

December 2014 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Designing Observers in C++11
Alan Griffiths fits a venerable design pattern into a
contemporary context.

6 Non-Superfluous People: Testers
Sergey Ignatchenko takes a look at the importance
of professional testers.

9 Ruminations on Self Employment and
Running a Business
Bob Schmidt looks at the pros and cons of running
your own business.

14 Order Notation in Practice
Roger Orr revises complexity measurement and
considers it in real situations.

21 People of the .Doc
Andrew Peck breaks down the rhetoric surrounding
the role of a technical author.

22 Testing Drives the Need for Flexible
Configuration
Chris Oldwood demonstrates how to support
multiple configurations flexibly.

OVERLOAD 124

December 2014

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 125 should be submitted
by 1st January 2015 and those for
Overload 126 by 1st March 2015.

EDITORIAL FRANCES BUONTEMPO
Finding your muse
Lack of ideas and confidence can
freeze an author. Frances Buontempo
considers how to warm up.
Yet again I seem to be stuck on what to write about for
an editorial, so you will have to forgive me for yet
another side-track. Part of the difficulty is being put on
the spot and expected to think of a topic to write about.
Even if I do think of something, there are other

considerations such as would anyone be interested in reading this? Do I
know enough to write about this? Surely everyone, or at least most people,
know more about this than I do. Being expected to perform a godlike act
of creation ex nihilo is a tall order, even without the nagging doubts about
one’s qualifications and ability. As I am sure you are aware, Overload
requires not only an editorial, but also articles so this problem will affect
all ACCU members from time to time since these articles are written, in
the main, by ACCU members. We do welcome submissions from non-
members too, though. Previously we considered the importance of peer
review in general and code reviews and assessing articles in particular
[Buontempo]. This presupposes code or articles in the first place. Often
code is written because someone in charge tells you to write it – perhaps
you are on the treadmill and churn it out, perhaps you manage to sneakily
delete some as you go. Sometimes you have an inspired idea and work on
a personal project or find a better way to do things. Sometimes you want
to try a new language feature or framework. Many of us are in this gig
because we enjoy life-long learning. We frequently learn by reading
things other people have written, either books, blogs or tutorials and
documentation for new languages or frameworks others have invented.
Given the wealth of things to learn about, how can you possibly be
expected to come out with something new or original? This very question
has been mused on in a previous CVu [Oldwood]:

If none of what I do is novel is it a surprise that I’d have nothing truly
interesting to write about? After all, if everyone reads the same books
and blogs, follows the same people on Twitter, etc. then they’ll already
know everything I do; probably more. Who exactly would be listening?

Sometimes the knowledge that we seemingly know nothing can cause
writer’s block. You may recall Socrates claimed he knew nothing and that
didn’t stop him having a thing or two to say. Anecdotally, he is supposed
to have said, “As for me, all I know is that I know nothing” [Plato] though
this may be somewhat out of context and there are similar quotes pulled
from other places. See this Wikipedia entry [Wiki] for example. Though
mention is made of potential fear and upset when sharing, Oldwood’s
article makes the important point that you do not need to write about
something new in order to write – much writing offers a new viewpoint
on an old topic. This is true of Overload, computing in general and in many

other disciplines too. Indeed, I have recently
acquired a DVD of Rosencrantz and
Guildenstern are dead which weaves a tale
a ro u nd two mi no r c ha ra c t e r s i n

Shakespeare’s Hamlet. Many other works of fiction are based around
minor characters in a relatively well known story or historical account.
The constraint gives a clear context and timeline of events and to an extent
provides ready-made characters, though possibly only in outline comic
form. It is ok to write around a well-known topic or existing body of
knowledge. Many peer reviewed journals have a ‘state of the art’ review
article from time to time which summarises the current players in a given
area and digs into the advantages and disadvantages of each. For example,
our penultimate issue had two articles considering various stands on test
driven development.

This begs the question how do other people invent new features or
frameworks or topics it’s ok to write about? Where do the new ideas come
from? We could ask the same question of articles in this very journal.
Sometimes they are inspired by problems people have faced and are a
write up of emergent solutions or patterns if you will. Sometimes ‘hot-
topics’ show up on online discussion forums or Twitter or similar. In both
cases, the ideas are probably not completely new. This does not matter a
jot – the important thing is they are interesting. Sometimes you may even
find as you try to write up something you think you know well, for
example a discussion on accu-general, you will inevitably find you need
to investigate areas you hadn’t considered before and so learn even more.
Perhaps it’s not possible to create anything new anyway – perhaps we are
constantly rehashing and rediscovering old ideas. How often do you attend
a talk or conference session to be presented with a quote from the 1960s?
More generally, philosophical debates about whether anything, ranging
from inventions to mathematics, are created or discovered have raged for
a long time.

Pulling back from a grand digression into an abstract philosophical subject,
let us return to our key point. How does one find inspiration for a topic to
write about? Terry Prachett [Prachett] mentions inspiration particles

Particles of raw inspiration sleet through the universe all the time. Every
once in a while one of them hits a receptive mind, which then invents
DNA or the flute sonata form or a way of making light bulbs wear out
in half the time. But most of them miss. Most people go through their
lives without being hit by even one.

Newton’s gravity may have come from being directly hit by an apple
rather than an inspiration particle. Evidence may suggest this was an
outright lie, possibly never told by Newton himself [Cracked], and is not
the only ‘Newtonian-ism’ which gets misunderstood, though it may give
us something to think about. Stepping away from your books and desk for
a while to go outside and get a breath of fresh air is the only way to get
hit on the head by an apple and might make you receptive to inspiration
particles. The second well-known quote from Newton is almost certainly
‘If I have seen further it is by standing on the shoulders of giants’. He was
writing to Robert Hooke at the time, and it has been suggested this was

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | December 2014

EDITORIALFRANCES BUONTEMPO
really a disparaging remark about Hooke’s physique [Crease].
Nonetheless, its frequent quoting suggests drawing on the ideas and
previous work of others is acceptable.

What actually causes the spark of an idea? I believe it is really important
to find ways to free up your thinking in order to get the creative juices
flowing, to coin a phrase. I have recently finished reading What-If?
[Munroe]. The sheer ridiculousness of the questions was a delight, and left
me for a while afterwards musing on various unconventional angles on
almost everything I was faced with. Sadly the different perspective has now
waned, but this reminded me how important it is to stop being so serious
from time to time and allow oneself to ask seemingly crazy questions. The
occasional book can act as a direct hit by an inspiration particle. There are
some other ways to attempt to move into a creative space.

If you are learning something new, it is sensible to keep notes as you go.
If you read back through them and asked focused questions – Does this
make sense? What haven’t I covered? Are there edge cases? – you can
sharpen up your notes and form a ‘How-to’ article. If you look back at
anything you have previously written you may have further ideas.
Unfortunately, this requires you to have written something in the first
place. We touched upon constraint to bring about creativity – either in the
form of fitting around an existing story, or joining in a current debate on
a hot topic, and perhaps writing a summary article. In contrast, it can be
useful to drop constraints. Even if you have a specific task to do, it can be
helpful to step back for a moment and allow a free-form doodle as a team
on a white board during a design session or a time to ‘brainstorm’. It is
important to emphasise when doing this that no idea is too stupid otherwise
most people will avoid speaking out. The aim is to get ideas flowing. If no
one will speak out in your group, there are ways to get the ball rolling. For
example, the ‘McDonalds trick’ – if a group of people are trying to decide
where to go for a meal and no one will make the first suggestion, the theory
goes saying “McDonalds” will encourage everyone to say “No, even
[somewhere else] is better than that”. Saying something, no matter how
unsophisticated, or downright poor, can get the ball rolling. Many great
ideas can come out of a stream of ridiculous ideas. Sometimes just
brainstorming by yourself works – write down all the things you are
thinking/reading about and see what emerges. Allow yourself some
unstructured play time. Recently there have been increasing reports of
children having too much structured leisure time – formal music or sports
lessons, extra academic coaching and so on. Though these can be very
useful, many are keen to point out the importance of ‘Free-play’ for normal
development. “Jean Piaget conducted extensive research into play and
concluded that play was a vital component to children's normal intellectual
and social development.” [Journal of Play] This article also touches on the
importance of art and music for creativity too. If you do not feed your inner
muse, she will die. Don’t forget, adults need play time too. “All work and
no play makes Jack a dull boy.”

So, what makes you creative? You can simply summarise what you have
been learning about – this will be your unique perspective on the topic and
will at least be notes to your future self. You can meet-up with other people
and try to throw some ideas around. You need to give your muse space
and time. Sometimes just waiting doesn’t make the proverbial apple fall
down though. A brainstorming session may still not be quite enough to get
things moving. The so-called Disney brainstorming method may help – in
order to come out with and refine ideas, aim for three different roles; a
dreamer, a realist, and a spoiler [Disney]. The dreamer is allowed, indeed,
must come out with fantastical ideas. They can break the laws of physics,
be completely impractical, apparently pointless. The next role grounds the
ideas a bit – they are not dismissed but refined in order to be possible. The
final stage rejects anything it’s confronted with, shooting holes in it. The
first two roles can defend/refine further and so on. In theory some ideas
will survive the process. You can do this with other people or by yourself.

Though it is often used as a training exercise for entrepreneurship it can
work in various other realms. Constraining yourself to only being a
dreamer – coming out with new ideas – can set off a stream of creativity.

A final example of constraint leading to creativity is warfare. War is
sometimes described as the mother of invention. There are many examples
of manufacturing companies creating new products during various wars,
such as vegetarian sausages [Sausages]. To some extend the difficulties
cause workarounds to be discovered or invented; while to another extent
governments often find sources of funding to solve specific problems.
Sometimes disasters, rather than wars, also lead to inventions. John
Harrison invented a timekeeping piece and thereby claimed the £20,000
reward which had been in place for almost 60 years since a disaster at sea
killed over 2000 people, leading to calls for better means of navigation
[Observatory]. Most people face the equivalent of disasters or wars at
work, albeit on a smaller scale, and as a colleague keeps pointing out to
me “No one died.” The response, “This time” is possibly wearing thin
though. Nonetheless, these problems can inspire new approaches to avoid
repetitions of mistakes, which are always worth recording for posterity.

What have we discovered? Finding a topic to write about can be difficult,
but just keeping notes on what you are doing day to day can be a fertile
source of ideas. Deliberately meeting with others to brainstorm can lead
to new ideas, but might need tempering with various techniques to get the
ideas flowing. Walking away for a bit can help, allowing a chance to be
hit by an inspiration particle, or apple. If you are brave and try writing you
will learn to weather any storm of rotten fruit and there may be less than
you expect. It’s ok to do something that’s been done before – you can bring
a new twist and in turn set off a new train of thought for someone else. In
order to try to find completely new ideas you need something to fire up
your imagination. Whatever you decide to write about, hopefully the
ACCU provides a supportive and shepherding environment and never
stifles your creativity. Please feel free to submit articles, no matter how
left-field you think they are. We do not promise to accept
them but you never know ’til you try.

References
[Buontempo] ‘Peer Reviewed’ Frances Buontempo Overload 123,

October 2014

[Cracked] http://www.cracked.com/article_16101_the-5-most-
ridiculous-lies-you-were-taught-in-history-class.html

[Crease] The Great Equations: The hunt for cosmic beauty in numbers
Robert Crease, 2009

[Disney] Various (contrary) links, but for example: http://www.idea-
sandbox.com/blog/disney-brainstorming-method-dreamer-realist-
and-spoiler/

[Journal of Play] http://www.journalofplay.org/sites/
www.journalofplay.org/files/pdf-articles/1-3-article-childrens-
pastimes-play-in-sixteen-nations.pdf

[Munroe] What If? Serious scientific answers to absurd hypothetical
questions Randall Munroe, 2014

[Observatory] http://www.rmg.co.uk/about/history/royal-observatory

[Oldwood] Chris Oldwood. ‘Being original’ CVu 26(3):9, July 2014

[Plato] The Republic, Book 1

[Prachett] Wyrd Sisters

[Sausages] http://www.bbc.co.uk/news/magazine-26935867

[Wiki] http://en.wikipedia.org/wiki/I_know_that_I_know_nothing
December 2014 | Overload | 3

http://www.cracked.com/article_16101_the-5-most-ridiculous-lies-you-were-taught-in-history-class.html
http://www.cracked.com/article_16101_the-5-most-ridiculous-lies-you-were-taught-in-history-class.html
http://www.idea-sandbox.com/blog/disney-brainstorming-method-dreamer-realist-and-spoiler/
http://www.idea-sandbox.com/blog/disney-brainstorming-method-dreamer-realist-and-spoiler/
http://www.journalofplay.org/sites/www.journalofplay.org/files/pdf-articles/1-3-article-childrens-pastimes-play-in-sixteen-nations.pdf
http://www.journalofplay.org/sites/www.journalofplay.org/files/pdf-articles/1-3-article-childrens-pastimes-play-in-sixteen-nations.pdf
http://www.rmg.co.uk/about/history/royal-observatory
http://www.bbc.co.uk/news/magazine-26935867
http://en.wikipedia.org/wiki/I_know_that_I_know_nothing

FEATURE ALAN GRIFFITHS
Designing Observers in C++11
The observer pattern is over two decades
old. Alan Griffiths fits a venerable design
pattern into a contemporary context.
wo decades ago the ‘Gang of Four’ popularised a pattern form and
described twenty one patterns (and one anti-pattern). One of these is
the OBSERVER PATTERN and the subject of this article.

I’ve been working on an open source project for the past couple of years
and like many projects we found use for OBSERVERS. In order for you to
appreciate the problems we encountered I first need to explain a little about
the project. (I will be brief.)

The project is a library that allows the code that uses it to handle graphics
and input devices in a manner that is portable across the Linux device
drivers found on desktop and android devices. One area in which we used
OBSERVER was to monitor changes to the ‘surfaces’ representing things
that appear on the screen(s). These need to be monitored by other
components such as the ones that composite these surfaces onto the screens
and the one that routes input.

There are a number of threads running in the application as this makes it
easy to partition work between applications updating their surfaces, input
events and interacting with display devices such as monitors. As I will
describe, this leads to a need to address some synchronization issues.

It is hopefully evident that the ‘consumer’ of observations (e.g. one
representing a monitor) generally outlive the surfaces being observed.
Mostly the consumer is part of the application infrastructure and not part
of the dynamic state of applications being launched, opening and closing
windows and exiting.

For this case it is simplest to create an ‘observer’ object (that calls
notification methods on the consumer) and pass its ownership to the
‘subject’. The consumer can then forget about everything except handling
the notifications.

To summarise the differences from the classical OBSERVER PATTERN

context :

1. We’ve split the Observer role into Consumer and Observer
2. We’re not using garbage collection and so need to explicitly address

the lifetime of the objects
3. We have multiple active threads

The subject maintains a collection of listeners and the naïve approach to
synchronization is for the collection to be locked when being updated and
when sending notifications. (In fact that is how we first implemented it.)

This works well until we hit one of two cases:

1. The consumer takes some action that generates a new notification
2. The consumer is destroyed (e.g. a monitor is unplugged) and needs

to prevent further notifications to a dead object.

In case 1, if we have hold exclusive lock during notifications then we’ll
get a deadlock.

In case 2, we expect the consumer to remove the observer from the
subject’s collection after which notifications cease. And to ensure ‘after’
needs an ordering on removal and notifications we need something akin
to the lock that causes deadlock in case 1.

One failed solution that we tried is to copy the collection before
propagating a notification and release the lock before calling each of the
observers. That doesn’t work with the above solution to case 2: after
releasing the lock nothing prevents listeners being ‘removed’ on another
thread before being notified through the copy.

Another solution we rejected was for the subject’s collection to be formed
of weak_ptr<>s and the consumer to manage a collection of
shared_ptr<>s to the observers it creates. Having an additional
collection to manage in the consumer didn’t lead to any simplification.
This might be different in other contexts but many of our consumers only
need to register an observer and handle a few events without tracking either
the subject or the observer.

Another (working) solution we tried was to hold a recursive lock during
notifications and updates to the collection. That allowed other notifications
to take place on the same thread and changes to the collection. Because
the collection could change we took a copy of the collection and traversed
that (to avoid iterators invalidating), but before invoking them also would
check that objects exist in the ‘true’ collection. The disadvantage of this
approach is that copying the collection is a lot of work to send each
notification for collections that very rarely changed (your application
might be updating the ‘surface’ at 60fps but adding and removing monitors
might happen once a month).

You might think that we could avoid this trouble by sharing ownership of
the consumer with the observer (so that the consumer could not ‘die’ while
the observer exists). After all, that is exactly what would happen
‘automatically’ in a garbage collected language. The trouble is that it
becomes extremely difficult to ensure that the consumer dies when one
needs it to.

Eventually we came up with an ‘observer collection’ implementation that
works for our specific circumstances. If you have massively parallel code
or rapidly changing collections this is probably not going to work for you.

The code makes use of a RecursiveReadWriteMutex and associated
RecursiveReadLock and RecursiveWriteLock. These work pretty
much as one might expect – a read lock can be acquired provided there are
no write locks and a write lock can be acquired unless another thread has
a lock. (This isn’t a component of C++11, so we rolled our own – one day
we will have shared and exclusive locks available to us in the standard
library.)

Information about the observers is held in a singly linked list with atomic
forward pointers that allow lock free traversal and expansion (Listing 1).
(We don’t need contraction for our use case – we might end up with a few
‘free’ items in the list but not enough to be of concern.)

There are three member functions to go along with this. The easy one is
for_each() which is used to traverse the collection and send
notifications. Each node is read locked in turn, and the supplied functor

T

Alan Griffiths has been developing software through many fashions in
development processes, technologies and programming languages.
During that time, he’s delivered working software and development
processes to a range of organizations, written for a number of
magazines, spoken at several conferences, and made many friends.
He can be contacted at alan@octopull.co.uk.
4 | Overload | December 2014

FEATUREALAN GRIFFITHS
invoked. Note that we need to lock the node until we complete the
notification to prevent a race with another thread removing the observer
and deleting the consumer. No lock is needed for the traversal itself as we
are assuming that no node is ever removed from the list. (Listing 2)

The second function is to add an item. This searches for a free node. If it
finds one it tries to upgrade to a write lock and, if it is still free, uses it to
store the supplied observer. Otherwise a new node is added to the end of
the list using the C++11 atomic ‘compare exchange’. This code also
assumes that the list never shrinks as current_item has to remain valid.
(Listing 3) One ‘gotcha’ here (spotted by the Overload review team) is that
compare_exchange_weak() can ‘fail spuriously’1, so it is necessary
to test that expected has changed before assigning it to current_item.

The final member function removes an observer by searching the list. The
logic is very similar to that in add(). (Listing 4)

It is a deceptively simple solution to a problem that for a while seemed
intractable. I hope you enjoy it.

References
The project is called ‘Mir’ and can be found (including the full version of
the code) at http://unity.ubuntu.com/mir/

Acknowledgements
The Mir team (https://launchpad.net/~mir-team/+members) especially
Alberto Aguirre and Robert Carr for encountering this design context and
working through a series of proposed resolutions.

The Overload team for seeing the code and text presented here with a fresh
eye and spotting a few problems with correctness and clarity that had been
overlooked.

1. http://www.cplusplus.com/reference/atomic/atomic/
compare_exchange_weak/ : “Unlike compare_exchange_strong,
this weak version is allowed to fail spuriously by returning false even
when expected indeed compares equal to the contained object. This
may be acceptable behavior for certain looping algorithms, and may lead
to significantly better performance on some platforms. On these spurious
failures, the function returns false while not modifying expected.”

Listing 1

struct ListItem
{
 ListItem() {}
 RecursiveReadWriteMutex mutex;
 shared_ptr<Observer> observer;
 atomic<ListItem*> next{nullptr};
 ~ListItem() { delete next.load(); }
};

Listing 2

template<class Observer>
void BasicObservers<Observer>::for_each(
 function<void(shared_ptr<Observer>
 const& observer)> const& f)
{
 ListItem* current_item = &head;
 while (current_item)
 {
 RecursiveReadLock lock{current_item->mutex};
 // We need to take a copy in case we recursively
 // remove during call
 if (auto const copy_of_observer =
 current_item->observer)
 f(copy_of_observer);
 current_item = current_item->next;
 }
}

Listing 3

template<class Observer>
void BasicObservers<Observer>::add(
 shared_ptr<Observer> const& observer)
{
 ListItem* current_item = &head;

 do
 {
 // Note: we release the read lock to avoid two
 // threads calling add at the same time
 // mutually blocking the other's upgrade to
 // write lock.
 {
 RecursiveReadLock lock{current_item->mutex};
 if (current_item->observer) continue;
 }
 RecursiveWriteLock lock{current_item->mutex};

 if (!current_item->observer)
 {
 current_item->observer = observer;
 return;
 }
 }
 while (current_item->next &&
 (current_item = current_item->next));
 // No empty Items so append a new one
 auto new_item = new ListItem;
 new_item->observer = observer;

 for (ListItem* expected{nullptr};
 !current_item->next.compare_exchange_weak
 (expected, new_item);
 expected = nullptr)
 {
 if (expected)
 current_item = expected;
 }
}

Listing 4

template<class Observer>
void BasicObservers<Observer>::remove
 (shared_ptr<Observer> const& observer)
{
 ListItem* current_item = &head;

 do
 {
 {
 RecursiveReadLock lock{current_item->mutex};
 if (current_item->observer != observer)
 continue;
 }
 RecursiveWriteLock lock{current_item->mutex};

 if (current_item->observer == observer)
 {
 current_item->observer.reset();
 return;
 }
 }
 while ((current_item = current_item->next));
}

December 2014 | Overload | 5

http://unity.ubuntu.com/mir/
https://launchpad.net/~mir-team/+members
http://www.cplusplus.com/reference/atomic/atomic/compare_exchange_weak/
http://www.cplusplus.com/reference/atomic/atomic/compare_exchange_weak/

FEATURE SERGEY IGNATCHENKO
Non-Superfluous People: Testers
Software development needs a team of
supporting players. Sergey Ignatchenko takes a
look at the role of professional testers.
The superfluous man (Russian: лишний
человек, lishniy chelovek) is an 1840s and 1850s

Russian literary concept derived from the Byronic
hero. It refers to an individual, perhaps talented and

capable, who does not fit into social norms.
~ Wikipedia

Disclaimer: as usual, opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with the opinions of the translator
or Overload editors; please also keep in mind that translation difficulties from
Lapine (like those described in [LoganBerry04]) might have prevented from
providing an exact translation. In addition, both the translator and Overload
expressly disclaim all responsibility from any action or inaction resulting from
reading this article.

his article intends to open a mini-series on the people who’re often
seen as ‘superfluous’ either by management or by developers (and
often by both); this includes, but is not limited to, such people as

testers, UX (User eXperience) specialists, and BA (Business Analysts).
However, in practice, they are very useful – that is, if you can find a good
person for the job (which admittedly can be difficult). This article tries to
discuss the role of testers in the development flow.

Hey, we already have test-driven development,
testers are so XX century!

Assumption is a mother of all screw-ups
~ Wethern’s Law of Suspended Judgment

When raising a question about testers in modern developer circles,
frequently the first reaction is surprise. As a next step, if developers are
kind enough not to take me by my ears and throw me out immediately, they
start to explain all the benefits of automated unit testing and/or test-driven
development. I can assure all the readers that I know all the benefits of
these concepts and sometimes I even use them myself.

Still, even if you have test-driven development (which is often a good
thing, there is no argument about it), it still doesn’t mean you’ve got a silver
bullet which guarantees that you have zero bugs. Moreover, there are at
least four really important reasons why we cannot expect that such tests
can possibly cover the whole space of potential bugs.

First of all, we need to mention that usually, the most hard-to-find bugs
are integration bugs. How often do you face the following situation: “Both
modules are working fine separately, but together they fail; to make things
worse, they fail only in 20% of common use cases.”? I’m willing to bet all
the carrots in the world that for any more-than-single-person-development
such a situation is not just ‘common’, it is a thing which takes at least 50%

of the system debugging time. In the theory of test-driven development, it
should be a responsibility of whoever combined these two modules to write
test cases for all possible interactions, but it never happens if modules are
not-too-trivial. Some tests (often as little as one, to have something to run)
are written, sure, but all of them? No way. Why this is the case can be
somewhat explained by the next two reasons.

The second reason is related to psychology. The mindset of a developer is
usually ‘to create something’, not ‘to break something’. It is especially true
when you need to look for ways to break your own creation. ‘To create a
test to demonstrate that your creation is working’ is one thing (and this is
what happens in test-driven development), but ‘to look for creative ways
to break your own creation’ is a very different story. Sometimes this second
effect may be mitigated by having developer A write code and developer
B write test cases for this code (and vice versa), but such a policy
essentially means that each developer works as a half-time tester, that’s it.

The third reason is related to the observation that when higher-level more-
complicated modules are being integrated, the developer who’s doing it
simply does not have enough information to find all the relevant test cases.
In practice, module documentation rarely goes beyond doxygen, and never
ever describes all the relevant details (not that I’m saying it can be possibly
done at all). It means that unless the developer who performs the
integration wrote both modules being integrated, she doesn’t have
sufficient information to write an exhaustive set of test cases (not to
mention that doing it may be prohibitively expensive). In theory, one
shouldn’t rely on anything which has not been tested in module unit tests,
but even this is not realistic, and doesn’t guarantee against integration
issues.

The fourth reason is related to the same developer at the same time having
too much information about the program. Often the developer ‘knows’
how it should work, and assumes (!) that it does. Which inevitably leads
to test cases being omitted. On the other hand, the developer often doesn’t
know all the details about how the code is supposed to be used (and
especially those scenarios which are not supposed to happen, but will arise
in real life anyway).

In three out of these four cases listed above (#1,#2, and #4) a tester
performing high-level testing has a clear advantage over a developer doing
unit testing (there are other cases where unit tests have advantage over
high-level testing, but this is beyond the scope now as we’re not arguing
about unit testing being unnecessary). Based on the reasoning above, and
on many years of experience, IMNSHO testers are necessary in most
projects developed by more than 1 or 2 people.

With this in mind, we’ve already answered the question, “Do we need
testers if we have test-driven development?” and now can proceed to the
next ones: “What are we trying to achieve?”, “How to convince
management that you need testers”, and “How to organize a useful testing
team?” (even if ‘team’ is as small as 1 tester).

T

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He is currently holding the position of
Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com
6 | Overload | December 2014

FEATURESERGEY IGNATCHENKO

as a zero-defect product is a non-existing
beast, it is better to admit it and make it clear

that team should actively look for bugs
Goals of the testing team
Each team should have well-defined goals. The goal of a testing team is
to improve product quality (some may argue that it is to ‘assure quality’,
but as a zero-defect product is a non-existing beast, it is better to admit it
and make it clear that team should actively look for bugs, rather than
passively say, “Everything is ok”).

Improving product quality is a very broad task, and includes at least such
things as (with more details on some of these tasks provided below, under
‘How to organize the testing team’):

 automated regression testing; sure, unit tests should be run by
developers themselves, but integration testing should also include
automated regression testing

 actively looking for ways to break the program. For example, one
thing which a good tester usually does is to look for things like “Hey,
what if a user presses this button now?”

 if applicable: monitoring end-user feedback and producing
reproducible bug reports out of it

 if there is no UX team: reporting ‘usability defects’, also (if
applicable) from end-user feedback

If you’re still sure that you (as developer) want to do all these things
yourself – I give up. For the rest of you, let’s proceed to the next question:
“How to convince management that you need testers”?

Testers from the management perspective
Admittedly, convincing management about testers can be really tough.
After all, from an accounting perspective, testers are often interpreted as
an expense, without producing anything tangible (developers are at least
producing code, which can be seen as an asset, but testers, even good ones,
don’t produce any assets). The same logic, however, can be extended to
say that as code is an asset, a bug in a code (which reduces code quality
and user experience) is a liability (in extreme cases – it can be literally a
liability in a sense too [Levy89] [Techdirt11]). Therefore, while testers
indeed do not produce assets, they do remove liabilities, which has a
positive impact on the bottom line of the company (provided that the testers
are good, but this stands for all kinds of employees).

Throwing in such an all-important thing as improved end-user satisfaction,
this should be enough to convince all but the most-stubborn managers to
admit that testers are useful; the problem of convincing them that testers
are needed ‘right now’ (and not “yes, sure, maybe, some time later”) is left
as an exercise for the reader.

How NOT to organize a testing team
At some point in my career, I was working for a really huge company (on
the scale of “I’m not sure if there is anything larger out there”). There, the
testing department for one of the projects consisted of several dozen
people, who were given instructions like “press such and such button, you
should be shown such and such screen, if it is not – report, if it is – go to
the next step”. This is certainly one way not to organize your testing team.

How to organize a testing team
As usual, organizing the development process is more art than science, and
this applies to testing teams in spades. However, there are some common
observations which may help on the way:

 never ever position testers as inferior to developers. First, they are
not inferior (and if they are, you’ve done a poor job organizing the
testing team). Second, it will hurt the process badly. Overall, it is
usually better to position testers higher than developers (in a sense
that developers should fix the bugs found by the testers instead of
arguing that it is not a bug, but a feature); at the very least:

 opened bugs should be processed according to tester-specified
severity and priority

 the process of closing bugs as WONTFIX shouldn’t be too easy
for developers, and should involve discussions and/or
management approval

 never ever think of testers as inferior developers. Think of them as
of developers with a different mindset. As discussed above, there are
things which developers cannot do for objective reasons.

 automated testing tools is are an absolute must. Situations when
testers are just pressing buttons according to instructions must be
avoided at all costs. Whenever a bug is found and fixed, a test case
must be included into a standard regression test set.

 whenever possible, consider writing automated self-testing tools at
non-UI level; for example, if your application is a network one, one
way to test is not by pressing buttons in the UI client, but by making
network requests instead. This may allow testing the system a bit
differently (which is always good) and under much heavier stress
(which is even better). Such automated self-testing tools are
normally written by developers and used by testers.

 it should be clearly stated that normally it is a tester’s responsibility
to make a bug reproducible (exceptions for intermittent bugs are
possible, but they should stay as exceptions). Having irreproducible
bugs in bug tracking is bad for several reasons, including the
following two: first, it forces developer to do tester’s job (with most
of the argument for having separate testing team applicable);
second, it greatly reduces enthusiasm for developers to fix the
problem.

 if a product is already released, at least some portion of testers’ time
should be dedicated to go through user complaints, try to reproduce
them and open bugs if bugs are confirmed. For a product with an
active user forum, this can work wonders with regards to product
quality. This approach risks starting to deal with singular user
complaints (i.e. those which represent a problem only for one single
user), but provided that user forum is active enough, simple filtering
of “at least N complaints” usually does the trick (see also below
about “we’ve already got two(!) complaints” approach – it did work
in practice).
December 2014 | Overload | 7

FEATURE SERGEY IGNATCHENKO
 one special area is ‘Usability defects’. Strictly speaking, it is better
to delegate dealing with such defects to UX specialists (which
represent another category of ‘Non-Superfluous People’ and will be
hopefully be discussed in a separate article). However, if you do not
have separate UX team (which you should, but probably don’t) – it
should be a responsibility of testers to complain about ‘Usability
defects’ (in other words, about ‘inconvenient/confusing UI’). At the
very least, end-user complaints about ‘Usability defects’ should be
taken really seriously and fixed whenever there are enough users
complaining. After all, it is the end-user who’s ultimately paying for
the development [NoBugs11]. In one company with millions of
users, I’ve seen a policy of “Hey, we already have two (!) complaints
from end-users – we should do something about it in the next
release”. Believe it or not, such a policy did result in the company
making the best software in the field (and making money out of it
too).

 having a testing team does not imply in any way that unit tests and/
or test-driven development are not necessary. Ideally, testing teams
should work only with stuff which has already been unit-tested and
concentrate on (a) automated regression testing; and (b) not-so-
obvious ways to break the program.

Hey, where to find good testers?
Unfortunately, finding good testers is a big problem. However, if you stop
thinking about testers as inferior people, and search for them not as an
afterthought, but in the same way as you’re looking for developers, it
usually becomes possible. Yes, finding a good tester is not easy; however,
finding a good developer is also not easy, but every successful team does
it (otherwise it won’t be successful). So, try and find at least one good tester
to complement your good developers – the improved quality of your
product will almost certainly raise user satisfaction (whether it will raise
company profits and developer salaries is a different story, but things such
as marketing are beyond the scope of both this article and Overload in
general).

Testing metrics
When you do have a testing team, the question arises: how to measure its
performance? In practice, I’ve seen two approaches (which can be
combined). The first one is to measure how many bugs (and of which
severity) were found. This approach has the problem that you’d need
somebody (besides testers and developers) to judge severity of bugs; and
if this is not done, the metric quickly deteriorates into something as
meaningless as the ‘number of lines of code’ metric for developers. The
second approach only works if
you have strong end-user
feedback. In such a case, you
can estimate both end-user
sa t i s f ac t i on , and t he
percentage of bugs which
reach the end-user. While
formalizing it further is also

not easy (and should be done on case-by-case basis), this approach
provides a very reliable way to see how useful the testers’ job is for the
product (and eventually for the bottom line of the company).

Summary
 If you think you don’t need a testing team – think again

 Test-driven development doesn’t mean you don’t need a testing
team

 The testing team can be as small as one person

 You do not just need ‘any testing team’, you need a good one

 Organization of the testing team and its interaction with developers
is all-important

 Finding good testers is as much of a challenge as finding good
developers

 All these things are not easy, but do-able

 If done properly, it is worth the trouble and expense

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.

References
[Levy89] Levy, L. B., & Bell, S. Y. (1989). Software product liability:

understanding and minimizing the risks. High Tech. LJ, 5, 1.

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs11] Sergey Ignatchenko. The Guy We’re All Working For.
Overload 103.

[Techdirt11] UK Court Says Software Company Can Be Liable For
Buggy Software. https://www.techdirt.com/blog/innovation/articles/
20100513/0053499408.shtml
8 | Overload | December 2014

https://www.techdirt.com/blog/innovation/articles/20100513/0053499408.shtml
https://www.techdirt.com/blog/innovation/articles/20100513/0053499408.shtml
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATUREBOB SCHMIDT
Ruminations on Self Employment
and Running a Business
Being self-employed has pros and cons. Bob Schmidt
reviews what he has learnt about running your own business.
’ve been self-employed as a contractor and consultant for 20 years.
Being self-employed has both its positive and negative aspects. Being
your own boss and being able to set your own hours is a positive;

worrying about where the next contract is going to come from is a negative.
Being able to pick assignments that interest you is a positive; having to
take grunt work because nothing else is available at the moment is a big
negative. In spite of the negatives I suspect I would have a hard time going
back to being someone else’s employee.

What follows are some of the things I’ve learned about being self-
employed, in no particular order of importance, and at the end I’ll mention
one big thing I haven’t yet figured out. Fair warning: I am neither an
attorney (solicitor) nor an accountant, and nothing here should be
construed to be legal or accounting advice. It is important that you consult
both of these types of professionals when setting up your own business.

Give a little away
I am a strong believer in ‘giving a little away’. In my experience, every
time I have ‘given a little away’, I have gotten back more in the long run.

A couple of examples should help illustrate the concept.

I had a customer for whom I provided all software support on one of their
plant computer systems. (This system was just replaced, after 32 years of
service.) Their systems engineering department has an area called the
bullpen, which has white boards on two walls, and a large table with seating
for the whole group. It was the practice at the time to gather together to
eat lunch in the bullpen every day. Some work got discussed, but mostly
it was a social hour.

During one trip to the site there was quite a bit of information on the larger
white board regarding a problem they were having with another of the plant
computer systems. From the drawings on the board it appeared the problem
had to do with serial communications, but if so there were several problems
with their understanding of how asynchronous serial communications
work. Over the next several days, during lunch, I started asking questions
and discussing the problem with the two engineers responsible for the
system. By the end of that two week trip I had ‘given away’ my lunch hour
almost every day.

The result of my ‘giving a little away’ over the course of several lunch
hours was four months of additional, paid work, on a system I had never
worked on before. In the winter of 2012 we installed an upgrade to the
software which fixed several major and a lot of minor software problems,
which improved the mean-time-to-failure of the system by an order of
magnitude.

Another example: In the early- to mid-1980s I worked for a company that
built industrial control systems based around ModComp mini-computers.
These systems had a proprietary, home-grown database sub-system, and
historical transaction data that was stored using that database. The systems
had a report generator that allowed for selecting and sorting records for
reports, but it was slow and not very extendable. (Full disclosure: I wrote
that report generator in 1982, and it was still in use at one plant up until
November 2013, when the last system of its type was replaced.)

During a trip to one of the sites in the early 2000s, one of the system owners
expressed an interest in the possibility of moving the transaction data to a
Microsoft Access-based database, so that he could manipulate the data
more easily, much faster, and at his desk. I decided to see if I could provide
a product that would export the data from the Modcomps and import it to
Access.

I don’t have a Modcomp sitting around my office (that would be so cool).
They require a lot of space – imagine a small closet (wardrobe) – and have
power requirements that would result in my late 1960s house burning down
when the aluminum wiring decided to sizzle. My wife puts up with a lot
when it comes to the space my business requires, but being homeless was
just not part of the deal.

Fortunately, I was able to strike a deal with the systems engineering
supervisor at one of the other plants that still had a Modcomp system. He
allowed me to use the development computer in their lab to develop the
software that migrated the historical transaction data from the proprietary
database to a Microsoft SQL server database. In return, I provided support
for their systems when needed.

The little bit I gave away in the form of infrequent support for their systems
gave me access to the resources I needed to develop a product. I was
eventually able to sell three copies of the resulting software, one of which
was to the plant which allowed me to use their system to develop it.

Don’t promise to do what you don’t know you can do
The large company for which I worked built in-plant and SCADA
industrial control computer systems for public utilities. The systems were
defined by a specification document developed by an architectural
engineering firm. At that time those documents could easily be four or
more inches thick, full of finely wrought details.

The contracts for these systems were awarded at the end of a bidding
process. A company’s bid was supposed to include a list of exceptions to
the specification, to let the customer know what they weren’t going to get.
My company had a standard system that we would customize to meet the
specification as closely as possible, but in general it wasn’t possible to meet
every jot and tittle of a specification.

I happened to overhear an assistant ask a bid manager for the exception
list for a bid they were developing. He answered that there were no
exceptions. The bid manager’s response set in motion several long-term
issues.

First, once the contract was awarded, the bid manager no longer had
responsibility for the project. He was making promises he didn’t have to
keep – it would be the project team’s responsibility to execute the project.

I

Bob Schmidt is president of Sandia Control Systems, Inc. in
Albuquerque, New Mexico. In the software business for 33 years,
he specializes in software for the process control and access
control industries, and dabbles in the hardware side of the business
whenever he has the chance. He can be contacted at
bob@sandiacontrolsystems.com.
December 2014 | Overload | 9

FEATURE BOB SCHMIDT

If I don’t know that I can do
something, I go off and try to do it.
On my time. At my expense.
Second, it set the project up for schedule and financial failure, since the
time and cost of implementing all of the features that should have been
excepted were never accounted for in the bid. (We used to joke that we
lost money on every job but made up for it in volume.) Third, it reinforced
the idea of ‘win the contract now and fight it out in court later’, which was
all too prevalent in the company (and the industry in general) at that time.

I swore I would never run my business this way. As a small business I can’t
afford the money it would take to defend myself if something like this got
to court, nor the hit my reputation would take.

A quick word about what I call ‘science projects’. It is OK to take on work
you don’t know you can do, as long as you are up front and honest about
it. In the first example in ‘give a little away’ above, I didn’t know if I was
going to be able to fix that customer’s problems. I was going to be working
on software I had never seen before, running on hardware with which I was
unfamiliar, and could offer no guarantees of success. I made sure to
emphasize these issues before taking on the work, so the customer knew
what the possible outcomes of the work were.

A working prototype can sell itself
If I don’t know that I can do something, I go off and try to do it. On my
time. At my expense. That program I described earlier that exported data
from a proprietary database to an SQL database is just such an example.
When I started that project I didn’t know Visual Studio .NET (which I used
for the PC-side software and the GUI); I didn’t know SQL server (the PC-
side data store); I didn’t know if it was going to be practical to move the
data over a 19.2K baud serial communications channel – the fastest I had
available. (One large 9-track magnetic tape took 8 to 12 hours to convert
and transmit.) But once I had it working it was an easy sell.

I had another customer who complained that a critical hardware subsystem
was obsolete, breaking down frequently, and impossible to fix. They had
asked another company for help. That vendor had sent them a sample of
their replacement product, but my customer couldn’t get it to work. The
vendor wasn’t very helpful, and my customer was getting frustrated.

I had just purchased a development kit for (what was at that time) a new
microprocessor called the Rabbit 2000. I sketched up some circuit
diagrams, and proceeded to develop a very ugly, hand soldered and wire-
wrapped prototype for a replacement product that would work for my
customer. I wrote the firmware, debugged the hardware, and when I was
done called him up and said I had a working prototype, and would he have
some time for me to visit the site and try it out? He did, I did, the prototype
worked, and I eventually sold 150 production-quality units – the largest
single project I had up to that point.

The customer is not always right
It is trendy to say that in business the customer is always right. I’ve found
in this business the customer is often wrong. The tricky part is knowing
what to do about it, and when.

Years ago, when I was working for the large corporation, I paid a visit to
a customer site in order to perform an operating system upgrade. This was

a non-trivial activity, which required a simultaneous hardware upgrade,
since major operating system versions required specific hardware revision
levels to function properly.

The customer had procured the operating system upgrade and upgraded
boards from the computer vendor. I was brought in to load the operating
system and rebuild the application software (which was required because
the run-time libraries were upgraded with the OS).

The customer wanted to make a major, system-wide change to one of the
global linker options at the same time as the other work was done. Having
experienced the joys of upgrading this particular computer system before,
I refused. We were already making two large changes to the system – one
more than I usually like to make, but necessary – and adding a third large
change was just asking for trouble. It’s hard enough to track down
problems caused by one change. I believe my exact words were “You may
be able to find someone in the office who is willing to do it your way, but
it won’t be me.”

We ended up doing it my way, but not without a fight. I backed out the
change to the linker options (the customer had already made that change
to the build script), and we did the OS and hardware upgrade. I then
researched the linker option change, and discovered that other architectural
aspects of the system precluded what the customer wanted to do. Had we
lumped all three changes together the system would have crashed, and we
wouldn’t have had a clear idea of where the error was located.

Here’s another example; same customer, same system. The engineer
discovered that in one of the peripheral cabinets we had routed a control
signal through both sides of a double pole, double throw relay. (The
outgoing signal went through one pole; the return through the other.) He
wanted to rewire the cabinet because using both sides of the relay would
decrease the mean-time-to-failure of the relay. Doing what he wanted
would have meant incurring a huge cost to change the wiring, plus the cost
of changing the drawings, and at the time it cost them $1000.00 USD just
to have a draftsman change the date on a drawing – all to protect against
a supposed increase in the likelihood of the failure of a five dollar relay
whose mean-time-to-failure was already much longer than the expected
life of the system. An expletive was involved on my part (I was much
younger then). Not very professional, and I regret my reaction to this day,
but I got the point across. The system as delivered was in use for 15 years
(more than twice its designed lifetime). Even if they had to replace that
relay once a year, the total cost of repair was a fraction of what the redesign
and rework would have cost (without even including the time value of
money).

I don’t recommend profanity, but I do believe that it is better to withdraw
from a project or a task than to take part in something which you believe
to be misguided, unethical, or illegal.

Pay attention to finances
It always amazes me when I hear about a small business owner who doesn’t
have any idea of the financial health of his or her company. Yes, I know
we don’t go into business to do the accounting (unless you’re an
10 | Overload | December 2014

FEATUREBOB SCHMIDT

Have a place for everything, and file everything
in its place... You are less likely to get in trouble

for keeping more records than required.
accountant!), but it’s important – you have to do it. It may not be practical
or affordable to hire someone else to do it for you, and even if you can
afford it, you need to have some understanding of the system and the
numbers.

Rule Number One: Everyone gets paid before you. Everyone. Particularly
taxing authorities. The last thing you need is to get crossways with a
government tax agency, at any level. I file three monthly tax forms, three
quarterly tax forms, and multiple end-of-year tax forms. Most of them have
money due with them. File the reports and pay the tax due, on time. It’s
the best way to stay out of trouble.

Rule Number Two: Keep great records. Not just good, but great. We write
software for a living, which requires an attention to detail required of few
others (some – my wife – might call it anal retentiveness). Use that
attention to detail to organize your records to a fare-thee-well. Have a place
for everything, and file everything in its place. Keep all of the records and
receipts required by your tax authorities, plus some. You are less likely to
get in trouble for keeping more records than required.

Several years ago my company was audited by the state taxation division.
A discrepancy was flagged between the income stated on our end-of-year
tax returns and the income on which the company had paid gross receipts
tax (similar to a VAT). The discrepancy was due to the fact that almost all
of my business comes from out of state, which is not subject to the state
GRT.

Audit day came, and if I could have been plucked like a string I would have
rung a high C. I had pulled three years of company sales records, invoices,
and check stubs. I had copies of all my contracts and purchase orders. I
had all of my personal tax returns. I had an official letter from my attorney
documenting the section of state law that exempted the out-of-state work
from GRT. Everything was laid out on my dining room table (I work from
home), in folders, labeled, in chronological order.

The audit I had dreaded took 45 minutes. The auditors told me they wished
all of their audits were that easy. They put a letter in my file explaining
the nature of my business so the next time I got flagged it would be
available to that auditor. I haven’t heard from them since.

Understand the concept of risk
The two most common contractual ways a contractor or consultant is hired
are time and materials (T&M) and fixed cost. In a T&M contract you get
paid by the hour, and are reimbursed for expenses and any materials you
purchase to fulfill the contract. In a fixed cost contract you say you will
do the work for a set amount of money, in a set amount of time, and you
are responsible for paying for all of your expenses and materials. Your
contract may also be a hybrid of these two approaches.

This is where the concept of risk comes in. In a T&M contract, most if not
all of the risk is on your customer. They may specify a limit to how much
they are willing to spend (a ‘not to exceed’ clause), but in the end if the
work takes more time and money than originally estimated it is their
problem. In a fixed cost contract all of the risk is on you. You have to

deliver a defined scope of work, in a fixed amount of time, and it doesn’t
matter to your customer how much it costs you to do the work.

If you are going to take on a fixed cost contract, be very sure you can do
the scope of work, in the amount of time specified, and at or below the costs
you estimate. (Don’t promise to do something you don’t know you can do.)
I prefer T&M contracts, but have taken fixed cost contracts when the work
is something I have done before. I also add risk to the quote, by increasing
my hourly rate and over-estimating time and expenses. It is very important
that the scope of work and time constraints be very well defined before
signing the contract. Also keep in mind that you are on the hook for
warranty work on fixed cost contracts, so you should figure extra money
in for that, as well.

My T&M contracts usually invoice once a month. On fixed cost contracts
I try to negotiate a payment schedule that includes small start-up payment
(particularly if I have to buy hardware), regular payments based on partial
deliverables, and large payment on delivery. I also usually let my customer
keep five or ten percent of the total cost as a retention payment, payable
upon completion of some sort of integration test. This shows that you are
committed to sticking with the project to completion.

Several years ago I quoted a fixed cost contract for an interface to hardware
that was new to my customer. Since the hardware was new to me, too, I
wrote into my proposal that the quote was contingent on getting assurances
from the hardware vendor that we would have their full support. When I
learned that the hardware vendor wasn’t going to provide any support, I
was able to convert the contract to T&M, moving the risk from me to my
customer. It turned out that because we had to work out the details of the
protocol without help, the work took 35% longer than I had estimated (and
my estimate had been very conservative to begin with).

On a related note – beware the ‘budgetary estimate’ trap. An estimate tends
to become ‘the price’. If you are asked for an estimate, always estimate
high. You can always decrease the price, but it is very difficult to increase
it once the estimate is out there.

Invest in your skills and your tools
As a reader of this magazine (and perhaps a participant in the yearly
conference), you already appreciate the benefits of keeping your skills
current. Your skill set is what you are selling to your customers. It pays to
keep up to date. In addition to the ACCU, I belong to the IEEE, the
Computer Society, and the ACM, and try to work my way through the
magazines that come with the memberships. I attend one professional
conference every year, and hope to bump that number up to two next year.
(ACCU Bristol 2015, here I come!)

Good tools are also important. Since I design circuit boards as well as write
software, over the years I’ve bought a quality soldering iron and de-
soldering station; a digital oscilloscope; and an inexpensive logic analyzer.
(I have a better tool set than some of my customers.) There are at least six
PCs in my office, of varying vintage, including two that I purchased to
support work for just one client. Being willing to spend money on tools to
December 2014 | Overload | 11

FEATURE BOB SCHMIDT
support a customer is an easy way to show your commitment to their
project.

What about software? There is a lot of free software out there, and I use
some of it, but most of my customers are Windows shops, so I have an
MSDN subscription. I also have three subscriptions for PC-Lint – one for
each of my main development computers – and two licenses for Windows
Office tools (desktop and laptop). I also have a license for backup software.
(Don’t forget to do backups! And make sure you can actually recover
backed up files.) Accounting software and end-of-year tax software round
out the list.

Other ‘tools’ you may need, that may not be obvious, and may not be
directly tied to your work: a desk, chair, filing cabinets (to store those
excellent records), printers, internet access, phone line and/or mobile
phone, and a dedicated FAX line.

I mention all of this because this stuff costs money and has to be budgeted
from your income. Remember, everyone else gets paid first.

Insurance
As much as we may hate to admit it, we all make mistakes, and some
mistakes are more costly than others. Insurance is a way to mitigate the
risks associated with mistakes, and to protect you and your family from
the costs of those mistakes.

My contracts typically require three types of insurance: errors and
omissions (E&O), general liability, and automobile. E&O insurance is
professional liability insurance, which pays off in the event of a
professional mistake. General liability insurance covers non-professional
liability (such as injury to another person). Automobile insurance covers
accidents you may have while on a customer’s property.

I work in the nuclear power industry, which makes it very difficult for me
to find an insurance carrier, and makes the policies I can get more
expensive than they otherwise might be. (A colleague pays one third of
what I do because he didn’t disclose that he works in the nuclear industry.)
I could save a lot of money by not declaring my nuclear work, but that
would likely result in my policy being invalidated the first time it is needed.
Be honest about the industries in which you work. Insurance is about
mitigating risks, so it makes no sense to risk the insurance.

Sometimes it is just business
It’s hard to not take things personally when you’re in business for yourself.
Being told your services are no longer required, when you have done
nothing to deserve getting fired, can be a blow to the ego. It is also hard
to not get a contract or a job after spending time and money trying to earn
it. It is important to recognize that businesses make decisions based on
business requirements. It may not be personal to them – it shouldn’t be
personal to you.

It can help to be able to separate a person’s corporate persona from their
private persona. I have worked with several people who were great
individuals, but terrible bosses. At work they were holy terrors; get them
away from work and they were good friends, gracious hosts, and delightful
to be around.

On the other hand, if you did something that deserved firing, you should
take the time to reflect on what you did and why it led to the outcome it did.

Be scrupulously honest and ethical
As an individual, your reputation is one of your two most important
attributes (the other being your technical competence). A good reputation
opens doors to other work. Customers may recommend you to their peers,
and give you good references when asked. A bad reputation can easily put
you out of business, and once acquired can be devilishly difficult to turn
around. The best way to earn and keep a good reputation is to run your
business as honestly and ethically as possible.

Ethics is about how we act when no one else is looking. It is not that
difficult to run your business in an ethical manner. Do the right thing. Act
as a faithful agent for your customers [NSPE]. Generate accurate invoices.
Pay your vendors and your taxes on time. Follow the law. Tell the truth.

Want more information on ethics? Look to the codes of conducts and ethics
provided by our professional organizations for guidance. The BCS has its
Code of Conduct [BCS], as does the IEEE [IEEE] and ACM [ACM]. If
you are licensed by the BCS (in the U.K.) or one of the state boards of
engineers (in the U.S.) these codes may have the force of law. (My
professional engineering license requires that I take at least one hour of
ethics training a year, and yes, it is unethical – and illegal – to not get the
ethics training and say you did.)

Admit to your mistakes
We call them bugs, but they are really mistakes. When you make one, be
willing and able to say “I made a mistake”. I know I hate saying those four
words, and the best way to keep from having to admit to a mistake is to
work very hard to not make one, but none of us is perfect. (Fran – I made
a mistake committing to this deadline. See, that wasn’t too hard.)

Growing the business
At the beginning of this article I mentioned there is one aspect of being a
business owner that I have never been able to figure out. (There are more
than one, but this is the big one.) I remain a one-man shop, mostly because
I’ve never been able to solve the chicken-and-egg problem. I can’t afford
to hire someone unless I have paying work for them to do, and I can’t take
on more work than I can handle because of the risk of not being able to
find someone to do that work.

It seems that real entrepreneurs (read ‘risk-takers’) don’t spend a lot of time
worrying about those types of issues. I do. It goes back to not taking on
work that I know (or at least reasonably expect) I can’t do. If you have a
solution to this problem, I’d like to discuss it with you.

Afterword
I didn’t set out to be an entrepreneur – I just fell into it. My wife wanted
to move closer to home, which was out of state, which meant I had to leave
my job of 13 years at the large company.

At about the same time, the large company sold off the division for which
I had worked. My adventure in self-employment began with a phone call
from a long-time colleague at one of the newly created companies. “We
have a couple of weeks of startup work at a water treatment plant in
Modesto, California, starting next Monday. Are you interested?” “Sure,”
I replied, “I’ve got nothing else to do.” And off I went.

Before those two weeks were up I got another phone call. “We’ve got two
weeks of startup work at a water treatment plant in Norfolk, Virginia, next
week. Are you available?” (For those of you keeping score, those cities
are on opposite coasts.) “Sure”, I replied, “I’ve got nothing else to do.” And
I’ve had nothing else to do ever since.

Acknowledgments
Thanks to Fran and the reviewers for their making this a better article.

References
[ACM] Association for Computing Machinery, Code of Ethics

http://www.acm.org/about/code-of-ethics

[BCS] BCS, The Chartered Institute for IT, Code of Conduct
http://www.bcs.org/category/6030

[IEEE] Institute of Electrical and Electronics Engineers, Code of
Conduct http://www.ieee.org/about/ieee_code_of_conduct.pdf

[NSPE] National Society of Professional Engineers, Code of Ethics
http://www.nspe.org/resources/ethics/code-ethics
12 | Overload | December 2014

http://www.acm.org/about/code-of-ethics
http://www.bcs.org/category/6030
http://www.ieee.org/about/ieee_code_of_conduct.pdf
http://www.nspe.org/resources/ethics/code-ethics

T 0115 8492271 E info@clearly-stated.co.uk W www.clearly-stated.co.uk

For help with your very important documents, get in touch.

We can help you with product manuals, user guides, online help,
training materials (including e-learning), bids and proposals...

FEATURE ROGER ORR
Order Notation in Practice
What does complexity measurement mean?
Roger Orr reminds us of the academic
definition and looks at some real life situations.
ost computer programmers have heard of Order Notation – if you
have studied computer science then it’s almost certain you’ll have
studied this at some point during the course.

The notation is a way of describing how the number of operations
performed by an algorithm varies by the size of the problem as the size
increases.

But why do we care? Almost no-one is actually interested directly in this
measure – but many people do care greatly about the performance of a
function or algorithm. The complexity measure of an algorithm will affect
the performance of a function implementing it, but it is by no means the
only factor.

There are a number of different ways to measure the performance of a
function, with overlap, or at least strong correlation, between many of
them. Examples of common performance measures include:

 Wall clock time

 CPU clock cycles

 Memory use

 I/O usage (disk, network, etc)

 Power consumption

Complexity measurement is (normally) used to approximate the number
of operations performed and this is then used as a proxy for CPU clock
cycles and hence performance (or at least one of the measures of
performance). However, it is a simplification of the overall algorithm; it
may be a measure of only one of the operations involved and it may ignore
other factors, such as memory access costs that have become increasingly
important in recent years.

Introduction, or re-introduction, to order notation
Order Notation is a classification of algorithms by how they respond to
changes in size.

It uses a big O (also called Landau’s symbol, after the number theoretician
Edmund Landau who invented the notation). We write f(x) = O(g(x)) to
mean:

There exists a constant C and a value N such that

|f(x)| < C|g(x)| x > n

There may be a variety of possible ways of picking C and N. For example,
consider the functions: f1(x) = 2x2 + 3x + 4 and f2(x) = x2 + 345678x +
456789.

For f1 we notice that 3x + 4 is less than x2 when x is bigger than four. Hence
f1(x) < 3x2, for x > 4. So we get C = 3, g(x) = x2 and N = 4.

For f2 the numbers are a little larger but a similar method leads to seeing
that f2(x) < 2x2 for all values of x > 345678 and hence get C = 2, g(x) = x2

and N = 345678; or we might start with a larger value for C, say 4000, and
then have f2(x) < 4000x2 for all values of x > 87 hence get C = 4000,
g(x) = x2 and N = 87.

For the purposes of order notation it doesn’t matter what C and N are nor
how large or small they are – they are constants; the important item is the
function g() – in this example both f1 and f2 are the same complexity,
O(x2). In simple polynomial functions like these you don’t need to do the
full analysis to find C and N as the complexity is simply the biggest power
of x.

With more complex formulae it can be much harder to come up with
appropriate constants and expressions; fortunately the complexity for
many common algorithms is well-known (as we shall illustrate below).

Note too that for the O measure of complexity the function g may not be
the smallest value needed. f3(x) = 16 would usually be described as O(1)
but can also be described as O(x2) (with C = 1 and N = 4) but like any
estimate it’s normally more useful the ‘closer’ it is and this function. This
matters more for non-trivial algorithms where it may be very hard to
exactly specify the best complexity function but much easier to specify a
slightly larger one.

There are other symbols used in order notation such as the little-o symbol
and the big-theta symbol. For example if both f(x) = O(g(x)) and g(x) =
O(f(x)) then we can write f(x) = Θ(g(x)). These are used in the mathematical
theory of complexity but are generally less common in computer science.

Some common orders
Here a some common orders, with the slower growing functions first:

O(1) – constant

O(log(x)) – logarithmic

O(x) – linear

O(x2) – quadratic

O(xn) – polynomial

O(ex) – exponential

Order arithmetic
When two functions are combined the order of the resulting function can
(usually) be inferred quite simply from the orders of the original functions.
When adding functions, you simply take the biggest order.

eg. O(1) + O(n) = O(n)

When multiplying functions, you multiply the orders

eg. O(n) * O(n) = O(n2)

So, more generally, when a function makes a sequence of function calls
the overall order of the function is the same as the highest order of the
called functions.

 void f(int n) {
 g(n); // O(n.log(n))
 h(n); // O(n)
 }

M

Roger Orr has been programming for over 20 years, most recently
in C++ and Java for various investment banks in Canary Wharf and
the City. He joined ACCU in 1999 and the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk
14 | Overload | December 2014

FEATUREROGER ORR

Order Notation is a classification of algorithms
by how they respond to changes in size
In this example f(n) = O(n.log(n)). This highest order is sometimes called
the dominant complexity since as the number of items increases this value
will dominate the overall complexity of the whole calculation.

For a function using a loop the order is the product of the order of the value
of the loop count and the loop body

 void f(int n) {
 int count = g(n); // where the value of count
 // is O(log(n))
 for (int i = 0; i != count; ++i) {
 h(n); // O(n)
 }

Hence in this example too f(n) = O(n.log(n))

Many standard algorithms have a well-understood order. One of the best
known non-trivial examples is probably quicksort, which ‘everyone
knows’ is O(n.log(n)). Except when it isn’t, of course! On average it is
O(n.log(n)) but the worst-case complexity, for particularly unhelpful input
values, is O(n2).

Also, this is the computational cost, in terms of the number of comparison
operations, not necessarily all operations or the memory cost.

The C++ standard mandates the complexity of many algorithms, using
various different operation counts.

For example, container::size:

 Complexity: constant.

and std::list::push_back:

Complexity: Insertion of a single element into a list takes constant
time and exactly one call to a constructor of T.

There are also various flavours of sorting. For example, std::sort:

Complexity: O(N log(N)) comparisons.

and std::stable_sort:

Complexity: It does at most N log2(N) comparisons; if enough extra
memory is available, it is N log(N). (The standard is silent on what
‘enough’ means!)

and std::list::sort:

Complexity: Approximately N log(N) comparisons

The .Net documentation provides complexity for (some) algorithms. For
example, List<T>.Sort:

On average, this method is an O(n log n) operation, where n is
Count; in the worst case it is an O(n2) operation.

Java too provides complexity measures for some algorithms. For example,
Arrays.sort:

This implementation is a stable, adaptive, iterative mergesort that
requires far fewer than n lg(n) comparisons when the input array is
partially sorted, while offering the performance of a traditional
mergesort when the input array is randomly ordered...

(The Java spec uses lg rather than log – but all logarithms have the same
complexity so it is immaterial!)

However, unlike C++, neither .Net nor Java seem to provide much detail
for the cost of other operations with containers. This makes it harder to
reason about the performance impact of the choice of container and the
methods used: not everything is dominated by the cost of sorting alone!

So that’s the theory; what happens when we try some of these out in an
actual program on real hardware? Your own figures may vary because of
machine and operating system differences (different clock speeds, varying
amounts of memory, different speeds of memory access and cache sizes
and different choices of memory allocation strategies).

strlen()
This seems like a straightforward function and at first sight measuring its
complexity should be simple enough: O(n) where n is the number of bytes
in the string. You may even have read some example source code for
strlen() if and when you first learned C (see Listing 1).

Have you looked inside strlen() recently? Things have got much more
complicated than this in practice! Here’s an extract from an
implementation of the function on x64 – probably rather more than you
wanted to know... (see Listing 2).

However, despite the re-write in assembly language and the tricks to enable
checking 64 bits at once in the main loop this code is still O(n).

Naïvely we write some code that calculates the elapsed time for a call to
strlen() like this:

 timer.start();
 strlen(data1);
 timer.stop();

However, on most compilers in release mode the call appears to take no
time at all

The reason for this is that calls to functions like strlen() can be
optimised away completely if the return value is not used.

It’s vitally important with performance measuring to check you’re
measuring what you think you’re measuring!

So we change the code to use the return value of strlen() and set up a
couple of strings to test against:

 char const data1[] = "1";
 char const data2[] = "12345...67890...";

Listing 1

int strlen(char *s) /* source: K&R */
{
 int n;

 for(n = 0; *s != '\0'; s++)
 {
 n++;
 }
 return n;
}

December 2014 | Overload | 15

FEATURE ROGER ORR

It’s vitally important to check you’re
measuring what you think you're
measuring!
Compare time for
 v1 = strlen(data1)
against
 v2 = strlen(data2)

Once again, you may get a bit of a surprise, depending on which compiler
and flags you’re using, as a call to strlen() of a constant string can be
evaluated at compile time and hence is O(1) (also known as constant time.)
I repeat – it’s vitally important to check you’re measuring what you think
you're measuring!

So for our third attempt we set up the string at runtime and now we get the
graph we were expecting that demonstrates strlen() is O(n). (Figure 1.)

Series 1 and Series 2 are two separate runs over the same range of lengths,
and demonstrate how repeatable the results are. However, this nice simple
straight line graph breaks if we make the length a little larger. (Figure 2.)

The graph is no longer linear and also no longer as consistent between runs.
The reason is the the machine I used for this test has 2814Mb of RAM and

the operating system starts swapping memory to disk as the size of the
string gets near to this value.

There is another anomaly with smaller strings too: this is present in the first
graph above but not obvious to the naked eye. If we change the graph to
display the average time for each byte we can see a jump at around 600,000
bytes. (See Figure 3.) Again, figures may differ on different hardware –
this machine has 64K L1 + 512K L2 cache per core, ie. 589,524 bytes. So
here we can see the effect of the cache size of this test.

What we have demonstrated here is that the runtime execution time of
strlen() is O(n) to a very good approximation when n is between cache
size and available memory. The complexity in terms of the number of
access operations on the string is still linear for larger strings than this but
the effects of swapping dwarf this. It is likely that the cost of swapping isListing 2

strlen:
 mov rax,rcx ; rax -> string
 neg rcx
 test rax,7 ; test if 64 bit aligned
 je main_loop
 ; ...
 ; loop until aligned (or end of string found)
 ; ...
main_loop:
 mov r8,7EFEFEFEFEFEFEFFh
 mov r11,8101010101010100h
 mov rdx,qword ptr [rax] ; read 8
bytes
 mov r9,r8
 add rax,8
 add r9,rdx
 not rdx
 xor rdx,r9
 and rdx,r11
 je main_loop
 mov rdx,qword ptr [rax-8]
 ; found zero byte in the loop
 test dl,dl
 je byte_0 ; is it byte 0?
 test dh,dh
 je byte_1 ; is it byte 1?
 shr rdx,10h
 ; ... and the rest
byte_0:
 lea rax,[rcx+rax-8]
 ret

Figure 1

Figure 2
16 | Overload | December 2014

FEATUREROGER ORR

Make sure you are testing against similar data
sets to those you will experience in real

executions!
also O(n), but the ‘scaling’ factor C is much bigger (perhaps 250–300 times
bigger in this case on this hardware).

Let us see what happens if we try the same sort of operation but a slightly
more generic algorithm by swapping over from using strlen() to using
string::find('\0')

We expect this will behave like strlen() and indeed it does –
consistently slightly slower (Figure 4).

Sorting
We now turn our attention to various sorting algorithms and how they
behave under various conditions. We start with a (deterministic) bogo sort
(see Listing 3). This is not a sort you ever want to use in production code as it has O(n ×

n!) comparisons. Except when it doesn’t – here are some timings.

10,000 items: 1.13ms

20,000 items: 2.32ms

30,000 items: 3.55ms

40,000 items: 4.72ms

This appears to be O(n) – but … how? I ‘cheated’ and set the initial state
carefully. When measuring the performances of sorting you must be very
careful about the best and worst cases. Make sure you are testing against
similar data sets to those you will experience in real executions! In this
case, I changed the generation of the data sets to use a randomised
collection and then I obtained the expected sort of graph (Figure 5).

I didn’t do any runs with more than 14 items as the time taken was so long!
You can see that we appear to hit a ‘wall’ at 13 or 14 items. But appearances
can be deceptive – if we take the graph after eight items we get a similar
‘wall’ effect. (Figure 6.)

While graphs can make some things easy to visualise they can also slightly
mislead the eye: the wall effect seen here depends on the vertical scale of
the graph.

Figure 3

Figure 4

Listing 3

template <typename T>
void bogo_sort(T begin, T end)
{
 do
 {
 std::next_permutation(begin, end);
 } while (!std::is_sorted(begin, end));
}

Figure 5
December 2014 | Overload | 17

FEATURE ROGER ORR

std::sort is faster than qsort which can come
as a surprise to those who assume C is
always faster than C++
What this means in practice is that the point at which the increasing
complexity cost of a poor algorithm significantly affects the overall
performance of the whole function or program will depend on what the
relative timings are of the algorithm and the whole thing.

Let us leave the quaint bogo sort behind and try out some more performant
flavours of sorting. std::sort which is the commonest used in C++,
qsort the equivalent for C, bubble_sort which is easy to explain and
demonstrate, stable_sort which retains the order of equivalent items
and partial_sort which sorts the first m items from n (in this test I
sorted the ‘top ten’ items).

(If you want to visualise some of these sort algorithms in practice I must
mention AlgoRythmics – illustrating sort algorithms with Hungarian folk
dance: https://www.youtube.com/watch?v=ywWBy6J5gz8)

The dances do help to give some idea of how the algorithm works – they
also show the importance of the multiplier C in the formula). (Figure 7).

This graph might help to explain a quote from Andrei Alexandrescu: “I’d
like to go back in time and kill the inventor of bubblesort”.

Removing this sort algorithm the graph now reveals the differences
between the others (Figure 8).

Notice that std::sort is faster than qsort which can come as a surprise
to those who assume C is always faster than C++. It also shows that you
do seem to pay a small cost for the stability of stable_sort. However,
the real surprise for many people may be the excellent performance of
partial_sort which is considerably faster than all of the other
algorithms that sort the entire data set. When confronted with a sorting
problem it is worth asking whether or not you need the full set sorted – if
you only need a small number of the top (or bottom) items then
partial_sort may prove to be a more performant solution.

However, that was with randomised input data – in practice a lot of real
data is not randomly sorted. When sorting nearly sorted data the
bubble_sort algorthm can perform surprisingly well. (Figure 9.)

Figure 6

Figure 7

Figure 8

Figure 9
18 | Overload | December 2014

https://www.youtube.com/watch?v=ywWBy6J5gz8

FEATUREROGER ORR

modern computers perform very much better
on data with good locality of reference
This demonstrates how important it is to test performance in an
environment as similar as possible to the expected target – many
algorithms are sensitive to the input data set and if the test data set has
different characteristics than the production data you may make a non-
optimal choice.

Comparing and contrasting list and vector
The C++ collection classes, in common with some other languages, has a
number of standard collection classes with slightly different interface and
i mp leme n t a t i on . Two o f t he se a r e std::list<T> and
std::vector<T>. Both contain an ordered collection of values of type
T, in the one case the underlying implementation is a doubly-linked list of
nodes and in the other it is a contiguous array of objects. The C++
algorithm std::sort can be used to sort the vector, but not the list (since
the list does not provide a random-access iterator). However, there is a
member function sort in std::list. The complexity measure of
std::sort is the same as std::list::sort – so what’s the
difference in practice?

In terms of implementation, sorting a vector must actually copy the objects
around inside the underlying array; whereas sorting a list can simply swap
around the forward and back links without needing to move the payloads.

So let’s try it. Figure 10 plots two things at once: on the left hand axis we
have the time to sort the collection and on the right hand axis the actual
number of comparison operations performed (since the complexity is
stated in terms of the number of comparisons).

There are several points to note in this graph. Firstly, sorting the vector
involves performing nearly twice as many comparisons as for the list when
sorting the same data set, so while both are of the same theoretical
complexity (n.log(n)) the scaling of this (C from the formula at the start
of this article) is different. However, even though list does far fewer
comparisons it is consistently slower than vector and gets more so as the
number of items sorted increases.

This is a ‘worst case’ example as the object I used for this example merely
wraps an integer, and so it is actually quicker to move the payload (1
machine word) than to swap the pointers in the list (2 machine words)!

The obvious question then is what happens as the size of the payload
increases. If we retain the original payload as the ‘key’ comparison value
then number of comparisons will remain exactly the same, the only change
will be in the amount of data moved (for the vector). The list will continue
to swap pointers and doesn’t even need to access the whole object.

I repeated the test above with gradually increasing sizes of payload for both
vector and list. As expected, as the payload increased, the performance of
the vector dropped until it eventually approximately equalled that of the
list and then lagged behind it. However, I was surprised how large the
payload size needed to be before this approximately equal performance
was achieved: for this test on my hardware it was at around 100 bytes. I
would have expected the increasing cost of copying to have had its effect
more quickly.

One of the reasons is that, as we are all gradually coming to understand,
modern computers perform very much better on data with good locality
of reference. A vector is about as good as you can get in the regard – the
objects in the vector are contiguous in memory and there are no additional
control structures involved inside the data. While the specifics vary, the
principle of locality is important and if it is multiplicative with the
algorithmic complexity it can change the complexity measure of the
overall function.

The performance of the list test is instructive in this regard: as discussed
above when using the same value for the comparison the sort is doing
exactly the same sequence of comparisons and link swaps. I found that
sorting a list with a 1Kb payload took between two and three times as long
as sorting a list of integers. At first I thought there might be a simple
relation to the cache line size and that once the object payload exceeded
the cache size (64b on my hardware) there would be no further effect on
performance; but this did not seem to be the case. See below, the graph of
time against the number of items sorted and the log of the object size.
(Figure 11.)

Perhaps we should be measuring the complexity of sort algorithms in other
terms than just the number of comparisons?

Cost of inserting
Suppose we need to insert data into a collection and performance is an
issue. Looking at the various standard containers we might be using, what
might be the differences between using: std::list, std::vector,
std::deque, std::set, or std::multiset?

To refresh your memory, the cost of inserting for each of these is:

 std::list ‘constant time insert and erase operations anywhere
within the sequence’

 std::vector ‘linear in distance to end of vector’

 std::deque ‘linear in distance to nearer end’

 std::set and std::multiset ‘logarithmic’Figure 10
December 2014 | Overload | 19

FEATURE ROGER ORR
We are also affected by the time to find the insert point.

I tested randomly inserting 10,000 items into the various collections, with
the following results:

 std:list ~600ms

very slow – cost of finding the insertion point in the list

 std::vector ~37ms

Much faster than list even though we’re copying each time we insert

 std::deque ~310ms

Surprisingly poor – spilling between buckets

 std::set ~2.6ms – our winner!

It can be significantly faster to use a helper collection if the target collection
type desired is costly to create. In this example, if I use a std::set as
the helper object and then construct a std:list on completion of the
inserts then the overall time to create the sorted list drops to ~4ms. The
use of a helper collection will obviously increase the overall memory use
of the program at the point of converting the source to the target collection,
but the performance gains can be considerable.

If we change the insertion order from a random one to inserting 10,000
already sorted items, then the performance characteristics change again
(there are two choices of sort order to select whether items are added to
the front or to the back of the collection):

 std:list ~0.88ms

Fast insertion (at known insert point)

 std::vector ~0.85ms (end) / 60ms (start)

Much faster when appending

 std::deque ~3ms

Roughly equal cost at either end; a bit slower than a vector

 std::set ~2ms (between vector and deque)

This article is about order notation, so what happens to these numbers if
we change the number of items? Let us try using ten times as many items:

 std:list ~600s (1000×)

 std::vector ~3.7s (100×)

 std::deque ~33s (100×)

 std::set ~66ms (33×)

The cost of finding the insertion point for std::list dwarfs the insert
cost. It is easy to overlook parts of an algorithm to discover later they have
added significant hidden complexity.

Can we beat std::set?

C++11 has some additional associative collection classes that use hashing
for improved performance (at the expense of removing the natural sort
order). If we try a naïve use of std::unordered_set we find it is very
slightly slower at 10K (~2.8ms vs ~2.6ms) but does out-perform
std::set better at 100K items (~46ms vs ~66ms)

However, we may have additional knowledge about our value set and so
can use a different hash function – as is the case in my test program where
a trivial, and fast, identity hash function can be used. This enabled
std::unordered_set to achieve times of ~2.3ms (10K) and ~38ms
(100K).

Conclusion
The algorithm we choose is obviously important for the overall
performance of the operation (measured as elapsed time). As data sizes
increase we eventually hit the limits of the machine; the best algorithms
are those that involve least swapping. For smaller data sizes the
characteristics of the cache will have some effect on the performance.

While complexity measure is a good tool we must bear in mind:

 What are N (the relevant size) and C (the multiplier)?

 Have we identified the function with the dominant complexity?

 Can we re-define the problem to reduce the cost?

Making it faster
We’ve seen a few examples already of making things faster.

 Compile-time evaluation of strlen() turns O(n) into O(1)

 Can you pre-process (or cache) key values?

 Swapping setup cost or memory use for runtime cost

 Don’t calculate what you don’t need (We saw that, if you only need
the top n, partial_sort is typically much faster than a full sort)

 If you know something about the characteristics of the data then a
more specific algorithm might perform better – for example
strlen() vs find(), sorting nearly sorted data, or a bespoke
hash function.

Pick the best algorithm to work with memory hardware

 Prefer sequential access to memory over random access

 Smaller is better

 Splitting compute-intensive data items from the rest can help – at
a slight cost in the complexity of the program logic and in memory
use.

Acknowledgements
Many thanks to the Overload reviewers for their suggestions and
corrections which have helped to improve this article.

Further reading
Ulrich Drepper ‘What Every Programmer Should Know About Memory’:

http://people.redhat.com/drepper/cpumemory.pdf

Scott Meyers at ACCU ‘CPU caches’:
http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

Bjarne Stroustrup’s vector vs list test (especially slides 43–47):
http://bulldozer00.com/2012/02/09/vectors-and-lists/

Herb Sutter’s experiments with containers:
http://www.gotw.ca/gotw/054.htm
and looking at memory use:
http://www.gotw.ca/publications/mill14.htm

Baptiste Wicht’s list vs vector benchmarks:
http://www.baptiste-wicht.com/2012/12/cpp-benchmark-vector-list-
deque/

Figure 11
20 | Overload | December 2014

http://people.redhat.com/drepper/cpumemory.pdf
http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf
http://bulldozer00.com/2012/02/09/vectors-and-lists/
http://www.gotw.ca/gotw/054.htm
http://www.gotw.ca/publications/mill14.htm
http://www.baptiste-wicht.com/2012/12/cpp-benchmark-vector-list-deque/

FEATUREANDREW PECK
People of the .Doc
Technical communication is often misunderstood
by the world at large. Andrew Peck breaks down
the rhetoric from a technical author’s perspective.
We are sometimes invited to ‘see ourselves as others see us’. This
article takes the reverse viewpoint, seeing a group of people who
often work alongside us through their eyes, not ours.

o you find that your work is treated by friends and family as being a
form of witchcraft? That’s probably because they’re in sway to
Clarke’s 3rd law, which states that ‘Any sufficiently advanced

technology is indistinguishable from magic.’ [Wikipedia]. Computers, IT
professionals and programmers are often treated with a reverence once
reserved for doctors and before that priests and shamans. The mystery is
two fold: first any modern device or application is – from the perspective
of the user – a black box into which they place input to gain a result. They
have no knowledge of the intricately crafted logic that allows the most
aesthetically simple device to function, and so they adopt the same
attitudes we might associate with throwing coins in a wishing well... only
the wishing well of IT often throws something back.

It’s not just the users and outsiders to blame for this of course. Computer
systems are a mystery to the world at large in part because the majority of
those who do understand them spend their working life surrounded by
others who use the same jargon and do similar things, and so a closed
community is created with knowledgeable insiders and unwitting
outsiders.

I suppose this is where the technical communicator comes in. We are the
deacons and evangelists of the church of high technology. Whilst linking
to a blog post of mine, the Guardian technology team [Guardian] described
us for the uninitiated as “the hapless folk who have to write the manual that
you never read but which explains how it actually works”.

Let’s consider the accuracy of this definition and see if we can suggest an
appropriate and approved alternative. Who knows, we may even get an
amendment similar to those sometimes found in the cheaper tabloids when
they get a footballer’s deviance à la mode wrong!

The myth
Having regularly endured a myriad of Christmas movies featuring
animated and/or over-acted depictions of Santa Claus, when I read the
description of the ‘hapless folk’, I’m put in mind of the elf who’s a little
bit ‘different’, the one who is given some kind of make-work task because
he can’t be trusted with anything that might do lasting harm if inserted up
a nostril. I’m a little disappointed that the popular view of technical writing
is of something that happens under duress, for ungrateful disinterested end
users. There is also the implication that our writing is somehow pointless,
as if the only thing this profession produces is badly translated hand-outs
to go with cheap electronics.

The reality
Technical communication can be outwardly very dull, but it’s that way for
a reason. I feel that as a general rule the more exciting, world changing
and expensive the product, the more structured and precise any
accompanying documentation becomes (imagine the precision needed in
the manual for an anti-tank munitions). The reason for this of course is that

the more fantastical the product, the greater the cost and damage done if
something goes wrong and that is essentially where we come in. If ‘tech-
support’ is the cure, we are the prevention that is so much sweeter. It is
frustrating to have to have to use the same lexical chunks within a piece
of writing, but we are shoeing the technological horse, and florid patterns
aren’t really of much use to users, translators or localisation teams. (We
can save these for other types of writing... in this article alone you'll find
anglicised French, Latin and a parody of Islamic theology – none of which
would be encouraged in software documentation.)

That’s not to say that we’re in any way less skilled than our counterparts
who write in different ways for different purposes. The novelist or
journalist may get away with ‘typing’, but we are master-users of desktop
publishing, word processing and authoring software. I haven’t used the
buttons in Word’s ribbon for ‘bold’ and ‘italic’ in a decade, and even the
keyboard shortcuts find their outings cut short due to the catalogue of
carefully constructed and balanced styles that have documents parading
past a client’s eyes like an old school soviet military parade.

Based on the above, the definition that I’d like to see in the public domain
would be something along the lines of ‘the professional specialists who
make complex products and procedures clear and accessible to the rest of
us’. Accessible documentation is as important as clarity, people should be
able to find what they need to know when they need to know it.

Our responsibility ends once a high quality message is out there; if people
choose not to read the manual, and as a result shut down a stock exchange,
shoot themselves in the foot or put their furniture together upside down
there’s not a lot we can do about it.

The dream
The above definition is quite accurate, and I’d encourage anyone who’s
every wondered ‘is this a career for me?’ to think very carefully about the
unique set of skills and traits they’ll need to develop. As a reward, I can
promise that no one is going to wrap fish and chips in what you write.

If there is a Deus ex machina (a term from literature meaning ‘God from
the machine’) we technical communicators are the prophets, scribes and
high priests of the ‘People of the Doc’.

References
[Guardian] http://www.theguardian.com/technology/blog/2013/jan/07/

technology-links-newsbucket

[Wikipedia] http://en.wikipedia.org/wiki/Clarke%27s_three_laws

Acknowledgements
This article is based on one previously published in Communicator (Spring
2013), the journal of the ISTC (www.istc.org.uk).

D

Andrew Peck is a technical author working for Clearly Stated Ltd
near Nottingham. His background is as a Higher Education lecturer
and military language trainer. He is a Member of the Institute of
Scientific and Technical Communicators (ISTC).
December 2014 | Overload | 21

http://www.theguardian.com/technology/blog/2013/jan/07/technology-links-newsbucket
http://www.theguardian.com/technology/blog/2013/jan/07/technology-links-newsbucket
http://en.wikipedia.org/wiki/Clarke%27s_three_laws
www.istc.org.uk

FEATURE CHRIS OLDWOOD
Testing Drives the Need for
Flexible Configuration
Inflexible configuration will cause problems. Chris Oldwood
demonstrates how to support multiple configurations flexibly.
f you look at a system’s production configuration settings you could be
fooled into thinking that we only need a simple configuration
mechanism that supports a single configuration file. In production it’s

often easier because things have settled down – the correct hardware has
been provisioned, security accounts created, monitoring services installed,
etc. But during development and testing is when the flexibility of your
configuration mechanism really comes into play.

I work on distributed systems which naturally have quite a few moving
parts and one of the biggest hurdles to development and maintenance in
the past has been because the various components cannot be independently
configured so that you can cherry-pick which services you run locally and
which you draw from your integration/system test environment. Local (as
in ‘on your desktop’) integration testing puts the biggest strain on your
configuration mechanism as you probably can only afford to run a few of
the services that you might need unless your company also provides fairly
meaty developer workstations too.

In the past I’ve found the need to override component settings using a
variety of criteria and the following article is definitely not exhaustive, but
gives the most common reasons I have encountered for needing to
configure something differently. It also goes into a little more detail about
how you might support such multiple configurations whilst minimising the
potential for duplication.

Per-environment
The most obvious candidate is environmental as there is usually a need to
have multiple copies of the system running for different reasons. I would
hazard a guess that most teams generally have separate DEV, TEST &
PROD environments to cover each aspect of the classic software lifecycle.
For small systems, or systems with a top-notch build pipeline and test
coverage, the DEV & TEST environments may serve the same purpose.
Conversely I have worked on a team that had 7 DEV environments (one
per development stream [Oldwood14]), a couple of TEST environments
and a number of other special environments used for regulatory purposes,
all in addition to the single production instance.

What often distinguishes these environments are the instances of the
external services that you will depend on. It is common for all production
environments to be ring-fenced so that you only have PROD talking to
PROD to ensure isolation. In some cases you may be lucky enough to have
UAT talking to some read-only PROD services, perhaps to support parallel
running. But DEV environments are often in a sorry state and highly
distrusted so are ring-fenced for the same reason as PROD, but this time
for the stability of everyone else’s systems.

Where possible I prefer the non-production environments to be a true
mirror of the production one, with the minimum changes required to work
around environmental differences. Ideally we’d have infinite hardware so
that we could deploy every continuous build to multiple environments
configured for different purposes, such as stress testing, fault injection, DR
failover etc. But we don’t. So we often have to settle for continuous
deployment to DEV to run through some basic scenarios, followed by
promotion to UAT to provide some stability testing, and thence to PROD.

Where sharing of production input sources is possible this means is that
our inputs are often the same as for production, but naturally our outputs
have to be different. But you don’t want to have to configure each output
folder separately, so you need some variable-based mechanism to keep it
manageable so that most settings are then derived, e.g. only the root folder
name changes, the relative child structure stays the same and therefore does
not require explicit configuration.

The Disaster Recovery (DR) environment is an interesting special case
because it should look and smell just like production. A common technique
for minimising configuration changes during a failover is to use DNS
Common Names (CNAMEs) for the important servers, but that isn’t
always foolproof. Whilst this means that in theory you should be able to
switch to DR solely through network infrastructure re-configuration, in
practice you will find not every system you depend on will be quite so
diligent.

Per-machine
Next up are machine specific settings. Even in a homogenous Windows
environment you often have a mix of 64-bit and 32-bit hardware, slightly
different hard disk partitioning, amount of memory, CPUs, etc. or different
performance characteristics for different services. Big corporations love
their ‘standard builds’, which largely helps minimises the impact, but even
those change over time as the hardware and OS changes – just look at
where user data has been stored in Windows over the various releases. The
ever changing security landscape also means that best practices change and
these will, on occasion, have a knock-on effect on your system’s set-up.

By far the biggest use for per-machine overrides I’ve found, though, is
during development, i.e. when running on a developer’s workstation.
While unit testing makes a significant contribution to the overall testing
process you still need the ability to easily cobble together a local sandbox
in which you can do some integration testing. I’ve discovered the hard way
what happens when the DEV environment becomes a free-for-all – it gets
broken and then left to fester. I’ve found treating it with almost the same
respect as production pays dividends because, if the DEV environment is
stable (and running the latest code) you can often reduce the setup time
for your local integration testing sandbox by drawing on the DEV services
instead of having to run them all locally.

Per-process-type
Virtually all processes in the system will probably share the same basic
configuration, but certain processes will have specific tasks to do and so
they may need to be reconfigured to work around transient problems. One

I

Chris Oldwood is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit micros; these
days it’s C++ and C#. He also commentates on the
Godmanchester duck race. Contact him at gort@cix.co.uk
or@chrisoldwood
22 | Overload | December 2014

FEATURECHRIS OLDWOOD

environment variables are one technique I wouldn’t
use by default to configure services on Windows ...

because they are inherited from the parent process
of the reasons for using lots of processes (that share logic via libraries) is
exactly to make configuration easier because you can use the process name
as a ‘configuration variable’.

The command line is probably the default mechanism most people think
of when you want to control the behaviour of a process, but I’ve found it’s
useful to distinguish between task specific parameters, which you’ll likely
always be providing, and background parameters that remain largely
static. This means that when you use the --help switch you are not
inundated with pages of options. For example a process that always needs
an input file will likely take that on the command line, as it might an
(optional) output folder; but the database that provides all the background
data could well be defaulted using, say, an .ini file.

Per-user
The final category is down to the user (or more commonly the service
account) under which the process runs. I’m not talking about client-side
behaviour which could well be entirely dynamic, but server-side where
you often run all your services under one or more special accounts. There
is often an element of crossover here with the environment as there may
be separate DEV, TEST and PROD service accounts to help with isolation.
Support is another scenario where the user account can come into play as
I may want to enable/disable certain features to help avoid tainting the
environment I’m inspecting, such as using a different logging
configuration.

Getting permissions granted is one of those tasks that often gets forgotten
until the last minute (unless DEV is treated liked PROD which drives the
requirement out early). Before you know it you switch from DEV (where
everyone has way too many rights) to UAT and you suddenly find things
don’t work. A number of times in the past I’ve worked on systems where
a developer’s account has been temporarily used to run a process in DEV
or UAT to keep things moving whilst the underlying change requests
bounce around the organisation. Naturally security is taken pretty seriously
and so permissions changes always seem to need three times as many
signatures as other requests; in the meantime though we are expected to
keep development and testing moving along.

Hierarchical configuration
Although most configuration differences I’ve encountered tend to fall into
one specific category per setting, there are some occasions where I’ve had
cause to need to override the same setting based on two categories, say,
environment and machine (or user and process). However, because the
hardware and software is itself naturally partitioned (i.e. environment/
user) it’s usually been the same as only needing to override on the latter
(i.e. machine/process). For example if a few UAT and PROD servers had
half the RAM of the others, then the override could be applied at machine-
level on just those boxes because the servers are physically separated (the
environment) as UAT and PROD services are never installed on the same
host.

What this has all naturally lead to is a hierarchical configuration
mechanism, something like what .Net provides, but where <machine>

does not necessarily mean all software on that host, just my system
components. It may also take in multiple configuration providers, such as
a database, .ini files, the registry, command line, etc. With something like
a database the problem of chickens-and-eggs rears its head and so it can’t
be a source for bootstrapping settings as you need somewhere to configure
a connection string to access it.

As an aside environment variables are one technique I wouldn’t use by
default to configure services on Windows. This is because they are
inherited from the parent process – Services.exe – and so any change to
the system environment variables requires it to be restarted, which is
essentially a reboot [KB].

Hierarchical files
The default file-based configuration mechanism that .Net uses has only
two levels of .config file, but it’s possible to leverage the underlying
technology and create your own chain of configuration files. In the past I
have exploited this mechanism so that on start-up each process will go
looking for these files in the assembly folder in the following order:

 System.Global.config
 System.<environment>.config
 System.<machine>.config
 System.<process>.config
 System.<user>.config

Yes, this means that every process will hit the file-system looking for up
to 5 .config files, but in the grand scheme of things the hit is minimal. In
the past I have also allowed config settings and the bootstrapping config
filename to be overridden on the command line by using a hierarchical
command line handler that can process common settings. This has been
invaluable when you want to run the same process side-by-side during
support or debugging and you need slightly different configurations, such
as forcing them to write to different output folders.

Use sensible defaults
It might appear from this article that I’m a configuration nut. On the
contrary, I like the ability to override settings when it’s appropriate, but I
don’t want to be forced to provide settings that have an obvious default. I
see little point in large configuration files full of defaulted settings just
because someone may need to tweak it, one day – that’s what the source
code and documentation is for.

I once worked on a system where all configuration settings were explicit.
This was intentional according to the lead developer because you then
knew what settings were being used without having to rummage around
the source code or find some (probably out-of-date) documentation. I
understand this desire but it made testing so much harder as there was a
single massive configuration object to bootstrap before any testable code
could run. It became a burden needing to provide a valid setting for some
obscure business rule when all I was trying to test were changes to the low-
level messaging layer.
December 2014 | Overload | 23

FEATURE CHRIS OLDWOOD

When there are many defaults and only a few
overrides, following the hierarchical nature
right through to the deployment means that
it’s easier to see what is overridden
Configuration file formats
I have a preference for simple string key/value pairs for the configuration
settings – the old fashioned Windows .ini file format still provides one of
the simplest formats. Yes, XML may be more flexible but it’s also
considerably more verbose. Also, once you get into hierarchical
configurations (such as .Net XML style .config files), its behaviour
becomes unintuitive as you begin to question whether blocks of settings
are merged at the section level, or as individual entries within each section.
These little things just add to the burden of any integration/systems testing.

I mentioned configuration variables earlier and they make a big difference
during testing. You could specify, say, all your input folders individually
as absolute paths, but when they’re related that’s a pain when it comes to
environmental changes (see Listing 1 for an example).

One option would be to generate the final configuration files from some
sort of template, such as with a tool like SlowCheetah [SlowCheetah],
which could be done at compile time, package time or deployment time.
The source files could then be hierarchical in nature but flattened down to
a single deployable file.

When there are many defaults and only a few overrides, following the
hierarchical nature right through to the deployment means that it’s easier
to see what is overridden because its file only lists exceptions. You can
then use variables in the core settings and define them in the list of
exceptions (for an example, see Listing 2).

The set of variables don’t just have to be custom ones, you can also chain
onto the underlying environment variables collection so that you can use
standard paths such as %TEMP% and %ProgramFiles% when necessary.

Summary
This article took a look at the differences between configuring a complex
system for use in production and the many other environments in which it
needs to operate, such as development and testing. We identified a number
of patterns that help describe why we might need to configure the system
in different ways and formulated a hierarchy that can be used to refine
settings in a consistent manner. Finally we looked at how variables can be
used to exploit the commonality across settings to further reduce the points
of configuration to a bare minimum.

Acknowledgements
Thanks as always goes to the Overload advisors for watching my back.

References
[Oldwood14] ‘Branching Strategies’, Chris Oldwood, Overload 121

[KB] http://support2.microsoft.com/kb/821761

[SlowCheetah] https://www.nuget.org/packages/SlowCheetah/

Listing 1

 [Feeds]
 SystemX=\\Server\PROD\Imports\SystemX
 SystemY=\\Server\PROD\Imports\SystemY
 SystemZ=\\Server\PROD\Imports\SystemZ

Listing 2

<System.Global.config>
[Variables]
FeedsRoot=%SharedData%\Imports

[Feeds]
SystemX=%FeedsRoot%\SystemX
SystemY=%FeedsRoot%\SystemY
SystemZ=%FeedsRoot%\SystemZ

<System.PROD.config>
[Variables]
SharedData=\\Server\PROD
24 | Overload | December 2014

http://support2.microsoft.com/kb/821761
https://www.nuget.org/packages/SlowCheetah/

	Finding your muse
	Designing Observers in C++11
	Non-Superfluous People: Testers
	Ruminations on Self Employment and Running a Business
	Order Notation in Practice
	People of the .Doc
	Testing Drives the Need for Flexible Configuration

