

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Scalable Graph Coverage
Andy Balaam optimises the processing of large data
sets.

12 Socially Responsible Recruitment
Ian Bruntlett considers social responsibility in
recruitment policy.

16 Single-Threading: Back to the Future?
Sergey Ignatchenko braves the multi-threading arena.

20 The Model Student: A Game of Six Integers
(Part 3)
Richard Harris concludes his analysis of the
Countdown Numbers Game.

31 The Functional Student: A Game of Six Integers
Richard Polton uses a new language to beat the
Countdown Numbers Game.

OVERLOAD 97

June 2010

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 98 should be submitted by
1st July 2010 and for Overload 99 by
1st September 2010.

EDITORIAL RIC PARKIN
The Art of the Possible
In polite company you should never talk about religion
or politics. Ric Parkin makes an exception.
I’ve started to write this on the evening of The Queen’s
Speech at the opening of the new parliament, where
she announces the priorities and the legislation that the
government will bring forward over the next eighteen
months (traditionally this happens after the summer
recess, so is a bit longer than the usual year, due to the

change of government). Normally you shouldn’t talk politics as it tends
to generate more heat than light, and it’s one of the few off-topic subjects
on accu-general, that otherwise free ‘pub conversation’, but this has been
a very interesting campaign from a technology point of view, and the
consequences of the change of government will affect certain IT sectors
quite heavily, so I think I can safely make some comments without
stepping over the line into controversy.

The first Internet election?
One thing that seemed very different this year compared to the last general
election was the role the Internet, and in particular the new social
networking sites and services. This shouldn’t have been too much of a
surprise after the US presidential elections of 18 months ago which also
saw a big change. Instead of faintly laughable party websites of five years
ago, there were much slicker campaigns, with much more ‘community’
blogs and sites, Facebook to find interested groups and show symbolic
support, Twitter to quickly disseminate news, opinion, and rebuttal.
So what sort of things did, and didn’t, make much of an impact? Well, I
think it depended an awful lot on who you were and what sort of media
you consumed! For myself, I tended to watch some TV news, read some
online news sites of both television stations and newspapers, and noticed
what Facebook friends were saying. I’m not on Twitter, but some friends
have theirs hooked up to Facebook, so I got some of that. I don’t tend to
read political blogs either, although this time I do admit to obsessively
reading about the vast number of polls that were being taken, such as the
UK Polling Report [UK], and the attempt to predict the final outcome by
people like Nate Silver, who had so successfully predicted the result of
the US elections [538].
But oddly enough, the main places I found out about what was happening
on FB, Twitter, or many of the more partisan blogs, was from the
‘traditional’ media, who seemed to fill the chasms of 24-hour rolling news
with up-to-the-minute posts of not just what the official campaigns were
doing, but also what the online army of bloggers, tweeters and
commentators, whether they were partisan insiders or interested
observers, opinionated or objective, professional or amateur, the man on
the Clapham omnibus [clapham], or sometimes the downright unnerving

one-issue fanatics.
Sometimes these sources of information broke

major events, but overall I found them to be
remarkably poor despite the mainstream

media’s obsession with them. Sometimes the event would be a major story
one minute, only to be forgotten about a few hours later. And I wondered
why this should be so.
So here’s my wild ideas on why this was the first UK Internet election,
and why this was not necessarily a good thing.
The first is, there’s now so much pressure to get any story out there or
someone else will scoop you, and there’s so much air time or web space
to be filled (and yet it’s so cheap to do), that taking your time and getting
the quality control right has pretty much gone. In the past, a news story
would have to get past a stern editor who’d make sure it was at least
plausible, vaguely accurate, and ideally being reasonably non-partisan.
That works fine for a main news bulletin or a daily or Sunday newspaper,
but the Internet and 24 hour news means you can get the story out fast
without pausing for thought. In particular the more ‘opinion’ media, such
as blogs, Facebook statuses and Twitter – you just type and press a button,
and it’s out there. If you regret it five minutes later, then it’s too late. If it
turns out to be wrong but it’s already been copied and forwarded and
commented on by others, then it’s too late. If it’s merely hearsay (or you
want to start a rumour) then there’s often no one else to ask ‘are you sure?’.
It’s very hard to bolt that stable door, and it’s even harder to get the horse
back. It can be especially hard to get people to abandon a story when they
have an emotional attachment to a position that it reinforces, even when
the story can be shown to be false. This is why the main parties now have
‘rapid rebuttal units’ to spot when something damaging is reported, and
get out a neutralising counter-story before it gets very far (or at least onto
that night’s main news).
I think this led a lot of the ‘new’ media reporting to be remarkably trivial,
or stories that only last a short amount of time: the time delay and
bandwidth limitations used to allow quality control to hone or outright
reject the second-rate stories, but now they’re published immediately, and
the fixes come afterwards.
Another insidious effect of the social networks was a ratcheting up of
‘group think’, where your ideas and opinions are confirmed and
strengthened by them being agreed with by the people around you. The
trouble is that you tend to surround yourself with similar people with
similar ideas, so you get into a circle that reinforces your ideas and
preconceptions. It is possible to get outside viewpoints, but you have to
try harder and it is never comforting to challenge yourself. This sort of
thing is not limited to politics – the Internet has allowed a wide range of
social interactions with such a huge scope to meet people with similar
opinions you’d otherwise have never have come across. This is most
noticeable in the more ‘fringe’ groups, where all sorts of strange ideas can
be shared without having to check them, and where any counter-evidence
merely confirms how hard the conspiracy is trying to suppress The Truth.
But while these are obvious examples of Group-Think (at least to those
outside) we should always be aware that we too are going to be prone to
such distorting self-selection. This is why self-correction mechanisms

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | June 2010

EDITORIALRIC PARKIN
such as peer-review are so important. By setting up a system where
proving an idea wrong leads to success we create incentives to detect and
discard faulty ideas, and those that remain tend to be the best supported
(so far).

But it isn’t all bad. Despite their flaws, social media have allowed many
more people to feel like they were involved (one of the criticisms of our
First-Past-The-Post electoral system is that most elections are decided by
a relatively small number of floating voters in marginal constituencies –
if you’re not one of them then you are pretty much ignored as the parties
concentrate their efforts on those key people). Also the speed that news
can be broken and spread can be a terrifically powerful force. Perhaps my
fears are just that we’re still learning about how these media are best used,
after all it was only a few months ago that Twitter was just a pointless way
of getting mundane information about friends and celebrities, until it
became a vital way of spreading information during social unrest where
it could bypass and outmanoeuvre state controlled systems. We haven’t
needed to use it for that, and yet it still is a remarkably fast way of
communication. A possible explanation came to light recently, as it was
suggested that Twitter in particular has many properties of a Small World
network, like many social groupings, yet is more tightly interconnected,
so news can travel very quickly [Sysomos].

It wasn’t just the new online world that was shaken up during this election:
for the first time we had TV debates involving the party leaders. This really
shook things up for a while, although perhaps ultimately not as much as
people thought at the start. Again, these are early days and we’re learning
fast, although some of the attempts at ‘instant feedback’ were delightfully
rubbish, my personal favourite was the company trying to gauge sentiment
by analysing traffic on Twitter, which found high levels of dissatisfaction
with the Liberal Democrats because the computer couldn’t understand the
joke meme of blaming Nick Clegg for all sorts of bizarre things
[NickClegg].

And now what?
So what are the new government going to do? There’s quite a lot of IT
related promises, so it is worth having a think about them. The most high-
profile announcement and one of the ones to have a quick impact, is the
announcement to cancel ID cards, dismantle the National ID Register
behind it, and reform or scrap other ‘big databases’ such as Contact Point
and the DNA database. That’s going to have a profound change of
emphasis on what should be done with data generated by you, which will
mean that there will be far fewer large IT contracts for building and
running such things. This is already having an effect, as can be seen by a
quick look at the share prices around the election of outsourcing
companies such as Capita.

Two other effects – there looks to be a change in Capital Gains Tax to be
announced soon. Details are still being decided as I write, but there could
be great implications for people in small start-up companies who use share
options as a major incentive, in particular if the rate is increased and taper
relief changed. The other one is a bit more subtle – there was mention about
making a level playing field for open-source software [Programme]. It is
not clear yet what this actually means, but it seemed odd as earlier both
Labour and the Conservatives were also talking about open source

standards [Register]. I think the difference is important – open standards
mean that anyone could write a system to use some data, and you would
not be restricted to the original supplier. I hope this was just an oversight
during the frantic negotiations that were happening at the time, but time
will tell.

A couple of anniversaries
And finally, a couple of notable anniversaries. It is a decade ago that the
first ‘rough draft’ of the human genome was publish to great acclaim
[Observer]. A great achievement that was particularly reliant on
computing power – the sheer number of bases involved are staggering, and
many of the techniques used involved breaking the genome in short pieces,
sequencing those pieces, then reassembling them (a so-called Shotgun
approach). Working out where to place each of those pieces was a massive
computing problem in its own right – think of it as a jigsaw puzzle with
several billion pieces. Since then computing power, the storage required,
and the tricks used to solve problems specific to genetics, have progressed
massively. Similar to other great data-producing experiments such as the
Large Hadron Collider, much of modern science relies on massive
computing power to process swathes of data, or model fantastically
complex systems to gain insights beyond our ancestors dreams.
The other anniversary is more mundane – I’ve been Overload editor for
two years now. It’s been great fun, but I have to give kudos to the many
people who do the real work – I just coordinate and write the editorial.
But is always good to get feedback, and I’m pleased to say the last couple
of issues have really got things going. Richard Harris’ article on the
Countdown Numbers Game seems to have struck a chord, resulting in two
readers to offer very different solutions which makes for some fascinating
compare and contrast. And my last editorial on recruitment also inspired
an article in this issue on Socially Responsible Recruitment, and a couple
of long threads on accu-general on the changed role of job-centres (I’m
pleased to report they have improved tremendously since I last used one),
and how to set quizzes to get the right sort of applicant
which really showed that there is not one true answer,
and that it all depends on your own situation. As a
consultant would say: ‘It depends’.

References
[538] http://www.fivethirtyeight.com/
[clapham] http://en.wikipedia.org/wiki/

The_man_on_the_Clapham_omnibus
[NickClegg] search for #nickcleggsfault or #iblamenickclegg
[Observer] http://www.guardian.co.uk/theobserver/2010/may/30/dna-

human-genome-project-sanger
[Programme] http://programmeforgovernment.hmg.gov.uk/government-

transparency/
[Register] http://www.channelregister.co.uk/2010/03/11/

tory_tech_manifesto/
[Sysomos] http://sysomos.com/insidetwitter/sixdegrees/
[UK] http://ukpollingreport.co.uk/blog/
June 2010 | Overload | 3

http://www.fivethirtyeight.com/
http://en.wikipedia.org/wiki/The_man_on_the_Clapham_omnibus
http://en.wikipedia.org/wiki/The_man_on_the_Clapham_omnibus
http://www.guardian.co.uk/theobserver/2010/may/30/dna-human-genome-project-sanger
http://www.guardian.co.uk/theobserver/2010/may/30/dna-human-genome-project-sanger
http://programmeforgovernment.hmg.gov.uk/government-transparency/
http://programmeforgovernment.hmg.gov.uk/government-transparency/
http://www.channelregister.co.uk/2010/03/11/tory_tech_manifesto/
http://www.channelregister.co.uk/2010/03/11/tory_tech_manifesto/
http://sysomos.com/insidetwitter/sixdegrees/
http://ukpollingreport.co.uk/blog/

FEATURE ANDY BALAAM
Scalable Graph Coverage
Optimising data processing is often
about compromise. Andy Balaam
finds the right balance.
he latest release of our product focuses on scalability. We need to
enable our users to work with much larger models, and previously
they were hitting a hard limit when our 32-bit application went

beyond the 2GB address space available on a normally-configured
Windows machine.
Of course, there are many ways we can reduce the amount of memory we
consume for each element of a model which we hold in memory, but
reducing memory usage in this way does not solve the fundamental
problem: if we hold it all in memory, there will always be a limit on the
size of model we can work with.
In order to be able to handle models of arbitrary size, we needed to find
algorithms that work with subsets of the model that are of manageable size.
This article describes and compares some of the algorithms we tried in
order to make our application scalable.
We began with the non-scalable approach of having everything in memory
at once, and set off in the direction of scalability by implementing a naive
strategy. This proved to be very slow, so we improved the execution time
by making incremental changes to our approach. The algorithm we arrived
at achieves bounded memory usage and acceptable performance, without
imposing a heavy burden in terms of algorithmic complexity.
The models and algorithms will be illustrated in C++ using the BOOST
Graph Library (BGL) [BGL]. To test our algorithms we will run them
against randomly-generated models.

The model
The models in our application may be thought of as directed graphs – that
is, sets of ‘nodes’ which are connected by ‘edges’, where each edge has a
direction. Cycles (paths between nodes that end up where they started) are
allowed.
Figure 1 shows an example of a directed graph. The graph shown may be
partitioned into three disconnected sub-graphs, indicated by the ovals. The
importance of our ability to partition such graphs in this way will become
clear later.
The edges indicate dependencies in our model. What this means in practice
is that if A depends on B (i.e. the nodes A and B are connected by an edge
which is directed from A to B) then it does not make sense for A to be in
memory without B. Our algorithms are required to work in a scalable way
within this constraint. This, of course, means that certain models (e.g.
where chains of dependencies mean that all nodes are required at once)
simply cannot be handled in a scalable way. Fortunately, in practice the
models we work with are decomposable into smaller graphs despite this
constraint1.
In order to test the algorithms we will discuss, we implement them using
BOOST Graph Library, with the typedefs and using declarations shown
in listing 1. Note that BGL prefers the term ‘vertex’ whereas in this article
we use ‘node’ to indicate graph nodes.
We need many examples of possible models to evaluate our algorithms.
The code in listing 2 shows how we generate random graphs. To create a
graph (whose nodes are represented simply as integers) we construct a
DependencyGraph object and supply the number of nodes required. To
add edges we call the BGL function add_edge.
At the moment, our users are working with graphs of about 700 nodes and
800 edges, so these are the numbers we will use when generating graphs
for testing.

T

1. Note that if this were not the case we would need to revisit the
requirement that it does not make sense for A to be in memory
without B. In our case removing this constraint would be difficult
since it would mean re-writing a large piece of functionality that is
currently provided by a third-party component.

Listing 1

#include <deque>
#include <set>
#include <boost/graph/adjacency_list.hpp>
using namespace std;
using namespace boost;
typedef adjacency_list<vecS, vecS,
 bidirectionalS> DependencyGraph;
typedef graph_traits<DependencyGraph>::
 vertices_size_type nodes_size_t;
typedef graph_traits<DependencyGraph>::
 vertex_descriptor Node;

Andy Balaam is happy so long as he has a
programming language and a problem. He finds over
time he has more and more of each. You can find his
many open source projects at artificialworlds.net or
contact him on andybalaam@artificialworlds.net.

Figure 1
4 | Overload | June 2010

FEATUREANDY BALAAM

In order to perform well, our algorithm
must minimize the number of times

each node is loaded
For the formal tests, we will ensure the random seed is set to a consistent
value at the beginning of each test. This will mean that the various
algorithms are compared against an identical set of graphs.

The task
Our application performs a number of different actions. The action with
which we are concerned here involves visiting all nodes and edges of the
graph at least once.
In order to scale, our algorithm must limit the number of nodes that are
loaded into memory at any time. In order to perform well, our algorithm
must minimize the number of times each node is loaded (ideally to one)
and minimize the number of loading events that happen.
For our application, the number of nodes that may be loaded at one time
(before we run out of memory) is approximately 400, so that will be our
limit.
The algorithm in place before we began, which we shall call ‘all-at-once’
performs just one load event (load everything) and (therefore) loads each
node only once. So this algorithm represents the best-case scenario in terms
of performance2 but fails to scale because there is no limit on the number
of nodes loaded at any time.
To test our algorithms we need to provide a utility class that tracks their
behaviour and provides them with information. The interface for this class,
IGraphLoader, is shown in listing 3.
IGraphLoader declares the LoadNodes method, which an algorithm
may call to perform a load event. The supplied argument specifies which

nodes should be loaded. In our test code, the implementation simply
records the fact that the load event that has taken place so that we can
provide statistics and check that all nodes have been loaded at least once
when the algorithm completes.
It also declares the GetMaxNodes method, which tells an algorithm how
many nodes it is allowed to load before it will run out of memory.
The all-at-once algorithm may be expressed in code as shown in listing 4.
The result of running this algorithm against 1000 random graphs is:

 Percentage of failures: 100
 Average number of individual node loads: 700
 Average number of load events: 1
 Average largest load size: 700
 Average batch calculation time: 0.001329 seconds

The all-at-once algorithm loads each node once, and performs only one
load event, but all of its runs fail because they load 700 nodes at a time,
even though our maximum limit is 400. What this means is that in reality

2. In practice, this algorithm does not necessarily perform well
because it uses a lot of memory, and under certain conditions this
may cause the operating system to page memory in and out from
its virtual memory store, which can be extremely slow. We will not
consider such practical considerations in this article: we already
know that we need to limit memory usage - reducing paging would
essentially mean we needed to limit it at a lower level.

Listing 2

DependencyGraph create_random_graph(
 nodes_size_t num_nodes, size_t num_edges)
{
 DependencyGraph ret_graph(num_nodes);

 for(size_t edge_num = 0; edge_num < num_edges;
 ++edge_num)
 {
 add_edge(rand() % num_nodes,
 rand() % num_nodes, ret_graph);
 }

 return ret_graph;
}

Listing 3

class IGraphLoader
{
public:
 virtual void LoadNodes(
 const set<Node>& nodes) = 0;
 virtual unsigned int GetMaxNodes() const = 0;
};

Listing 4

namespace
{
 set<Node> create_all_nodes_set(
 nodes_size_t num_v)
 {
 set<Node> ret;
 for(nodes_size_t i = 0; i != num_v; ++i)
 {
 ret.insert(Node(i));
 }
 return ret;
 }
}

void algorithm_all_at_once(
 const DependencyGraph& graph,
 IGraphLoader& loader)
{
 loader.LoadNodes(create_all_nodes_set(
 num_vertices(graph)));
}

June 2010 | Overload | 5

FEATURE ANDY BALAAM

In our first pass at making our
application scalable, we chose a very
naive solution to this problem
our application would crash and not be able to complete the action. This
is obviously not an acceptable solution.
‘Average batch calculation time’ means the amount of time spent
calculating which nodes to load. In this case it is very small since we do
no work at all, and just load everything. This gives us a measure of the
complexity of our algorithm, but is likely to be insignificant to the running
time of the real program, since actually performing load events takes much
longer, and that time is not included in this total.

The naive solution
In our first pass at making our application scalable, we chose a very naive
solution to this problem. The solution was simply to load each node and
its dependencies one by one, which we shall call ‘one-by-one’.
The code for this algorithm is shown in listing 5.
The result of running this algorithm against 1000 graphs is:

 Percentage of failures: 0
 Average number of individual node loads: 30143
 Average number of load events: 700
 Average largest load size: 223
 Average batch calculation time: 0.019482 seconds

The one-by-one algorithm has a very low number of failures (in practice
in our application, no failures) because it always keeps the number of nodes
loaded to an absolute minimum. However, it performs a very large number
of load events, and loads a very large number of nodes, since many nodes
are loaded multiple times.
In our real application, this algorithm can take 30–40 minutes to complete,
which is completely unacceptable for our users.
Because the process takes so long, there is almost no limit to the amount
of pre-processing we should do if it improves performance. Even if our
pre-processing step took a whole minute (which would imply an extremely

complex algorithm) it would be a net gain if it improved performance by
as little as 2.5%. However, it is desirable to keep complexity to a minimum
to reduce the maintenance burden for this code.

Avoiding unneccesary work
The one-by-one algorithm reduces memory usage to a minimum, but has
very poor performance, while the all-at-once algorithm has better
performance (if it didn’t crash) and far too much memory usage. We should
be able to find solutions in the middle ground of the memory usage/
performance trade-off.
The first observation to make is that if A depends on B, then B and all its
dependents will be loaded when we load A. Thus we can improve on the
one-by-one algorithm simply by skipping B – it will be covered when we
do A.
In code, we have a helper function get_minimal_set, which finds a set
of nodes that cover the whole graph if you include their dependencies. It
is shown in listing 6.
And once we have that helper, the algorithm itself, which we shall call
skip-dependents, is simple. It is shown in listing 7.
The result of running this algorithm against 1000 random graphs is:

 Percentage of failures: 0
 Average number of individual node loads: 9785
 Average number of load events: 223.188
 Average largest load size: 223
 Average batch calculation time: 0.038484 seconds

The skip-dependents algorithm is functionally identical to one-by-one – it
simply avoids doing unnecessary work. It works much faster than one-by-
one, and fails just as infrequently.

Listing 5

void algorithm_one_by_one(
 const DependencyGraph& graph,
 IGraphLoader& loader
)
{
 DependencyGraph::vertex_iterator vit, vend;
 for(tie(vit, vend) = vertices(graph);
 vit != vend; ++vit)
 {
 set<Node> s;
 s.insert(*vit);
 loader.LoadNodes(s);
 }
}

Listing 6

void remove_from_set(set<Node>& set_to_modify,
 const set<Node>& set_to_remove)
{
 set<Node> difference_set;
 set_difference(set_to_modify.begin(),
 set_to_modify.end(), set_to_remove.begin(),
 set_to_remove.end(),
 inserter(difference_set,
 difference_set.begin()));
 set_to_modify.swap(difference_set);
}
set<Node> get_minimal_set(
 const DependencyGraph& graph)
{
 set<Node> minimal_set;
 set<Node> covered_set;
 DependencyGraph::vertex_iterator vit, vend;
6 | Overload | June 2010

FEATUREANDY BALAAM

Each batch with all its dependencies
should be smaller than the maximum

number of nodes we can fit in memory
However, the performance of skip-dependents is still poor. We can do
much better by handling nodes in batches.

Batches of nodes
We need to reduce the number of nodes that are loaded more than once,
and reduce the overall number of load events, so we gather our nodes into
batches, and process several at once. Each batch with all its dependencies
should be smaller than the maximum number of nodes we can fit in
memory, but (if we ignore the performance impact of using a large amount
of memory) we should load as many nodes as possible within this
constraint. A very simple application of this idea is an algorithm we will
call ‘arbitrary-batches’.

Arbitrary batches
The arbitrary-batches algorithm handles the nodes in an arbitrary order. It
starts with the first node and calculates its dependency set. If the set is
smaller than the maximum number of nodes, it adds the second node and
its dependencies to the set and again compares its size with the maximum.
When the number of nodes goes over the maximum, it stops and reverts
to the previous set, and loads it. It now continues with the node that was
rejected from the previous set and repeats the process until all nodes have
been loaded.
To implement this algorithm we will need a small helper function
get_dependency_set_size, shown in listing 8.
The main code for arbitrary-batches is shown in listing 9.
The result of running this algorithm against 1000 random graphs is:

 Percentage of failures: 0
 Average number of individual node loads: 1500
 Average number of load events: 4.065
 Average largest load size: 399
 Average batch calculation time: 0.051833 seconds

This shows a huge improvement over the skip-dependents algorithm. We
tend to use almost as much memory as we are allowed, but perform far
fewer load events, and load far fewer nodes in total, so the execution time
is much smaller.

Listing 6 (cont’d)

 for(tie(vit, vend) = vertices(graph);
 vit != vend; ++vit)
 {
 // Skip the node if it has been covered
 if(covered_set.find(
 *vit) != covered_set.end())
 {
 continue;
 }
 // Find all the dependencies of this node
 set<Node> this_node_deps_set;
 this_node_deps_set.insert(*vit);
 expand_to_dependencies(this_node_deps_set,
 graph);
 // Remove them all from the minimal set
 // (since they are covered by this one)
 remove_from_set(minimal_set,
 this_node_deps_set);
 // Add this node to the minimal set
 minimal_set.insert(*vit);
 // Add its dependencies to the covered set
 covered_set.insert(
 this_node_deps_set.begin(),
 this_node_deps_set.end());
 }
 return minimal_set;
}

Listing 7

void algorithm_skip_dependents(const
DependencyGraph& graph, IGraphLoader& loader)
{
 set<Node> minimal_set = get_minimal_set(
 graph);
 // Load each node in the minimal set one by
 // one (similar to "one-by-one" algorithm).
 for(set<Node>::const_iterator msit =
 minimal_set.begin();
 msit != minimal_set.end(); ++msit)
 {
 set<Node> s;
 s.insert(*msit);
 loader.LoadNodes(s);
 }
}

Listing 8

size_t get_dependency_set_size(
 const set<Node>& set_to_examine,
 const DependencyGraph& graph)
{
 set<Node> set_with_deps = set_to_examine;
 expand_to_dependencies(set_with_deps, graph);
 return set_with_deps.size();
}

June 2010 | Overload | 7

FEATURE ANDY BALAAM

In theory we could find the optimum
batching arrangement
Optimal batches?
Of course, we can do better than batching nodes in an arbitrary way. In
theory we could find the optimum batching arrangement by examining all
possible batches of nodes and picking the arrangement that results in the
smallest number of batches that are within the maximum size. We will call
this algorithm ‘examine-all-batches’.
An algorithm for finding all partitions of a set (another way of saying all
ways of batching our nodes) may be found in [Knuth] (‘Algorithm H’),
along with a discussion of how many partitions we will find for different
sizes of set. Actually implementing this algorithm, however, could be
argued to be a waste of time, since the number of possible batching
arrangements of 700 nodes is 4767951360475272425825869131310359
1049625552706125354013210502761953378610596358306163334176
6382837389648611612771677592830522886078735705416705452453
0083269831183502788562932464154428255258721327678807036112
6951791641069938908389861741629643606799898061986317211973
7049355905570755067439951890427106073603254568375246887867
6514038023471975789784861505034328890240291587051251742428
5761744160612869572326405029238944485404979795537149335020
9036229336528542064073126866607390273651430141623552713645
9863077164440101844191814353562361353764486791169713112896
3349079158802859728362865799947736175710729173180826359165
9810246723306278903986141179776725930061451455179970017669
7488141946120405154651089221589609953250547983702785787110
1563679069671247610784628321346593151163237859473294205329
1554519641861084701081135043648742081247169650980824359937
4603752438605499105652783354549523298480833530962392373899
5926309823483183213922389634125147808277261162703079835633
7930215506087194224901166091100188464678604522172032294810
3422072692250026743861801543458295142349088364440204383351
7545326505318244393247469481580328379946573497946031045481
6751416300950275207208963066740799248661317055264382949360
7125716266610265205109758174176548083365841664094767852250
38811885, which is a lot.3

Of course, the number above is unfair, since we already have a way of
reducing the effective number of nodes by skipping dependencies. When
we run the skip-dependents algorithm, we find that the average size set of
nodes needed to cover the whole graph is 223. The number of possible
batching arrangements of 223 nodes is 1004049625822785951249518425
7199289182868965124946595191878871277114846238760764360415
4059186569653443630271583320290432899249190157369402894454
5542105988844060557719777371514205364453184534227537669600
3469936373806439388016605193941846167310155655690749035527

Listing 9

void algorithm_arbitrary_batches(
 const DependencyGraph& graph,
 IGraphLoader& loader)
{
 set<Node> minimal_set = get_minimal_set(
 graph);
 set<Node> current_set;
 set<Node> proposed_set;

 // current_set is the set that currently fits
 // into our maximum size (or a set of size 1,
 // which may not fit, but is as small as we can
 // go).

 // Loop through all the elements. For each
 // element, try to add it to the proposed_set.
 // If it doesn't fit, load current_set.

 for(set<Node>::const_iterator msit =
 minimal_set.begin();
 msit != minimal_set.end(); ++msit)
 {
 proposed_set.insert(*msit);

 // If proposed_set contains more than one
 // element, and is too big, reject it and
 // load current_set.
 if(proposed_set.size() > 1 &&
 get_dependency_set_size(proposed_set,
 graph) > loader.GetMaxNodes())
 {
 loader.LoadNodes(current_set);

 // Now reset to form the next batch
 proposed_set.clear();
 proposed_set.insert(*msit);
 current_set.clear();
 }

 // proposed_set is now acceptable, so make
 // current_set identical to it by adding the
 // node.
 current_set.insert(*msit);
 }

 if(!current_set.empty())
 {
 loader.LoadNodes(current_set);
 }

}

3. The number of ways of partitioning different size sets are called Bell
numbers. There is lots of interesting discussion of them in [Knuth].
The numbers shown here were calculated using a small Ruby
program found on Wikipedia at http://en.wikipedia.org/wiki/
Bell_number.
8 | Overload | June 2010

http://en.wikipedia.org/wiki/Bell_number

FEATUREANDY BALAAM
61891337074722157925554249427248905798127728711896580,
which is a lot.
So, we need to find a compromise that picks good batches without waiting
around to find the absolute best one.

Best partner
One compromise is to work through in an arbitrary order, but for each node
we encounter, pick the best possible partner for it from the other nodes.
This means in the worst case we need to evaluate (N^2)/2 unions. We will
call this algorithm ‘pick-best-partner’.
The code for pick-best-partner is shown in listing 10.
The result of running this algorithm against 1000 random graphs is:

 Percentage of failures: 0
 Average number of individual node loads: 1104
 Average number of load events: 3.042
 Average largest load size: 398
 Average batch calculation time: 2.73926 seconds

This algorithm produces a good result, with fewer load events being
needed than for the arbitrary-batches algorithm. However, it is
considerably more complex than the other algorithms, which makes it
harder to understand, and it is also more computationally expensive. It is
worth considering simpler alternatives.

Order by size
The last algorithm we considered is called ‘order-by-size’. It is
computationally simple, and produces results comparable with pick-best-
partner.
The order-by-size algorithm is designed to exploit a common property of
graphs, which is that they often consist of relatively separate clusters of
connected nodes. As illustrated in figure 2, let us imagine that we have a
cluster of nodes that is depended on by several others: A, B and C. The
first thing to note is that there is no need for us explicitly to load any of
the nodes in the cluster, since they will automatically be loaded when any
of A, B or C is loaded. In fact, using the skip-dependents algorithm, they
will all be loaded three times – once for each of A, B and C.
It is obviously a good solution in this case for us to batch A, B and C
together, and the pick-best-partner algorithm is quite likely to do this.
If we assume that our graphs are of a structure like this, however, there is
a simpler algorithm that may well result in A, B and C being batched
together. It comes from the observation that the set of dependencies of A,
B and C are of similar size. Thus if we order the nodes by the size of their
dependency set, and then perform the same algorithm as arbitrary-batches,
we are likely to place A, B and C near each other in our ordering, and
therefore to batch them together. This algorithm is much less complex and
computationally expensive than pick-best-partner so if it works well, it
may be more helpful when we have very large graphs.
The code for order-by-size is shown in listing 11.
The result of running this algorithm against 1000 random graphs is:

 Percentage of failures: 0
 Average number of individual node loads: 1104
 Average number of load events: 3.008
 Average largest load size: 397
 Average batch calculation time: 0.056774 seconds

Listing 10

void algorithm_pick_best_partner(const
DependencyGraph& graph, IGraphLoader& loader)
{
 // This set contains nodes that have not yet been
 // processed
 set<Node> remaining_set = get_minimal_set(
 graph);

 while(!remaining_set.empty())
 {
 // This set is what we will load
 set<Node> current_set;

 for(set<Node>::iterator it =
 remaining_set.begin();
 it != remaining_set.end();)
 {
 current_set.insert(*it);
 remaining_set.erase(it);
 it = remaining_set.end();
 size_t best = loader.GetMaxNodes();
 // Even our best match must be below the limit

 for(set<Node>::iterator i =
 remaining_set.begin();
 i != remaining_set.end(); ++i)
 {
 set<Node> current_plus_one(
 current_set);
 current_plus_one.insert(*i);

 size_t dep_size =
 get_dependency_set_size(
 current_plus_one, graph);

 if (dep_size < best)
 {
 best = dep_size;
 it = i;
 }
 }
 }

 // Load the best set we have found.
 loader.LoadNodes(current_set);
 }
}

Figure 2
June 2010 | Overload | 9

FEATURE ANDY BALAAM
This algorithm performs almost exactly as well as pick-best-partner on the
random graphs against which it was tested, and is easier to understand and
faster to run.

Conclusions
After our investigation, the order-by-size algorithm was chosen by our
team to choose the batches of nodes to be processed in a scalable way. The
next release of our product is out soon, and scales much better than the
previous one.
I hope that this glimpse into the thinking process we went through as we
worked to make our product scale to handle larger models provides an
insight into the different ways of thinking about algorithms that are needed
to address a problem in a scalable way.
I feel that our results show that sometimes the most mathematically
complete algorithm can be overkill, and a much simpler approach can be
a better solution. We chose a solution that satisfied our requirements,
executed quickly, and avoided introducing undue complexity into the code
base.

Acknowledgements
Thanks to Charles Bailey, Edmund Stephen-Smith, Ric Parkin and the
reviewers for comments, correction and code.

References
[BGL] http://www.boost.org/doc/libs/release/libs/graph/
[Knuth] Knuth, Donald E. ‘Combinatorial Algorithms’, in preparation.

Downloadable from http://www-cs-faculty.stanford.edu/~knuth/
taocp.html

Listing 11

typedef pair<size_t, Node> size_node_pair;

struct NodeToPair
{
 NodeToPair(const DependencyGraph& graph)
 : graph_(graph)
 {
 }

 /** Given a node, returns a pair of the size of
 * its dependency set and the node. */
 size_node_pair operator()(const Node& v)
 {
 set<Node> tmp_set;
 tmp_set.insert(v);
 return size_node_pair(
 get_dependency_set_size(tmp_set,
 graph_), v);
 }

 const DependencyGraph& graph_;
};

void algorithm_order_by_size(const
DependencyGraph& graph, IGraphLoader& loader)
{
 set<Node> minimal_set = get_minimal_set(
 graph);

 // Create a set of nodes sorted by their
 // dependency set size.
 NodeToPair v2p(graph);
 // Create a converter v->(size,v)
 set<size_node_pair> sorted_set;
 transform(minimal_set.begin(),
 minimal_set.end(),
 inserter(sorted_set, sorted_set.begin()),
 v2p);

 // The rest is identical to arbitrary-batches,
 // except looping through sorted_set instead of
 // minimal_set.
 set<Node> current_set;
 set<Node> proposed_set;
 for(set<size_node_pair>::const_iterator ssit =
 sorted_set.begin();
 ssit != sorted_set.end(); ++ssit)
 {
 proposed_set.insert(ssit->second);
 if(proposed_set.size() > 1 &&
 get_dependency_set_size(proposed_set,
 graph) > loader.GetMaxNodes())
 {
 loader.LoadNodes(current_set);
 proposed_set.clear();
 proposed_set.insert(ssit->second);
 current_set.clear();
 }
 current_set.insert(ssit->second);
 }
 if(!current_set.empty())
 {
 loader.LoadNodes(current_set);
 }
}

© Copyright International Business Machines Corporation 2010
Licensed Materials - Property of IBM

This sample program may be used, executed, copied and modified
without obligation to make any royalty payment, as follows:

(a) for the user's own instruction and study.

No other rights under copyright are granted without prior written
permission of International Business Machines Corporation.

NO WARRANTY

These materials contain sample application programs which illustrate
programming techniques. These materials and samples have not been
thoroughly tested under all conditions. IBM, therefore, cannot and does
not guarantee, warrant or imply the reliability, serviceability, or function
of these programs.

To the fullest extent permitted by applicable law, these programs are
provided by IBM "AS IS", without warranty of any kind (express or
implied) including any implied warranty of merchantability or fitness for
particular purpose.

Copyright
10 | Overload | June 2010

http://www.boost.org/doc/libs/release/libs/graph
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www-cs-faculty.stanford.edu/~knuth/taocp.html

Bl

How to apply
Please email or post CV with covering letter, stating which position
you are applying for to:

Dr Steven Kurlander
Oxford Asset Management
Broad Street
Oxford
OX1 3BP
United Kingdom

accu@applytooxam.com

+44 1865 258 138

www.oxam.com

Benefi ts
Health Insurance (including family)
Pension Scheme
Life Insurance

Closing Date
Ongoing

Start Date
Spring 2010

Who Are We?
OxFORD ASSET MANAGEMENT is an invest-
ment management company situated in the
centre of Oxford. Founded in 1996, we’re proud
of having generated positive returns for our in-
vestors each year, including 2008, particularly
as many assets are managed for pensions,
charities and endowments. We blend the intel-
lectual rigour of a leading research group with
advanced technical implementation. We like to
maintain a low profi le, nobody comes to work in
a suit and we are a sociable company.

What Do We Do?
We use quantitative computer-based models
to predict price changes in liquid fi nancial in-
struments. Our models are based on analyz-
ing as much data as we can gather and we
actively trade in markets around the world. As
these markets become more effi cient, partly
because of organizations like ours, we need
to develop improved models in order to remain
competitive. Working to understand and profi t
from these markets provides many interesting
mathematical, computational and technical
challenges, especially as markets become in-
creasingly electronic and automated. We enjoy
tackling diffi cult problems, and strive to fi nd
better solutions.

Who Do We Want?
Although most of us have advanced degrees
in mathematics, computer science, physics or
econometrics from the world’s leading universi-
ties and departments, we are just as interested
in raw talent and will consider all outstanding
graduate applicants. We expect all prospective
candidates to work effi ciently both in a team
environment and individually. We value mental
fl exibility, innovative thinking and the ability to
work in a collaborative atmosphere. No prior ex-
perience in the fi nancial industry is necessary.
We want to hear from you if you are ambitious
and would relish the challenge, opportunity and
excellent compensation offered.

Software Engineers
We are seeking outstanding software engineers to develop
and maintain system critical software. You will be responsible
for all aspects of software development on a diverse range
of projects, such as automating trading strategies, integrating
third party data into our system and the development of data
analysis tools.

You will have the following:

A high quality degree in computer science or related disci-•
pline

Several years • C++ experience, including the use of the STL
and Boost

The ability to write high performance code without sacrifi c-•
ing correctness, stability or maintainability

A good understanding of Linux, scripting, working with large •
numerical data sets and large scale systems

Mental fl exibility, innovative thinking and the ability to work •
quickly in a collaborative atmosphere

Any experience in the following areas would be advantageous:
numerical analysis, optimisation, signal processing, statistics,
machine learning or natural language processing.

You’re developing software that’s highly effi cient and never fails.
We’re using software to generate positive returns in chaotic
fi nancial markets. We think we should talk.

E CEPTIONAL REWARDS, CENTRAL O FORD

Why does a leading Quant Fund want
to recruit leading software engineers?

FEATURE IAN BRUNTLETT
Socially Responsible
Recruitment
Finding talented people is hard. Ian Bruntlett
highlights an under-appreciated source.
ome companies portray themselves as having a social conscience –
usually by explaining how ‘green’ is the power that the company
uses. There is another angle to being a socially beneficial company,

that of supporting disabled people – part of society’s forgotten population.
That category is split into two more categories: physical disability and
mental disability. I will concentrate on the psychiatric side of things,
outlining a typical process of treatment, and then explore a few of the ways
socially aware companies can give their support.
Initially this article focussed on the use of people with psychiatric
problems in software houses. Upon consideration this article could be
applied to people within the I.T. industry and beyond.
People start off being patients, staying on a psychiatric ward some time,
with some activities run by the staff. After being patients, people are called
‘clients’ or ‘service users’ when they get moved out of the hospital and
into the community.
Most of my information about mental health is based on first hand
experience and by being acquainted with other patients. There are NHS
sponsored ‘gatherings’ where NHS staff meet patients to learn from their
experiences. See the references section at the end of this article for
additional sources of information.
Official psychiatric articles usually have a high level of statistics and are
kept hidden behind paywalls on the internet. For the purposes of this article
I have drawn on personal experience and shown my key worker draft
copies of this article.
Physical disability is something I haven’t personally experienced.
However, most buildings may need a ramp for wheelchair access and the
provision of stair lifts for the physically disabled. If you’re missing an arm
or a leg then most people in that situation get by OK. Contact (see
References at the end) provides stair lifts for people to use. It is a ‘visible’
illness and people find it easier to relate to.
Mental disability is something I have and continue to have experience of.
There is an escalating scale of illness ranging from anxiety or depression
all the way up to manic depression (now known as bipolar disorder) and
schizophrenia. These tend to be ‘invisible’ illnesses and some people find
it harder to relate to.
If mental ill-health bestowed only disadvantages to the sufferer and their
social group, diseases like bipolar disorder and schizophrenia would have
disappeared by now. It has been said that schizophrenics are divided into
two separate camps – either those that can barely tie their shoe laces
together and those that are brilliant thinkers. I know of one person – RC –
who has bipolar disorder yet he held down a high-flying career in
commerce and is very good with poetry. I have been given anecdotal
evidence that a family with autism had a flair for maths [Times] at a

University level of education. I have also read that Richard M. Stallman,
founder of the Free Software Foundation suffers from Asperger’s
syndrome (which in turn is linked to autism).

Schizophrenia
My name’s Ian [Bruntlett] and I have schizophrenia. I experience negative
symptoms and positive symptoms.[NHS] [Wikipedia] Positive symptoms
include hallucinations (auditory mainly, sometimes visual), thought
disorder, delusions and cognitive impairment. Negative symptoms include
withdrawal from social activities, emotional flatness, social apathy.
After nearly a decade of treatment courtesy of the NHS – and with a fair
amount of therapy – you usually build up some idea of what is real and
what is suspect. A foundation of getting to grips with schizophrenia is the
NHS care in the community programme, implemented by a Community
Assertive Outreach Team (CAOT), with social activities (e.g. walking
group) to prevent the kind of social exclusion that people experience.

Psychosis vs reality
When I was first admitted onto a hospital ward, I was psychotic – I had
lost track of reality. The lack of stimuli was a positive aspect of the ward
while I struggled with hearing voices and delusions. It took three months
to get me stable and onto medication. After that I was allocated a CPN
(Community Psychiatric Nurse) and a Social Worker and discharged back
into my own flat in the community.
A variety of approaches were taken to draw me gently back to reality. I
agreed to speak to student psychiatrists about my experiences. I had regular
conversations with staff (a senior nurse, key workers). The medication
helped but the key factor was the NHS staff.
The NHS have a variety of strategies that are used to help patients. One
key strategy is ‘distraction’ from voices, visions and disturbing thoughts.
My main key worker on rehab (then East Loan), ‘CC’, helped me by talking
about my strange beliefs, voices in my head and paranoia by introducing
me to a variety of ‘distraction’ categories. We created an emergency credit
card for use when going out into the community. It stated that I had a mental
health problem, and provided emergency phone numbers. On the other side
it listed the following ‘coping strategies’:

Ground self in present (consciously keeping a tight hold of reality).
Think of consequences of actions.
Try reading a book.
Watch T.V.
If on a bus, look out of a window, move seats.
Phone staff.
Breathing exercises (to regain a sense of calm).
Remember all achievements, positive things that have happened.
Use PRN medication – supplementary medication taken when
required.

S

Ian Bruntlett Ian is a volunteer system administrator for a mental
health charity called Contact (www.contactmorpeth.org.uk).
As part of his work, Ian has compiled a free Software Toolkit
(http://contactmorpeth/wikispaces.com/SoftwareToolkit).
12 | Overload | June 2010

www.contactmorpeth.org.uk
www.contactmorpeth.org.uk
http://contactmorpeth/wikispaces.com/SoftwareToolkit

FEATUREIAN BRUNTLETT

we take in unwanted PCs, fix & refurbish them
and give them away to people with mental health

problems, their carers or their children
Cognitive impairment
Cognitive impairment is such an innocent phrase. Sometimes you lose
track of a conversation. Sometimes it takes seemingly forever to
understand something as simple as a water bill. Sometimes things that took
a day (reading a paperback novel) now takes a lot longer (3 months, at its
worst, now down to 3 or 4 days). Coping with an illness like schizophrenia
is a full time occupation and this can lead to existing skills getting a bit
rusty and missing out on more modern developments. So how does
cognitive impairment start?
One cause of cognitive impairment is staying on an NHS psychiatric ward
itself, for say... eight months solid. They provide a calm, stress free and
low stimulus environment. Most people just sit around drinking NHS tea,
chatting, watching TV or listening to the radio – instead of working on
projects, communicating via emails and reading books.
There is no such thing as ‘keeping busy’ on a ward. With the help of a T.I.
(Technical Instructor), I was allowed to access the internet using the
Occupational Therapy department’s patient access computer. I was able
to keep track of news by reading The Register, to keep in touch with friends
using a Hotmail account, and reading the messages on the accu-general
mailing list. I did try to run a table top RPG on the ward – Call of Cthulhu
– but the would-be players were moved to another unit because they were
caught smoking cannabis.
Another cause of cognitive impairment is medication. Medications usually
have some very nasty side effects. Mine – clozaril – can attack white blood
cells which means I have regular blood tests to check that this is not
happening. Typical medication can also lead to weight gain (eventually
resulting in diabetes), lethargy and poor concentration. Supplementary
medication can also have side effects. I took some – diazepam – and it
made me so tired I just had to sit down and wait for the effects to dissipate.
A final cause is moving onto a specialist rehabilitation unit. Rehab is not
just for drug users and has a variety of workers – Project Workers,
Technical Instructors, Occupational Therapists, Mental Health Nurses,
Psychologists and Psychiatrists. With their help the patients are prepared
for life outside of the hospital. This is where things start getting better.
Patients live on the hospital grounds in a small clustered community of
single person flats. Patients have their week structured in the form of a
weekly planner – various activities are arranged (food shopping, travelling
to and from voluntary work). There is a strategy called graded exposure
which is applied to many things but one instance in particular relates to
how patients move from living on a hospital ward to living in the
community. First you go home for a few hours with a member of staff once
a week, then you go there alone for a few hours, then you go for a day or
two and eventually you are moved out of rehab and into the community.

Productive activity
Once a patient has been stabilised and the right medications worked out,
attention focuses on either going onto a longer stay unit followed by being
moved into the community or going straight out into the community.

For a long time (at least a century), the NHS and the charities that preceded
it have encouraged its stable psychiatric patients to engage in some activity
– usually voluntary work. There are several reasons why the NHS
encourages its patients to engage in these kinds of activities because an
evidence based approach has shown it to be therapeutic and it has been
observed that sitting around all day is bad for physical health – some form
of activity is helpful. There used to be a farm on the hospital’s grounds but
that has long since gone.[StGeorge’s] These days patients work at garden
centres, in the Kiff Kaff (the hospital’s café) or (in my case) in Contact’s
computer project. Salary is a matter of a few pounds a day or, in my case,
a bacon sandwich a day. And patients benefit by experiencing the
discipline of working and, perhaps, gaining skills like cooking or
gardening. After a period of time, the patients also experience the
satisfaction of doing something useful with their lives, having something
tangible to account for their time.
The only cognitive exercise I experienced in the hospital was the weekly
ward quiz. The Occupational Therapy department works towards
preparing the patient for life in the community with skills – there are are
Technical Instructors (T.I.s) and Occupational Therapists (O.T.s). Some
of the skills I gained were travelling on buses in South East
Northumberland, cooking, coping with crowds, finding a role (typically
as a volunteer) and generally building a life outside of the hospital
environment – all things that improve personal independence. Intellectual
skills aren’t a high priority in the NHS. Getting people stable, on the right
medication and with the right amount of in the community support is a high
priority.
For example, Contact, where I work as a volunteer , is a mental health
charity based in Morpeth, Northumberland. [Contact] It was established
in 1986 and it offers support and social contact for all its members. It has
a computer project with two volunteers (me and Michael N) between the
two of us we do all sorts of things. We provide front line support – looking
after the PCs being used in the admin part of Contact, helping members
of staff when a PC starts behaving in an unexpected manner, or tuition –
helping members with computer issues – advice and guidance and help,
dealing with infrastructure installation & maintenance issues (networks,
phones, printers) installed and maintained by Michael N.
Lots of places have a free software policy. We (Contact) have a free
hardware and free software philosophy – we take in unwanted PCs, fix and
refurbish them and give them away to people with mental health problems,
their carers or their children. As part of our philosophy we provide people
with PCs with a selection of free/open source software. [STK]
As a volunteer, the work I do in Contact gives me similar benefits to the
benefits other patients experience when working in the Kiff Kaff. It
involves me with other people – good for preventing social withdrawal. It
is also good for my morale to ‘keep my hand in’, making use of my degree
in I.T. There are challenges – Contact’s I.T. structure is balkanised. We
have a variety of PCs with a variety of Windows and Linux versions.
Officially the Crafts & Internet room is meant to be Windows based but
Michael N and I are reluctant to move back to Windows – so we’re using
Ubuntu Linux in the Internet room and it works OK for us. Tristan S runs
June 2010 | Overload | 13

FEATURE IAN BRUNTLETT

The main foundation is simple: understanding
and flexibility, structure and support.
the Kiff Kaff computers at the hospital and patients are always installing
junk on his (Windows) PCs.
My work in Contact gives me cognitive challenges that other volunteer
jobs don’t give. When dealing with a newly donated computer, I have to
work out why it was donated – was it too old, was it faulty, do we have a
Windows licence for it? Some stuff gets broken down into parts to be used
to fix other PCs. Some stuff is given to IM from the Tyneside Linux User
Group for his various personal projects.
One of the hardest things is tracking down intermittent faults. I had a
donated PC that booted nicely into Windows XP, had a reasonable amount
of RAM with an AMD Athlon CPU. So I tried booting an Ubuntu 10.4
CDR and it failed. The screen just didn’t look right. I downloaded copies
of both memtest86 and memtest86+ and booted from both of them. At just
over 10% complete, the screen display would become corrupted. Delving
into the box revealed that the video card was wobbling a bit. So I dug out
a spare video card, booted up and checked it out – it ran full memtests with
no problems.
Another problem is that while I prefer to use Linux at home, I have to deal
with a variety of Windows versions in Contact. So I sometimes have to
fall back on the knowledge I picked up working on the WIN32 port of the
LiBRiS search engine. If that doesn’t work and checking for help via
mailing lists (Tyneside LUG, accu-general) or Google doesn’t work, I
contact Michael N for suggestions.
Once the hardware is dealt with – first you fix it, then you memtest it, then
you wipe the hard disk with dban (Darik’s Boot and Nuke), then you install
an operating system, then you install a software toolkit [STK]. My software
toolkit is a collection of applications that routinely gets installed on PCs
before they are given away. It include utilities, productivity applications
and games. I’ve got a special form to help me keep track of the status of a
PC being worked on. The act of working on these PCs helps exercise my
brain.
There is a broad spectrum of employees – from volunteers to salaried
employees. The volunteers would ideally be used on less demanding
projects, with the benefit to the volunteer being the opportunity to gain
current experience and learn new things. The path from volunteer to
salaried employee is a broad one.

Intellectual activity and the NHS
Judging matters based on the sizeable population of patients I have seen,
intellectual activity and its encouragement are rare. I was diagnosed late
in life – roughly when I was 30.
If I’d been diagnosed when 18 years old, I would have been medicated and
taken out of normal life and into the culture of being admitted onto and
discharged from psychiatric wards at a key point in my development.
Eventually I would be discharged into social housing (a council flat).
By being diagnosed later on in life, I experienced those things later on. I
was able to do A levels, go to University and work as a programmer –
something I am very grateful for. I was last an in-patient in hospital in 2004.
I was suffering heavily from cognitive impairment and I used a variety of

mental stimuli to return to a reasonable level of intellectual activity. Some
teenage patients do go on to do academic work but all I can say on the
subject is that personally it would have made a demanding situation even
more difficult.

What can patients do?
Well... while care in the community and voluntary work are helpful, it
means the I.T. tradition of moving house to get a new job just can’t happen.
So that means working as a volunteer (e.g. Contact), working for a software
producing company and communicating over the internet, or in a FLOSS
(Free/Libre Open Source Software) project (but which one?), writing book
reviews for CVu. Some of these suggestions should ideally be supported
by a mentor via email.

What advantages do patients have?
There is an evolutionary creativity bonus in favour of people with mental
health problems. [Preti97]
Artistic endeavour is encouraged by the NHS – there is Art Therapy where
the patients create art and it is analysed by an expert. Then there are certain
aspects of Occupational Therapy – from creating Easter and Christmas
cards to painting (pottery and woodwork have been discontinued).
Some illnesses are known to enhance mathematical ability. Certain articles
in the press have discussed the benefits of having an autistic mind.

What can companies do?
The main foundation is simple: understanding and flexibility, structure and
support. Companies would have to accept that sometimes people relapse
and will eventually recover the ability that is usually impaired in such
circumstances. However, when provided with supported opportunities/
projects for people to work on, people are more likely to stay well (stress
permitting) for longer than those who don’t do some form of work.
Flexibility in working practices would be necessary – one size does not fit
all. Most people with mental health issues would typically be working for
a much shorter working week than is conventional. Also, for lots of
sufferers, travel is very difficult so a distance working opportunity would
be good. As well as shorter hours, job sharing is a possible solution.
A key factor would be to provide work which isn’t time critical. In Contact
that could be refurbishing PCs, tutoring other members of Contact,
providing initial technical support. In a software environment that would
probably be R&D, testing and documentation. Some repetitive tasks can
be a therapeutic activity – e.g. doing the washing up in the Kiff Kaff or
installing free software packages (I’ve installed OpenOffice over 100
times now – on different PCs :).

What can the rest of us do?
Be accepting of people’s foibles. Be accepting of people’s disabilities. In
particular, helping people stretch themselves into new roles without
triggering a relapse. For example starting a new employee on a small
project which acts as a refresher task for existing skills. Then suggest new
14 | Overload | June 2010

FEATUREIAN BRUNTLETT

People in employment can experience mental
health problems and providing support and

flexible working conditions instead of making
them redundant can be good for staff morale
things to learn, help with that learning and gradually build up a skill base
that is custom made for your business.

What can companies gain?
Consider what companies can get from a socially responsible recruitment
and staff management policy. People in employment can experience
mental health problems and providing support and flexible working
conditions instead of making them redundant can be good for staff morale.
Having a public policy of supporting existing and new employees that have
mental health problems can be a source of good public relations.
Companies can tap an otherwise untouched vein of creative talent, people
with mental health problems are a good place to start. [BBC]

References and resources
[BBC] Autism sufferers in industry: http://news.bbc.co.uk/1/hi/

8153564.stm
[Bruntlett] My blog: http://schizopanic.blogspot.com/
[Contact] Contact’s web site: http://www.contactmorpeth.org.uk/
[C-Wiki] Contact’s Wiki: http://contactmorpeth.wikispaces.com/
[NHS] NHS web site – http://www.nhs.uk/conditions/schizophrenia/

Pages/Introduction.aspx
[Preti97] Preti, Antonio and Miotto, Paulo (1997) Creativity. Evolution

and Mental Illnesses: http://cogprints.org/2009/1/
preti_a%26miotto_p.html

[NewScientist] Advantages of autism: http://www.newscientist.com/
article/mg20627581.500-the-advantages-of-autism.html

[NorthTypeWear] Northumberland, Tyne & Wear leaflets:
 http://www.ntw.nhs.uk/pic/leaflet.php?s=selfhelp

[StGeorge’s] St Georges Hospital: http://www.stgeorgeshistory.org.uk/
site/

[STK] Contact’s software toolkit: http://contactmorpeth.wikispaces.com/
SoftwareToolkit

[Times] Genetics and the link between maths and autism: http://
www.timesonline.co.uk/tol/life_and_style/health/
article2060584.ece

[Wikipedia] Wikipedia info: http://en.wikipedia.org/wiki/Schizophrenia

Acknowledgements
Thanks to Kevlin Henney, Ric Parkin and the Overload Editorial Readers
for commenting on this article. Also thanks are due to accu-general for
replies to a message about this topic. In particular special thanks are due
Huw Lloyd for his help with the writing of this article.
June 2010 | Overload | 15

http://www.ntw.nhs.uk/pic/leaflet.php?s=selfhelp
http://en.wikipedia.org/wiki/Schizophrenia
http://www.contactmorpeth.org.uk/
http://contactmorpeth.wikispaces.com/
http://schizopanic.blogspot.com/
http://www.timesonline.co.uk/tol/life_and_style/health/article2060584.ece
http://www.timesonline.co.uk/tol/life_and_style/health/article2060584.ece
http://www.newscientist.com/article/mg20627581.500-the-advantages-of-autism.html
http://www.newscientist.com/article/mg20627581.500-the-advantages-of-autism.html
http://www.stgeorgeshistory.org.uk/site/
http://www.stgeorgeshistory.org.uk/site/
http://cogprints.org/2009/1/preti_a%26miotto_p.html
http://cogprints.org/2009/1/preti_a%26miotto_p.html
http://cogprints.org/2009/1/preti_a%26miotto_p.html
http://cogprints.org/2009/1/preti_a%26miotto_p.html
http://www.nhs.uk/conditions/schizophrenia/Pages/Introduction.aspx
http://www.nhs.uk/conditions/schizophrenia/Pages/Introduction.aspx

FEATURE SERGEY IGNATCHENKO
Single-Threading:
Back to the Future?
Dealing with multi-threading is notoriously hard.
Sergey Ignatchenko learns lessons from the past.
o the ‘multi-core revolution’ is finally here [Merritt07, Suess07,
Martin10] (some might argue that it has already been here for
several years, but that’s beyond the point now). Without

arguing whether it is good or bad, we should agree that it is a reality
which we cannot possibly change. The age of CPU frequency
doubling every two years is long gone and we shouldn't expect any
substantial frequency increases in the near future, and while there
are still improvements in single-core performance unrelated to raw
frequency increases, from now on we should count mostly on
multiple cores to improve performance. Will it make development
easier? Certainly not. Does it mean that everybody will need to deal
with mutexes, atomics, in-memory transactions (both with
optimistic and pessimistic locking), memory barriers, deadlocks,
and the rest of the really scary multi-threading stuff, or switch to
functional languages merely to deal with multi-threading? Not
exactly, and we’ll try to show it below. Please note that in this
article we do not try to present anything substantially new, it is
merely an analysis of existing (but unfortunately way too often
overlooked) mechanisms and techniques.

How long is ‘as long as possible’?
It is more or less commonly accepted that multi-threading is a thing which
should be avoided for as long as it is possible. While writing multi-threaded
code might not look too bad on the first glance, debugging it is a very
different story. Because of the very nature of multi-threaded code, it is non-
deterministic (i.e. its behavior can easily differ for every run), and as a
result finding all the bugs in testing becomes unfeasible even if you know
where to look and what exactly you want to test; in addition, code coverage
metrics aren’t too useful for evaluating coverage of possible race scenarios
in multi-threaded code. To make things worse, even if the multi-threaded
bug is reproducible, every time it will happen on a different iteration, so
there is no way to restart the program and stop it a few steps before the
bug; usually, step-by-step debugging offsets fragile race conditions, so it
is rarely helpful for finding multi-threaded bugs. With post-mortem
analysis of multi-threaded races using log files usually being impossible
too, it leaves developer almost without any reliable means to debug multi-
threaded code, making it more of a trial-and-error exercise based on ‘gut
feeling’ without a real understanding what is really going on (until the bug
is identified). Maintaining multi-threaded code is even worse: heavily
multi-threaded code tends to be very rigid and fragile, and making any
changes requires careful analysis and lots and lots of debugging, making
any mix of frequently changed business logic with heavy multi-threading
virtually suicidal (unless multi-threading and business logic are clearly
separated into different levels of abstraction).

With all these (and many other) problems associated with multi-threaded
code, it is easy to agree that multi-threading should be avoided. On the
other hand, there is some disagreement on how long we can avoid it. In
this article we will try to discuss how performance issues (if there are any)
can be handled without going into too much detail of multi-threading.
While not always possible, the number of cases when multi-threading can
be avoided is extensive. And as discussed above whenever you can avoid
it – you should avoid it, despite the potential fear that programs without
multi-threading aren’t ‘cool’ anymore. After all, the end-user (the guy who
we all are working for) couldn’t care less how many threads the program
has or whether it utilizes all the available cores, as long as the program
works correctly and is fast enough. In fact, using fewer cores is often
beneficial for the end-user, so he’s able to do something else at the same
time; we also need to keep in mind that overhead incurred by multi-
threading/multi-coring can be huge, and that Amdahl’s Law provides only
the theoretical maximum speedup from parallelization, with realized gains
often being not even close to that. If a single-threaded program does
something in a minute on one core, and multi-threaded one does the same
thing in 55 seconds on 8 cores (which can easily happen if the granularity
of context switching is suboptimal for any reason), it looks quite likely that
user would prefer single-threaded program.

‘No Multi-Threaded Bugs’ Bunny & ‘Multithreaded
Gorrillazz’
Let us consider a developer who really hates dealing with those elusive
multi-threading bugs. As he is our positive hero, we need to make him
somewhat cute, so let’s make him a bunny rabbit, with our hero becoming
‘No Multi-Threaded Bugs’ Bunny. And in opposition to him there is a
whole bunch of reasons, which try to push him into heavy multi-threading
with all the associated problems. Let’s picture them as ‘Multithreaded
Gorrillazz’ defending team. To win, our ‘No MT Bugs’ Bunny needs to
rush through the whole field full of Gorrillazz, and score a touchdown.
While it might seem hopeless, he has one advantage on his side: while
extremely powerful and heavy, Gorrillazz are usually very slow, so in
many cases he can escape them before they can reach him.
A few minor notes before the game starts: first of all, in this article we will
address only programs which concentrate on interacting with the user one
way or another (it can be a web, desktop, or mobile phone program, but

S

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
16 | Overload | June 2010

FEATURESERGEY IGNATCHENKO
in te rac t ion shou ld be a subs tan t i a l pa r t o f i t) . Sc ien t i f i c
calculations/HPC/video rendering farms/etc. is a completely different
game which is played on a very different field, so we will not discuss it
here. Second important note is that we’re making a distinction between ‘a
bit of multi-threaded code in a very limited number of isolated places’ and
‘massive multi-threading all over the code’. While the former can usually
be managed with a limited effort and (given that there are no better options)
we’ll consider it as acceptable, the latter is exactly the thing we’re aiming
to avoid.

Houston, have we got a problem?
So, our ‘No MT Bugs’ Bunny is standing all alone against the whole field
of fierce Gorrillazz. What is the first move he shall make? First of all, we
need to see if he’s writing client-side code or server-side code. In the first
two quarters of the game, we will concentrate on client-side code, with
server-side considered in the quarters 3&4 (coming in the next issue). And
if the application is client-side, then the very first question for our hero is
the following: does his application really experience any performance
problems (in other words, would users actually care if the application runs
faster)? If not, he can simply ignore all the Gorrillazz at least at the moment
and stay single-threaded. And while Moore’s law doesn’t work any more
for frequencies, and modern CPUs got stuck at measly 3-4GHz, it is still
about 1000 times more than the frequency of the first PCs, which (despite
a 1000-times-less-than-measly-3-4-GHz-modern-CPUs speed) were
indeed able to do a thing or three. It is especially true if Bunny’s application
is a business-like one, with logic like ‘if user clicks button ‘ok’, close this
dialog and open dialog ‘ZZZ’ with field ‘XXX’ set to the appropriate value
from previous dialog’; in cases like the last one, it is virtually impossible
to imagine how such logic (taken alone, without something such as
associated MP4 playing in one of the dialogs – we’ll deal with such a
scenario a bit later), can possibly require more than one modern core
regardless of code size of this logic.

To block or not to block – there is no question
If our ‘No MT Bugs’ Bunny does indeed have performance problems with
his client application, then there is a big chance that it is related to I/O (if
there are doubts, a profiler should be able to help clarify, although it’s not
always 100% obvious from the results of the profiling). If a user

experiences delays while the CPU isn’t loaded, the cause
often has nothing to do with using more cores, or with CPU
in general, but is all about I/O. While hard disk capacities
went up tremendously in recent years, typical access time

experienced much more
modest improvements, and

is still in the order of
10ms, or more than

ten to the seventh
power CPU clock

cycles. No wonder, that if Bunny’s program accesses the disk heavily the
user can experience delays. Network access can incur even larger delays:
while in a LAN typical round-trip time is normally within 1ms, typical
transatlantic round-trip time is around 100-200ms, and that is only if
everything on the way works perfectly; if something goes wrong, one can
easily run into delays on the order of seconds (such as DNS timeout or a
TCP retransmit), or even minutes (for example, the typical BGP
convergence time [Maennel02]); the last number is about eleven orders of
magnitude larger than the CPU clock time. As Garfield the Cat would have
put it: ‘Programmers who’re blocking UI while waiting for network I/O,
should be dragged out into the street and shot’.
The way to avoid I/O delays for the user without going into multi-threading
has been well-known since at least 1970s, but unfortunately is rarely used
in practice; it is non-blocking I/O. The concept itself is very simple: instead
of telling the system ‘get me this piece of information and wait until it’s
here’, say ‘start getting this piece of information, return control to me right
away and let me know when you’re done’. These days non-blocking I/O
is almost universally supported (even the originally 100%-thread-oriented
Java eventually gave up and started to support it), and even if it is not
supported for some specific and usually rather exotic API function (such
as FlushFileBuffers() on Windows), it is usually not that big
problem for our Bunny to implement it himself via threads created
specially for this purpose. While implementing non-blocking I/O himself
via threads will involve some multithreaded coding, it is normally not too
complicated, and most importantly it is still confined to one single place,
without the need to spread it over all the rest of the code.

Non-blocking I/O vs heavy multi-threading
Unfortunately, doing things in parallel (using non-blocking I/O or via any
other means) inherently has a few not-so-pleasant implications. In
particular, it means that after the main thread has started I/O, an essentially
new program state is created. It also means that program runs are not 100%
deterministic anymore, and opens the potential for races (there can be
differences in program behavior depending on at which point I/O has
ended). Despite all of this, doing things in parallel within non-blocking I/O
is still much more manageable than a generic heavily multi-threaded
program with shared variables, mutexes etc. Compared to heavily multi-
threaded approach, a program which is based on non-blocking I/O usually
has fewer chances for races to occur, and step-by-step debugging has more
chances to work. This happens because while there is some non-
determinism in non-blocking I/O program, in this case a number of
significantly different scenarios (‘I/O has been completed earlier or later
than certain other event’) is usually orders of magnitude smaller than the
potential number of different scenarios in a heavily multi-threaded
program (where a context switch after every instruction can potentially
cause substantially different scenarios and lead to a race). It can even be
possible to perform a formal analysis of all substantially different scenarios
due to different I/O timing, providing a theoretical proof of correctness (a
June 2010 | Overload | 17

FEATURE SERGEY IGNATCHENKO
similar proof is definitely not feasible for any heavily multi-threaded
program which is more complicated than ‘Hello, World!’). But the most
important advantage of non-blocking I/O approach is that, with proper
level of logging, it is possible to reconstruct the exact sequence of events
which has led to the problem, and to identify the bug based on this
information. This means we still have some regular way to identify bugs,
not relying on trial-and-error (which
can easily take years if we're trying
to identify a problem
which manifests itself
only in production,
and only once in a
while); in addition, it
also means that we
can also perform post-mortem analysis in
production environments.
These improvements in code quality and
debugging/testing efficiency don’t come for free.
While adding a single non-blocking I/O is usually
simple, handling lots of them can require quite a substantial effort. There
are two common ways of handling this complexity. One approach is event-
driven programming, ubiquitous in the GUI programming world for user
events; for non-blocking I/O it needs to be extended to include ‘I/O has
been completed’ events. Another approach is to use finite state machines
(which can vary in many aspects, including for example hierarchical state
machines). We will not address the differences of these approaches here,
instead mentioning that any such implementations will have all the
debugging benefits described above.
One common problem for both approaches above is that if our Bunny has
lots of small pieces of I/O, making all of them non-blocking can be quite
tedious. For example, if his program makes a long search in a file then,
while the whole operation can be very long, it will consist of many smaller
pieces of I/O and handling all associated states will be quite a piece of
work. It is often very tempting to separate a whole bunch of micro-I/Os
into a single macro-operation to simplify coding. This approach often
works pretty well, but only as long as two conditions are met: (a) the whole
such operation is treated as similar to a kind of large custom non-blocking
I/O; (b) until the macro-operation is completed, there is
absolutely no interaction between this macro-operation and the
main thread, except for the ability to cancel this macro-
operation from the main thread. Fortunately, usually these two
conditions can be met, but as soon as there is at least some
interaction added, this approach won’t work anymore
and will need to be reconsidered (for example, by
splitting this big macro-operation into two non-
blocking I/O operations at the place of interaction, or
by introducing some kind of message-based
interaction between I/O operation and main thread;
normally it is not too difficult, though if the
interaction is extensive it can become rather
tedious).
Still, despite all the associated complexities, one of those approaches,
namely event-driven approach, has an excellent record of success, at least
in GUI programming (it will be quite difficult to find a GUI framework
which isn’t event-driven at least to a certain extent).

If it walks like a duck, swims like a duck, and quacks
like a duck...
If after escaping ‘Long I/O’ Gorrilla, Bunny’s client-side program is still
not working as fast as the user would like, then there are chances that it is
indeed related to the lack of CPU power of a single core. Let’s come back
to our earlier example with business-like dialogs, but now let’s assume that
somewhere in one of the dialogs there is an MP4 playing (we won’t ask
why it’s necessary, maybe because a manager has said it’s cute, or maybe
marketing has found it increases sales; our Bunny just needs to implement
it). If Bunny would call a synchronous function play_mp4() at the point
of creating the dialog, it would stop the program from going any further

before the MP4 ends. To deal with the problem, he clearly needs some kind
of asynchronous solution.
Let’s think about it a bit. What we need is a way to start rendering, wait
for it to end, and to be able to cancel it when necessary... Wait, but this is
exactly what non-blocking I/O is all about! If so, what prevents our Bunny
from representing this MP4 playback as a yet another kind of non-blocking

I/O (and in fact, it is a non-blocking output, just using the screen
instead of a file as an output device)? As soon as we can call
start_playing_mp4_and_notify_us_when_you_
re_done(), we can safely consider MP4 playback as a
custom non-blocking I/O operation, just as our custom file-
search operation we’ve discussed above. There might be

a multi-threaded wrapper needed to wrap play_mp4()
into a non-blocking API, but as it needs to be done only
once: multi-threading still stays restricted to a very

limited number of places. The very same approach will also
cover lots of situations where heavy calculations are necessary

within the client. How to optimize calculations (or MP4
playback) to split themselves over multiple cores is

another story, and if our Bunny is writing yet another video codec, he
still has more Gorrillazz to deal with (with chances remaining that one of
them will get him).

Single-thread: back to the future
If our ‘No MT Bugs’ Bunny has managed to write a client-side program
which relies on its main GUI thread as a main loop, and treats everything
else as non-blocking I/O, he can afford to know absolutely nothing about
threads, mutexes and other scary stuff, making the program from his point
of view essentially a single-threaded program (while there might be
threads in the background, our Bunny doesn’t actually need to know about
them to do his job). Some may argue that in 2010 going single-threaded
might sound ‘way too 1990-ish’ (or even ‘way too 1970-ish’). On the other
hand, our single-thread with non-blocking I/O is not exactly the single-
thread of linear programs of K&R times. Instead, we can consider it a result
of taking into account the strengths and weaknesses of both previous

approaches (classical single-
th r e aded and c l a s s i ca l

heavily multi-threaded) and
taking a small step further,
trying to address the issues
specific to both of them.
In some very wide sense,

we can even cons ide r
single-thread → multi-thread
→ s i ng l e - t h r ead -wi th -
nonblocking-I/O transition,

s imi l a r t o Hege l i an bud→
blossom→ fruit [Hegel1807]. In
practice, architectures based on
non-blocking I/O are usually more

s t r a igh t fo rwa rd , c an be
understood more easily, and most

importantly, are by orders of magnitude
easier to test and debug than their heavily

multi-threaded counterparts.

Last-second attempt
Our ‘No MT Bugs’ Bunny has already got far across the client side of the
field, but if he hasn’t scored his touchdown yet, he now faces the mightiest
of remaining Gorrillazz, and unfortunately he has almost no room to
maneuver. Still, there is one more chance for him to escape the horrible
fate of heavily multi-threaded programming. It is good old algorithm
optimization. While a speed up of a few percent might not be enough to
keep you single threaded, certain major kinds of optimizations might make
all the multi-threading (and multi-coring) unnecessary (unless, of course,
you’re afraid that a program without multi-core support won’t look ‘cool’
anymore, regardless of its speed). If our Bunny’s bottleneck is a bubble
18 | Overload | June 2010

FEATURESERGEY IGNATCHENKO
sort on a 10M element array, or if he’s looking for primes by checking
every number N by dividing it by every number in 3..sqrt(N) range [Blair-
Chappell10], there are significant chances that he doesn’t really need any
multi-coring, but just needs a better algorithm. Of course, your code
obviously doesn’t have any dreadfully inefficient stuff, but maybe it’s still
worth another look just to be 100% sure? What about that repeated linear
scan of a million-element list? And when was the last time when you ran
a profiler over your program?

Being gotcha-ed
Unfortunately, if our Bunny hasn’t scored his touchdown yet, he’s not too
likely to score it anymore. He’s been gotcha-ed by one of the Multithreaded
Gorrillazz, and multi-threading seems inevitable for him. If such a
situation arises, some developers may consider themselves lucky that they
will need to write multi-threaded programs, some will hate the very
thought of it; it is just a matter of personal preference. What is clear though
is that (even if everything is done properly) it will be quite a piece of work,
and more than a fair share of bugs to deal with.
Tools like OpenMP or TBB won’t provide too much help in this regard:
while they indeed make thread and mutex creation much easier and hide
the details of inter-thread communication, it is not thread creation but
thread synchronization which causes most of the problems with multi-
threaded code; while OpenMP provides certain tools to help detecting race
conditions a bit earlier, the resulting code will still remain very rigid and
fragile, and will still be extremely difficult to test and debug, especially in
production environments

Quarter 1&2 summary
While we have seen that our Bunny didn’t score a touchdown every time,
he still did pretty well. As we can see, he has scored 4 times, and has been
gotcha-ed only once. The first half of the game has ended with a score of
‘No Multi-Threaded Bugs’ Bunny: 4 to ‘Multithreaded Gorrillazz’: 1. Stay
tuned for remaining two quarters of this exciting match.

References
[Blair-Chappell10] How to become a parallel programming expert in 9

minutes, Stephen Blair-Chappell, ACCU conference, 2010
[Hegel1807] Phenomenology of Spirit, Hegel, 1807, translation by Terry

Pinkard, 2008
[Maennel02] Realistic BGP traffic for test labs, Olaf Maennel, Anja

Feldmann, ACM SIGCOMM Computer Communication Review,
2002

[Martin10] The Language Stew, Robert Martin, ACCU Conference, 2010
[Merritt07] M’soft: Parallel programming model 10 years off, Rick

Merritt, 2007,
http://www.eetimes.com/showArticle.jhtml?articleID=201200019

[Suess07] Is the Multi-Core Revolution a Hype?, Michael Suess, 2007,
http://www.thinkingparallel.com/2007/08/21/is-the-multi-core-
revolution-a-hype/
June 2010 | Overload | 19

http://www.eetimes.com/showArticle.jhtml?articleID=201200019
http://www.thinkingparallel.com/2007/08/21/is-the-multi-core-revolution-a-hype/

FEATURE RICHARD HARRIS
The Model Student: A Game of
Six Integers (Part 3)
We now have the tools to analyse the Countdown
Numbers Game. Richard Harris is ready to play.
n the first part of this article we described the numbers game from that
Methuselah of TV quiz shows, Countdown [Countdown]. The rules of
this game are that one of a pair of contestants chooses 6 numbers from

a set of 4 large numbers and another of 20 small numbers, comprised
respectively of the integers 25, 50, 75 and 100 and 2 of each of the integers
from 1 to 10.
Over the course of 30 seconds both contestants attempt to discover a
formula using the 4 arithmetic operations of addition, subtraction,
multiplication and division and, no more than once, each of the 6 integers
that results in a randomly generated target between 1 and 999 that has no
non-integer intermediate values.

Reverse Polish Notation
Since we shall need to automatically generate formulae during any
statistical analysis of the property of this game, we introduced Reverse
Polish Notation, or RPN. Supremely well suited to computational
processing, RPN places operators after the arguments to which they are
applied, rather than between them as does the more familiar infix notation.
RPN utilises a stack to keep track of intermediate values during the
processing of a formula and in doing so removes the need for parentheses
to determine the order in which operators should be applied. Whenever a
number appears in the input sequence it is pushed on to the stack and
whenever an operator appears it pops its arguments off of the stack and
pushes its result back on to it.

Formula templates
To simplify the enumeration of the set of possible formula, we introduced
formula templates in which arguments are represented by x symbols and
operators by o symbols. We described a scheme for recursively generating
every possible formula template for up to a given number of arguments by
repeatedly replacing x symbols with the sequence of symbols xxo.
The declaration of our C++ implementation of this scheme (the
all_templates function) is:
 std::set<std::string> all_templates(
 size_t arguments);

We concluded the first part of this article by implementing a mechanism
with which we could evaluate formula template for a given set of operators
and arguments.
We began by implementing an abstract base class to represent arbitrary
RPN operators for a given type of argument, as illustrated in listing 1
together with the declarations of the 4 operator classes that are derived
from it.

Note that the return value of the apply member function indicates whether
the result of the calculation has a valid value.
The implementation of the rpn_divide class is illustrated in listing 2.
The remaining operators are implemented in much the same way, although
divide is the only one that needs to check the validity, rather than just the
availability, of its arguments and can therefore return false from its
apply method. Specifically, it requires that for double arguments the
second must not be equal to 0 and that for long arguments it must also
wholly divide the first.
Note that the operator classes themselves are responsible for checking that
the correct number of arguments are available, since this allows us to
implement operators taking any number of arguments, should we so desire.
We then implemented the rpn_result structure to represent both the
validity and the value of the result of a formula, as illustrated in listing 3.

I

Listing 1

template<class T>
class rpn_operator
{
public:
 typedef
 std::stack<std::vector<T> > stack_type;
 virtual ~rpn_operator();
 virtual bool apply(stack_type &stack) const = 0;
};
template<class T> class rpn_add;
template<class T> class rpn_subtract;
template<class T> class rpn_multiply;
template<class T> class rpn_divide;

Listing 2

template<class T>
class rpn_divide : public rpn_operator<T>
{
public:
 virtual bool apply(stack_type &stack) const;
};

Listing 3

template<class T>
struct rpn_result
{
 rpn_result();
 explicit rpn_result(const T &t);
 bool valid;
 T value;
};

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
20 | Overload | June 2010

FEATURERICHARD HARRIS

a permutation is the number of ways we
can select a subset of elements from a

set when order is important
Finally, we implemented a function that, given a string representing a
formula template, a container of pointers to rpn_operator base classes
and a container of arguments, yields the result of the formula generated by
substituting the operators and arguments in sequence into the template. We
plumped for the rather unimaginative name, rpn_evaluate, whose
declaration is illustrated in listing 4.

Evaluating every formula for a given template
To examine the results of every possible formula in the Countdown
numbers game we shall need to call the rpn_evaluate function for
every one of the templates we have for up to 6 arguments with every
possible set of operators and arguments. Recalling the formula we deduced
for the total number of possible formulae

we concluded that we would need a mechanism of enumerating, for each
n argument template, the 4n-1 choices of operators and the 6Pn
permutations of arguments in addition to a mechanism for enumerating the
24C6 combinations of 6 from the 24 available numbers.
You will no doubt recall that a permutation is the number of ways we can
select a subset of elements from a set when order is important and that a
combination is the number of ways that we can select such a subset when
order isn’t important.
In the second part of this article we sought these mechanisms.
Fortunately for us, we created the first of them during our study of knots
[Harris08]. The declaration of the next_state function that enumerates
every possible state of a collection of integer-like objects is given below:
 template<class BidIt, class T>
 bool
 next_state(BidIt first, BidIt last, const T &ub,
 const T &lb = T());

Since the next_state function is only applicable to iterator ranges of
integer-like objects, we shall ultimately need to place our 4 operators in a
container and use this function in conjunction with iterators ranging over it.
Generating the set of permutations was a little more complicated since the
standard next_permutation function does not generate permutations
of subsets. Fortunately, however, we were able to exploit the fact that it
generates full sets of permutations in lexicographical order to trick it into
generating permutations of subsets for us by reverse sorting the elements

from mid to last. Our next_permutation function enumerated the
set of permutations of mid-first from last-first items in
lexicographical order.
 template<class BidIt>
 bool
 next_permutation(BidIt first, BidIt mid,
 BidIt last);

We then, rather tediously I suspect, devised our own algorithm for
enumerating combinations in lexicographical order and finally, slightly
less tediously I hope, implementing it. The declaration of the
next_combination function in which we implemented our algorithm
is provided below.
 template<class BidIt>
 bool
 next_combination(BidIt first, BidIt mid,
 BidIt last);

Putting it all together again
We concluded by implementing a function to iterate over every possible
numbers game and pass their results to a statistics gathering function. We
first needed some functions to convert between the sequences of values and
iterators that our rpn_evaluate and argument and operator choice
enumeration functions expected, as declared in listing 5.
We built the function to enumerate the possible games in two parts, the
first of which iterated through the combinations of selections of numbers
to work with, and the second of which iterated through every possible game
that can be played with those numbers. The declarations of these two
functions are illustrated in listing 6.

Listing 4

template<class T>
rpn_result<T>
rpn_evaluate(const std::string &formula,
 const std::vector<rpn_operator<T>
 const *> &operators,
 const std::vector<T> &arguments);

C24
6 Ti

i 1=

6

∑× 4i 1–× P6
i×

Listing 5

template<class FwdIt> void
fill_iterator_vector(FwdIt first, FwdIt last,
 std::vector<FwdIt> &vec);

template<class FwdIt, class T>
void
fill_dereference_vector(FwdIt first, FwdIt last,
 std::vector<T> &vec);

Listing 6

template<class BidIt, class Fun>
Fun
for_each_numbers_game(BidIt first, BidIt last,
 size_t args, Fun f);
template<class BidIt, class Fun>
Fun
for_each_numbers_game(BidIt first_number_choice,
 BidIt last_number_choice, Fun f);
June 2010 | Overload | 21

FEATURE RICHARD HARRIS

a combination is the number of ways
that we can select such a subset when
order isn’t important
We concluded that we were finally ready to begin analysing number games
and we are indeed ready to do so.

Counting the number of valid games
Since the Countdown numbers game does not allow fractions, our formula
for counting the number of formulae is going to overestimate the total
number of valid games. I’m reasonably confident that I won’t be able to
derive an explicit formula to take this into account, so propose instead that
we count them using our for_each_numbers_game functions.
Recall that our calculation implied that the number of formulae that could
be constructed from 6 arguments chosen from 24 numbers was equal to
4,531,228,985,976, somewhat larger than can be represented by a 32 bit
unsigned integer. We shall therefore recruit our accumulator class from
our analysis of prime factorisations of integers [Harris09], given again in
listing 7.
To check whether the result of an in-place addition requires additional
storage we exploit the fact that in C++ unsigned integers don’t overflow,

but that it instead treats arithmetic using n bit unsigned integers as being
modulo 2n [ANSI98].
We use the accumulator class in a function object that counts the
number of valid formulae by adding 1 to the count every time it is called
with the result of a calculation, as shown in listing 8.
Unfortunately, a preliminary investigation suggested that the calculation
of the total number of valid games would take the best part of 2 months of
CPU time using the admittedly rather outdated PC upon which I am writing
this essay.

Turbo-charging the stack
We can improve matters somewhat by abandoning the standard stack and
implementing our own. This will exploit the short string optimisation to
keep the bottom of the stack on the much faster local store. If your STL
implementation already uses the short string optimisation for its vectors,
then this won’t really make much difference. Mine doesn’t, so it will offer
me an advantage, at least. The declaration of this class is given in listing 9.
Note that this isn’t intended as a drop in replacement for the standard
stack, since it only implements the member functions we require for an
RPN calculation.
We use the trick of privately declaring, but not defining, the copy
constructor and assignment operator to suppress the compiler generated
defaults and ensure than an error will result if we accidentally use them.
We don’t ever need to copy stack objects during the evaluation of an RPN
formula, and the defaults would leave them with pointers into each other’s
member arrays.

Listing 7

class accumulator
{
public:
 accumulator();
 accumulator & operator+=(unsigned long n);
 operator double() const;

private:
 std::vector<unsigned long> n_;
};

accumulator::accumulator() : sum_(1, 0)
{
}

accumulator &
accumulator::operator+=(unsigned long n)
{
 assert(!sum_.empty());
 sum_.front() += n;
 if(sum_.front()<n)
 {
 std::vector<unsigned long>::iterator first =
 sum_.begin();
 std::vector<unsigned long>::iterator last =
 sum_.end();
 while(++first!=last && ++*first==0);
 if(first==last) sum_.push_back(1);
 }
 return *this;
}

Listing 8

class
count_valid
{
public:
 void operator()(long);
 const accumulator & count() const;

private:
 accumulator count_;
};

void
count_valid::operator()(long)
{
 count_ += 1;
}

const accumulator &
count_valid::count() const
{
 return count_;
}

22 | Overload | June 2010

FEATURERICHARD HARRIS

a preliminary investigation suggested that the
calculation of the total number of valid games

would take the best part of 2 months of CPU time
We include a standard stack to cope with values that drop off the end of
our member array. The implementation of the member functions is fairly
straightforward, as illustrated in listing 10.
We are using the data_ member array to store the first N values on the
stack and so initialise the top_ pointer to the start of it during construction.
It shall always point to the element immediately following the last value
on the stack that is stored in the member array. Only when we have
exhausted the array will we use overflow_.
The empty member function therefore simply compares the top_ pointer
to the start of the member array.
Similarly, the size member function simply adds the number of values
we currently have in our member array to the size of overflow_. If the
former is full, the top_ pointer will be equal to data_+N and so size
will correctly return the size of overflow_ plus N. If not, the latter will
be empty and size will return the number of values currently in the
member array.
The top member function defers to overflow_ if it is not empty,
otherwise returns the value immediately before top_. Note that, like the
standard stack, we do not check that there are any values currently on
the stack.

The push member function assigns the pushed value to the element
pointed to by top_ and increments top_ if it is not already at the end of
the member array. If it is, the function simply defers to overflow_.
Similarly, if overflow_ is empty, the pop member function simply
decrements top_. If it is not, the function defers to it instead. Note that
this function, like top, does not perform any check that there are any
values currently on the stack.

Listing 9

template<class T, size_t N,
 class Cont=std::deque<T> >
class rpn_stack
{
public:
 typedef T value_type;
 typedef size_t size_type;

 rpn_stack();

 bool empty() const;
 size_type size() const;

 const value_type & top() const;
 void push(const value_type& x);
 void pop();

private:
 rpn_stack(const rpn_stack &other);
 //not implemented
 rpn_stack & operator=(const rpn_stack &other);
 //not implemented

 std::stack<T, Cont> overflow_;
 value_type data_[N];
 value_type * top_;
};

Listing 10

template<class T, size_t N, class Cont>
rpn_stack<T, N, Cont>::rpn_stack() : top_(data_)
{
}

template<class T, size_t N, class Cont>
bool
rpn_stack<T, N, Cont>::empty() const
{
 return top_==data_;
}

template<class T, size_t N, class Cont>
rpn_stack<T, N, Cont>::size_type
rpn_stack<T, N, Cont>::size() const
{
 return (top_-data_) + overflow_.size();
}

template<class T, size_t N, class Cont>
const rpn_stack<T, N, Cont>::value_type &
rpn_stack<T, N, Cont>::top() const
{
 return overflow_.empty() ? *(top_-1) :
 overflow_.top();
}

template<class T, size_t N, class Cont>
void
rpn_stack<T, N, Cont>::push(const value_type &x)
{
 if(top_!=data_+N) *top_++ = x;
 else overflow_.push(x);
}

template<class T, size_t N, class Cont>
void
rpn_stack<T, N, Cont>::pop()
{
 if(overflow_.empty()) --top_;
 else overflow_.pop();
}

June 2010 | Overload | 23

FEATURE RICHARD HARRIS

what might happen to the ratio between valid
integer-only formulae and total formulae as
we increase the number of arguments
Finally, we should note that since the values stored in the member array
are not destroyed until the rpn_stack is, it is not particularly useful for
values that consume lots of resources.
Listing 11 shows the change that we need to make to the rpn_operator
class to use the rpn_stack. Note that I’m only putting the first 6 values
on the stack in local storage since during our analysis of the Countdown
numbers game this will be the maximum number of arguments we shall
use. Whilst this is clearly not a generally justifiable choice, I suspect that
we’d be hard pushed to find another application for which we would really
care quite this much about RPN formula calculation efficiency, so I figure
it’s probably OK.
Using our new stack brings the calculation time for counting every valid
formula down to a little under 3 weeks. A fair bit better to be sure, but still
not exactly tractable.
Whilst I’m sure that we could find a yet more efficient approach with a
little more work, I rather suspect that it wouldn’t consist of such
satisfyingly independent constructs. That said, if there’s some blindingly
obvious improvement that doesn’t muddle up the responsibilities of our
various functions and classes, I’d be more than happy to hear about it.

The Countdown numbers game’s little brothers
To keep the calculation manageable, I therefore suggest that we instead
consider a cut down version of the numbers game; one in which we choose
our 6 arguments from the set of 4 large numbers and half of the set of small
numbers, or in other words 1 of each of the integers from 1 to 10.
Another back of the envelope calculation suggests that this should take
approximately 10 hours; hardly nippy, but not completely out of the
question.
Multiplying the number of formulae we can construct with up to 6
arguments by the number of ways in which we can select 6 arguments from
14 without taking order into account, or 14C6, yields a total of
101,097,214,218 possible formulae, still a smidge out of the range of a 32
bit unsigned integer.
The result of our calculation for this smaller numbers game shows that
there are just 32,215,124,261 valid formulae, less than a third of the total
number of formulae. The 68,882,089,957 invalid formulae must all
involve division since that’s the only operator that can have an invalid
result. We can easily count the number of formulae involving division
operations by subtracting from our total the number of formulae that
involve only addition, subtraction and multiplication (we calculate this by
replacing the 4 with a 3 in our formula). Doing so indicates that there are
exactly 76,425,599,250 formulae involving division, of which over 90%
are invalid.
This leads me to wonder what might happen to the ratio between valid
integer-only formulae and total formulae as we increase the number of
arguments. This calculation will be more expensive still, so we shall
examine games using 1 of each of the integers from 1 to 8 with from 1 to
8 arguments. The results of this calculation are given in figure 1.

Listing 11

template<class T>
class rpn_operator
{
public:
 typedef rpn_stack<T, 6> stack_type;
 ...
};

Figure 1

The proportion of valid formulae of all formulae and formulae involving division
24 | Overload | June 2010

FEATURERICHARD HARRIS

As fascinating as this almost is, it’s high time
we got around to investigating the statistical

properties of the game
As fascinating as this almost is, it’s high time we got around to
investigating the statistical properties of the game. Specifically, I should
like to know what the distribution of the results of every valid numbers
game looks like.

Building a histogram of numbers game results
Since the results of the numbers game formulae are integers, their
distribution will be discrete and hence naturally represented with a
histogram. Listing 12 provides the declaration of the histogram class we
shall use.
It is a little less fully featured than the histograms we have implemented
for previous studies, although since it uses our accumulator class to
keep count of the samples it can deal with much larger numbers.
We can afford a reduced interface since the sample values will be integers
and will thus serve perfectly well as indices into the histogram. Note that
the function call operator overload is used to add samples since this enables
us to use the game_histogram class as the function object expected by
our for_each_numbers_game function.
Listing 13 illustrates the definitions of the member functions. These are
reasonably straightforward, with the only real gotcha being that the
lower_bound and upper_bound are inclusive bounds of the histogram.
When trying to read values outside of the stored range we simply return
0, and when trying to add them the histogram entry is quietly dropped and
only the count of the number of samples is increased.

Listing 12

class game_histogram
{
public:
 game_histogram();
 game_histogram(long lower_bound,
 long upper_bound);

 long lower_bound() const;
 long upper_bound() const;
 double samples() const;

 double operator[](long i) const;
 void operator()(long i);

private:
 typedef accumulator value_type;
 typedef std::vector<value_type> histogram_type;

 long lower_bound_;
 value_type samples_;
 histogram_type histogram_;
};

Listing 13

game_histogram::game_histogram() :
lower_bound_(0)
{
}

game_histogram::game_histogram(long lower_bound,
 long upper_bound) :
 lower_bound_(std::min(lower_bound,
 upper_bound)),
 histogram_(size_t(labs(
 upper_bound-lower_bound)+1))
{
}

long
game_histogram::lower_bound() const
{
 return lower_bound_;
}

long
game_histogram::upper_bound() const
{
 return lower_bound_ + (
 long(histogram_.size()) - 1);
}

double
game_histogram::samples() const
{
 return samples_;
}

double
game_histogram::operator[](long i) const
{
 if(i<lower_bound() || i>upper_bound())
 return 0.0;
 return histogram_[size_t(i-lower_bound_)];
}

void
game_histogram::operator()(long i)
{
 samples_ += 1;
 if(i>=lower_bound() && i<=upper_bound())
 {
 histogram_[size_t(i-lower_bound_)] += 1;
 }
}

June 2010 | Overload | 25

FEATURE RICHARD HARRIS

I must admit that I’m a little surprised by
the shape of the histogram
The histogram generated with this class enumerated over every game with
the 4 large numbers and the 10 small numbers with results ranging from
-2000 to +2000, grouped into buckets of 20 results to smooth out the graph
a little, is shown in figure 2.
There are clearly more positive results than negative, which should be
expected since we can only generate a negative result by subtracting some
formula from 1 of the 6 selected numbers, leaving that formula with only
5 or fewer arguments.
It is worth noting that the formulae with results in the range of our
histogram account for just a little over 70% of the valid games.
I must admit that I’m a little surprised by the shape of the histogram. I was
expecting it to look like a discretisation of the normal distribution since
that, as you will remember from our previous studies, is the statistical
distribution of sums of random numbers.
Any formula can be recast as a sum of terms involving just multiplication
and division by expanding out any terms in brackets, something known as
the distributive law of arithmetic. For example, we can expand the formula

into

With an admittedly rather hand-waving argument I had imagined that these
terms could be thought of as random variables in their own right. Whilst
the terms would clearly not be independent in general, I believed that
assuming that they were would yield a reasonable approximation.
The average, or mean, of our truncated histogram is approximately 100,
whilst its standard deviation (the square root of the average squared
difference from the mean) is approximately 600. The histogram that would
result from a normal distribution with these parameters is shown in figure 3
for comparison with our histogram of numbers game results.
Clearly I was very much mistaken.

So what kind of distribution do the results of the numbers games exhibit?

The histogram of the absolute values of numbers
game results
In pursuit of a statistical distribution that might describe the numbers
game, I suggest that we allow the result of a formula to be negated. There
are trivially twice as many formulae that can be constructed and the
distribution of the results must be symmetric about 0. We can therefore
simply study the histogram of the absolute results (i.e. ignoring the sign)
which we can build by adding together the histogram value for each
positive result to the value for its negation, and from which we can easily
construct the full distribution.
Figure 4 illustrates the histogram of the absolute results, also constructed
with buckets of 20 results.
The fact that this distribution falls away to 0 so slowly is highly suggestive
of the class of distributions it falls into; the power law distributions.

Figure 2

a b c+()×

a b×() a c×()+

Figure 3

Figure 4
26 | Overload | June 2010

FEATURERICHARD HARRIS

we cannot swiftly enumerate every possible
formula in the full Countdown numbers game
Power law distributions
Power law distributions have the probability density functions of the form

where L is a slowly varying function, or in other words has the limiting
behaviour

for constant t [Clauset09]. The lim term on the left hand side of the fraction
stands for the limit as x grows ever larger of the term to its right. We can
interpret the equation as meaning that the function L should get closer and
closer to a constant as x grows larger and larger.
Probability density functions, or PDFs, are identical to histograms when
describing discrete random variables. PDFs are more general, however, in
that they can also describe continuous random variables.
Power law distributions are notable because their PDFs decay to 0 very
slowly as x increases and are hence associated with processes which
display extreme behaviour with surprisingly high probability. The stock
market, with its relatively frequent and all too hastily dismissed crashes,
is one example that depressingly springs to mind [Ormerod05].
To determine whether a variable has a power law distribution, we can plot
the logarithm of its PDF against the logarithm of x. If it follows a power
law distribution then for large x this graph will be close to a straight line
since

for some constant c.
For sample data, in which there will inevitably be some loss of information,
be it noise or gaps in the distribution, we instead sort the n samples in
ascending order and, treating the first as having an index of 0, plot (n-i)/n
against the ith value. This is the discrete equivalent of another test based
on the integral of the PDF.
Unfortunately, neither of these tests is particularly accurate. Worse still,
accurately determining whether a sample is consistent with a power law
distribution is something of an open question with the most reliable current
techniques relying upon barrages statistical tests that are far beyond the
scope of this article.

Are the absolute numbers games power law
distributed?
Our distribution seems to have a lot of little spikes in its tail and
furthermore has an upper bound of

beyond which the probability of observing a result is trivially 0. It is
therefore certainly not exactly power law distributed, although it is
possible that it follows one approximately.
Using the sample data approach of identifying power law behaviour figure
5 plots every 500th of the sorted results from 0 to 32,000 against the
function of their positions in the list together with a straight line drawn
through every 500th of the 24,000th to the 32,000th point.
Well, it certainly looks very much like a straight line, and with a root mean
square error between the line and the points it was drawn through of a little
over 0.00025 we can probably conclude that it is at least quite close to one.
Despite this not being a particularly good test for power law behaviour,
the cumulative histogram of the numbers game can be approximated for
every result in this range by that of a power law with a root mean square
error of approximately 0.0003. Statistically speaking, this is actually a
fairly significant difference since the histogram is constructed from a huge
number of results. Nevertheless, as an approximation it predicts the
proportion of results falling below a given value within this range with an
error that is everywhere less than a not too shabby 0.061%.
Since we cannot swiftly enumerate every possible formula in the full
Countdown numbers game, we shall instead have to randomly sample
them if we wish to check whether or not their absolute results are similarly
approximated by a power law distribution.

Sampling the Countdown numbers game
To implement a scheme for randomly sampling numbers games, we take
similar steps to those we took when implementing a function to enumerate
them. Specifically we need a mechanism for the random generation of
permutations, of combinations and of operator choices.
Just as our previously implemented next_state function solved the
problem of enumerating operator choices, so the random_state
function implemented as part of the same article solves the problem of
randomly generating them. Implemented in listing 14 together with a
random number generator, rnd, it was inspired by the standard
random_shuffle function and, like it, does not place many restrictions
upon the values on which it operates. This means that we shall not need

p x() L x() x α–×=

L tx()
L x()

x ∞→
lim 1=

p x()ln
x ∞→
lim L x() x α–×()ln

x ∞→
lim=

L x() α xln
x ∞→
lim–ln

x ∞→
lim=

c α xln–=

100 75× 50× 25× 10 9×× 843 750 000, ,=

Figure 5
June 2010 | Overload | 27

FEATURE RICHARD HARRIS

why did we spend so much time mucking
about with combinations when
permutations seem to do the job
perfectly adequately
to use iterators into a container of operators, but will instead be able to use
the container directly.
To generate a random permutation, we can exploit the fact that the standard
random_shuffle function has an equal probability of leaving any value
in any position. We can therefore simply use it and then just examine the
part of the iterator range that we’re interested in.
If we then sort that part of the iterator range, we have effectively
implemented an algorithm for generating random combinations.
Our scheme shall therefore proceed as follows:

1. Pick a formula template at random.
2. Pick a set of operators at random.
3. Pick a combination of the available numbers at random.
4. Pick a permutation of arguments from these at random.

Hang on a sec, those last 2 steps look a bit dodgy to me.
We’re picking a sorted random combination of numbers and then an
unsorted random permutation of arguments from them. Our algorithms for
generating random combinations and permutations require that we apply
random_shuffle to the whole range from which each is generated and
then ignore those elements we’re not interested in. In other words, we shall
be sorting the selected numbers to create the combination and then
immediately afterwards randomly shuffling them again to generate our
permutation of arguments. Isn’t this ever so slightly a complete and utter
waste of time?
Well, yes it is; we can combine both steps by instead generating a random
permutation of the arguments we require from the full set of available
numbers:

1. Pick a formula template at random.
2. Pick a set of operators at random.

3. Pick a permutation of arguments from the available numbers at
random.

So why did we spend so much time mucking about with combinations
when permutations seem to do the job perfectly adequately?
The answer lies in a subtle difference between the mechanics of sampling
and those of enumeration. For a given formula template and set of
operators, enumerating the permutations of 6 numbers from the 24
available will result in us counting some functions many times over.
Specifically, for templates with less than 5 arguments there will be
multiple permutations for which those arguments will be identical, as
illustrated in figure 6.
This isn’t an issue when sampling since the order of the unused numbers
has no bearing whatsoever on the result of the formula. Since each ordering
has exactly the same probability, the statistical distribution of the results
is unaffected.
That settled, the function for randomly sampling numbers games is given
in listing 15. This is a relatively straightforward implementation of our
algorithm; we first randomly select a formula template, we then randomly
generate a correctly sized vector of operators to substitute into it and we
finally generate a random permutation of arguments. Note that we still
have to copy the arguments into an appropriately sized vector since this
is what our rpn_evaluate function expects. Figure 7 gives the power
law graph of a sample of 40,000,000,000, or roughly 1%, of the
Countdown numbers games. Once again, it looks like it tends to a straight
line and the root mean square error between the line and the graph from
the 24,000th to the 32,000th point of approximately 0.00035 supports this.

A theoreticalish justification
Mucking about with graphs and tests is all well and good, but it doesn’t
really provide any insight into the statistical behaviour of numbers games.
What we really need is a theoretical justification as to why power law
distributions might be reasonable approximations of them.
We shall begin by introducing yet another numbers game. In this new game
we shall begin by picking, at random, a real number between 1 and 2. We
shall then toss a coin; if it comes up tails the games is over and the number
we picked is the result and if it comes up heads we double the number and
toss the coin again, treating the doubled result as our starting point.

Listing 14

double
rnd(double x)
{
 return x * double(
 rand())/(double(RAND_MAX)+1.0);
}

template<class FwdIt, class States>
void
random_state(FwdIt first, FwdIt last,
 const States &states)
{
 while(first!=last)
 {
 *first++ = states[size_t(
 rnd(double(states.size())))];
 }
}

Figure 6

1 2 3 | 4 5 6
1 2 3 | 4 6 5
1 2 3 | 5 4 6
1 2 3 | 5 6 4
1 2 3 | 6 4 5
1 2 3 | 6 5 4
28 | Overload | June 2010

FEATURERICHARD HARRIS

What we really need is a theoretical justification
as to why power law distributions might be

reasonable approximations of them
This game has a 1 in 2 chance of a result between 1 and 2, a 1 in 4 chance
of a result between 2 and 4, a 1 in 8 chance of a result between 4 and 8 and
so on. The probability density function of the results of this game, being
the continuous limit of a histogram and for which the area under the curve
between 2 values gives the probability that a result in that range will be
observed, is given in figure 8. This curve is bounded by the inequality

as is illustrated by the dotted lines.
Clearly this is approximately an inverse square power law distribution.
This fact is demonstrated even more clearly by the cumulative distribution
function; the function that yields the area under the curve between 0 and
any given value and hence the probability that we should observe a result
less than or equal to that value, as illustrated in figure 9. The dotted line

Listing 15

template<class Fun>
Fun
sample_numbers_games(size_t samples,
 std::vector<long> numbers,
 size_t args, Fun f)
{
 typedef rpn_operator<long>
 const * operator_type;
 typedef std::vector<operator_type>
 operators_type;
 typedef std::vector<long> arguments_type;

 if(args>numbers.size())
 throw std::invalid_argument("");

 operators_type operators(4);
 const rpn_add<long> add;
 operators[0] = &add;
 const rpn_subtract<long> subtract;
 operators[1] = &subtract;
 const rpn_multiply<long> multiply;
 operators[2] = &multiply;
 const rpn_divide<long> divide;
 operators[3] = ÷
 const std::set<std::string>
 templates(all_templates(args));
 operators_type used_operators;
 arguments_type used_arguments;

 while(samples--)
 {
 std::set<std::string>::const_iterator t
 = templates.begin();
 std::advance(t,
 size_t(rnd(templates.size())));
 const size_t t_args = (t->size()+1)/2;
 used_operators.resize(t_args-1);
 random_state(used_operators.begin(),
 used_operators.end(), operators);

 std::random_shuffle(numbers.begin(),
 numbers.end());
 used_arguments.assign(numbers.begin(),
 numbers.begin()+t_args);
 const rpn_result<long> result
 = rpn_evaluate(*t, used_operators,
 used_arguments);
 if(result.valid) f(result.value);
 }
 return f;
}

Figure 7

1
2x2
-------- p x() 2

x2
-----≤ ≤

Figure 8
June 2010 | Overload | 29

FEATURE RICHARD HARRIS

there is therefore a surprising relationship
between the Countdown numbers game and
the recent economic meltdown
in this graph is the cumulative distribution function of a quantity exactly
obeying an inverse square power law distribution.
This result can be generalised in that a game in which we pick a real number
between 1 and n and with probability p choose to multiply the current result
by n rather than quit the game must also be similarly approximated by a
power law distribution. Furthermore, we needn’t specify which statistical
distribution governs the choice of the first number for this to hold.
We can identify the first number as the relatively small result of a formula
involving the addition and multiplication of relatively small numbers in
the Countdown numbers game. The successive multiplications can be
similarly identified with multiplying these small results by the large
numbers.
Note that for each formula with n arguments, there is a formula with n+1
arguments that equates to multiplying the former by the final argument.
The proportion of such formulae to all formulae with n+1 arguments is
equal to

For sufficiently large n this is approximately constant, so the probability
of multiplying an n argument formula by a large number is also
approximately constant.
Subsequent divisions, should they be valid, can be thought of as reducing
the probability of a multiplication, and subsequent additions will affect the
larger results by orders of magnitude less than the multiplications.
It doesn’t seem entirely unreasonable therefore to accept this latest game
as an approximate model for the Countdown numbers game and that the
latter can therefore be well approximated by a power law distribution.
Whilst the game is certainly not exactly governed by a power law, I believe
that we can conclude with some confidence that we can reasonably
approximate it with one and that there is therefore a surprising relationship
between the Countdown numbers game and the recent economic
meltdown.
Who’d have thunk it?

Acknowledgements
With thanks to Keith Garbutt for proof reading this article.

References and further reading
[ANSI98] The C++ Standard, American National Standards Institute,

1998.
[Clauset09] Clauset, A. et al, Power Law Distributions in Empirical Data,

arXiv:0706.1062v2, www.arxiv.org, 2009.
[Countdown] http://www.channel4.com/programmes/countdown
[Harris08] Harris, R., The Model Student: A Knotty Problem, Part 1,

Overload 84, 2008.
[Harris09] Harris, R., The Model Student: A Primal Skyline, Part 2,

Overload 93, 2009.
[Ormerod05] Ormerod, P., Why Most Things Fail, Faber and Faber, 2005.

Figure 9

1
4

Tn
Tn 1+
-------------× 1

4

C2n 1–
n

2n 1–
------------------× 2n 1+

C2n 1+
n 1+

-------------------------×=

1
4
--- 2n 2–()!

n! n 1–()!
------------------------× n! n 1+()!

2n()!
------------------------×=

1
4
--- n 1+() n×

2n 2n 1–()×
--------------------------------×=

n 1+
16n 8–
------------------=
30 | Overload | June 2010

http://www.channel4.com/programmes/countdown
www.arxiv.org

FEATURERICHARD POLTON
The Functional Student:
A Game of Six Integers
The Countdown numbers game is a popular challenge.
Richard Polton tries a new language to solve it.
hen I saw Richard Harris’s ‘Model Student – A Game Of Six
Integers’ in Overload 95 [Harris] I thought to myself that this was
just crying out for a quick piece of functional programming and,

as luck would have it, I had just recently secreted an installation of F#
[Microsoft] on my PC between Visio and Powerpoint and was both
researching the language and refreshing my mind as to that programming
approach.
My first thought for the implementation was to attempt the solution as a
logical statement, in the prolog sense, but after reflection I decided not to
proceed in that direction because I wanted to be able to show close
solutions as well as exact solutions, and I didn’t feel I had the time to work
out how to implement that in this new-to-me language, F#. Next I thought
about a non-binary tree walk, where each of the six possible values for the
first number occupied the first layer, then the four operators were four
branches from each node, then the five possible numbers in the next layer,
then the four operators, etc., etc. This, however, seemed far too messy and,
consequently, I realised that I was still thinking about this in terms of the
data instead of in terms of the solution process.
Thus the code in Listing 1 (overleaf) was born. The problem has,
essentially, two sets of variables; six integers intN; and five operators
opN, where each of the five operators can take one of four values, '+', '-',
'*' or '/'. I started with the statement of the problem, ie (((((int1 op1 int2)
op2 int3) op3 int4) op4 int5) op5 int6)-desiredResult=0, and rearranged it
into, more or less, what you see encoded in the countdown function. This
function is slightly more complex than above because it maintains a text
string describing the path taken simultaneously with the actual calculation.
The core function in this programme is the op function. This takes two
parameters; the first is the running total and the second is the next integer
to be considered. That is, after the tuples have been ‘opened up’, hd1
contains the string showing the path taken to reach the running total, which
is itself contained within hd2. y2 is the next integer in the sequence to be
processed. Each of the four possible operators is applied and this leads to
four outputs for each input, all returned in a single list. This list shows all
the possible operator combinations for a given ordered sequence of
integers. For example, op [1] 2 returns [1+2; 1-2; 1*2; 1/2]
except that 1/2 is discarded because it is not integral. Note that I have
considered negative numbers as allowable but, if desired, they could be
excluded easily using the same mechanism as after the division.
To utilise the op function, I needed a function to calculate the permutations
of a sequence of numbers. I found something on stackoverflow
[StackOverflow] which I could modify to do exactly what I wanted. The
calcPermutations function determines all the permutations of a list
of integers and returns a list of l ists of the possibilit ies, eg
calcPermutations [1;2] returns [[1;2] ; [2;1]]. This list
of lists is then fed into a lambda function whose purpose is to process each
of the sub-lists in turn, naming the individual components (the permuted
integers) of each sub-list so that they can be used in the op function. At
which point it becomes clear that Bob is, as they say, your mother’s
brother. All that remained now is to filter the resulting list of lists into those
lists that satisfy the matching requirement and discard the rest.

Easy! At least, looking at it now, that is how it seems, but believe me, when
you’re buried beneath tons of virtual paper it quickly becomes a tangled
mess of mind-melting code. Still, I managed to push the paper (to one side),
dedicated a couple of hours of thinking time and lo! the result.
So, to run it the parameters to countdown are the six integers and the sought
result is, unsurprisingly, desiredResult.
Note that I have not proven this works, only shown that it appears to work
for the example case, as my day is filled with all those allegedly important
tasks that I do in order to keep my team writing code.

Back to the future
Climbing out of my DeLorean [DeLorean], I can tell you that this
programme will be extended in a number of interesting ways, not least
being a trivial enhancement to use an increased set of operators. All that
is required is an additional line for each new operator in the op function.
For example, should we decide to consider ‘remainder’ as a valid operator
in this context then we could extend the result list in op to include the tuple
(String.Format("{0}%{1}",hd1,y2),hd2%y2). Similarly, I
have forseen a change to the code such that it accepts an arbitrary number
of integers. As the code stands, it is hard-coded to accept six integers. Also,
I have discerned that the programme will be extended to accept data types
other than integers as parameters, for example strings, which could be
combined using string-related operators. Not wanting to spoil the surprise,
however, I shall avoid revealing any more for the present.

References
[DeLorean] http://www.delorean.com/
[Harris] ‘The Model Student: A Game Of Six Integers (Part 1)’,

Overload 95, http://accu.org/index.php/journals/1607
[Microsoft] http://research.microsoft.com/en-us/um/cambridge/projects/

fsharp/
[Stackoverflow] http://stackoverflow.com/questions/286427/calculating-

permutations-in-f

W

Richard Polton is currently pushing paper at HSBC. He has
been around the block (of Canary Wharf) all the while moving
further away from the True Path of the Zen Coder and was
very pleased to pick up Overload 95 and see the Countdown
problem posed without a solution. Moreover, he has been
lowering the tone since, well, forever really. He can be
contacted at drboots@galactichq.org and looks after a
splendid web site at http://www.40wc.org/
June 2010 | Overload | 31

http://www.delorean.com/
http://accu.org/index.php/journals/1607
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/
http://stackoverflow.com/questions/286427/calculating-permutations-in-f
http://stackoverflow.com/questions/286427/calculating-permutations-in-f

FEATURE RICHARD POLTON

I have not proven this works, only
shown that it appears to work for the
example case
Listing 1

open System;;
(* modified from stackoverflow *)
let calcPermutations list =
 let rec permutations list taken = [
 if Set.count taken = List.length list then yield [] else
 for l in list do
 if not (taken.Contains l) then
 for perm in permutations list (Set.add l taken) do
 yield l::perm]
 permutations list Set.empty;;
let rec op (x:(string * int) list) (y:(string*int)) =
 match (x,y) with
 | ((hd1,hd2)::tl,(y1,y2)) ->
 [(String.Format("({0}+{1}={2})",hd1,y2,hd2+y2),hd2+y2);
 (String.Format("({0}-{1}={2})",hd1,y2,hd2-y2),hd2-y2);
 (String.Format("({0}*{1}={2})",hd1,y2,hd2*y2),hd2*y2);
 (if hd2%y2=0 then
 (String.Format("({0}/{1}={2})",hd1,y2,hd2/y2),hd2/y2)
 else
 ("non-integer",0))] @ op tl y
 | ([],y) -> [];;

let countdown a b c d e f =
 calcPermutations [a;b;c;d;e;f] |> List.map
 (fun x ->
 match x with
 | [i1;i2;i3;i4;i5;i6] ->
 op (
 op (
 op (
 op (
 op
 [(String.Format("{0}",i1),i1)]
 (String.Format("{0}",i2),i2))
 (String.Format("{0}",i3),i3))
 (String.Format("{0}",i4),i4))
 (String.Format("{0}",i5),i5))
 (String.Format("{0}",i6),i6)
 | _ -> [("end",0)]);;
(* dummy pattern to quiet the compiler *)

let desiredResult = 195;;
let range=5;;

let doIt i1 i2 i3 i4 i5 i6 =
 List.map (List.filter (fun ((x:string),(y:int)) ->
 not(x.Contains("non-integer"))
 && abs (y-desiredResult)<range))
 (countdown i1 i2 i3 i4 i5 i6);;

doIt 1 2 3 4 5 75;;
32 | Overload | June 2010

Within a decade, a

programmer who

does not think

‘parallel’ fi rst will not

be a programmer. ”

James Reinders
Chief Software Evangelist
of Intel Software Products

Complexity simplifi ed.
Create, analyse and optimise high
performance applications on clusters.

Compile and tune for HPC processing. Create the fastest
software possible and utilise the latest technologies within
Intel architecture.

Intel® Compiler Suite 11 Professional Edition for Windows*
and for Linux* bundles the Intel C++ and Visual Fortran
compilers with Intel Math Kernel Library (Intel MKL), Intel
Integrated Performance Primitives (Intel IPP), and Intel
Threading Building Blocks (Intel TBB).

Intel® Cluster Toolkit Compiler Edition 3.2 provides an
extensive software package containing Intel C++ and Intel
Fortran Compilers for all Intel architectures, PLUS all the Intel
Cluster Tools that help you develop, analyse and optimise
performance of parallel applications on Linux* or Windows*
Compute Cluster Server (CCS) clusters.

Intel® Math Kernel Library is a highly optimised numerical processing
library for math, scientifi c, engineering and fi nancial applications.

Intel® MPI Library provides a fl exible implementation of MPI for
easier message-passing interface development on multiple network
architectures.

TAKE THE NEXT STEP
Visit us at www.qbssoftware.com/intel

Tel: 08456 580 580

	The Art of the Possible
	Scalable Graph Coverage
	Socially Responsible Recruitment
	Single-Threading: Back to the Future?
	The Model Student: A Game of Six Integers (Part 3)
	The Functional Student: A Game of Six Integers

