

June 2013 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Auto – A Necessary Evil?
Roger Orr introduces a new language feature’s
good and bad aspects.

8 TCP/IP Explained. A Bit
Sergey Ignatchenko takes a look at the details of
network protocols.

12 Demons May Fly Out Of Your Nose
Olve Maudel investigates the murky world of
Undefined Behaviour.

14 Wallpaper Rotation on Ubuntu using Ruby
and Flickr
Filip van Laenen shows how to write a simple
scripted utility.

21 Dynamic C++, Part 1
Alex Fabijanic adds dynamic features to a statically
typed language.

28The Uncertainty Principle
Kevlin Henney suggests an unexpected source of
flexibility.

OVERLOAD 115

June 2013

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Guest Editor

Ric Parkin
ric.parkin@gmail.com

Advisors

Matthew Jones
m@badcrumble.net

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 116 should be submitted
by 1st July 2013 and for Overload
117 by 1st September 2013.

EDITORIAL RIC PARKIN
Fantasy Languages
Software is all about describing a solution
to a computer. Ric Parkin imagines what
his ideal dialect would sound like.
Hello there, and welcome to Overload 115. Firstly, to
avoid confusion, Frances has been off to enjoy a well
earned holiday and kindly asked me to step in and
guest edit this issue. Thankfully the well-oiled ACCU
publication machine is working as well as ever, and by
taking advantage of the captive speakers at the

conference in Bristol I’ve managed to find plenty of articles for this issue
– and promises for the future.

It was the first conference that I’ve attended for a few years – my excuse
was that having to write editorials meant I’d failed to come up with any
decent talk ideas, but this year my company kindly paid for me to attend.
And it was as good as ever with a packed programme where, as usual, there
would be at least two or three talks at a time I’d like to attend. It was also
a great opportunity to meet old friends and put faces to people I only knew
as an email address.

C++: the past, the present, and the future
While there is always a wide range of subjects across the talks, each
conference tends to have an overall theme – sometimes intentionally,
sometimes it emerges naturally depending on what’s new and interesting
to people. This year’s was definitely about the evolution of C++. Many
talks looked at how the new features in C++11 work in practice, and how
different features interact – always the bit where the unexpected appears
for both good and bad.

A good example of these serendipitous synergies is from the previous
standard, when the interaction of template specialisation, non-type
template parameters, and some limited compile time evaluation resulted
in the discovery of Template Meta-Programming (which some consider
a mixed blessing!) For all its warts (and the error messages – sorry, essays
– that can result are most definitely ‘interesting’ [Curse]) TMP has been
hugely influential which has attracted attempts to improve it – for library
writers, and for the users trying to use the resulting libraries (especially
when working out why their attempt has failed.)

It is notable that a lot of the recent standardisation effort has gone into
improving many TMP techniques, helping better compiler support,
standardising utilities such as enable_if, and aiming to provide some
sort of Concepts support. Sadly the original Concepts got dropped from
C++11 when it was realised that it was becoming too big and unwieldy
and risked jeopardising the next standard [Stroustrup09]. More happily,
for the next standard – dubbed C++14 [C++14] – as well as mainly being
some tidying up, a few new bits and pieces here and there, and relaxing

some of the restrictions in C++11, there is also
ongoing work towards one major new feature –

Concepts-Lite – that should deliver many of the
hoped for benefits of the original Concepts

without becoming overly-complex. There’s even a compiler that has
already implemented it to get some idea of how it works in practice [Sutton].

Beyond that is even more work on C++17. You may have noticed that after
the marathon to get C++11 out, the committee has decide that a shorter
3-year rolling release cycle was needed, which enables small tweaks to
make it into the ‘Official’ standard rather than an interim Technical
Report, while allowing ongoing work for large features to aim for a release
further ahead. One of these ideas are to extend Concept-Lite even further
to make the more complex cases even easier to write and use. Some of
the possible ideas were shown at the conference, and valuable feedback
was gleaned which resulted in some rapid updates to the syntax ideas.

A fantasy programming language
This is all tremendously exciting, although I do fear for my bookshelves
that will have to deal with the resulting tomes. But it has made me wonder
what sort of language features would be in my ‘Ideal Language’ – one
which didn’t have to deal with backwards compatibility with previous
versions (although it can be persuasively argued that backward
compatibility with C was a major reason for the take up of C++, despite
it leading to some design decisions that you might have not have chosen
from afresh). So this is my wish-list – it’s not particularly comprehensive,
or even thought through very much so forgive the inevitable clashes and
contradictions between ideas. After all, that’s where the interesting things
happen.

The first thing to keep in mind is the difference between the Language,
the Standard Library, other available libraries, the compiler and other
tools. Many people cite their opinion that language X is better than Y, but
often they mean it has more libraries out of the box, or it has a nice IDE,
or lots of useful tools. These are indeed important but each are different.

The core language should be as lean as possible, but allow a rich set of
tools to be built upon it, including the standard libraries and others. This
implies several simple but orthogonal features, with tools for abstraction
and encapsulation to build new types and libraries.

The Standard library should provide a decent set of tools and types that
are likely to be common to most programmes on most platforms. A key
idea would be to provide an extendable framework to allow different
extensions to be combined in unforeseen ways. The design of the original
STL is instructive here – by having iterators as the ‘glue’ between
algorithms and containers, you could write new components that provided
iterators e.g. number generators, then existing and future algorithms
would work with them.

We would also like lots of libraries to be available from third parties –
these would cover bits that we have inevitably missed, or more niche uses.
These will depend a lot on how easy such libraries are to write and
combine, and so depend on the whole language package.

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | June 2013

EDITORIALRIC PARKIN
The compiler and tools are an odd one, but very important. We’d want our
language to be easy to write the tools for, and easy to extend. C++ has
traditionally been very hard to parse and slow to compile, and so has
become neglected somewhat compared to other languages. More recently
tools such as Clang [Clang] have attempted to rectify this, allowing better
helpers to be written. Making our new langauge simple to parse would help
to get a rich set of tools for it to fill any gaps, and a short compile time
avoiding all the textual header includes is also very desirable.

Many languages have an underlying philosophy to guide the choices to
be made. Here C++ has some good ones, e.g. trust the programmer; don’t
pay for what you don’t use; support multiple programming paradigms. I’d
also add some more: keep individual language features simple, but able
to be combined with others; and avoid surprises.

So what did C++ get wrong? Well, for understandable historical reasons,
values are mutable by default, similarly methods are non-const. We’ve
learnt by experience and from functional languages that mutability is
problematic – it can lead to programmes that are harder to reason about,
and causes problems in multi-threaded code. So things should be
immutable by default, and you have to ask for a modifiable value. This
could even extend to free functions – if they promised to be ‘const’ by
default, i.e. not modify global data or call non-const functions, then you
don’t have side effects, resulting in less for the programmer to worry about
and the compiler has better optimisation opportunities.

So what did C++ get right? I’m a big fan of value-based programming,
especially if the language gives you tools for making user defined types
that look and feel ‘natural’ to use, using converting constructors, operator
overloading, conversions, and overloaded functions. So these sorts of
things should be in, and perhaps extended further. At the same time I’m
very much not a fan of using built-in types for anything other than
implementing user-types with more specific semantics. So in addition I’d
like it to be very easy to define ‘strong typedefs’ – new types that act just
like an existing one, but is a different type not an alias. e.g. instead of
forename and surname both being strings, you can just declare

 type Forename = String;
 type Surname = String;

and you’d have two different types that can’t be mixed up.

You may have noticed that this depends on a Strict type system, which is
another good thing as it helps catch errors early. But many other languages
are not strictly typed and have found the flexibility of dynamic type
systems rather useful in certain areas. So I’d like this ability to be directly
supported, but it should be optional to avoid unnecessary overhead –
perhaps a keyword to tell the compiler to add the machinery for dynamic
method dispatch and dynamically adding new methods. This last item is
already hinting at the need for something along the lines of closures or
lambdas, and this in turn hints at some sort of garbage collection, although
again it should be optional on a per-type basis. Reflection can be very
powerful too, but given some of the stories about its overhead in the
program footprint this one definitely has to be optional!

Garbage Collection and C++ can’t be mentioned without touching on what
I think is C++’s great strength – deterministic lifetime and destructors.
While GC is great for reclaiming abandoned memory, it fails badly at

cleaning up resources that are more limited or have to be released in a
timely manner – file handles, mutexes, sockets are just some examples.
The fact GC doesn’t deal with these very well can be seen by some of the
solutions to these issues, such as the clunky Execute Around idioms,
using and IDispose, or old fashioned close/teardown methods. But
value-based objects on the stack and destructors shine for these situations,
and it surprises me that such solutions are not used as much in other
languages (even GC ones – why doesn’t declaring an object on the stack
automatically generate a new call and a dispose on block exit?)

C++ also has the very nice container/iterator/algorithm framework from
the STL, and something similar would be excellent. This would require
some sort of generics support, and I think C++’s template mechanism is
an excellent start (and is better than the alternative interface based
solutions), although improved concept and requirements checking would
be needed. Not a trivial task! Strings are not so good though. A better
solution would involved immutable strings, slices, mutable string
builders, and ropes (bundles of strings that act like a single string – useful
for concatenation without reallocation).

Parallelism is very important now and for the foreseeable future, so good
support is vital. A good memory model is a vital bedrock upon which low
level threading primitives can be based. But even these are too low level
to work with directly, so some higher level parallel structures are needed,
perhaps Erlang’s message passing, coroutines, Actors or some such. This
latter area is less obvious, so I suspect a library based solution may be
preferable to a core language issue, although many other languages take
a different approach.

Other ideas are from functional languages, such as list comprehensions or
data pattern matching. Getting this to mesh with procedural style can be
a challenge, but languages such as D show that it can be done. Adding map/
reduce, and tuples with operations such as tie and zip can be very flexible
too.

And finally what about errors? There are only a few choices, and none are
totally appealing. I tend to favour exceptions but would like better support
for writing exception safe code – deterministic destructors help here, but
also nothrow qualifiers, and perhaps ones for Basic and Strong
guarantees may help, or compiler to generate code to do the the right thing,
e.g. generated swap functions.

These are just a few of my ideas off the top of my head,
but is probably already too complex though. Which
ones would you keep, and which have I missed?

References
[C++14] New draft at http://isocpp.org/files/papers/N3690.pdf

[Clang] http://clang.llvm.org/

[Curse] http://en.wikipedia.org/wiki/
May_you_live_in_interesting_times

[Stroustrup09] ‘No “Concepts” in C++0x’, http://accu.org/index.php/
journals/1576

[Sutton] http://concepts.axiomatics.org/~ans/
June 2013 | Overload | 3

http://clang.llvm.org/
http://en.wikipedia.org/wiki/May_you_live_in_interesting_times
http://en.wikipedia.org/wiki/May_you_live_in_interesting_times
http://accu.org/index.php/journals/1576
http://accu.org/index.php/journals/1576
http://concepts.axiomatics.org/~ans/
http://isocpp.org/files/papers/N3690.pdf

FEATURE ROGER ORR
Auto – A Necessary Evil?
Superficially simple language features can be
surprisingly complicated. Roger Orr explores a
new one that is likely to be used widely.
To have a right to do a thing is not at all the same as to
be right in doing it ~ G.K.Chesterton.

he keyword auto has a new use in C++11 – although the suggestion
has been under discussion for a while, as we shall see. It was one of
the early proposals for addition to what was then called C++0x and,

since it was both useful and (relatively) non-controversial, some compilers
added support for it well before the completion of C++11. This does have
the advantage that it has had ‘field testing’ by a large number of
programmers and so the form of the feature in the new International
Standard seems to be pretty solid.

The keyword auto now lets you declare variables where the compiler
provides the actual type and the programmer is either unwilling or unable
to name the actual type. The keyword can also be used in function
definitions to let you provide the return type after the rest of the function
declaration, which is useful when the return type depends on the type of
the arguments.

As with any new keyword there are questions about usage – at two levels.
First of all, where and how are programmers permitted to use the new
feature. Secondly, what guidance is there to sensible adoption of the new
feature. I intend to start with by answering the first question and then
subsequently focus on the second.

A bit of history
The word auto has been re-purposed in C++11 – it was inherited from C
where it has been a keyword since the first days of The C Programming
Language by Kernighan and Ritchie.

The old meaning of auto was defined as follows:

Local objects explicitly declared auto or register or not explicitly
declared static or extern have automatic storage duration. The
storage for these objects lasts until the block in which they are
created exits.

This meant that the keyword essentially added nothing over an implicit
declaration:

 {
 auto int i; // explicitly automatic
 int j; // implicitly automatic
 // ...
 } // end of life for both i and j

and so in practice auto was almost never used in production code.

When Bjarne Stroustrup started working on C++ his Cfront compiler
originally allowed auto to be used for variable declarations in a very
similar way to that now in C++11: “The auto feature has the distinction to
be the earliest to be suggested and implemented: I had it working in my

Cfront implementation in early 1984, but was forced to take it out because
of C compatibility problems” [Stroustrup].

Many years later there was a discussion on the C++ committee email
reflector about the difficulty of declaring variables resulting from complex
template expressions. David Abrahams wrote (in ext-4278, 26 Oct 2001):
“...the expression results in a very complicated nested template type which
is difficult for a user to write down”.

At the time the best suggestion was to write such variable declarations as
something like:

 typeof(<expression>) x = <expression>;

(typeof was an early name for what eventually became decltype in
C++11).

This however meant that the (potentially rather complex) expression had
to be written twice, for example in this simple case:

 typeof(alpha*(u-v)*transpose(w))
 x = alpha*(u-v)*transpose(w);

which made the code harder to read – and was also a good source of bugs
if and when the expression was changed.

He suggested this form of declaration could be replaced with something
like:

 template <class T> T x = <expression>;

The C++ template argument deduction rules could then come into play to
work out the actual compile-time type of 'x'.

In the subsequent discussion Andy Koenig wrote: “I would also like to see
something like

 auto x = <expression>;

I know we can’t use auto, but you get the idea.”

However, various people picked up on his, probably throwaway,
suggestion and the idea gained momentum. Of course, a big concern was
whether this change of use for the auto keyword would break a lot of code;
the standards committee is understandably very reluctant to break existing
valid code. A number of people spent some time searching internal
company code bases they had access to and also using the now defunct
Google Code Search. Daveed Vandevoorde reported that “Google Code
Search finds less than 50 uses of auto in C++ code.”

It turned out that most existing uses of auto were in test code (verifying
that compilers, parsers or other tools handling C++ code correctly
processed the keyword) and that a number of the remaining uses were in
fact incorrect! The research gave the committee confidence that
repurposing the keyword would not be a major problem. This confidence
seems to have been well-founded.

The first formal paper for C++0x was N1478 (Apr 2003) [N1478]. The
emphasis of this paper was in providing ways to make generic
programming easier – the draft of this proposal (ext-5364) begins:
“Proposal for “auto” and “typeof” to simplify the writing of templates”.

The paper also proposed another new keyword, fun, which was used for
declaring function return types. Over time this was replaced by an

T

Roger Orr has been programming for over 20 years, most recently
in C++ and Java for various investment banks in Canary Wharf and
the City. He joined ACCU in 1999 and the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk
4 | Overload | June 2013

FEATUREROGER ORR

It isn’t the first time that a feature in
C++ has had its use broadened well

beyond the original expectations
overloaded use for auto (and jokes about how we lost the fun.) I do
sometimes wonder whether auto is in danger of gaining multiple
meanings in the same way that the keyword static has!

It is worth keeping this history in mind when looking at the use of auto
as it might help distinguish the two main uses (one for variables and one
for functions). It is also instructive to compare the original target design
space – templates – with the range of uses finally allowed. It isn’t the first
time that a feature in C++ has had its use broadened well beyond the
original expectations.

So what did we end up with?
auto is repurposed and can be used in a variety of ways, such as:

 a placeholder for the type in a simple variable declaration:

 auto x = 5; //'auto' here is equivalent to 'int'

 to declare a variable referring to a lambda:

 auto lambda1 = [](int i){ return i * i; };

 in a new expression:

 new auto(1.0); //'auto' equivalent to 'double'

 in function declarations (and definitions) allowing the return type to
be specified at the end:

 auto f()->int(*)[4];

 in function template declarations:

 template <class T, class U>
 auto add(T t, U u) -> decltype(t + u);

where this is considerably simpler than the equivalent without
auto:

 template <class T, class U>
 decltype((*(T*)0) + (*(U*)0)) add(T t, U u);

In each case auto is a place holder for a specific compile time type – this
type is ‘baked in’ by the compiler. This is worth highlighting, especially
for those used to languages with dynamic types; there is no runtime
overhead in using auto. Also note that the use of auto does not change
the meaning of the code – it means exactly the same as the equivalent code
with the deduced type written in full.

Once formally adopted into the working paper, auto became available for
use in several compilers. Scott Meyer’s list [Meyers12a] of C++11 support
shows auto was available in:

 gcc 4.4 (formal release Apr ’09)

 MSVC 10 (formal release Apr ’10)

and the examples given above all do compile successfully with both gcc
and MSVC.

As the wording for auto was being polished for inclusion in C++11 (and
as additional papers were written adding further new features to the
language) there was a keen interest in avoiding any ‘special cases’ for
auto. The committee followed the general principle of trying to make use
of auto orthogonal to other choices: so for example auto for function

return types is not restricted to function templates but can also be used for
non-template functions.

Interactions with other items

r-value references
One of the new items added to C++11 was r-value references (designated
with &&). As many of you will already be well aware this was principally
added to support ‘move semantics’ which enables significant performance
improvements when copying data out of temporary objects.

 auto var1 = <expression>;
 auto & var2 = <expression>;
 auto && var3 = <expression>;

These are all valid (subject to constraints on the actual expression).

Note though the last in particular may not do quite what you expect … I
will say more about this in the second article. (Scott Meyers covered this
in his article on ‘Universal References in C++’ [Meyers12b].)

Lambda
The addition of lambda expressions to C++ was one of the motivating cases
for auto. Passing a lambda to a function template works easily – for
example:

 template <typename T> void invoke(T t);
 ...
 invoke([](int i){ return i; });

The call to invoke passes a (trivial in this example) lambda that takes an
int and returns it. The compiler deals with instantiation of the correct
template and so the programmer neither knows nor cares what the actual
type of the lambda is.

But what if you want to hold the lambda in a variable?

 <type> square = [](int i){ return i * i; };
 int j = square(7);

The $64,000 question is: “What should replace <type> ?” The answer is
auto.

NSDMI (non-static data member initialisers)
In C++11 values can be provided for non-static data members that will be
used to provide the initial value (unless one is supplied in the initialisation
list of the constructor). For example:

 class x {
 int i = 128;
 double d = 2.71828;
 };

Could you instead write:

 class x {
 auto i = 128;
 auto d = 2.71828;
 };
June 2013 | Overload | 5

FEATURE ROGER ORR

The basic principle behind auto is that the
compiler knows the type … but you either
can’t describe it or don’t want to
Short answer: no. This was rejected ... see ‘Where can’t you use it?’ below
for a bit more detail about the reasons for this.

Range-based for
C++11 added syntactic sugar to support simple syntax for iteration over
containers, for example:

 for (std::string x : container) {
 // do something with 'x'
 }

which is a simpler and safer way to write:

 for (std::vector<std::string>::const_iterator it
 = container.begin(); it != container.end();
 ++it) {
 std::string x = *it;
 // do something with 'x'
 }

The auto keyword is allowed in this context too, so you can write:

 for (auto x : container) {
 ...
 }

and the compiler will deduce the correct type for x to match the elements
in the container.

The use of references and const allows more control over whether the
loop variable is a value or a reference and whether or not it is constant:

 for (auto & x : container) {
 x += ...
 }

Or

 for (auto const & x : container) {
 ...
 }

(Note that in the first example the type of x is already a const reference
if the container is const.)

Specification note
You may or may not care that range-based for is actually specified in terms
of auto (see Listing 1).

The decltype keyword
The keyword decltype obtains the type of an expression. In C++03 there
was no easy way to do this and various tricks were invented to provide
various derived types – for example by using nested typedefs or
associated traits classes. While auto allows you to declare a variable of
the same type as an expression, decltype provides a more general
technique. For example, declaring a variable without an initial value:

 std::vector<int> vec;
 decltype(vec.begin()) iter;

There are some subtle differences declaring a variable with decltype and
with auto, which I will touch on later.

Where must you use it?
The basic principle behind auto is that the compiler knows the type …
but you either can’t describe it or don’t want to. There is one primary use-
case where you cannot name the type – with lambdas. Lambdas are most
often used as arguments to other functions. However, if you want one as
a local variable, the standard states (5.1.2p3) that the type of the lambda-
expression “is a unique, unnamed nonunion class type – called the closure
type” (my italics)

What this means is you the programmer cannot name the type (as the type
is unnamed), nor can you even use decltype to declare a variable to hold
the lamdba (as the type is unique so the type in the decltype won’t match
the actual type of the expression).

Side note:

A small number of types in the standard are specified as unspecified so you
cannot name them portably. auto gives you a way to create variables of
those types; however this is almost never a genuine problem as the number
of use cases when you genuinely need to do this is vanishingly small!

What is the actual type of a lambda variable?
Listing 2 is a simple example of a variable holding a lambda.

Listing 1

{
 auto && __range = range-init;
 for (auto __begin = begin-expr,
 __end = end-expr;
 __begin != __end;
 ++__begin) {
 for-range-declaration = *__begin;
 statement
 }
}

Listing 2

int main()
{
 auto sum = [] (int x, int y)
 { return x + y; };

 int i(1);
 int j(2);
 // ...
 std::cout << i << "+" << j << "="
 << sum(i, j) << std::endl;
}

6 | Overload | June 2013

FEATUREROGER ORR
In this contrived example the lambda is created and assigned to sum at the
start of main and then invoked at the end of main in the output operation.
But, if we are curious, we may be wondering what actually is the type of
the variable holding the lambda.

We cannot name it in our code, but we are allowed to perform some other
operations on the type.

We may for instance try to get some information by using typeinfo, for
example with: typeid(sum).name()

The actual output is implementation specified, I obtain this with MSVC:

 class <lambda_8f4bf0680d354484748e55d11883b00a>

and this with gcc:

 Z4mainEUliiE_

(this name demangles to main::{lambda(int, int)#1})

This gives some hint about possible implementation strategies in each
case, but obviously code like this is of very limited practical utility.

An alternative solution
Very commonly of course we are not interested in the precise type of the
variable but more in what we can do with it. We could then make use of
the C++ function class to hold the variable:

 std::function<int(int, int)> sum = [](int i,
 int j) ...

This technique employs type erasure behind the scenes – the actual lambda
type is hidden inside the std::function object at the cost of a small
runtime penalty. (auto avoids this penalty.)

This looks very similar to the following C# code:

 Func<int, int, int> sum = (int x, int y) => {...}

Are lambdas the only place to use auto?
Declaring variables to hold lambda expressions is, I believe, the only time
auto is mandatory in your code. However most people recommend you
use auto in (at least some of) the cases where giving the name of type
yourself is a valid option.

Herb Sutter, for example, wrote: “For example, virtually every five-line
modern C++ code example will say “auto” somewhere.” [Sutter]

As the quotation from G.K.Chesterton implies, being allowed to use auto
does not mean this is always the right thing to do. I will look in the
subsequent article about some of the forces involved in deciding when to
use (and when not to use) the auto keyword.

Where can’t you use it?
In C++11 you cannot use auto:

 As the type of lambda arguments:

 auto sum = [] (auto x, auto y)
 // not (currently) legal
 { /*...*/ }

This however was voted into the next release – C++14 – at this
April’s WG21 meeting; and is already in some recent versions of
gcc.

What this generates is a lambda which can take different argument
types – a sort of ‘lambda template’. This has been named
‘polymorphic lambda’ and you may well have heard some of the
discussion about this feature, which is one of the most common
requests people make for extensions to lambda.

 To declare function return types without a trailing-return-type
declaration

 auto func() { return 42; }
 // not (currently) legal

This also was voted into C++14 – compilers will be able to deduce
the return type of func() from the type of the returned expression
(or expressions, if they are of equivalent type).

 To declare member data

 class X {
 auto field = 42; // error
 // ...
 };

As mentioned earlier, this idea was floated during the discussions
about auto for C++11, but there were concerns over whether this
change might make the parsing of class definitions too complex and
also over violations of the ODR (one definition rule) if the type of
the initialisation expression was different in two different translation
units.

Discussion on supporting this one has resurfaced recently and it is
possible there will be a proposal to add it to the language.

I note that C#, where the var keyword has much the same purpose
as auto for C++, also disallows fields being declared with var.
Perhaps this common choice indicates some deeper problems with
what at first sight seems to be a relatively straightforward extension.

 To declare function arguments

 void foo(auto i) { /*...*/ } // error

The idea here is that this declares a function foo that behaves like a
template and instantiates itself according to the type of argument
provided – the code above would be effectively equivalent to:

 template <typename __T1>
 void foo(__T1 i) { /* ... */ }

However, we already have function templates to do this job, and the
use of explicitly named template arguments rather than auto allows
you to express constraints between the arguments types more easily.
However, there is some interest in supporting this syntax and so it
may possibly be standardised at some time in the future, but is not
currently in scope. It may be introduced as part of the ‘concepts lite’
development that is being formalised as a Technical Specification
since this may provide the vocabulary to express constraints
between the arguments.

Conclusion
C++11 contains a number of new features, some of which are somewhat
complicated or obscure. The auto keyword though seems to be relatively
safe and easy to use and allows complicated variable declarations to be
greatly simplified. When used in conjunction with the range-based for loop
the resultant code, to my mind at least, expresses intent much more clearly
than the equivalent C++03 code and with very few downsides.

However, the use of auto is not always so cut and dried – and there are
also some subtle interactions with const and r-value references. In the
next article I will explore in more detail when you might wish to use auto
and when you might prefer not to use it (and why). I will also cover some
of the cases where auto produces different behaviour from what you
might expect.

Acknowledgements
This article is based on the presentation with the same title at ACCU 2013.

Many thanks to Christof Meerwald, Irfan Butt, Sam Saariste and the
Overload reviewers for their suggestions and corrections, which have
helped to improve this article.

References
[Meyers12a] http://www.aristeia.com/C++11/

C++11FeatureAvailability.htm

[Meyers12b] ‘Universal References in C++’, Scott Meyers (Overload
111)

[N1478] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/
n1478.pdf

[Stroustrup] http://www.stroustrup.com/C++11FAQ.html#auto

[Sutter] http://herbsutter.com/elements-of-modern-c-style/
June 2013 | Overload | 7

http://www.aristeia.com/C++11/C++11FeatureAvailability.htm
http://www.aristeia.com/C++11/C++11FeatureAvailability.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://herbsutter.com/elements-of-modern-c-style/

FEATURE SERGEY IGNATCHENKO
TCP/IP Explained. A Bit
Nowadays most programmers rely on network connectivity,
often without really understanding the details. Sergey
Ignatchenko compares and contrasts the two main protocols.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide with the opinions of
the translator or the Overload editor. Please also keep in mind that
translation difficulties from Lapine (like those described in
[Loganberry04]) might have prevented providing an exact
translation. In addition, both the translators and Overload expressly
disclaim all responsibility from any action or inaction resulting from
reading this article.

CP/IP is widely used on one hand – most applications, apps and
applets use some kind of connectivity these days – and yet
paradoxically is not widely understood. While there is a strong

temptation to just use TCP as a ‘magic box that works’, and most of the
time it does indeed work as expected, there are still pitfalls in the cases
when it doesn’t.

This article does not intend to discuss specific APIs in detail (those
interested may refer to an appropriate book or reference; for example, for
*nix APIs, [Stevens98/04] provides a great read and reference); rather, it
attempts to describe some common issues with TCP/IP that might not be
obvious from API references.

It should also be mentioned that this area is still evolving and there may
be recent developments which are not reflected here; as usual, please take
everything you read (including this article) with a pinch of salt.

TCP vs UDP
Everything which travels over the Internet is represented by an IP (Internet
Protocol) packet (for the purposes of this article, there is no difference
between IPv4 and IPv6 packets). As IP packets travel across the Internet
any router on the way may drop them; recovery from such dropped packets
must be handled by the client and server computers involved in sending
and receiving the data.

Both TCP and UDP are protocols which are implemented on top of the IP
packet mechanism, so technically TCP and UDP are in the same ‘Transport
layer’ of the ‘Internet Protocol Suite’. However, when looking at UDP we
find that it is a basic IP packet with only simple additional information (like
UDP port), and without any built-in mechanism to detect dropped packets.
This means that if you’re using UDP you’re on your own with regards to
detecting dropped packets and recovering from them – this is exactly why
UDP is often referred to as an ‘unreliable’ protocol. In practice, the use of
UDP is usually limited to scenarios when the delay of data is more harmful
than the partial loss of data; one specific example is VoIP/video delivery

protocols such as Real-time Transport Protocol (RTP) (while RTP may
work over TCP, in practice UDP is usually used).

One feature which is present in UDP (but is not present in TCP) is multi-
casting – when the same packet may be delivered to multiple locations,
though these locations will still be identified by a single IP address. But
while it is the case that one-to-many delivery looks interesting, a word of
caution is necessary: the last time I checked, multi-cast wasn’t generally
supported by Internet routers, and it didn’t look likely that this was going
to change. This means that if you want to use multi-cast on an Intranet (with
full control over routers and network administrators willing to help you,
possibly including VPN-based network connections) it has a reasonably
good chance of working, but if you need multi-cast over the public Internet
you’re likely to be out of luck. If you’re desperate for multi-cast over the
Internet by all means try it (things might have changed), but make sure that
you’ve tested it in a real-world environment before committing to any
large-scale development.

T

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He is currently holding the position of
Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com

TCP UDP

Stands for... Transmission Control
Protocol

User Datagram Protocol

Is... Stream-based Message-based

Base for... HTTP, HTTPS, FTP,
SMTP, POP3, IMAP,
Telnet, ...

DNS (most of), SNMP,
TFTP, RTP (used for
VoIP), ...

Ordering Guarantees stream
consistency

No guarantees on order of
messages

Reliability ‘Reliable’ (there is an ACK
packet; automatically
handles retransmits)
Reliability is limited by
checksum being 16-bit

‘Unreliable’ (no ACK, no
automated retransmits) If
message is received,
integrity is ensured by 16-
bit checksum

Packet
header size,
(including
typical IP
header size)

40 bytes (60 bytes for
IPv6)

28 bytes (48 bytes for
IPv6)

Flow control Present; if channel is busy,
TCP slows down

Not present; if developer is
not careful, can cause data
loss due to sending rate
being higher than the
receiver processing rate

Congestion
control

Present Not present; if the
developer is not careful, it
may easily cause
congestion

Is Internet-
friendly

Usually yes Depends on how it is used

Connection
overhead

3 packets to establish
connection, 4 packets to
terminate gracefully

None

Delays Potentially increased Minimal

Comparing TCP and UDP
8 | Overload | June 2013

FEATURESERGEY IGNATCHENKO
Unlike UDP, TCP is a ‘reliable’ protocol; this means that TCP
detects IP packets that have been lost, re-transmits the request,
and eventually gets the requested packet or the TCP
connection becomes broken – and all of this happens
almost invisibly to the developer. ‘Almost’ refers to the
fact that nothing comes for free, and one needs to pay for
the reliability with potentially increased delays which
can be an observable effect at the application level.

One common misconception in ‘TCP vs UDP’ discussions is the argument
that ‘UDP is faster’. This is not really a statement which can be argued to
be right or wrong without further clarification – knowing what kind of
‘faster’ is needed. On the one hand UDP does provide better control over
delays, but on the other hand, from the point of view of pure throughput,
it is extremely difficult to build a UDP-based protocol which is able to
compete with TCP over the Internet.

Overall, for applications which do not care about delays too much, TCP
is usually a much better choice. However, there are still some caveats.

TCP caveat – reliability
While TCP is a ‘reliable’ protocol, it’s not absolute: as TCP checksums
are only 16-bits long, if an IP packet is randomly corrupted on the way
there is a 1 in 65536 (or ~0.0015%) chance that the checksum will be the
same and the corruption will not be detected. In practice this has two
implications. First one is: ‘never ever rely on the reliability of bare TCP
transfers’; if one needs to transfer an important file it is necessary to do an
extra check that the file has been transferred correctly (for example, by
using SHA-1 or similar checksum on the whole file). While guarantees
provided by SHA-1 are also not absolute, the probability of a corrupted
file being undetected by SHA-1 is 1 in 2160, which can be roughly
translated as ‘not in your lifetime’ (even the long lifetime of an ithé1 such
as yourself). It should be noted that if SSL-over-TCP (or TLS-over-TCP)
in which additional checks are used, the reliability of the transfer can
usually be assumed. The second implication is that if, for example, one
needs to transfer over a not-so-good link (and all links involving the ‘last
mile’ to a home user should be deemed as potentially unreliable) a multi-
gigabyte file with a SHA-1 checksum on the whole file (to guarantee
integrity), it might be prudent to transfer the file in chunks with a checksum
on each chunk; this way if TCP did allow a corrupted packet through, one
will be able to re-transmit only the offending chunk instead of re-
transmitting the whole multi-gigabyte file.

TCP caveat – interactivity
In general TCP has not been built for interactive communications, but
mostly for long and steady file transfer; delays on the order of minutes have
never been considered a problem for TCP. This means that a delay in the
order of minutes is not a fault, it is a feature. The question is what to do
when you need an interactive communication. While writing your own
reliable protocol over UDP might sound like a good idea, it rarely is. On
the one hand, any reliable protocol is highly complicated so it is very easy

to make a
costly mistake; on the
other hand, TCP has at least
s om e m ean s t o h e l p wi th
interactivity.

The first thing which is usually
mentioned as a way to improve the interactivity of TCP connection is the
TCP_NODELAY socket option. This might indeed help a bit, but one needs
to keep in mind several issues:

 TCP_NODELAY behaviour varies significantly from one platform to
another, so testing on all potential platforms is highly desirable; in
particular, on some platforms it has been reportedly observed it
affects the timing of re-transmissions in the case of dropped packets.

 It has been reported that it can affect the ‘PSH flag’, which might
improve interactivity too, but the exact effects again need to be
tested on all platforms.

 Usually TCP_NODELAY forces a packet to be sent immediately after
send() is called. This means that if your code is written in a
manner that calls send() for each single byte, then your code
would work ok without TCP_NODELAY (as the TCP stack will wait
before actually sending a packet, combining several send() calls
together using Nagle’s algorithm), but with TCP_NODELAY enabled
you’ll end up sending a 40-byte TCP+IP header for each call,
leading to up to a 40x overhead! Ouch! On the other hand, if your
code already combines all the available data before calling send()
(which is often a good idea anyway), then TCP_NODELAY may
indeed improve interactivity.

Hence if you don’t have problems with interactivity then don’t bother with
TCP_NODELAY; it is a rather risky option which, unless carefully tested,
may cause more problems than it solves.

Another thing which is not often mentioned but is at least as important for
interactivity, is the handling of ‘hung’ TCP connections. Have you ever
seen a web page which has stalled in the middle of being loaded, just to
press ‘reload’ and voila – the page is there in no time? Chances are it was
a ‘hung’ TCP connection. To make things worse, it might not be
technically ‘hung’ from a TCP point of view (as mentioned above, TCP
isn’t intended to care about a delay of a few minutes), but from the end-
user’s point of view it certainly feels like it. For example, a compliant TCP
stack is required to double the retry time each time, which means that if
the first retry is 1 second (the default in the TCP standard), and then 7
subsequent retries fail (and if we have packet loss of a mere 0.01% then
this will happen sooner or later given the number of packets in use1. ithé – n. man, human in general; from [Loganberry04]
June 2013 | Overload | 9

FEATURE SERGEY IGNATCHENKO
nowadays), we’re already in the 2-minute delay range; from TCP’s point
of view the connection is still alive and kicking, but for the end-user it is
not so clear, and the user would probably just prefer it if the application
detects the problem, cancels the old transfer and establishes a new
connection to retrieve the data (which is a heresy from the network point
of view, but forcing user to hit ‘reload’ to solve purely technical problem
is an even worse heresy from the user interface point of view).

In addition, TCP as such does not really provide the means to detect
connections which are really ‘hung’ even from the TCP point of view, e.g.
when other side is not reachable at all; the socket was closed by the server
but the RST response got lost on the way back; the server has been
powercycled, etc. When I first saw the socket SO_KEEPALIVE option I
thought ‘hey, this is exactly what I need!’; however, my excitement soon
faded when I realized that the default SO_KEEPALIVE timeout is 2 hours
(!), and while on Windows it can be changed in the registry there is no
way to change it programmatically. On Linux there are non-standard
options such as TCP_KEEPIDLE and so on, but as many clients are on
Windows it won’t help us much.

All of the above may easily result in the need to design your own keep-
alive subprotocol over a TCP connection, and doing it is quite an effort.
Still, it is much less time-consuming and error-prone than writing your
own reliable protocol over UDP (and if you don’t need reliability – you
may want to think about using UDP directly).

TCP caveat – single-channel throughput
While the original TCP (as specified in RFC 793) works over a
transatlantic link with its signal delays (a round-trip time of ~100ms,
although even worse are satellite links but these are rare in practice), there
is a well-known problem that maximum throughput of a single TCP
channel is limited; namely the Bandwidth-Delay Product [BW-D P] of
TCP is limited to 64K,which with the RTT above corresponds to approx.
5MBit/s; it means that if TCP is used, over a single transatlantic connection
it is not possible to obtain throughput over that even if all the paths between
hosts are multi-gigabit. To deal with this, ‘TCP window scaling’ was
introduced in RFC 1323 to increase this 64K limit. It does help, but there
are still a few things to know: first, for TCP scaling to work both the client
and server must support it; second, TCP window scaling is not enabled by
default in pre-Vista Windows, so XP clients are usually still limited. Also,
I know of people who were trying to establish a transfer in the gigabit/s
range over a single transatlantic TCP link (they have had both servers close

to the backbone, both servers
had TCP window enabled,
window scaling was used
according to Wireshark, etc.);
but they have found that a
single TCP link is still limited
to a speed in the order of a few
hundred Mbit/s. They didn’t
manage to find out what was
the underlying reason, but as a

work around ended up using multiple connections which has solved the
problem. My guess would be that at such speeds there was another
bottleneck (perhaps the application wasn’t able to write data with sufficient
speed, and if encryption was used it would explain a lot). The lesson of
this is that such bottlenecks are easy to run into, and if very high throughput
is needed it must be carefully tested.

At one time so-called ‘download accelerators’ were quite popular; these
were (and still are) quite efficient and often do improve download speeds
in practice. Almost all of them simply establish multiple connections to
the server, which apparently works well. The reason for the effectiveness
of download accelerators has only a weak relation to the TCP window limit
described above: while multiple connections from a client may indeed help
to bypass the 5MBit/s limit, another issue is usually much more important:
namely, if the server channel is limited, usually packets from all TCP
connections are dropped and/or delayed in the same manner and therefore
TCP connections are effectively throttled down proportionally. This
means that during throttling a client having two TCP connections will get
roughly twice as much data than a client having only one TCP connection,
at the expense of the other clients.

The bottom line about throughput – in most cases, you can get away with
a single TCP channel, but if getting the highest possible throughput is an
issue you need to be ready to investigate problems, and in extreme cases
may still need to use multiple TCP connections.

TCP caveat – packet loss resilience
One thing which should be noted about TCP is that, as a rule of thumb, it
becomes virtually unusable when packet loss exceeds a certain percentage,
in many cases within 5–10% range. Such a packet loss rate is usually
considered abnormal (normal values even for the last mile should be within
0.01–0.1%), though I’ve personally experienced ISP support who told me
“hey, 10% loss is ok, you still have 90% of the stuff going through, so we
won’t do anything about it”. It is unlikely to become a problem in practice,
and it is not clear if anything can be done about it, except for developing
our own reliable protocol over UDP, which is unlikely to be worth it for
all but very special applications.

TCP caveat – developers without a clue
One very common bug in TCP programs (probably the most common for
beginners) is related to the incorrect use of streaming APIs. By its very
nature TCP is a stream, so if on the sending side there is a single call to
10 | Overload | June 2013

FEATURESERGEY IGNATCHENKO
send(), on the receiving side there is absolutely no guarantee that there
will be exactly one successful call to recv(). In general the boundaries
between send() calls are not seen on the server side at all, so for any
number of send() calls there can be any number of recv() i.e. there is
no 1–1 correspondence.

To make matters worse, when testing a program on the same computer or
in a LAN the 1-to-1 relation between send() and recv() calls may
happen to be observed, but when going into a WAN, things can start to
fail from time to time. The only way to avoid it is to remember that TCP
is always a stream, and if one needs boundaries between messages within
this stream they must be introduced on top of TCP by the developer.

Another common problem with network programs (which applies both to
TCP and UDP), is developers sending C/C++ structures over the network
without marshaling. While this might work at first, in a project which aims
to live for more than a few days, it is a time bomb. If sending/receiving C/
C++ structures without marshaling, you do not really have a well-defined
protocol. Instead, you’re implicitly relying not only on the specific
platform (because of little-endian/big-endian stuff), but also relying on the
way a specific compiler applies alignment rules, and on stuff like
#pragma pack in a specific place where the header which defines
structure was included. If you don’t use marshaling, and then, at any point
down the road, you’ll decide to go cross-platform or even to use different
compiler for the same platform – the scale of the resulting problems due
to the lack of marshaling might easily prevent you from doing it. Think
more than twice before deciding not to marshal your data over the network.

TCP caveat – PMTUD
One of the very many features of TCP is ‘Path MTU Discovery’, or
PMTUD in short. It is a nice feature which aims to detect the maximum
packet size over the connection between client and server, and then to use
this information to improve throughput. Unfortunately, one misconfigured
router or firewall on the way may break it easily, leading to TCP
connections which work normally when packets are small, and hanging
forever when a large packet is seen. This was a big problem back 10 years
ago, although is now less of an issue but it still happens from time to time.
Usually it is considered a misconfiguration issue, but if it becomes a real
problem (in other words too many customers are complaining), there is a
chance to resolve it by using TCP_NODELAY and ensuring that all calls to
send() are limited to at most 512 bytes in size (disclaimer: this is a guess
from my side, and I’ve never tried such way of handling PMTUD myself;
also note that strictly speaking, formally it is guaranteed to fix the issue
only if the size is at most 28 bytes, but in practice 512 bytes should do
nicely).

Troubleshooting, testing and Wireshark
If you have problems with a TCP connection, or if you’re using any of the
not-so-common TCP options (and this includes TCP_NODELAY), it is
highly recommended to use a network analyzer to see what exactly is going
on. If your application is used over the public Internet, it is highly
recommended to test it with the server being as close to a real world one
as possible and with all the likely clients (the behaviour of different TCP
features may vary greatly from platform to platform). Testing over a link
with a high delay is highly desirable even if the application is expected to
be deployed over an Intranet. It should be noted that testing with high-delay
links does not necessarily require special hardware or servers on the other
side of the Atlantic. For example, for a low-traffic but highly-critical
application, we’ve ended up purchasing a dial-up connection with the hope
that if we can make it work reliably over that, it will work reliably under
all realistic scenarios; it turned out that we’ve indeed chosen a very good
way of testing.

When testing and analyzing TCP connectivity, a packet analyzer can be
of great help. One I can recommend is Wireshark; it is free, and does its
job wonderfully. One of the features I like the most, is the ability to analyze
tcpdump logs. This means that if I have a Linux or BSD server and a real-
life problem with one of the clients, I can, without installing Wireshark on
the server, run a tcpdump on the server (it’s usually part of a default

installation), filtering by the client I’m interested in by IP using tcpdump’s
options, then download tcpdump’s log to my desktop where Wireshark is
installed, and then see what was going on using Wireshark’s GUI. This
allows us to use full-scale analysis for real-world problems. One thing to
remember when using tcpdump for this purpose,is to use the -s 65535
option, otherwise on some platforms tcpdump packets may be truncated,
which might complicate analysis by Wireshark.

Firewall considerations
If one tries to build an application for the public Internet, a rabbit needs to
think about the entire path all the way from the server to the client. This
is likely to include firewalls at least for some of the clients. Usually,
firewalls out there are statistically very friendly to TCP connections, and
statistically a bit less friendly to UDP connections; in addition, UDP may
cause issues when a client is behind certain types of NAT.

On the other hand, if a developer tries to use port 80 (the usual port for
HTTP) for non-HTTP traffic in a naive attempt to bypass over-eager
firewalls, there is another potential issue – many ISPs (especially in 3rd-
world countries) use ‘transparent caching proxies’ on port 80, parsing
requests in an attempt to save on network traffic; what happens with such
proxies when a non-standard request comes in over port 80 is not defined
(in practice the result may vary from forwarding the request ‘as is’ to
hanging the whole proxy), so using port 80 for non-HTTP traffic cannot
be regarded as safe.

On HTTP
One protocol implemented on top of TCP is HTTP. In general, HTTP is
even more firewall-friendly than bare TCP, and if your conversation over
TCP is limited to a request-response pattern, in some cases it might be
worth to consider using HTTP instead (usually over port 80). In simple
cases you may limit your HTTP to HTTP 1.0, which is trivial to implement
at least on the client side. On the other hand, if you need multiple requests
over the same TCP connection (in order to avoid penalties of re-
establishing TCP, which might be quite large in case of multiple small
requests), you might need to implement HTTP 1.1, which is doable but is
a little bit more tricky. Alternatively, you may want to use HTTP APIs
which are already available on many platforms. When using APIs, it is
important to realize that as HTTP is implemented on top of TCP, so most
of the TCP caveats also apply to HTTP connections.

Epilogue
With TCP and UDP being cornerstones of the Internet, lots of developers
are bound to use them, either explicitly or implicitly. In many cases these
protocols (especially TCP) do their job marvelously without the need for
the developer to understand how they work. However, as there are only
two of these protocols for all the myriad of usage scenarios on the Internet
– sometimes they’re used under conditions for which they were not
designed; in such cases it may become necessary to understand how this
low-level stuff works under the hood. I hope that this article is a good
starting point.

References
[BW-D P] http://en.wikipedia.org/wiki/Bandwidth-delay_product

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[Stevens98/04] UNIX Network Programming: Networking APIs: Sockets
and XTI; Volume 1 W. Richard Stevens

Acknowledgement
Cartoons by Sergey Gordeev from Gordeev Animation Graphics, Prague.
June 2013 | Overload | 11

http://en.wikipedia.org/wiki/Bandwidth-delay_product
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATURE OLVE MAUDAL
Demons May Fly Out Of Your Nose
Language standards give guarantees about valid
program behaviour. Olve Maudel discovers what
happens if you break your end of the bargain.
 is one of the most widely used programming languages of all time.
It is still the preferred language in many domains. With C you get
direct access to the hardware and you only get exactly what you ask

for. Often this is what you need. But, as we all know, with great power
comes great responsibility. One of the responsibilities is to learn and
understand the contract between yourself and the compiler. If you break
the contract, then anything can, and will, happen.

Consider the C snippet in Listing 1. You might say that this program prints
"347", but are you sure about that? Could the code print "437" instead? Do
you understand C well enough to defend your answer? Most programmers
assume that expressions are evaluated in a certain order, usually from left
to right. This is a valid assumption for most modern programming
languages, and if you rewrite the code above into, say Java, C#, Python or
Ruby, then you are guaranteed to get "347". C is unlike modern
programming languages in many ways. One of them being that in C the
evaluation order of expressions is mostly unspecified. For the code snippet
above, both "347" and "437" are valid answers.

Is this a bug in the language specification? No, it is a feature, an important
feature actually. With loose evaluation, the compiler is able to create very
efficient code on a wide range of hardware platforms. This is exactly one
of the design goals for C – portability and speed.

Sequence points
Let’s take a look at another C snippet:

 int v[] = {2,4,6,8,10,12};
 int i = 1;
 int n = ++i + v[++i];
 // what is the value of n?

A similar code snippet in, say Java, is perfectly OK, well defined, and the
value of n will be 2+v[3]=2+8=10. Most C compilers will happily create
an executable from this code snippet, you will typically not get any
warnings, and when you execute the code you might get 9, 10, 11, 12, 42
or whatever. This is a classic example of undefined behaviour in C. Not
only can you end up with any random value, but when you have undefined
behaviour anywhere in your code, the whole program is invalid – anything
can happen! Really! One of the basic design principles in C is that the
compiler is allowed to assume that you as a programmer only write correct
code and therefore the compiler can, and will, make all kinds of ‘shortcuts’
when compiling your code. Or, in other words, it will certainly not waste
any CPU-cycles to create a safety net around your code. If you break the
contract, then the whole execution state of the program will be corrupt. In
a one million line C program, a snippet like the one above invalidates the

entire program. In theory, the program might end up formatting your hard
drive or shut down the cooling system of the nuclear reactor, or, as they
say on comp.std.c [JargonFile] – “When the compiler encounters [a
given undefined construct] it is legal for it to make demons fly out of your
nose”.

You may argue that you never write code like this (of course you don’t, I
believe you). However, it is not enough to just say that you never write
code like this, it is not enough to know that this is invalid code, you need
to have an understanding of your programming language that is deep
enough to also explain why this is invalid C code. To program correct C
you need a deep understanding of the language [Maudal11].

If you reflect on the fact that the evaluation order of expressions in C is
mostly unspecified, you might come up with a reasonable argument for
why

 int n = ++i + v[++i];

gives unpredictable result. As you cannot assume a certain evaluation
order, then you do not know if the side effect of the first ++i will happen
before or after evaluating v[++i]. There is a contract between the
programmer and the compiler that has now been broken. The contract, as
defined in the C standard, says that if you update a variable twice between
two sequence points, then you get undefined behaviour. Sequence points
are like heart beats of a C program. There will be a sequence point at the
end of a full expression, before a function is entered in a function call, and
a few other places, but sequence points are surprisingly sparse in C. There
is often a lot of code that needs to be evaluated between two sequence
points. At a sequence point in the code, all side effects of previous
evaluations will be completed, but between sequence points you are not
allowed to make any assumptions about the state of involved variables.
This also means that in C, unlike most other languages, the following
expression leads to undefined behaviour

 v[i] = i++;

because the assignment operator does not represent a sequence point in C.

Having few sequence points gives the compiler much freedom when
optimizing the code. The compiler is allowed, and expected, to just
evaluate the expression in a way that is optimal for the current hardware
without even considering the possibility that a variable might be updated

C

Olve Maudal works for Cisco Systems in Normay where he
involved in developing videoconference and telepresence systems.
Olve has been working a lot with C and C++ in the last 20 years:
previous experience includes systems for mobile payments, bank
transactions and seismic exploration. He can be contacted at
oma@pvv.org

Listing 1

#include <stdio.h>

int a() { printf("3"); return 3; }
int b() { printf("4"); return 4; }

int main(void)
{
 int c = a() + b();
 printf("%d\n", c);
}

12 | Overload | June 2013

FEATUREOLVE MAUDAL
twice between sequence points. A complex expression for example, can
result in the compiler building up a long pipeline of powerful machine
instructions to be churned through the CPU in the most efficient way
happily ignoring all potential conflicting side effects.

Signed integer overflow
In C, a signed integer overflow also gives undefined behaviour. Hardware
architectures handle integer overflow in different ways and C responds by
saying that if that happens, then the compiler is not to blame. So the
following function can give undefined behaviour and invalidate the whole
program:

 int the_answer(int seed)
 {
 int answer = seed + 42;
 return answer - seed;
 }

It is not the function itself that is the issue here, suppose this function is
called with

 the_answer(INT_MAX)

then the contract is broken and the compiler is not responsible for the
consequences. Of course, in this particular case, the compiler will probably
not be able to see what is going on. Benign code will be created and if you
know the underlying hardware well enough, you might get a result you
expected. The whole program might work just fine – until you try to
compile it for another hardware platform, or you change the optimization
level.

C has many similar cases of undefined behaviour. Is this a good thing as
well? Is it a feature? Let’s turn it around instead. Can you imagine how
many extra machine code instructions would be needed to make edge cases
like this portable across many hardware platforms? Perhaps you would
need a virtual machine that the code could run on? Perhaps you would need
fancy exception handling mechanisms that could flag run time errors like
this? Well, there are languages that do these kinds of things, but C is not
one of them. If you appreciate execution speed and direct access to native
hardware, then declaring certain corner cases as undefined behaviour is
often a good solution.

Surprising results
Believe it or not, there are examples of compilers that do pull pranks on
you when encountering undefined behaviour [Wikipedia], but no reports
so far confirms that a compiler actually try to make nasal demons fly out
of your nose. The compilers usually try to be friendly and do the best they
can. However, sometimes the compiler makes assumptions that can give
very surprising results.

Here is a dramatic illustration of what might happen when breaking the
rules of the language. As you know, in C all variables with non-static
storage duration must be given an explicit value before they can be used,
otherwise you break the contract and the compiler is no longer to blame
for the consequences.

 bool b;
 if (b)
 printf("b is true\n");
 if (!b)
 printf("b is false\n");

Suppose you found this somewhere in your code. You immediately see that
this is undefined behaviour since b is not properly initialized before use,
and from a theoretical point of view anything can happen now (for
example, nasal demons). You might, however, from a practical point of
view, expect that the code will always either print b is true or b is
false, but even that is not guaranteed. A compiler might use a byte in
memory to represent a bool, and at the same time assume that this byte in
memory, since it is a bool, can only have the bit pattern 00000000 or
00000001. With that assumption the compiler might generate machine
instructions similar to the pseudo-code in Listing 2, which assumes that
$b is either 0 or 1.

Try to follow the code: If the value of b is 1, then the code will print "b
is true", if b is 0 then it will print "b is false", but if b is a random
value, say 42, then this code snippet will print:

 b is true
 b is false

Indeed, what I just described, is exactly what happens with a very popular
C compiler if the bit pattern of the byte used to represent bool b happens
to become anything but 0 or 1. (see [Shroyer12] for more info)

This never happens in real code? Does it? Yes it happens! All the time!
You typically observe the effects of undefined behaviour when you
increase the optimization level, change the compiler or just update to a new
version of the same compiler. If you have code that works just fine in one
optimization level, but not when you change the optimization level – then
you might want to start looking for undefined behaviour in your code. The
compiler is not only allowed, but also expected, to generate code that is as
efficient as legally possible. This means for example, that it will not, and
should not, create any machine code instructions to check for or
compensate for the possibility of invalid data.

ConclusIon
To program correct C you need to have a deep understanding of the
programming language. You need to understand the contract between the
programmer and the compiler, because if you break the contract then the
compiler can, and probably will, create code that give unexpected results.

References
[JargonFile] ‘nasal demons’, http://www.catb.org/jargon/html/N/nasal-

demons.html

[Maudal11] ‘Deep C (and C++)’ http://www.slideshare.net/olvemaudal/
deep-c

[Shroyer12] Mark Shroyer ‘Both true and false: a Zen moment with C’
http://http://markshroyer.com/2012/06/c-both-true-and-false/

[Wikipedia] ‘Undefined behavior’, http://en.wikipedia.org/wiki/
Undefined_behavior

Listing 2

load_a $b ; load value of b into register A
compare_a 0 ; compare register A to 0
jump_equal label1 ; skip next statement if A == 0
call print_b_is_true ; print "b is true"
label1:
 load_a $b ; load value of b into register A
 xor_a 1 ; xor register A with 1
 compare_a 0 ; compare register A to 0
 jump_equal label2 ; skip next statement if A == 0
 call print_b_is_false ; print "b is false"
label2:
June 2013 | Overload | 13

http://www.catb.org/jargon/html/N/nasal-demons.html
http://www.catb.org/jargon/html/N/nasal-demons.html
http://www.slideshare.net/olvemaudal/deep-c
http://www.slideshare.net/olvemaudal/deep-c
http://markshroyer.com/2012/06/c-both-true-and-false/
http://en.wikipedia.org/wiki/Undefined_behavior
http://en.wikipedia.org/wiki/Undefined_behavior

FEATURE FILIP VAN LAENEN
Wallpaper Rotation on Ubuntu
using Ruby and Flickr
Repetitive tasks are ideal candidates for scripting.
Filip van Laenen walks us through a simple example.
ne of the benefits of being a programmer is that you can set up your
computer to do things just the way you want, even if there’s no
program for it. I once wrote a podcatcher that downloads and

manipulates podcasts so that I can listen to them in the right order. One
reason for doing that was that I wanted to learn more about the technology
involved, but I also felt that the podcatching programs that I had tried out
didn’t really do what I wanted them to do. May’s issue of C Vu
[vanLaenen13] contains another example: a script to back up my computer
files just the way I want it. In this article, I’ll explain a little program
[WRUF] that I wrote to rotate the wallpaper on my Ubuntu laptop because
I didn’t feel other wallpaper rotation tools did what I wanted them to do.

The requirements
Let’s start by sketching out the requirements for our little program.
Basically, what I wanted was something that could change the wallpaper
on my laptop once in a while. If possible, the wallpaper should be decorated
with a small calendar, and some information about what the picture is about
and where it comes from. An obvious choice to look for interesting pictures
is Flickr [Flickr], a photo sharing website that I use to share my personal
pictures with family and friends.

There are of course many other sources one could use to fetch interesting
pictures from. Competitors of Flickr like Instagram and Picasa spring to
mind, but also NASA’s picture of the day, or press agencies like Reuters
are good sources of pictures that could serve as wallpaper.

Flickr REST API
Flickr provides a REST API [FlickrAPI] through which you can search for
pictures using keywords, one of the search modes being searching for the
most ‘interesting’ pictures [Google]. You can use the same REST API to
fetch pictures from groups, your private photostream, your favorites, or the
photostream of friends and family. If you authenticate yourself, you can
also use the same API to fetch private pictures, update information or
upload pictures.

If you’re interested in learning more about REST and how you can
document a REST API, I think the Flickr REST API website is a great place
to start. I think the format they use works really well, and when you browse
through the documentation, you’ll get a lot of inspiration about how
resources and parameters should be named, default values, etc.

Accessing Flickr from Ruby
If you want to access Flickr from Ruby, there are basically two alternatives.
One alternative is to use the REST API directly, but it’s also possible to
use one of the many specialized libraries (or gems in Ruby-speak). Both

have advantages and drawbacks. If you only need to access a very limited
set of services (resources) of the Flickr REST API, and you’re not already
used to using one of the Ruby Flickr libraries, accessing the Flickr REST
API directly is not a bad choice. Just finding out which library is the right
one for your project, e.g. based on activity in the project, the
documentation and the API, may in itself take more time than
implementing a simple REST call or two. On the other hand, if you’re
going to access many of the Flickr REST API resources, using one of the
libraries may be a better idea.

In the case of WRUF, I chose to access the Flickr REST API directly in a
class called FlickrSearcher. Listing 1 shows the class’s method that
deals with executing a basic REST call and returning its result. Accessing
a Flickr REST API resource is then as simple as building up the correct
form data, invoking the do_rest_request method, and filtering the
data we’re interested in from the result that’s returned by the method.

Listing 2 shows how we build up the form data in order to search for an
interesting picture. [Flickr2] The first parameter we have to set is the
method name parameter, which is the search method in this case. Next, we
add the API key for our application. Flickr uses this key to keep track of
the applications that use its API (and probably also to blacklist you if you
don't behave properly). Applying for a key doesn’t take much time, and is
free as long as you’re not going to use it for commercial activities.
[FlickrKey]

The search method doesn’t require any authentication, so we’re not adding
our user_id or any other authentication information. The rest of the form
data then controls how the search is performed. First, the extras parameter
lists the additional information we’d like to see included in the search
result. We need the original dimensions of the picture in order to filter the
ones that are too small, and in addition we need to know the original format
(typically JPEG) in order to build up the picture URL correctly. We specify

O

Listing 1

FlickRestServicesUri =
 'http://api.flickr.com/services/rest/'
def do_rest_request(form_data)
 uri = URI.parse(FlickRestServicesUri)
 http = Net::HTTP.new(uri.host, uri.port)
 request = Net::HTTP::Get.new(uri.path)
 request.set_form_data(form_data)
 request = Net::HTTP::Get.new(uri.path + '?' +
 request.body)
 response = http.request(request)
 case response
 when Net::HTTPSuccess, Net::HTTPRedirection
 return REXML::Document.new(response.body)
 else
 raise "An error occured while trying to
access Flickr."
 end
end

Filip van Laenen is a chief technologist at the Norwegian software
company Computas. He has a special interest in software
engineering, security, Java and Ruby, and likes to do some hacking
on his Ubuntu laptop in his spare time. He can be contacted at
f.a.vanlaenen@ieee.org
14 | Overload | June 2013

FEATUREFILIP VAN LAENEN

it’s sufficient to store the URLs of all the photos
we’ve used as wallpaper so far, and match any

potential wallpaper candidates against the list
June 2013 | Overload | 15

REST as the format for the response in the format parameter, so that we
can use XPath to extract information from the search result. Media is set
to photos, so we don’t get any videos in our search result. The page
parameter is used to specify the search result page we want to return. The
parameter safe_search is set to 1, in order to filter out pictures that
would be ‘too interesting’. Notice that since we call the search method
unauthenticated, search results will already be filtered to be safe, so this
is just a precaution. The sort parameter is set to descending by
interestingness, so we get the most interesting pictures first. Finally, if the
method is called with a set of tags, we add them as a comma-separated list.
Notice that tags that are prefixed with a minus sign (-) will be used to
exclude matches from the result. We also set the tag mode to any, which
results in an OR combination of the tags (the default). If you want an AND
combination, you have to set this parameter to all.

Framing a picture
Unless we’ve chosen some very particular keywords, a search on Flickr
will return a vast number of photos. Of course, these photos will have a
wide range of dimensions, and not all of them will fit the desired desktop
size. How do we select the photos that do fit?

In plain words, the rule to select photos is not so difficult. First of all, the
photo should be larger than the desktop size in absolute terms.
Furthermore, the ratio between height and width for the photo and the
desktop should be equal within a given margin of tolerance. Finally, the
photo should be one that we haven’t used before.

Listing 3 shows how this selection process is implemented in WRUF. One
of the great things about Ruby is that it has blocks (and lambda
expressions). These blocks can be used as parameters, and probably the
most common way to use them is in the API for collections. In this listing,
blocks are used as a parameter for the methods select and reject. They are
used by these methods to filter the initial collection of search results down
to a collection of photos that can be used as wallpapers. Have a look at the
first call, which says that only those elements (e) should be retained
(selected) which have an attribute called o_width that when converted
to an integer is larger or equal to our desired field width. Notice also that
the select method returns the resulting collection, so that we can chain all
calls together without having to assign and reassign to a local variable.

In order to get the initial collection, we use an XPath expression on the
XML object that was returned by the Flickr search method call. And once
we’ve narrowed the collection of photos down to the ones that can be used
as a wallpaper, we simply call first to return the first element. If the
resulting collection turns out to be empty, the method will return null,
and a new call to the Flickr search method should be issued in order to get
the next search page.

I’m sure there are more efficient ways to filter out the photos with the right
ratio than the two-pass filtering I use. However, performance hasn’t been
an issue yet, so I haven’t cared to look into it more deeply. Considering
that computers are terribly fast at the simple arithmetic involved in the

calculations in Listing 3, that the program will run in the
background anyway, and that it won’t do the calculations for
more than a couple of hundreds, or at worst a couple of thousands
photos once a day or so, just writing the lines in this paragraph
probably cost me more time than I’ll ever be able to save.

Keeping track of history
Talking about time, our little program also keeps track of history.
In our case, it’s sufficient to store the URLs of all the photos
we’ve used as wallpaper so far, and match any potential
wallpaper candidates against the list. If we’re going to switch
wallpaper only once a day, the list won’t be longer than a couple
of hundred URLs in the course of a year. We can therefore store
the URLs in a simple flat file, one URL on every line. Adding a
URL to the history file is then as simple as appending it to the
end. Reading the history file is simple too: just create an empty
array, and add every line as a new element to it.

Listing 2

PhotosSearchMethod = 'flickr.photos.search'
ApiKey = <Your Application's API Key>

def create_form_data_to_search_photos(tags, i)
 form_data = {'method' => PhotosSearchMethod,
 'api_key' => ApiKey,
 'extras' => 'o_dims,original_format',
 'format' => 'rest',
 'media' => 'photos',
 'page' => i.to_s,
 'safe_search' => '1',
 'sort' => 'interestingness-desc',
 'tag_mode' => 'any'}
 if (tags != nil)
 form_data['tags'] = tags.join(',')
 end
 return form_data
end

Listing 3

def get_photo_info(info_set, history)
 return info_set.get_elements ('rsp/photos/photo') \
 .select{|e| e.attributes['o_width'].to_i >= @width} \
 .select{|e| e.attributes['o_height'].to_i >= @height} \
 .select{|e| (e.attributes['o_height'].to_f / \
 e.attributes['o_width'].to_f) / \
 (@height.to_f / @width.to_f) < \
 1.to_f + @tolerance} \
 .select{|e| (@height.to_f / @width.to_f) / \
 (e.attributes['o_height'].to_f / \
 e.attributes['o_width'].to_f) < \
 1.to_f + @tolerance} \
 .reject{|e| history.include?(get_photo_url(e))} \
 .first
end

FEATURE FILIP VAN LAENEN

our particular requirement for handling
history –never ever reuse a photo as a
wallpaper– simplified matters substantially
There are of course alternatives to storing the URLs in a flat file. One
option would have been to use an XML file, but that would only have made
sense if the data structure would have been more complicated. The same
is true for storing the URLs in a database, but in addition to that, using a
database would have added a dependency to the system, and complicated

matters substantially. Not using a database at all is a big feature, especially
at installation time.

At the same time, it should be noted that our particular requirement for
handling history –never ever reuse a photo as a wallpaper– simplified
matters substantially. Other users may prefer to be able to reuse photos as

wallpaper after a certain number of days. I’ve
found out that as long as your keywords are
‘normal’, Flickr has such a vast amount of
interesting photos that there’s really no need to
reuse any of them. You could probably change
wallpaper every hour or every minute, and there
would still be enough photos to chose from.

Decorating a picture through SVG
Before I set a photo as a wallpaper, I would like to
decorate it with its title, its author, its URL, and a
little calendar. Title, author and URL are useful in
case I want to look up the photo on the internet (e.g.
because I like it and would like to favorite it in
Flickr). Of maybe I just want to see what the picture
is about and who created it. The calendar is more
of a gimmick, but I like to have it on my wallpaper
for quick reference.

The strategy I chose to decorate the photo is to
include it in an SVG image, and add the texts on
top of it. SVG [SVG] stands for Scalable Vector
Graphics, an XML format to define, well, vector
graphics. Listing 4 shows how an SVG file to
decorate a wallpaper photo typically looks like.
Let’s walk through it.

The file starts with an XML header, defining it as
an SVG 1.1 document. The svg element is the root
element, and it also sets the dimensions of the
image as 768 × 1366. In SVG, elements are drawn
on top of each other in the same order as they
appear in the XML document, so the first thing we
want to draw is the photo. The image element does
just that, referring to the file name where the photo
can be found. The photo is scaled proportionally so
that either the height or the width match the size of
the screen, with the non-matching dimension being
slightly larger. Using the x and y attributes, the
photo is also the positioned such that its middle will
be in the middle of the SVG image, and therefore
also of the screen.

Notice that the name of the photo file isn’t the real
name of the photo as it can be found on Flickr, but
a SHA-1 digest of its URL. There are two reasons
for doing so. First of all, since the URLs will be

Listing 4

<?xml version='1.0' standalone='no'?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/
Graphics/SVG/1.1/DTD/svg11.dtd">
<svg height='768' version='1.1' width='1366' xmlns:xlink='http://
www.w3.org/1999/xlink' xmlns='http://www.w3.org/2000/svg'>
 <image height='911'
xlink:href='0ac9b2fc1f8ab4b73b26608259e11683a03f90dd.jpg'
width='1366.0' x='-0.0' y='-71'/>
 <g id='photo_info'>
 <text fill='#FFCC11' font-family='Ubuntu' font-size='16' font-
weight='bold' x='68' y='649'>Man Made Cascade, Virginia Water</text>
 <text fill='#FFCC11' font-family='Ubuntu' font-size='12' x='68'
y='673'>flatworldsedge @ Flickr</text>
 <text fill='#FFCC11' font-family='Ubuntu' font-size='12' x='68'
y='691'>http://www.flickr.com/photos/flatworldsedge/5252778530/</
text>
 </g>
 <g font-family='Ubuntu' font-size='32' font-weight='bold'
id='calendar' text-anchor='middle' transform='translate(1297,76)'>
 <g id='last_week' opacity='0.2'>
 <text fill='#FFCC11' x='-268' y='0'>29</text>
 <text fill='#FFCC11' x='-224' y='0'>30</text>
 <text fill='#FFCC11' x='-179' y='0'>1</text>
 <text fill='#FFCC11' x='-134' y='0'>2</text>
 <text fill='#FFCC11' x='-89' y='0'>3</text>
 <text fill='#FFCC11' x='-44' y='0'>4</text>
 <text fill='#FF0000' x='0' y='0'>5</text>
 </g>
 <g id='this_week'>
 <text fill='#FFCC11' opacity='0.2' x='-268' y='44'>6</text>
 <text fill='#FFCC11' opacity='0.2' x='-224' y='44'>7</text>
 <text fill='#FFCC11' opacity='0.2' x='-179' y='44'>8</text>
 <text fill='#FFCC11' opacity='1' x='-134' y='44'>9</text>
 <text fill='#FFCC11' opacity='0.5' x='-89' y='44'>10</text>
 <text fill='#FFCC11' opacity='0.5' x='-44' y='44'>11</text>
 <text fill='#FF0000' opacity='0.5' x='0' y='44'>12</text>
 </g>
 <g id='next_two_weeks' opacity='0.5'>
 <text fill='#FFCC11' x='-268' y='89'>13</text>
 …
 <text fill='#FFCC11' x='-44' y='134'>25</text>
 <text fill='#FF0000' x='0' y='134'>26</text>
 </g>
 </g>
</svg>
16 | Overload | June 2013

FEATUREFILIP VAN LAENEN

I don’t know in advance what will be the dominant
colour of the photo, and I don’t know of a method to

inspect the photo in that sense either
unique, this will result in unique file names. In addition to that, there won’t
be any issues with problematic characters, since the file name will consist
of hexadecimal characters only.

Groups of elements can be defined using the g element. This SVG file has
five of them, and as Listing 4 illustrates, groups can be nested. Besides
having an id to identify them, groups can be used to set common attributes
to all its elements in a DRY-fashion. Of course, these attributes will only
apply to those elements in the group for which they are relevant.

The first group prints some information about the photo on the wallpaper
image, using text elements. Notice that the fill and font-family
attributes could have been defined on the g element instead of on each text
element. Consider it a bit of technical debt, a consequence of my
experimenting with different colors and fonts when I was writing the
program. The attributes on the text elements are pretty self-explanatory:
font-family, font-size and font-weight define the family, the
size and the weight of the font to be used, and x and y where the text should
be positioned. The fill attribute sets the color of text. Finding the right
colour turned out to be a bit of a challenge though.

I don’t know in advance what will be the dominant colour of the photo,
and I don’t know of a method to inspect the photo in that sense either. (I’m
sure there exist tools for that, and using one of them would be an obvious
nice feature to add when I have more time.) I therefore had to pick a colour
that would work well in most occasions, and found out that FFCC11, a
colour close to gold (FFD700), was a good choice. An initial thought was
to use a contrasting stroke too (e.g. black stroke with yellow fill), but that
turned out not to work. The text is too small in order for the stroke to have
a good effect. A better alternative would probably have been to put a semi-
transparent rectangle behind the text, but since that would have hidden part
of the photo too, I didn’t want to do that. Besides, using a semi-transparent
rectangle wouldn’t have worked for the calendar anyway. The calendar is
too big, so it would have hidden a rather large part of the photo.

My calendar consists of the current week, last week, and the next two
weeks – four weeks in total. Days in the past are made almost completely
transparent (opacity 20%), and days in the future half-transparent (opacity
50%). Weekdays, including Saturdays, have the same colour as the other
texts, but Sundays are marked in red (FF0000). An obvious improvement
would be to mark bank holidays in red too. Notice that for the calendar, I
did use group attributes to set common attributes across all elements. In
addition to that, I used the transform attribute to translate the calendar to
the right place in the image. Alternatively I could have added the two
numbers to the x and y coordinated of every text element, but I think my
solution makes it more clear where which element of the calendar goes.

It should be noted that I chose to generate the content of the SVG file as
an XML document using REXML::Document. Just as there exist
specialized libraries to access Flickr, there exist specialized libraries to
create SVG files. My feeling is that it’s easier to create SVG files through
XML, as it gives you full flexibility and you need to know SVG anyway
to use the SVG libraries. Your mileage may of course vary…

Converting SVG to PNG
One drawback of using SVG to decorate the wallpaper is that it has to be
converted back to JPG or PNG. Decorating the JPG photo directly would
probably have been the most elegant solution. An alternative approach
would have been to convert the photo to PNG, and do the decorating in
PNG. But that would have involved a conversion too, so it probably
wouldn’t have saved us much compared to using SVG. In either case, I
didn’t find a Ruby library to draw text directly on JPG or PNG images, so
that’s also a reason why I used SVG.

The conversion from SVG to PNG is the part that I’m the least satisfied
with in WRUF. I never managed to find a good Ruby library that could do
the job, so I had no choice but to make a system call to rsvg-convert. Rsvg-
convert is one of the tools provided by the librsvg2-bin package, and it can
convert SVG images into PNG raster images.

The conversion tool works fine, and the system call to rsvg-convert in itself
isn’t a problem either. But if I would like to port the program to another
operating system in the future, this will be one of the issues. Preferably I
should migrate to a Ruby library that can convert SVG images into PNG,
the alternative being to find similar tool in the target operating system and
make a system call to that.

Setting the wallpaper
Setting the resulting image as the current wallpaper is done through a
system call too, and will therefore have to be adjusted to specific operating
systems too. But contrary to the conversion of SVG images into PNG
images, this is something that can be expected. Even within the same
operating system there may be differences from one version to another, as
I discovered myself. Ubuntu 11.10 and newer versions use e.g.
gsettings set org.gnome.desktop.background to set the
wallpaper, whereas earlier versions used gconftool-2.

Command-line user interface
So far we’ve described how the main program works, but now we still have
to get it started. This is done from a Shell script that calls the main Ruby
program. But the Shell script can do more than just calling the main
program: it can also start the initialization, or print some help text, version,
copyright and warranty information. But let’s start with just running the
program.

There are basically two ways I want to start the program from: manually
from the command-line, or automatically from Cron (e.g. every hour). I
have therefore linked /usr/bin/wruf to wherever the main Shell script
resides, so that I don’t need to remember where I’ve put it. Running the
program is therefore as simple as typing wruf run on the command-line,
or adding a line with a call to /usr/bin/wruf run to crontab. It is then
the task of the Shell script to find out what all the local directories are, and
to call the Ruby program with the correct parameters. Listing 5 shows most
of the main Shell script.

First, the script saves the first parameter as ACTION. Then it stores where
it expects the local directories to be in some local variables, and how to
June 2013 | Overload | 17

FEATURE FILIP VAN LAENEN

I was a bit surprised that I needed both a
warranty and a license text—I thought a
license text was all I needed
call Ruby. After that, it does some magic to make WRUF run from Cron.
As it turns out, setting the wallpaper doesn't work just like that if you run
the program in the background. Finally, it sets the version number and the
copyright year to be used in the various messages further down.

The rest of the Shell script is a case statement on the ACTION variable. For
every action, it either calls another Shell script to perform a specific task,
or prints out some text. I suppose the help, version, copyright and warranty
information could have been printed out by the main Ruby program too,
but it seems like overkill to start a Ruby program just to print out some
text. A big argument against putting this in the Shell script is that it makes
the whole program more dependent on Shell scripting. This may again
make it harder to port WRUF to a different operating system. A big
argument in favour of it is that this way, printing out the help message
doesn’t depend on having the local directories initialized correctly, or even
having Ruby installed.

When I wrote the program, I was a bit surprised that I needed both a
warranty and a license text—I thought a license text was all I needed. But
when you think of it, the purpose of the license text is to handle how the
program can be used and reused by others. The warranty, however, makes
sure that nobody can come after me if my program decides to delete a user’s
disk. If you want to open source your code, you should probably have both.

YAML ain’t markup language
Now that we have a running program, we still need to initialize it. In order
to run the program properly we need to know the dimensions of the screen
we’re going to produce wallpaper for, the tolerance for how much the
dimensions of a picture can deviate, the minimum number of hours
between the rotation of the wallpaper, and the tags WRUF should use when
searching on Flickr.

Notice that WRUF keeps control over when it’s time to rotate the
wallpaper. Since I don’t keep my laptop running the whole day, I can’t set
up a Cron job at a specific hour to rotate the wallpaper once a day. Instead,
I have a Cron job that runs WRUF once every hour, so that it rotates the
wallpaper whenever time’s up. This also means that I can run WRUF at
start-up, without it causing the wallpaper to be rotated a second or even a
third time during the same day just because I had to reboot. On the other
hand, sometimes you’ll want to change the wallpaper immediately, e.g.
because WRUF happened to pick a photo you don’t like. This is why I
needed to implement the current dislike function too, as mentioned
in the help text in Listing 5, in addition to run.

In order to keep things simple, I use YAML [YAML] to store the settings
in a settings file. YAML is “a human friendly data serialization standard
for all programming languages”, as the official YAML Web Site defines
it. Human friendliness is not a big issue for using YAML in this case, even
though it’s always nice to be able to inspect what’s stored in the settings
file during development or debugging. The biggest reason for using it in
WRUF is that it has been included in the standard library for Ruby since
version 1.8, and the API for using it is very compact and easy to
understand. Listing 6 shows how the settings file is stored and read,
together with an example of how such a settings file looks.

The method to_yaml converts a Ruby object into a YAML string, which
can then be stored directly in a file. The load method from the YAML
module does the reverse: it creates a Ruby object from a YAML string or
an IO stream. The sample settings file shows how primitive attributes (the
hours, an integer, and the tolerance, a float) are stored, but also arrays (the
dimensions and the tags).

Installation
Finally some words on installing and creating an installation script for
WRUF. Since this program is relatively simple, I simply pack everything
that’s needed to run WRUF together in a tar-file. Right now, this includes
the Ruby files, the Shell scripts, and the license text. Installation is then as
simple as unpacking the tar-file, and then running the installation script.

The installation script first deletes the WRUF installation directory if it
already exists, and then makes a clean copy of all Ruby files and Shell
scripts. Then it makes the Shell scripts executable, and links /usr/bin/
wruf to the main Shell script. At the end, it also installs the Log4r gem if
it’s not already installed.

I chose to use /opt/wruf as the WRUF installation directory. According
to the Linux Filesystem Hierarchy [Linux], “[t]his directory is reserved for
all the software and add-on packages that are not part of the defaultListing 5

#!/bin/sh
(Header with copyright information omitted.)

ACTION="$1"

export WRUFDIR="/opt/wruf"
export LOCALWRUFDIR="${HOME}/.wruf"
export RUBY="ruby"

(Some magic to make WRUF run from Cron
omitted.)
VERSION="1.1a1"
COPYRIGHTYEAR="2011"

case "$ACTION" in
 init)
 ${WRUFDIR}/wruf_init.sh
 ;;
 run)
 ${WRUFDIR}/wruf_run.sh
 ;;
 tags)
 ${WRUFDIR}/wruf_tags.sh
 ;;
 current)
 ${WRUFDIR}/wruf_current.sh $2
 ;;
18 | Overload | June 2013

June 2013 | Overload | 19

FEATUREFILIP VAN LAENEN

Listing 5 (cont’d)

 help)
 echo "Wallpaper Rotator Using Flickr (WRUF) v${VERSION}"
 echo "Copyright © ${COPYRIGHTYEAR} Filip van Laenen <f.a.vanlaenen@ieee.org>"
 echo
 echo "Usage:"
 echo " wruf action [parameters]"
 echo
 echo "where actions and parameters include:"
 echo " init initialize WRUF"
 echo " run run WRUF"
 echo " tags manage the tags used by WRUF in an interactive dialogue"
 echo " current dislike rotate the wallpaper regardless of when it was rotated last"
 echo " help show this message"
 echo " version show the version information"
 echo " copyright show the copyright information"
 echo " warranty show the warranty information"
 ;;
 version)
 echo "Wallpaper Rotator Using Flickr (WRUF) v${VERSION}"
 echo "Copyright © ${COPYRIGHTYEAR} Filip van Laenen <f.a.vanlaenen@ieee.org>"
 echo "This program comes with ABSOLUTELY NO WARRANTY; for details run 'wruf warranty'."
 echo "This is free software, and you are welcome to redistribute it"
 echo "under certain conditions; run 'wruf copyright' for details."
 ;;
 copyright)
 echo "Wallpaper Rotator Using Flickr (WRUF) v${VERSION}"
 echo "Copyright © ${COPYRIGHTYEAR} Filip van Laenen <f.a.vanlaenen@ieee.org>"
 echo
 echo "This program is free software: you can redistribute it and/or modify"
 echo "it under the terms of the GNU General Public License as published by"
 echo "the Free Software Foundation, either version 3 of the License, or"
 echo "(at your option) any later version."
 echo
 echo "This program is distributed in the hope that it will be useful,"
 echo "but WITHOUT ANY WARRANTY; without even the implied warranty of"
 echo "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the"
 echo "GNU General Public License for more details."
 echo
 echo "You should have received a copy of the GNU General Public License"
 echo "along with this program. If not, see <http://www.gnu.org/licenses/>."
 ;;
 warranty)
 echo "Wallpaper Rotator Using Flickr (WRUF) v${VERSION}"
 echo "Copyright © ${COPYRIGHTYEAR} Filip van Laenen <f.a.vanlaenen@ieee.org>"
 echo
 echo "There is no warranty for the program, to the extent permitted by applicable law."
(The rest of the warranty text omitted.)
 ;;
 *)
 echo "Wallpaper Rotator Using Flickr (WRUF) v${VERSION}"
 echo "Copyright © ${COPYRIGHTYEAR} Filip van Laenen <f.a.vanlaenen@ieee.org>"

I can run WRUF at start-up, without it
causing the wallpaper to be rotated a

second or even a third time during the
same day just because I had to reboot

FEATURE FILIP VAN LAENEN

Just like most hobby projects, WRUF is not
complete, and it will probably never be
installation.” This makes WRUF system-wide available, but it also requires
that the person installing WRUF has administrator access rights (and uses
e.g. sudo to install the program). User settings, history and cached
wallpaper photos and files are then stored in ${HOME}/.wruf, so that
each user can have his own set of tags and other settings.

Feature backlog
Just like most hobby projects, WRUF is not complete, and it will probably
never be. I already mentioned that there are lots of other sources of good
photos that could be used as wallpaper, but for now, WRUF only searches
through Flickr. But there are other alternatives too, like using local photos,
or even creating random drawings in SVG. Other features that could be
added include ‘liking’ the current wallpaper, e.g. by adding the photo to
the user’s favorites in Flickr, putting other information on the wallpaper,
like geo-information, updating the calendar regardless of whether the
source photo should be rotated or not, or using dynamic tags like the
current month or season. Auto-detection of the current desktop size would
also be nice.

Creating a wallpaper rotator for Ubuntu wasn’t a difficult task, but it
involved many different technologies. First of all, we needed REST to
access Flickr and find a good background photo for the wallpaper. Then
we used SVG to decorate the photo, and converted it to PNG. In order to
do the conversion, we had to make a system call from Ruby, just like for
setting the resulting image as the new wallpaper. We kept track of history
through a simple text file, and stored the settings using YAML. Finally,
the core program was written in Ruby, with some Shell scripts on top of
it to get it running and installed.

The program has been running on my laptop for more than a year now,
and it has been working fine for me. Often it fetches great photos from
Flickr, taken at amazing places like the Denali National Park & Reserve
in Alaska. WRUF wasn’t only a good way to explore some interesting
technologies, but also to see some of the most interesting photos on Flickr,
and to learn about the extraordinary places where they’ve been taken.

References
[Flickr] See http://www.flickr.com

[Flickr2] For a detailed overview of the parameters that can be set, see
http://www.flickr.com/services/api/flickr.photos.search.html

[FlickrAPI] See http://www.flickr.com/services/api/ for the Flickr API.

[FlickrKey] See http://www.flickr.com/services/api/misc.api_keys.html
for more information about Flickr API keys and how to apply for one.

[Google] Patent submitted as United States Patent Application
20060242139 and at the time of writing still pending.
http://www.google.com/patents/US20060242139

[Linux] See http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/

[SVG] See http://www.w3.org/Graphics/SVG/ for more information
about SVG, including the standards

[vanLaenen13] ‘Tar-based Back-ups’ C Vu Vol 25 Issue 2, May 2013.

[WRUF] The source code can be downloaded from https://github.com/
filipvanlaenen/wruf. Feel free to copy the code and create your own
branch as long as you respect the software license.

[YAML] See http://yaml.org/ and http://en.wikipedia.org/wiki/YAML
for more information about YAML.

Listing 6

Storing the settings file using a
settings object:
open(file_name, "w") { |file|
 file.write(settings.to_yaml)
}
Reading the settings file into a settings object:
settings = YAML::load(read_file(file_name))
Sample settings file:
--- !ruby/object:WrufSettings
dimensions:
- 1366
- 768
hours: 18
tags:
- landscape
- forest
- sea
- mountain
- mountains
- river
- clouds
tolerance: 0.25

Listing 5 (cont’d)

 echo
 echo "Usage: wruf {init|run|tags|current|help|version|warranty|copyright}" >&2
 echo "Type 'wruf help' to get more information."
 exit 1
 ;;
esac
20 | Overload | June 2013

http://www.flickr.com
https://github.com/filipvanlaenen/wruf
https://github.com/filipvanlaenen/wruf
http://www.flickr.com/services/api/flickr.photos.search.html
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/misc.api_keys.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/
http://www.w3.org/Graphics/SVG/
http://yaml.org/ and http://en.wikipedia.org/wiki/YAML
http://www.google.com/patents/US20060242139

FEATUREALEX FABIJANIC
Dynamic C++, Part 1
Static and dynamic languages have
different trade-off. Alex Fabijanic attempts
to get the best of both worlds.
As to which is more important, Dynamic or static, both are
absolutely essential, even when they are in conflict.

~ Robert Pirsig, Metaphysics of Quality [Pirsig]

 is a statically-typed language. The static nature of the C++
type system provides a data integrity ‘safety net’. The
compiler is an indispensable runtime-surprise-prevention

tool and the static nature of C++ provides runtime performance gain.
Before we go any further, let’s clarify the nomenclature – static typing here
should not be confused with its close relative strong-typing, see the
definitions on the right for details. It is precisely the ‘weaknesses’ of the
type system (in combination with polymorphism and templates) that
provides the functionality needed for dynamic-like behavior within a
statically typed language such as C++. And there are circumstances calling
for a ‘softened’ type system, where a degree of performance sacrifice is
acceptable and runtime type system relaxation desirable (or even
necessary). To provide generic functionality automatically adaptable to
different data types at runtime within the confines of standard C++, the
runtime type detection system does not suffice – one has to resort to library
solutions based on various techniques described later.

Data from external data sources arrives in a variety of types and brings
along the need for efficient and transparent datatype conversion. The
proliferation of web-based interfaces and databases with the addition of
popular textual formats such as JSON and XML exacerbates the need for
a relaxed type system with transparent and safe conversion facilities. This
is a domain where dynamic languages have gained a significant footing.
In order to clarify the premises for this writing, we must take a brief detour
here (see ‘C$$++ Dynamism’).

So, back on track – is it possible to provide dynamic-like behavior within
the constraints of standard ANSI/ISO C++? How can a C++ programmer
accurately and efficiently transfer data from a database to XML, JSON or
HTML without stumbling over the rigid C++ static type-checking
mechanism at compile time while ensuring accuracy at runtime? Can type-
erasure and (checked) type-conversion techniques fit the bill? Given both
h i s to r ica l (ANSI C un ion and void* , MS COM Var ian t ,
boost:: [va r i a n t , a ny , lexical_cast] , Q t QVar i an t ,
adobe::any_regular) and recent (Boost.TypeErasure, Facebook
folly::dynamic) development trends (including the pending
Boost.Any C++ standard proposal), the need for a way around the static
nature of C++ language is obvious. Since the DynamicAny [Fabijanic08a,
Fabijanic08b] article, some new solutions [Folly] have appeared, POCO
[POCO] has seen several release cycles and Poco::DynamicAny is now
known under a new name – Poco::Dynamic::Var. Additionally, the
performance and type-safety of number/string conversion has been

C++

To get a broader perspective, let’s look at the need for and benefits of
‘dynamic’ typing in C++. Even the dynamic language environments are
ultimately built on a statically typed foundation. Yet, when the static/
dynamic langugage interaction need arises, we embed those ‘foreign’
language environments and we must speak to them in a ‘foreign tongue’
(i.e. through a specialized translation layer). Wouldn’t it be nice to (a)
smooth the rough edge between the two in a reusable way, while also
(b) addressing the concern of dealing with external data of different types
and (c) gain a generic-purpose standard C++ ‘dynamic’ environment
natively and seamlessly, as a side-effect?

While standard C++ claims to be a general-purpose language, it stops
abruptly at the point where (among other things) dynamic-language-like
behavior is needed – as things stand at the time of this writing, even a
well-known, half-way-there oldie like boost::any could only make it
to 2014 Technical Specification (a pre-standardization mechanism for
almost-there-but-not-yet-standard-ready libraries and language
features), which means it will not be standardized will not be standardized
until 2017 at least.

The original spark triggering this systematic overview (boost::any
port to POCO some years ago) was decidedly not about C++ as a
‘dynamic’ language but rather about a way to work around the rigidly
static C++ type system in a reasonably efficient and reusable way –
through a library solution. But libraries are languages, so the C++ library
solutions for type dynamics are C++’s native ‘dynamic’ languages of
sorts. Although the underlying types are still statically defined, due to the
weakness of C++ type system, they can be dynamically held; and one
can coax them to be readily available at runtime, holding values of
different types, that they very much ‘quack and walk’ as a dynamic
language... Suddenly, the idea of a native C++ ‘dynamic language’ does
not sound so outlandish ...

C++ Dynamism

Alex Fabijanic has been a professional programmer since 1992,
specializing in industrial automation and process control software
using C and C++ since 1998. He leads the POCO (C++ POrtable
COmponents, http://pocoproject.org) project and occasionally
writes Javascript and Python code. He can be contacted at
alex@pocoproject.org.

This classification has to do with the timing of value-to-type attachment.
Static means values are attached to types (‘compiled’) at compile time.
Dynamic means they are attached (‘interpreted’) at runtime. Since C++
attaches values to types at compile, it follows that C++ is a statically typed
language.

Static vs. dynamic

This classification has to do with ‘loopholes’ the programming language
type system leaves open for its type system to be ‘subverted’. Both C and
C++ allow different types and pointers thereof to be cast to each other.
While C++ is stricter than C, it is also backward compatible. But even
without the C compatibility, C++ provides ways to subvert the type system
and therefore can not be considered a strongly typed language. As a
(non-exhaustive) example, void* and union disqualify C and C++ from
strongly-typed qualification.

Strong vs. weak
June 2013 | Overload | 21

http://pocoproject.org

FEATURE ALEX FABIJANIC

Data from external data sources arrives in a
variety of types and brings along the need for
efficient and transparent datatype conversion
improved by replacing sscanf/sprintf-based conversion with double-
conversion [DoubleConversion] (also used by folly::dynamic).

POCO
In this article series, both externals and internals of boost::[variant,
any, type_erasure], folly::dynamic, Poco::Dynamic::Var,
Qt QVariant and adobe::any_regular are explored and compared.
Design, capabilities, ease of use as well as pros and cons of each solution
will be examined. Performance benchmark comparisons results will be
provided as well.

We will start our journey through Dynamic C++ world with a smooth sail
– simple, minimalistic and well-known boost::any, a ‘bipolar’ class
with deceptively soft, entirely type-agnostic conception and surprisingly
rigid, ultra-strongly typed delivery interface (or, should we say, lack
thereof). As we move on, the journey takes us into the rough waters of
solutions that endeavor, each in its own way, to provide dynamic facilities
within the confines of standard C++ and its static type system. The
solutions gradually build on existing foundations, attacking the problem
from various angles while trying to keep size, performance and datatype
integrity under control.

But, first things first – let us start by looking at the concerns shaping the
solutions and the ingredients they're made of.

Dynamic concerns
What are the concerns involved with dynamic behavior and how are they
solved? Let’s enumerate, disect and analyze them ...

Storing value
This concern has to do with the location where the actual bits representing
the value reside. Within the C++ memory model, there are two distinct
choices – heap and stack – and a hybrid between the two; more on this later.
There are various memory allocation optimization methods that look just
like heap allocation from programmer’s standpoint but actually allocate
from different places; such constructs are beyond the scope of this article.
Let us just mention here that the term ‘stack’ above should be used
cautiously; it is very common to refer to placement new techniques
constructing objects in a dedicated storage inside a class as ‘stack-based’;
that convention is used in this article as well. It is, however, important to
remember that there is nothing preventing an object of such class to be
allocated on the heap.

Performing operations
The most frequently encountered operations are type conversions, between
string and numeric or other values. Furthermore, there are assignment,
arithmetic and logical operators. There are other language operations such
as bitwise but those are not of concern for this article’s theme. Finally, there
are various conversions or transformations; as we will see later, some
solutions even provide capability to add custom operations to types at
compile time.

Retrieving value
Value retrieval ranges from a strict requirement to explicitly specify the
held type, to transparent conversion between different types, sometimes
with runtime exceptions thrown if conversion is impossible; with some
solutions, it is very easy to venture into undefined behavior if the user is
not careful. Sometimes, built-in value retrieval is readily available, while
in some cases the user is required to use pre-existing or provide custom
external ‘scaffolding’ in order to extract the held value.

Runtime performance
From the runtime performance standpoint, there will typically be two
concerns: heap memory allocation and conversion/transformation costs.
From this aspect, anything that could be done at compile time, should.
Additionally, as mentioned above, small object optimization affects
runtime performance in both ways – positively when heap allocation is
avoided and negatively every time the value is retrieved.

Memory usage
Memory usage will vary, from the exact type size (plus platform-
dependent alignment, if applicable) to a fixed size, large enough to hold
the largest stack-based type supported.

Code size
The binary code size generated by various solutions will mostly be
proportional to the functionality provided. For example, boost::any
code wi l l be smal l due to non-ex is ten t convers ion log ic .
Poco::Dynamic::Var code will be the largest, due to exhaustive
involvement in type conversions and accuracy checks. The rest of the
solutions are somewhere in between.

Ease of use
Last but not least, this concerns the user experience when dealing with
dynamic functionality. Some solutions have rigid compile-time
constraints, while some others may exhibit surprising runtime behavior.

POrtable COmponents C++ Libraries are:

 A collection of C++ class libraries, concpetually similar to the Java
Class Library, the .NET Framework or Apple’s Cocoa.

 Focused on solutions to frequently-encountered practical
problems.

 Focused on ‘internet-age’ network-centric applications.

 Written in efficient, modern, 100% ANSI/ISO Standard C++.

 Based on and complementing the C++ Standard Library/STL.

 Highly portable and available on many different platforms.

 Open Source, licensed under the Boost Software License.

In regards to Boost, in spite of some functional overlapping, POCO is best
thought of as a Boost complement (rather than replacement). Side-by-
side use of Boost and POCO is a very common occurence.

POCO
22 | Overload | June 2013

FEATUREALEX FABIJANIC

if only smaller types are used, sometimes
there may be some space not effectively

used but consumed nevertheless
If the user has to understand its implementation details in order to use a
software component correctly, the total value of the abstraction is
diminished regardless of the implementation quality. Or, as Scott Meyers
succintly puts it, “Make interfaces easy to use correctly and hard to use
incorrectly”.

Data storage
We have several choices for where and how we store the data values.
Again, each comes with its own implementation and concerns.

Storing the value on the heap
If the value resides on the heap, we will pay in runtime performance for
memory allocation. However, the amount of memory will be variable,
commensurate with the size of held type plus platform-dependent padding/
alignment.

Implementation:

 void* and operator new

This technique provides dynamic-like behavior by virtue of void*,
a C language construct allowing pointers to unknown types. The
default operator new allocates memory on the heap. Due to the
type-independent nature of void*, the newly created entity can be
of any type, so the new operator can construct the type needed
in the allocated memory; note the difference in word order – new
operator first calls operator new and, after the memory is
allocated, constructs the object. From that point on, it is up to the
‘dynamic’ solution and programmer to ensure the newly created
type value is properly treated. There are some variations on this
theme in later described solutions and we will examine them in due
course.

Concerns:

 Allocation overhead

Memory allocation on the heap can be an expensive runtime
operation; for optimization purposes the language allows
overloading of the operator new. This allows for various
schemes of memory (pre)allocation that alleviate the performance
hit imposed by the default operator new.

 Memory cleanup

Memory that was allocated on the heap by new must be released
with delete.

Storing the value on the stack
If the value resides on the stack, we will invariably pay the storage size of
the largest value we wish to store. As mentioned earlier, although
commonly referred to as ‘stack’, a more appropriate name would be
‘internal’ because there is nothing preventing the creation of object on the
heap.

Implementation:

 union + tag

This technique utilizes the C++ union facility. Unlike struct,
whose members are laid out in memory next to each other, union
can only hold one value at a time because its data members overlap.
This union feature provides the same storage location for different
types – a feature that can be exploited for dynamic-type-like
behavior at runtime without paying the full sum-of-storage price for
all the types supported. Additional tag is needed to indicate the
currently active union member. In C++03 standard, the limitation is
that only POD and classes with trivial construction/destruction can
be used. C++11 standard relaxes the only-trivial-construction/
destruction limitation.

 union + placement new

This technique utilizes the C++ union in combination with
placement new. Placement new does not allocate memory but only
constructs object in pre-allocated storage. The reason for the use of
union is twofold:

 there is a need for a special-purpose union member ensuring
proper alignment for the largest type held when it is not known
at compile time

 there are ‘hybrid’ solutions, mixing types known at compile
time with ‘raw’ storage for the unknown types (placement-new-
constructed at runtime); the tag indicating currently active type
is necessary in this case

Concerns:

 Size

Since a union must accomodate the largest type supported, it has to
occupy at least the largest type size.

 Alignment

In practice, the amount of space needed is often more than largest
union member size due to platform-dependent alignment
requirements. This means that, if only smaller types are used,
sometimes there may be some space not effectively used but
consumed nevertheless. Alignment requirements and details are
beyond the scope of this writing, but let us just mention here that it
is a fairly complex topic, especially in the C++03 context; for
details, see [Sutter].

 Destruction

When the held object is placement-new constructed in pre-allocated
storage, there is no need to explicitly call delete. This, however,
means that the destructor has to be called explicitly by the
programmer.

Using a hybrid solution
The hybrid solution (also known as small object optimization,
configurable at compile time) compromises, to an extent, the stack size
June 2013 | Overload | 23

FEATURE ALEX FABIJANIC

an area where things get really complicated –
‘dynamically’ attaching operations to types
that do not ‘natively’support them
concern in order to avoid the heap allocation penalty for types under certain
size; this solution, however, imposes runtime penalties of size inspection
(a) before instantiation and (b) at every value retrieval.

Implementation:

 Small Object Optimization

This is a combined technique of heap- and stack-based storage
strategies. The programmer decides and specifies at compile time
the maximum object size that can be created on the stack. At
runtime, based on the compile-time value, the decision is made
whether the new object will be constructed on the stack or the
storage for it to be constructed will be allocated on the heap.

Concerns:

 Runtime detection performance

Obviously, every creation and retrieval of the value will incur the
penalty of the value location detection. There are additional
difficulties with assignment and swap operations as well as with
exception safety.

 Stack use

The fixed stack space is used indiscriminately, even when the value
is allocated on the heap (in which case, the stack space usually
serves as the pointer storage).

Operations
Finally, we get to choose what sort of operations can be applied to these
types. These choices will strongly affect the usability of the types so care
and a deep understanding must be used.

Type conversions
Type conversions are the most frequently encountered operations, the most
frequent conversions being those between numbers and strings.
Conversions between compatible types (e.g. short to int) can often be
performed statically. If static conversion is not possible, then dynamic
functionality must take its place; this typically involves parsing a string to
generate a corresponding number or vice-versa – formatting a number into
string. Not all solutions described here are equally cooperative in this area;
they range from those not providing any (no pun intended) conversions,
via those providing accompanying mechanisms for defining conversion
facilities to those providing built-in conversions.

Standard language operations (+, -, ==, ...)
These operations are indispensible for built-in types. They can also be
brittle due to many runtime cases where they may make no sense for the
held types/values. Therefore the choice is to either not provide them at all,
or provide them and throw exception at runtime if the attempted operation
makes no sense for the current values. The latter behavior is consistent with
the way a dynamic language would behave.

Custom operations
This is an area where things get really complicated – ‘dynamically’
attaching operations to types that do not ‘natively’support them. There are
some solutions that provide this functionality. There are also some pitfalls.
These will be analyzed and discussed later.

Ingredients
The ‘ingredients’ for the dynamic functionality within C++ ‘recipe’ are
summarized in the following list:

 new

 placement new

 void*

 union

 virtual functions

 templates

From the entities listed above, we already discussed new and union; the
ones that were not touched on so far are virtual functions and templates.

 Virtual functions

Virtual functions are, of course, an indispensable mechanism for
runtime polymorphism, providing objects with identical interface
that behave differently. They help tremendously in defining
conversions and other operations, where it is very convenient to
provide default behavior (often throwing an exception) in the parent
class and appropriately override it in descendants. Virtual functions
inflict both size and performance penalty.

 Templates

Templates are another powerful C++ mechanism providing
compile-time genericity. When combined with other facilities
described here, templates can produce very powerful (but often
complicated) programming constructs.

Boost.Any
This well-known class has been around for a long time; at the time of this
writing, it is an active proposal for standardization [Dawes12]. According
to proposal authors, std::any is a container for “Discriminated types that
contain values of different types but do not attempt conversion between
them”. This classifies any as a generic (in the sense of ‘general’, not
template-based) solution for the first half of the problem – how to
accommodate any type in a single container. The ‘syntactic sugar’ is
avoided template syntax – any itself is not a template class but it has a
template constructor and assignment operator; this is conveniently used to
avoid the aesthetically displeasing angle brackets:

 any a = "42";
 any b(42);
24 | Overload | June 2013

FEATUREALEX FABIJANIC

assignment will incur a performance
penalty due to heap allocation, and a size/

performance penalty due to virtual
inheritance of the internal placeholder
What happens ‘under the hood’ is:

 at compile time, assignment (or construction) code for the
appropriate type is generated

 at run time, the value is assigned to a polymorphic holder
instantiated on the heap.

See Listing 1 for an example.

Runtime dynamism is achieved through polymorphism as shown in
Listing 2.

Right away, it is obvious that assignment will incur a performance penalty
due to heap allocation, and a size/performance penalty due to virtual
inheritance of the internal placeholder. The convenience of any extends
from the construction/assignment moment during its lifetime and stops the
moment one wants to retrieve the value. Until then, any looks and acts like,
well – any value. While it works in a wonderfully transparent manner on
the assignment side, the data extraction side is out of any’s ‘scope of

supply’ – the class does not offer value retrieval or type conversion
functionality; the only way to retrieve the value is through any_cast –
a set of free-standing functions that either return the value of the exact held
type or throw if something else is requested. Poco::Dynamic::Var
takes off where any stops, providing user-extensible conversion facilities
for non pre-specialized types; the design, rationale, use and performance
of this class hierarchy is described in a later installment of this series of
articles.

Poco::Any [POCO.Any] is a port of Boost.Any to POCO.

Boost.Variant
According to the authors [Boost.Variant], Boost.Variant class
template is “a safe, generic, stack-based discriminated union container,
offering a simple solution for manipulating an object from a heterogeneous
set of types in a uniform manner”. It determines the needed storage at
compile time, uses boost::mpl and limits the runtime capabilities to
types defined at compile time.

The performance penalty of Boost.Any creation and polymorphic nature,
as well as its incapability to provide reliable compile-time type detection,
were the motivating factors for boost::variant authors. For that
reason, variant is stack-based and provides reliable compile-time type
detection and value extraction. There is a caveat – to enforce the ‘never
empty’ requirement, variant may temporarily allocate storage on the heap
to keep the old value for the case when an exception being thrown during
assignment. The authors claim to have plans for alleviating this
shortcoming.

Faced with a boost::variant, hoping it comes with built-in (or at least
accompanying) type conversion facilities, a naïve user may try something
like this:

 variant<int, string> v = 1;
 string s = v; // compile error
 boost::get<std::string>(v); // throws

While Boost.Variant offers slightly more cooperation than Boost.Any
on the extraction side, it is not seamless or without dangers – intuitive code
won’t compile, while the next simplest way is brittle. Authors admit the
shortcomings and brittleness of the above approach and provide a visitor
mechanism as a vehicle to unleash the full strength of Boost.Variant. The
visitor is created by inheriting from the boost::static_visitor<>
class template (see Listing 3).

In order to provide the type conversions however, user must define a visitor
per destination type, e.g. to facilitate the most common conversion
between numbers and strings, the following minimal set of classes is
needed, as seen in Listing 4.

Internally, the variant data is in-place constructed into the storage allocated
at compile time and large enough to accommodate the largest datatype
specified; storage is a union of char array plus alignment padding (see
Listing 5).

Listing 1

template<typename ValueType>
any(const ValueType & value):content
 (new holder<ValueType>(value))
{
}

Listing 2

class placeholder
{
public:
 virtual ~placeholder()
 {
 }
// ...
 virtual const std::type_info & type()
 const = 0;
// ...
}

template<typename ValueType>
class holder : public placeholder
{
public:
 holder(const ValueType & value):held(value)
 {
 }
 // ...
 ValueType held;
};
June 2013 | Overload | 25

FEATURE ALEX FABIJANIC

The most significant constraint of
Boost.Variant is that it can only
accept a predefined set of types
Typically, depending on the size of the held type, there will be some extra
space used (e.g. on 64-bit Win8/VS2012), variant<char> will occupy
8 bytes, while variant<std::string> will occupy 40 (see Listing 6).

The most significant constraint of Boost.Variant is that it can only accept
a predefined set of types. If a type is not explicitly listed in the declaration
of the variant variable via a template instantiation, that type can not be
assigned to it. The never-empty guarantee imposes some significant
limitations and there is a discussion going on as to whether it is a reasonable
constraint to start with. Default constructing variant as empty would
alleviate this problem but it would also introduce the problem of always
having to deal with empty in the visitors.

Comparison between Boost.Variant and Boost.Any
For easier understanding of the concepts behind the two classes described
so far, boost::any is often compared to ‘type-safe void*’ whereas
boost:variant is compared to ‘type-safe union’. While there are
certainly similarities, this comparison should be taken cautiously.

Listing 3

class my_visitor
 : public boost::static_visitor<int>
{
 public:
 int operator()(int i) const
 { return i; }

 int operator()(const std::string & str) const
 return str.length(); }
};

int main()
{
 boost::variant< int, std::string > u
 ("hello world");
 std::cout << u; // output: hello world

 int result =
 boost::apply_visitor(my_visitor(), u);
 std::cout << result;
 // output: 11 (i.e., length of "hello world")
}

Listing 4

struct string_int_converter
 : public boost::static_visitor<int>
{
 int operator()(int i) const;
 int operator()(const std::string & str) const;
 int operator()(double d) const;
};

struct string_dbl_converter
 : public boost::static_visitor<double>
{
 double operator()(int i) const;
 double operator()
 (const std::string & str) const;
 double operator()(double d) const;
};

struct num_string_converter
 : public boost::static_visitor<std::string>
{
 std::string operator()(int i) const;
 std::string operator()
 (const std::string& str) const;
 std::string operator()(double d) const;
};

Listing 5

template <std::size_t size_,
 std::size_t alignment_>
struct aligned_storage_imp
{
 union data_t
 {
 char buf[size_];

 typename mpl::eval_if_c<
 alignment_ == std::size_t(-1)
 , mpl::identity<detail::max_align>
 , type_with_alignment<alignment_>
 >::type align_;
 }
 data_;
 void* address() const
 {
 return
 const_cast<aligned_storage_imp*>(this);
 }
};

Listing 6

variant<char>: (1) 8
variant<int>: (4) 8
variant<float>: (4) 8
variant<double>: (8) 16
variant<std::string>: (32) 40
26 | Overload | June 2013

FEATUREALEX FABIJANIC

The never-empty guarantee imposes
some significant limitations
Boost.Variant advantages over Boost.Any:

 guarantees the type of its content is one of a finite, user-specified set
of types

 provides compile-time checked generic visitation of its content
(Boost.Any provides no visitation mechanism at all; even if it did, it
would need to be checked at run-time)

 offers an efficient, stack-based storage scheme (avoiding the
overhead of dynamic allocation).

Boost.Any advantages over Boost.Variant:

 allows any type for its content, providing great flexibility

 provides the no-throw guarantee of exception safety for its swap
operation

 no template meta-programming techniques, which avoids
potentially hard-to-read error messages and significant compile-
time processor and memory demands.

Conclusion
The analysis of the available techniques, solutions ‘ingredients’ and trade-
offs for dynamic-language-like functionality within standard C++ was
provided. Two existing solutions, boost::variant and boost::any
were described and compared. In the next installment, we will look into
more existing solutions with designs/funactionality comparisons and
performance benchmarks. Stay tuned ...

Credits
Help in assembling and systematizing the information in this article came
from numerous sources. Kevlin Henney provided feedback and
constructive discussions on boost::any and the topic in general. Steven
Watanabe provided valuable help and guidance on boost::variant
and boost::type_erasure, which will be presented in the Part II.
Günter Obiltschnig and Andrei Alexandrescu provided valuable feedback
and encouragement. The list is, of course, not exhaustive – many other
people, discussions, libraries and code samples were an indispensable

source of help in gathering and systematizing the information provided in
this article.

References
Boost.Any] ‘Boost.Any’, Boost C++ libraries, Kevlin Henney,

http://www.boost.org/doc/libs/1_53_0/doc/html/any.html

[Boost.Variant] ‘Boost.Variant’, Boost C++ libraries, Eric Friedman and
Itay Maman, http://www.boost.org/doc/libs/1_52_0/doc/html/
variant.html

[Dawes12] ‘Any Library Proposal’, Revision 1, Beman Dawes and
Kevlin Henney (2012) http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2012/n3390.html

[DoubleConversion] ‘Double-conversion library’, https://
code.google.com/p/double-conversion/

[Fabijanic08a] ‘DynamicAny’, Part I, Alex Fabijanic, Overload 86,
August 2008, http://accu.org/index.php/journals/1502

[Fabijanic08b] ‘DynamicAny’, Part II, Alex Fabijanic, Overload 87,
October 2008, http://accu.org/index.php/journals/1511

[Folly] Facebook folly library, dynamic class, https://github.com/
facebook/folly/blob/master/folly/docs/Dynamic.md

[Pirsig] ‘A brief summary of the Metaphysics of Quality’, Robert Pirsig
(2005) http://robertpirsig.org/MOQSummary.htm

[POCO] POCO C++ libraries: http://pocoproject.org/

[POCO.Any] Poco::Any, http://pocoproject.org/docs/Poco.Any.html

[Sutter] ‘Construction Unions: A C++ Challenge’,
http://www.informit.com/articles/article.aspx?p=360435

More information
[ACCU13] ‘Dynamic C++’, ACCU 2013 Conference,

http://www.slideshare.net/aleks-f/dynamic-caccu2013

[C#] ‘Using Type dynamic’, C# Programming Guide,
http://msdn.microsoft.com/en-us/library/dd264736.aspx
June 2013 | Overload | 27

http://www.boost.org/doc/libs/1_52_0/doc/html/variant.html
http://www.boost.org/doc/libs/1_52_0/doc/html/variant.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3390.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3390.html
https://code.google.com/p/double-conversion/
https://code.google.com/p/double-conversion/
http://accu.org/index.php/journals/1502
http://accu.org/index.php/journals/1511
https://github.com/facebook/folly/blob/master/folly/docs/Dynamic.md
https://github.com/facebook/folly/blob/master/folly/docs/Dynamic.md
http://robertpirsig.org/MOQSummary.htm
http://pocoproject.org/
http://pocoproject.org/docs/Poco.Any.html
http://www.informit.com/articles/article.aspx?p=360435
http://www.boost.org/doc/libs/1_53_0/doc/html/any.html
http://www.slideshare.net/aleks-f/dynamic-caccu2013
http://msdn.microsoft.com/en-us/library/dd264736.aspx

FEATURE KEVLIN HENNEY
The Uncertainty Principle
Not being sure of something is usually thought of as a
problem. Kevlin Henney argues to the contrary.
o, I'm not talking about Heisenberg, his lack of certainty or what he
may (or may not) have thought about Schrödinger and the virtual
vivisection of his cat. I'm also not referring to Heisenbugs, those

peculiar defects that seem to disappear or reappear somewhere unexpected
when you rerun code in a different environment, such as under a debugger,
on your machine (it worked on mine) or at the customer's site.

The principle is that, in software development, a lack of certainty about
something can be part of the solution rather than part of the problem. This
point of view can, to many, seem a little counterintuitive and more than a
little disturbing. There is a strong tendency for humans to feel unsure about
uncertainty, in two minds over ambiguity and a little wobbly with
instability. Whether over technology choice, implementation options,
requirements or schedule, uncertainty is normally seen as something you
must either suppress or avoid. Of this many people appear, well, certain.
That you should embrace it and use it to help determine schedule and
design is not immediately obvious.

Does an iterative approach to development embrace uncertainty? It can do,
but not the way that most practitioners justify or use iterations. Starting
from a position of incomplete knowledge and gradually iterating through
hypothesis, experiment and discovery towards – one would hope –
working software addresses part of the question of moving from the
unknown to the known. But this view of iterative development
accommodates and seeks just to reduce uncertainty over time rather than
genuinely embracing it and using it to drive everything from critical project

and product decisions to the detail of code. It is a subtle but important
distinction.

Uncertainty arises when you are aware that at some point a decision about
something may need to be made, and it is not clear what the best option
is, but it is clear that it could have a significant influence. This may relate
to an implementation detail (list or lookup table?), a broader technical
choice (off-the-shelf database or custom, in-memory data model?) or a
customer decision based on market direction (blue pill or red pill?). The
decision point may appear to be now, but now may not be the best time to
commit one way or another, even though you want to make progress.

Lean thinking offers options thinking as part of its toolkit, the act of taking
a decision to take a decision, deferring a decision to a later point. This is
not a matter of hesitantly wavering over a decision; it is based on
identifying the last responsible moment a decision can be made, one that
balances maximum knowledge with maximum opportunity.

But uncertainty is not just a driver for the schedule: it influences code.
When there is more than one way to do something, many developers take
that as a cue that what they must do is choose one. They may find
themselves debating the choices with a colleague. In such a situation, it
turns out that the real challenge is actually not to choose one of them, but
to restructure the code so it’s not as important which option is chosen. Add
an object, an interface or a wrapper layer that reduces the significance of
the actual choice. Then, should the decision need to be retaken, either
because circumstances change or new information becomes available, the
impact of change is diminished.

Uncertainty need not be unprincipled. Use it to help mark out the
boundaries in a software system and loosen the coupling. Entertaining
more than one option is not an act of indecision: it is a reflection of
understanding, a way of uncovering possible areas of instability and seams
of change in a software architecture. As Émile-Auguste Chartier noted,
“nothing is more dangerous than an idea, when you have but one idea”.

(First published in NDC Magazine, June 2009)

N

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

Kevlin Henney is an independent consultant, speaker, writer,
trainer and long-standing ACCU member. He is co-author of A
Pattern Language for Distributed Computing and On Patterns and
Pattern Languages, two volumes in the Pattern-Oriented Software
Architecture series, and editor of the 97 Things Every Programmer
Should Know book and site. He can be contacted at
kevlin@curbralan.com
28 | Overload | June 2013

	Overload115_Final.pdf
	Fantasy Languages
	Auto – A Necessary Evil?
	TCP/IP Explained. A Bit
	Demons May Fly Out Of Your Nose
	Wallpaper Rotation on Ubuntu using Ruby and Flickr
	Dynamic C++, Part 1
	The Uncertainty Principle

