

December 2012 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Web Annotation with Modified-Yarowsky
and Other Algorithms
Silas Brown introduces the Yarowsky algorithm to
disambiguate words.

8 Complex Logic in the Member Initialiser
List
Cassio Neri presents ways to put complicated logic
in the member initialisation list.

14 640K 2256 Bytes of Memory is More
than Anyone Would Ever Need Get
Sergey Ignatchenko suggests upper limits on the
size and speed of computers.

16 Footprint on Modify
Andy Balaam describes a technique for tracking
history.

20Valgrind Part 5: Massif
Paul Floyd demonstrates Valgrind’s heap memory
profiling tool, Massif.

OVERLOAD 112

December 2012

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 113 should be submitted
by 1st January 2013 and for
Overload 114 by 1st March 2013.

EDITORIAL FRANCES BUONTEMPO
Originally, Overload
Didn’t Have an Editorial
Frances Buontempo considers history, predictions about the
future and how to shirk off writing an editorial.
Sometimes it’s good to look back over history in order
to find inspiration, and to see how things have changed
over time. Overload started with epilogues rather than
introductory editorials, and occasional letters to the
editor. If we were to revert to this format, that would
let me off the hook. If any readers wish to send a letter

to the editor, Overload@accu.org, please feel free. Several of the
epilogues had brave prediction or questions about the future. How would
namespaces work in C++? C++ is here to stay. Is there anybody brave
enough to dismiss OO-COBOL? The first editorial appeared in April
1995. This considered the future directions of Overload and asked ‘When
are you lot going to stop messing around with the C++ standard?’
[Overload07] Seventeen years later, it seems the answer might be never.
Sean Corfield also asked how many of the readers had email, stating
‘Please use email, where possible, for submissions – I am allergic to paper’
[Overload07]. As I explained last time [Overload111], I am becoming
allergic to emails, but articles in an electronic format are certainly easier
to deal with than paper ones. How times change. If any readers don’t use
email, please write in and tell us what you do with all your spare time.

Eventually paper crumbles away, old documents and code, on paper tape,
punch cards, floppy disks and various other types of hard copies become
unreadable. Either the medium itself decays, or we lose the means to read
or understand the information. Taking a long view, I was struck by a BBC
news article about proto-Elamite tablets [Proto-Elamite]; very old clay
tablets with scribbles on. Though the clay tablets themselves have
survived 5000 years, no-one knows what the inscriptions actually mean.
It is suspected they might be some form of early accountancy, as many
surviving writings from a similar era and area seems to be. I wonder if
one day, no-one will be able to read a pdf or a Sage account. We shall see.
Rather than writing our records on clay tablets, nowadays many people
choose to write blogs on the internet. I suspect the internet will not
disappear for a long time, but I wonder if we will lose these glimpses of
the everyday at some point. This might lead to another ‘Dark Age’.
Wikipedia describes the Dark Age as ‘a period of intellectual darkness and
economic regression that supposedly occurred in Europe’ [Wikipedia].
The main reason seems to be few written records have survived from the
time. Perhaps people in Europe were writing their own equivalent of
blogs, not in the lingua franca of the time, Latin, and these have decayed
away. Imagine that one thousand years from now, a historian tries to
gather together evidence of how we live today. Will they find copies of
Overload to use as a source? Or a blog? Of course, I am not suggesting I

would rather you send articles in on clay
tablets, or carved them into hillsides. I just

wonder what now might look like, from
the future.

Aside from the problem of using perishable storage media, the proto-
Elamite tablets show the problem of communication. The Rosetta stone
was a lucky find that allowed translation between Greek and Egyptian
hieroglyphs [Rosetta]. For the proto-Elamite tablets, without a
triangulation point, we may never know what they say. Rosetta code
[RosettaCode] plays on the name to provide a rich resource of code
challenges implemented in a variety of programming languages, allowing
comparison and potentially is a great learning resource. They claim to
have a total of 481 different programming languages, which is
phenomenal. I wonder if they’ve missed any. How many different
programming languages are there? I wonder how many different human
languages there are. Recently I have been reading my bible, starting at
Genesis and have just reached the story of the tower of Babel. It suggests
originally ‘The whole world had one language and a common speech,’
[Genesis 11] but God confuses peoples’ language so they no longer
understand one another. Certainly, if you are confronted by a program in
a language you don’t know, if may take a while to figure out how it works.
Nonetheless, it is still possible to be bemused by a program written in a
language you already know. My colleagues have recently written a tool
to reverse engineer our config files, though that is another story. We have
seen constant debates and considerations of the importance of naming
variables and functions sensibly, in order to communicate our intent
clearly. At the heart of this is avoiding the confusion of Babel. In August
2008, Ric Parkin’s editorial suggested, developing software is not so
much a technical problem as a communication one. [Overload86].

Technology has attempted to make in-roads in to automatic translation
between languages to help communication. Various online translators
exist, and seem to be improving. I have noticed a few recent news stories
about live speech translation, not done by people, but by machines.
Specifically, Google Translate has branched out and might now try to
translate your spoken words live, presumably allowing you to
communicate with colleagues distributed across the world over the phone
even if one of you only knows English and the other only Japanese
[LiveSpeech]. Had the Dark Ages never happened, and we all still spoke
Latin, this wouldn’t be necessary. The live speech has grown from
Google’s machine translation technology, which is a computer-driven
pattern recognition algorithm, nudged by feedback from users. We shall
see if the live translation takes hold. Technologies come and go. Recently,
we have seen the death of Ceefax. Started in 1974, before the internet, it
gave instant news, TV listing and weather forecasts on a television set
capable of reading and displaying the information feed. The Ceefax pages
were created manually – people monitored the incoming information and
produced metres of punched tape to upload, after being carried up several
flights of stairs to the ‘central apparatus room’. We are told, ‘It proved an
invaluable service for the editor who used to alert his wife that he was

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | December 2012

EDITORIALFRANCES BUONTEMPO
about to leave Television Centre on his way home by using a back page
on Ceefax. [Ceefax]

Watching previous technologies starting to grow and the predictions
sparked by these is fascinating. I enjoy reading sci-fi, though I do wonder
why these stories still tend to insist on the idea of flying cars. Sometimes
such auguries are limited by a lack of imagination, and constrained by the
current. As an antidote to ridiculous means of transportation, I have been
reading The Last Man [Shelly]. Futuristically set at the end of the 21st
century, it is free from flying cars. People still use horseback or coach to
travel, the English monarchy has only just ceased, and wars are still fought
with cannons and swords. The characters and story are played through with
more conviction than many sci-fi books though. Heartily recommended for
delicious gothic doom and cheer.

It seems that predicting the future is hazardous. “Prediction is difficult,
especially about the future.” As either Neils Bohr or Yogi Berra once said:
no-one seems to be sure who [BohrYogi]. See, predicting the past is hard
enough. Would be traders will spend hours backtesting a new strategy,
trying to see if they could make money from the historical data they used
to form the strategy in the first place. And even getting the present right
is difficult. For example, ‘nowcasting’ the weather is much more difficult
than just looking out of the window. "These predictions are very expensive
and not available to the public " [Nowcasting1] and, I believe, frequently
incorrect. To be fair, nowcasting isn’t trying to state what the weather is
up to now, but rather what it will be doing in the very short-range, which
does require accurate data on what is happening now, to predict rainfall,
paths of tornadoes and so on [Nowcasting2]. The met office gathers a huge
amount of data and does some serious high performance computing to
analyse it, producing thousands of forecasts a day. A variety of ways of
trying to elucidate sense from data about now are constantly springing up.
Twitter will tell you which subjects are currently trending, but not to be
out-done ‘Massachusetts Institute of Technology (MIT) associate professor
Devavrat Shah has announced the creation of a new algorithm that can
predict Twitter trends hours in advance. ’ [MIT] That will be hours in
advance of twitter noticing, I presume, rather than the tweets actually being
tweeted. That really would be something.

Sci-fi stories, along with letters to the editor, epilogues, and occasional
stabs at editorials are all attempts to step back, and take stock of the now.
They can draw on history, notice current trends, and try to make sense of
it all. This is a time consuming activity, and as we have seen is increasingly
being opened up to geeks armed with machine-learning algorithms. The
next logical step is for the machines to write editorials for us. I have
observed some automatic article generators of late. They seem to have
started with an automatic Computer Science paper generator, [SCIGen]

and sprouted new incarnations, such as a mathematics paper generator
[Mathgen]. Some of these papers have been submitted and accepted by
peer-reviewed journals [ThatsMaths]. A variant of this code this would get
me off the hook. That does not let you, dear reader, off the hook. If you
do feel the urge to submit an automatically generated paper, feel free, but
rest assured, it will be read by our human review team, and we might just
notice. Mind you, if it’s interesting, that is fine. I must stop for now, to
brush up on my perl skills, in order to hack around the
code from SCIGen and Mathgen, to get off having to
write an editorial for next time.

References
[BohrYogi] http://www.peterpatau.com/2006/12/bohr-leads-berra-but-

yogi-closing-gap.html

[Ceefax] http://www.bbc.co.uk/news/magazine-20032531

[Genesis 11] http://www.biblegateway.com/passage/
?search=Genesis%2011%20&version=NIV

[LiveSpeech] http://www.wired.com/gadgetlab/2011/01/google-
translate-adds-live-speech-translation-to-android/

[Mathgen] http://thatsmathematics.com/mathgen/

[MIT] http://www.v3.co.uk/v3-uk/the-frontline-blog/2221958/mit-
professor-invents-algorithm-that-can-predict-twitter-trends

[Nowcasting1] http://www.nooly.com/technology/728-2/

[Nowcasting2] http://www.metoffice.gov.uk/learning/science/hours-
ahead/nowcasting

[Overload07] http://accu.org/var/uploads/journals/Overload07.pdf

[Overload86] http://accu.org/var/uploads/journals/overload86.pdf

[Overload111] http://accu.org/var/uploads/journals/Overload111.pdf

[Proto-Elamite] http://www.bbc.co.uk/news/business-19964786

[Rosetta] http://en.wikipedia.org/wiki/Rosetta_Stone

[RosettaCode] http://rosettacode.org/wiki/Rosetta_Code

[SCIGen] http://pdos.csail.mit.edu/scigen/

[Shelly] The Last Man, Mary Shelley, 1826.

[ThatsMaths] http://thatsmathematics.com/blog/archives/102

[Wikipedia] http://en.wikipedia.org/wiki/Dark_Ages
December 2012 | Overload | 3

http://www.bbc.co.uk/news/magazine-20032531
http://www.biblegateway.com/passage/?search=Genesis%2011%20&version=NIV
http://www.biblegateway.com/passage/?search=Genesis%2011%20&version=NIV
http://www.wired.com/gadgetlab/2011/01/google-translate-adds-live-speech-translation-to-android/
http://www.wired.com/gadgetlab/2011/01/google-translate-adds-live-speech-translation-to-android/
http://thatsmathematics.com/mathgen/
http://www.v3.co.uk/v3-uk/the-frontline-blog/2221958/mit-professor-invents-algorithm-that-can-predict-twitter-trends
http://www.v3.co.uk/v3-uk/the-frontline-blog/2221958/mit-professor-invents-algorithm-that-can-predict-twitter-trends
http://www.nooly.com/technology/728-2/
http://www.metoffice.gov.uk/learning/science/hours-ahead/nowcasting
http://www.metoffice.gov.uk/learning/science/hours-ahead/nowcasting
http://accu.org/var/uploads/journals/Overload07.pdf
http://accu.org/var/uploads/journals/overload86.pdf
http://accu.org/var/uploads/journals/Overload111.pdf
http://www.bbc.co.uk/news/business-19964786
http://en.wikipedia.org/wiki/Rosetta_Stone
http://rosettacode.org/wiki/Rosetta_Code
http://thatsmathematics.com/blog/archives/102
http://www.peterpatau.com/2006/12/bohr-leads-berra-but-yogi-closing-gap.html
http://www.peterpatau.com/2006/12/bohr-leads-berra-but-yogi-closing-gap.html
http://pdos.csail.mit.edu/scigen/
http://en.wikipedia.org/wiki/Dark_Ages

FEATURE SILAS BROWN
Web Annotation with Modified-
Yarowsky and Other Algorithms
Annotating text automatically requires word disambiguation.
Silas Brown introduces the Yarowsky algorithm to help.
n 1997 I wrote a CGI script in C++ to perform Web ‘mediation’. It took
the address of a Web page, fetched it, modified the markup so as to
simplify complex layouts (so they work better in large print) and to

overcome various other disability-related limitations of early Web
browsers, and sent the result to the user’s browser. Additionally, all links
on the page were changed to point back through the system, so the user
could surf away on this modified version of the Web without needing to
be able to set the proxy settings on the computers they used.

This ‘Web Access Gateway’ was not the first or the only effort at Web
adaptation, but for a time it was, I think, the most comprehensive. For some
years it was run on ACCU’s server, in order not only to ensure the
accessibility of ACCU’s site but also as a service to others; this resulted
in ACCU being cited in an ACM publication courtesy of IBM’s blind
researcher Chieko Asakawa [Asakawa]. It also was and still is run by
organizations interested in displaying East Asian characters on devices
that lack the fonts [EDRDG], since it has a function to replace characters
by small bitmap images which are served by a small, single-threaded
select()-based, HTTP 1.0 server and some public domain fonts.

The Access Gateway became less useful with the advent of Web 2.0 and
Javascript-heavy sites. I did try to handle basic navigation-related scripts,
but not serious AJAX. However, by this time desktop browsers were
improving, and user stylesheets [ACG] became more appropriate than
mediators, although user stylesheets still can’t solve everything. There was
also a demand for mediators to do ‘content adaptation’ for mobile phone
browsers (especially the lower-end, non-smartphone variety), and indeed
at one time I (somehow) obtained a part-time job on the development team
of a custom server for mobile operators to run [Openwave]. This one was
built around the SpiderMonkey Javascript interpreter so it wouldn’t have
any trouble with AJAX, although we still had to implement the DOM and
that was a hard game of ‘keep up with the browsers’. Opera Mini had it
easier because they already had some browser code. (They also write their
own user clients instead of making do with whatever’s on the phone. I wish
they’d allow larger fonts though.)

Recently I wanted to help a group of smartphone-using friends to access
a Chinese-language reference site. I wished to add automatic ‘pinyin’
pronunciation aids to the site for them. The site was AJAX-heavy and I
had not kept any of the Openwave code, but it occurred to me that writing
a mediator with modern technologies can be done in a much simpler way.
My Openwave no-compete contract has long since expired and I felt free
to break out the modern tools and build a 21st-century mediator. It’s quite
exciting to be able to reproduce in just one or two afternoons of coding
something that previously needed many years of development.

Modern server tools
With apologies to other programming languages, I coded the server in
Python. Python makes it quick to try things out, and has many Web-related
modules in its standard library. Moreover, it has the Tornado web
framework [Tornado], which allowed me to make the entire server (not just
the bitmap-serving part) a single-threaded, super-scalable affair with
support for HTTP 1.1 pipelining and other goodies thrown in for free. Then
there is the Python Imaging Library [PIL] which allowed me to do the
character-rendering part in Freetype with better fonts (not to mention more
flexible rendering options). For good measure, I added an option to call
external tools to re-code MP3 audio to reduce the download size, and to
add a text-only option to PDF links. (Both of these can be useful for low-
speed mobile links in rural areas.)

How did I call an external processing tool from a single-threaded Tornado
process without holding up the other requests? Well it turns out that
Tornado can cope with your use of other threads so long as the completion
callback is called from the Tornado thread, which can be arranged by
calling IOLoop.instance().add_callback(). For more details
please see my code [Adjuster].

What about handling all the AJAX and ensuring that all links etc are
redirected back through the system? This time round, I didn’t have to do
nearly so much. As the server is Tornado-based and handles all requests
to its port (rather than being CGI-based and handling only URIs that start
with a specific path), it is possible to mediate a site’s URIs without actually
changing any of those URIs except for the domain part. Most Javascript
code doesn’t care what domain it’s running on, and it’s extremely rare to
find a script that would be broken by straightforward changes to any
domain names mentioned in its source. Therefore, as long as the browser
itself is sufficiently capable, it is not necessary to run Javascript on the
server just to make redirection work. If you have a wildcard domain
pointing to your server (i.e. it is possible to put arbitrary text in front of
your domain name and it will still resolve to your server), you can mediate
many sites in this way. There are a few details to get right, such as cookie
handling, but it’s nowhere near as complex as using a script interpreter.

Text annotation
For adding the pronunciation aids to the site it was necessary to make a
text annotator. In order to make it as easy as possible for others to use their
own annotators instead, I kept this in a completely separate process that
takes textual phrases on standard input and emits the annotated versions
to standard output; for efficiency it is called with all phrases at once, and
the results are put back into the HTML or JSON in their appropriate places
by the mediator. Therefore the authors of text annotators do not need to
worry about HTML parsing, although they still have the option of
including HTML in its output. For example, with appropriate CSS styling,
HTML’s Ruby markup can be used to place annotations over the base text
(see the source code to my page on Xu Zhimo’s poem [Xu] for one way
to do this).

The simplest approach to annotating text is to apply a set of search-and-
replace criteria, perhaps driven by a dictionary, but problems can arise

I

Silas S. Brown is a partially-sighted Computer Science post-doc
in Cambridge who currently works in part-time assistant tuition
and part-time for a startup, as well as developing language-related
software in spare time since events in Cambridge have led him to
acquire fluent Chinese. He has been an ACCU member since
1994. Silas can be contacted at ssb22@cam.ac.uk
4 | Overload | December 2012

FEATURESILAS BROWN

Yarowsky’s algorithm for word sense
disambiguation used contextual cues around

a word to try to guess which meaning it has
when there is more than one way to match a section of text to the search
strings, especially in languages that do not use spaces and there is more
than one way to interpret where the word boundaries are. The lexer
generator Flex [Flex], which might be useful for ‘knocking up’ small
annotators that don’t need more rules than flex can accommodate, always
applies the longest possible match from the current position, which might
be adequate in many sentences but is not always.

As a result of my being allowed access to its C source, Wenlin software
for learning Chinese [Wenlin] now has a function for guessing the most
likely word boundaries and readings of Chinese texts, by comparing the
resulting word lengths, word usage frequencies according to Wenlin’s
hand-checked data from the Beijing Language Institute, and some
Chinese-specific ‘rules of thumb’ I added by trial and error. The resulting
annotations are generally good (better than that produced by the tools of
Google et al), but I do still find that some of the obscure multi-word phrases
I add to my user dictionary are not for keeping track of any definitions or
notes so much as for ensuring that Wenlin gets the boundaries and readings
right in odd cases.

Annotator generator
If you are fortunate enough to have a large collection of high-quality,
manually proof-read, example annotations in a computer-readable format,
then it ought to be possible to use this data to ‘train’ a system to annotate
new text, saving yourself the trouble of manually editing large numbers
of rules and exceptions.

My first attempt at an examples-driven ‘annotator generator’ simply
considered every possible consecutive-words subset of a phrase (word 1,
word 2, words 1 to 2, word 3, words 2 to 3, words 1 to 3, etc; it’s a
reasonable assumption that annotated examples will have word
boundaries), and for each case tested to see if the annotation given to that
sequence of words is always the same whenever that sequence of words
occurs anywhere else in the examples. If so, it is a candidate for a rule, and
rules are further restricted to not overlap with each other (this means we
don’t have to deal with exceptions); the code takes the shortest non-
overlapping rules that cover as much as possible of the examples, and turns
them into C code consisting of many nested one-byte-at-a-time switch()
constructs and function calls. (When generating code automatically, I
prefer C over C++ if reasonable, because C compiles faster when the code
is large.) Python was good for prototyping the generator, because it has
many built-in functions to manipulate strings and lists of strings, count
occurrences of an annotation in a text, etc, and it also has the yield
keyword that can be used to make a kind of ‘lazy list’ whose next element
is computed only when needed (if a function yield’s values, this creates
an iterator over them which returns control to the function when the next
value is asked for) so you can stop when enough rules have been accepted
to cover the whole of an example phrase. The generator didn’t have to run
particularly quickly, as long as it could produce a fast C program within
in a day or so.

The problem with this approach is that restricting the generator to rules that
have no exceptions or overlaps will typically result in rules that are longer

than necessary (i.e. require a longer exact match with an example phrase)
and that do not achieve 100% coverage of the examples (i.e. would not be
able to reproduce all the example annotations if given the unannotated
example text). This may be sufficient if you have a reasonable backup
annotator to deal with any text that the examples-driven annotator missed,
but it does seem like an under-utilisation of the information in the
examples. We can however do better, especially if we break away from
the idea of matching continuous strings of text.

Yarowsky-like algorithm
Yarowsky’s algorithm for word sense disambiguation [Yarowsky] used
contextual cues around a word (not necessarily immediately adjacent to
it) to try to guess which meaning it has (Yarowsky’s example used the
English word ‘plant’, associating it with either ‘plant life’ or
‘manufacturing plant’, and using other words in the vicinity to guess which
one was meant). Figure 1 shows how it gradually builds up rules to
disambiguate ‘plant’ in phrases, adding a rule to spot ‘animal’ nearby.
Although Yarowsky was originally talking about meaning, there’s no
reason why it can’t be applied to pronunciation (which is often related to
meaning) or to arbitrary other annotations, and there’s no reason why it
shouldn’t work in a language that does not use word boundaries if we
modify it to check for characters instead of words and use them to judge
which character-based search/replace rules are appropriate and therefore
how to decide word boundaries etc.

Yarowsky started with manually-chosen ‘seed collocations’. With a fully-
annotated set of examples it is possible to automatically list the candidate
seed collocations along with a measure of how many correct and incorrect
applications of the rule each would result in. (Yarowsky also suggested
analysing the exact collocational relationships of the words, such as
whether they are in a predicate-argument relationship, but this
enhancement is hard to do for arbitrary languages.)

It is then possible to find additional collocations by considering an
untagged (unannotated) text. The seed collocations are used to decide the
sense of some of the words in that text, and, assuming these decisions to
be correct, the system checks what other words are also found near them
which might be used as new indicators. This process can be repeated until
many other possible indicators have been found. However, if enough
annotated examples have been provided it might be possible to skip this
step and just use the seed collocations; this has the advantage of applying
rules only when we have a greater degree of certainty that we can do so
(an ‘if in doubt, leave it out’ annotation philosophy).

My yarowsky_indicators() function [Generator] takes the
simplified approach of looking only for seed collocations of one or more
complete Unicode characters within a fixed number of bytes of the end of
the word match, prioritising the ones that are short and that cover more
instances of the word, completely excluding any that would give false
positives, and stopping as soon as all examples have been covered.
Keeping to a fixed number of bytes around the end of the match makes it
easier for the C parser to work from a local buffer. The algorithm to find
the Yarowsky indicators is shown in Listing 1.
December 2012 | Overload | 5

FEATURE SILAS BROWN
A remaining problem is that it often needs to find too many collocations
to make up for the fact that the C parser’s handling of rule overlaps is so
primitive, greedily matching the longest rule every time. If the parser had
something like Wenlin’s frequency-driven approach then it might not need
to rely on collocations so much, although collocations would still be useful
sometimes. The ‘collocations’ found by yarowsky_indicators() are
often not real collocations at all, but just strings that happen to be nearby
in the example texts; this might cause strange matching behaviour in other
texts. I hope to find ways to improve this situation in future.

References
[ACG] Accessibility CSS Generator,

http://people.ds.cam.ac.uk/ssb22/css/

[Adjuster] Web Adjuster, http://people.ds.cam.ac.uk/ssb22/adjuster/

[Asakawa] Hironobu Takagi and Chieko Asakawa (IBM Japan).
Transcoding proxy for nonvisual web access. ASSETS 2000.
http://dl.acm.org/citation.cfm?id=354371 (click on References and
check number 12)

[EDRDG] www.csse.monash.edu.au/~jwb/jviewer.html (the actual
server is on arakawa.edrdg.org)

[Flex] http://flex.sourceforge.net

[Generator] Annotator Generator,
http://people.ds.cam.ac.uk/ssb22/adjuster/annogen.html

[Openwave] http://www.openwave.com/solutions/traffic_mediation/
web_adapter/index.html

[PIL] Python Imaging Library, www.pythonware.com/products/pil

[Tornado] www.tornadoweb.org

[Wenlin] www.wenlin.com

[Xu] Xu Zhimo’s poem http://people.ds.cam.ac.uk/ssb22/zhimo.html

[Yarowsky] www.cl.cam.ac.uk/teaching/1112/NLP/lectures.pdf
 pages 55–57

Figure 1 (taken from Yarowsky)

?

?
? ?

?

?

?

? ?

?

?
?

?
? ?

?

?
?

?
?

?
?

??

A
A A

A
A

B
B

manufacturing

?

?
? ?

A

?

A

? ?

?

?
?

?
? ?

B

?
B

?
?

?
?

??

A
A A

A
A

B
B

manufacturing

company
animal

life

A

A
AA

A

A

A

AA

A

B
B

B
B B

B

B
B

B
B

A
A

BB

A
A A

A
A

B
B

Listing 1

This code will run several times faster if it
has a dictionary that maps corpus string indices
onto values of len(remove_annotations(c)) where
c is the corpus up to that index.
def yarowsky_indicators(word_with_annotations,
 corpus_with_annotations,
 corpus_without_annotations):

 # returns True if the given word's annotation is
 # the majority sense and can be made default, or
 # in minority senses lists the context
 # indicators. Variation of first stage of
 # Yarowsky's algorithm.
 word_without_annotations = \
 remove_annotations(word_with_annotations)

 # First, find positions in
 # corpus_without_annotations which correspond to
 # where word_with_annotations occurs in
 # corpus_with_annotations.
 # Put this into the list okStarts.
 lastS = lenSoFar = 0
 okStarts = []
 for s in \
 re.finditer(re.escape(word_with_annotations),
 corpus_with_annotations):
 s = s.start()
 lenSoFar += len(remove_annotations(\
 corpus_with_annotations[lastS:s]))
 lastS = s
 assert corpus_without_annotations[\
 lenSoFar:lenSoFar
 + len(word_without_annotations)] \
 == word_without_annotations
 okStarts.append(lenSoFar)

 # Now check for any OTHER matches in
 # corpus_without_annotations, and put them
 # into badStarts.
 okStarts = set(okStarts)
 badStarts = set(x.start() for x in
 re.finditer(re.escape(word_without_annotations),
 corpus_without_annotations)
 if not x.start() in okStarts)

 if not badStarts:
 return True # this annotation has no false
 # positives so make it default

 # Some of the badStarts can be ignored on the
 # grounds that they should be picked up by
 # other rules first: any where the match does
6 | Overload | December 2012

http://people.ds.cam.ac.uk/ssb22/css/
http://people.ds.cam.ac.uk/ssb22/adjuster/
http://dl.acm.org/citation.cfm?id=354371
www.csse.monash.edu.au/~jwb/jviewer.html
http://flex.sourceforge.net
http://people.ds.cam.ac.uk/ssb22/adjuster/annogen.html
http://www.openwave.com/solutions/traffic_mediation/web_adapter/index.html
http://www.openwave.com/solutions/traffic_mediation/web_adapter/index.html
www.pythonware.com/products/pil
www.tornadoweb.org
www.wenlin.com
http://people.ds.cam.ac.uk/ssb22/zhimo.html
www.cl.cam.ac.uk/teaching/1112/NLP/lectures.pdf

FEATURESILAS BROWN
Listing 1 (cont’d)

 # not start at the start of an annotation
 # block (the rule matching the block starting
 # earlier should get there first), and any
 # where it starts at the start of a block that
 # is longer than itself (a longest-first
 # ordering should take care of this). So keep
 # only the ones where it starts at the start
 # of a word and that word is no longer
 # than len(word_without_annotations).
 lastS = lenSoFar = 0
 reallyBadStarts = []
 for s in re.finditer(re.escape(markupStart
 + word_without_annotations[0])
 + '.*?'
 + re.escape(markupMid),
 corpus_with_annotations):
 (s, e) = (s.start(), s.end())
 if e - s > len(markupStart
 + word_without_annotations
 + markupEnd):
 continue # this word is too long
 # (see comment above)
 lenSoFar += len(remove_annotations(\
 corpus_with_annotations[lastS:s]))
 lastS = s
 if lenSoFar in badStarts:
 reallyBadStarts.append(lenSoFar)
 badStarts = reallyBadStarts

 if not badStarts:
 return True
 # this annotation has no effective false
 # positives, so make it default

 if len(okStarts) > len(badStarts):

 # This may be a majority sense. But be
 # careful. If we're looking at a possible
 # annotation of "AB", it's not guaranteed
 # that text "ABC" will use it - this might
 # need to be split into A + BC (not using the
 # AB annotation). If we make
 # word_with_annotations the default for "AB",
 # then it will be harder to watch out for
 # cases like A + BC later. In this case it's
 # better NOT to make it default but to
 # provide Yarowsky collocation indicators for
 # it.
 if len(word_without_annotations) == 1:
 # should be safe
 return True

 if all(x.end() - x.start()
 == len(markupStart
 + word_without_annotations)
 for x in
 re.finditer(re.escape(markupStart)
 + (re.escape(markupMid) + '.*?'
 + re.escape(markupStart)). \
 join(re.escape(c)
 for c in
 list(word_without_annotations)),
 corpus_with_annotations)):
 return True
 # If we haven't returned yet,
 # word_with_annotations cannot be the "default"
 # sense, and we need Yarowsky collocations for
 # it.

Listing 1 (cont’d)

 omitStr = chr(1).join(bytesAround(s) for s in
 badStarts)
 okStrs = [bytesAround(s) for s in okStarts]
 covered = [False] * len(okStrs)
 ret = []

 # unique_substrings is a generator function
 # that iterates over unique substrings of
 # texts, in increasing length, with equal
 # lengths sorted by highest score returned by
 # valueFunc, and omitting any where omitFunc is
 # true
 for indicatorStr in \
 unique_substrings(texts=okStrs,
 omitFunc=lambda txt: txt in omitStr,
 valueFunc=lambda txt: sum(1 for s in
 okStrs if txt in s)):

 covered_changed = False
 for i in xrange(len(okStrs)):
 if not covered[i] and indicatorStr \
 in okStrs[i]:
 covered[i] = covered_changed = \
 True
 if covered_hanged:
 ret.append(indicatorStr)
 if all(covered):
 break

 return ret
December 2012 | Overload | 7

FEATURE CASSIO NERI
Complex Logic in the
Member Initialiser List
The syntactic form of the member initialiser list restricts the
logic that it contains. Cassio Neri presents some techniques
to overcome these constraints.
n C++, during a constructor call, before execution gets into its body all
subobjects – base classes and non-static data members – of the class are
initialised. (In C++11, this rule has an exception which we shall exploit

later.) The member initialiser list (MIL) lets the programmer customise
this initialisation. A subobject is initialised from a parenthesised1 list of
expressions that follows its identifier in the MIL. The MIL of bar’s
constructor is emphasised in Listing 1.

Most often the MIL forwards the arguments to the subobject initialisers.
In contrast, bar constructor’s MIL firstly performs computations with the
arguments and then passes the results through. The operations here are still
fairly simple to fit in full expressions but had they been more complex (e.g.
with branches and loops) the syntactic form of the MIL would be an
obstacle.

This article presents some techniques that allow more complex logic in the
MIL. It’s not advocating complexity in the MIL, it only shows some ways
to achieve this if you have to.

Before looking at these methods, we consider the possibility of avoiding
the MIL altogether.

Avoiding the MIL
Notice that d_ isn’t initialised in the MIL. In this case, the compiler
implicitly initialises2 d_ and then we assign it to d in the constructor’s
body. Could we do the same for the other subobjects? Not always. Assume
that foo doesn’t have an accessible default constructor. Then, the compiler
can’t implicitly initialise f_ and yields an error. We simply don’t have a
choice and must initialise f_ in the MIL. In addition to subobjects of types
without an accessible default constructor, reference members (e.g. r_) and
const members of non class type (e.g. x_ and y_) must be explicitly
initialised otherwise the compiler complains. Although not enforced by the
language, we can add to this list subobjects of immutable types – types with
no non-const methods apart from constructors and a destructor.

It’s possible for some subobjects to be default initialised first and then
changed in the constructor’s body. Nevertheless this two-step set up
process might be wasteful. Actually, this argument is the most common
stated reason to prefer initialisation in the MIL to assignment in constructor
[Meyers05, §4]. For fundamental types, however, there’s no penalty
because default initialisation does nothing and costs nothing.

Initialiser functions
The first idea for complex initialisation is very simple and consists of
writing an initialiser function that delivers the final result to direct initialise
a subobject. Listing 2 shows this technique applied to our example.

We emphasise that, in our toy example, x_ can be directly initialised in
the MIL (as seen in Listing 1). Listing 2 is merely a sample for more
complex cases.

I

Listing 1

class base {
 ...
public:
 base(double b);
};

class foo {
 ...
public:
 foo(double f1, double f2);
};

class bar : public base {
 const double x_, y_;
 foo& r_;
 foo f_;
 double d_;
 ...
public:
 bar(double d, foo& r1, foo& r2);
};

bar::bar(double d, foo& r1, foo& r2)
: base(d * d), x_(cos(d * d)), y_(sin(d * d)),
 r_(d > 0.0 ? r1 : r2), f_(exp(d), -exp(d))
{
 d_ = d;
}

Listing 2

double init_x(double d) {
 const double b = d * d;
 const double x = cos(b);
 return x;
}

bar::bar(double d, foo& r1, foo& r2)
: ... x_(init_x(d)), ...

Cassio Neri has a PhD in Applied Mathematics from Université
de Paris Dauphine. He worked as a lecturer in Mathematics
before becoming a quantitative analyst. Now he works in the FX
Quantitative Research at Lloyds Banking Group in London. He
can be contacted at cassio.neri@gmail.com.

1 C++11 also allows the use of braces but their semantics are different
and outside the scope of this article. Therefore, we shall consider only
parenthesised initialisations and their C++03 semantics.

2 It’s unfortunate but according to C++ Standard definitions, sometimes –
as in this particular case – initialisation means doing nothing and the
value of the object is indeterminate.
8 | Overload | December 2012

FEATURECASSIO NERI

We can bundle some related members into
a nested struct and create an initialiser

function for the struct rather than for
individual members
Most frequently the initialiser function creates a local object of the same
type of the subobject that it initialises and returns it by value. Then the
subobject is copy- or move-initialised from this value. Therefore, the
subobject’s type must be constructible (in particular, it can’t be an abstract
class) and also copy- or move-constructible.

Calling the copy- or move-constructor might have a cost. Nevertheless,
mainstream compilers implement the return value optimisation [RVO]
which, under certain circumstances, elides this call. Unfortunately, this
doesn’t eliminate the need for the subobject’s type to be copy- or move-
constructible.

In another variation, there are initialisers for various arguments that the
subobjects’ constructors take. For instance, an initialiser function for base
might compute d * d and return this value which is then passed to base’s
constructor. In this way, the argument types, rather than the subobjects,
must be constructible and copy- or move-constructible.

It’s worth mentioning that when the subobject is a reference member, the
initialiser function must return a reference to a non-local object, otherwise
the member will dangle. For instance, an initialiser function for r_ could
be as follows.

 foo& init_r(double d, foo& r1, foo& r2) {
 // r1 and r2 are non-local
 return d > 0.0 ? r1 : r2;
 }

A positive aspect of having an initialiser function is that it can be used (and
it most likely will be) by many constructors. When there’s no need to reuse
the initialiser, C++11 offers the tempting possibility of writing the
initialiser function as a lambda expression as shown below. Notice,
however, that readability suffers.

 x_([&]() -> double {
 const double b = d * d; // d is captured
 const double x = cos(b);
 return x;
 } (/* parentheses for calling the lambda */))

Where should the initialiser function be? Assuming that its sole purpose
is initialising a class member (so it’s not going to be used anywhere else),
then placing it in the global or in a named namespace is pollution. Making
the initialiser a member of the class might come to mind but this isn’t ideal
because it decreases encapsulation [Meyers00]. Additionally, this requires
the initialiser’s declaration to be in the class header file forcing on clients
an artificial dependency on the initialiser function. The best place for it is
inside the class source file (which we’re assuming is not its header file).
Making the initialiser invisible outside the file (by declaring it either static
or in an unnamed namespace) improves encapsulation and decreases
linking time.

Using an initialiser function is the best technique presented in this article
as far as encapsulation, clarity and safety are concerned. However, one
feature that this solution lacks is the ability to reuse results obtained by one
initialiser into another. For instance, the value of d * d must be calculated
by the initialiser functions of base, x_ and y_. In this example, this issue

isn’t a big deal but it could be if the result was obtained through a very
costly operation.

Classes can have a member whose only purpose is storing a result to be
used by different initialiser functions (e.g. bar could have a member b_
to store d * d). This is obviously wasteful and, as in this section, we want
partial results to have a short lifetime. The next sections present methods
to achieve this goal.

Bundling members
We can bundle some related members into a nested struct and create an
initialiser function for the struct rather than for individual members.
Listing 3 shows relevant changes to bar needed to initialise the two const
members in one go.

As in the previous section, the type returned by the initialiser function must
be copy- or move-constructible and so do the struct members.

The initialiser function needs access to the nested struct. Ideally, this
type will be private and the initialiser will be a static private
member. The initialiser could be a friend but, being an implementation
detail, hiding it inside the class is advisable. (Unfortunately, it can’t be
hidden as much as in the previous section.) Alternatively, the initialiser
function can be non-member and non-friend provided that the struct
is made public but this decreases encapsulation even further.

We can’t include base classes in the struct and each of them needs a
different initialiser function. However, as in our example, the initialiser
function of a base class could profit from results obtained by other
initialiser functions. The next section shows how to achieve this goal.

Using an argument for temporary storage
In rare cases we can change the value of an argument to something that is
more reusable. Listing 4 is an attempt for our example and consists of
changing d to d * d just before initialising base. Unfortunately, this

Listing 3

class bar : public base {
 struct point {
 double x, y;
 };
 const point p_;
 static point init_p(double d);
 ...
};

bar::point bar::init_p(double d) {
 const double b = d * d;
 const bar::point p = {cos(b), sin(b)};
 return p;
}

bar::bar(double d, foo& r1, foo& r2)
: ... p_(init_p(d)), ...
December 2012 | Overload | 9

FEATURE CASSIO NERI

A fix for the issue is to use a dummy argument
for temporary storage and giving it a default
value to avoid bothering clients
doesn’t work here since initialisations of r_, f_ and d_ need the original
value of d but they also get the new one.

A fix for the issue above is to use a dummy argument for temporary storage
and giving it a default value to avoid bothering clients. This technique is
in practice in Listing 5.

This works because the dummy argument persists for a short period but
long enough to be reused by different initialisers. More precisely, its
lifetime starts before the first initialisation of a subobject (base in our
example) and ends after the constructor exits.

A problem (alas, there will be others) with this approach is that the
constructor’s extended signature might conflict with another one. If it
doesn’t today, it might tomorrow. As an improvement, we create a new
type for the storage. For better encapsulation this type is nested in the
private section of the class as Listing 6 illustrates.

The simplicity of our example is misleading because the assignment
tmp.b = d * d can be nicely put in the MIL whereas in more realistic
scenarios tmp might need a more complex set up. It can be done, for
instance, in base’s initialiser function by making it take a storage
argument by reference as Listing 7 shows.

Notice that tmp is passing through the two-step set up process that we have
previously advised against. Could we forward d to storage’s constructor
to avoid the default initialisation? For this, bar’s constructor requires a
declaration similar to

 bar(double d, foo& r1, foo& r2,
 storage tmp = storage(d));

Unfortunately, this isn’t legal. The evaluation of one argument can’t refer
to others. Indeed, it’s fairly well known that in a function call the order of
argument evaluation is undefined. If the code above were allowed, then
we could not be sure that the evaluation of tmp occurs after that of d. Recall
that if storage consists of fundamental types only, then the default
initialisation costs nothing. If it contains a member of non-fundamental
type, then the technique presented in the next section applies to prevent
default initialisation of a member. The method is general and equally
applies to bar itself.

A very important warning is in order before leaving this section.
Unfortunately, the method presented here is unsafe! The main issue is that
the technique is very dependent on the order of initialisation of subobjects.
In our example, base is the first subobject to be initialised. For this reason,
init_base had the responsibility of setting up tmp before it could be
used by init_x. The order of initialisation of subobjects is very sensitive
to changes in the class. To mitigate this issue you can create a reusable
empty class, say, first_base, that as its name indicates, must be the first
base of a class to which we want to apply the technique presented here.
Furthermore, this class’ initialiser function will have the responsibility of
setting up the temporary storage as shown in Listing 8.

Listing 4

bar::bar(double d, foo& r1, foo& r2)
: base(d = d * d), // d has a new value
 x_(cos(d)), y_(sin(d)), // OK : uses new value
 r_(d > 0.0 ? r1 : r2), // BUG: uses new value
 f_(exp(d), -exp(d)) { // BUG: uses new value
 d_ = d; // BUG: uses new value
}

Listing 5

class bar : public base {
 ...
public:
 bar(double d, foo& r1, foo& r2, double b = 0.0);
};

bar::bar(double d, foo& r1, foo& r2, double b)
: base(b = d * d), // b has a new value
 x_(cos(b)), y_(sin(b)), // OK : uses b = d * d
 r_(d > 0.0 ? r1 : r2), // OK : uses d
 f_(exp(d), -exp(d)) { // OK : uses d
 d_ = d; // OK : uses d
}

Listing 6

class bar : public base {
 struct storage {
 double b;
 };
 ...
public:
 bar(double d, foo& r1, foo& r2,
 storage tmp = storage());
};

bar::bar(double d, foo& r1, foo& r2, storage tmp)
: base(tmp.b = d * d),
 x_(cos(tmp.b)), y_(sin(tmp.b)), ...

Listing 7

double bar::init_base(double d, storage& tmp) {
 tmp.b = d * d;
 return tmp.b;
}

double bar::init_x(const storage& tmp) {
 const double x = cos(tmp.b);
 return x;
}

bar::bar(double d, foo& r1, foo& r2, storage tmp)
: base(init_base(d, tmp)), x_(init_x(tmp)), ...
10 | Overload | December 2012

FEATURECASSIO NERI

C++11 offers a loophole that we can
exploit to prevent the compiler calling

the default constructor
The use of first_base makes the code safer, clear and almost solves
the problem. Even when first_base is the first in the list of base classes,
there’s still a chance that it’s not going to be the first subobject to be
initialised. This occurs when the derived class has a direct or indirect
virtual base class because virtual bases are initialised first. Experience
shows that only a minority of inheritances are virtual and, therefore, this
issue is unlikely to happen. However, it’s always good to play safe. So, to
be 100% sure, it suffices to virtually inherit from first_base (always
keeping it as the first base in the list). The price that a class has to pay for
this extra safety is carrying an extra pointer.

Delaying initialisation
We arrive at the final technique of this article. The basic idea is delaying
the initialisation of a subobject until the constructor’s body where more
complex code can sit.

Compilers have a duty of trying to ensure that every object of class type
is properly initialised before being used. Their way to perform this task is
calling the default constructor whenever the programmer doesn’t
explicitly call one. However, C++11 offers a loophole that we can exploit
to prevent the compiler calling the default constructor.

The underlying pattern that supports delayed initialisation is the tagged
union [TU], also known by various other names (e.g. discriminated union,
variant type). A tagged union can hold objects of different types but at any
time keeps track of the type currently held. Frequently, default
initialisation of a tagged union means either no initialisation at all or

default initialisation of a particular type (which again might mean no
initialisation at all).

In general, tagged unions are implemented in C/C++ through unions.
Unfortunately, the constraints that C++03 imposes on types that can be
members of unions are quite strict and implementing tagged unions
demands a lot of effort [Alexandrescu02]. C++11 relaxes the constraints
on union members and gives more power to programmers. However, this
come with a cost: now the programmer is responsible for assuring proper
initialisation of union members. The technique that we shall see now relies
on C++11. Later we shall see what can be done in C++03.

Class foo has no accessible default constructor and we are forced to
initialise f_ in the MIL to prevent a compiler error. We want to postpone
the initialisation of f_ to the constructor’s body where we can compute,
store and reuse exp(d). This can be achieved by putting f_ inside an
unnamed union as shown in Listing 9.

Since the union is unnamed all its members (only f_ in this case) are seen
as if they were members of bar but the compiler forgoes their
initialisations. A member of the union can be initialised in the
constructor’s body through a placement new. In Listing 9 this builds an
object of type foo in the address pointed by &f_ or, in other words, the
this pointer inside foo’s constructor will be set to &f_. Simple, beautiful
and efficient – but this isn’t the end of the story.

The compiler neither initialises a member of a union nor destroys it.
Ensuring proper destruction is again the programmer’s responsibility.
Previously – listings 1–8 – the destruction of f_ was called when its
containing bar object was destroyed. To imitate this behaviour, the new
bar’s destructor calls ~foo()on the object pointed by &f_.

We have just written a destructor, and the rule of three says that we
probably need to write a copy-constructor and an assignment operator as
well. This is the case here. In addition, there are extra dangers that we must
consider. For instance, a new constructor might be added to bar and the
writer might forget to initialise f_. If a bar object is built by this

Listing 8

class first_base {
protected:
 explicit first_base(int) { // does nothing
 }
};

class bar : first_base, public base {
 ...
};

int bar::init_first_base(double d, storage& tmp) {
 tmp.b = d * d;
 return 0;
}

double bar::init_base(const storage& tmp) {
 return tmp.b;
}

bar::bar(double d, foo& r1, foo& r2, storage tmp)
: first_base(init_first_base(d, tmp)),
 base(init_base(tmp)), ...

Listing 9

class bar : public base {
 union { // unnamed union type
 foo f_;
 };
 ...
};

bar::bar(double d, foo& r1, foo& r2)
: ... /* no f_ in the MIL */ {
 const double e = exp(d);
 new (&f_) foo(e, -e);
}

bar::~bar() {
 (&f_)->~foo();
}

December 2012 | Overload | 11

FEATURE CASSIO NERI

This leaves the default constructor empty and
you might wonder why bother writing this
constructor since the compiler will
automatically implement one exactly as ours
constructor, then at destruction time (probably earlier) f_ will be used. The
code is then in undefined behaviour situation. To avoid this and other
issues, we use a bool flag to signal whether f_ has been initialised or not.
When an attempt to use an uninitialised f_ is made, the code might inform
you by, say, throwing an exception. However, bar’s destructor can be
more forgiving and ignore f_ if it’s uninitialised. (Recall that a destructor
shouldn’t throw anyway.)

Instead of forcing bar to manage f_’s usage and lifetime, it’s better to
encapsulate this task in a generic template class called, say,
delayed_init. Listing 10 shows a rough draft of an implementation. A
more complete version is available in [Neri] but don’t use it (I repeat, don’t
use it) because Boost.Optional [Optional] is a better alternative. Indeed,
it’s a mature library that has been heavily tested over the last few years
and also works with C++03. delayed_init is presented for didactic
purposes only. As mentioned above, union rules in C++03 are strict and
make the implementation of boost::optional more complex and

difficult to understand. In contrast, delayed_init assumes C++11 rules
and has a simpler code. See delayed_init as a draft of what
boost::optional could be if written in C++11. Even though, Fernando
Cacciola – the author of Boost.Optional – and Andrzej Krzemienski are
working on a proposal [Proposal] for optional to be added to the C++
Standard Library. This idea has already been praised by a few members
of the committee.

Let’s see what delayed_init looks like. Its member is_init_ is
initialised to false using the new brace-or-equal initialisation feature of
C++11. Therefore, we don’t need to do it in the MIL. This leaves the
default constructor empty and you might wonder why bother writing this
constructor since the compiler will automatically implement one exactly
as ours. Actually, it won’t because delayed_init has an unnamed
union member (which is the whole point of this template class).

When the time comes to initialise the inner object, it suffices to call
init(). This method is a variadic template function – another welcome
and celebrated C++11 novelty – that takes an arbitrary number of
arguments (indicated by the ellipsis ...) of arbitrary types by universal
reference [Meyers12] (indicated by Args&& where Args is deduced).
These arguments are simply handed over to T’s constructor via
std::forward. (Take another look at this pattern since it’s expected to
become more and more frequent.)

Also note the presence of operator->(). Essentially, the class
delayed_init<T> is a wrapper to a type T. We wish it could be used
as a T by implementing T’s public interface and simply forwarding calls
to obj_. This is impossible since T is unknown. A close alternative is
returning a pointer to obj_ because T* replicates T’s interface with
slightly different syntax and semantics. Actually, pointer semantics fits
very naturally here. Indeed, it’s common for a class to hold a pointer to an
object rather than the object itself. In this way, the class can delay the
object’s initialisation to a later moment where all data required for the
construction is gathered. At this time the object is created on the heap and
its address is stored by the pointer. Through delayed_init, we are
basically replacing the heap with internal storage and, like in a smart
pointer, managing the object’s lifetime. Finally, the operator*() is also
implemented. It provides access to obj_ and throws if obj_ hasn’t been
initialised.

Conclusion
Initialisation in the MIL rather than assignment in the constructor has been
advocated for long time. However, in some circumstances, there’s genuine
need for not so simple initialisations which conflict with the poorness of
the MIL’s syntax. This article has presented four techniques to overcome
this situation. They vary in applicability, clarity and safety. On the way it
presented some of the new C++11 features.

Acknowledgements
Cassio Neri thanks Fernando Cacciola and Lorenz Schneider for their
suggestions and careful reading of this article. He also thanks the Overload
team for valuable remarks and feedback.

Listing 10

template <typename T>
class delayed_init {
 bool is_init_ = false;
 union {
 T obj_;
 };

public:
 delayed_init() {
 }
 ~delayed_init() {
 if (is_init)
 (&obj_)->~T()
 }

 template <typename... Args>
 void init(Args&&... args) {
 new (&obj_) T(std::forward<Args>(args)...);
 is_init_ = true;
 }
 T* operator->() {
 return is_init_ ? &obj_ : nullptr;
 }
 T& operator*() const {
 if (is_init_)
 return obj_;
 throw std::logic_error("attempt to use "
 "uninitialised object");
 }
 ...
};
12 | Overload | December 2012

FEATURECASSIO NERI

it’s common for a class to hold a pointer to an
object rather than the object itself
References
[Alexandrescu02] Andrei Alexandrescu, Generic: Discriminated Unions

(I), (II) & (III), Dr.Dobb’s, June 2002. http://tinyurl.com/8srld2z
http://tinyurl.com/9tofeq4 http://tinyurl.com/8ku347d

[Meyers00] Scott Meyers, How Non-Member Functions Improve
Encapsulation, Dr.Dobb’s, February 2000.
http://tinyurl.com/8er3ybp

[Meyers05] Scott Meyers, Effective C++, Addison-Wesley 2005.

[Meyers12] Scott Meyers, Universal References in C++11, Overload 111,
October 2012. http://tinyurl.com/9akcqjl

[Neri] Cassio Neri, delayed_init implementation.
 https://github.com/cassioneri/delayed_init

[Optional] Fernando Cacciola, Boost.Optional.
http://tinyurl.com/8ctk6rf

[Proposal] Fernando Cacciola and Andrzej Krzemienski, A proposal to
add a utility class to represent optional objects (Revision 2),
September 2012. http://tinyurl.com/bvyfjq7

[RVO] Return Value Optimization, Wikipedia.
http://tinyurl.com/kpmvdw

[TU] Tagged Union, Wikipedia. http://tinyurl.com/42p5tuz

Software
Engineering
(part-time)

MSc in
December 2012 | Overload | 13

http://tinyurl.com/8srld2z
http://tinyurl.com/9tofeq4
http://tinyurl.com/8ku347d
http://tinyurl.com/8er3ybp
http://tinyurl.com/9akcqjl
https://github.com/cassioneri/delayed_init
http://tinyurl.com/8ctk6rf
http://tinyurl.com/bvyfjq7
http://tinyurl.com/kpmvdw
http://tinyurl.com/42p5tuz

FEATURE SERGEY IGNATCHENKO
640K 2256 Bytes of Memory is More
than Anyone Would Ever Need Get
How fast can computers get?
Sergey Ignatchenko provides us
with some upper limits.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide with the opinions of the
translator or the Overload editor. Please also keep in mind that
translat ion diff icult ies from Lapine (l ike those described in
[Loganberry04]) might have prevented providing an exact translation.
In addition, both the translator and Overload expressly disclaim all
responsibility from any action or inaction resulting from reading this
article.

here is a famous misquote commonly and erroneously attributed to
Bill Gates: “640K of memory is all that anybody with a computer would
ever need.” Apparently, Gates himself has denied that he has ever

said anything of the kind [Wired97]. Reportedly, he went even further,
saying “No one involved in computers would ever say that a certain amount
of memory is enough for all time.” [Wired97] Well, I, ‘No Bugs’ Bunny,
am involved in computers and I am saying that while there can be (and
actually, there is) a desire to get as much memory as possible, physics will
certainly get in the way and will restrict any such desire.

Moore’s Law vs Law of Diminishing Returns
What goes up must come down

proverb

There is a common perception in the computer world that all the current
growth in hardware will continue forever. Moreover, even if such current
growth is exponential, it is still expected to continue forever. One such
example is Moore’s Law; originally Moore (as early as 1965, see
[Moore65]) was referring to doubling the complexity of integrated circuits
every year for next 10 years, i.e. to 1975 (!). In 1975, Moore adjusted his
prediction to doubling complexity every two years [Moore75], but again
didn’t go further than 10 years ahead in his predictions. As it happens,
Moore’s law has stood for much longer than Moore himself had predicted.
It was a great thing for IT and for everybody involved in IT, there is no
doubt about it. With all the positives of these improvements in hardware,
there is one problem with such a trend though – it has led to the perception
that Moore’s Law will stand forever. Just one recent example – in October
2012, CNet published an article arguing that this trend will continue for
the foreseeable future [CNet12]; in particular, they’ve quoted the CTO of
Analog Devices, who said: “Automobiles and planes are dealing with the
physical world. Computing and information processing doesn't have that
limitation. There's no fundamental size or weight to bits. You don't
necessarily have the same constraints you have in these other industries.
There potentially is a way forward.”

There is only one objection to this theory, but unfortunately, this objection
is that this theory is completely wrong. In general, it is fairly obvious that

no exponential growth can keep forever; still, such considerations cannot
lead us to an understanding of how long it will continue to stand. In
practice, to get any reasonable estimate, we need to resort to physics. In
2005, Moore himself said “In terms of size [of a transistor] you can see that
we’re approaching the size of atoms which is a fundamental barrier, but it’ll
be two or three generations before we get that far – but that’s as far out as
we’ve ever been able to see.” [Moore05] Indeed, 22nm technology already
has transistors which are just 42 atoms across [Geek10]; and without going
into very different (and as yet unknown) physics one cannot possibly go
lower than 3 atoms per transistor.

Dangers of relying on exponential growth
Anyone who believes exponential growth can go on forever in

a finite world is either a madman or an economist.
Kenneth Boulding, economist

In around the 2000s, Moore’s Law had been commonly formulated in
terms of doubling CPU frequency every 2 years (it should be noted that it
is not Moore’s formulation, and that he shouldn’t be blamed for it). In
2000, Intel has made a prediction that by 2011, there will be 10GHz CPUs
out there [Lilly10]; as we can see now, this prediction has failed miserably:
currently there are no CPUs over 5GHz, and even the only 5GHz one –
POWER6 – is not produced by Intel. Moreover, even IBM which did
produce POWER6 at 5GHz, for their next-generation POWER7 CPU has
maximum frequency of 4.25 GHz. With modern Intel CPUs, even the
‘Extreme Edition’ i7-3970XM is mere 3.5GHz, with temporary Turbo
Boost up to 4Ghz (see also an extremely enthusiastic article in PC World,
titled ‘New Intel Core I7 Extreme Edition chip cracks 3GHz barrier’
[PCWorld12]; the only thing is that it was published in 2012, not in 2002).
In fact, Intel CPU frequencies have decreased since 2005 (in 2005, the
Pentium 4 HT 672 was able to sustain a frequency of 3.8GHz).

One may say, “Who cares about frequencies with all the cores around” –
and while there is some point in such statement (though there are many
tasks out there where performance-per-core is critical, and increasing the
number of cores won’t help), it doesn’t affect the fact – back in 2000
nobody had expected that in just 2 years, all CPU frequency growth would
hit a wall and that frequency will stall at least for a long while.

It is also interesting to observe that while there is an obvious physical limit
to frequencies (300GHz is already commonly regarded as a border of infra-
red optical range, with obviously different physics involved), the real limit
has came much earlier than optical effects have started to kick in.

Physical limit on memory
The difference between stupidity and genius is that genius has

its limits.
Albert Einstein

As we’ve seen above, exponential growth is a very powerful thing in a
physical world. When speaking about RAM, we’ve got used to doubling
address bus width (and address space) once in a while, so after move from
16-bit CPUs to 32-bit ones (which has happened for mass-market CPUs

T

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
14 | Overload | December 2012

FEATURESERGEY IGNATCHENKO
in mid-80s) and a more recent move from 32-bit CPUs to 64-bit ones, many
have started to expect that 128-bit CPUs will be around soon, and then 256-
bit ones, and so on. Well, it might or might not happen (it is more about
waste and/or marketing, see also below), but one thing is rather clear – 2128

bytes is an amount of memory which one cannot reasonably expect in any
home device, with physics being the main limiting factor. Let’s see – one
cubic cm of silicon contains around 5*1022 atoms. It means that even if
every memory cell is only 1 atom large, it will take 2128/(5*1022)*8 cm3

of silicon to hold all that memory; after calculating it, we’ll see that 2128

bytes of memory will take approximately 54 billion cubic metres (or 54
cubic kilometres) of silicon. If taking other (non-silicon-based)
technologies (such as HDDs), the numbers will be a bit different, but still
the amount of space necessary to store such memory will be a number of
cubic kilometres, and this is under an absolutely generous assumption that
one atom is enough to implement a memory cell.

To make things worse, if we’re speaking about RAM sizes of 2256 bytes,
we’ll see that implementing it even with 1 atom/cell will take about 1078

atoms. Earth as a planet is estimated to have only 1050 atoms, so it will
take ten billion billion billions of planets like Earth to implement a mere
2256 bits of memory. The solar system, with 1057 atoms, still won’t be
enough: the number we’re looking for is close to number of atoms in the
observable universe (which is estimated at 1079–1080). In other words –
even if every memory cell can be represented by a single atom, we would
need 1 to 10% of all the stars and planets which we can see (with most of
them being light years afar), to implement 2256 bytes of memory. Honestly,
I have serious doubts that I will live until such a thing happens.

On physics and waste of space
Architecture is the art of how to waste space.

Philip Johnson

It should be noted that the analysis above is based on two major
assumptions. First, we are assuming that our understanding of physics is
not changed in a drastic manner. Obviously, if somebody finds a way to
store terabits within a single atom, things will change (it doesn’t look likely
in the foreseeable future, especially taking the uncertainty principle into
account, but strictly speaking,
anything can happen). The
second assumption is that
when speaking about address
space, we are somewhat
assuming that address space is
not wasted. Of course, it is
possible to use as much as a
1024-bit address space to
address a mere 64K of RAM,
especially if such an address
space is allocated in a manner
similar to the allocation of
IPv4 addresses in early days
(“here comes IBM, le t ’ s
allocate them as small portion
of the pool – just class A
network, or 1/256 of all IP
addresses”). If there is a will
to waste address space (which
can be driven by multiple
factors – from the feeling that
space is infinite, like it was the
case in early days of IPv4
addresses, to the marketing
reason of trying to sell CPUs
based on perception that a
128-bit CPU is better than a
64-bit one just because of the
number being twice as
big) – there will
be a way. Still,

our claim that ‘2256 bytes of memory is not practically achievable’ stands
even without this second assumption. In terms of the address bus (keeping
in mind that an address bus is not exactly the same as an address space,
and still relying on the first assumption above), it can be restated as ‘256-bit
address bus is more than anyone would ever need’.

References
[CNet12] Moore’s Law: The rule that really matters in tech. Stephen

Shankland, CNet, Oct 2012, http://news.cnet.com/8301-11386_3-
57526581-76/moores-law-the-rule-that-really-matters-in-tech/

[Lilly10] Where are Intel’s 10GHz Processors Hiding? Paul Lilly, 2010
http://www.maximumpc.com/article/news/
where_are_intels_10ghz_processors_hiding

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[Moore65] ‘Cramming more components onto integrated circuits’,
Moore, G. Electronics Magazine, 1965

[Moore75] Progress In Digital Integrated Electronics, Gordon Moore,
IEEE Speech, 1975

[Moore05] Moore’s Law is dead, says Gordon Moore Manek Dubash,
TechWorld http://news.techworld.com/operating-systems/3477/
moores-law-is-dead-says-gordon-moore/

[PCWorld12] New Intel Core I7 Extreme Edition chip cracks 3GHz
barrier. PC World, Sep 2012,
 http://www.pcworld.com/article/261873/
new_intel_core_i7_extreme_edition_chip_cracks_3ghz_barrier.html

[Wired97] Did Gates Really Say 640K is Enough For Anyone? -- John
Katz, Wired, 1997

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.
December 2012 | Overload | 15

http://news.cnet.com/8301-11386_3-57526581-76/moores-law-the-rule-that-really-matters-in-tech/
http://news.cnet.com/8301-11386_3-57526581-76/moores-law-the-rule-that-really-matters-in-tech/
http://www.maximumpc.com/article/news/where_are_intels_10ghz_processors_hiding
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://news.techworld.com/operating-systems/3477/moores-law-is-dead-says-gordon-moore/
http://news.techworld.com/operating-systems/3477/moores-law-is-dead-says-gordon-moore/
http://www.pcworld.com/article/261873/new_intel_core_i7_extreme_edition_chip_cracks_3ghz_barrier.html
http://www.pcworld.com/article/261873/new_intel_core_i7_extreme_edition_chip_cracks_3ghz_barrier.html

FEATURE ANDY BALAAM
Footprint on Modify
Tracking history can be done in a variety
of ways. Andy Balaam describes one
technique with many advantages.
any programs need to solve the problem of keeping track of the
history of changes made to a model, and making it possible to
navigate backwards and forwards through that history. Perhaps the

most obvious example is an interactive program with an undo/redo facility.

Writing code to track history can be done in a variety of ways, each with
different sets of constraints, advantages and disadvantages. This article
describes one technique which we have been using in our most recent
product, and which we have found to have a number of advantages for the
particular problem we are solving.

This technique, which we have found ourselves calling ‘footprint on
modify’, involves taking a copy of an object whenever we are about to change
it, and inserting it into the historical record in place of the modified object.

In this article we will describe the problem we are solving and some
alternative approaches to solving it, before describing our own approach
and discussing its advantages and disadvantages in comparison with other
options.

We hope, when you come to tackle a similar problem, the issues we cover
here will provide you with a richer set of concepts for reasoning about the
right solution for your problem area.

The problem – tracking changes in an object model
Like many programs, our program has an object model – a set of classes
which together form a model of the artefact being generated by our users
as they use it. Instances of these classes are linked by parent–child
relationships (some objects ‘contain’ others) and references (some objects
refer to others).

The problem we must solve is being able to backtrack to the state of the
model at a given point in the past. This means we must be able to construct
an object model which is identical to the one that existed at that time. We
must allow modifying that object model starting from a point in the past,
taking a different branch in history. In addition, we are interested in
keeping track of this non-linear history, not simply throwing away the
previous branch as many undo/redo systems do, but keeping it available
for later reference.

This is illustrated in figure 1, which shows a system moving through states
1–4 as changes are made to the model, before backtracking to state 1, and
being changed in different ways, resulting in states 2a and 3a. We want to
keep the entire history in this case, including states 2, 3 and 4. Users of
board-game software which allows exploring different game trees will be
familiar with working this way.

There are many different ways of representing object models and the
changes they undergo, and we will begin by looking at some of the
alternatives we considered before settling on our approach.

 Alternative solutions
 Saving complete models

The most brute-force method of preserving model history is to store
complete models (either on disk or in memory) every time a change
is made. This is often simple to implement, but can be expensive
both in terms of time taken to copy or save entire object models, and
in terms of storage for the saved models.

This method makes it easy to ‘prune’ the history, only keeping the
most important points when storage becomes limited, and it does not
require the invention of a new language to represent model changes
– simply a way to save or clone objects in the model.

It also makes navigation through long distances in the history simple
and relatively cheap – we simply restore the complete model which
was stored for that point in time.

 Keeping a change log

The classic solution to providing undo/redo behaviour is via a
reversible log of actions taken. This amounts to a language that
encodes object model modifications, and is often used as an example
in textbooks explaining the Command design pattern, since this
pattern is well-suited to providing this functionality. Each entry in
the log provides a way of changing the model back to the state it was
in before a particular change, and a way of moving back again to the
after-state. The log entries themselves may be objects with methods
capable of modifying the model, or they may be descriptions of how
to do it in some language.

This solution has been shown to work in many contexts. Because it
involves storing only the differences between states, it is light-
weight in terms of the number of objects held in memory, but can be
expensive to move large distances in the history, since the system
must pass through all intermediate states in order to reach a
particular one.

In practice, many applications do not require movements of large
distances in the history, but in our situation we do need to consider
this case because we store a branched tree of history, providing a
visualisation to the user through which they can navigate.

The change log may be seen as somewhat fragile, since if a single
point in the log is lost, we are unable accurately to reconstruct states
before that time. This is not only a theoretical problem with stability,

M

Figure 1

History

State 1 State 3State 2

State 2a State 3a

State 4

Andy Balaam is happy as long as he has a programming language
and a problem. He finds over time he has more and more of each.
You can find his many open source projects at artificialworlds.net or
contact him on andybalaam@artificialworlds.net
16 | Overload | December 2012

FEATUREANDY BALAAM

The key to the solution is taking copies of
objects as they are modified, and inserting

those copies into the historical record
but also makes ‘pruning’ the history to keep only important points
more difficult, since every entry in the log is vital. Pruning to reduce
the number of log points requires combining multiple points into
one, which may be non-trivial.

 Using copy on write

Saving complete models provides a flexible but expensive
approach, and one way to gain some of its advantages without so
much cost in terms of time and storage is to use the copy-on-write
strategy.

In this method objects are copied when they are modified, leaving
the unmodified object stored, allowing us to revert to the old state by
looking at the old object.

This has some of the same advantages as saving complete models.
Navigating large distances in the history is cheap since it simply
involves restoring the objects that were active at that moment.
‘Pruning’ the history is possible, but more difficult than in the case
of saving complete models, because we need to identify which
objects are relevant for a given moment in history. We can do this
by examining the whole model.

This solution may be simpler than the change log, because it does
not require a language of model changes to be used – instead we
only need to know how to copy or store objects, and it will be
cheaper than saving complete models because only those objects
which are changing need to be copied.

Depending on the implementation, there is a significant problem
with this approach, which is that the user of the object model may be
forced to understand what is happening as they manipulate the
objects. If objects are copied when they are modified, the user may
need to get hold of a reference to the newly-copied object, and stop
using the reference to the historical object. This could be
inconvenient and error-prone.

The problem could, of course, be solved by introducing another
level of abstraction. It was while we were considering solutions to
this problem that we chose to look into the ‘footprint on modify’
approach which is discussed in the rest of this article.

There are, of course, many different alternative solutions, but the three
above were the main ones we considered before deciding on our chosen
approach.

The solution – create historical copies as objects
change
The approach we chose was inspired by copy on write, but attempts to
resolve the problem of allowing the user to manipulate objects without
being aware of the building of history, and without adding a further level
of abstraction on top of the standard objects.

The key to the solution is taking copies of objects as they are modified,
and inserting those copies into the historical record.

Parent–child relationships
The object model includes parent–child ownership relationships, and the
model we are considering has a single root node, which is important to the
process of tracking history. In an object model with no single root, we may
add one object which is the parent of all the nodes with no parents, and
consider that the single root.

The parent–child relationships are stored in the parent object, which holds
a list of IDs of its children. It is important that the information is stored in
this indirect way, because pointers or references to objects in memory may
change in the future (which would effectively change history), whereas the
properties of the object referred to by a given ID will always be consistent.

The object log
The system is built on a structure called the Object Log. This is a collection
of all versions of all the objects that have existed, indexed by unique ID.
The Object Log is the owner of all objects, including those currently being
manipulated by the user.

Every time an object is about to be modified, it is first cloned, and the clone
is inserted into the Object Log under its old ID (replacing the object itself).
The object’s ID is then changed, and it is re-inserted into the Object Log
under its new ID, before being modified. This is illustrated in figure 2.

Because the object’s ID has changed, its parent, which refers to its children
by ID, now refers to the old object. Therefore the parent is also cloned and
given a new ID, and its list of children is updated to use the new ID for the
first object. This process of cloning continues up the tree to the root,
meaning that every change in the object model results in a new root node,
as illustrated in figure 3.

The number of clones created for every change is limited to the depth of
the parent–child tree, which in our model is a maximum of about 5 levels,

Figure 2
December 2012 | Overload | 17

FEATURE ANDY BALAAM

Every class in the object model has the
Trackable Object as a base class, and it is
this which provides the change-tracking
behaviour
and in many models is of this order. This overhead is acceptable for our
system. Crucially, the children and siblings of the modified objects do not
need to be cloned. The number of children and siblings of a given node in
our model, and many similar models, is unbounded.

The time point and child–parent relationships
Because each change in the model results in a new root node, it is possible
to identify a moment in time simply by storing the ID of the root node at
that moment. If we retrieve the object with that ID from the Object Log
and examine it to find its children’s IDs, retrieve and examine them and
continue in this way, we can find all the objects that existed at that moment,
and their states.

We provide a Time Point object, which stores the ID of a node which was
the root of our model at a given time.

Because a child object may exist in multiple instants in time in different
parents (because its parent may have been cloned while being changed, but
the child was unchanged), it does not make sense for the information about
an object’s parent to be stored in that object. Given a Time Point, we may
reconstruct the parentage of all objects by walking the tree from the root.
In practice we cache that information inside the Time Point object, as
shown in figure 4.

The trackable object
From the point of view of the implementor of a new object in the model,
there are two classes which provide the required functionality: the
Trackable Object, and the Trackable Collection.

Every class in the object model has the Trackable Object as a base class,
and it is this which provides the change-tracking behaviour. Trackable
Object keeps a reference to the Object Log which contains this object, and
provides a ‘footprint’ method, which must be called before the object is
changed. The footprint method calls a method (also called footprint) on
the Object Log, which implements the cloning process described above.

An object’s ID is stored in the Trackable Object, and is controlled entirely
by the Object Log. In our implementation, objects may be instantiated
without an Object Log, which facilitates independent testing, but in this
case they have no meaningful ID. Having an ID is tied very closely to
having been inserted into an Object Log – indeed it is the job of the Object
Log to set and maintain the IDs of the objects, and the objects themselves
have ‘no interest’ in their ID. (For a significant amount of our
implementation time, IDs were not stored on objects at all – they were
added for efficiency, but could in principle be stored only on the Object
Log – they are not really considered part of the public interface of an
object.)

Because the Object Log will clone the object during the footprint call, the
implementor of an object must provide a way of cloning it. How much
effort it is to provide this facility varies widely in different programming
languages and environments. In environments with automatic cloning
facility, care must be taken to handle the circular reference between a
Trackable Object and the Object Log.

 Ownership – the trackable collection
In our object model all objects except the root are owned by some parent
object. We represent these relationships by allowing parents to contain one
or more Trackable Collection objects. These are lists of children objects
(typically with one Trackable Collection for each type of object the parent
may contain). The list stores the IDs of children, rather than references to
the actual objects. This means that an object containing a Trackable
Collection of children will continue to refer to the unmodified child even
if one of the objects representing a child is modified and gains a new ID.

This indirection via ID is necessary to ensure that a there is only ever one
version of history – a single root ID will always give us the same tree of
objects (in terms of IDs), but it does mean that when a child is changed
we must make new copies of its parents and grandparents up to the root.

The Trackable Collection class provides convenience methods meaning
users of the object model do not have to be aware of the references by ID
or the footprinting that happens when an object changes. Methods which
modify the Trackable Collection, such as add, replace and remove take
care of calling footprint on the object which contains the collection.
This is illustrated in figure 5.

Figure 3

Figure 4
18 | Overload | December 2012

FEATUREANDY BALAAM
All of the parent–child relationships in our model take the form of
resizeable lists of objects of the same type, and so are handled using the
Trackable Collection class, but where needed a similar class could be built
on the same lines to handle individual children, or fixed-size collections.

Cross-references
Where objects in our object model need to refer to other objects elsewhere
in the hierarchy, we use an unique name which is entirely separate from
Trackable Object IDs. This means the reference is independent of changes
in the object to which we are referring – we do not want to have to footprint
all objects that refer to an object we are changing. The reference is treated
the same as the other simple properties of an object like a name or
description – the only potential difference is the need to clean up dangling
references when an object is deleted, or to correct references if the unique
name is changed. These are handled separately from the Trackable Object
mechanism, and not covered here.

Object model classes
Ordinary classes in the object model, which represent aspects of our
problem domain, have relatively little to do to fit in with the footprint-on-
modify system. They must provide a clone() method, which copies an
object, preserving its properties and keeping references intact (without
copying referenced objects or children). They should derive from the
Trackable Object base class and hold children objects using Trackable
Collections.

Object model classes must enforce that no changes may be made without
first calling the footprint() method on the Trackable Object base class.
This is implemented in our model by allowing changes only through setter
methods, each of which begins with a call to footprint(). This is
illustrated in figure 6.

With these provisions in place, the object model classes may be written in
a familiar way, using any standard language types or custom classes for
properties, so long as all properties are copied by the clone() method.

External users
Users of the object model classes need not know what is going on
underneath. Code that manipulates the model may hold references to
objects, read and write properties and add or remove children, either using
the add() and remove() methods of Trackable Collections, if the
collections are exposed by the object model classes, or via specialised

methods on the object model classes themselves, which in turn call add()
or remove() on the Trackable Collections.

As these manipulations go on, the external code will always hold a
reference to the latest version of each object, and underneath, each change
will cause footprints to be added to the Object Log.

Code that handles undo and redo uses the Object Log directly, asking it
for a unique ID to identify a moment in time, and using such an ID later
to tell the log to revert back to that moment.

When the Object Log has reverted to a given moment, all existing
references to object model objects must be dropped, and new references
must be found by starting at the new root node, which can be provided by
the Object Log. Given that the object model may have been completely
transformed by the revert event, this requirement is not considered
onerous.

Once a revert has been performed, the newly-provided object model may
be manipulated as normal, and new footprints begin appearing in the
Object Log. The old footprints, including those on a separate "branch" of
history, are not overwritten, so we may keep a complex branched undo log,
and jump back to any point on it at any time. The biggest challenge here
is presenting this information in a useful way to the user!

Discussion
Footprint on modify offers an alternative to change-log-based systems for
undo/redo functionality in an object model.

Some advantages of this system include the ability to jump to any moment
in history quickly, without the need to traverse intermediate states. This
means moving to distant points is fast, there is no need for a language to
describe changes in objects, and thus there is no danger that small bugs or
inconsistencies in such a language will be propagated through history
navigation.

Other advantages include the fact that users of the object model do not have
to do anything to ensure history is tracked, unneeded time points in the log
may be removed without changing other points, and keeping a history with
all branches is just as easy as keeping a traditional linear history.

Disadvantages include the fact that whole objects are copied, rather than
just storing changes, which could be a problem if objects are large, and
the extra cloning required because the ancestors of objects must be cloned
when the objects are changed.

Further potential disadvantages include the need for all objects to be
clonable, and to inherit from the Tracking Object base class. Changing an
existing object model to use footprint on modify would require significant
changes to its implementation.

To build a fully-functional undo/redo mechanism, several areas must be
covered which are outside of the scope of this article. The most important
area is the structure of the actual undo/redo log, which holds on to root node
IDs, and allows navigating between them. In some cases a simple linear
stack and marker model will suffice, and in others a tree may need to be
presented to the user, along with many other potential features such as
named waypoints in history.

Further topics that are of interest, but not covered here, are the mechanisms
we could use to prune unneeded time points to reduce storage space, and
how to ‘page’ out and in old history to disk or other storage.

Acknowledgements
The footprint on modify idea was developed by Edmund Stephen-Smith
and Andy Balaam, based on and inspired by a copy-on-write model
designed by Ramon Pisters and Ton Steijvers.

Copyright
Copyright (c) IBM 2012

Figure 5

Figure 6
December 2012 | Overload | 19

FEATURE PAUL FLOYD
Valgrind Part 5 – Massif
Poor performance can be caused by memory
usage. Paul Floyd introduces Valgrind’s
heap memory profiling tool Massif.
his time there is a bit more good news. You’ve identified your CPU
bottlenecks and have ironed them out. But now you have customers
complaining that performance is poor when they are using very big

projects. When you hear the word ‘big’, you should start thinking
‘memory’.

Using system profiling tools
Before you do any lengthy testing, you can get a quick impression of your
application’s memory use by using 'top' (or a similar process monitor tool).

Here I’m running a simulator on a 48Gbyte server. You should be looking
at the Mem: and Swap: lines in the header block and the VIRT (virtual
memory) and RES (resident memory) in the columns in Figure 1.

You can also get an idea what your system is doing by using a tool like
vmstat (on UNIX-like systems). If you type "vmstat 5" then you’ll
sample the system every 5 seconds (with the first line being the average
since the system booted). You’ll see something like Figure 2.

swpd, free, buff and cache correspond to similarly named values in
the Mem: and Swap: lines of top. When your performance is really poor,
then it’s the si and so values that you should look at. They are the amount
of memory that is being swapped in and out from disk per second.
Swapping is bad news. Disk drives are many orders of magnitude slower
than RAM.

Enough of system profiling, I’m here to write about Valgrind. In particular,
Massif, Valgrind’s heap memory profiling tool. Massif will give you an
overview of the memory used by your application over time. You can use
it to help you to identify where and when your application allocates
memory on the heap with a view to either reducing the amount of memory
that you allocate or freeing it sooner. It can indicate that you have memory
leaks, but it will only tell you about memory use, not memory abuse (like
unreachable memory due to pointers going out of scope or being
overwritten).

I’ll start with a very simple example that just allocates and frees some
memory (Listing 1).

To select Massif, run valgrind with the --tool=massif option. In this
case, since the example uses sleep() and usleep(), I'll add the --
time-unit=ms option, the default being instructions executed. There are
further options to profile the stack, control the call context depth recorded
and the number of snapshots taken. There isn’t much output to the terminal,
just the small piece of header information in Figure 3.

The impor t an t i n fo rma t ion i s wr i t t en t o a f i l e nam ed
massif.out.<pid> (you can control the file name with the
--massif-out-file option). This isn’t really meant for human
consumption. For completeness, I’ll include an extract, see Figure 4.

The output file is meant to be processed by ms_print. This outputs to

the terminal. Firstly, there is a short summary, then there is an ASCII art
plot of the memory use as a function of time. Figure 5 is what my example
code produces.

As expected, the memory use rises monotonically for 10 seconds. The
application allocates a bit over 800 million bytes, or 762.94MB. That’s

T

Paul Floyd has been writing software, mostly in C++ and C, for
over 20 years. He lives near Grenoble, on the edge of the French
Alps, and works for Mentor Graphics developing a mixed signal
circuit simulator. He can be contacted at pjfloyd@wanadoo.fr.

Figure 1

top - 17:21:05 up 9 days, 2:16, 2 users, load average: 1.09, 1.05, 1.01
Tasks: 232 total, 2 running, 230 sleeping, 0 stopped, 0 zombie
Cpu(s): 12.6%us, 0.0%sy, 0.0%ni, 87.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 49414760k total, 21724376k used, 27690384k free, 185660k buffers
Swap: 49151992k total, 2128k used, 49149864k free, 2669128k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
12733 paulf 20 0 16.5g 16g 22m R 100.0 34.5 159:06.14 sim64.exe
23657 paulf 20 0 13252 1264 884 R 0.7 0.0 0:02.56 top

Figure 2

vmstat 5
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 1 0 2128 27686448 185312 2667364 0 0 0 3 0 4 11 3 84 1 0
 1 0 2128 27686876 185312 2667364 0 0 0 0 1136 134 12 0 88 0 0
 1 0 2128 27687488 185312 2667364 0 0 0 0 1088 74 13 0 87 0 0
20 | Overload | December 2012

FEATUREPAUL FLOYD

e 3

./m1

GNU GPL'd, by Nicholas Nethercote

EX; rerun with -h for copyright info

e 4

s) malloc/new/new[], --alloc-fns, etc.
2)
eshold (01.00%)

Listing1

// m1.cpp
#include <unistd.h>

const size_t DATA_SIZE = 100U;
const size_t BLOCK_SIZE = 1000000;

int main()
{
 long **data = new long *[DATA_SIZE];

 for (size_t i = 0; i < DATA_SIZE; ++i)
 {
 data[i] = new long[BLOCK_SIZE];
 // do something with data[i]
 usleep(100000);
 }
 sleep(1);

 for (size_t i = 0; i < DATA_SIZE; ++i)
 {
 delete [] data[i];
 }
 delete [] data;
}

quite close to the peak shown in the graph. After this, the ms_print output
shows information about snapshots taken during the execution of the
application. All of the snapshots show a one line summary of the heap use.
By default, every tenth snapshot shows details of where the memory was
allocated. Figure 6 is the end of the output from the m1 test application.

We can see that the figure for the useful-heap matches what we expect. The
extra-heap figure is the memory allocated for book-keeping. In a real world
application, there would be an extensive tree of calls displayed showing
where memory was allocated and how much (% of total and number of
bytes). In this example, everything is done in main(), so there’s not much
context to see. Now that we have this information, what do we want to do
with it? Generally, two things: try to free memory earlier and try to find
more efficient data structures.

Now, let’s go back to the small example and make some changes to
improve the memory use. (See Listing 2.)

Now the memory is freed straight after it is used, rather than all at once at
the end of the application. The ASCII art graph now looks like Figure 7.

Notice that the peaks where memory is allocated are not evenly spaced.
This is an artefact of the sampling, and if your application does a lot of
allocation and freeing, you may need to play with the --detailed-
freq or --max-snapshots options.

As an alternative to the ASCII art, there is a separate tool, ‘massif-
visualizer’ (Figure 8).

I installed massif-visualizer on Kubuntu with the package manager. It
wasn’t available in the package manager of openSUSE, and I had problems
with Cmake dependencies when trying to build it from source. The GUI,

Figur

 valgrind --tool=massif --time-unit=ms

==12939== Massif, a heap profiler

==12939== Copyright (C) 2003-2012, and

==12939== Using Valgrind-3.8.1 and LibV

==12939== Command: ./m1

==12939==

==12939==

Figur

desc: --time-unit=ms
cmd: ./m1
time_unit: ms
#-----------
snapshot=0
#-----------
time=0
mem_heap_B=0
mem_heap_extra_B=0
mem_stacks_B=0
heap_tree=empty
[content deleted]
#-----------
snapshot=49
#-----------
time=9830
mem_heap_B=784000800
mem_heap_extra_B=345752
mem_stacks_B=0
heap_tree=detailed
n2: 784000800 (heap allocation function
 n0: 784000000 0x400759: main (m1.cpp:1
 n0: 800 in 1 place, below massif's thr
[more content]
December 2012 | Overload | 21

FEATURE PAUL FLOYD
on top of being a bit prettier than the ASCII drawings, allows you to
interact with the snapshots. However, it does not show stack memory if
you use the --stacks=yes option. This leads to an example that does
use stack profiling. Listing 3 is the code (from Bertrans Meyer’s A Touch
of Class, p. 477, translated from Eiffel to C++). This is a nice example of
stack use that is hard to analyze.

Profiling this with valgrind --tool=massif --stacks=yes
./bizarre gives Figure 9.

In one last example, let's see what happens if we use some low level
allocation like mmap. (Listing 4.)

With this, all I see is the memory allocated for 'data'. (I haven’t included
it here as it’s just an ASCII rectangle showing 808 bytes allocated and a
time of 11.14s). Where have the other 763MB gone? By default, massif
does not trace memory allocated in low level functions like mmap. If you
want to see that memory (which might be the case if you are using a custom
allocator that is based on mmap), then you will need to add the --pages-
as-heap=yes option. If I add this option to the above example, then I
see all of the memory being allocated (in fact, 777.5MB, since it now
includes memory allocated when loading the application).

Note that normally on Linux, glibc will use mmap for malloc requests to
allocate above a certain threshold, but Valgrind intercepts the call to

Figure 5

 MB
763.3^ #
 | ::@:::::::#
 | ::: @: #
 | ::::::: @: #
 | :::::: ::: @: #
 | :@::: ::: ::: @: #
 | :::::@::: ::: ::: @: #
 | ::::: ::@::: ::: ::: @: #
 | ::::::::: ::@::: ::: ::: @: #
 | :@: ::::::: ::@::: ::: ::: @: #
 | ::::@: ::::::: ::@::: ::: ::: @: #
 | ::::: ::@: ::::::: ::@::: ::: ::: @: #
 | :::::: : ::@: ::::::: ::@::: ::: ::: @: #
 | :::::: ::: : ::@: ::::::: ::@::: ::: ::: @: #
 | :::: :::: ::: : ::@: ::::::: ::@::: ::: ::: @: #
 | ::@: :: :::: ::: : ::@: ::::::: ::@::: ::: ::: @: #
 | :::: @: :: :::: ::: : ::@: ::::::: ::@::: ::: ::: @: #
 | :@@:: : @: :: :::: ::: : ::@: ::::::: ::@::: ::: ::: @: #
 | :::::@ :: : @: :: :::: ::: : ::@: ::::::: ::@::: ::: ::: @: #
 | ::@:: ::@ :: : @: :: :::: ::: : ::@: ::::::: ::@::: ::: ::: @: #
 0 +--->s
 0 11.13

Figure 6

 39 7,825 624,275,992 624,000,800 275,192 0
99.96% (624,000,800B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
->99.96% (624,000,000B) 0x400759: main (m1.cpp:12)
|
->00.00% (800B) in 1+ places, all below ms_print's threshold (01.00%)

--
 n time(ms) total(B) useful-heap(B) extra-heap(B) stacks(B)
--
 40 7,926 632,279,520 632,000,800 278,720 0
 41 8,126 648,286,576 648,000,800 285,776 0
[content deleted]
 48 9,530 760,335,968 760,000,800 335,168 0
 49 9,830 784,346,552 784,000,800 345,752 0
99.96% (784,000,800B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
->99.96% (784,000,000B) 0x400759: main (m1.cpp:12)
|
->00.00% (800B) in 1+ places, all below ms_print's threshold (01.00%)

--
 n time(ms) total(B) useful-heap(B) extra-heap(B) stacks(B)
--
 50 9,931 792,350,080 792,000,800 349,280 0
 51 11,134 800,353,608 800,000,800 352,808 0
99.96% (800,000,800B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
->99.96% (800,000,000B) 0x400759: main (m1.cpp:12)
|
->00.00% (800B) in 1+ places, all below ms_print's threshold (01.00%)
22 | Overload | December 2012

FEATUREPAUL FLOYD
malloc, so there is no need to use --pages-as-heap unless you are
using mmap directly.

That just about wraps up this installment. As you can see, Massif is
straightforward to use and it presents a simple view of the memory use of
your application.

In my next article, I’ll cover two Valgrind tools for detecting thread
hazards, Helgrind and DRD.

Figure 7

 MB
7.634^#::@@::@::::::@:: @@:::::@@ : @::: ::::@:: :::::: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 |#: @ : @ : : :@:: @ ::: :@ : @:: ::: @: :: :: : :
 0 +--->s
 0 21.15

Listing 2

// m2.cpp
#include <unistd.h>

const size_t DATA_SIZE = 100U;
const size_t BLOCK_SIZE = 1000000;

int main()
{
 long **data = new long *[DATA_SIZE];

 for (size_t i = 0; i < DATA_SIZE; ++i)
 {
 data[i] = new long[BLOCK_SIZE];
 // do something with data[i]
 usleep(100000);
 delete [] data[i];
 usleep(100000);
 }

 sleep(1);

 delete [] data;
}

Listing 3

// bizarre.cpp
#include <iostream>
#include <cassert>

using std::cout;

long int bizarre(long int n)
{
 assert(n >= 1);
 if (n == 1)
 {
 return n;
 }
 else if (0L == n%2L)
 {
 return bizarre(n/2L);
 }
 else
 {
 return bizarre((3L*n + 1L)/2L);
 }
}

int main()
{
 for (long int i = 1L; i < 200000000L; ++i)
 {
 bizarre(i);
 }
}

December 2012 | Overload | 23

FEATURE PAUL FLOYD
Figure 9

 KB
18.77^ #
 | #
 | #
 | #
 | #
 | #
 | @ #
 | @ #
 | @ #
 | @ #
 | @ #
 | @ #
 | @ #
 | @ #
 | @ # : :
 | @ # : ::: ::
 | @ # :: : @@ : ::: :::
 | @ :: ::: ::: # : ::: :: : :: @@ ::: @ :: :::::::@::
 | @ : :@@::: :: # ::: :: ::: : : : @ @: : @ :: : :::::@:@
 | :@: : :@ ::: :: #:::: ::: ::: : ::: : :: :@ @: :::@ :: : :::::@:@
 0 +--->Gi
 0 548.2

Listing 4

// m3.cpp
#include <unistd.h>
#include <sys/mman.h>

const size_t DATA_SIZE = 100U;
const size_t BLOCK_SIZE = 1000000;

int main()
{
 long **data = new long *[DATA_SIZE];

 for (size_t i = 0; i < DATA_SIZE; ++i)
 {
 data[i] = reinterpret_cast<long *>(mmap(NULL,
 BLOCK_SIZE*sizeof(long),
 PROT_READ | PROT_WRITE,
 MAP_SHARED | MAP_ANONYMOUS, -1, 0));
 // do something with data[i]
 usleep(100000);
 }

 sleep(1);

 for (size_t i = 0; i < DATA_SIZE; ++i)
 {
 munmap(data[i], BLOCK_SIZE*sizeof(long));
 }

 delete [] data;
}

Figure 8
24 | Overload | December 2012

	Originally, Overload Didn’t Have an Editorial
	Web Annotation with Modified- Yarowsky and Other Algorithms
	Complex Logic in the Member Initialiser List
	640K 2256 Bytes of Memory is More than Anyone Would Ever Need Get
	Footprint on Modify
	Valgrind Part 5 – Massif

