

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Some Objects Are More Equal Than Others
Steve Love and Roger Orr look at what we mean by
equality.

10 The Guy We Are All Working For
Sergey Ignatchenko identifies who has the most power
in software development.

13 Exception Specifications in C++ 2011
Dietmar Kühl examines a new language feature in
depth.

18 Why Interval Arithmetic Won’t Cure Your
Floating Point Blues
Richard Harris concludes his look at numerical
computing alternatives.

24 Systems Thinking Software Development
Tom Sedge shows how to customise and improve
your development processes.

31 The ACCU 2011 Crypto Challenge
Richard Harris poses the next in his historic
codebreaking challenges.

OVERLOAD 103

June 2011

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 104 should be submitted
by 1st July 2011 and for Overload
105 by 1st September 2011.

EDITORIAL RIC PARKIN
Can you keep a secret?
Privacy and security have been in the news a lot
recently. Ric Parkin looks behind the curtain.
It’s not been a good few months for Sony.
First of all it was one of many companies whose
manufacturing plans were thrown into turmoil due to
a major earthquake and tsunami. It wasn’t so much the
direct damage, but disruption to power generation and

supply chains has shown how vulnerable Just In Time production methods
are to even small delays. [Sony]
The automotive industry was affected even more, as it turned out that a
single chip making plant that was destroyed made about 40% of the chips
used worldwide in car manufacturing. With deliberately low stocks of
parts, car production has been severely disrupted [Renesas]. This did make
me wonder what sort of equivalent risks to production applied to software
development, given that the Toyota Production System, and other JIT
processes are the inspiration behind many Agile development practices.
A few spring to mind – a major risk is an unexpected change in production
capacity. This will usually be caused by personnel changes, such as illness
or leaving the company. Finding a replacement and getting them up to
speed is a non-trivial effort, which is why Brooks’s Law was noted
[Brooks]. Less serious causes can include power cuts, and problems with
computers and networks.
As I write this, the PlayStation network has only been partly restored
following an intrusion that potentially exposed personal details of millions
of users. Unfortunately they intially turned a serious problem into a PR
disaster by looking to be slow to admit to the problem, or giving details
about what had actually been compromised. Some of this could well have
been due to the difficulty of tracing where exactly the intrusion had access
to, what had been taken, and how this would affect users. But some things
were definitely handled badly, in particular whether passwords had been
stored in plain text or not. It turned out they had correctly only stored a
hash – a large number or string that was generated from the password and
used to confirm you’ve typed a password in correctly without actually
transmitting or storing the password itself [Hash], but it took time to
clarify this.
Unfortunately, some identity information was stored such as dates of
birth, and it’s this that is the main cause of concern as it can be used as
the basis of identify theft. It has severely dented their reputation. It did
make me question my own approach to computer and identity security,
both as a developer (yes, we only store hashes!) and as a user. I also
recently updated our password dictionary for cracklib [Sourceforge],
which sees how secure a new password is. The new dictionary is massively
larger than our previous version, and we’re finding that it includes many

passwords that used to be thought of as strong, but
now appear in dictionaries that are used by brute-

forcing algorithms. I’m seriously reviewing my
password policy to make them harder to guess,

and will avoid supplying unnecessary personal details (I was always
reluctant anyway).
Other sources of leaked information have been making the news recently.
One high profile one was finding out that iPhones stored a list of locations
where you’d been [Jones]. While this was only used internally for some
performance improvements, again it worried a lot of people as it
effectively gave anyone with access to your phone (or the iTunes backup
on your computer) a log of your movements. Promptly a fix has been
issued to delete the data when no longer needed. Of course, the authorities
have other ways of tracking your phone, even if they’re too much effort
to deploy except in serious cases. The obvious one is that phone companies
have logs of which mobile stations you can connect to, which is enough
to track you fairly accurately via some simple triangulation. Even before
that, getting access to telephone logs and doing some fairly simple traffic
analysis could be used to pick up patterns, and reveal the structure of an
organisation. I was reminded of this recently after seeing the latest
incarnation of some of this analysis software [i2]. Most scary of all is that
I was heavily involved with a major rewrite of this software back in the
mid to late 90s, and it was interesting to see that despite over a decade of
improvements, there were still signs obvious to me that the core of my
code is still there. A warning that code can last for longer than you might
think!
Of course, if an identity thief wanted a your details, or someone wanted
to track you, it’s probably easier to just keep an eye on people’s Facebook
updates and pictures in the Cloud. It’s troubling just how much personal
information can be gleaned by even a cursory glance and some simple
searches, and when coupled with position updates via tools such as
Foursquare, it’s pretty easy to see where someone is, what they are doing,
and who else was there. If that’s in real time and the person’s address is
known, and a break-in would be trivial.
The other interesting technology news thats been around recently is the
way that Twitter is being used to get around so called ‘Super-injunctions’
and reveal secrets that people had been trying to keep under wraps. By
rapidly retweeting, a story be spread extremely quickly, and the ‘Spartacus
effect’ of thousands of people doing it makes them think that they are
immune from prosecution. Time will tell whether that will remain true,
as there’s already talk of disclosing details to the police of people who
have helped. Dispiritingly, most of the cases seemed to be celebrities
trying to conceal affairs, which is a sad reflection on certain sections of
the press. Personally I’m not interested in that at all – they have as much
right to a private life to muck up as I do. But there are issues of privacy,
freedom of speech, and a society fast changing how it communicates.
One thing that was worrying though – at one time someone posted a list
of supposed injunctions which turned out to be wildly innacurate (some
so bizarre you just knew they were a joke), causing some swift rebuttals
and embarrassment. Is this a taste of things to come, where fast

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | June 2011

EDITORIALRIC PARKIN
communications and ‘Chinese Whispers’ cause all manner of wild stories
and accusations to be propagated? As the saying goes, a lie is halfway
around the world before the truth has got its boots on. In this vein, there
was an interesting experiment performed accidentally by Graham Linehan
who writes the sit-com The IT Crowd [Linehan]. After tweeting an
amusing lie – that Bin Laden was watching the show on the captured videos
– he was suprised just how fast it spread and mutated incorporating
completely random stuff, before he finally exposed it.
And sometimes people just won’t talk about it when you want them to – I
noticed a couple of comments recently from ACCU developers who’d
written their own iPhone games about how much effort it was to try and
generate some interest. With so many apps to choose from it’s now an
uphill struggle to get any attention.

Bubble 2.0?
We seem to be in a technology stock bubble again. Things that make me
feel this way include the recent purchace of Skype by Microsoft for a
massive $8.5bn, and the imminent floatation of LinkedIn at a large
valuation, and rumours about FaceBook or Twitter being floated soon. It
all feels very reminicent of 2001, although this time it’s social networking
driving interest instead of early internet companies and biotech. But yet
again to pick the real winners without over paying for them will be hard,
especially when what seems to be the next big thing
suddenly goes out of fashion, or more likely, becomes
so widespread it’s no longer what makes a company
unique and hence valuable. Buyer beware.

References
[Brooks] http://en.wikipedia.org/wiki/Brooks's_law
[Hash] http://phpsec.org/articles/2005/password-hashing.html
[i2] http://www.bbc.co.uk/news/uk-13366706
[Jones] http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/

04/iphone_tracking_creepy_cool.html
[Linehan] http://www.bbc.co.uk/news/magazine-13467407
[Renesas] http://www.bbc.co.uk/news/business-13421065
[Sony] http://www.bbc.co.uk/news/business-13557431
[Sourceforge] http://sourceforge.net/projects/cracklib/

The past two Novembers have seen the enjoyable ACCU Security
conferences, held at Bletchley Park to raise money for their activities.
Well, Astrid Byro has decided to go that extra mile this year to raise even
more. About three and a half miles to be more accurate – upwards. On
16th August she’s going on an 8-day trek to the Everest Base Camp,
which is 5,545 metres above sea level. ‘You must understand the context
of this endeavour.’ she says. ‘ I’m afraid of heights and this will challenge
my fears on a daily basis with multiple crossings of rickety bridges across
torrential gorges. In addition, I will be doing this at the end of monsoon
season so there is the ever-present danger of flash floods as well as the
menace of leeches. I hate leeches.’

She’s set a fundraising target of £50,000, so would be a great help to
Bletchley. She is hoping to achieve this target by donations as well as
corporate sponsorship so if you would like a photo of your corporate logo
flag flying at Base Camp, want her to wear sponsored logo clothing, or
you have a stunt in mind, she’s open to negotiation.

You can follow Astrid’s progress on her blog as she pursues her training
programme, at www.abc-ebc.blogspot.com and you can support her by
making a donation at www.justgiving.com/Astrid-Byro . Good luck!
[Photograph published under Creative Commons Licence 3.0 – original can be
found at http://www.happytellus.com/gallery.php?img_id=5143]

Bletchley Park fundraising effort
June 2011 | Overload | 3

http://en.wikipedia.org/wiki/Brooks�s_law
http://phpsec.org/articles/2005/password-hashing.html
http://www.bbc.co.uk/news/magazine-13467407
www.justgiving.com/Astrid-Byro
www.abc-ebc.blogspot.com
http://www.bbc.co.uk/news/business-13557431
http://www.bbc.co.uk/news/business-13421065
http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/04/iphone_tracking_creepy_cool.html
http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/04/iphone_tracking_creepy_cool.html
http://www.bbc.co.uk/news/uk-13366706
http://www.happytellus.com/gallery.php?img_id=5143
http://sourceforge.net/projects/cracklib/

FEATURE STEVE LOVE & ROGER ORR
Some Objects Are More
Equal Than Others
Comparing objects is a fundamental operation. Steve Love
and Roger Orr consider different language approaches.
esting for equality is an important concern in a lot of programming
tasks and is often used for control flow: equality is one of the
commonest expressions used in if, for and while statements.

However despite being something that is covered in almost any
introduction to a programming language the concept and implementation
of equality can be quite complicated.

Possible meanings of ‘equality’
There are a wide variety of meanings to the use of ‘equality’ in a
programming language. The list of possible meanings includes:

1. Refer to the same memory location
2. Have the same value
3. Behave the same way

This article explores some of the details and pitfalls with equality in terms
of just the first two items on this list. We found it was a harder task than
it appears at first glance to get it right (for some definition of right), even
ignoring the third item on our list or looking further afield for other
meanings.
The first item in the list is often described as ‘identity comparison’ and the
second one as ‘value comparison’, and we make use of these terms below.
Note that value comparison usually refers to the perceived value for users
of the object and fields that don’t affect this (for example internally cached
values) are usually not included in the comparison code.
We are further restricting the subject to focus primarily on only three
languages: C++, C# and Java. Despite their common heritage and obvious
similarities there are many differences in the sort of problems equality
raises in each language: even at the basic level of language syntax we see:

In Java: a == b always does something for all variables a and b of
the same type (and compiles in some cases when they are of
different types) and you cannot change what it does.
In Java & C#: anobject.[eE]quals(another) always does
something (we write [eE]quals because the method is spelled
equals in Java but Equals in C#)
In C++ & C# you can overload the meaning of == and in C# & Java
you can override [eE]quals to customize behaviour.

Let’s start with the language construct form of equality ‘==’ on the grounds
that this must be a pretty fundamental definition to have been enshrined
in the syntax of the programming language, What does each language
provide for this operator ‘out of the box’?
In C++ ‘==’ is predefined (as a value comparison) for all built-ins and the
subset of the library types for which equality makes sense (e.g.

std::string), but is not automatically provided for custom types
defined in a program. However you can provide your own definitions of
operator== as long as at least one argument is a custom type: and you
can also specify your own return type for the operator (although returning
anything but bool is usually a bad decision.)
In Java ‘==’ is predefined for primitive built-ins and does a straightforward
value comparison. For object types ‘==’ performs identity comparison
between the two objects supplied. You cannot change this behaviour.
In C# ‘==’ is predefined, or overridden, for all built-ins and library types
(whether these types are reference [class] or value [struct] types). It
is not automatically provided for custom value types and performs identity
comparison for custom reference types. C# lets you define ‘==’ for any
custom type, but you must additionally provide an implementation of ‘!=’.

Object comparisons
For Java and C# the presence of a single root class for all object types
allows for a sensible definition of an equality method in this base class
which takes an argument of the base class. In both languages the default
implementation of this method, on custom types, performs identity
comparison.
Java overrides equals() for some of the predefined types, such as
Integer. However there is some confusing behaviour as Listing 1
demonstrates.
If you compile and run this simple program you might be surprised:
 Testing 10
 Equals
 ==
 Testing 1000
 Equals

T

Steve Love is a programmer who gets frustrated at having to
do things twice. He can be contacted at steve@arventech.com

Roger Orr has been programming for far too long but still
enjoys it far too much. Some of it is paid and some of it isn’t.
He can be contacted at rogero@howzatt.demon.co.uk

Listing 1

public class IntegerEquals
{
 public static void main(String[] args)
 {
 test(10);
 test(1000);
 }
 public static void test(int value)
 {
 System.out.println("Testing " + value);
 Object obj = value;
 Object obj2 = value;
 if (obj.equals(obj2))
 System.out.println("Equals");
 if (obj == obj2)
 System.out.println ("==");
 }
}

4 | Overload | June 2011

FEATURESTEVE LOVE & ROGER ORR

unit tests, which typically use compile time
strings, will pass most tests successfully
The two objects obj and obj2 compare the same using the equals
method (as the overridden method in Integer compares values not identity)
when executed with value set to 10 or 1000 as expected. However, on
most implementations of Java, obj compares the same as obj2 using ==
when value is set to 10 but they compare different when the value is set
to 1000. What is happening here?
This is a consequence of an optimisation in the Java code that boxes
primitive data into Integer objects. The compiler implements obj ==
value by calling Integer.valueOf(value) and this method caches
‘commonly used values’ such as 101. Hence in the first case the compiler
is performing identity comparison on two references to the same, cached,
Integer with value 10 and in the second case the compiler is performing
identity comparison on references to two separate temporary Integer
objects with value 1000.
There is a similar problem with intern’ed strings (strings held in a shared
pool of unique strings normally accessed using the String.intern()
method) as demonstrated in Listing 2.
This program prints match! when executed as the compiler ensures that
strings with the same compile time value generate references to a single
object. This is perfectly safe since strings in Java are immutable, but can
cause some confusion. In general checking strings for equality in Java with
== is unsafe and some tools provide a warning for attempts to do so. The
danger is that compile time strings, which are interned, are treated
differently from any runtime strings (which typically aren’t).
The classic case where this causes problems is that unit tests, which
typically use compile time strings, will pass most tests successfully
whether you use the equals method or the == operator; but in actual use
with runtime generated strings (such as those read from a file) the
behaviour is different.
C# implicitly provides some implementation assistance with the Equals
method for value types, but it’s more complicated than it might appear at
first sight. (Listing 3)
Both these structures will have an Equals method synthesised by the
compiler. The first class (Easy) only contains basic scalar members and

the Equals method will perform a bit-wise check on the two values (using
the total size of the object), which is often exactly the desired behaviour
(and is fast). In the case of the second class (Hard) the presence of the
custom type MyType means that the synthesised Equals method
performs reflection on the class at run time to identify the fields and then
does a member-wise comparison of all the members (including the basic
scalar int member X). While this produces the correct answer the
performance is likely to be significantly worse than an explicit
implementation of equality.
Finally in both C# and Java thought needs to be given to ensure the primary
object reference is non-null. The simple example in Listing 4 demonstrates
the problem and also a way (in C# only) to avoid it.
This program fails with a NullReferenceException as a is null in the
first call to Equals and you cannot call a method on a null object. The
second call, using the static method taking two arguments. does not throw
such an exception when supplied with null references (and returns false
if either a or b is null and true if they both are).
C++ does not have a single object root and so it doesn’t really make sense
to have an equals method, but it does have templates and to help with
programming the STL there is std::equal_to, which by default
performs ==. You can specialise it for your own type to pass your own

1. See http://download.oracle.com/javase/6/docs/api/java/lang/
Integer.html#valueOf%28int%29

Listing 3

struct Easy
{
 int X;
 int Y[100] ;
}

struct Hard
{
 int X;
 MyType Y;
}

Listing 2

public class Intern
{
 private static final String s1 = "Something";
 private static final String s2 = "Some";
 private static final String s3 = "thing";
 public static void main(String [] args)
 {
 if (s1 == s2 + s3)
 System.out.println("match!");
 }
}

Listing 4

public class NullEquals
{
 public static void Main()
 {
 object a = null;
 object b = new object();
 if (a.Equals(b))
 Console.WriteLine("Now there's a thing");
 if (object.Equals(a, b))
 Console.WriteLine(
 "This should be safe enough");
 }
}

June 2011 | Overload | 5

FEATURE STEVE LOVE & ROGER ORR

The trouble is that the overloaded method is
called based on the compile time type of
both the primary object and the argument
types to methods and classes implemented in terms of equal_to such as
std::unordered_map (see Listing 5 for an example).
The full story for C# is even more complex as there is a long list of equality
measures, which have been added to as various new versions of the .Net
framework have been released. The list includes:

object.Equals (we’ve already seen both flavours of this one)
object.ReferenceEquals

IEquatable<T>

IEqualityComparer

IEqualityComparer<T>

EqualityComparer<T>

IStructuralEquatable

StringComparer

...and others we’ve probably missed...
The second element of this list, the ReferenceEquals method, is used
to perform the identity check: that two references refer to the same object.
The method is needed because ==, which performs this check by default,
can be overridden. (Since Java does not allow operator overloading it has
no need for such a method.)
However , when used in con junc t ion wi th ob jec t box ing ,
object.ReferenceEquals has some interesting behaviour (see
Listing 6).
This program prints False because the two temporary boxed integer
objects created to pass into the ReferenceEquals method are distinct,
and hence different, objects. This is a related problem to the one shown
above using the Java Integer class.

Overloading equality
Both Java and C# allow the programmer the freedom to overload the
[eE]quals method to take an argument of a different type. Listing 7 is
an example in Java that shows the problems of a naive implementation.
This program prints:

 oe1.equals(oe2): true
 oe1.equals(obj2): false
 obj1.equals(oe2): false
 obj1.equals(obj2): false

even though the same objects are being compared in each case. The trouble
is that the overloaded method is called based on the compile time type of
both the primary object and the argument. What you probably want in this
case is logic based on the runtime type.

Listing 5

#include <functional>
#include <iostream>
int main()
{
 std::cout << "std::equal_to<int>()(10,10): "
 << std::equal_to<int>()(10,10) << std::endl;
}

Listing 6

public class RefEqual
{
 public static void Main()
 {
 int ten = 10;
 System.Console.WriteLine(
 object.ReferenceEquals(ten, ten));
 }
}

Listing 7

public class OverloadingEquals
{
 private int value;

 public OverloadingEquals(int initValue)
 {
 value = initValue;
 }

 public boolean equals(OverloadingEquals oe)
 {
 return oe != null && oe.value == value;
 }

 public static void main(String[] args)
 {
 OverloadingEquals oe1
 = new OverloadingEquals(10);
 OverloadingEquals oe2
 = new OverloadingEquals(10);
 Object obj1 = oe1;
 Object obj2 = oe2;
 System.out.println("oe1.equals(oe2): "
 + oe1.equals(oe2));
 System.out.println("oe1.equals(obj2): "
 + oe1.equals(obj2));
 System.out.println("obj1.equals(oe2): "
 + obj1.equals(oe2));
 System.out.println("obj1.equals(obj2): "
 + obj1.equals(obj2));
 }
}

6 | Overload | June 2011

FEATURESTEVE LOVE & ROGER ORR

Our problems are mostly caused by
attempting to define equality in a

class hierarchy
There are some principles from the mathematics of ‘equivalence
relations’that, if adhered to, result in a consistent use of the concept of
equality. They are that equality is...

Reflexive
a==a is always true
Commutative
if a==b then b==a
Transitive
if a==b and b==c then a==c
Reliable
Never throws. (This means checking for null!)

These rules are listed out in fuller detail in the language references for both
C# [C# Equals] and Java [Java equals]. The wording from the C++
standard is short enough to quote in full: ‘(5.10p4) Each of the operators
shall yield true if the specified relationship is true and false if it is false.’ There
you have it: succinct at any rate!
Now let us try and apply these rules when considering polymorphic
equality. Consider a two-dimensional coordinate class in C# (Listing 8).
We might extend this class to support a three-dimensional coordinate
system (Listing 9).
How does this polymorphic equality fare when checked against our four
relationships for equality?
 var p1 = new Coordinate { X = 2.3, Y = 5.6 };
 var p2 = new Coordinate3d { X = 2.3, Y = 5.6,
 Z = 10.11 };

 p1.Equals(p2) is True
 p2.Equals(p1) is False

Oops. The equality relationship fails the commutative requirement. We
can improve our conformance to this requirement in C# by implementing
IEquatable<T> – which enforces implementation of an override of
Equals taking T – for both classes. This provides the symmetry for p1
and p2 but is still not a complete solution to the problem as this code
fragment shows:
 object o1 = p1;
 Console.WriteLine(
 "p1.Equals(o2) {0}, o2.Equals(p1) {1}",
 p1.Equals(o2), o2.Equals(p1));

However, even if we fix the commutative relation by making our equality
test more complex we still have a problem. Let’s add this variable:
 var p3 = new Coordinate3d {
 X = 2.3, Y = 5.6, Z = 1.22 };

Now p1 will be equal to p3 (for the same reason it is equal to p2), but p2
and p3 will not compare equal. We have broken the transitivity
requirement. How can we resolve this? Should we even try?
Let’s consider why we have the problems we see. Our problems are mostly
caused by attempting to define equality in a class hierarchy. What sense
is there to try and compare a two-dimensional and three-dimensional
object? They are not the same class. The first solution is to change our
design so that two and three dimensional classes are not related: we might
use composition in preference to inheritance if we do wish to use some of
the implementation of Coordinate2d in the implementation of
Coordinate3d.
When inheritance is needed a good solution to the problematic elements
of value equality is to allow comparison to succeed only if the actual run-
time class types are the same, which can be implemented simply enough
in C# by comparing the results of calling GetType() on each object.

Listing 9

class Coordinate3d : Coordinate
{
 public double Z { get; set; }
 public override int GetHashCode()
 {
 // ...
 }
 public override bool Equals(object other)
 {
 var right = other as Coordinate3d;
 if (right != null)
 return base.Equals(other) &&
 Z == right.Z;
 return false ;
 }
}

Listing 8

class Coordinate
{
 public double X { get; set; }
 public double Y { get; set; }
 public override int GetHashCode()
 {
 // ...
 }
 public override bool Equals(object other)
 {
 var right = other as Coordinate;
 if (right != null)
 return X == right.X && Y == right.Y;
 return false;
 }
}

June 2011 | Overload | 7

FEATURE STEVE LOVE & ROGER ORR

it may make the initial implementation
simpler to define ‘just enough’ equality to be
able to use the type in this way
Incidental and intentional equality
Avoid defining equality just so it can be used in conjunction with
something that requires it, e.g. hashed containers. While it may make the
initial implementation simpler to define ‘just enough’ equality to be able
to use the type in this way, such partial implementations of equality have
a nasty habit of causing more serious problems later on as the code evolves.
Suppose for example that you have a C# class and wish to create a
HashSet of objects from this class. It can be tempting to define an
equals() method on the class that fulfils just the checks necessary for
this usage. However the equality used for a comparison in this context
might be very different from one used elsewhere: perhaps only certain key
fields are relevant. In this case an alternative way of solving the problem
exists as the C# HashSet can use a pluggable equality comparer
(IEqualityComparer<T>) instead of using equals(). This also
provides a clearer way of stating the intent than implementing the equality
operator just for using in the hash set. In C++ the unordered_set can
be given its own equality comparer; however in the standard Java
collection classes HashSet can only use object.equals(), so you’re
stuck with it.
Within a single application, both meanings of equality might be required:
for example in an application for playing card games do you need the Ace
of Spaces or an Ace of Spades? In Java and C#, override [Ee]quals for
a value-check and leave == well alone to perform its default action of an
identity check. In C++, which allows access to the address of an object,
you can explicitly compare addresses (for identity) or contents (for value).
Unless of course someone has defined operator& for one of the types...

Hashcodes
There is a close relationship between equality and hashing. For example
the C# documentation states that ‘classes [..] must [...] guarantee that two
objects considered equal have the same hash code’. Java imposes a similar
rule for Object.hashCode().
The reason is simple: when hashing functions are used with collections of
objects the hash code is used first as a coarse filter to partition objects into
buckets with the same, or related, hash codes. If you implement a hash code
function that means two objects comparing equal have a different hash
code then the two objects may end up in different buckets and the code
won’t ever get to the point of testing for equality.
Hash codes for objects that can mutate are another problem. See Listing
10 for an example.
Consider what happens if Value changes after inserting into a hashed
container... if the object’s hash code changes after being added to a hashed
container, subsequent attempts to look for the object in the container will
be accessing the wrong bucket.
The default implementation of GetHashCode() in C# for a value type
is the hash code of the first field – this is rarely the best implementation
for most value types. While we were investigating hash code behaviour in
C# we found an interesting ‘feature’ of the Microsoft C# runtime: the hash
code for a boolean value is constant! The program in Listing 11

demonstrates both these behaviours by printing True both times when
compiled and run using Microsoft’s implementation.
Using Visual Studio this program prints:
 True
 True

Collections
Another set of issues is raised by considering equality on container types.
When are two collections of things equal? Is it enough that the two
containers have the same items or do they need to be in the same order?
(As a side note, we can add to the C# list of equality checks with
SequenceEqual, which insists on the same items, in the same order).

Listing 10

public static class Bogus
{
 public String Value;
 @Override public int hashCode()
 {
 return Value.hashCode();
 }
 @Override public boolean equals(Object other)
 {
 return ((Bogus)other).Value.equals(Value);
 }
}

Listing 11

using System;
static class Program
{
 struct HashTest
 {
 public bool Enabled;
 public string Value;
 }

 public static void Main()
 {
 var h1 = new HashTest{
 Enabled = true, Value = "Great!"};
 var h2 = new HashTest{
 Enabled = false , Value = "Great!"};
 Console.WriteLine(
 h1.GetHashCode() == h2.GetHashCode());
 h1.Value = "Rubbish!";
 Console.WriteLine(
 h1.GetHashCode() == h2.GetHashCode());
 }
}

8 | Overload | June 2011

FEATURESTEVE LOVE & ROGER ORR

do two containers match if they contain the
identical objects or if they contain objects

with identical values?
This is a question that has performance implications too: comparing two
sets are equal when permutations are allowed has a higher complexity
measure than the case when the ordering must match.
A further question that may need addressing with containers is whether you
want a value or reference comparison: do two containers match if they
contain the identical objects or if they contain objects with identical
values?
Note that this is a case where polymorphic equality makes a lot of sense:
two collections are equal when they contain the same objects. You are not
usually interested in whether they are from the same class (or even whether
the internal states are the same); the important thing for equality is the
objects they contain.

Conclusion
Equality is hard to define simply even for a single language. It is easy to
implement if you stick to a small set of common sense rules; more
complicated implementations are possible but not in general
recommended.
One key distinction is between values and references. You should know
the difference between (polymorphic) reference types and value types in
all languages and avoiding treating the two the same way! Equality for
references is a check for identity but equality for value types is a check for
equal values of all (significant) fields.
Making use of immutability for value types has many benefits, far beyond
equality. In the case of equality though it allows for the possibility of
caching of objects and/or values and it also removes the class of problems
exemplified by the example of modifying an object while it is held in a
collection.
Using value equality in a class hierarchy rarely makes sense and should
be avoided. It is often better to avoid inheritance in the sort of cases where
equality might make sense and use composition instead. Classes can also
be made final (or sealed) to prevent unwanted inheritance but this can
be an annoyance when a user of the class has a valid reason for wanting
to extend your class.

Further reading
C# in a Nutshell has a deep exploration of equality in C#. For more about
equality in Java see http://www.javapractices.com, and follow links
through Overriding Object methods to implementing equals.
Angelika Langer and Klaus Kreft wrote a pair of articles on the subject
[Langer]. While the target of their article is Java many of the points apply
to C# as well.

References
[C# Equals] http://msdn.microsoft.com/en-us/library/

bsc2ak47%28v=VS.100%29.aspx
[Java equals] http://download.oracle.com/javase/6/docs/api/java/lang/

Object.html#equals%28java.lang.Object%29
[Langer] http://www.angelikalanger.com/Articles/JavaSolutions/

SecretsOfEquals/Equals.html
June 2011 | Overload | 9

http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html
http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://msdn.microsoft.com/en-us/library/bsc2ak47%28v=VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/bsc2ak47%28v=VS.100%29.aspx
http://www.javapractices.com

FEATURE SERGEY IGNATCHENKO
The Guy We’re All Working For
Developers like to think they’re in control of their products.
Sergey Ignatchenko reminds us who’s really in charge.
Disclaimer: as usual, opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with opinions of translator and
Overload editors; please also keep in mind that translation difficulties from
Lapine (like those described in [LoganBerry]) might have prevented from
providing an exact translation. In addition, both translator and Overload
expressly disclaim all responsibility from any action or inaction resulting
from reading this article.

Laynt Preenahlarny naylte vao aisi nao?
Was Laburnum a good or bad rabbit?

Users and developers a.k.a. Elil and Naylte
rogram users and program developers are
two camps which are traditionally
not that fond of each other (to put

it mildly). Users tend to think that
developers are stupid idiots doing
nothing more than intent ional ly
inserting bugs into the programs;
advanced users are often even more
annoying to developers, arguing that
certain features (the ones they want)
can be added without any problems
in two days (whereas from the
developer’s perspective it will take
two months and will break a dozen
other features that millions of other
users rely on). Developers, on the
other hand, tend to forget about users
at all, and if forced to speak on this
subject, will rarely characterize users
any better than ‘mindless creatures
without brain or purpose’1.

The user has the upper hand, whether we like it or not
On the surface, it may seem that this mutual dislike between users and
developers is symmetrical in nature, but in fact it is not. If the users don’t
value the product (in whatever way they define value), they won’t use it
and the whole project will be a failure. And as it is the user who eventually
decides if the project is successful, the relationship between users and
developers is an inherently asymmetrical one, with users having the upper
hand. Obviously developers have the option to ignore users, but in a

modern economy if suppliers (in our case – developers) don’t have a
monopoly and ignore the needs of their consumers (in our case – users),
the chances of success of the supplier/developer become infinitesimally
small. In a market economy suppliers exist for only one purpose – to satisfy
the needs of their consumers, and if the supplier ignores these needs – it
dies, usually sooner rather than later.
Here I need to mention that for the purposes of this article the term ‘user’
does not necessarily mean an end-user. For example, if you’re writing a
software library your user is the guy who uses your library. The same guy
is usually a developer of another product and is therefore a supplier for
another developer or for an end-user. This kind of multi-tier supplier-
consumer relations is nothing new, and goes back at least for a thousand

years, to the time when the carpenter acted both as producer
of a house for the end-user and as a consumer of nails
produced by the blacksmith.

Relevance of business
requirements
In t r ad i t i ona l (non -ag i l e)
development models users rarely
interact with developers directly.
In non-agile teams, as well is in
many agile ones, the tasks usually

come to developers (or business
analysts) in the form of business
requirements. Unfortunately,

way too often these requirements
are not clear enough. But even
worse , o f t en t he r e a r e

requirements which are not really
relevant to keeping users

happy. In such
cases the impact
on development

can easily be devastating – if developers are forced to do something
outright stupid, one cannot possibly expect them to work with enthusiasm.
The big question here is how to distinguish relevant business requirements
from irrelevant ones? The answer is quite straightforward: whatever is
related to keeping users happy is potentially relevant. Applying this
principle to practical situations can lead to not so trivial results, so let’s
consider a few examples. Let’s consider a situation when an application
is being developered for a mobile phone. One potentially valid business
requirement in this case is ‘our application should run on an iPhone’, and
if developers are trying to fight it (on any grounds) they’re most likely out
of their depths. It is worth noting that this requirement should be specified
exactly as ‘our application should run on an iPhone’, and not as ‘our
application should use iOS’ – even if using iOS will eventually turn out
to be the only way to run the application on an iPhone, it is an

P

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams [Adams].

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com

1. Quote by Garfield the Cat from [Garfield88]
10 | Overload | June 2011

FEATURESERGEY IGNATCHENKO

Hey, you’re talking about the importance
of the end-user, but the end-user clearly

wants something ‘cool’
‘implementation detail’, and therefore a decision which should be made
at the architectural level rather than at the business level. As an alternative
example, if the product is a software library then the requirement ‘it should
be portable to iOS’ is a perfectly valid one –
in this case the OS requirement
becomes a characteristic which
can be observed by the
product user.

It’s so 1990-ish
One i ssue which of ten
em erge s w i th in
development teams is the
question: ‘Hey, why don’t
we u se t h i s ne w coo l
technology? C++ is so 1990-
ish!’. My usual answer
(perfectly consistent with
the logic I’ve described
above) is that ‘cool’ doesn’t
have any standing in my books
and that we should think about
the user first, and that with this
new cool technology user will suffer
in this or that way. Usually this kind of
explanation about overall project success
and being user-oriented does help, but
recently I’ve run into a counter-argument:
‘Hey, you’re talking about the importance of
the end-user, but the end-user clearly wants
something ‘cool ’ , look at the
iPhone and iPad! So why don’t you
allow us to use cool stuff?!’.
While this logic is still flawed, to
illustrate why will need a bit more of an
explanation. When users use the word
‘cool’ they’re completely within their
rights to ask for whatever they want
and developers should listen to
them. In other words, wi thin
‘userland’ (a.k.a. ‘managerland’ and
‘marketingland’ – and don’t confuse it with *nix ‘userland’) the word
‘cool’ is a perfectly legitimate argument, and hence a valid business
requirement and developers must learn to live with it. But when developers
starts to use word ‘cool’ to describe technology which their users do not
care about, it has nothing to do with users and therefore should have much
less priority if considered. There are two completely separate worlds: one
is ‘userland’, the other is ‘developerland’, and ‘cool’ only has standing
within ‘userland’. While it may seem ‘unfair’ to developers it is a direct
result of the asymmetry described above and users having the upper hand.

Developers and user interfaces
Another area of everlasting conflict between users and developers are user
interfaces, with many a fight over usability. One of my fellow-rabbits even

uses the special term ‘developer’s UI’
to descr ibe one which was

convenient to write but is hardly
usable. The worst example I’ve
personally seen to date was a
certain fax machine (I will not
name the company here, but
anybody who’s seen it should
recognize it easily). It was a
nightmare UI to deal with,
de sp i t e hav i ng a l l t he
necessa ry fea tu res . For
example, after the fax has

been sen t i t showed the
notification ‘N pages sent ok’,
but why did this disappear after

a few seconds? Did they expect
me to be right next to the machine
all the time to catch a glimpse of
it? Or why, if the sending had

failed did it go into one of two
different, but visually very similar,

modes – one with a retry being
scheduled and another with the whole
thing aborted? And in order to cancel
the retry, why did you need to go three
levels deep into the menus, under the
heading ‘memory settings’? I am a
developer myself and I perfectly
understand why it was written this
way – for a developer it is so much

easier to design a UI around the
implementation (or even worse –
around an unsuitable existing
implementation), but as a user I

clearly have difficulties with
finding non-foul words to

describe the experience; needless
to say, chances of me buying another fax machine from the same company
are on the order of me voluntary paying a visit to a pre-heated farmer’s
oven.
While technically speaking it is not a job of a software developer to design
a UI (ideally, the task should belong to business analysts), whenever a
developer (who wants the project to succeed) is implementing a UI
(whether inventing it him/herself, or implementing specification), s/he
should think about the user who will use the product. While it doesn’t help
100% of the time – an average user can have expectations which are very
different from an average developer – it still can help to avoid at least the
June 2011 | Overload | 11

FEATURE SERGEY IGNATCHENKO

the developer tends to concentrate on
the areas which he thinks are of interest
from the point of view of implementation
most blatant problems. Just don’t forget to discuss it with the business
analyst before deviating from the existing specification – it might be good
not only to save you some trouble, but also sometimes can be useful for
the project and end-user too.

Eating our own rabbit food
It should be mentioned that it is often difficult to think about your own code
from the point of view of a user, especially when it is already written. In
this case it becomes very similar to testing your own code, which is known
for fellow-rabbits to be very difficult. One reason for this difficulty is that
such testing puts you into position of perceived conflict of interest: if you
find the bug or other flaw (which is your job as a tester), it means that you
have made a mistake as a developer. While this conflict of interest is
usually only perceived and is not a real one, it often still leads to situations
when the developer/tester subconsciously avoids testing scenarios which
can be dangerous. Another (probably even bigger) problem in this way is
that during such testing the developer tends to concentrate on the areas
which he thinks are of interest from the point of view of implementation;
while such ‘white-box testing’ is indeed useful, it tends to differ from the
usage patterns of users.
One obvious way to deal with these issues is to have an independent QA
department; another technique which helps is known as ‘eating your own
rabbit food’ (or ‘eating your own dog food’ among some lesser species).
This means that the company should use its own products as much as
possible, to experience them as a user. While this technique alone does not
provide any guarantees, it certainly can be a good tool to improve the
overall user experience.

The manager’s perspective (team-leads included)
In this ‘user vs developer’ conflict, managers find that being between the
user and the developer is very similar to being between a hammer and an
anvil. It applies to all levels of the management, from the top level down
to team leads. From one side there is a pressure to make a product
successful (and to achieve that by making users happy), from the other side
an obvious lack of understanding (and therefore inertia, if not outright
opposition) from the developers. It is indeed a difficult problem for
management, but it can be solved (as described, for example, as early as
in [Parkinson60]) by promoting a culture where everybody works towards
a well-defined goal – project success (and therefore making user happy).
How to achieve this is not a trivial management task (it goes much further
than simple stock options and other incentives), but it is certainly do-able.

One notorious example of succeeding at this is Louis Gerstner’s highly
successful restructuring of IBM in the 1990s; while re-establishing a
customer-oriented culture obviously wasn’t the only change which led to
this success, this cultural shift certainly was a significant part of Gerstner’s
plan. As several fellow-rabbits who had a chance to work in IBM have told
me, it was Gerstner who allowed IBM integrators to use non-IBM
solutions when it was necessary to make customers happy. And as we can
see 10 years down the road, it was a highly successful strategy.

The developer’s perspective
One question some developers ask – ‘ok, you have shown that project
success depends on the user, but why I should care?’. Unfortunately
(consistent with [Parkinson60]), there is no good answer to this question,
except that organization where nobody cares about results is inevitably
doomed. If all you want in this life is to be able to pay your bills, and caring
about results (and therefore about the user) is not strictly necessary. Still,
as the experience of the whole rabbit community shows, projects which
are successful have a much higher chance of being kept even during a
crisis, and to provide higher raises when the economy is booming, so
thinking about user often pays off even in a direct monetary sense.
Going a bit further with this analysis: if you're working for a company
(department, project, etc.) where management and developers don’t care
about the eventual success of what they’re doing, it often means that the
company is likely to fail. Working for a company which is doomed to
failure is never a good thing. It is bad for your personal bottom line, not
really helpful for your career, and can be devastating for your self-esteem.
In short – a developer who can do better than fail should aim to avoid such
workplaces, and try to get into an environment where the culture of project
success is predominant on all the levels. It will certainly require more
effort, but has much more potential to be much more rewarding, both
financially and emotionally.

References
[Adams] http://en.wikipedia.org/wiki/Lapine_language
[Garfield88] Garfield and Friends, 1st season, CBS, 1988
[Loganberry] David ‘Loganberry’, Frithaes! - an Introduction to

Colloquial Lapine!, http://www.scribd.com/doc/97067/Conlang-
Lapine

[Parkinson60] Cyril Northcote Parkinson, The Law and the Profits, 1960,
ASIN B004NDFID4
12 | Overload | June 2011

http://www.scribd.com/doc/97067/Conlang-Lapine
http://www.scribd.com/doc/97067/Conlang-Lapine

FEATUREDIETMAR KÜHL
Exception Specifications
in C++ 2011
The new standard is almost finished. Dietmar Kühl
looks at the new exception features.
his article discusses exception specifications in C++ 2011. The
primary focus of this discussion is the new noexcept keyword and
the related concepts. The reason for this strong focus is simply that

exception specifications for anything else than the distinction between
functions which may throw and functions which will not throw are a failed
experiment. This will discussed at the end of this article. However, the
specification that a function will not cause any exception is an important
piece of information.

Motivation
It is just fun to watch a bunch of experts discuss something which is
supposedly entirely under control, just to find shortly prior to shipping a
product that just a tiny detail got missed. Taking advantage of move
construction to optimize libraries is one such topic which got discussed for
ages, always essentially under the assumption that move construction
won’t throw any exceptions. Well, eventually it transpired that there are
examples where moving an object might throw. This is the tiny detail
which got missed. Once people looked more closely at the issue it turned
out that this slight oversight actually turned into a tremendous monster,
threatening to make use of move construction in the standard library
impossible at all: the typical type currently in existence doesn’t have a
move constructor. Instead, moving an object would actually turn into using
its copy constructor and the assumption that copy constructors don’t throw
exceptions is adventurous at best. The only positive aspect of this mess is
that it actually was caught prior to shipping!
Let’s start with an example of the problem: assume we want to implement
the class template std::vector<T> (ignoring the allocator because this
particular issue doesn’t even need an allocator to land itself in a mess). To
be more concrete, we want to implement this class’s reserve() method:
this method increases the number of available elements before the internal
memory needs to be rearranged. The particular aspect of its specification
we are interested in is that this function leaves the std::vector<T>
unchanged if an exception occurs. The C++2003 approach to implement
the case where additional memory needs to be allocated (reserve() is
a bit more complex but we aren’t really interested in the other cases for
this discussion) is to do the following:

1. allocate enough memory to hold the requested number of elements
2. copy the elements into the newly allocated memory
3. set up std::vector<T>’s data structure to use the new storage
4. destroy the original sequence of elements
5. deallocate the original memory.

Note that this actually only works correctly if neither the destructor of the
element type T nor the deallocation function ever throw an exception. This
is already a requirement for the type T in C++2003. This implementation
provides the strong exception guarantee (i.e. the vector<T> stays
unchanged if an exception is thrown during reserve()):

If an exception is thrown during step 1 the object isn’t changed, yet.
If an exception is thrown during step 2 the original sequence isn’t
changed, yet, either; for proper clean up the already copied elements

need to be destroyed and the allocated memory needs to be released
but this is doable quite easily as none of those clean-up operations
may throw an exception.
After this, the operations are only manipulations of built-in types
which don’t throw, destructor calls, and releasing the memory, none
of which is allowed to throw an exception.

Of course, in C++2011 we can do better: we can move the objects rather
than copying them! That is, we replace step 2 to just move the elements
(at first sight it seems as if we could get rid of step 4, too, but even after
moving the objects still exist and they need to be destroyed). The problem
is that in general moving an object may throw! If this happens, we need
to restore the original state of the sequence which would involve moving
the objects back. Of course, if a move just threw, we have no guarantee
that moving an object back doesn’t throw, too! That is, once a move threw,
we can’t necessarily restore the original sequence. If we can’t restore the
original sequence we can’t use std::move() (or whatever other
app roach we u se t o m ove ob j ec t s) t o i mp l eme n t
std::vector<T>:reserve().
This same logic essentiallly applies to many other places where moving
an object would be beneficial: if the move operation may throw and thus
cannot be undone safely it cannot be used in most places where the strong
exception guarantee is given. As a result moving objects would be
restricted to a few places in the standard C++ library. This is essentially
an unacceptable prospect.
To prevent C++ standard melt-down people went ahead and constructed
a solution for the problem which, unfortunately, is somewhat painful due
to some of the choices made. At least, it seems to work: functions can be
declared not to throw any exception using either the now deprecated empty
throw specification – throw() – or the newly introduced noexcept
specification. A noexcept specification can take a constant expression
evaluating to bool making it conditional. And noexcept can be used as
an operator, determining whether an expression can throw an exception at
compile-time i.e. the noexcept operator is a constant expression.
The key idea is that the implementer of a function knows in many cases
that the function won’t throw an exception. For example, often move
construction of a resource-owning class just moves pointers around and
sets the original pointers to null. None of these operations throws. That
is, in many cases moving the objects is viable but it is necessary to tell the
system that the move constructor doesn’t throw. Operations capable of
possibly moving objects rather than copying them then use a noexcept
operator to detect whether the move is guaranteed not to throw.

T

Dietmar Kühl is a senior developer at Bloomberg L.P.
working primarily on energy and emissions related models.
He is also a frequent attendee of the C++ standardization
meetings and one of the moderators of
comp.lang.c++.moderated. He can be reached at
dkuhl@bloomberg.net.
June 2011 | Overload | 13

FEATURE DIETMAR KÜHL

existing code is lacking proper exception
specifications and it is often not an option to
change some of the code
In principle, an empty throw specification in C++ 2003 pretty much says
the same thing as a noexcept(true) specification or an empty throw
specification in C++ 2011. In both cases an exception leaking out of the
corresponding function causes the program to std::terminate().
However, there are a number of important details:

1. If an exception is leaking from a function with a throw()
specification (both in C++ 2003 and C++ 2011), the program is
terminated following a call to std::unexpected() (in the
general case unexpected() could change the exception into one
which is expected but with an empty throw specification there is no
exception which would be expected). However, before
std::unexpected() is called the stack is unwound up to the
function with the throw() specification. In the case of an
exception escaping from a function declared noexcept(true),
stack unwinding may or may not happen as the system sees fit and
std::terminate() is called directly without also calling
std::unexpected(). This difference allows for some
optimizations which are thought to remove any potential overhead
from functions declared not to throw anything. The empty throw
specification may have a performance impact even if no exception
ever escapes the corresponding function.

2. It isn’t possible to have a conditional empty throw specification but
the noexcept(expr) specification takes an optional Boolean
constant expression as argument, i.e. the noexcept specification
can be conditional: if the passed expression expr evaluates to
false a function can throw exceptions; otherwise, the function is
not allowed to throw any exception. This is especially important for
function templates: depending on the template parameters
expressions may or may not throw exceptions. With a conditional
specification it is possible to take advantage of this.

3. In C++ 2003 it cannot be determined at compile time if a function is
declared with an empty throw specification. This is changed in C++
2011 where it can be determined whether a function is not allowed
to throw any exception i.e. whether it has an empty throw
specification or a noexcept(true) specification: the expression
noexcept(expr) (note that noexcept is used as an operator
here) yields a Boolean compile-time constant indicating if all
operations in the expression expr are declared to be
noexcept(true) or throw().

Originally, the noexcept specification was intended to be much stronger:
it would be a compile-time error trying to use any operation which isn’t
noexcept(true). This would have meant that calling any function
without a noexcept(true) specification would have to be wrapped into
a try/catch block where one of the catch blocks would have been required
to catch any exception using (...). This very strong requirement was
dropped because i t was considered to hamper t ransi t ion to
noexcept(true) use. The use of a throw() specification is
discouraged because it may incur some run-time overhead even if no
exception is thrown. In C++ 2003 this is the only way to specify that no
exception will be thrown. Thus, existing code is lacking proper exception

specifications and it is often not an option to change some of the code.
Adding noexcept(true) specifications to code based on functions
lacking proper exception specifications would either fail to compile or
require try/catch wrappers if it were an error to call a function which isn’t
noexcept(true).
The flipside of the coin is that now it becomes necessary to protect
functions using noexcept(true) specifications against changes in
underlying libraries who are specified to not throw exceptions originally:
while this guarantee exists when the noexcept(true) specification was
added nothing prevents removal of the corresponding exception
specifications. This silent change would potentially cause programs to
abort because an optimization was safe at some point but was broken
because some lower-level code got changed. Although changing a
noexcept(true) specification to a noexcept(false) specification
effectively amounts to an interface change, it is a change which isn’t
detected by the compiler. Having to use either conditional noexcept
specifications or static_assert()s to prevent code from silently
breaking, at least if it uses user-defined functions, is quite painful. Static
analysis may yield warnings about potentially throwing operations and I’d
think this would be a valuable tool given that any accidentally thrown
exception terminates the program. I would have preferred an error or, if
this is deemed not acceptable as a default, some way to opt into stronger
checks (e.g. a noexcept block which causes an error if potentially
throwing operations are used within).

noexcept-specification
Functions can be declared to never throw any exception by using a
noexcept specification following the function declaration, e.g.:
 void f() noexcept;

This declaration could alternatively have used an empty throw
specification:
 void f() throw();

These two declarations of f() are compatible: both declarations can
appear in a program and with respect to the declaration their meaning is
identical: both declare that f() can’t throw an exception. Incompatible
exception specifications, i.e. exception specifications allowing/
disallowing different exceptions are not permitted. However, the
definition of the function determines how the program proceeds if an
exception escapes the function with the exception specification: if the
func t i on de f i n i t i on u se s a noexcept s pec i f i c a t i on ,
std::terminate() is called immediately; if the function definition
uses a dynamic exception specification, i .e. throw() , then
std::unexpected() is cal led which wil l ul t imately cal l
std::terminate(), too. The key difference between both approaches
is that before calling std::unexpected() the stack is unwound while
there is no such guarantee when std::terminate() is called
immediately.
14 | Overload | June 2011

FEATUREDIETMAR KÜHL

a destructor without an exception
specification which throws an exception

gets an exception specification which may
very well disallow any exceptions
The noexcept specification can take a Boolean constant expression as
argument which determines whether the function should be noexcept.
For example:
 void g() noexcept(true);
 // same as noexcept without argument
 void h() noexcept(false);
 template <typename T>
 void m() noexcept(noexcept(T());

The first two examples are rather simple: g() is declared to never throw
any exception and h() is declared to possibly throw an exception. Whether
the function m() is allowed to throw an exception depends on the template
parameter T: using a noexcept operator (see below) this specification
determines whether the default constructor or the destructor of T might
throw an exception. If they don’t, the function m() is specified not to throw
any exception, either. Otherwise, i.e. if the default constructor or the
destructor of T might throw an exception, m() might throw an exception
as well. Note that the expression T() constructs a temporary object using
the default constructor and destroys the object again. Thus, both the default
constructor and the destructor are considered!
With explicit exception specifications the situation is rather
straightforward: if there is an exception specification, a function just gets
the corresponding specification. It gets more interesting if there is no
exception specification. In this case a function is normally allowed to
throw exceptions. Most of the time this is what is desired but it would also
cause all destructors without exception specification to be considered
throwing although it has long been recommended that destructors should
be non-throwing. In addition, it is very desirable that destructors can be
detected as being non-throwing. Therefore, destructors get special
treatment: if the destructor has no explicit exception specification, it gets
the same exception specification an implicitly generated destructor would
get. So, let’s see what happens there.
There are a number of implicitly generated functions for which it would
be desirable to have noexcept(true) specifications where possible.
This applies to the default constructor, copy constructor, move constructor,
destructor, copy assignment, and move assignment, commonly called the
special functions. When one of these special functions is implicitly
generated, it gets an exception specification which allows all exceptions
of all operations called by the implicitly generated special function. For
example, the implicitly generated copy constructor copies all bases and all
members. The corresponding exception specification will consist of a
union of all exceptions specified by the copy constructors of the bases and
the members. This exception specification is possibly equivalent to
noexcept(false), i.e. all exceptions are allowed: this is the case if at
least one of the base or member copy constructors allows all exceptions.
If none of the copy constructors of the members or bases can throw any
exception, i.e. they are all declared to be noexcept(true), then the
exception specification of the generated copy constructor will also be
noexcept(true).
Now, for destructors these rules apply even if the destructor is explicit but
has no exception specification. That is, if your destructor does throw an

exception but none of the destructors of the bases or members throws
exceptions, you will have to declare explicitly that the destructor might
throw an exception (of course, you should consider whether your
destructor really needs to throw as well). To allow an explicitly
implemented destructor to throw an exception it needs to either have a
throw(exceptions) specifier or it needs to get a noexcept(false)
specification. Somehow this latter declaration reminds me of ‘Yes! We
have no bananas’!
Note that this is a silent change: a destructor without an exception
specification which throws an exception gets an exception specification
which may very well disallow any exceptions! I couldn’t verify this
behaviour on any of the compilers I have currently available, however.
This may be due to this being a relatively recent change (it made its first
appearance in N3225). Listing 1 is the example program I used to test.
The destructor of the_oracle will acquire a throw() or a
noexcept(true) exception specification (which one is unclear in the
standard; the difference is whether the stack is partially unwound or not,
respectively, before the program is terminated). Either will cause the
program to be terminated instead of returning normally from main().
Yes, I know that it is bad practice to throw from a destructor but this doesn’t
mean that there is no code out there which benefits from having this change
pointed out.

noexcept operator
To determine whether an expression might, according to its exception
specifications, throw an exception, the noexcept operator can be used:

 template <typename T>
 void f() {
 if (noexcept(T()))
 ...

In this example the noexcept operator tests if the default constructor and
the destructor for the template argument T are specified not to throw any

Listing 1

typedef int the;
int const up(42);

struct the_oracle
{
 ~the_oracle() { throw up; }
};

int main()
{
 try { the_oracle(); }
 catch (the answer) {}
}

June 2011 | Overload | 15

FEATURE DIETMAR KÜHL

freedom to strengthen the exception
specifications isn’t given for virtual
functions
exception: if the expression T() were executed it would use the default
constructor to create a temporary which would then be destroyed using the
destructor. Thus, both operations have to be declared not to throw an
exception for the noexcept operator to yield true. The result of the
noexcept operator is a constant expression and the expression passed to
the noexcept operator is not evaluated i.e. if the expression has side
effects, these won’t happen (just the same as sizeof which is also a
constant expression with the argument not being evaluated).
In general, the argument to the noexcept operator can be an arbitrary
expression. The noexcept operator yields false if there is any
potentially evaluated expression or subexpression which may throw an
exception, i.e. if there is any expression or subexpression which is not
specified to be noexcept(true) or throw(). Note that this includes
any implicit operations needed by the expression like implicit conversions
or destructors. Of course, any dynamic_cast<>() on references, throw
expression, or typeid expression would also cause the noexcept
operator to yield false. However, if all expressions or subexpressions are
specified to be noexcept(true) or throw() the noexcept operator
yields true as well.
The noexcept operator is the key using non-throwing operations in
optimizations for any sort of templatized component. Let’s get back to the
original example of implementing std::vector<T>::reserve():
this function could determine whether objects can be moved without ever
throwing an exception using an expression like this:
 noexcept(T(std::declval<T>())))

The function template std::declval() is declared to have a return type
matching its template argument, possibly turned into an r-value, and is
specified not to throw an exception itself. It is only declared and has no
definition, however:

 template <typename T>
 typename std::add_rvalue_reference<T>::
 type declval() noexcept;

With this, the expression above just tests whether it is possible to both
construct an object of type T from a movable T object and to destroy an
object of type T without throwing any exception. Although the noexcept
operators can be used, it is worth pointing out that the header
<type_traits> defines a number of type traits which do this test more
directly. Likewise, there is a function declared in the header <utility>
which takes care of all the needs for moving vs. copying of objects:
std::move_if_noexcept() is similar to std::move() but the
result type is only an r-value reference if the move constructor of the
argument type is specified to be noexcept(true).
Although the noexcept operator is an important facility in the C++ tool
box, it is similar to the sizeof operator: the noexcept operator is
probably rarely used explicitly. However, type traits and auxiliary
functions effectively based on this operator are likely to show up in many
places: it is beneficial to expose that operations won’t throw any exception

in many places and libraries trying to be as efficient as possible will make
use of this knowledge.

User and standard library use
In general, it seems as if noexcept(true) specifications should be
freely used wherever it is known that a function can’t throw an exception.
Given that an incorrect noexcept(true) specification might terminate
the program it should not be applied carelessly, however. In practice this
probably means that many functions which could be specified to be
noexcept(true) won’t get this specification. Hopefully, the danger of
wrongly using noexcept(true) will be mitigated by compilers and/or
static analysers which could warn about dangerous noexcept(true)
specifications or suggest functions which could safely be made
noexcept(true). Given that this is a brand-new feature I don’t expect
any such tool to be around already. Also, it is probably worth verifying
that noexcept(true) specifications have indeed no adverse run-time
effect.
From a semantic view the noexcept(true) specification should have
no impact. It is worth noting, however, that declaring a move constructor
to be noexcept(true) will cause several standard library algorithms to
use the move constructor rather than the copy constructor. Obviously,
these constructors should be implemented in a way which makes it viable
to use a move constructor instead of a copy constructor. For implicitly
generated constructors this is already the case, assuming that any user-
defined constructors used to deal with subobjects have this property, too.
In practice, specifying a move constructor to be noexcept(true)
should just make the program faster.
Although noexcept(true) can be useful for many functions its use for
now, at least, mainly affects algorithms in the standard library. These
mainly care about some of the special functions and the swap() function:
all of the operations which might be involved in moving objects, i.e. the
move constructor, the move assignment, the destructor, and the swap()
function should, whenever possible, be written not to throw any
exceptions. In most cases these operations are probably simple pointer
operations which can’t throw an exception. Any of these operations which
indeed never throws an exception should also be declared to be
noexept(true). This is the area where the biggest performance gains
from moving over copying are expected.
In the standard library there are certain functions which are required to be
noexcept(true). Some functions have to be specified conditionally
noexcept(true). For the vast majority of functions in the standard
library the standard makes no requirement that the function has to be
specified noexcept(true). However, the library implementer is free to
specify any non-virtual function for which it is known that no exception
is thrown noexcept(true). It is expected that the library implementers
make use of this freedom. The freedom to strengthen the exception
specifications isn’t given for virtual functions: since the overriding
functions have to apply the same exception specification or stronger than
the base class version, allowing the library implementer to strengthen the
16 | Overload | June 2011

FEATUREDIETMAR KÜHL
exception specification for any virtual function would cause incompatible
implementations.

Use in the library specification
The original approach for noexcept specifications in the standard C++
library specification was to make any function which has a clause saying
‘throws nothing’ noexcept(true). This seems like a sensible approach
but actually it is not! The reason for this is not necessarily obvious: a lot
of the functions have preconditions and if these preconditions are met, the
function indeed doesn’t throw any exception. However, what happens
when a precondition is not met? The answer is that this causes undefined
behaviour, i.e. anything, including throwing an exception, could happen.
For example, a checking version of the standard library might detect that
a precondition isn’t met and signal this by throwing an exception. If the
corresponding function were required to be noexcept(true) this safe
implementation of the standard library would cause a rather unhelpful
termination. Thus, the rules when to require noexcept(true) got
revised to cater for this.
To better describe the rules used to determine whether a function is made
noexcept(true) or not, it is helpful to define two terms:

A function without any precondition is said to have a wide contract.
Obviously, for member functions the object on which such a
function is called actually does have the precondition that the object
exists. An example of a function with a wide contract is
std::vector<T>::size(): whenever there is corresponding
vector object around, this function can be called
A function which has some precondition is said to have a narrow
contract. std::vector<T>::pop_back() is an example of a
function with a narrow contract because it requires that there is at
least one element in the vector. However, its specification still says
that it throws nothing.

The rules for when noexcept(true) is to be applied for standard library
functions which are specified to throw nothing depend on whether the
respective function has a wide or a narrow contract: since functions with
wide contracts cannot be abused, i.e. there is no precondition which can
be violated, it is safe to make them noexcept(true) if they can’t throw
an exception. However, any function which has a narrow contract, even
though it may be specified to not throw any exception when it is correctly
used, can throw an exception if the precondition is violated. That is, no
function with a narrow contract is required to be noexcept(true).
An implementation which doesn’t do any checking of the precondition is
allowed to strengthen the exception specification, however. This means
that the corresponding function may actually get different throw
specifications in different build configurations: in a safe mode where the
preconditions are checked and violations are signaled via an exception, the
function is noexcept(false) while in a release build where the
preconditions are not checked it may become noexcept(true).

Exception specifications in general
While the distinction between throwing functions and non-throwing
functions is rather useful, especially if this property of a function can be
detected, more general exception specifications are not. Essentially, the
idea to declare what kind of exceptions a function can throw is a failed
experiment. Well, if someone had thought hard enough about this it
wouldn’t even have been necessary to run an experiment! The intention
of exceptions is to relieve business logic from forwarding error
information. The goal is to allow handling of exceptional errors at an
appropriate level without interfering with the business logic. Obviously,
adding a specification of what errors might happen in a specific function
is nothing else than burdening the business logic with information on error
forwarding – something directly defeating the goal of exceptions. Yes, it
isn’t in the body of the code and to some extent separated but it is still there

and typically has nothing to do with the business logic other than exposing
some more or less random implementation details.
I’d think this is already bad enough but it actually becomes worse! Most
interesting functions are generic in some form, be it that they are virtual,
take a template argument or a function pointer, or depend on other objects
which are somehow customizable. How on earth can an author of such a
function even dream of possibly anticipating what kind of exception will
be thrown in the setup in which I am calling it? Any exception specification
just becomes an unnecessary road-block which would require me to
disguise my carefully crafted exception hierarchy as some amorphous
piece of junk which later needs to be recovered carefully and inspected at
every potential catch-site.
With C++ 2011 the class std::exception_ptr and the related means
to get hold of such a beast give me the opportunity to disguise my
exceptions in a reasonably generic way (e.g. I could construct some sort
of chain of disguised exceptions) which wasn’t available earlier. Note,
however, that this is not the intention of this class! Instead, it is intended
to marshal exceptions unchanged from one thread of execution to another
one. Yes, it could be used to create chains of disguised exceptions so that
we can play nicely with exception specifications. Of course, having to
remember that the exception which was caught needs to be demarshaled
and investigated for its actual content makes the processing of exceptions
harder rather than easier. Also, I have actually lost the claimed benefit of
exception specifications because I actually need to handle errors which are
explicitly not specified. The use of a tool which makes life harder in return
for no benefit whatsoever is hardly advisable.
Just to be explicit for those who wonder: this assessment is actually not
specific to C++! It applies to all languages which are misled to participate
in this experiment. Maybe the actual experiment is to see how many
programming language communities can be made to believe that a
specification of which exceptions a function might throw is somehow a
good thing? Obviously, this isn’t related to the noexcept discussion but
I needed to get this off my chest anyway.

Conclusions
With C++2011 it becomes possible to conditionally specify functions to
not throw any exceptions. In addition, it becomes possible to detect
whether any given expression might throw an exception. The positive end
of this is that a lot of operations may become faster by taking advantage
of the fact that there are no exceptions. At the negative end, getting the
exceptions specification wrong will std::terminate() the program
and the user has to manually add the exception specifications to all but the
implicitly generated special functions which deduce their exception
specification from the operations they implicitly call. Hopefully, there will
soon be tools which warn about noexcept(true) specifications in
func t ions wh ich ac tua l ly mi gh t t h row o r sugges t add ing
noexcept(true) for functions which are known not to throw but don’t
have the corresponding exception specification, yet.

Acknowledgement and references
Thanks to Daniel Krügler, Jens Maurer, and Nicolai Josuttis for their very
constructive feedback on several drafts of this document.
This article is based on several documents used during the C++
standardization:
N2855 – Rvalue References and Exception Safety (Douglas Gregor,

David Abrahams)
N3225 – Working Draft, Standard for Programming Language C++ (Pete

Becker) as of 2010-11
N3291 – Working Draft, Standard for Programming Language C++ (Pete

Becker) as of 2011-04
N3279 – Conservative use of noexcept in the Library (Alisdair Meredith,

John Lakos)
June 2011 | Overload | 17

FEATURE RICHARD HARRIS
Why Interval Arithmetic Won’t
Cure Your Floating Point Blues
We’ve looked at several approaches to numeric computing.
Richard Harris has a final attempt to find an accurate solution.
n this series of articles we have discussed floating point arithmetic, fixed
point arithmetic, rational arithmetic and computer algebra and have
found that, with the notable exception of the unfortunately impossible

to achieve infinite precision that the last of these seems to promise, they
all suffer from the problems that floating point arithmetic is so often
criticised for.
No matter what number representation we use, we shall in general have to
think carefully about how we use them.
We must design our algorithms so that we keep approximation errors in
check, only allowing them to grow as quickly as is absolutely unavoidable.
We must ensure that these algorithms can, as far as is possible, identify
their own modes of failure and issue errors if and when they arise.
Finally, we must use them cautiously and with full awareness of their
numerical properties.
Now, all of this sounds like hard work, so it would be nice if we could get
the computer to do the analysis for us.
Whilst it would be extremely difficult to automate the design of stable
numerical algorithms, there is a numeric type that can keep track of the
errors as they accumulate.

Interval arithmetic
Recall that, assuming we are rounding to nearest, the basic floating point
arithmetic operations are guaranteed to introduce a proportional error of
no greater than 1±½ε.
It's not wholly unreasonable to assume that more complex floating point
functions built into our chips and libraries will also do no worse than 1±½ε.
This suggests that it might be possible to represent a number with upper
and lower bounds of accuracy and propagate the growth of these bounds
through arithmetic operations.
To capture the upper and lower bound of the result of a calculation
accurately we need to perform it twice; once rounding towards minus
infinity and once rounding towards plus infinity.
Unfortunately, the C++ standard provides no facility for manipulating the
rounding mode.
We shall, instead, propagate proportional errors at a rate of 1±1½ε since
we shall be able to do this without switching the IEEE rounding mode.
Specifically, we can multiply a floating point result by 1+ε to get an upper
bound and multiply it by 1-ε to get a lower bound. The rate of error
propagation results from widening the 1±½ε proportional error in the result
by this further 1±ε to yield the bounds.
Naturally, this will not work correctly for denormalised numbers since
they have a 0 rather than a 1 before the decimal point, so we shall have to

treat them as a special case. Specifically, rather than multiplying by 1±ε,
we shall add and subtract the smallest normal floating point number, which
is provided by std::numeric_limits<double>::min() ,
multiplied by ε.
Before we apply rounding error to the upper and lower bounds of the result
a calculation we shall want them to represent the largest and the smallest
possible result respectively. We therefore define the basic arithmetic
operations as follows.

As an example, consider the square root of 2. Working with 3 accurate
decimal digits of precision, this would be represented by the interval

(1.413,1.415)
Squaring this result would yield

or
(1.996,2.003)

which clearly straddles the exact result of 2 and furthermore gives a good
indication of the numerical error.
Unfortunately, as is often the case, the devil is in the details.
The first thing we need to decide is whether the bounds are open or closed;
whether the value represented is strictly between the bounds or can be
equal to them. If we choose the former we cannot represent those numbers
which are exact in floating point, like zero for example, so we shall choose
the latter.
However, if either of the bounds is infinite we should prefer to consider
them as open so as to simplify the rules of our interval arithmetic. This
means that we must consequently map the intervals (-∞, -∞) and (∞, ∞)
to (NaN, NaN).
A consequence of treating infinite bounds as open is that multiplying them
by zero can yield zero rather than NaN. In particular, we have a special
case of

and hence

This might seem a bit odd, but it makes perfect sense once we realise that
(-∞, ∞) is pronounced ‘any number’.

I

a b,() c d,()+ a c+ b d+,()=

a b,() c d,()– a d– b c–,()=

a b,() c d,()× min a c× a d× b c× b d×, , ,()
max a c× a d× b c× b d×, , ,()

,(
)

=

a b,() c d,()÷ min a c÷ a d÷ b c÷ b d÷, , ,()
max a c÷ a d÷ b c÷ b d÷, , ,()

,(
)

=

1.413 1.413 0.001–× 1.415 1.415 0.001+×,()

∞ ∞,–() 0 0,()× 0 0,()=

0 0,()
0 0,()

------------- ∞– ∞,()=

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and numerical
computing and is currently employed writing software for financial
regulation.
18 | Overload | June 2011

FEATURERICHARD HARRIS

we can consistently, albeit not particularly
mathematically soundly, define division by

intervals containing zero or either infinity
Making certain assumptions we can consistently, albeit not particularly
mathematically soundly, define division by intervals containing zero or
either infinity as follows. Given

we define

and

An interval class
Listing 1 gives the definition of an interval number class.
In the constructors we shall assume that a value is inexact, unless the user
explicitly passes equal upper and lower bounds or it is default constructed
as 0. Note that the user can also capture measurement uncertainty with the
upper and lower bound constructor.
The add_error static member function is provided to perform the error
accumulation for both member and free functions. Its definition is
provided in listing 2.
For the upper bound, this worst case will occur if we multiply by u when
it is positive and by l when it is negative. This is because, for negative
numbers, the greater numbers are those with smaller magnitudes. By the
same argument the opposite is true for the lower bound.
Additionally we must take care to accumulate errors in denormal numbers
additively.
Finally we exploit the fact that all comparisons involving NaNs are false
to ensure that if either bound is NaN, both will be.

0 a b≤<
0 c d≤<

∞– ∞,() a b,()
0 0,()

------------- a b,–()
0 0,()

----------------- b a–,–()
0 0,()

-------------------- 0 0,()
0 0,()

-------------= = = =

∞– ∞,() a b,()
c– d,()

---------------- a b,–()
c– d,()

----------------- b a–,–()
c– d,()

-------------------- 0 0,()
c– d,()

----------------= = = =

∞– ∞,() a– b,()
0 d,()

----------------- a b,–()
c– 0,()

-----------------= =

0 ∞,() a b,()
0 d,()

------------- b a–,–()
c– 0,()

-------------------- 0 b,()
0 d,()

------------- a– 0,()
c– 0,()

-----------------= = = =

∞– 0,() a b,()
c– 0,()

---------------- b a–,–()
0 d,()

-------------------- 0 b,()
c– 0,()

---------------- a– 0,()
0 d,()

-----------------= = = =

0 ∞,() a ∞,()
c ∞,()

--------------- ∞ a–,–()
∞ c–,–()

---------------------= =

∞– 0,() a ∞,()
∞ c–,–()

--------------------- ∞ a–,–()
c ∞,()

---------------------= =

Listing 1 Listing 2

class interval
{
public:
 static void add_error(double &lb, double &ub);

 interval();
 interval(const double x);
 interval(const double lb, const double ub);

 double lower_bound() const;
 double upper_bound() const;
 bool is_nan() const;
 int compare(const interval &x) const;
 interval & negate();

 interval & operator+=(const interval &x);
 interval & operator-=(const interval &x);
 interval & operator*=(const interval &x);
 interval & operator/=(const interval &x);

private:
 double lb_;
 double ub_;
};

void
interval::add_error(double &lb, double &ub)
{
 static const double i
 = std::numeric_limits<double>::infinity();
 static const double e
 = std::numeric_limits<double>::epsilon();
 static const double m
 = std::numeric_limits<double>::min();
 static const double l = 1.0-e;
 static const double u = 1.0+e;

 if(lb==lb && ub==ub && (lb!=ub
 || (lb!=i && lb!=-i)))
 {
 if(lb>ub) std::swap(lb, ub);

 if(lb>m) lb *= l;
 else if(lb<-m) lb *= u;
 else lb -= e*m;

 if(ub>m) ub *= u;
 else if(ub<-m) ub *= l;
 else ub += e*m;
 }
 else
 {
 lb = std::numeric_limits<double>::quiet_NaN();
 ub = std::numeric_limits<double>::quiet_NaN();
 }
}

June 2011 | Overload | 19

FEATURE RICHARD HARRIS

Negating an interval can be done without
introducing any further error since it simply
requires flipping the sign bit
The implementations of the constructors, together with the trivial upper
and lower bound data access methods are provided in listing 3.
Negating an interval can be done without introducing any further error
since it simply requires flipping the sign bit. Its implementation therefore
simply swaps the upper and lower bound after negating them, as shown in
listing 4.

Comparing intervals is a little more difficult. It’s clear enough what
we should do if the two intervals don’t overlap, but it’s a little
confusing as to what we should do if they do.
We could take the position that two intervals shall compare as equal if
it is at all possible that they are equal. Unfortunately, this means that
equality would no longer be transitive. An interval x might overlap y
and y might overlap z despite x not overlapping z. We would therefore have
to be extremely careful when dealing with equality comparisons. A simpler
alternative that maintains transitivity of equality is to compare the
midpoints of the intervals.
We shall use the second approach and its implementation is given in listing
5. Note that we must also provide an is_nan method to allow the
comparison operators to behave correctly in their presence.
When adding intervals we add their upper and lower bounds and then
add further errors to the bounds, as shown in listing 6.
Subtracting intervals is similarly straightforward, as shown in listing 7.
When multiplying intervals we must consider the effects of mixed
positive and negative bounds. Specifically, we have 9 cases to consider

x– l xh–,() yl– y– h,()×

x– l xh–,() yl– +yh,()×

x– l xh–,() +yl +yh,()×

Listing 5

bool
interval::is_nan() const
{
 return !(lb_==lb_);
}

int
interval::compare(const interval &x) const
{
 const double lhs = lb_*0.5 + ub_*0.5;
 const double rhs = x.lb_*0.5 + x.ub_*0.5;

 if(lhs<rhs) return -1;
 if(lhs>rhs) return 1;
 return 0;
}

Listing 3

interval::interval()
: lb_(0.0), ub_(0.0)
{
}

interval::interval(const double x)
: lb_(x), ub_(x)
{
 add_error(lb_, ub_);
}

interval::interval(const double lb,
 const double ub)
: lb_(lb), ub_(ub)
{
 static const double i
 = std::numeric_limits<double>::infinity();

 if(lb==lb && ub==ub && (lb!=ub ||
 (lb!=i && lb!=-i)))
 {
 if(lb_>ub_) std::swap(lb_, ub_);
 }
 else
 {
 lb_
 = std::numeric_limits<double>::quiet_NaN();
 ub_
 = std::numeric_limits<double>::quiet_NaN();
 }
}

double
interval::lower_bound() const
{
 return lb_;
}

double
interval::upper_bound() const
{
 return ub_;
}

Listing 4

{
 lb_ = -lb_;
 ub_ = -ub_;
 std::swap(lb_, ub_);
 return *this;
}

20 | Overload | June 2011

FEATURERICHARD HARRIS

Unfortunately interval arithmetic
is not entirely foolproof
where each x and y value is greater than or equal to zero.
Rather than consider each case individually, I propose that we simply
calculate all 4 products and pick out the least and the greatest. We can find
the least of them reasonably efficiently with the first pass of a crude sorting
algorithm. To find the greatest we can assign, rather than swap, values
since we shan’t subsequently need the in-between values.
Note that if either argument is NaN we simply set the result to NaN. Having
tested for this case, the only situation in which we shall come across NaNs
is if we multiply an infinite bound by a zero bound, in which case we
replace it with zero to reflect the fact that infinite bounds are open.
Listing 8 provides an implementation of multiplication.
When dividing, we must ensure that we properly handle denominators
including zeros and infinities. Note that, similarly to how we did for
multiplication, we exploit the fact that a NaN result from non NaN
arguments identifies that both were infinities. We further exploit the fact

that the lower bounds cannot be plus infinity nor the upper bounds minus
infinity to replace such NaNs with the correct infinite bounds.
The cases of division by zero are handled by explicit branches and, as we
did for multiplication, we find the lower and upper finite bounds with our
crude sorting algorithm as shown in listing 9.

Aliasing
Unfortunately interval arithmetic is not entirely foolproof. One problem
is that it can yield overly pessimistic results if an interval appears more
than once in an expression. For example, consider the result of multiplying
the interval (-1, 1) by itself.

x– l +xh,() yl– y– h,()×

x– l +xh,() yl– +yh,()×

x– l +xh,() +yl +yh,()×

+xl +xh,() yl– y– h,()×

+xl +xh,() yl– +yh,()×

+xl +xh,() +yl +yh,()×

Listing 6

interval &
interval::operator+=(const interval &x)
{
 lb_ += x.lb_;
 ub_ += x.ub_;

 add_error(lb_, ub_);

 return *this;
}

Listing 7

interval &
interval::operator-=(const interval &x)
{
 lb_ -= x.ub_;
 ub_ -= x.lb_;

 add_error(lb_, ub_);

 return *this;
}

Listing 8

interval &
interval::operator*=(const interval &x)
{
 if(!is_nan() && !x.is_nan())
 {
 double ll = lb_*x.lb_;
 double lu = lb_*x.ub_;
 double ul = ub_*x.lb_;
 double uu = ub_*x.ub_;

 if(!(ll==ll)) ll = 0.0;
 if(!(lu==lu)) lu = 0.0;
 if(!(ul==ul)) ul = 0.0;
 if(!(uu==uu)) uu = 0.0;

 if(lu<ll) std::swap(lu, ll);
 if(ul<ll) std::swap(ul, ll);
 if(uu<ll) std::swap(uu, ll);

 if(lu>uu) uu = lu;
 if(ul>uu) uu = ul;

 lb_ = ll;
 ub_ = uu;

 add_error(lb_, ub_);
 }
 else
 {
 lb_
 = std::numeric_limits<double>::quiet_NaN();
 ub_
 = std::numeric_limits<double>::quiet_NaN();
 }

 return *this;
}

June 2011 | Overload | 21

FEATURE RICHARD HARRIS

This can be particularly troublesome if
such expressions appear as the
denominator in a division
Ignoring rounding error, doing so yields

rather than the correct result of (0,1).
This can be particularly troublesome if such expressions appear as the
denominator in a division. For example, given

and again ignoring rounding errors, we have

rather than

1 1,–() 1 1,–()× min 1 1 1 1 1 1 1 1×,–×,×–,–×–()
max 1 1 1 1 1 1 1 1×,–×,×–,–×–()

,(
)

=

1 1,–()=

x 1 1,–()=

y 1
2
--- 1,⎝ ⎠
⎛ ⎞=

z 0 1,()=

z
x x y+×
-------------------- 0 1,()

1 1,–() 1
2
--- 1,⎝ ⎠
⎛ ⎞+

--------------------------------------=

0 1,()
1
2
--- 2,–⎝ ⎠

⎛ ⎞
-----------------=

∞ ∞,–()=

z
x x y+×
-------------------- 0 1,()

0 1,() 1
2
--- 1,⎝ ⎠
⎛ ⎞+

----------------------------------=

0 1,()
1
2
--- 2,⎝ ⎠
⎛ ⎞
--------------=

0 2,()=

Listing 9

interval &
interval::operator/=(const interval &x)
{
 static const double i
 = std::numeric_limits<double>::infinity();
 if(x.lb_>0.0 || x.ub_<0.0)
 {
 double ll = lb_/x.lb_;
 double lu = lb_/x.ub_;
 double ul = ub_/x.lb_;
 double uu = ub_/x.ub_;

 if(!(ll==ll)) ll = i;
 if(!(lu==lu)) lu = -i;
 if(!(ul==ul)) ul = -i;
 if(!(uu==uu)) uu = i;

 if(lu<ll) std::swap(lu, ll);
 if(ul<ll) std::swap(ul, ll);
 if(uu<ll) std::swap(uu, ll);

 if(lu>uu) uu = lu;
 if(ul>uu) uu = ul;

 lb_ = ll;
 ub_ = uu;

 add_error(lb_, ub_);
 }

Listing 9 (cont’d)

 else if((x.lb_ < 0.0 && x.ub_ > 0.0)
 || (x.lb_ == 0.0 && x.ub_ == 0.0)
 || (lb_ < 0.0 && ub_ > 0.0))
 {
 lb_ = -i;
 ub_ = i;
 }
 else if((x.lb_ == 0.0 && lb_ >= 0.0)
 || (x.ub_ == 0.0 && ub_ <= 0.0))
 {
 lb_ = 0.0;
 ub_ = i;
 }
 else if((x.lb_ == 0.0 && ub_ <= 0.0)
 || (x.ub_ == 0.0 && lb_ >= 0.0))
 {
 lb_ = -i;
 ub_ = 0.0;
 }
 else
 {
 lb_
 = std::numeric_limits<double>::quiet_NaN();
 ub_
 = std::numeric_limits<double>::quiet_NaN();
 }
 return *this;
}

22 | Overload | June 2011

FEATURERICHARD HARRIS

there are many ways in which we might
represent numbers with computers and they
all convey certain strengths and weaknesses
If we wish to ensure that such expressions yield as accurate results as
possible we shall have to rearrange them so that we avoid aliasing. For
example, rather than
 x*x + 3.0*x - 1.0

we should prefer
 pow(x+1.5, 2.0) - 3.25

Provided we keep in mind the fact that interval arithmetic can be
pessimistic we can still use it naïvely to give us a warning of possible
precision loss during a calculation.
Unfortunately there is a much bigger problem that we must consider.

Precisely wrong
Consider the use of our interval type in the calculation of the derivative
of the exponential function at 1. The listing snippet below illustrates how
we might calculate it for some leading number of zeros in δ, i.
 const interval d(pow(2.0, -double(i)));
 const interval x(1.0);
 const interval df_dx = (exp(x+d) - exp(x)) / d;

Note that since both x and δ are powers of 2, this code is needlessly
pessimistic; they and their sum have exact floating point representations.
A more accurate approach is:
 const double d = pow(2.0, -double(i));

 const interval x(1.0, 1.0);
 const interval xd(1.0+d, 1.0+d);

 const interval df = exp(xd) - exp(x);
 const interval df_dx(df.lower_bound()/d,
 df.upper_bound()/d);

Note that in the final line we are also exploiting the fact that a division by
a negative power of 2 is also exact when using IEEE floating point
arithmetic.
Figure 1 reproduces the graph of the error in the numerical approximation
of the derivative together with the precision of that approximation.
Specifically, it plots minus the base 2 logarithm of the absolute difference
in the approximate and exact differentials, roughly equal to the number of
correct bits, against minus the base 2 logarithm of δ, roughly equal to the
number of leading zeros in its binary representation. On top of this it plots
minus the base 2 logarithm of the difference between the upper and lower
bounds of the approximate derivative, which is a reasonable proxy for the
number of bits of precision in the result.
Clearly, there’s a linear relationship between the number of leading zeros
and the lack of precision in the numerical derivate. Unfortunately, it is
initially in the opposite sense to that between the number of leading zeros
and the accuracy of the approximation.
We must therefore be extremely careful to distinguish between these two
types of error. If we consider precision alone we are liable to very precisely
calculate the wrong number.

So, whilst intervals are an extremely useful tool for ensuring that errors in
precision do not grow to significantly impact the accuracy of a calculation,
they cannot be used blindly. As has consistently been the case, we shall
have to think carefully about our calculations if we wish to have confidence
in their results.
I shall deem this type a roast duck; tasty, but quite incapable of flight.
Mmmm, quaaack.

You’re going to have to think!
We have seen that there are many ways in which we might represent
numbers with computers and that they all convey certain strengths and
weaknesses.
We have found that none of them can, in general, remove the need to think
carefully about how we perform our calculations. For certain mathematical
calculations, the algorithms we use to compute them and the
implementation of those algorithms are by far the most important factors
in keeping errors under control.
In consequence, I contend that double precision floating point arithmetic,
being an efficient and parsimonious means to represent a vast range of
numbers, is almost always the correct choice for general purpose
arithmetic and that we must simply learn to live with the fact that we’re
going to have to think!

Further reading
[Boost] http://www.boost.org/doc/libs/1_43_0/libs/numeric/interval/doc/

interval.htm

Figure 1
June 2011 | Overload | 23

http://www.boost.org/doc/libs/1_43_0/libs/numeric/interval/doc/interval.htm
http://www.boost.org/doc/libs/1_43_0/libs/numeric/interval/doc/interval.htm

FEATURE TOM SEDGE
Systems Thinking
Software Development
Many processes cause more problems than they solve.
Tom Sedge shows how to tailor your own.
or a long time I’ve been searching for better ways to go about the
business of software development, particularly when what I thought
were successful developments, produced on time and budget, still

encountered many problems in production. Sometimes it has seemed as if
it is only possible to know what should have been built after several years
and versions getting it wrong. Before I came across Systems Thinking it
hadn’t occurred to me that perhaps I was looking in the wrong place,
forever focussing on the design and coding process, requirements or
methodology and not the bigger picture of the problem I was trying to
solve.
This article isn’t just aimed at managers and decision-makers in software
companies. It’s aimed at senior developers, architects and team leads too.
Towards the end, I’ll explain how you can make use of Systems Thinking
even if you work in an environment that may be largely beyond your
control, and give you some pointers on how you might be able to persuade
the decision-makers to give it a chance.
Please note that throughout this article I am presenting my own personal
understanding and explanations of the subject. Please do explore the links
and references in the endnotes for other perspectives.

The state of software development
There’s much that is good about software development today, and yet
despite the issue being highlighted time and time again over many years,
the industry does continue to suffer from failure, cost and time overruns
and poor quality. From high level government projects, like the NHS
programme for IT and systems at HMRC, down to medium and even small
scale private sector work, there are problems. The chances of a project
being completed on time, on budget, fit for purpose and with high quality
are far smaller than they should be when we consider the sheer quantity
of new languages, tools, and working practices.
Over the years attention has turned to a number of candidates for blame:

Requirements and designs are too complex or too simple. They are
over-specified or under-specified, or may be unclear and inaccurate,
and they come in late, and shift and change too much and too often.
Code is poorly written and doesn’t follow standards. It isn’t modular
enough or may be too modular. Perhaps there’s not enough object-
orientation, perhaps too much, and the code can be buggy, hard to
read, under- or over-commented and always insufficiently tested.
Documentation may be absent, out of date and often incomplete.
Sometimes it is excessive, excessively unclear or otherwise
insufficient and inaccurate.

A software development process can slow progress, generate too
many useless documents and too few useful ones. The process in use
is often good at handling either stable or changing conditions, but
not both. It may involve too little or too much planning and impose
excessive or insufficient controls.

To address these there have been many good and useful things that promise
to help, some technical and some managerial:

New languages that promise to eliminate bugs and raise quality.
A zillion third-party libraries that promise to take the effort out of
coding, and allow a week’s work to be done in a day.
New all-singing and all-dancing development tools which can
analyse code, eliminate bugs and support all types of refactoring.
New capabilities in collaborative source code control systems
supporting multiple and overlapping lines of development.
We’ve also seen practices that promise to raise quality and
productivity. Unit testing, pair programming, collective code
ownership, code reviewing, design modelling, use cases, user stories
and more.
There have been new processes that promise to raise quality,
dramatically speed development and increase agility. A tidal wave
of agile methodologies from RUP (if you class it as agile, many
don’t), through Lean, XP, Scrum, and more recently Kanban and
half-a-dozen others.

Given the demonstrable value of many of these individual improvements,
why aren’t there more successes? There are several reasons why I think
we haven’t yet reached the promised land where the vast majority of
software developments are an unqualified success.

Understanding and improving work
 The purpose of any software development is to provide software to a group
of end users to make their lives easier. In some cases those developing the
software have no real understanding of the work that those end users do.
A clear understanding of their work, how it flows and the needs that drive
that work is essential for good requirements and subsequent good design.
All too often there’s a vague set of requirements to computerise an existing
manual workflow which risks exactly that: computerisation with no other
improvement to how the work is done. In other cases the task may be to
replace an inadequate computer system with a slightly better one, but one
which still implements the same flawed approach.
I remember from my days using Lotus Domino that a designer somewhere
had clearly thought that a good way to computerise a filing cabinet was to
replicate the same inflexible concepts of cabinets, binders, folders and files
in computer form. Perhaps they thought it would at least be easy to
understand? What they achieved was all the disadvantages of the paper
system plus some minimal benefits. Worse than that, the restrictive paper
concepts made little sense in computer land, so they also created confusion.
No-one seems to have asked the question: what are users actually trying
to do?

F

Tom Sedge is an independent coach on management
and communication, following time as a developer,
architect and prgramme manager. His current focus is
helping people start their own businesses. He can be
contacted at: http://www.timelesschange.co.uk
24 | Overload | June 2011

http://www.timelesschange.co.uk

FEATURETOM SEDGE

Consulting customer proxies and power
users can hinder as well as help because

they are often not representative of the
main user base
It doesn’t matter how well written the requirements, how many focus
groups or workshops, how many or few features are included or how
polished the UI. None of these will make a difference if there’s a failure
to understand the system of which the user is part. Consulting customer
proxies and power users can hinder as well as help because they are often
not representative of the main user base and as experts may have quite a
different approach to the work than their peers.
The best way to get this understanding is to go there and see for oneself.
It is too important to trust to a third-party who might jump straight into
solution mode and deliver a specification for the wrong thing. Key staff
need to go and meet users in their workplace and understand them and what
they do. It is important to include developers in this, not just requirements
and user-interface experts, because developers need the same
understanding if they are going to model concepts accurately and produce
a clean and appropriate design for a software solution.
Once there’s understanding of how the work is performed currently,
careful thought needs to be given to whether the introduction of new
software could and should change that work. Considering changing how
users work should be an integral part of any software development process.
There may well be some customers that don’t want that, but the greatest
benefits of any technology lie in complementing the technology with an
optimised workflow, so it is worth trying to persuade them. Without an
effective and appropriate workflow even the best and most technically
beautiful software may be dead on arrival.
I am suggesting that one of the principal barriers to greater success is a
failure to properly understand the nature of the work that end users do, the
system of which that work is part, and how that system can be changed
and optimised through the introduction of new software. Think about all
those useful little applications that were written by people wanting to solve
their own problems. When they fully understand the nature of their
problem, then they can solve it in elegant ways that dramatically improve
productivity.
Misunderstandings start before we get to any detailed requirements, in the
basic knowledge of the system we’re trying to improve. The first customer
questions shouldn’t be ‘What do you want and when?’, they should be
‘How do you work now and what are you trying to achieve?’. We need a
mechanism for understanding and mapping how people work, uncovering
their needs, and a design language for workflows that allows us to design
changes and predict their impact.

Trialling and measuring changes
When a change to a system is being made, there are always risks. Will the
change be a change for the better? Did we really do a good job with that
software and what’s the evidence for that apart from a thank you from the
customer?
During the process of designing software and optimising workflow,
there’ll be many ideas and possibilities. The best way to choose between
alternatives is to try them out with real users in their normal work, and not
just to rely on their opinions but to quantitatively measure the impact. That

way good can be distinguished from bad, the whole solution can be
improved, and the effect on the customer of the final solution can be
estimated before most of the work is done, giving real support to the
business case.
The popularity of prototyping varies, but it is rare to trial prototypes with
real users and even rarer to test them with real work in a live situation, even
though there are a number of ways of doing this safely, for example using
the prototype in parallel with the existing solution. There’s rarely any
attempt to measure the impact in quantitative terms.
The second suggestion I make is that the lack of proper trials and
measurements of solution effectiveness means that even with a good
understanding of how users work, poor solutions can still be delivered. We
need a mechanism for defining sensible measures and trying out changes
in order to make the right decisions about how software should work.

The process of developing software
When designing and building software, there needs to be a way of working
that maximises the value delivered to the customer while minimising costs.
It turns out that to do this well there needs to be the same kind of
understanding about internal processes as for customers and how they
work. This goes far beyond just considering developers and testers, it needs
to include everyone who is involved in the production and maintenance of
software including sales, marketing, product management, support and
quality management.
How does the end-to-end software development process work in your
company? How can it be improved and how can these improvements be
trialled and measured? Without some way to measure improvements, ideas
are sometimes tried blind in the hope that some will be winners. There may
be a thousand suggestions and recommendations out there, but which ones
apply in any specific situation?
A classic mistake is to presume that a software development process
should be fixed and that it comes in neat off-the-shelf bundles labelled as
‘methodology X’. Without exception, every workplace has some unique
needs, and though a methodology might indeed provide useful tools and
ideas, maximum effectiveness demands customising the way work is done
to meet the environment. This is only common sense. A software
development process can slow down work in several ways. It can be so
prescriptive and burdened by ceremony that it stifles through workload,
or it can be so free and lightweight that it impedes progress through lack
of direction, focus and ensuing re-work and waste. Agile is no silver bullet
here, and while it may addresses some concerns of software developers it
may not help with those of other departments [Kelly11]. Indeed many of
the agile methodologies have little to say about people who are not
developers or testers.
My third suggestion is that a lack of understanding about the effectiveness
of our own software development processes including how to measure
them and safely improve them, is a major factor that gets in the way of
delivering good software to customers.
June 2011 | Overload | 25

FEATURE TOM SEDGE

think of it as a way to craft your own personalised
silver bullet of a process that ideally suits how
you and your team need to work
Enter systems thinking
So what is needed is a solution that provides a template for working with
and understanding customers and their work, analysing and improving
workflows, trialling and measuring the impact of improvements, and
which can also be applied into the internal processes used to create
software. A solution which is lightweight, based on facts, fast, implements
continuous improvement, and is low-cost and low-risk. As you might have
already guessed, the process I’m going to suggest that can help with all of
this is Systems Thinking.
Systems Thinking is a term that was coined in the 1950s and later grew
out of the work of W. Edwards Deming whose book Out of the Crisis
[Deming82] condemned the state of modern management. His ideas were
taken up by Taiichi Ohno in Japan, who went on to design the Toyota
Production System; a systems thinking approach to the manufacture of cars
which simultaneously reduced costs and raised quality. It was the Toyota
Production System that directly lead to Toyota’s growth and dominance
in car manufacturing. More recently John Seddon [Seddon], author of
Freedom from Command and Control [Seddon03], has pioneered
applications of the same approach to service industries and further
developed it.
Systems Thinking is an approach to work that considers the whole system
of which the work is a part and provides tools to map out and improve that
system. This is in contrast to traditional approaches that tend to focus on
micro-optimisations in particular areas. It can be applied to any
organisation producing products or services, and includes tools to study
and learn from demand, design measures of performance, and map out
processes. It then guides the design of changes to those processes and
safely trials changes using measures to prove their effectiveness before
they are rolled out.
It works through a continual cycle of improvement, that can be driven at
whatever speed an organisation needs, delivering low-risk incremental
changes that add up to radical long-term streamlining and optimisation. It
does this with staff experiencing both minimal disruption and maximal
involvement in designing improvements, which has the side effect of
significantly raising morale and motivation because those who do the work
get to shape how the work changes.
The problem with micro-optimisations are that improvements in one area
may cause bigger problems elsewhere. The improvements they appear to
deliver (for example cost saving) may actually harm customers of the
product or service somewhere else, leading to poorer quality, worse service
and ultimately damage to reputation and lower sales. This wrong-headed
strategy is something we each encounter every day. For example, I
regularly have the ‘joy’ of interacting with BT’s computerised helpline,
which not only forces me to laboriously beep my way through a deep
hierarchical menu, but now wants me to speak my request so I can enjoy
a seemingly endless tennis match of: ‘Did you say X?’, ‘No I said Y!’.
Companies like BT choose to annoy their customers in the name of small
cost savings, causing themselves greater costs elsewhere handling
complaints, lost business and effects on reputation. If they saw the true
costs, I’m sure they wouldn’t do it.

I don’t present Systems Thinking as a silver bullet. Instead, think of it as
a way to craft your own personalised silver bullet of a process that ideally
suits how you and your team need to work. You’ll create a flexible silver
bullet that you’ll continue to polish as your circumstances change. That’s
the only guarantee of success: having the knowledge, confidence and tools
to tailor your approach to changing conditions.
Let’s take a look at the main components of Systems Thinking, which I
present through the lens of the Learn. Think. Do. improvement cycle,
which I also use as a model for my coaching work. (You’ll find that Seddon
calls this process Check, Plan, Do. I prefer my own terminology, but in
essence it is the same idea.)
You’ll notice that Systems Thinking provides a continuous cycle of
improvement. There’s a learning phase, where we study and understand
customer’s needs, their systems and environments (demand), define new
ways to measure performance, and map out processes. This is followed by
a thinking phase, where we design improvements to these processes, and
a doing phase where these improvements are trailed and, if successful,
made permanent. Let’s look at it in more depth, and specifically how each
stage can be applied to Software Development.

Learn
The first and biggest stage is Learn. This is split into three parts: learning
about demand, designing improved measures, and mapping out processes.
Throughout all of these stages, the way I recommend you work is to
establish a multi-disciplinary improvement team, with representatives
from every department involved in delivering your product or service, and
that you include experienced front-line staff with expert knowledge of
what actually happens on the ground.

Demand
In Systems Thinking, demand is the name you give to all contact from
customers, whether they are for delivered products and services, support
calls, complaints, enquiries, future developments, sales, or any other
purpose.
There are two types of demand:

Value demand – anything your team does that gives the customer
value. This is what you’re in business for.
Failure demand – anything you do that doesn’t give the customer
value. This includes any waste or failings on your team’s part that
get in the way of providing value demand.

Companies that have a high level of failure demand have high costs
servicing that demand. It is quite common for failure demand to be
responsible for a significant percentage of all costs. If you want to
dramatically reduce costs, do it not by focussing on costs like BT has done,
but by focussing on reducing failure demand.
In Software Development, examples of value demand include:

The main software products and services you create that solve a
customer’s problem and makes users lives easier.
26 | Overload | June 2011

FEATURETOM SEDGE

in a competitive landscape burdening your
customers with these extra costs will only

make the competition more attractive
Any supporting products and services that you offer which
contribute to solving their problems, excluding any problems you
created – for example customer difficulties installing or configuring
your products that leads you to sell consultancy services on product
installation is an example of failure, not value.

Examples of failure demand include:
Most customer support. This may be due to inadequate product
quality, lack of fitness-for-purpose, too much complexity, lack of
ease-of-use, poor documentation, or other failings.
Most customer training. This may be due to product complexity,
lack of ease-of-use or fitness-for-purpose.
Most customisation and installation services, again due to
complexity, lack of documentation or ease-of-use.

You might be surprised to see some of these on the list as ‘failure demand’.
It is very easy to become so accustomed to handling failure demand that
these activities become taken for granted. I’m not suggesting that you
simply dispense with support and training or that they are unnecessary.
What I’m saying is that perhaps you wouldn’t need to provide nearly so
much of both if you considered the causes of this demand and improved
your software and working practices to reduce them.
It can be tempting to look at these services as good sources of additional
revenue, but in a competitive landscape burdening your customers with
these extra costs will only make the competition more attractive. Look at
the success of Apple and its App Store: redesigning applications to make
them simple, intuitive, instantly deployable and updatable, and with
minimal need for documentation or support has enabled thousands of
independent developers to go solo. They are no longer burdened with the
failure demand costs that in the past would have made this route
impractical.
From your point of view, there are two places where value and failure
demand operate:

External demand: This is demand arising from customers external to
your organisation, of which I gave some examples above.
Internal demand: This is demand arising inside your own
organisation in the service of external demand. It is the things you
do, including your own internal processes, to provide your products
and services.

It is desirable to maximise internal value demand and minimise internal
failure demand, because that means maximum focus on serving the
customer at minimum cost. Examples of internal demand will vary from
business to business, but there are common indicators that I would suggest
are associated with a good balance:

Communication is clear, concise, and to the point. There’s culture of
open and direct communication person-to-person rather than up and
down the hierarchy.
Meetings focus on making decisions rather than exploring options
and they are short and infrequent.

There are frequent whiteboard sessions with a range of staff from
different departments, so knowledge about the whole business is
spread widely and in considerable depth. Priorities are clear, long-
term and rarely change.
Everyone can contribute ideas and suggestions for improvement, no
matter how junior, and there's a culture of question-asking and fact-
finding before decision-making.
Role-rotation, job-shadowing and other techniques are used to share
skills and experience and reduce over-reliance on a few key
individuals.
There’s rapid learning from failure through a tight cycle of feedback
and continuous improvement, and change is driven through the
focus of providing customer value.
There’s an appropriate level of formal process and internal
documentation. Appropriate means it is all used, all useful, and all
serves a direct customer purpose.
Members of the core development team are in close contact with
customers and regularly visit their workplace.
Internal IT is streamlined, simple and appropriate to needs.

This is my own list and is far from an exhaustive or definitive, but it should
give you some idea of how close your organisation is to serving demand
well. If you have many of these, be happy; you’re probably doing quite
well. If you have few or none, also be happy; there’s big scope for
improvement. If you have few of these and don’t think others will let you
make the changes needed to get more, then either find a way to convince
them or move on. I’m a strong believer that life’s too short to let other
people waste it.

Figure 1
June 2011 | Overload | 27

FEATURE TOM SEDGE

help your customers understand their own
demand and improve their business too,
providing extra value to them
Studying demand involves a lot more than just listing types. You’ll need
to examine each type in detail to understand how much you have of it,
where it comes from, what the underlying causes are, and how the way you
work is contributing to it. Once demand is well understood, the goal is
simply to maximise value demand and minimise failure demand. Some
demand is predictable and some is not. Systems Thinking helps with both
because enables us to optimise processes to handle predictable demand,
whilst increasing flexibility to handle the unpredictable.
Studying demand can be done from both the software provider’s
perspective (i.e. studying what your customers want from you), and if you
are a B2B company, from your customer’s perspective (i.e. studying what
your customer’s customers want from them and how you can help them
provide it). So learning about demand can be used by you not only to
improve your own business, but also help your customers understand their
own demand and improve their business too, providing extra value to them
that will help distance you from the competition.

Measures
The next step is to design some new measures (or if you prefer: metrics).
We talk about measures deliberately, since they always follow events – you
are measuring something that has already happened. In order to know the
quantity of value demand and failure demand in your software company,
you need a reliable way to measure it. Without that, how will you be sure
that you’ve made any improvement?
The alternative, ‘targets’, are not a good idea since there’s no reliable way
to decide what a target should be, and the presence of a target can severely
limit both the ambition and scope for improvement. Ambition is limited
because targets are usually set quite low, with a modest change in mind.
Scope is limited because targets are often set for things that aren’t closely
related to delivering value to customers, and then the goal becomes
distorted into meeting the target rather than providing the best product or
service.
Systems Thinking provides a way to design effective measures so that you
can track current and future performance. In software some of this
information can be drawn from existing failure and value demand systems
– for example bug trackers, feature requests, customer support systems and
sales databases. Once established measures are tracked over time to see
how they are affected by changes.
All of your measures need to be relevant and important to your customers.
Generic examples might include the end-to-end time it takes you to deliver
new features or bug fixes, how quickly you respond to enquires, or the
number of severe bugs customers detect for you. Specific examples will
include measures relevant to a particular product and customer: the impact
your software has on them.
None of those I’ve mentioned are ‘off-the-shelf’ measures that you should
necessarily adopt. The whole point is to work out which measures would
best suit you and your customers. The important point is that they must all
be things that your customers care about. With a clean set of measures that
directly represent how well you are providing value to your customers, you

have a benchmark against which you can test any change you make to your
workflow.
If your customers have their own customers, you can also help them to
come up with measures that will demonstrate the value your software gives
to their own customers. There’s nothing like concrete evidence of the
difference you made to their bottom line to convince them to stay with you
for the long term.

Process
The final step in Learn is to map out your internal workflow. I’ve been
experimenting with a simple visual process language that draws out the
important stages and hand-offs involved in a workflow. This picture allows
everyone in your organisation to understand the whole system, explains
much of the origin of your failure demand, and is also used later on in Do
to design and prototype improvements.
Mapping processes is best done in collaborative face-to-face workshops
using whiteboards, flip-charts, index cards, post-it notes and other low-
tech tools. The workshop should include a representative of everyone from
every department involved in the design and delivery of software, bringing
together expertise to collectively understand how work is done. There have
been reports of many surprising things learned through this approach,
particularly in organisations that have separate departments with poor
communication. It is also all too common for duplicate and unnecessary
steps to become apparent.
This same workshop approach can then be used when working with
customers to map out and understand their processes, so that you get a full
understanding of their workflow before you start designing software. This
avoids prematurely discussing requirements before the customer
environment and specific needs are understood.

Think
The second stage is to design workflow improvements using the process
maps created in Learn.
This is where planning takes place, but it is not what you might be used to
as planning. Instead of big Word documents, Gantt charts, MS Project
plans or similar tools, the same form of collaborative workshop is used to
design changes to the process. Changes are simulated by creating new
steps, removing steps, altering the flow of work, handoffs and work
products that are created. Each change is then considered end-to-end and
the workshop team look for possible problems or unintended
consequences.
This is a form of low-cost process prototyping that flushes out the best
ideas, works out their details and then stress-tests them on paper before
you go near trying them out. The result of Think is one or more concrete
improvements that have been analysed from the perspective of the whole
system and how they will deliver customer value. Within your own
software development workflow, it is likely that different development
methodologies will be discussed. That’s fine, so long as you treat each one
as a template rather than a prescription and are prepared to properly
28 | Overload | June 2011

FEATURETOM SEDGE

methodology is much less important
than people usually suppose
simulate the full consequences using your process map before adopting
anything.
I don’t want to either promote or bash any specific methodologies, since
they all have strengths and weaknesses, and often contain very useful tools.
Methodologies generally split into high-discipline and low-discipline
groups. High-discipline methodologies come with an array of constraints
that will impact your business elsewhere. Whether the impact is positive
or negative you’ll have to decide. Examples include Waterfall, XP and
Scrum.
Although I am far from a fan, Waterfall can work in some situations, with
simple and clear requirements and short projects. XP contains a tightly-
prescriptive set of practices which also dictate how you approach
requirements, how you deal with your customers, and changes you’ll need
to make in your working environment and support systems. If you’re
willing to change your business around XP and XP fits (once you’ve
studied and understood your process and the impact it will have), then go
for it. Just make sure all the stakeholders are on board with that decision,
not just the development team. Scrum is less prescriptive than XP, but will
force you to organise your business around set-length sprints. Again, so
long as you are happy with the consequences, and everyone in the business
can buy into the sprint cycle, then go for it.
Examples of low-discipline methodologies include Lean and Kanban.
These are mostly concerned with promoting continual flow and
improvement and in general they are more flexible than the high-discipline
alternatives. However, precisely because they are so simple, you’ll need
to design a layer on top of your own processes to create a full recipe for
how your team develops software. So low-discipline does require more
work on your part, albeit for a more bespoke result.
I find methodology is much less important than people usually suppose,
and the best methodology in the world will still lead you to failure if you
are only thinking about the mechanics of writing software and not the
wider context of its usage.
The goal of Plan is not to re-write your process or procedure documents.
That’s something that you should only do when you are ready to make a
change permanent in Do. Plan is all about designing the best process you
can to deliver software.
You might require a special permit to do so, but you probably don’t want
to be discussing issues of process compliance or standardisation at this
stage, and it may be best to keep those guys out of the room. That’s because
Plan is about exploring options and compliance people tend to be better at
critiquing detail. Obviously if do you have a good idea what they need,
then you can consider it now. They do need to become involved at some
point as usually there’s an important business reason behind the
compliance function. But there’ll be time for that later when you have both
specific changes and a strong line of reasoning about how those changes
are the right thing to do.
With a customer’s workflow, you adopt the same approach. Having
mapped out their workflow with them, work alongside them to see how it
can be improved. Do this before you start thinking about the software. Just

focus on what the users are trying to do and how that can best be done.
When you are both comfortable with the new workflow, then starting
thinking about what the software will need to do. Resist jumping into
features and benefits too early. The goal isn’t to find everything your
software could possibly do. It is to streamline the customer’s workflow and
only then create the minimal amount of software that is needed to make
that flow run smoothly. You’ll end up writing less software that is a better
fit. Your costs will go down and your customers will get a cheaper and
better result more quickly.

Do
The final stage in the improvement cycle is Do. Here you get to try out
changes and make them permanent.
The traditional idea of special ‘change’ projects is an unhelpful one,
because it pretends that change should be something infrequent and
separate from normal work, rather than constant and an integral part of a
team’s DNA. Treating change as a project can actively inhibit progress. It
needs to be small, incremental and continual. Why wait until the end of a
project to learn?

Try
The Try step is all about testing the water with minimal costs. Rather than
simply take your best ideas from Plan and hope they work, Try allows you
to gather evidence and refine or reject them, reducing your risks and saving
on the costs of change. In Try, you use your improvement team to identify
the best way to try out a change, with minimal costs. This can involve a
temporary paper or card-based solution to allow the new method to be
tested and refined.
Software people usually hate this, because their whole job is to create
computerised solutions, but the important point to remember is that you
need the ability to adapt and refine your solution in real-time, and you are
very unlikely to have the time and the money needed to develop software
prototypes that will quickly be superseded. Try needs to be cheap, simple
and fast.
Changes in your own workflow are trialled for however long it takes for
the improvement to show up in your measures, perhaps as a reduction in
internal bug counts or faster turnaround times for new features. If no
improvement shows up, then you need to have the courage to reject the
change and go back to the drawing board. Either it hasn’t worked or your
measures were not good enough to detect the improvement. If you suspect
the latter, go back and improve your measures before going any further.
If you want to create the best software for your customers, you need to trial
it with them too. This means much more than just throwing a Beta over
the wall. You need to sit with customer users and watch them use it and
learn how how to improve it as a result. Best of all is to wait for trailed
improvements to show up in their measures so that you have concrete
evidence you're on the right track.
Note that sometimes for whatever reason, it isn’t possible to do Try.
Perhaps the cost would be too great or there isn’t enough time. That’s ok,
June 2011 | Overload | 29

FEATURE TOM SEDGE
you can move straight from plan to Fix, just be aware that you are putting
a lot of pressure on your planning being correct and it might not be. Seddon
doesn’t talk about a separate Try step, but I think it makes sense as a way
to limit risk, so long as the circumstances permit it.

Fix
This is all about making changes permanent, having become convinced of
their effectiveness in Try (or Plan if you are skipping Try).
When it comes to your process and procedure documentation, this is the
time to draw new versions because you have refined your workflow
changes and they are ready to go live. It is also the time to fully engage
your compliance people (if you are lucky enough to have them!) and start
the discussion on how to demonstrate compliance with ISO9001, CMM,
TickIT or anything else that you subscribe to. Make sure that you only look
to provide evidence to demonstrate compliance and do not end up changing
your workflow purely in response to compliance demands. If you do decide
to tweak your changes in any significant way, go straight back to Plan,
properly consider the change, trial the new version again in Try and only
then go forward.
If your compliance people insist on a specific change, remind them that
their industry is always claiming that they neither prescribe or proscribe
how you work, and ask them to refer you directly to the rule in the standard
that they are concerned about. Read the rule, work out how to provide
evidence for it and then show them both the rule and your justification of
how your change meets it.
When it comes to supporting IT systems that might need to be replaced or
changed, software companies have a big advantage over others as they
have the option to roll their own. I always recommend seriously
considering this, because you can create a streamlined software solution
that precisely meets what you need, thus minimising sources of internal
failure demand. Though it might be tempting to use an off-the-shelf
product, they are often so feature-full and generic that they do far too much,
are difficult to configure, and the high price that they justify through the
feature set is out of proportion to the small number of things you actually
want to use. Of course, there are times when it makes sense to buy off-the-
shelf; source-code control systems are a good example (and the best of
these are free in my experience), because it would be impractical to write
your own.
Having completed Do, you then embark on a new cycle of Learn, to further
refine your understanding of demand, measures and process, and to enable
you to respond to changes in your marketplace. If you really want to deliver
the best software you can to your customers, you’ll build a long-term
relationship with them and keep going through cycles of improvement
together.
The cycle repeats over and over again, leading you to dramatic long-term
improvements with low-risk, reducing costs and raised morale. That’s the
promise of Systems Thinking.

Getting started
I promised in the introduction that I’d say more on how to get started with
Systems Thinking, particularly if you work somewhere where how the
work is done is largely not under your control.
You could apply it to a single product or project, properly including
customer end users as a limited experiment in trialling new working

practices. Or you could apply it within a single department or team, so
instead of considering the whole of your organisation, your customers
become the other departments or groups that need things from you. You
would go through the same process of studying your demand, defining
useful measures of your work’s quality and productivity in terms of other
team's needs, mapping your processes and trialling and improving them.
While this won’t put you closer in touch with end users, you could use it
to build a documented track-record of internal success and then use that
to raise awareness and gain buy-in to take it further.
You could apply it within a team, perhaps just with developers. Now
perhaps your customers are the project manager and QA and the things you
measure will be the things they care about. If you really have little
autonomy, you could apply to yourself personally and look at how you
might both measure and improve how you do your work. If you build a
body of evidence from this, that could be quite persuasive at your next
appraisal both for your own advancement and for Systems Thinking.
Measures are a great way to get support for change. If you can devise better
measures and go and gather the data, you can use that as evidence to
persuade other people that your organisation needs to consider a better way
to work. Then you could be like Jon Stegner [Heath10], who wanted to
change his manufacturing organisation’s purchasing approach. Rather
than write a presentation on how purchasing could be improved, he instead
looked for evidence of the problem and simply presented his management
team with a table containing a huge pile of the 424 different types of glove
that various departments purchased, each tagged with its price ranging
from $5 to $17. Such an immediate and visual demonstration of
inefficiency convinced them change was needed in a heartbeat.

Conclusion
In this article, I’ve briefly outlined what I see as some problems in today’s
software development and explained at a high-level my understanding of
how Systems Thinking can help. I’ve not had time here to go into any great
detail but I hope you’ve seen enough to at least start considering the
possibility of this approach. I believe that Systems Thinking has the
potential to change the landscape, and I urge you to find out more and
explore. My knowledge of this field is far from complete and I’d welcome
any opportunity to hear about your explorations and build a body of
experience and evidence to share with others.
Wishing you well with your adventures in software,
Tom.

References
[Deming82] Deming, W. Edwards (1982) Out of the Crisis.Cambridge,

Mass: MIT Press.
[Heath10] Heath, Chip & Dan (2010) Switch: How to change things when

change is hard. New York: Random House.
[Kelly11] Alan Kelly wrote about a framework for agile requirements

management in Overload 101, in his article ‘The Agile 10 Steps
Model’.

[Seddon] John Seddon’s organisation Vanguard Consulting Ltd has an
authoritative website on systems thinking containing many useful
resources and references to further reading:
www.systemsthinking.co.uk

[Seddon03] Seddon, John (2003) Freedom from Command and Control.
Buckingham, UK: Moreton Press.
30 | Overload | June 2011

www.systemsthinking.co.uk

FEATURERICHARD HARRIS
The ACCU 2011 Crypto Challenge
Ready for the biggest challenge yet?
Richard Harris throws down the gauntlet.
or a third time I have had the pleasure of contributing a cryptographic
puzzle to the fund raising efforts for Bletchley Park during the ACCU
conference.

You may recall that the first two puzzles reflected the development of
modern cryptosystems, beginning with electro-mechanical rotary ciphers
such as the Enigma machine and followed by electronic stream ciphers
such as RC4, and were designed to so that they could be broken with pencil
and paper alone if their weaknesses were spotted.
As with the previous two puzzles a bonus question was included that was
not possible to answer if the puzzle was solved by brute force rather than
analysis.
So that you too might have a go at it, I present the puzzle below followed
by its historical inspiration, its solution and the names of the conference
delegates who cracked it.

The challenge

Encoding
The enemy are using a 32 character alphabet encoded as 5 bit signed binary
numbers ranging from -16 to +15. The # character is a control code
indicating that the following character should be interpreted as its
numerical value rather than as a letter or punctuation. The full table of
character mappings is given below.
 ---------------- +++++++++++++++
 11111110000000000000000000111111
 65432109876543210123456789012345
 #abcdefghijklmnopqrstuvwxyz ?!.,

Encryption
The enemy are using a public key cryptosystem in which the private key
is a set of variables containing the numeric encodings of randomly chosen
characters.
The public key is a set of randomly generated polynomials in those
variables, all of which, when calculated with the values from the private
key, yield zero.
To transmit a message character, they first generate a new random
polynomial for each of those in the public key. They multiply each pair
and add the products together to create an encryption polynomial that must
also yield zero when evaluated with the private key.
They finally add the encoded message character to yield the ciphertext
polynomial.
To decrypt the ciphertext polynomial they simply evaluate it with the
values in the private key; since the encryption polynomial will have a value
of zero, the ciphertext polynomial will have a value of the encoded
message character.

Example
The characters ‘r’ and ‘s’ give the private key variables x and y values of
2 and 3 respectively. The randomly generated polynomials x2y+y and xy2

yield 15 and 18 respectively and hence we can choose the polynomials
x2y+y-15 and xy2-18 as the public key.
Multiplying these by the randomly generated polynomials y+1 and x-1
respectively and summing yields an encryption polynomial of

The character ‘l’ can be encrypted by adding -4 to yield a ciphertext
polynomial of

Evaluating this ciphertext polynomial with the private key values for x and
y reveals the message.

Public key
The enemy’s public key equations are

Bonus question
Assuming the worst possible ordering that is logically consistent with a
cryptanalysis, what is the minimum necessary number of trial values that
must be fed into these public key equations, as opposed to known values
derived from them, to ensure that we can successfully recover the enemy’s
private key values?

The historical justification
Historically, one of the biggest problems in cryptography was exchanging
the secret keys needed to encrypt and decrypt messages.

F
x2y y 15–+() y 1+()× xy2 18–() x 1–()×+

x2y2 y2 15y–+() x2y y 15–+()+ x2y2 18x–() xy2 18–()–+=

2x2y2 x2y xy2– y2 18x– 14y– 3+ ++=

2x2y2 x2y xy2– y2 18x– 14y– 1–++

2 22× 32× 22 3 2– 32+× 32 18 2 14 3 1–×–×–+ +
72 12 18– 9 36– 42– 1–+ +=
93 97–=

4–=
′l′=

25w2 9z2 30wz 49–+ +

9w4 102w2z 30w2– 289z2 170z– 25+ + +

7v4 12v2yz– 4y2z2– 24v2x– 4v2 9x2 30x– 24yz– 11–+ +

27v2 50w2– 32x2– 147y2 126vy 80wx 54v
160w– 128x 126y 101–

+ + + +
+ +

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and numerical
computing and is currently employed writing software for financial
regulation.
June 2011 | Overload | 31

FEATURE RICHARD HARRIS

 the first party provides a means for the
second to hide a secret without providing
the means to reveal it
For example, the development of effective electronic ciphers required the
exchange of sequences of random numbers. One way to do this was to hire
a courier to carry a tape containing such a sequence between one party and
another, perhaps in an aluminium briefcase handcuffed to his wrist as seen
in so many spy movies.
The problem was then how to securely exchange the keys to the briefcase.
A solution is for the first party to courier an unlocked briefcase to the
second party without the key. The latter can put their tape into it, close and
push a button to lock it, and then send the courier back to the first party to
securely exchange their electronic key without ever having seen the
briefcase key.
Of course, both parties must trust the courier…
This is essentially the idea behind public key cryptography; the first party
provides a means for the second to hide a secret without providing the
means to reveal it.
We do this by means of a trap door function, that is to say a function that
is easy to compute but difficult to invert.
The canonical example is the factorisation of integers. It is easy to calculate
the product of a pair of integer factors, but it is very much more difficult
to determine from the product what those factors are.
Whilst this is certainly an interesting property of the integers, it is not at
all clear on the face of it how it is of any use.
The trick is to construct a function which depends upon the product and
is difficult to invert unless you know its factors.
The RSA cryptosystem is an example of just such a function.
The first step is to choose a pair of prime numbers p and q and compute
their product n. For example

Next we calculate the product of p-1 and q-1, denoted by ϕ(n)

Now we must choose a value e that is both smaller than ϕ(n) and has no
common factors with it. In our example ϕ(n) has prime factors of 2 and 5,
so we may choose

Next we must calculate the value d which when multiplied by e yields a
product that is one plus some integer multiple of ϕ(n)

Mathematically, this the multiplicative inverse of e under arithmetic
modulo ϕ(n) which we can write as

We can do this using the extended Euclidean algorithm which we shall not
cover here. Note that this inverse is guaranteed to be unique because e and
ϕ(n) have no common factors and in our example must be equal to 3.

The public key is comprised of the pair of integers n and e and the private
key of the single integer d.
To encrypt a message m that has a value between 0 and n we calculate

For example, we shall choose 2 for our message m. The ciphertext c is
consequently

To decrypt the ciphertext we compute

In our example we have

and as if by magic we have recovered the message!
What makes RSA secure is that the private key d is the multiplicative
inverse of the public key value e modulo ϕ(n) which in turn depends upon
the hard to find prime factors of the public key value n.
We can demonstrate why RSA works from Euler’s theorem which states
that if m and n have no common factors, or in this case that the message
is not equal to either of the prime factors of n, then

Consequently

since m is smaller than n.

p 15=
q 11=
n 5 11× 55= =

ϕ n() 5 1–() 11 1–()× 4 10× 40= = =

e 3 3 3 27=××=

d e 1 k ϕ n()×+=×

d e 1– mod ϕ n()=

3 27× 81 1 2 40×+= =

c me mod n=

c 227 mod 55=
134217728 mod 55=
2440322 55 18+×() mod 55=

18=

m cd mod n=

m 183 mod 55=
5832 mod 55=
106 55 2+×() mod 55=

2=

mϕ n() mod n 1=

cd mod n me()
d

mod n=

me d× mod n=

m1 k ϕ n()×+ mod n=

m m× k ϕ n()× mod n=

m mϕ n()()
k

× mod n=

m 1× k mod n=
m=
32 | Overload | June 2011

FEATURERICHARD HARRIS

The analysis of this first equation
is a significant clue as to

how we should proceed
The requirement that the message not be equal to either of the prime factors
is not particularly burdensome in practice since they will be very, very
large.
Now, our cryptosystem uses the difficulty in factoring integer polynomials
rather than integers as its trap-door function. In the worked example we
saw that it was relatively easy to construct a ciphertext polynomial from
the public key polynomials.
That it is very much more difficult to reverse this process can be seen if
you try to extract the message using just the ciphertext and public key
polynomials.

Integer polynomials like these are known as Diophantine equations and are
notoriously difficult to reason about.
Perhaps the most famous example is Fermat’s Last Theorem which states
that the formula

has no solutions with integer a, b and c if n is greater than two.
Despite Fermat’s claim to have a proof that was too large to fit in the
margin of the text in which he wrote his conjecture, it took over 350 years
before the theorem was finally, and famously, proven by Andrew Wiles.

The solution
In this challenge the ciphertext polynomial is not given, so it is ‘simply’
an exercise in finding the roots of the non-linear public key Diophantine
equations; those values of the private key variables for which they all
equate to zero.
Brace yourself…
To begin, consider the first public key equation

Three of these terms are suspiciously perfect squares, 25w2, 9z2 and 49,
and if we factorise the terms we have

The first three terms are those we should expect from the square of a sum
of two terms and the last is the negation of a perfect square. Expressing
the first three as just such a square and moving the last over to the right
hand side yields

We can now take the square roots of both sides of the equation to reveal
two possible relationships between w and z.

The analysis of this first equation is a significant clue as to how we should
proceed; the entire puzzle is in fact an exercise in solving quadratic
equations and the key to solving it is realising this.
Examining the second equation

we should note that once again we have three perfect squares in the terms
9w4, 289z2 and 25.
Factorising all of the terms yields

This time we have three non-squares that just happen to be twice the
product of two of the three squared terms. Noting that it is only the terms
with a single factor of five that are negative, we can express this equation
as the square

and hence

We now have two possible pairs of simultaneous equations in w and z

and

and we are consequently in a position to examine the possible values of
those private key variables.
Beginning with the first, we have

Multiplying the second equation by three, substituting z from the first and
simplifying

At this point we can apply the rule for solving quadratic equations that we
learnt in secondary school; minus a plus or minus the square root of b
squared minus four times a times c all divided by two times a

x2y y 15–+

xy2 18–

2x2y2 x2y xy2– y2 18x– 14y– 3+ + +

an bn cn=+

25w2 9z2 30wz 49–+ + 0=

52w2 32z2 2 3 5××()wz 72 0=–+ +

5w 3z+()2 72=

9w4 102w2z 30w2– 289z2 170z– 25+ + + 0=

32w4 2 3 17××()w2z 2 3 5××()w2–
172z2 2 5 17××()z– 52

+
+ + 0=

3w2 17z 5–+()
2

0=

3w2 17z 5–+ 0=

5w 3z+ 7=

3w2 17z 5–+ 0=

5w 3z+ 7–=

3w2 17z 5–+ 0=

z 7 5w–() 3÷=

3w2 17z 5–+ 0=

9w2 3 17×()z 15–+ 0=

9w2 17 7 5w–()× 15–+ 0=

9w2 17 7 85w–× 15–+ 0=

9w2 85w– 104+ 0=
June 2011 | Overload | 33

FEATURE RICHARD HARRIS

We therefore have one candidate value but
we must solve the second pair of equations
to be sure that it is unique
In this case this means that

We therefore have one candidate value for w of eight, but we must solve
the second pair of equations to be sure that it is unique. Rearranging the
first of those equations yields

Following the same approach as before we have

Applying the rule for solving quadratic equations yields

We must stop here because 12049 is a prime and hence this equation cannot
result in a valid value for w.
With the unique valid value we have for w we can now calculate the correct
value for z

Having solved the first two public key equations we are ready to analyse
the third

Ignoring the coefficients for now, this equation has a constant term, terms
in v2, x and yz, their squares and terms in all of their pair products except
xyz. The fact that this term is missing mean that this cannot be a square of
a sum of terms in v2, x and yz.
It is, however, perfectly consistent with a sum of squares of the form

Noting that the v4, v2 and constant terms must be split between both
squares, we can group the related terms together on either side of the equals
sign

We can see immediately that the y2z2 and x2 terms on the left and right
hand side of the equation have negative coefficients. We must therefore
negate both sides

Now we must add the terms that are missing on the right hand side of the
equation to both sides

Now, if both sides are squares of sums, these unknown coefficients must
conform to the very specific relationships this implies.
Firstly, the constant c must be related to the x and the x2 coefficients by

giving

reassuringly making the constants on both sides of the equation perfect
squares.
Similarly, the coefficient of v4 on the right hand side, a, must be related
to the coefficients of v2x and x2 by

ax2 bx c+ + 0 x→ b– b2 4ac–±
2a

--------------------------------------= =

w 85 852 4 9 104××–±
2 9×

--=

85 7225 3744–±
18

--=

85 3481±
18

----------------------------=

85 59±
18

------------------=

144
18
---------= or 26

18

8= or 14
9

z 7– 5w–() 3÷=

3w2 17z 5–+ 0=

9w2 3 17×()z 15–+ 0=

9w2 17 7– 5w–()× 15–+ 0=

9w2 119– 85w– 15– 0=

9w2 85w– 134– 0=

w 85 852 4 9 134–××–±
2 9×

---=

85 7225 4824+±
18

--=

85 12049±
18

-------------------------------=

w 8=
z 7 5w–() 3÷=

7 40–() 3÷=
33 3÷–=
11–=

7v4 12v2yz– 4y2z2– 24v2x– 4v2 9x2 30x– 24yz– 11 0=–+ +

av2 byz c+ +()
2

dv2 ex f+ +()
2

– 0=

7v4 12v2yz– 4y2z2– 4v2 24yz– 11 24v2x 9x2– 30x+=–+

7v4– 12v2yz 4y2z2 4v2– 24yz 11+ + + + 24v2x– 9x2 30x–+=

a 7–()v4 12v2yz 4y2z2 b 4–()v2 24yz 11 c+()+ + + + +
av4 24v2x– bv2 9x2 30x– c+ + +=

30 2 9× c×=–
c 25=

a 7–()v4 12v2yz 4y2z2 b 4–()v2 24yz 36+ + + + +
av4 24v2x– bv2 9x2 30x– 25+ + +=

24– 2 9× a×=
a 16=
34 | Overload | June 2011

FEATURERICHARD HARRIS

A problem immediately presents
itself in that the coefficients of the
squared variables are not squares
giving

once again yielding perfect squares exactly where we want them!

Finally, relating the v2 coefficient on the right hand side, b, to those of v4

and the constant means that

Given that the coefficients of both x and v2x are negative, b must be positive
giving

Partially factoring the coefficients yields

so we can express this as

and consequently

Now we have already determined that z is equal to minus 11, so we can
substitute it into this equation to yield

Now we are on the home stretch with just one public key equation left to
consider

Leaving aside the coefficients once again, it is clear that this formula is
also formed from two quadratic equations, one in v and y, the other in w
and x, with the constant term split between them.
Rearranging gives

A problem immediately presents itself in that the coefficients of the
squared variables are not squares.
To address this we must partially factor the coefficients first.

So far, this is consistent with the left hand side being three times a square
of a sum and the right hand side being twice the square of a sum.
If we take these factors out, we shall see whether it gives a consistent value
for the constant a.

From the right hand side, following a similar argument that we used for
the previous formula, if it is a square then a must satisfy

and therefore

giving us exactly the squares we seek

Given that the private key variables are integers and that the square root
of three is not an integer multiple of that of two, this equation can only
hold when both the left and right hand sides are equal to zero

We already know that w is eight, so from the second equation we have

Having found x we can further simplify the equation we derived from the
third public key equation

From the first of the equations we derived from the fourth we can relate v
and y

9v2 12v2yz 4y2z2 b 4–()v2 24yz 36+ + + + +
16v4 24v2x– bv2 9x2 30x– 25+ + +=

b 2 16× 25×=
b 40±=

9v4 12v2yz 4y2z2 36v2 24yz 36+ + + + +
16v4 24v2x– 40v2 9x2 30x– 25+ + +=

32v4 2 2 3××()v2yz 22y2z2 62v2 2 2 6××()yz 62+ + + + +
42v2 2 3 4××()v2x– 2 4 5××()v2 32x2 2 3 5××()x– 52+ + +=

3v2 2yz 6+ +()
2

4v2 3x– 5+()
2

=

3v2 2yz 6+ + 4v2 3x– 5+()±=

3v2 22y– 6+ 4v2 3x– 5+()±=

27v2 50w2– 32x2– 147y2 126vy 80wx 54v 160w–
128x 126y 101–

+ + + +
+ + 0=

27v2 147y2 126vy 54v 126y a 101–+ + + + +
50w2 32x2 80wx– 160w 128x– a+ + +=

3 32×()v2 3 72×()y2 3 2 3 7×××()vy
3 2 3 3×××()v 3 2 3 7×××()y a 101–

+ +
+ + +

2 52×()w2 2 42×()x2 2 2 5 4×××()wx–
2 2 5 8×××()w 2 2 4 8×××()x– a

+
+ +

=

3 32v2 72y2 2 3 7××()vy 2 3 3××()v

2 3 7××()y 1
3
--- a 101–()

+ + +

+ +

2 52w2 42x2 2 5 4××()wx– 2 5 8××()w

2 4 8××()x– 1
2
---a

+ +

+

=

2 5 8×× 2 52× 1
2
---× a=

a 128=

3 32v2 72y2 2 3 7××()vy 2 3 3××()v 2 3 7××()y 9+ + + + +[]
2 52w2 42x2 2 5 4××()wx– 2 5 8××()w 2 4 8××()x– 64+ + +[]=

3 3v 7y 3+ +()2 2 5w 4x– 8+()2=

3v 7y 3+ + 0=
5w 4x– 8+ 0=

5 8 4x– 8+× 0=
4x– 48–=

x 12=

3v2 22y– 6+ 4v2 3x– 5+()±=

3v2 22y– 6+ 4v2 31–()±=
June 2011 | Overload | 35

FEATURE RICHARD HARRIS

And after all, it was an exercise in
public key cryptography; of course it
was going to be difficult!
Substituting this into the above is more easily achieved if we multiply the
latter by nine

Expanding the squares yields

Once again we have two possibilities to consider, both of which yield
simple quadratic equations.
Firstly

Using our trusty quadratic equation rule again we have

giving us a candidate value for y.
Of course we must check the second possibility to be sure we have the
correct value

Solving for y

Consequently y must be equal to minus six and thus

giving us the values of all of the private key variables without our having
to guess at any of them!

An (insincere) apology
Now I recognise that this puzzle was somewhat trickier than the previous
puzzles and for that I offer my apologies. In my defence, it was quite
difficult designing a public key crypto challenge that satisfied my own
requirements; those of novelty and a pencil and paper solution. Everything
else I considered was either trivially solved using brute force or impossible
to solve using pencil and paper.
And after all, it was an exercise in public key cryptography; of course it
was going to be difficult!
I’m afraid that this has been the last of the crypto challenges; the next
logical step would have been a puzzle based on quantum cryptography but
I am reasonably certain that it is quite beyond my meagre faculties to
design such a beast.

And finally…
Congratulations are due to Gary Duke who successfully cracked the
Crypto Challenge and to Per Liboriussen who was just one step from doing
so.
I should also like to thank everyone who took part and everyone who
donated to Bletchley Park.

v 7y 3+() 3÷–=

27v2 198y– 54+ 36v2 279–()±=

3 7y 3+()2 198y 54+– 4 7y 3+()2 279–()±=

3 7y 3+()2 198y– 54+ 4 7y 3+()2 279–()±=

3 49y2 42y 9+ +() 198y– 54+ 4 49y2 42y 9+ +() 279–()±=

147y2 126y 27+ +() 198y– 54+ 196y2 168y 36+ +() 279–()±=

147y2 72y– 81+ 196y2 168y 243+ +()±=

147y2 72y– 81+ + 196y2 168y 243–+()=

49y2 240y 324–+ 0=

y 240– 2402 4– 49× 324–×±
2 49×

---=

240– 57600 63504+±
98

--=

240– 121104±
98

--=

240– 384±
98

----------------------------=

108
98

---------= or 588–
98

1 5
49
------= or 6–

147y2 72y 81+– 196y2 168y 243–+()–=

343y2 96y 162–+ 0=

y 96– 962 4 343 162–××–±
2 343×

--=

96– 9216 222264+±
686

---=

96– 231480±
686

---------------------------------------=

96– 23 32× 5× 643×±
686

---=

v 7y 3+() 3÷–=
42– 3+() 3÷–=

39 3÷=
13=
36 | Overload | June 2011

	Can you keep a secret?
	Some Objects Are More Equal Than Others
	The Guy We’re All Working For
	Exception Specifications in C++ 2011
	Why Interval Arithmetic Won’t Cure Your Floating Point Blues
	Systems Thinking Software Development
	The ACCU 2011 Crypto Challenge

