can cause problems: the well-motivated desire to keep
coherent units of code together has accidentally pushed us towards
complex and subtle interactions between these units, so that while they
look simple (because each source code file is small), they are actually
highly coupled with many other units higher and lower in the inheritance
chain.

Techniques for removing layering, or ‘some things
that are good’
If we agree that layers should be avoided, we must find techniques and
structures that allow us to escape them, without sacrificing testability or
coherence of our code.

The SELFISH OBJECT [Henney-2] pattern is a powerful tool in our quest.
Whereas layers lead us to wrap each implementation class in an interface
that exactly reflects it, SELFISH OBJECT encourages us to build interfaces
from the point of view of the classes using them, making them tightly
focussed on the job the object is being used for in that context, rather than
the full functionality of the underlying class (see Figure 4).

SELFISH OBJECT encourages us to look ‘selfishly’ from the point of view
of the object using the interface, ignoring parts that are irrelevant to it. This
can lead us to make smaller interfaces that reflect a single aspect of an
object’s role, and lead us away from copying an object’s full set of methods
into a single interface it implements. It may well mean classes implement
multiple interfaces if they are used in multiple ways. In some cases this
may lead us further, towards breaking a class into smaller pieces, since we
may realise the different ways it is used are actually different
responsibilities.

For example, our LayoutManager class may have no interest in
c h a n g i n g f on t s i z e s , s o i t may be a b l e t o u se a r e duce d

IFontCalculator interface. While we’re at it, maybe we could rename
it to BlockRenderer since the LayoutManager has no interest in
whether the Bitmaps being dealt with originated from letters or anything
else:

 interface BlockRenderer {
 List<Bitmap> render()
 }

If other classes deal with font calculators, they may well have other needs.
In those cases, separate interfaces could be provided, also implemented by
e.g. ComicSansFontCalculator.

A powerful technique for avoiding complex mocks and layering is
REFACTOR TO FUNCTIONAL (see e.g. [Balaam]), which involves
restructuring code so that the core logic exists in free functions with no
state. These functions operate on simple, easily-constructed value-typed
objects, meaning that unit tests no longer have complex set-up costs (see
Figure 5).

For example, our HtmlParser class may not require any internal state,
meaning we can refactor it to look like this:

 class HtmlParser {
 static ParsedHtml parse(String data)
 }

Some Java developers may look at you oddly if you suggest a static
method, having been burned in the past by global static state in their
enterprise code. If this happens, it is important to emphasise the difference
between mutable static state (which is another name for a global variable),
and a stateless static method (which is another name for a ‘pure’ function).
The former is to be avoided at all costs, and the latter is one of the simplest,
most predictable and most testable structures in programming [Oldwood].

Taking these ideas further, we can simplify the interactions between our
classes, and reduce the need for complex mocks by ensuring we pass only
simple types as parameters and return values of methods. If we are able to

Figure 4

Figure 5
10 | Overload | June 2015

FEATUREANDY BALAAM
stick to types provided by the programming language we are working in
(such as strings, numbers, lists, structs or tuples) then we completely
eliminate dependencies between different areas of our program.

Obviously, this technique, which we will call TALK IN FUNDAMENTALS,
can be taken too far. Classes that are conceptually close, and within the
same level of abstraction, should pass classes and interfaces between them
that allow rich communication, and do not require us to deconstruct and
reconstruct objects that could simply have been passed untouched.
Particularly, when code at one level is being used to build a ‘language’ that
is then ‘spoken’ by code at a higher level (see e.g. [SICP]), TALK IN

FUNDAMENTALS is certainly not appropriate, since the building block
classes actually are the fundamental types being used by the higher level.

However, many interactions between classes can be expressed using
fundamental types without any loss of expressiveness. For example,
LayoutManager need not consume a BlockRenderer (or
IFontCalculator), but simply a list of blocks to be rendered. If we also
use REFACTOR TO FUNCTIONAL as well, we might have something like this:

 class LayoutManager {
 static Bitmap layOut(List<Bitmap> blocks)
 }

leading to the counter-intuitive conclusion that we can reduce coupling
between two classes by removing an interface. BlockRenderer (or
IFontCalculator) is not needed any more.

The further apart conceptually two communicating classes are, the more
compelling is the case for using only simple types in their communication.

These techniques break our code into smaller independent units. We build
libraries instead of frameworks, and functions instead of classes. We
choose composition instead of inheritance, and we simplify the means of
communication between distant pieces of code so that there is no
dependency at all between them.

The Unix philosophy (of course)
If all of this sounds familiar, that’s because it is mostly a re-expression of
the UNIX PHILOSOPHY pattern [Unix] (we’ll follow it by the word ‘pattern’
either to annoy the hackers, or to make it sound official to the enterprise
programmers). In Unix, code is decomposed into small, stateless functions
called ‘programs’ which interact through very simple fundamental types
called ‘streams’.

Modern programming languages allow very flexible and type-safe
streaming approaches using iterators, meaning that we can write our code
to be agnostic not just to what other parts of the code are doing but also
when they are doing it. We can consume our input as it arrives, and stream
it to other consumers in the same way, potentially enabling different parts
of the system to work concurrently (see Figure 6).

For more on coding in a streaming style, see Section 3.5 of [SICP] and
[Fowler-2].

If we apply everything we’ve learnt so far, we can refactor our example
again, (leaving out class names since they are now noise):

 static Iterator<Paragraph> parseHtml(
 InputStream text)

 static Iterator<Bitmap> comicSans(
 Iterator<Paragraph> html)

 static Bitmap layOut(
 Iterator<Bitmap> blocks, int pageWidth)

Some aspects of what we’ve ended up with may be distasteful (for
example, representing parsed HTML as Iterable<Paragraph>makes
me feel a little uneasy), but there is no doubt that we have ended up with
three wholly independent units of code that are easily tested and re-used,
have no interdependencies, and may in principle execute in parallel.

Once we start taking the Unix philosophy seriously, the key consideration
is how to make the units of code we write composable. To do this we need
to find a shape for our primitives that can be composed via a common
operation. In Unix the primitives are programs and composition is via text
streams. We have some other examples of composable structures (see
everything ever written in Lisp, and e.g. [Freeman]), but it seems we still
have much to learn about how to achieve composability in mainstream
programming languages.

Conclusion
We can avoid mocks by avoiding layers and building independent,
composable units in our programs, as in the Unix Philosophy.

While the Unix philosophy is always appealing, it is sometimes hard to
see how to apply it outside of Unix. The techniques discussed above may
help to break our code into independent blocks, rather than interdependent
layers.

So remember: if unit testing is becoming painful, don’t mock – decompose.

References
[Balaam] Andy Balaam ‘Avoid Mocks by Refactoring to Functional’

(http://www.artificialworlds.net/blog/2014/04/11/avoid-mocks-by-
refactoring-to-functional/)

[Feathers] Michael Feathers ‘Working Effectively with Legacy Code’
(http://www.informit.com/store/working-effectively-with-legacy-
code-9780131177055)

[Fowler-1] Martin Fowler ‘Mocks Aren’t Stubs’
(http://martinfowler.com/articles/mocksArentStubs.html)

[Fowler-2] Martin Fowler ‘Collection Pipeline’
(http://martinfowler.com/articles/collection-pipeline/)

[Freeman] Steve Freeman and Nat Pryce ‘Building SOLID Foundations’
(http://www.infoq.com/presentations/design-principles-code-
structures)

[Henney-1] Kevlin Henney ‘How to Write a Method’ (https://vimeo.com/
74316116)

[Henney-2] Kevlin Henney, ‘The Selfish Object’ (http://accu.org/content/
conf2008/Henney-The%20Selfish%20Object.pdf)

[Hilton] Peter Hilton ‘How to name things’ (http://hilton.org.uk/
presentations/naming)

[Oldwood] Chris Oldwood (2014) ‘Static – A Force for Good and Evil’ in
F. Buontempo, editor, Overload 120 (http://accu.org/index.php/
journals/1900)

[SICP] Abelson, Sussman and Sussman ‘Structure and Interpretation of
Computer Programs’ (http://mitpress.mit.edu/sicp/)

[Unix] Wikipedia ‘The Unix Philosophy’ (https://en.wikipedia.org/wiki/
Unix_philosophy)

Figure 6
June 2015 | Overload | 11

http://www.artificialworlds.net/blog/2014/04/11/avoid-mocks-by-refactoring-to-functional/
http://www.artificialworlds.net/blog/2014/04/11/avoid-mocks-by-refactoring-to-functional/
http://www.informit.com/store/working-effectively-with-legacy-code-9780131177055
http://www.informit.com/store/working-effectively-with-legacy-code-9780131177055
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/collection-pipeline/
http://www.infoq.com/presentations/design-principles-code-structures
http://www.infoq.com/presentations/design-principles-code-structures
https://vimeo.com/74316116
https://vimeo.com/74316116
http://accu.org/content/conf2008/Henney-The%20Selfish%20Object.pdf
http://accu.org/content/conf2008/Henney-The%20Selfish%20Object.pdf
http://hilton.org.uk/presentations/naming
http://hilton.org.uk/presentations/naming
http://accu.org/index.php/journals/1900
http://accu.org/index.php/journals/1900
http://mitpress.mit.edu/sicp/
https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/Unix_philosophy

FEATURE SERGEY IGNATCHENKO
Non-Superfluous People:
Architects
No developer is an island. Sergey Ignatchenko
continues his series of non-superfluous people
by looking at the role of architects.

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

The superfluous man (Russian: лишний человек, lishniy
chelovek) is an 1840s and 1850s Russian literary concept derived
from the Byronic hero. It refers to an individual, perhaps talented

and capable, who does not fit into social norms.
~ Wikipedia

his article continues a mini-series on the people who’re often seen as
‘superfluous’ either by management or by developers (and often by
both); this includes, but is not limited to, such people as testers, UX

(User eXperience) specialists, and BA (Business Analysts). However, in
practice, these people are very useful – that is, if you can find a good person
for the job (which admittedly can be difficult). The first article in the mini-
series was about testers; the second article was about User eXperience
specialists. This third article takes an unexpected twist – and talks about
architects.

WTF – Is there ANYBODY out there thinking that
architects are superfluous?
Honestly, I didn’t plan to argue about architects in the Non-Superfluous
People mini-series. For me, it goes without saying that you do need an
architect, and I assumed that everybody else shares this understanding.
After all, I am an architect myself ☺. However, Mother Nature has once
again demonstrated that assumption is indeed the mother of all mess-ups.

A few weeks ago, I wrote a blog post presenting my understanding of the
qualities which are necessary to become a software architect [NoBugs15].
Actually, it was more about psychological obstacles which senior
developers face when they need to become one, but that’s not the point.
The post was discussed on Reddit [Reddit]. To my surprise, the very first
comment was about Software Architects being ‘superfluous’; moreover,
the comment was upvoted. This was the point when I realized that there
are indeed people out there who think that architects are superfluous, and
decided to include Architects to the series on Non-Superfluous People.

Software architects in successful projects
Actually, if you take a look at successful projects, you'll notice that each
and every of them has an architect. This might be an official title, or it might
be a de-facto architect, or it can even be a collective architect (i.e. several

people performing this function) – but it exists. If we take a look at widely-
known open source projects, we’ll see that each and every of them has an
architect. In some cases (like with Linux or Python) the architect is very
obvious, in some other cases (such as the httpd Apache [daemon] project,
where the architect is a de-facto collective architect) it is a bit more
complicated, but in any case there is somebody or some body (pun
intended) making decisions about project architecture, and the rest of the
people in the project comply with these decisions. There are two common
reasons why non-architects comply with architects’ decisions. The first
one is because architects manage to convince non-architects that their
decisions are right; this is an ideal situation (and from my experience, it is
possible to achieve it for 90–95% of decisions). While it takes time on the
architect’s side, it both avoids confusion due to miscommunication, and
keeps the team spirit. The second reason to comply is because of a formal
‘chain of command’; while it is significantly worse than complying due
to the first scenario above, the difference between these two scenarios is
really minor compared to the difference between complying and not
complying. The range of scenarios can be represented as a table:

Can you really avoid having a de-facto architect?
Let’s take a bit closer look at the project mechanics. If your project already
has a formal ‘Chain of Command’, most likely you do have a formal
architect (whether she’s good or bad is a different story). If your project
is an Open Source project which was started by one developer and the
others joined when version 1.0 was already out, you have at least a de-facto
architect. But what happens if you’re in an Open Source project with 5+
people working together who started more or less at the same time? Almost
universally, it is the same pattern – at some point (for the project’s sake,
it should happen sooner rather than later) the most influential developers
come together and try to come to an agreement about the most important
(whatever that means) issues for the project. If they aren’t able to reach
agreement, the project is pretty much dead. At the very best, you have two
fork projects wasting resources and causing confusion, which is usually
disastrous at these early stages of a project. If they are able to agree –
Bingo! At this point you’ve got a collective de-facto architect.

In fact, in my whole life I’ve never seen a project without some kind of
architect. While I won’t claim that this observation is 100% universal, 99%
is also quite a good number for our purposes.

T

Approach Results

Complying with Architects’ decisions because
of being convinced

The best

Complying with Architects’ decisions because
of formal ‘Chain of Command’

A bit worse, but still
workable

Not Complying with Architects’ decisions Disastrous

Not having an Architect Very unlikely (see
below), but disastrous

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko using
the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He currently holds the position of Security
Researcher and writes for a software blog (http://ithare.com). Sergey
can be contacted at sergey@ignatchenko.com
12 | Overload | June 2015

FEATURESERGEY IGNATCHENKO

the reasons behind rebellion are not
as important as the strategy which the

‘rebel’ pursues
If you are bound to have an architect, then why I am
arguing for having one?
Those experienced with formal logic, may say:

 “You’ve just argued that every software project is pretty much bound
to have some kind of the architect”

 “Then, what’s the point of arguing that we should have one? As you
have already said – we’ll get one pretty much regardless of what we’re
doing”

This logic is perfectly correct. However, I’m not arguing that you should
have an architect (as noted above, it will happen regardless). My real point
is a bit different – while you will have an architect pretty much no matter
what, you SHOULD comply with her decisions.

Whatever you say, Dude!
Therefore, the real question is not whether you have an architect (you will),
but whether you comply with the architect’s decisions. In most cases, this
is not a problem. However, the chances are that you have at least one
member of your team (let’s call him a ‘rebel’) who doesn’t think that
discipline is a good thing, or just doesn’t have any respect for the architect
guy. The reasons for rebellious behavior vary, and are not necessarily
selfish; in particular, two common reasons for rebellion are ‘I would do it
much better’ (and it doesn’t matter if it is really the case) and ‘What you
have said just makes my life more difficult’.

However, the reasons behind rebellion are not as important as the strategy
which the ‘rebel’ pursues. The first category of ‘rebels’ which I’ve seen is
‘open rebels’. They’re usually very loud and outspoken. The impact of
such an open rebellion is usually not too bad, and necessary solutions
(assuming that both architect and ‘rebel’ are guided by interests of the
project, and are ready to listen to the arguments) can usually be found
without ruining the project.

Rebels from the second category, ‘underground rebels’, are much more
dangerous. If the ‘rebel’ doesn’t openly challenge the architect’s decisions,
but instead doesn’t comply with them – then you may have a real problem.

Coming from theorizing back to Earth, consider just one rather typical
example. There is a decision that all the code should be cross-platform. It
is understood that writing cross-platform code takes additional time, but
it is considered to be worth the trouble. However, one of the team members
strongly disagrees with it. From now on, he may either raise an open
rebellion, questioning “Who was the Smart Guy who decided to spend time
on this nonsense?”, or may start pushing non-cross-platform code quietly.
In the case of open rebellion, at least the team knows that there is a
disagreement, and has the option to discuss it (hopefully coming to some
resolution).

In the case of ‘underground rebellion’ which is not noticed soon enough,
the things tend to be much worse. First, you as a team may end up with
code which is not cross-platform (while you were 100% sure it is). Second,
this tendency may be worsened by the fact that other (non-rebel and non-
architect) team members may start using the existing code as a reference
of ‘how to do things’ (or just copy-paste), which tends to proliferate non-

cross-platform code across the whole code base. While it is newer team
members who’re the most susceptible to this copy-paste effect, even
architects, when their mind is on the other things, were observed to copy-
paste code which is against their own decisions/guidelines.

What to specify?
Ok, we’ve established that it is important to have a consistent vision for
the project, and to comply with it. But what should be included in this
vision? In other words – what must be common across the whole project,
and what can be left to case-by-case decisions by individual developers?
While there is no one single answer on what to include in guidelines, there
are some observations:

 all deviations from common-practices-out-there MUST be explicit

 all prohibitions on which-parts-of-the-language-we-dont-use
MUST be explicit. For example, if there is a decision not to use C++
iostream in the project (IMHO a wise decision for a pretty much
any project out there, but this is outside the scope now), it MUST be
explicitly written somewhere

 all not-so-common requirements (i.e. requirements which might be
present, or might not be present in other projects of similar scope)
MUST be explicitly stated. For example, if the code is intended to
be cross-platform, it MUST be explicitly stated

 things such as naming conventions are usually useful (i.e. time spent
on following them is worth the trouble)

 conventions ‘how exactly to place curly brackets’ (for Python an
equivalent is ‘how many spaces to use’) are usually not

On job titles
Ok, ok, but what about job titles? Is it important whether an architect is
called an architect or not? From my experience, the answer is ‘it doesn’t
matter’. The whole thing is not about titles, it is about getting the job done.

On non-coding architects
Pretty often it happens that an architect starts as one of the coders, but then
code reviews, processing pull requests, writing specs, discussions of issues
with rebels, answering ‘how we should do this?’ questions etc. etc. start
to eat too much time, and the architect starts to write less and less code.
Whether it is normal or is a Bad Thing is an open question. From my
personal experience, it is more or less bound to happen, at least if you’re
a sole architect; however, it is always a good idea from time to time to take
a limited-size-but-internally-very-complicated project and code it yourself
(both because nobody else will be able to do it and to show the others that
you still can code at least on par with the very best of them).

On enterprise architects
It should be noted that for the purposes of this article, we didn’t make any
distinction between Project Architects and Enterprise Architects.
However, while we’ve discussed things mostly from the point of view of
June 2015 | Overload | 13

FEATURE SERGEY IGNATCHENKO
the Project Architect, the very same logic will apply if we consider the
whole Enterprise as a larger project (which is not strictly correct in general,
but won’t affect our reasoning above). In short: you need both Project
Architects and Enterprise Architects – all for the reasons described above.

Conclusions
1. You will have an architect (formal, informal, collective...) pretty

much no matter what you’re doing.

2. What is important is to comply with architect’s decisions.

3. If you disagree with architect’s decisions, challenge them openly!

4. If you’re an architect, it is a part of your job to make sure that your
decisions are complied with. BTW, recent project management
tendencies (such as moving towards github with its ‘pull requests’
compared to giving direct access to the repository) seem to provide
better support for ensuring compliance.

5. What to include into decisions/vision/guidelines is subjective, and
there is a balance between specifying too much and specifying too
little; some observations in this regard are listed above.

6. Issues such as ‘what job title should an architect have’ and ‘whether
the architect still codes’ are pretty much immaterial.

References
[daemon] http://httpd.apache.org/docs/2.2/programs/httpd.html

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs15] http://ithare.com/7-prerequisites-to-become-a-software-
architect/

[Reddit] http://www.reddit.com/r/programming/comments/32jeka/
prerequisites_to_become_a_software_architect/

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.
14 | Overload | June 2015

http://httpd.apache.org/docs/2.2/programs/httpd.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/7-prerequisites-to-become-a-software-architect/
http://ithare.com/7-prerequisites-to-become-a-software-architect/
http://www.reddit.com/r/programming/comments/32jeka/prerequisites_to_become_a_software_architect/
http://www.reddit.com/r/programming/comments/32jeka/prerequisites_to_become_a_software_architect/

FEATURECHRIS OLDWOOD
Terse Exception Messages
Log files often contain ‘error’ information.
Chris Oldwood suggests they rarely contain
anything that could be considered helpful.
sers are not the only people who have to deal with cryptic error
messages; sadly support staff and developers can have an equally bad
time too. Users have every right to complain as they are rarely able

to do anything about it, whereas we programmers have it within our power
to write better diagnostic messages to aid our colleagues, and in turn better
serve our users by helping resolve their issues more quickly.

This article looks at some of the techniques we can apply when writing
code that is going to throw an exception in response to some unexpected
condition. Whilst exceptions are clearly not the only style of error reporting
available, I have found that due to the ‘distance’ that often exists between
the throw and catch sites it is all the more important that thought be put
into the message generated. I also have my suspicions that their very name
‘exceptions’ lures the unwary programmer into believing they will only
rarely occur and so will demand far less attention than other diagnostic
messages.

A rude awakening
One ‘very early’ Saturday morning, during my week on the support rota,
I got a phone call from the 1st line support team to say that one of the
weekend tasks had failed. They had kindly sent me the relevant portion of
the service log file and the error said something along these lines:

 ERROR: Failed to calibrate currency pair!

The task was a fairly lengthy one (taking over an hour) and there were no
obvious clues as to which particular currency pair (of the non-trivial
number being processed) that might be the source of the problem. I decided
my only recourse was to set a breakpoint on the site of the thrown error
and then wait for it to fail. When I located the line of code where the error
was generated I was more than slightly annoyed to see it was written
something like this:

 void calibrate(string ccy1, string ccy2, . . .)
 {
 . . .
 if (. . .)
 throw Error("Failed to calibrate currency
 pair!");
 }

That’s right, the throw site knew what the exact combination of currency
pairs were, but had neglected to include them in the error message.
Needless to say once I got back in the office on Monday morning, the first
thing I did was to fix the error message to save someone else wasting time
unnecessarily in the future, and to allow the support team to do a bit more
diagnosis themselves.

Clearer exception messages
The examples that provided the impetus for this article are equally terse:

 throw new Exception(String.Empty);
 throw new NotFoundException("Invalid ID");

One hopes that the first example is simply an unfortunate mistake where
the programmer truly intended to come back and write something useful,

but clearly forgot. The second is better, but I would contend that it’s only
marginally better because there is so much more than could be said by the
message.

If we imagine the message in the context of a busy log file, rather than
surrounded by its related code, it will likely appear with only the usual
thread context information to back it up, e.g.

 [date & time, thread, etc] ERROR: Invalid ID

If you also have a stack trace to work from that might at least give you a
clue as to what type the ‘ID’ refers to. You may also be able to hunt around
and find an earlier diagnostic message from the same thread that could give
you the value too, but you’re probably going to have to work to find it.

Consequently at a bare minimum I would also include the ‘logical’ type
and, if possible (and it usually is), then the offending value too. As such
what I would have thrown is something more like this:

 throw new NotFoundException
 ("Invalid customer ID '{0}'", id);

This message now contains the two key pieces of information that I know
are already available at the throw site and so would generate a more
support-friendly message such as this:

 [...] ERROR: Invalid customer ID '1234-5678'

Discerning empty values
You’ll notice that the value, which in this case was a string value, is
surrounded by quotes. This is important in a message where it might not
be obvious that the value is empty. For example if I had not added the
quotes and the customer ID was blank (a good indication of what the
problem might be) then it would have looked thus:

 ERROR: Invalid customer ID

Unless you know intimately what all your log messages look like, you
could easily be mistaken for believing that the error message contains little
more than our first example, when in fact the value is in fact there too, albeit
invisibly. In the improved case you would see this:

 ERROR: Invalid customer ID ''

For strings there is another possible source of problems that can be hard
to spot when there are no delimiters around the value, and that is leading
and trailing whitespace. Even when using a fixed width font for viewing
log files it can be tricky to spot a single erroneous extra space – adding the
quotes makes that a little easier to see:

 ERROR: Invalid customer ID '1234-5678 '

As an aside my personal preference for using single quotes around the
value probably stems from many years working with SQL. I’ve lifted
values out of log files only to paste them into a variety of SQL queries

 U

Chris Oldwood Chris is a freelance developer who started out as
a bedroom coder in the 80s writing assembler on 8-bit micros;
these days it’s C++ and C#. He also commentates on the
Godmanchester duck race. Contact him at gort@cix.co.uk
or@chrisoldwood
June 2015 | Overload | 15

FEATURE CHRIS OLDWOOD

Whilst it’s perhaps understandable why the
more generic methods are suitably terse, sadly
the same also goes for the more focused string
parsing methods too
countless times and so automatically including the right sort of quotes
seemed a natural thing to do.

Discerning incorrect values
It’s probably obvious but another reason to include the value is to discern
the difference between a value that is badly formed, and could therefore
never work (i.e. a logic error), and one that is only temporarily unusable
(i.e. a runtime error). For example, if I saw the following error I would
initially assume that the client has passed the wrong value in the wrong
argument or that there is an internal logic bug which has caused the value
to become ‘corrupted’:

 ERROR: Invalid customer ID '10p off baked beans'

If I wanted to get a little more nit-picky about this error message I would
stay clear of the word ‘invalid’ as it is a somewhat overloaded term, much
like ‘error’. Unless you have no validation at all for a value, there are
usually two kinds of errors you could generate – one during parsing and
another during range validation. This is most commonly seen with
datetimes where you might only accept ISO-8601 formatted values which,
once parsed, could be range-checked, for example, to ensure that an end
date does not precede a start date.

To me the kind of error below would still be a terse message, better than
some of our earlier ones, but could be even better:

 ERROR: Invalid datetime '01/01/2001 10:12 am'

My preferred term for values that fail ‘structural validation’ was adopted
from XML parsing – malformed. A value that parses correctly is
considered ‘well formed’ whereas the converse would be one that is
‘malformed’. Hence I would have thrown:

 ERROR: Malformed datetime '01/01/2001 10:12 am'

For types like a datetime where there are many conventions I would also
try and include the common name for the format or perhaps a template if
the format is dynamically configurable so the caller doesn’t have to root
around in the specs to find out what it should have been:

 ERROR: Malformed datetime '01/01/2001 10:12 am'
 (Only ISO-8601 supported)
 ERROR: Malformed datetime '01/01/2001 10:12 am'
 (Must conform to 'YYYY-MM-DD HH:MM:SS')

Once a value has passed structural validation, if it then fails ‘semantic
validation’ I would report that using an appropriate term, such as ‘out of
range’ or better yet include the failed comparison. With semantic
validation you often know more about the role the value is playing (e.g.
it’s a ‘start’ or an ‘end’ date) and so you can be more explicit in your
message about what the problem is:

 ERROR: The end date '2010-01-01' precedes the
 start date '2014-02-03'

Terse framework messages
Framework exception messages are notoriously terse. The reason is
probably that, like all general purpose library functions, there is a balance

between performance, security, etc. and so including the value in the
exception may well be highly undesirable in some types of application.

One of the best examples of brevity in the .Net framework is probably the
one below which is thrown from the LINQ extensions, such as Single():

 Sequence contains no matching element

The prevalent use of LINQ in modern C# code is to be applauded over
traditional for-next loops, but as their use grows, so does the possibility
of this kind of message popping up when things go awry. Whilst it’s a little
extra code to write for the caller, one obvious choice is to use the non-
throwing version SingleOrDefault(), so that you can detect the
failure manually and throw a more suitable exception, e.g.

 var customer =
 customers.SingleOrDefault(c =>c.Id == id);
 if (customer == null)
 {
 throw new NotFoundException("Failed to find
 customer with ID '{0}'", id);
 }

As always there is a trade-off here. On the one hand I could write less code
by directly using the LINQ methods provided, but at the cost of poorer
diagnostics. However, as we shall see next, in C# there is nothing to stop
me wrapping this extra code in my own extension method to keep the call
site more readable.

Custom parsing methods
Whilst it’s perhaps understandable why the more generic methods are
suitably terse, sadly the same also goes for the more focused string parsing
methods too, such as int.Parse(). On the kinds of systems I work with,
I’d happily trade-off much better diagnostics for whatever little extra
garbage this technique might incur, especially given that it’s only
(hopefully) in exceptional code paths.

My solution to this problem is the proverbial ‘extra level of indirection’,
hence I wrap the underlying non-exception-throwing TryParse() style
framework methods with something that produces a more satisfying
diagnostic. As suggested a moment ago, extension methods in C# are a
wonderful mechanism for doing that.

For example I tend to wrap the standard configuration mechanism with
little methods that read a string value, try to parse it, and if that fails then
include the setting name and value in the message. Consequently instead
of the usual terse FormatException affair you get from the .Net
framework when parsing an integer value with code like this:

 int.Parse(settings["TimeoutInMs"]);

You invoke a helper method like this instead:

 settings.ReadInt("TimeoutInMs");

And if this fails you’ll get a much more useful error message:

 ERROR: The 'TimeoutInMs' configuration setting
 value '3.1415' was not a well formed integer value
16 | Overload | June 2015

FEATURECHRIS OLDWOOD
This handles the structural validation side of things. For the semantic
validation it can either be done with traditional conditional statements or
by chaining on a validation method, a là fluent style:

 settings.ReadInt("TimeoutInMs")
 .EnsuringValueIsPositive();

For common ‘types’ of settings this pair can itself be wrapped up further
to once again simplify the call site:

 settings.ReadTimeout("SendRequestTimeoutInMs");

Formatting exceptions in C#
Whenever I create a custom exception type in C#, I generally add a variety
of overloads so you can create one directly with a message format and
selection of arguments without forcing the caller to manually use
String.Format(). This is how the example near the beginning worked:

 throw new NotFoundException("Invalid customer ID
 '{0}'", id);

All the class needs for this kind of use is a signature akin to
String.Format’s:

 public NotFoundException(string format,
 params object[] args)
 : base(String.Format(format, args))
 { }

However this is not enough by itself – it’s dangerous. If we pass a raw
message that happens to contain formatting instructions but no arguments
(e.g. "Invalid list {0, 1, 2}") it will throw during the internal
call to String.Format(), so we need to add a simple string overload
as well:

 public NotFoundException(string message)
 : base(message)
 { }

As an aside, I never add a public default constructor by default because
I’m not convinced you should be allowed to throw an exception without
providing some further information.

Due to the framework exception classes not having a variable arguments
(var-args) style constructor you might already be happy putting formatting
calls into the callee, either directly with String.Format() or via a
simple extension method like FormatWith() [Newton-King], e.g.

 throw new NotFoundException(String.Format
 ("Invalid customer ID '{0}'", id));
 throw new NotFoundException
 ("Invalid customer ID '{0}'".FormatWith(id));

One scenario where the var-args style constructor falls down in C# is when
you start adding overloads to capture any inner exception. You can’t just
add it on the end of the signature due to the final params-based parameter,
so you have to add it to the beginning instead:

 public NotFoundException(Exception inner,
 string format, params object[] args)
 : base(String.Format(format, args), inner)
 { }

Sadly, as you can see from the base() constructor call, this is the exact
opposite of what the framework does; it expects them on the end because
the preceding argument is always a simple string.

In my experience little effort is put in by developers to simulate faults and
validate that exception handling is behaving correctly, i.e. verifying ‘what’
is reported and ‘how’. Consequently this makes the var-args overload
potentially dangerous as adding an exception argument on the end (by
following the .Net framework convention) would cause it to be silently
swallowed as no string format placeholder would reference it.

Whilst this has never been a problem for me in practice because I virtually
always throw custom exception types and nearly always end up formatting
a non-trivial diagnostic message, that’s easy to say when you’re the one
who discovers and instigates a pattern – others are more likely to follow
the one they’re used to, which is almost certainly the way the .Net
framework does it.

Testing exception messages
At the tail end of the previous section I touched briefly on what I think is
at the heart of why (server-side) error messages can often be poor – a lack
of testing to make sure that they satisfy the main ‘requirement’, which is
to be helpful in diagnosing a problem. When unit tests are written for error
scenarios it’s all too common to see something simplistic like this:

 Assert.That(() => o.DoIt(...), Throws.Exception);

This documents and verifies very little about what is expected to happen.
In fact if the o variable is a null reference, the test will still pass and not
even invoke the behaviour we want to exercise! Our expectations should
be higher; but of course at the same time we don’t want to over-specify
the behaviour and make the test brittle instead.

If a caller is going to attempt recovery of the failure then they at least need
to know what the type of the exception is, lest they be forced to resort to
‘message scraping’ to infer its type. Consequentially it’s beneficial to
verify that the exception is of at least a certain type (i.e. it may also be a
derived type). Where an obvious value, such as an input argument, is a
factor in the error we can include that as a real property if we believe it
may be useful for recovery. If the exception type is likely to remain vague
we can still loosely test that the value is contained somewhere within the
message instead:

 const string id = "malformed-value";
 Assert.That(() => o.DoIt(id),
 Throws.InstanceOf<ValidationException>()
 .And.Message.Contains(id));

If we’re writing tests for a method where there are many arguments to be
validated, it’s more important that we try and match on the message too
(or some richer-typed property) to discern which of the many arguments
caused the exception to be thrown. It’s all too easy when making a change
to a method that you end up finding one or more of your tests are passing
because they are detecting a different error to the one they were intended
to, as the null reference example above highlights.

Whilst that takes care of our code-based contractual obligations we also
have an obligation to those who will be consuming these messages to make
sure they form a useful narrative within any diagnostic output. This is an
article in its own right [Oldwood], but using a text editor that performs spell
checking of string literals certainly goes a little way towards helping avoid
silly mistakes.

Summary
If you’re going to rely on exception messages as a major source of your
diagnostic output, such as through the use of Big Outer Try Blocks
[Longshaw] and classic log files, then it pays to make sure that what you’re
going to end up writing contains the information you really need. This
article has provided a number of suggestions about how the content of
these messages can be improved, along with some ideas about how you
can help ensure the code doesn’t get swamped with these tangential
concerns so that the underlying logic becomes obscured. The final section
looked at what we can do to leverage automated testing as a means of
helping to formalise the errors that we generate as an aid to throwing ‘better
quality’ exceptions.

Acknowledgements
Thanks as always to the Overload review team for sparing my blushes.

References
[Longshaw] ‘The Generation, Management and Handling of Errors’,

Andy Longshaw, Overload #93, http://accu.org/index.php/journals/
1586

[Newton-King] ‘FormatWith Extension Method’, James Newton-King,
http://james.newtonking.com/archive/2008/03/27/formatwith-
string-format-extension-method

[Oldwood] ‘Diagnostic & Support User Interfaces’, Chris Oldwood,
http://chrisoldwood.blogspot.co.uk/2011/12/diagnostic-support-
user-interfaces.html
June 2015 | Overload | 17

http://accu.org/index.php/journals/1586
http://accu.org/index.php/journals/1586
http://james.newtonking.com/archive/2008/03/27/formatwith-string-format-extension-method
http://chrisoldwood.blogspot.co.uk/2011/12/diagnostic-support-user-interfaces.html

FEATURE JONATHAN WAKELY
Get Debugging Better!
The GNU debugger has several useful features you
may not know. Jonathan Wakely shows us how to
save time and pain with some simple tricks.
he GNU Debugger (GDB) is a powerful tool, but if you’re used to
working in an IDE then using a command-line debugger can be
daunting and may seem to be lacking features you take for granted in

an IDE. This article has some simple tips that might help you have a more
pleasant debugging experience, and might inspire you to read the
documentation [GDB] to see what other tricks are waiting to be discovered.

The first tip, and maybe the most important, is to make sure you’re using
a recent version. Support for debugging C++ code got much better with
GDB 7.0 and has continued to improve since then. If you’re using anything
older than GDB 7.0 you should upgrade right away, and it’s probably
worth upgrading anything older than a couple of releases (GDB 7.8.2 and
7.9 were both released in early 2015). If you can’t get a pre-built version
for your OS then compiling GDB from source is very easy, just download
the tarball, unpack it, run configure (setting your preferred install directory
with --prefix=dir) and run make.

One of the simplest GDB features, but one I always miss when using the
venerable ‘dbx’ debugger on ‘proper’ UNIX machines, is the ability to use
abbreviations for commands. Any unambiguous prefix for a command will
run the full command, so instead of typing print foo you only need p
foo and instead of break source.cc:325 just br source.cc:325
(and while not strictly a prefix of the full command, bt will print a stack
trace just like backtrace).

You can also very easily create your own commands by defining them in
your personal ~/.gdbinit file, which gets run by GDB on startup. I use
the following to quit without being asked to confirm that I want to kill the
process being debugged:

 define qquit
 set confirm off
 quit
 end
 document qquit
 Quit without asking for confirmation.
 end

This allows me to use qquit (or just qq) to exit quickly. The document
section provides the documentation that will be printed if you type help
qq at the gdb prompt.

Sometimes stepping through C++ code can be very tedious if the program
keeps stepping into tiny inline functions that don’t do anything interesting.
This is very obvious in C++11 code that makes heavy use of std::move
and std::forward, both functions that do nothing except cast a variable
to the right kind of reference. The solution is to tell gdb not to bother
stepping into uninteresting functions (or ones that get called a lot but which
you know are not the source of the problem you’re debugging). Running

the skip command with no arguments will cause the current function to
be skipped over next time it is reached, instead of stepping into it. You can
also use skip FUNCTION to cause a named function to be skipped instead
of the current one, or skip file FILENAME to skip whole files (as with
most commands, run help skip at the gdb prompt for more information).
Unfortunately the skip command treats every specialization of a function
template as a separate function and there’s no way to skip over all
specializations of say, std::move, but if you skip each one as you step
into it at least you know you won’t step into that particular specialization
again. I define the following command in my .gdbinit to make this even
easier:

 define skipfin
 dont-repeat
 skip
 finish
 end
 document skipfin
 Return from the current function and skip over
 all future calls to it.
 end

This lets me use skipfin to mark the current function to be skipped in
future and to finish running it and return to the caller. The dont-repeat
line tells gdb that (unlike most built-in commands), hitting enter again after
running skipfin should not run skipfin again, so that I don’t
accidentally finish running the caller and mark that to be skipped as well!

Another useful entry in my .gdbinit is set history save, which
causes gdb to save your command history when exiting, so you can use
the cursor keys to scroll through your history and easily create the same
breakpoints or watchpoints as you used in an earlier debugging session.

The GDB feature that I most wish I’d known about sooner is the ‘TUI’
mode, which is activated by the -tui command-line option, or can be
turned on and off in an existing debugging session with Ctrl-X Ctrl-A
[TUI]. This splits the terminal window horizontally, with the bottom pane
showing the usual prompt where you type commands and get output, and
the top pane showing the source code for the function being debugged, just
like your IDE would. This gives you a much more immediate view of the
code than using list to print out chunks of it. One thing to be aware of
is that the TUI mode changes the behaviour of the cursor keys, so they
scroll up and down in the source code rather than through your command
history. If you’re familiar with them from the terminal, you can still use
readline key bindings (Ctrl-P, Ctrl-N etc.) to scroll through the command
history.

After -tui, the command-line option I most often use when starting gdb
is --args. This can be used to start debugging a program with a specific
set of arguments, so instead of running gdb ./a.out and then setting
arguments for it with set args a b c then running it with run, you
can start gdb as gdb --args ./a.out a b c and then just run. This
is very useful when the program needs a long and complicated set of
arguments, as you don’t need to find them and copy & paste them into gdb,
just add gdb --args before the usual command to run the program.

 T

Jonathan Wakely Jonathan’s interest in C++ and free software
began at university and led to working in the tools team at Red Hat,
via the market research and financial sectors. He works on GCC’s
C++ Standard Library and participates in the C++ standards
committee. He can be reached at accu@kayari.org
18 | Overload | June 2015

FEATUREJONATHAN WAKELY

One of the most useful features of
modern version of GDB is the embedded

Python interpreter. This allows you to
write pretty printers for your own types
One of the most useful features of modern version of GDB is the embedded
Python interpreter. This allows you to write pretty printers for your own
types (or use the ones that come with GCC for printing standard library
types such as containers). Defining pretty printers for the types in your
system can be very useful, and although it’s not too complicated there isn’t
room to explain here, however the embedded Python interpreter is also
very useful for running simple one-liners without leaving gdb. For
example if you have a time_t variable containing a unix timestamp you
can easily print it using Python’s datetime module:

 (gdb) python import datetime
 (gdb) python print
 datetime.datetime.fromtimestamp(1425690208)
 2015-03-07 01:03:28

If what you want to do isn’t suitable for a one-liner you can create multiple-
line blocks of Python by entering just python on a line on its own, and
then end the block with end. Many of gdb’s features are exposed via a
python API (‘import gdb’) [Python] that lets you inspect variables, so you
can examine their value, type, members etc.

None of these tips are groundbreaking, but I hope they give an idea of ways
you can customise your debugging experience and define shortcuts to
simplify the most repetitive tasks.

References
[GDB] https://sourceware.org/gdb/onlinedocs/gdb/index.html#Top

[Python] https://sourceware.org/gdb/onlinedocs/gdb/Python-
API.html#Python-API

[TUI] https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
June 2015 | Overload | 19

T 0115 8492271 E info@clearly-stated.co.uk W www.clearly-stated.co.uk

 � User guides

 � Online help

 � Training materials

 � FAQs

 � Demos/simulations

Helping your customers help themselves

https://sourceware.org/gdb/onlinedocs/gdb/index.html#Top
https://sourceware.org/gdb/onlinedocs/gdb/Python-API.html#Python-API
https://sourceware.org/gdb/onlinedocs/gdb/Python-API.html#Python-API
https://sourceware.org/gdb/onlinedocs/gdb/TUI.html

http://www.codeproject.com/Articles/11015/The-Impossibly-Fast-C-Delegates
http://www.codeproject.com/Articles/11015/The-Impossibly-Fast-C-Delegates
http://www.codeproject.com/Articles/7150/Member-Function-Pointers-and-the-Fastest-Possible
http://www.codeproject.com/Articles/7150/Member-Function-Pointers-and-the-Fastest-Possible
http://www.codeproject.com/Articles/18886/A-new-way-to-implement-Delegate-in-C
http://www.codeproject.com/Articles/18886/A-new-way-to-implement-Delegate-in-C
http://www.codeproject.com/Articles/384572/Implementation-of-Delegates-in-Cplusplus11
http://www.codeproject.com/Articles/384572/Implementation-of-Delegates-in-Cplusplus11
http://www.codeproject.com/Articles/412968/ReflectionHelper
https://github.com/nicobou/cpp_make_consultable
https://github.com/nicobou/cpp_make_consultable

	Overload127.pdf
	A little more conversation, a little less action
	Meet the Social Side of Your Codebase
	Mocks are Bad, Layers are Bad
	Non-Superfluous People: Architects
	Terse Exception Messages
	Get Debugging Better!
	Make and Forward Consultables and Delegates

