f

£3

[sersii |
ISSN: 1354-3172

urself. We'look

FEBRUARY 2011
it yol

h :

Iséisomeone e

f

itfalls of repurpoesing code.

f_'. q)

,r

e e Tt S e =

O
O
O

e
O
>
O

A magazine of ACCU

OVERLOAD 101

February 2011
ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell @ gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero @howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw @ gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete @ goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 102 should be submitted
by 1st March 2011 and for
Overload 103 by 1st May 2011.

ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

§ GONTENTS

Overload is a publication of ACCU

For details of ACCGU, our publications
and activities, visit the AGCU wehsite:
WWWw.accl.org

4 Queue with Position Reservation

Eugene Surman shows a data structure for message
queue processing.

8 Why Rationals Won't Cure Your Floating Point

Richard Harris investigates whether Rational numbers
might solve his numerical problem.

12 Overused Code Reuse
Sergey Ignatchenko considers the dangers of code
reuse.

15 The Agile 10 Steps Model

Allan Kelly presents a framework for agile project
management.

20 Rise of the Machines
Kevlin Henney struggles against our oppressors.

Copyrights and Trade Marks

Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

Overload | 1

EDITORIAL =

h! The fog Is lifting!

Futurology has a dismal track record.

Ric Parkin looks at the history of
technology predictions.

Prediction is very difficult, especially
about the future.

This such a great quote, and yet its providence is

uncertain — possible coiners include Mark Twain,

Yogi Berra, or Niels Bohr. Whoever actually said it, I
do think it it holds a deep truth — we just don’t know what’s going to
happen. It also captures a healthy humility that even if we use our
knowledge and expertise to make as good a prediction as we can, reality
has an almost perverse delight in proving us wrong, just to keep our hubris
in check.

Examples abound in several fields: politics is a fine example — partly
because at its core, people are interviewed at short notice on fast moving
situations they have limited information on, and yet they feel they have
to sound authoritative. A great recipe for putting your foot in it and getting
things completely wrong.

And technology has an equally rich seam of such faux pas. I’d like to
present a few, give their historical background (or lack of), and consider
their deeper truth.

Everything that can be invented has been invented.

— Charles H. Duell,
Commissioner US Patent Office

This is trotted out to mock the idea that people think science and society
have reached a pinnacle, and there’s nothing new to know. Unfortunately
this quote appears to be a complete fabrication. There’s a similar example
from the late 1800s about all of physics being within their grasp, just as
Quantum Mechanics and Relativity burst upon the scene. This too is most
likely an exaggeration, as the problems that led to those breakthroughs
were well known.

The goose that laid the golden eggs, but never cackled
— Churchill

This one is true, although is more of a description than a prediction. This
is how Churchill described the Bletchley Park codebreakers, and sums up
both of their great achievements — how they achieved the amazing and
broke the codes, and yet despite the industrial scale of the work there, the
secret was kept until the 70s — probably much longer than even Churchill
could have imagined. An example of how useful it was turned up this
week, involving the decrypted cables that showed that the Germans had
fallen for the D-day bluffs [Fooled]. Just knowing the deception was
working allowed the invasion to go ahead with greater confidence and far
less loss of life. Golden eggs indeed.

1 think there is a world market for
maybe five computers

— Thomas John Watson,
President of IBM

2 | Overload | February 2011

Again there is no evidence that he actually said it, although interestingly,
if he had he’d have been right for around a decade! Recall that until the
70s, computers were huge, expensive machines that relatively few
companies could afford, let alone individuals, generally used for quite
specialised tasks — calculations for nuclear weapons research, some
scientific modelling, and eventually business tasks [LEO] so it was not
actually that ludicrous a prediction, until the cost dropped to the point
where computers could become ubiquitous, and started to be used for
things that couldn’t even be imagined back then — think of the advent of
computer graphics, and wireless networking. This illustrates that our
predictions are shaped by what we know at the time, and that our ideas
about what is possible are going to be limited by that.

640K ought to be enough for anybody
— Bill Gates

Again this doesn’t appear to have been uttered. But I think the reason we’d
like it to be true is because that 640K limit caused so much pain over the
years, and people want somebody to blame (and feeling superior to the
wildly successful Gates is a bonus). While the jump from 64K or so of
memory to 640K in the IBM PC must have seemed like a big leap, an
increase of x10 would not last long in the face of ever more inventive tasks
for computers to do, and even the first PCs shipped with a large fraction
of this limit, so Moore’s Law would allow the limit to be reached within
a year or two. Getting around this limit did support a small industry of
companies inventing various tricks to increase the usable memory though.
One clever ruse I remember was the use of extended memory, where
blocks of memory could be mapped in and out of that usable 640K —
known as conventional memory [Conventional] — via sophisticated
‘pointers’. One interesting consequence of this was that a
segment:offset ‘pointer’ might not be valid and cause a hardware
fault if you tried to load it into the appropriate registers. Note that you
didn’t even have to dereference the pointer, just load an invalid segment
value into the segment register. See for example [MIT]. This is one
example of why in C and C++ even looking at an invalid pointer value is
Undefined Behaviour. Many people still think that you have to
dereference it to trigger UB, but this example shows you don’t even need
to go that far. One consequence was that you had to be careful with pointer
arithmetic so that intermediate values were valid, and avoid falling off the
end of an array.

Even when 32-bit flat addressing relieved us from that particular problem,
it wasn’t to last — fairly recently memory has got cheap enough that you
can install more than a 32-bit pointer can address (in practice, operating
system limitations have made the limit even lower, so for example 32-bit
Windows can only use a maximum of 3GB). Are we in for another round
of painful segmented pointer pain? Thankfully not — chips and operating
systems have been developed for years to be able to use 64-bit pointers
which can use much more memory with emulators to run legacy 32-bit

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin @ gmail.com.

programs, so the transition should be much smoother. Still, 64bit pointers
are twice as large so there are potential data size and storage issues too.
Even in this day and age, it’s worth being mindful of storage and
communication size — a reason that the complex UTF-8 character
encoding is commonly used even though the UTF-32 format is much
simpler to program with.

One lesson to be learned from these examples is that decisions on the
representation of things can have long term consequences, and can cause
a lot of pain and effort to fix or transition to the next stage. Even good
choices at the time can eventually become a problem. Consider for
example, the Y2K problem — a space saving representation of two digit
years was a good choice back in the 60s and 70s, but the code and data
persisted for longer than anyone really expected, and a lot of time and
effort was expended to fix the problem — rather successfully I might add,
although that did lead to wild accusations that it was never really a
problem. The unix 2038 problem is similar but has been spotted a long
way in advance, so solutions are already in progress to avoid many of the
problems [2038].

A current problem is just hitting now though — the central internet address
system is about to hand out the last blocks of IP numbers to the regional
authorities [APNIC]. They in turn will continue to issue addresses until
they run out, with estimates of when this will happen being as close as
September of this year. See figure 1 for a graph showing the unassigned
addresses and figure 2 for assignment rates (note how the number being
assigned have shot up recently — looking carefully this looks likely to be
due to a combination of the surge in popularity of internet enabled
smartphones in North America and Europe, and growth in demand in the
Asia-Pacific region).

Free /8
JE T A s A P e
IANA ——
140 == RIR pool = — = |
| I
120 —
— .
~
100 - —-
-\\‘_\'\ \.‘
@ 80 >
NN
60 - N
"~
40 +—
\ 8
20 ‘\\

0 b
1996 1998 2000 2002 2004
Date

2006 2009 2010 2012

Reproduced under the Creative Commons Licence, originally created
by http://commons.wikimedia.org/wiki/User:Mro

Figure 1

1 EDITORIAL

However, this problem has been anticipated and some systems are already
starting to use the next version [IPv6] which will have room for vastly
more addresses (2128 as opposed to IPv4’s 232). There are concerns that
this is not happening fast enough, with many people not even realising they
may need to do something. It’s not totally clear to me what sort of problems
could be expected —there are several proposed strategies that could be used
as the final numbers are allocated, perhaps by reallocating no longer used
blocks — but it might become more difficult to get addresses for new
businesses from providers that are not IPv6 ready. But

I doubt that the internet will break — there are much

easier ways of doing that [ITCrowd].

References
[2038] http://en.wikipedia.org/wiki/

Year 2038 problem
[APNICT https://www.apnic.net/publications/news/2011/delegation
[Conventional] http://en.wikipedia.org/wiki/Conventional memory
[Fooled] http://www.bbc.co.uk/news/magazine-12266109
[IPv6] http://en.wikipedia.org/wiki/IPv6
[ITCrowd] http://www.youtube.com/watch?v=wrQUWUfmR I
[LEO] http://en.wikipedia.org/wiki/LEO_%28computer?%29
[MIT] http://pdos.csail.mit.edu/6.828/2006/readings/i386/s06_03.htm

Daily assignment rate per RIR

1.48406 P
APNIC

RIPENCC I
- 1.2e+06 - ARIN | |
g LACNIC
5 AfriNIC
a
2 1e+06
&
w
@
T 800000
L
E l
& 600000 i
@
o
@
2 400000
g
L%

200000 —
o .

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 201
Date

Reproduced under the Creative Commons Licence, originally created
by http://commons.wikimedia.org/wiki/User:Mro

Figure 2

February 2011 | Overload | 3

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem
https://www.apnic.net/publications/news/2011/delegation
http://en.wikipedia.org/wiki/Conventional_memory
http://www.bbc.co.uk/news/magazine-12266109
http://en.wikipedia.org/wiki/IPv6
http://www.youtube.com/watch?v=wrQUWUfmR_I
http://en.wikipedia.org/wiki/LEO_%28computer%29
http://pdos.csail.mit.edu/6.828/2006/readings/i386/s06_03.htm
http://commons.wikimedia.org/wiki/User:Mro
http://commons.wikimedia.org/wiki/User:Mro

FEATURE »

Multiple threads can make processing a
message queue faster. Eugene Surman

needs the right data structure.

messaging applications. While they were all quite different, there was

one particular situation that kept recurring: sometimes it was required
to maintain the sequential order of incoming and outgoing messages, even
though they were being handled by multiple threads concurrently, and not
necessarily in the same exact order they were received. I searched for a
solution in many ready-made messaging libraries, but did not find anything
satisfactory. So, I had to resort to developing a solution of my own: the
PRQueue — a Queue with Position Reservation (or ‘seat reservation”’).

For the past five years I have mostly been developing multi-threaded

PRQueue is implemented in C++ using two STL deques and the pthread
library. Two simple classes — Mutex and Lock are used in the example
to demonstrate the logic. A sample message is represented by the
StringMsg class, and the QueueTest class is used as a test-bed
application.

I chose deque as a main building block of the design because it has all
necessary operations (including operator[]) to implement PRQueue.
In particular, it’s important that the push_back () and pop_front ()

operations do not invalidate pointers and references to other elements of
the deque.

Here is a simple example of how PRQueue can be utilized. Let’s say we
need to log a stream of large multi-field messages. Converting numeric
fields to text strings is a slow process that is not mission-critical, so we
decided to offload this task to dedicated threads that will generate the log.

Initially, the processing diagram may look like figure 1.

Since the core processing of the messages takes place in multiple threads,
the messages may be ready in an order that is different from the original
input queue order: if, for example, one thread takes a message off the input
queue and goes to sleep, while another thread takes the next message, runs
to completion and places the processed message in the output queue, ahead
of the first thread. As a result, the log entries may appear out of order. We
assume that logging must be done after the messages are processed by the
core routines.

Listing 1 is an example illustrating this point. I use the standard STL
queue and 3 threads. This generates the output shown in Figure 2.

Using PRQueue the above scenario will be avoided. It will make sure the
order of messages in the output queue matches the order that existed in the
input queue, regardless of the order in which the core routines finish
processing the messages.

The basic logic behind PRQueue is simple: when the next message is taken
off the input queue, still inside the lock, the next push-back position, or
‘seat’, for the output queue is acquired. The lock is then released and the

Eugene Surman received a degree in Radio Engineering
from Moscow College of Electro Communication. He has been
programming C/C++ for over 20 years and currently is a senior
software developer for Knight Capital. His personal software
interests are scripting languages. He can be reached at
esurman@inch.com

4 | Overload | February 2011

Input Queue

L.

Pool Of Message
Processing Threads

Ty

Output Queue

LS

Log Generating
Thread

Figure 1

processing continues. After a message is fully processed the previously
acquired position is used to place the message into the output queue.

Figure 3 shows the previous example re-written using PRQueue. The order
of the messages in the log is now perfectly preserved.
PRQueue is constructed using two deques: ‘data’ and ‘filled’.

An element of ‘filled’ deque is an indicator showing that the position is
filled with data and can be popped from PRQueue. A wrapper class
DataQueue is a holder of ‘data’ and ‘filled’ deques. The PRQueue

QueueTest quetest(3);
int il =0;

for(int i =10000; i; i--) {

quetest.push("| %d", il++);

quetest.push("- %d", il++);
}

Listing 1

Th# Time-stamp Msg#
1: 101108 15:04:49.576167 - 5243
3: 101108 15:04:49.576170 | 5244
1: 101108 15:04:49.576174 - 5245
3: 101108 15:04:49.576177 | 5246
3: 101108 15:04:49.576182 | 5248 // out
2: 101108 15:04:49.571945 | 4338 // of
1: 101108 15:04:49.576179 - 5247 // order
3: 101108 15:04:49.576188 - 5249
2: 101108 15:04:49.576189 | 5250
1: 101108 15:04:49.576191 - 5251

Figure 2

Th
2:

P NWWRWRFEWRF.

!/
//
//
//

n FEATURE

Time-stamp Msg#
101108 15:04:49.571945 | 4338
101108 15:04:49.576167 - 5243
101108 15:04:49.576170 | 5244
101108 15:04:49.576174 - 5245
101108 15:04:49.576177 | 5246
101108 15:04:49.576179 - 5247
101108 15:04:49.576182 | 5248
101108 15:04:49.576188 - 5249
101108 15:04:49.576189 | 5250
101108 15:04:49.576191 - 5251

The function 'process msg' is executed by every
spawned input thread. The signature corresponds

to the pthread create
File prqueue.cpp

'start _routine'

void* process_msg(void* arg)

{

int thidx = ++Thidx;

QueueTest* quetest =(QueueTest*)arg;
Msg* msg;

PRQueue< Msg*>::position pos;

cout << "Input thread=" << thidx <<
" started" << endl;

for(;;)
{
// Wait for the next available message in
// input queue and pop it up, get the next
// push position reserved in output queue
quetest->input_ que.pop (
msg, quetest->output que, pos);

// Process message
msg->process (thidx) ;

// Push processed message into output queue
// using reserved position
quetest->output_que.push(msg, pos);

}

return NULL;

Listing 2

methods are for the most part ‘mutexed’ wrappers of DataQueue
methods.

The design allows us to separate/hide thread safety code from the actual
implementation, so the user shouldn’t be concerned with writing any
locking/unlocking logic.

Let’s discuss PRQueue’s functionality in a bit more detail.

The PRQueue pop method does two things: it pops data from the input

queue and reserves a push position in the output queue. The push method
uses the previously reserved position to save data into the output queue.

For testing PRQueue with multiple threads a function process_msg is
executed by every spawned thread. It pops a StringMsg from the input
queue, processes the message by calling the StringMsg: :process ()
method, and pushes the message out. (See Listing 2.)

The pop method is not only waiting for the next message to arrive in the
input queue, it also checks if the message is ready to be popped by looking
at the element of the ‘filled’ queue. If data is not filled yet, pop will go
back to sleep and wait.

Pop logic (Listing 3):
m [ock input queue

m [finput queue is not empty and top element is filled with data, pop
it (otherwise release lock and go to sleep)

Lock output queue
Reserve bottom position in output queue.

Unlock output queue

Unlock input queue

The push method copies data to the reserved position of the output queue
and sets the ‘filled’ indicator to true. It also releases threads waiting on a
condition variable by sending a notification signal (prqueue . hpp) —see
Listing 4.

Now, the messages are arriving in the output queue in order. If we want
to extend the chain of our processing conveyor further, another PRQueue
can be added to the end. In the test case above we don’t do it: we use a
single output thread simply to read processed messages from the output
queue and print them out. In that final step, a ‘simple pop’ method was
used without its second and third arguments (references to the output queue
and position value). See Listing 5.

Now, let’s take a look at the auxiliary class DataQueue.

As was mentioned before, DataQueue is a holder of two STL deques:
‘data’ and ‘filled’. The DataQueue also defines ‘structure position” and
methods where the key steps of position reservation and data popping
happen.

The DataQueue is included in PRQueue as a data-member m_que (see
Listing 6).

To compile and run PRQueue test, use the commands in Figure 4.

February 2011 | Overload | 5

FEATURE »

// Pop data from input queue and reserve position

// in output queue file prqueue.hpp

void PRQueue: :pop(DATA& data, PRQueueé& outque,
PRQueue: :positioné& pos)

Lock 1k (m _mux) ;

// Waiting for the message in input queue - pop
// message
while(true) {

if(m_que.pop(data))

break;

// either message has not arrived or position

// is not filled

wait_while_empty() ;
}
// Reserve position in output queue
outque.reserve pos(pos);

//
void PRQueue::reserve_pos (
PRQueue: :position& pos) {
Lock 1k(m_mux);
m_que.reserve(pos);

}
Listing 3

// Push data using reserved position into output
// queue (prqueue.hpp)
void PRQueue: :push(const DATA& data,

const PRQueue: :position& pos)

Lock 1k (m_mux);
m _que.fill(data, pos);
notify not_empty();

}

Listing 4
c++ -I. prqueue.cpp -lpthread
c++ -I. prqueue.cpp -lpthread -DSIMPLE QUE

Try long message
c++ -I. prqueue.cpp -lpthread -DLONG_MSG

// The function 'print msg' executed by final
// single output thread file prqueue.cpp
void* print msg(void* arg)
{

QueueTest* quetest =(QueueTest*)arg;

Msg* msg;

cout << "Output thread started" << endl;
for(;;)
{
// pop-up message from output queue and print it
quetest->output_que.pop(msg) ;
msg->print() ;
delete msg;
}
return NULL;

The queue with Position Reservation (PRQueue) presented here could be
useful in multi-threaded applications when the order of streaming
messages should be preserved. PRQueue will make sure that the order of
messages in the output queue exactly matches the order that existed in the
input queue, because the next push-back position in the output queue is
reserved synchronously with taking the message off the input queue. The
reserved spot is later filled with data when the message is done processing
and ready. ®

A zip file containing the code is available at:
http://accu.org/content/journals/ol101/prqueue.zip

PRQueue test
SimpleQueue test

c++ -I. prqueue.cpp -lpthread -DLONG_MSG -DSIMPLE QUE

a.out [number-of-messages]

Figure 4

6 | Overlead | February 2011

http://accu.org/content/journals/ol101/prqueue.zip

// An auxiliary class DataQueue - holder of 'data'

// and 'filled' deques
template< typename DATA> class DataQueue
{

public:
typedef typename
deque< DATA>::pointer data_pointer;
typedef typename
deque< bool>::pointer filled pointer;

// Structure to hold pointers of reserved

// position

struct position ({

position() : data_pnt(0), filled pnt(0) {}
data_pointer data_pnt;

filled pointer filled pnt;

}i

// Check if data deque is not empty and front
// element is 'filled'.
// Copy front data out, pop-up front elements
// of both deques
bool pop(DATA& out) {
if(m_data_que.empty() ||
! m_filled que.front())
return false;
out = m_data_que.front();
m_data_ que.pop_front() ;
m_filled que.pop_front() ;
return true;
}
// Add dummy elements to the back of both
// deques.
// Save pointers of both elements to the output
// position
void reserve(position& pos) {
m_data_que.push_back(m_dummy) ;
m_filled que.push back(false);
pos.data_pnt =
&m_data que[m_data_que.size() -1];
pos.filled pnt =
&m filled que[m filled que.size() -1];
}
// Copy data and set 'filled' indicator by
// position
void fill(const DATA& data,
const positioné& pos) {
*pos.data_pnt = data;
*pos.filled pnt = true;
}

Listing 6

n FEATURE

void push(const DATA& data) {
m_data que.push back(data);
m_filled que.push_back(true);
}

private
deque<DATA> m_data_que;
deque<bool> m_filled_ que;
DATA m_dummy;

} ; //DataQueue

CERTIFICATE IN
QUANTITATIVE

FINANCE

Expand Your
Mind and Career

Designed by quant expert Dr Paul Wilmott,
the CQF is a practical six month-part time
course that covers every gamut of quantitative
finance, including derivatives, development,
quantitative trading and risk management.

Find out more at cqf.com.

February 2011 | Overload | 7

FEATURE »

Why Rationals Won't Gure Your
Floating Point Blues

Numerical computing is still proving hard to do accurately.
Richard Harris considers another number representation.

noted that its oft criticised rounding errors are relatively inconsequential

in comparison to the dramatic loss of precision than results from
subtracting two almost equal numbers. We demonstrated that the order in
which we perform operations, whilst irrelevant for real numbers, can affect
the result of a floating point expression and that consequently we must be
careful how we construct expressions if we wish their results to be as
accurate as possible.

I n the first article in this series we described floating point arithmetic and

In the second article we discussed the commonly proposed alternative of
fixed point numbers and found that, although it is supremely easy to reason
about addition and subtraction when using them, they can suffer even more
greatly than floating point numbers from truncation error, cancellation
error and order of execution.

So, can we do any better?

Perhaps if we were to implement a rational number type, in which we
explicitly maintain both the numerator and the denominator, rather than
declare by fiat that we are working to some fixed number of decimal places
or significant figures.

The rules of rational arithmetic are pretty straightforward. Given two
rationals ay/b, and a,/b; we have

4 a1 _ agh, +a,b,
by b, bob,

ag _a; _ aghy—a,b,
by by bob,

a 4 _ ay

by by byb,
Q. 4 _ %b

by by by

One enormous advantage of rational numbers is that, provided we do not
overflow the integers representing the numerator (the top of the fraction)
and the denominator (the bottom) the order of execution of these arithmetic
operations is irrelevant; the answer will always be the same. Given that
we have gone to great lengths to create an integer type that cannot
overflow, this behaviour will prove rather useful.

The only thing we need to watch out for is the fact that there are many ways
of writing down the same number; 1/2, 2/4 and 3/6 all represent the same
number, for example. We shall ensure that our representation is unique by
insisting that the numerator and the denominator are the smallest numbers

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and numerical
computing and is currently employed writing software for financial
regulation.

8 | Overload | February 2011

that yield the same rational, or equivalently have no common factors, and
that the denominator is positive.

The latter condition is relatively straightforward to maintain. The former
requires an algorithm to determine the highest common factor, or HCF, of
a pair of numbers, the greatest positive integer that wholly divides both.
We can subsequently divide out that factor and return any rational to its
simplest form. Fortunately one such algorithm has been handed down to
us from antiquity, courtesy of the great Euclid and it proceeds as follows.

Euclid’s algorithm

If the two numbers are equal, their value is the HCF.
If the smaller exactly divides the larger, the smaller is the HCF.

Otherwise, divide the larger by the smaller, and make note of the
remainder. The HCF of the original numbers is equal to the HCF of the
smaller number and the remainder.

In mathematical notation this can be expressed as
if X = axxytb

where a>0A0<b<x,

then HFC(x,xy)= HFC(x,, b)

Recursively applying these rules is guaranteed to terminate and we can
thus determine the HCF.
For example, applying the Euclidean algorithm to 2163 and 1785 yields
the following steps
2163 = 1 x1785+378
1785 = 4x 378 +273
378 = 1 x273+105
273 = 2x 105+ 63
105 = 1x63+42
63 = 1x42+21
42 = 2x21
and hence the HCF of 2163 and 1785 is 21, a fact that is clear if we look
at their prime factorisations.
2163 = 3x7x 103
1785 = 3 x5x7x17
As it happens, this is simply a special case of the more general result that
for any integers x, x1, @ and b where
X, =axxy+b
then x; and b must have the same highest common factor as x; and xy, as
shown in derivation 1.

As a consequence, it should not be surprising that the algorithm converges
faster if we round the result of the division to the nearest integer rather than
round down, consequently admitting negative remainders, and use the
absolute value of the remainder in the following step.

Applying this optimisation to the same pair of numbers yields the same
result in fewer steps.
2163 = 1x 1785+ 378
1785 = 5x 378 -105
378 = 4x105-42
105 = 2 x42+21
42 = 2x21

Arational class

Now that we have described the various arithmetic operations, and the
scheme that we shall use to ensure that each rational has a unique
representation, we are ready to actually implement it. Listing 1 illustrates
the class definition of our rational number type.

The first thing we shall need is a helper function to compute the HCF of
a pair of positive integers as given in listing 2.

Note that we capture both termination conditions by checking whether the
absolute remainder, now stored in x|, is equal to 0. This will be true both
if the smaller number is equal to or wholly divides the larger.

We implement the more efficient version of the algorithm by checking
whether the remainder is greater than half the divisor. If it is, then the
absolute value of the remainder of the rounded closest, rather than rounded
down, division is simply the divisor minus the remainder.

First, let us assume that xy and x; share a common factor of c. We can
therefore rewrite the equation as

| — !
ex)'=axcxy +b

for some x' and x4'.

Now since the left hand side is wholly divisible by ¢ then so must the right
hand side and furthermore since the first term on the right hand side is
wholly divisible by ¢ then so must be the second term, allowing us to
express the equation as

ex)'=axcxy +cb'

Second, let us assume that xy and b share a different common factor of
d. We can now rewrite the equation as

x, = axdxy" +db"

for some xo"” and b".

But now the right hand side is wholly divisible by d and so therefore must
be the left hand side.

Hence any factor shared by xy and x; must be shared by xy and b, and
any factor shared by xo and b must be shared by xg and x4 and that they
must consequently have the exactly the same highest common factor.

Derivation1

n FEATURE

template<class T>
class rational
{
public:
typedef T term_ type;

rational() ;

rational (const term type &x);

rational (const term type &numerator,
const term type &denominator);

const term type & numerator() const;
const term_ type & denominator() const;

int compare (const rational &x) const;

rational & negate();

rational & operator+=(const rational &x);

rational & operator-=(const rational &x);

rational & operator*=(const rational &x);

rational & operator/=(const rational &x);
private:

rational & normalise() ;

term_type numerator_;

term_type denominator_;
b

Listing 1

template<class T>
T
hecf (T %0, T x1)
{
if (x0<=0 || x1<=0)
throw std::invalid_argument("") ;

if (x0<x1)
std: :swap (x0, x1);

do
{

const T div x0/x1;
const T rem = x0 - div*xl;

x0 = x1;
if (rem+rem<xl) x1 = rem;
else x1l -= rem;

}
while (x1'=0) ;

return x0;

Listing 2
February 2011 | Overload | 9

FEATURE »

nossibility of overflow

We can see that this is true by considering the implications on the
remainder of increasing the result by 1. In mathematical notation, the initial
step is

d= on/xlj

r = xofalxx1

where the odd looking brackets mean the largest integer less than or equal
to their contents.

The new remainder is equal to
Xg—(d+1)xx; =r—x

which is guaranteed to be negative, meaning that the absolute value of the
new remainder must be x;—r.

We could improve performance a little for bignums by overloading this
function to exploit the fact that their division helper function also
calculates the remainder. However, since our division algorithm is O(nz)
in the number of bits and our multiplication algorithm is only O(n2) in the
number of digits, it would probably not make that much difference in most
cases.

template<class T>
rational<T> &
rational<T>: :normalise()

{

if (denominator ==0)
throw std::i;valid_argument("");

if (denominator_<0)

{
numerator_ = -numerator_;
denominator_ = -denominator_;

}

if (numerator_==0)

{
denominator_ = 1;

}

else

{
const T ¢ = hcf (abs (numerator),

denominator_)7

numerator_ /= c;
denominator_ /= c;

}

return *this;

}

Listing 3
10 | Overload | February 2011

template<class T>

rational<T>::rational ()
numerator (0), denominator (1)

{

}

template<class T>

rational<T>::rational (const term_ type &x)
numerator_(x), denominator_(1)

{

}

template<class T>
rational<T>::rational (const term type &numerator,
const term type &denominator)
numerator_ (numerator), denominator_(denominator)

{

normalise () ;

Listing 4

Next we shall implement the normalise member function which we
shall use to ensure that our rationals are always represented in a
standard form, as shown in listing 3. In this form, common factors are
removed, the denominator is always positive and shall furthermore be
equal to 1 when the numerator is 0.

We shall first call this function in one of the constructors, as given in listing
4. Specifically, we shall not entrust the correct representation to the user
when construction from numerator and denominator.

The remaining member functions are equally straightforward which
should come as no surprise given the simplicity of rational arithmetic.

The data access member functions, numerator and denominator,
together with the compare and negate member functions are shown in
listing 5.

Note that we must multiply the numerators and denominators during
comparison which, for fixed width integer types, introduces the possibility
of overflow and, for bignums, unfortunately makes it a relatively costly
operation.

The arithmetic operators, given in listing 6, are similarly sensitive to
overflow when using fixed width integers and similarly expensive when
using bignums. Most irritating is that fact that addition and subtraction
are now more sensitive to these factors than multiplication and division.

The problem with rationals

Recall that I mentioned that the square root of 2 is irrational and hence
cannot be equal to any integer divided by another. A demonstration of this
fact is given in derivation 2.

We cannot therefore exactly represent any such number with our
rational type. However, it is also true that for every irrational number

template<class T>
const rational<T>::term type &
rational<T>: :numerator() const
{

return numerator_;

}

template<class T>
const rational<T>::term_ type &
rational<T>: :denominator () const
{

return denominator_;

}

template<class T>
int
rational<T>: :compare (const rational &x) const
{
const term type lhs = numerator_*
x.denominator_;
const term type rhs
x.numerator_;

denominator_ *

if (lhs<rhs) return -1;
if (lhs>rhs) return 1;
return O;

template<class T>
rational<T> &
rational<T>: :negate()
{

numerator_ = -numerator_;
return *this;

there are an infinite number of rationals to be found within any given
positive distance, no matter how small.

Perhaps we could represent an irrational with one of its rational
neighbours?

Proving that the square root of 2 is not rational

Let us assume that there are integers a and b such that
a
= =42
7= 2

and that we have cancelled all common factors so that their HCF is 1.
Trivially, we have

2
a

2
b
2 2

a = 2b

Now any odd number multiplied by itself results in another odd number,
so a must be even and hence equal to 2a’ for some a’. Hence

2b°

(2a"y’
b’ = 24"

But this similarly means that b must be even and that consequently a and

b have a common factor of 2; a contradiction.

The square root of 2 cannot, therefore, be rational.

Keep it to yourself though; you might get drowned.

Derivation 2

n FEATURE

template<class T>

rational<T> &

rational<T>: :operator+=(const rational &x)

{
numerator_ = numerator_ * x.denominator_ +

denominato