

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Bug Hunting and the Scientific Method
Rafael Jay looks in depth at a powerful analogy.

8 From Occam’s Razor to No Bugs’ Axe
Sergey Ignatchenko looks at the problems of
designing APIs.

11 The Quartermaster’s Store
Phil Bass tries to implement virtual function templates.

17 Why Fixed Point Won’t Cure Your Floating Point
Blues
Richard Harris looks at problems with fixed point
arithmetic.

22 Interface Versioning in C++
Steve Love considers how to update DLL interfaces.

32 Quality Matters Christmas Intermezzo
Matthew Wilson considers what he’s learnt so far.

OVERLOAD 100

December 2010

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 101 should be submitted
by 1st January 2011 and for
Overload 102 by 1st March 2011.

EDITORIAL RIC PARKIN
Numbers and The Appliance
of Science
How sure are you of something? Ric Parkin considers
how we build models, and celebrates a milestone.
And welcome to Overload.....100! While the cynical
mathematician in me knows that the significance of
the number is just a coincidental artifact of the number
of digits on a bilaterally symmetric semi-evolved
simian’s pentadactyl forelimbs, it’s still a worthwhile
moment to pause and look back at how we got here,

and where we’ll be going. Some good old fashioned navel-gazing in fact.
When did it all start? I must confess, having only come across ACCU back
in 2000 or so, that I didn’t know too much about its beginnings, and about
Overload in particular. Fortunately, the internet (and some willing
volunteers) have come to my rescue: we now have (almost) all the back
issues on the website [Overload] (although many are currently only
available as a pdf of the whole journal) so we can browse through and see
what life was like back then.
The first Overload came out in April 1993, and an account of its genesis
as a Special Interest Group of what was then called the C User’s Group
(UK) can be found in that first editorial, including the initial inspiration
of teaching people about the new facilities in a new trendy language called
C++. Many of the early writers are unfamiliar to me, but there are a few
whose names are still associated with ACCU. Early editions were simple
newsheets, with source code distributed on an accompanying floppy disk.
Over the years things have moved on, with technology changes helping
with better quality publishing, easier collaboration via email and other
communication routes, and the hosting of documents and source code
online. Sadly some things aren’t so great – the ACCU journals are now
quite rare in that we distribute print versions, with most computing
magazines now being web only (is it just me, or do other people find online
technical articles much harder to read, in small chunks at low dpi, and
animated adverts flickering away? Perhaps better quality e-publishing via
gadgets such as the Kindle and iPad may improve this) . The content has
changed too, with Overload (and the wider ACCU) no longer being
exclusively C++ focused, but now taking in other languages as well as
project management, and even some philosophical musings.
As an aside, I noticed that this history has some parallels my own
relationship with C++: having first come across it in 1993 when I had to
maintain a DLL to allow access to a C library from a Pascal program, it
became my main language for the next decade or so, and then I branched
out to use a wider mix of languages and technologies as well as doing more
project management.
So what of the future? Well, Overload is currently looking healthy, with

a good stream of regular and occasional articles,
which a great production team turns into a

magazine that people really seem to be
interested in reading. We’d always like new

articles and writers though, and I have heard people saying that they’ve
an idea but don’t seem to have the time, or aren’t sure people would be
interested. I can reassure them that pretty much every idea is interesting
in some way, so drop me an email and we can advise and help you get
something into print ... With the upcoming new C++ standard there’s
plenty of great opportunities for article ideas, so get cracking and be part
of the next 100!

Modelling the world
I mentioned that sometimes we have more philosophical articles, and this
issue has an interesting one from Rafael Jay on the parallels between bug
hunting and the scientific method. This generated plenty of comments
from reviewers at how to extend the idea further, so I’m sure it’ll inspire
many of you equally. This is an area which has always fascinated me, and
chimed in with some other thoughts I’ve had recently, especially after
Bruce Schneier’s talk at the ACCU security conference at Bletchley Park.
[Schneier]
The basic idea I took away was that people can have security, and they
can feel secure, but that the two were not necessarily as connected as you’d
expect. For example, many airport security measures, such as restricting
what can be taken in hand luggage, don’t actually make you significantly
safer but are really there to reassure you because you can see that
Something Is Being Done (although paradoxically the extra attention can
play on your fears and make you feel less safe too...) On the other hand,
you might feel perfectly safe in your car because you’re in control, and
yet the chances of being injured or killed in an accident is much higher
than the plane. He described this in terms of there being what you Feel,
and Reality, and you should be aware of the differences when evaluating
a security response. He also added a third element, a Model, which is what
you use to try to understand the Reality part when it gets complicated.
Ideally your Model should reliably reflect Reality (at least for the
questions you’re asking of it), but sometimes it can get out of sync,
especially if the Reality changes and you don’t update the model. For
example, say you’ve forced your system to insist on changing passwords
every month. Your Model tells you that that limits an attacker’s window
of exploitation if they crack a password, and you Feel secure. But after a
couple of months people have got fed up of forgetting their new
passwords, and have settled on ‘Password1’, followed by ‘Password2’
etc... Reality has just changed but your Model no longer reflects it and you
have a false sense of security.
I was intrigued by this Reality-Model-Feel separation, and realised you
can apply it in many other situations. For example in politics, where many
policy decisions may be done because of an underlying Model (or
ideology, which may or may not reflect Reality!), but the presentation is

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | December 2010

EDITORIALRIC PARKIN
often about manipulating the audiences Feel appropriately. User Interface
design has related ideas too – a good UI should induce a user to have a
particular mental Model that reflects the task that they are trying to do. The
underlying Reality of how this task is achieved may be very different, but
if you get the UI Model to mirror what they’re trying to do, you’ll have a
good UI.
Closer to home, I recognised from Rafael’s article how debugging is often
about looking past your initial Feel about some code (‘Of course this loop
works – we’ve tried it before!’), building a new Model (‘How many times
does this loop really run in this case?’), and testing that against Reality to
determine where the bug actually is (‘Ooops, negative count passed in’).
And as his article title suggests, the Scientific Method has many similar
features, both in how it ought to work – by checking the results of your
Model against Reality, you can check to see how accurate it is, and adjust
it. And you can also use your Feel model to suggest possible
improvements and checks to make sure your Model isn’t resting on flawed
assumptions, and suggest refinements and sometimes a complete rethink
(although in practice, this happens very rarely in science as most models
are already pretty good and just get adjusted. Plate Tectonics is one notable
place where a true revolution occurred)
Sadly it can also be subverted. I’ve recently been reading Bad Science
[Goldacre] and have found it troubling how badly science is reported in
the media, and how our Feel model can be manipulated to not reflect
reality, whether deliberately or just through misplaced hope or fear. The
MMR vaccination scare is a classic case – while there was a large amount
of evidence for its safety from this country and others, a very small scale
study that found a borderline statistically significant correlation (ie it could
well have been chance) was portrayed as a serious risk, which
understandably concerned people. For some reason, many people just
refused to believe any of the reassurances and further studies that
demonstrated the safety – perhaps on the precautionary principle as there
were children involved, or perhaps felt the concreteness of choosing to
having the vaccine was too scary, whereas the abstract (and yet higher)
risk of not having it wasn’t. The problem is that everyone quite rightly uses
their Feel model to quickly come to a conclusion, but if that model is not
justified then you might get things wrong, and it can be very hard to change
your initial gut feel. A striking example from Bletchley Park was that the
Germans suspected that the Allies were getting intelligence on their
activities, but were so certain that their codes were unbreakable that they
never seriously contemplated that possibility.
Most of us do not have the time or expertise to check things out so rely
on others to do so for us. The trouble is, who do you trust? People can be
wrong for all sorts of reasons. An amusing example where common
knowledge turns out to be just garbled tradition turned up on QI the other
day [QI]: everyone knows that you should not drink alcohol when taking
antibiotics, but why? I’d always thought it stops them working, but
apparently that’s not true (although with some it’d cause unpleasant side-

effects): QI’s answer was that one of the first major uses was to treat
syphilis, especially in soldiers. But as people would still be infectious for
a while after they started treatment, they were told not to drink to avoid
them going out to celebrate with reduced inhibitions, which may cause one
thing leading to another, so spreading the infection. And the advice stuck.
(I thought I’d better do some research to see if this is plausible, and
apparently it could well be true [Alcohol])
I’ve also been reading Merchants Of Doubt [MoD] which is much more
troubling – this documents cases where people’s Feel models are
manipulated to discount evidence backing up a very different conclusion,
whether for ideological or financial reasons (or just people being stubborn
about not changing their own Feel model), often using the idea of a fair
and balanced debate as a way of airing very minority views as if they were
as well supported as ‘the other side’. This way well be a reasonable thing
to do in politics, but in science we can check our models to see how good
they are so things are not just a matter of opinion. An old example was
the campaign to cast doubt on the evidence that smoking was a major
contributor to lung cancer. I doubt there are many people left who
seriously disagree with that any more, but it took 30 odd years to get there,
mainly because people were encouraged to think that ‘the science isn’t
settled’, or it wasn’t ‘proven’. Which of course science can never do, as
it deals with finding models that are useful, but can always be improved
as more evidence comes to light. This sort of tactic works very well in areas
such as medicine where you are dealing with things that are highly
complicated and probabilistic, as it plays on peoples desire for things being
definitely one way or another. The book does cover more recent examples,
some of which are still ‘controversial’, and yet the
parallels are striking. It can be very hard to avoid
prejudices, mistakes and misdirection (including your
own) to build a good model that lets you come to a
reliable conclusion, but I think it’s something we
should strive for.

References
[Alcohol] http://en.wikipedia.org/wiki/Antibacterial#Alcohol
[Goldacre] http://www.badscience.net/
[MoD] http://www.merchantsofdoubt.org/
[Overload] http://accu.org/index.php/journals/c78/
[QI] http://www.qi.com/
[Schneier] http://www.schneier.com/ and http://www.schneier.com/blog/

archives/2008/04/the_feeling_and_1.html
December 2010 | Overload | 3

FEATURE RAFAEL JAY
Bug Hunting and the
Scientific Method
Do you have a proper methodology when fixing bugs?
Rafael Jay puts on his lab coat.
ugs are a perennial part of the software development process. Despite
our careful coding, our test-driven development, our peer reviews
and our rigorous QA procedures, every release of more than a few

lines of software seems inevitably to bring a swarm of bugs scuttling
angrily behind it.
Much of the time it’s reasonably easy to track down a bug. If you know
which bit of code implements the troublesome behaviour you just take a
look, prod a bit, and see what the problem is. I recall many years ago
receiving a bug report that a particular script operation didn’t seem to work.
When I opened the offending source file it simply consisted of a comment,
"TODO: implement". However not all bugs are this easy to diagnose.
At the other end of the scale there are those that keep you scratching your
head for days or weeks, feeling increasingly stupid at your inability to
make the software – on which you are allegedly an expert – confess its
misdemeanours. Or those which cause a live customer incident, where the
chances of going home rapidly recede and you barely get time to think
between managers importuning you for status updates. It’s with these
kinds of bug that I think the scientific method can be useful.
The scientific method is a process for answering questions about how the
universe works. Why do the planets move through the night sky? Why do
apples always fall towards the ground? Why can’t I go to the pub every
night while maintaining my perfect physique? It starts from observable
reality and tries to construct a model which answers these questions.
We don’t use it much in software development because mostly we already
know the answers. Why does my application save to disk when I press
Ctrl+S? Because that’s what I told it to do. A physicist looking at the night
sky cannot directly perceive the laws that govern the universe. But a
developer looking at a running application can. In fact they’re visible with
automatic syntax highlighting in her favourite IDE.
As developers we actually frame the laws that govern how our applications
– our universes – work. This means our mental models of how they work,
and what we believe they will do in any given situation, are usually pretty
accurate. The instances where this is not so are generally what we call bugs:
our mental model tells us that our application should behave in one way,
but in fact it behaves in another. Instead of saving to disk it wipes the hard
drive. To fix the bug we need to find out why, and this is where scientific
method can help.
The scientific method starts from what we already know, constructs
hypotheses about what might be true based on that knowledge, then
conducts experiments to prove or disprove the hypotheses. This yields
fresh knowledge and the cycle repeats until we’ve answered our question.
Figure 1 shows the components of the scientific method. Let’s look at each
of them in turn.

Knowledge
Sherlock Holmes once remarked that from a drop of water, a logician could
infer the possibility of an Atlantic or a Niagara without having seen or
heard of one or the other [Doyle]. But before said logician can do so, he
must notice the drop.
I was once stumped for over a year by a bug that had caused CPUs to spin
wildly for no apparent reason. Then one day I happened to notice that the
system uptime just before the bug was very close to 4294967296, or 232.
You can guess the rest – a classic 32-bit integer overflow bug. I hadn’t
spotted it previously because system uptime is reported in the system log
once a day, at midday. The bug had occurred some hours after midday. So
I didn’t think to look. But like the drop of water, that piece of information
was sitting there all along, waiting for someone to notice it and infer the
CPU Niagara.
I now keep a checklist of possible information sources to consult when a
tricky bug comes in. This helps me avoid missing key pieces of
information. Some of these sources are specific to the products I work on,
but some apply to the operating system or even just to software engineering
in general. For example it’s often a good idea to get a direct account of
what happened from the people most directly involved, rather than relying
on the circuitous word of mouth that can intervene between a live issue
and a developer being summoned.
As you gather together what you know about a bug, it’s a good idea to
collect it in one place and keep it clearly labelled. This is especially so if
more than one person is working on the bug, but even if it’s just you it can
get difficult to remember where each cryptically labelled crash dump file
actually came from. I once wasted hours on a customer-critical bug trying
to figure out why two of us were seeing different results from the same
database dump, only to eventually realize that we were looking at different
dumps with similar filenames.
Differentiate between what you actually know and what you merely
presuppose. I recall one bug where a script ran fine on its own but got stuck
when it ran as part of a batch file. After much investigation I realized that
the script was in fact running fine as part of the batch file as well. It was
actually the next script in the batch that got stuck. However the log wasn’t
flushed regularly enough and this made it look like the problem was in the
original script. I had presupposed that the problem was in the original script
but all I actually knew was that the last log message from the batch run
came from that script.

B

Rafael Jay is a senior developer and technical lead working on
financial trading platforms in C++ and .NET. He can be contacted
at rafaeljay@bcs.org.uk

Knowledge Hypotheses Experiments
Induction Deduction

Results

Figure 1
4 | Overload | December 2010

FEATURERAFAEL JAY

I have seen more bug-hunting time wasted by
false presuppositions than any other cause
Over my career I have seen more bug-hunting time wasted by false
presuppositions than any other cause. It is very easy to start out with what
seems like a reasonable presupposition, such as that a bug must be in a
particular module, and forget to re-evaluate the presupposition as you dive
deeper and deeper into technical investigations. Every time you find
yourself back at the Knowledge stage of the scientific method, you should
check your presuppositions and ask whether they still make sense in the
light of whatever experiments you’ve conducted and the fresh knowledge
thereby acquired.
The presuppositions on which physical science is based actually shade off
into some very philosophical regions. For example, scientists presuppose
that a physical universe exists at all, and that we are not merely butterflies
dreaming of being humans. Such considerations don’t generally impinge
on software engineers. Even if I’m a butterfly dreaming of coding C++, I
still have to fix that bug or I’ll be a butterfly dreaming of a P45. But there
are some points worth bearing in mind. A trap I’ve sometimes fallen into
is where the code I’m working on is not the code I’m running. For example
I’m building a debug version but running the release version. This can be
mystifying when your code changes seem to have no effect. The problem
is essentially that you’re observing the wrong universe. Similarly it’s
worth considering whether the tools you use to perceive your universe,
such as debuggers or profilers, are actually giving you an accurate view.
Although it’s relatively rare, those tools can have bugs in them. More
commonly, your own brain – your most essential tool – can deceive you.
Many of us will have experienced the [CardboardProgrammer]
phenomenon from time to time, where simply talking through a bug will
reveal an ‘obvious’ discrepancy between what we perceived the code to
be doing and the reality. This can be a particular problem with code you
wrote yourself, where it’s all too easy to see what you meant to write rather
than what you actually wrote.

Induction
Induction is the process of building hypotheses from knowledge. It moves
from the particular to the general, starting from the particular facts we
know to be true and building more general theories about why those things
might be happening. For example, the stars all seem to whiz around the
Earth: perhaps the Earth is at the centre of the stars? The application only
crashes when I’ve been using feature X: perhaps feature X is corrupting
the heap?
Induction in physical science is often a long and arduous process, requiring
years of painstaking observation before a flash of creative genius draws
out the pattern in the data. It was a long time before anyone put together
enough knowledge to show that the Earth went around the Sun rather than
vice versa. Things are simpler in software because we can peek behind the
physical reality (a running application) to see the laws (source code) that
govern it. This means it is relatively easy to look at the symptoms of a bug
and enumerate the possible things that could be causing it. Nevertheless,
it's often worth having as many people as possible involved in the process,
because overlooking one of those possible things can result in a lot of
wasted time.

Hypotheses
A hypothesis is a theory about what could be causing the things you know
to be happening. For example, you hypothesize that the hard disk is wiped
when you press CTRL+S because you’ve called the wrong function in your
code. The goal of the induction process is to put together a set of
hypotheses which is as complete as possible within your presupposed
bounds; and then to assign probabilities to those hypotheses.
A complete hypothesis set is one which covers the entire range of
possibilities, such that one of the hypotheses must be correct. For example,
“either the Earth goes round the Sun or it doesn’t” is a complete hypotheses
set; whereas “either the Earth goes round the Sun or the Sun goes round
the Earth” isn’t. The latter ignores the possibility that neither Earth nor Sun
goes round the other.
A hypotheses set can be too complete. For example: the hard disk is wiped
because I’ve called the wrong function; or because I’ve written the
function incorrectly; or because the operating system is broken; or because
the compiler is broken; or because ninjas1 sneak in and wipe the drive when
I’m not looking; or in fact I am actually a butterfly dreaming of being a
programmer and none of this is real. You can imagine an infinite number
of outlandish hypotheses and the correspondingly infinite time that would
be required to investigate them all (even assuming it were possible to do
so). To avoid this, we make presuppositions, such as ruling out ninjas, to
eliminate outlandish hypotheses.
To guide your bug investigation, you need to assign probabilities to each
hypothesis. Is it more likely that you’ve called the wrong function or that
the compiler is broken? The answer dictates which hypotheses you should
investigate first, or in most depth. Experience is valuable here – both of
programming in general and of your specific product. Sometimes you
know that a particular module is flaky and more likely to be the source of
issues than another. And one thing I’ve learned over the years is that the
compiler is rarely broken. Third party software that is widely used in a
variety of settings is much more likely to be working correctly than your
own software. It’s more probable that you haven’t understood how to use
it correctly. I’ve only ever encountered or heard tell of a handful of
compiler bugs over the years, for example the Microsoft auto_ptr bug,
which was widely documented online. If the compiler is broken, then
chances are that someone else already knows about it. The same applies
to widely-used third party libraries.

Deduction
Hypotheses need to be tested. It’s no good hypothesising that the Earth
goes around the Sun unless there’s something you can do to prove it. Such
proof comes from experiments. Deduction, or deductive logic, is the tool
we use to devise experiments to prove or disprove particular hypotheses.
Deduction is the opposite of induction. It moves from the general to the
particular. If the Earth is at the centre of the stars, then we ought to see
Arcturus moving in a particular pattern. If feature X is causing a crash, we

1. For more information about ninjas, see
http://www.realultimatepower.net
December 2010 | Overload | 5

http://www.realultimatepower.net

FEATURE RAFAEL JAY

When a critical or difficult-to-diagnose bug
comes in, you don’t have infinite resources
should see evidence of feature X being run before each crash. We deduce
a specific prediction from the general principle; then we devise an
experiment to see if the prediction is true.
Deductive logic is a substantial subject in its own right and I won’t attempt
to cover it at all thoroughly here. Indeed, we generally don’t need anything
more than a common-sense grasp of the rules of logic to get by in the world
of software engineering. However I think it might be useful, by way of an
example, to look at one of the more commonly applied rules of logic and
consider the potential pitfalls when applied to bug hunting. It also gives
an excuse for some Latin, which is always nice.
Modus ponendo ponens translates as ‘the way that affirms by affirming’
and is a simple argument form in logic. It is generally abbreviated to just
modus ponens. It works as follows:

If P is true, then Q is also true
 P is true
Therefore Q is true

For example: if feature X is run, then message M is written to the log file;
feature X is run; therefore message M is written to the log file.
You can see how this might be useful in devising an experiment to prove
the hypothesis that feature X is causing a crash. We can apply modus
ponens to deduce a testable proposition which will be true if feature X did
indeed cause the crash – specifically that message M will appear in the log
file before the point where the application crashes. If this is true then the
hypothesis becomes more likely; if false, the hypothesis is false.
At this point it is important to beware of logical fallacies. These are where
you incorrectly construct a logical argument such that its conclusions are
not valid. For example, a common fallacy afflicting modus ponens is that
of ‘affirming the consequent’, which essentially means confusing cause
and effect:

If P is true, then Q is also true
Q is true
Therefore P is true

This is obviously wrong when written as a bare logical argument. But in
the real world it can be harder to catch. For example: if feature X is run,
message M is written to the log file; message M is written to the log file;
therefore feature X was run. This takes the evidence of a log file message
as proof that feature X was run. But what if feature Y happens to write an
identical message when it’s run? In that case the evidence of the log file
message does not prove that feature X was run. You could waste a lot of
time investigating feature X under the delusion that it was actually run
before the program crashed. It’s worth taking a bit of time to check your
deductive logic and confirm that your experiments actually prove or
disprove what you think they do.

Experiments
Experiments are the things you actually do to learn more about what might
be causing the bug. They prove or disprove your predictions; which in turn
strengthens or weakens the hypotheses from which you deduced those

predictions. An experiment can be something as quick as looking in a log
file or as involved as writing a scaled down version of a complex system
to see if you can reproduce a bug with less surrounding clutter.
This last point is important: experiments cost. When a critical or difficult-
to-diagnose bug comes in, you don’t have infinite resources. There are only
so many people you can take away from their regular duties, and there is
only so much time they can spend on a bug before it becomes too costly
for your company, or you lose a customer because you couldn’t fix the
problem quickly enough. It’s also much more satisfying to be the guy who
turned that critical bug around in 24 hours than the guy who went mad
through working late nights for three solid weeks and had to be talked out
of the cupboard.
I find it can be worth thinking like a laboratory administrator in these
situations. You have a research problem – diagnosing the bug. You have
a laboratory equipped with various computing hardware and software
engineering tools. You have staff. What’s the cheapest and quickest way
of diagnosing the bug?
The starting point is to focus on the most likely hypotheses. What
experiments can you deduce to strengthen or refute them? How much will
those experiments cost? If one is expensive, is there something cheaper you
can do to get the same result? Just as when coming up with hypotheses,
it’s worth having as many people involved as possible when you come up
with experiments.
A further consideration is whether you have the right equipment, the right
staff, and the right materials on which to run your experiments. Some
thought and even research in this area can pay dividends. On one bug I was
investigating we had ruled out using a performance profiler because we
felt it would take too long to set up and execute on the large application
we were dealing with. But once we actually talked to an expert from
another team it turned out we could get some results in less than half an
hour. On another occasion I wasted a lot of time messing about with system
clocks trying to diagnose a time-triggered bug before I realised there were
third party utilities that could achieve the same effect much more easily.
It’s also worth considering whether you can modify the data you’re looking
at to make experiments more efficient. When a customer reports a bug, one
of the first things it’s common to ask for is a complete dump of their
database so you can try to reproduce the problem in-house. A perennial
problem I’ve faced is that this can be a lot of data – gigabytes in some cases.
Running experiments on gigabyte data sets can be very time consuming
as your developer machine struggles under the heavy resource load. It’s
worth considering whether some time invested up-front in eliminating
irrelevant data to get a smaller data set will be a good investment in terms
of making subsequent experiments more efficient. It’s also worth
considering whether modifying the application you’re experimenting on
might be useful, for example adding some extra logging or inserting a sleep
to flush out suspected threading problems. You need to exercise discretion
here as changing the data or the code you’re experimenting on can
invalidate the experiments; but it can mean the difference between running
an experiment every two minutes or every two hours.
6 | Overload | December 2010

FEATURERAFAEL JAY

Our universe appears to be one in which a
vast array of physical phenomena can be

explained by a very small set of laws
Experiments yield new knowledge, and the scientific method cycles back
to the beginning. If you’re lucky your knowledge now includes the cause
of the bug, at least with sufficient certainty to start putting together a fix.
If not, you can go through the cycle again, using your new knowledge to
focus more tightly on the most likely hypotheses. Repeat until solved. Or
until you decide it’s all too costly, brush the bug under the carpet, and keep
your fingers crossed that it doesn’t happen again. Sometimes, though
rarely, that actually is the right business decision.

Conclusion
Most of the time in software engineering we don’t need the full rigour of
scientific method. Our privileged insight into the source code – the laws
of our particular universes – actually makes an ad hoc ‘prod it and see’
approach more efficient. But for intractable or customer critical bugs I
think it can be well worth applying scientific method more formally.
Following a clearly defined process reduces the risk of forgetting or
overlooking key pieces of information, and it provides a solid framework
for deciding the best way to use the resources at your disposal. This can
save a significant amount of time that might otherwise be wasted on blind
alleys and missed opportunities, especially on those pressured occasions
when customers are shouting down the phone and managers gesticulating
behind your chair.
As a final thought, I think it is worth taking a step back and considering
why the scientific method has proved so useful to humanity over the
centuries. An important reason is the nature of the universe we live in. Our
universe appears to be one in which a vast array of physical phenomena
can be explained by a very small set of laws. This is sometimes referred
to as the property of parsimony – the universe gets a lot done with a little.
It means that when science uncovers some new underlying principle, that
principle is generally pretty useful – it explains or predicts many observed
phenomena, with many consequent practical applications. But there is no
reason why the universe should be parsimonious. Every apple could fall
towards the Earth for distinct reasons, rather than as the result of a general
principle of gravity. Every atom could move according to its own unique
rules of quantum electrodynamics. Such a universe would be tremendously
more difficult than ours to study and understand and it is likely that
humanity, if it came into existence at all, would never have figured out very
much about how it all worked.
Does this remind you of code bases you’ve worked on? As software
engineers we create universes – running applications governed by the laws
enshrined in source code. How parsimonious are the software universes
you create? Can a developer understand a lot about your application with
a relatively small set of principles? Or does each module and class have
its own unique conventions that have to be understood piecemeal? It is well
worth considering these issues as you develop because they determine how
tractable your application will be to scientific method, and thus whether
you will be the guy who fixed that bug or the guy who locked himself in
the cupboard.

References
[CardboardProgrammer]

http://www.c2.com/cgi/wiki?CardboardProgrammer
[Doyle] A Study in Scarlet, Arthur Conan Doyle
December 2010 | Overload | 7

http://www.c2.com/cgi/wiki?CardboardProgrammer

FEATURE SERGEY IGNATCHENKO
From Occam’s Razor to
No Bugs’ Axe
Designing good APIs that stand the test of time is notoriously
hard. Sergey Ignatchenko suggests a radical guideline.
s usual, the opinions expressed within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide with opinions of the
translator and the Overload editor; please also keep in mind the

difficulties in translating accurately from Lapine (like those described in
[LoganBerry2004]). In addition, both the translator and Overload
expressly disclaim all responsibility from any action or inaction resulting
from reading this article.

“Fight Features. ...the only way to make software secure,
reliable, and fast is to make it small.”

Andrew S. Tanenbaum
Every time I start to develop a new API for fellow rabbits, I (and probably
every other library developer) always face the same question: which
functions might my users possibly want? Over the years, I have came to a
seemingly paradoxical yet extremely practical approach to this problem,
which I want to share here. It is not something entirely new, but I don’t
think it has ever been emphasized enough.
First, I’ll try to analyze how it usually happens.

The usual approach: what else MIGHT our users want?
When the need for a new API (class or library) arises, the natural
temptation of the developer is to complete the development of the API once
and for all, and to provide everything any potential user could possibly
want. Examples of such APIs are abundant, and such libraries are often
successful, but there are several problems with this approach which leads
to a reduction in productivity in the long run. These problems are:

the inability to remove an unnecessary API: as soon as the API is
released, it is extremely difficult to get rid of it. While there are
attempts to introduce ‘deprecation’ into APIs (for example in Java
[Java]), this process is usually extremely slow and only marginally
helps with the problem.
unexpected abuse of an API: as soon as an API is used by more that
3 developers you can count on it being used in all the ways you have
thought of, and in all the ways you didn’t think about. This often
becomes a problem, especially if the API accidentally reveals
certain details of the underlying implementation (which you hoped
that nobody of sane mind would ever use, but this always turns out
to be wishful thinking: there will be at least one person who
disagrees with your definition of sane)
these lead to the third, more important point: as soon as an API is
released, you’re essentially bound to maintain it virtually forever,

including undocumented and unintentional quirks. Are you scared
of maintaining it forever? I certainly am. Tharn!1

this in turn greatly increases code rigidity: as you’re bound to
maintain the API forever, including all the unintended features,
you’re very often effectively prevented from changing the
underlying implementation as someone may well be relying on
some unintentionally exposed aspect.

In addition, this kind of creeping featuritis doesn’t come free for
developers who’re using the library:

it provides many features that most users of the library don’t want:
while few people will complain about the extra features, after
exceeding a certain threshold it often causes the problem of ‘I can’t
see the forest for the trees’ when a developer just doesn’t know
where to start.
it increases the risks of abuse, the effects of which can be significant.
For instance, it is this risk which is one reason behind the decision
of Linus Torvalds not to allow C++ into the Linux kernel
[Torvalds2007].
it is more likely for legitimate feature requests to be denied because
implementing them would be a disaster: it often would be easier to
implement if you weren’t also required to support lots of existing
features, many of which are unnecessary but required to be
supported forever.

Waterfall vs Agile
One way to think about this ‘include everything in sight’ development
approach is to compare it to the Waterfall development model. If the API,
once designed, cannot be changed or extended, it pushes us to include
everything which we think might be needed. Unfortunately, Waterfall
development doesn’t really work in practice because it is hard to predict
what will actually be necessary. Fortunately, this was recognized in 2001
when the term Agile development was coined [Agile].
Within the Agile development model, the whole development process is
iterative by design and changes are a part of the process and are welcome.
Applying this principle to a library we can see that APIs can also change
easily. At least in theory it means much less pressure on the API developer
to put in ‘everything a user might need’ right away; in fact, many Agile
methodologies explicitly state that developing features ‘just in case’ is not
a good thing, for example XP states ‘Never Add Functionality Early’
[YAGNI].

No Bugs’ axe
Unfortunately, up until now it has not been explicitly stated what
constitutes ‘too early’ for a feature to be included and what does not. In
my projects with fellow rabbits, I have used the following principle for a
while with a considerable success:

A

1. The word tharn is difficult to translate into human language, but the
closest meaning is ‘stupefied by terror’ [Loganberry2006]

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams [Adams].

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
8 | Overload | December 2010

FEATURESERGEY IGNATCHENKO

if you do not know what your users really want,
you’re not able to provide a reasonable API
If you do not have a concrete case of how a feature will be used
– do not provide it.

I (without false humility) hereby propose to name it after yours
truly, namely a “No Bugs’ Axe” principle. In some very wide
sense you can consider it as parallel of the classic ‘Occam’s
razor’ principle [Occam]: in the same way that this cuts off
unnecessary entities needed to explain a phenomenon, No Bugs’
Axe slashes away unnecessary features.
The rationale behind such a harsh approach is not only related to
the problems of creeping featuritis mentioned above, but is also
related to one obvious (though often ignored) observation: if you do not
know what your users really want, you’re not able to provide a reasonable
API. It is very common that users request one thing, while in reality they
need something very different which might be easier to implement for you
and (much more importantly) easier for them to use. Let’s see this in
practice with a concrete example.
Suppose that you’re developing your own String class for
your project. Originally, following the Axe principle,
you’ve made your String a bare-bones implementation
which can only store a string and compare it to another
one. Even such a simple implementation is useful for many
practical applications. As time goes by, one of the developers using
the library comes and asks you to introduce a function find(),
similar to strstr() in C. It is certainly easier to just go
ahead and implement such a simple function than to argue
about it, but according to the Axe principle you should ask
why the developer needs it. You’ve asked and s/he
replied: ‘Oh, I need to find out if the file extension is
.abc, so I want to use find() to detect it.’ After
giving it a bit of thought, you ask, ‘Using find() in
such a manner is cumbersome and error-prone: would you be happy to use
a Java-like endsWith() instead?’; and the answer is ‘Sure thing!’
Next time, another developer comes and once again tells you that s/he
needs find(). Again, you ask why does s/he need it? This time, the real
need is to provide a substring search within an URL for a custom web
server extension. After some thought and research, you realize that what
users really need is not a substring search, but a pattern match, which the
developer (knowing too well that its implementation is not trivial) was too
humble to ask for. What was really necessary in this case was not simple
find(), but some form of regexp.

What about code reuse?
One popular argument in support of including ‘everything in sight’ is ‘if
we provide an incomplete API, how it can be reused in the future?’ There
is only one problem with this argument: it is fundamentally flawed. As it
has been observed for quite a long time, and recently articulated in
[Kelly2010], it is not code reuse which really matters to deliver quality
software: it is a set of other properties, like modularity and low coupling,

which are of
importance, but which are often considered too abstract. On the other hand,
development aiming for code reuse tends to be as much as three time more
expensive than developing single-use code. To address this conflict
between code quality and development costs, [Kelly2010] proposes the
approach of ‘emergent reuse’ – ‘don’t plan for reuse but look for
opportunities to reuse something that has gone before’ – which is perfectly
consistent with No Bugs’ Axe.

On hammer and nails
I suppose it is tempting, if the only tool you have is a hammer,

to treat everything as if it were a nail.
Abraham Maslow, psychologist

As we have shown above, concrete use cases help to shape APIs in ways
which can be hard to envision well in advance. But let’s take a closer look:
if a general find() function had been provided from the very beginning,
would developers have ever come asking for better APIs? All my
December 2010 | Overload | 9

FEATURE SERGEY IGNATCHENKO

consistent with Agile development
principles, APIs evolve with the project
experience convinces me that most developers will not ask for a new API
when a workaround is available (unless it is really horrible to use, and even
in this case it may still be misused though not as likely).
Therefore, restricting APIs unless concrete use cases are provided serves
one more important purpose: it stimulates creating APIs which are the right
tool for the job (instead of using a hammer on screws). As it has been shown
above, it often helps to keep code as a whole more readable, less error-
prone, and (paradoxically!) more functional.

Subtle points
There are a few important, though subtle, points to understand about the
No Bugs’ Axe principle:

while it prohibits, or at least strongly discourages, implementing
features until they’re requested, it doesn’t mean that you, as an API
developer, should not think how you’re going to implement a feature
if it is requested in the future. The idea behind No Bugs’ Axe is not
to corner ourselves by relying on a feature never being requested,
but exactly the opposite: to keep open all possible options, and the
restriction on existing public APIs is one of the means to achieve
this.
it is important to understand that any refusal to implement a certain
feature on the basis of the No Bugs’ Axe is essentially temporary: if
a satisfactory use case is demonstrated at some point later, the prior
objections based on No Bugs’ Axe are automatically revoked.
nothing is carved in stone. Any attempt to follow a set of rules to the
letter is doomed from the very beginning, therefore you should rely
on your judgment and common sense. For example, despite being
adamant on cutting off unnecessary APIs in the String class
above, when the need for endsWith was demonstrated even I
myself wouldn’t argue against adding the complementary
startsWith function. A rationale to provide startsWith would
be not to provide a complete API, but to avoid confusion for
developers who will reasonably expect to have startsWith when
they see endsWith.

Pros and cons
Developing APIs under the No Bugs’ Axe principle has some important
implications:

the API developer must be available to analyze the needs of API
users, with round-trip times (from the moment of request to a reply,
even if it is a negative one) being, not in the order of months (which
is unfortunately often the case with API developers), but of hours,
maximum days.
developers who’re using the API should be encouraged to submit
requests when they feel new features are necessary. This includes
treating even the most silly requests respectfully: in the worst case
you can always write a FAQ about requests which you’re not going
to honour, with a list of workarounds.

In exchange for these (I’m sure minor) inconveniences, the following
benefits are obtained from adhering to No Bugs’ Axe:

it encourages a coding style which uses exactly the right tool for the
job
it reduces the number of APIs which can be abused
it reduces the number of APIs which need to be supported (most
likely eternally)
it reduces inter-dependencies, making code less rigid and less
fragile;
consistent with Agile development principles, APIs evolve with the
project (which is inevitable anyway in the long run), but with much
better backward compatibility as it is usually much easier to add a
new API rather than to drop or change an existing one.

Other usages
As we have seen, the No Bugs’ Axe principle works very well for APIs,
but it can be easily extended into other areas, where it is also useful for
similar reasons. In particular, the very same principle can be easily applied
to user features. In practice, it is often not useful to take claims coming
from BAs ‘our user needs such and such checkbox here’ uncritially – ask
why. Usually the user (almost) never needs ‘a checkbox’, but instead the
ability to specify something; and a checkbox might not always be the best
way to do it. While asking questions like this might not be welcome within
the current development culture of many companies, my experience shows
that it often helps to improve quality of the end product, and therefore is
beneficial for the company in general.

References
Agile] Manifesto for Agile Software Development,

http://agilemanifesto.org/
[Java] ‘How and When To Deprecate APIs’,
http://download.oracle.com/javase/1.4.2/docs/guide/misc/deprecation/

deprecation.html
[Kelly2010] Allan Kelly, ‘Reuse Myth – can you afford reusable code’

http://allankelly.blogspot.com/2010/10/reuse-myth-can-you-afford-
reusable-code.html

[Loganberry2004] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, Unit 14: Feelings and Emotions; Parts of the
Body (2), http://www.loganberry.furtopia.org/bnb/lapine/
unit14.html

[Loganberry2006] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, Dictionary – Lapine to English,
http://www.loganberry.furtopia.org/bnb/lapine/dictlaptoeng.html

[Occam] http://en.wikipedia.org/wiki/Occam%27s_razor
[Torvalds2007] Linus Torvalds, ‘Why C++ is a horrible language’,

http://article.gmane.org/gmane.comp.version-control.git/57918
[YAGNI] http://en.wikipedia.org/wiki/You_ain%27t_gonna_need_it and

http://www.xprogramming.com/Practices/PracNotNeed.html
10 | Overload | December 2010

http://agilemanifesto.org/
http://download.oracle.com/javase/1.4.2/docs/guide/misc/deprecation/deprecation.html
http://allankelly.blogspot.com/2010/10/reuse-myth-can-you-afford-reusable-code.html
http://www.loganberry.furtopia.org/bnb/lapine/unit14.html
http://www.loganberry.furtopia.org/bnb/lapine/unit14.html
http://www.loganberry.furtopia.org/bnb/lapine/dictlaptoeng.html
http://en.wikipedia.org/wiki/Occam%27s_razor
http://article.gmane.org/gmane.comp.version-control.git/57918
http://en.wikipedia.org/wiki/You_ain%27t_gonna_need_it
http://www.xprogramming.com/Practices/PracNotNeed.html

FEATUREPHIL BASS
The Quartermaster’s Store
Be careful what you wish for. Phil Bass tries to simulate a
missing language feature.

My eyes are dim, I cannot see.
I have not brought my specs with me.
Mission impossible?
t’s said you can find anything in the Quartermaster’s Store, even
impossible things like fairy wings and unicorn tears. So that’s where I
went to find some virtual function templates.

The quartermaster is an old man now. His face is wrinkled, his hair grey,
but his mind is sharp and there’s a glint in his eye when I explain what I’m
looking for. ‘Virtual function templates?’, he asks rhetorically, ‘I think I
can help you, but, tell me, what are you going to use them for?’

Persistence required
Several of our applications use information stored in a SQL database.
Currently, each program accesses the database directly and there is some
undesirable duplication of the read/write functions across those
applications. We want to remove this duplication by introducing an Object
Store layer which knows how to map the logic layer objects to database
tables.
For example, our systems define Users and Groups a bit like the users and
groups in Unix operating systems except that a User can only be in one
Group and permissions are only associated with Groups. In this design
reading a whole Group involves reading a Group record and multiple User
records. One application might read the Group record and then, separately,
read the corresponding User records; another application might use a SQL
join to read the records in a single SQL statement.
A generic Object Store would provide the equivalent of SQL insert, delete,
select and update operations, but working with C++ objects rather than
database records. So, for the User/Group example, the Object Store would
provide a single function that reads a Group object from the database and
the several applications would all use it.

Double dispatch
Unit test programs will exercise logic layer components that use the Object
Store and in these programs we will want to substitute an in-memory
database for the usual on-disk SQL database. Although we could
implement a fake version of the SQL database we use, we realised that the
existence of an Object Store opens up the possibility of a radically different
interface for the in-memory database – an interface with a trivial
implementation. For example, instead of using the SQL database C API
functions to read records from User and Group tables and building a Group
object from the records, the test database could contain ready made Group
objects in a std::map<Group_ID,Group> and simply return the result
of a map look-up.
With this requirement the implementation of the Object Store functions
depends on both the type of the storable object and the type of database
that will store it.

Unwelcome visitor
The stock solution to the problem of implementing a double dispatch
mechanism in C++ is the VISITOR PATTERN, as described in the Gang of
Four book, Design Patterns [GoF]. Note, however, that the VISITOR

PATTERN is asymmetric: although the Element base class only needs to
know the type of the abstract Visitor class, the Visitor class has to
provide separate overloaded functions for each concrete Element type.
In the case of our Object Store that means that either there must be a
Database base class that knows the concrete types of all the Storable
objects or there must be a Storable base class that knows the concrete types
of all the Databases.
It would be nice to be able to write Listing 1. If this was possible we could
write one concrete Object_Store class that stores objects in a real SQL
database on disk and another that stores objects in a test database in
memory. An application that uses the real database would not depend on
the test database and, conversely, test programs would not depend on the
real database. Similarly, any program that only used Group objects would
not depend on any other storable objects.

A change of perspective
The quartermaster had listened carefully. ‘Try these glasses’, he said when
I had finished. ‘They might give you a different perspective on the
problem.’ He seemed to over-emphasise the ‘spec’ in perspective. Was he
making a joke, alluding to his notoriously poor eyesight and reminding me
of the old scout song? He thrust a battered pair of spectacles towards me.
‘Go on’, he said, ‘Try them.’ Hesitantly I took the glasses and settled them
on the bridge of my nose. They were surprisingly comfortable. I could see
clearly, too. The lenses hadn’t changed what I could see in any way I could
identify, but things did look different, somehow. ‘Now, close your eyes,
relax and think about your persistent object store again’, said the
quartermaster.
Without quite realising how bizarre this was I did as he said; and new
thoughts began to take shape in my mind. Virtual functions are
implemented by building a table of pointers to functions. Virtual function

I

Listing 1

// A persistent store for storable objects.
class Object_Store
{
public:
 template<typename Storable>
 virtual insert(Storable const&) = 0;
 . . .
private:
 . . .
};

Phil Bass has been learning how to write software for the last
35 years and intends to continue learning for a few years
more. He believes in agile methodologies, design patterns
and trust-the-programmer languages. He can be contacted at
phil@stoneymanor.demon.co.uk
December 2010 | Overload | 11

FEATURE PHIL BASS

These functions could be organised across
source files in several different ways
tables are one dimensional, but for double-dispatch we’d need a two-
dimensional table. Furthermore, the size of a virtual function table is fixed
at compile time, and we don’t want to force applications to contain the full
2D table if they only need a few storable types. So we are looking for a
dispatch mechanism that selects different functions according to the types
of two parameters and doesn’t require a look-up table whose size is
determined at compile time.
‘Overloading!’, I cried, opening my eyes. The quartermaster was startled
for a moment, but quickly regained his composure. ‘Take your time’, he
said, ‘Think it through.’

Seeing the light
In my Eureka moment I had realised that an Object Store could be
implemented without using templates, virtual functions, or even classes.
It could just be a collection of overloaded functions that define object ↔
database mappings (Listing 2).
There would, of course, be functions for delete, select and update
operations, and functions for many more storable object types. These
functions could be organised across source files in several different ways.
Perhaps the natural organisation would be to put all the operations that map
a particular object type to a particular type of database into a single file.
The corresponding object modules could be stored in libraries, perhaps one
library for the real database and another for the test database. This way a
program that only used a test database wouldn’t depend on a real database;
and a program that used Group objects wouldn’t depend on unrelated
storable object types.

A fly in the ointment
Following the quartermaster’s advice I started to think about how the
object mapper functions would be used. Typically, the logic layer classes
would access the database through an abstract interface. The application
programs would pass a real database to the logic layer functions and the
unit tests would pass a test database instead. So, for example, a function
that creates a new Group might look like Listing 3.
But, calling one of the object mapper functions requires a concrete
database type and that can’t be recovered from the abstract interface unless
there is a suitable virtual function in the Database base class. So it looked
as though we’d need an Object_Store class with virtual function
template members after all.

A helping hand
I was gutted and my disappointment must have shown on my face because
the quartermaster chose that moment to drop a big hint. ‘Could you have
a member function template that forwards to a virtual function?’, he asked.
I closed my eyes again and visualised Listing 4.
The Any_Storable class would have to be a wrapper that retains the
concrete Storable type and provides a mechanism for its recovery. There
is just such a class in the Boost l ibrary: boost::any . The
insert_impl() functions would recover the Storable type and call the
appropriate object mapper function.
The type of the object in a boost::any is provided by the any::type()
function, which returns a std::type_info const&. Somehow the
insert_impl() function must use this to generate a reference to the
s torab le ob jec t he ld wi th in the boost::any ob jec t . The
insert_impl() function can’t do this directly because it doesn’t itself
know the concrete type of the Storable object. But it can look up and call
a function that does know the concrete Storable type. For example, the
Object_Store class might store a function registry in the form of a
std::map<std::type_info const*, insert_function*>
where insert_function is a suitable function type.
The functions in the function registry also need to know the concrete
database type so that they can invoke the corresponding object mapper
functions. Providing the function registry, therefore, must be the
responsibility of the concrete Object_Store classes. Listing 5 shows an

Listing 2

// Real database mapping functions.
void insert(Real_Database&, Group const&);
void insert(Real_Database&, User const&);
. . .
// Test database mapping functions.
void insert(Test_Database&, Group const&);
void insert(Test_Database&, User const&);
. . .

Listing 3

void create_group(Database& database)
{
 Group new_group = ...;
 insert(concrete(database), new_group); // ???
}

Listing 4

class Object_Store
{
public:
 template<typename Storable>
 void insert(Storable const& storable)
 {
 insert_impl(Any_Storable(storable));
 }

 . . .
private:
 virtual void insert_impl(Any_Storable) = 0;
 . . .
};
12 | Overload | December 2010

FEATUREPHIL BASS

Unlike designs based on virtual
functions the function registry needs to
be populated at run time and this is the

responsibility of the programmer
example of an Object Store class that accesses a SQL database via the
Database Template Library [DTL].
The database is represented by a dtl::DBConnection object, which is
initialised from the connection parameters passed to the constructor as a
string. The function registry stores pointers to functions taking
dtl::DBConnection& and boost::any const& parameters. The
insert_impl() function can then be implemented as shown in Listing
6.
Each function in the function registry handles a particular type of storable
object; it simply recovers that type from the boost::any and forwards
to the appropriate overloaded object mapper function. The registry
functions are identical except for the concrete Storable type, so they can
be generated from a trivial function template as shown in Listing 7. Note
that the any_cast will not fail if the function registry has been correctly
initialised.
Unlike designs based on virtual functions the function registry needs to be
populated at run time and this is the responsibility of the programmer (not
the compiler). That is the price we must pay to avoid coupling the Object
Store source files to all the concrete Storable types.

Mission accomplished
Had I succeeded in my quest? Well, virtual function templates don’t exist,
but we can emulate them with a combination of member function templates
that forward to a virtual function and function registries built at run-time.
That was more than good enough for me.
I handed the glasses back to the quartermaster, thanked him and shook his
hand warmly. ‘I’m sorry that I couldn’t get any virtual function templates
for you’, he said. ‘Not at all’, I replied. ‘You have given me something
much more valuable – a deeper understanding of an important design
problem, complete with a practical solution.’ But he wouldn’t take any
money, so I pushed a note into his charity collection box and bid him
farewell.

References
[DTL] The Database Template Library is available from SourceForge at

http://dtemplatelib.sourceforge.net/. There’s also an article by one of
its co-authors in Overload 43 (http://accu.org/index.php/journals/
445).

[GoF] Design Patterns – Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.
ISBN 0-201-63361-2.

[Love] For an Overload article applying the ‘virtual function template’
technique to iterators see http://accu.org/index.php/journals/479.

Listing 5

class Real_Object_Store : public Object_Store
{
public:
 Real_Object_Store(
 std::string const& connection_parameters);
 . . .

private:
 virtual void insert_impl(boost::any storable);
 dtl::DBConnection db;
 typedef
 std::map
 <
 std::type_info const*,
 void (*)(dtl::DBConnection&,
 boost::any const&)
 >
 function_map_type;

 function_map_type insert_function_map;
 . . .
};

Listing 6

void Real_Object_Store::insert_impl(
 boost::any storable)
{
 function_map_type::iterator i =
 insert_function_map.find(&storable.type());
 if (i == insert_function_map.end())
 {
 // Report insert function look-up failure.
 }
 else
 {
 ((*i).second)(db, storable);
 }
}

Listing 7

template< typename Storable >
inline
void insert_any(dtl::DBConnection& db,
 boost::any const& storable)
{
 insert(db,
 boost::any_cast<Storable const&>(storable));
}

December 2010 | Overload | 13

http://dtemplatelib.sourceforge.net/
http://accu.org/index.php/journals/445
http://accu.org/index.php/journals/445
http://accu.org/index.php/journals/479

FEATURE RICHARD HARRIS
Why Fixed Point Won’t Cure
Your Floating Point Blues
Numeric computing is very difficult to do properly. Richard
Harris looks at whether a common technique will help.
n the first article in this series we explored floating point arithmetic and
its various modes of failure. We saw that rounding error, although often
touted as the big problem with floating point arithmetic, isn’t really

much to be concerned about when compared to cancellation error; the
catastrophic loss of precision that occurs when subtracting two nearly
equal floating point numbers. Finally, we noted the rather surprising fact
that the order of execution of mathematical operations will result in
different accumulated rounding errors and that, if we wish our calculations
to be as accurate is possible, we need to carefully consider how we
construct them.
In this article we shall explore the most frequently proposed alternative to
it: fixed point arithmetic.

Fixed point
Fixed point arithmetic is perhaps the simplest alternative to floating point.
Fixed point numbers maintain a fixed number of decimal places, rather
than digits of precision. Typically they are implemented as an integer with
the assumption that some constant number of the least significant base 10
digits fall below the decimal point.
For example, using a long and assuming that the last 2 decimal digits lie
below the decimal point, we would represent π as 314.
Listing 1 provides an implementation of a base 10 fixed point number
class.
This class uses the type T to represent the fixed point number, with N
decimal digits after the decimal point. Note that we shall not presume that
there is a specialisation of std::numeric_limits for T and hence if
there isn’t enough room in the type T to fit the digits we shall have
undefined behaviour rather than a compilation error.
Note that, given in-place arithmetic operations and a copy constructor, it
is trivial to implement the free standing arithmetic operations. Those who
would prefer to avoid the computational expense of the copy could instead
use member data access functions to implement more efficient free
functions.
It shall henceforth be assumed that such free functions have been
implemented.
The scale method is a static helper that calculates the scaling factor
which we need to divide an integer by to recover the required number of
decimal places, illustrated in listing 2 together with the calc_scale
helper function that actually calculates it and the data member access
function.
Listing 3 illustrates the constructors of this class.

I

Listing 2

template<class T, size_t N>
const fixed<T, N>::data_type &
fixed<T, N>::scale()
{
 static const data_type result = calc_scale();
 return result;
}

template<class T, size_t N>
fixed<T, N>::data_type
fixed<T, N>::calc_scale()
{
 data_type result(1);
 for(size_t i=0;i!=places;++i)
 result *= data_type(10);
 return result;
}

template<class T, size_t N>
const fixed<T, N>::data_type &
fixed<T, N>::data() const
{
 return x_;
}

Listing 1

template<class T, size_t N>
class fixed
{
public:
 enum{places=N};
 typedef T data_type;
 fixed();
 fixed(const data_type &x);
 fixed(const data_type &before,
 const data_type &after);
 static const data_type & scale();
 const data_type & data() const
 int compare(const fixed &x) const;
 fixed & negate();
 fixed & operator+=(const fixed &x);
 fixed & operator-=(const fixed &x);
 fixed & operator*=(const fixed &x);
 fixed & operator/=(const fixed &x);

private:
 static data_type calc_scale();
 data_type x_;
};

Richard Harris has been a professional programmer since 1996.
He has a background in Artificial Intelligence and numerical
computing and is currently employed writing software for financial
regulation.
14 | Overload | December 2010

FEATURERICHARD HARRIS

if we have a large number of digits after the decimal
point then multiplication and division are very

likely to overflow the internal integer operations
Note that the only error check we’re making is that the number passed to
represent the digits after the decimal point in the final constructor is within
the valid range; we treat overflow as undefined behaviour to keep things
simple.
We allow implicit conversion from the underlying type to make using
integers in fixed point calculations slightly easier. We do not provide any
conversion between fixed and floating point numbers since this would
rather defeat the purpose of using fixed point numbers in the first place.
The compare and negate member functions are provided to simplify the
implementation of non-member relational and negation operators and their
definitions are given in listing 4.

Addition and subtraction are straightforward operations for fixed point
numbers. Since both arguments are guaranteed to have the same number
of digits after the decimal point, we simply use the corresponding integer
operations on the underlying type, as shown in listing 5.
Note that whilst we are again treating overflow as undefined behaviour,
these operations introduce no further error into the result above and beyond
those that were in their arguments.
The naïve approach to multiplication is to multiply the underlying integer
values and then divide by the scaling factor since

Similarly, for division we have

There are two problems with this approach. The first is that we are no
longer rounding the result, we are merely truncating it. Without careful
analysis it is possible that multiplicative operations will introduce twice
as much error than they would if we had correctly rounded the result.
Fortunately, this problem is relatively easily fixed. For multiplication, we
simply add half the scale before dividing by it. For division we add half
of the number by which we are dividing before the actual division. Listing
6 illustrates the correctly rounded multiplication and division operators.
The second, and far worse, problem is that if we have a large number of
digits after the decimal point, and consequently a large scaling factor, then
multiplication and division are very likely to overflow the internal integer
operations even for numbers close to 1.
Fixing this problem is a little trickier. What we really need is a larger
integer type to store intermediate values. However, since we aren't forcing
the user to use built in integers, it's not at all obvious how we should go
about this, short of implementing one in terms of the internal integer type.

Listing 3

template<class T, size_t N>
fixed<T, N>::fixed()
{
}

template<class T, size_t N>
fixed<T, N>::fixed(const data_type &x)
 : x_(x*scale())
{
}

template<class T, size_t N>
fixed<T, N>::fixed(const data_type &before,
const data_type &after)
 : x_(before*scale()+after)
{
 if(after<0 || after>=scale())
 throw std::invalid_argument("");
}

Listing 4

template<class T, size_t N>
int
fixed<T, N>::compare(const fixed &x) const
{
 if(x_<x.x_) return -1;
 if(x_>x.x_) return 1;
 return 0;
}

template<class T, size_t N>
fixed<T, N> &
fixed<T, N>::negate()
{
 x_ = -x_;
 return *this;
}

Listing 5

template<class T, size_t N>
fixed<T, N> &
fixed<T, N>::operator+=(const fixed &x)
{
 x_ += x.x_;
 return *this;
}

template<class T, size_t N>
fixed<T, N> &
fixed<T, N>::operator-=(const fixed &x)
{
 x_ -= x.x_;
 return *this;
}

x1
scale

x2
scale
------------×

x1 x2×() scale÷
scale

--=

x1
scale

x2
scale
------------÷

x1 x2÷
scale scale÷
------------------------------ x1 x2÷= =
December 2010 | Overload | 15

FEATURE RICHARD HARRIS

I’m sure you’ll agree that this is a fairly
significant difference; if you don’t, multiply the
whole expression by a few million for effect.
Because of this, I shall stick with this implementation and declare caveat
emptor for users who desire a large number of digits after the decimal
point.

The advantages of fixed point
So now we know exactly how to implement fixed point numbers we should
probably ask ourselves why we should want to.
Well, there are three principal advantages to fixed point numbers.
The first, and by far the least important, advantage is that unlike IEEE 754-
1985 floating point, it can exactly represent decimal fractions. This is
trotted out ad nauseum as a reason to use fixed point but, given that a
revision of the standard describes the implementation of base 10 floating
point numbers, it isn’t particularly compelling.
The second, slightly more important, advantage is that fixed point
arithmetic can be dramatically faster on some processors.
The third, and by far the most important, advantage is that, as described
above, addition and subtraction introduce no error beyond that in their
arguments. This means that it is much easier to reason about addition using
fixed point arithmetic; if we are summing numbers that can be exactly
represented we have no rounding issues at all and need only worry about
overflow.
This, together with the ability to represent some decimal fractions exactly
is why many financial transactions are mandated to use base 10 fixed point
numbers.

The disadvantages of fixed point
Unfortunately, multiplication is rather more problematic.
Even assuming we are not much affected by overflow of the underlying
type, if we multiply fixed point numbers our calculations may be severely

affected by execution order. To demonstrate just how severely, let us now
assume that we are using 2 decimal place base 10 fixed point numbers to
calculate the value of the expression

If we calculate this in the order

we trivially have a result of 1.
However, if we calculate it in the order

we trivially have a result of 0.
I’m sure you’ll agree that this is a fairly significant difference; if you don’t,
multiply the whole expression by a few million for effect. The problem is
that multiplicative errors accumulate proportionally rather than absolutely.
Additively, fixed point numbers behave themselves but the instant we start
multiplying and dividing they turn on us.
For general purpose arithmetic, therefore, fixed point numbers seem to be
something of a lame duck.
Quack.

Arbitrary precision
One way to fix the problem of overflow in fixed point numbers is to use
arbitrary precision integers, also known as bignums, as the underlying
type.
These are typically implemented using an array of integers which can grow
as needed to represent any given integer.
Listing 7 provides an implementation of an arbitrary precision integer
class.
Note that we represent our number with a vector of unsigned shorts
and an enum to indicate the sign. For the sake of simplicity, we shall
assume that shorts are exactly 16 bits wide and that longs are exactly
32 bits wide. Whilst many platforms conform to these assumptions, they
are not mandated by the C++ standard. A robust implementation would
therefore need to take a more cautious approach.
Our underlying representation will not admit leading zeros, except for the
number zero which shall consist of a single zero digit. To that end we shall
require a helper function to strip leading zeros in those circumstances that
we may need to; its implementation is given in listing 8.
Note that this function assumes that we shall be using a little-endian
representation in which the most significant digits appear at the end of the
vector and consequently iterates in reverse seeking the last non-zero
digit. This is because, if and when in place operations increase or decrease
the number of digits, we won’t really want to move the least significant
digits, as we would need to if we used a big-endian representation.
The constructors are fairly straightforward and are illustrated in listing 9.

Listing 6

template<class T, size_t N>
fixed<T, N> &
fixed<T, N>::operator*=(const fixed &x)
{
 x_ *= x.x_;
 x_ += scale()/2;
 x_ /= scale();
 return *this;
}
template<class T, size_t N>
fixed<T, N> &
fixed<T, N>::operator/=(const fixed &x)
{
 x_ += x.x_/2;
 x_ *= scale();
 x_ /= x.x_;
 return *this;
}

1000 1000× 1000000÷

1000 1000×() 1000000÷

1000 1000 1000000÷()×
16 | Overload | December 2010

FEATURERICHARD HARRIS

We shall perform addition in much the same
way as we were taught to with pencil and paper

when we were children
The data access functions sign and magnitude and the swap and
negate member functions are similarly simple as shown in listing 10.
The choice of a little-endian representation is also reflected in the
compare f un c t i o n , s h own i n l i s t i n g 11 , w h e r e w e use
const_reverse_iterators in the data_compare helper function
to search for the most significant digit that differs in the two numbers in
the event that they are the same sign and have the same number of digits.
We shall perform addition in much the same way as we were taught to with
pencil and paper when we were children. We begin with a helper function
that we will use to add single digits and check whether or not we have to
carry over a 1, as illustrated in listing 12.
Note that we pass in a flag to indicate whether a carry needs to be added
to the digits and that we exploit the rules of unsigned arithmetic in C++ to
check whether the result will itself generate a carry. Specifically, n bit

Listing 7

class bignum
{
public:
 typedef unsigned short digit_type;
 typedef unsigned long product_type;
 typedef std::vector<digit_type> data_type;

 enum sign_type{
 positive=1,
 negative=-1
 };
 enum {mask=0xffff, shift=16};

 bignum();
 bignum(short x);
 bignum(unsigned short x);
 bignum(long x);
 bignum(unsigned long x);
 bignum(sign_type s, const data_type &x);

 sign_type sign() const;
 const data_type & magnitude() const;
 void swap(bignum &x);
 int compare(const bignum &x) const;
 bignum & negate();

 bignum & operator+=(const bignum &x);
 bignum & operator-=(const bignum &x);
 bignum & operator*=(const bignum &x);
 bignum & operator/=(const bignum &x);

private:
 sign_type s_;
 data_type x_;
};

Listing 8

void
data_strip_leading_zeros(bignum::data_type &x)
{
 bignum::data_type::reverse_iterator first =
 x.rbegin();
 bignum::data_type::reverse_iterator last =
 x.rend();

 while(first!=last && *first==0) ++first;

 if(first==last) x.resize(1, 0);
 else x.resize(last-first);
}

Listing 9

bignum::bignum() : s_(positive), x_(1, 0)
{
}
bignum::bignum(const short x)
 : s_(x>=0 ? positive : negative),
 x_(abs(x))
{
}
bignum::bignum(const unsigned short x)
 : s_(positive), x_(1, x)
{
}
bignum::bignum(const long x)
 : s_(x>=0 ? positive : negative)
{
 const unsigned long ux = labs(x);
 x_.reserve(2);
 x_.push_back(digit_type(ux&mask));
 if(ux>mask)
 x_.push_back(digit_type(ux>>shift));
}
bignum::bignum(const unsigned long x)
 : s_(positive)
{
 x_.reserve(2);
 x_.push_back(digit_type(x&mask));
 if(x>mask) x_.push_back(digit_type(x>>shift));
}
bignum::bignum(const sign_type s,
 const data_type &x) : s_(s), x_(x)
{
 data_strip_leading_zeros(x_);
 if(x_.back()==0) s_ = positive;
}

December 2010 | Overload | 17

FEATURE RICHARD HARRIS

Subtraction is a little more difficult since it is
not a symmetric operation
unsigned arithmetic in C++ is defined as being modulo 2n and hence any
result that wraps around, and therefore generates a carry, will be less than
both of the terms in the sum or, if a carry was also added, perhaps equal
to one of them.
We use this in conjunction with a second helper function that adds all of
the digits contained in a pair of bignum’s data_types, as shown in
listing 13.
We first ensure that x1 is as least as big as x2 by resizing and padding it
with zeros if it is smaller.
The first loop then adds, with carry, the digits up to the last in x2. The
second loop ensures that further carries are properly added to any more
significant digits of x1. Note that our initial padding of x1 with zeros in
the event that it has fewer digits than x2 ensures that we don’t have to
worry about dealing with reaching the end of x1 before we reach the end
of x2.
Subtraction is a little more difficult since it is not a symmetric operation.
We shall therefore wish to ensure that we always subtract the smaller
number from the larger and shall need to explicitly keep track of the sign
of the result.
This is reflected in the first helper function, shown in listing 14.
Note that we treat the operation in much the same way as we did addition,
but since we don’t know which number will be the larger, can no longer
perform the operation in-place.

The second helper function, illustrated in listing 15, ensures that the digits
of the larger number are passed as x1 to this function and the digits of the
smaller number are passed as x2.

Listing 10

bignum::sign_type
bignum::sign() const
{
 return s_;
}
const bignum::data_type &
bignum::magnitude() const
{
 return x_;
}
void
bignum::swap(bignum &x)
{
 std::swap(s_, x.s_);
 std::swap(x_, x.x_);
}
bignum &
bignum::negate()
{
 if(x_.back()!=0) s_ = sign(-s_);
 return *this;
}

Listing 11

int
data_compare(const bignum::data_type &x1,
 const bignum::data_type &x2)
{
 assert(x1.size()==x2.size());

 bignum::data_type::const_reverse_iterator
 first1 = x1.rbegin();
 bignum::data_type::const_reverse_iterator
 last1 = x1.rend();
 bignum::data_type::const_reverse_iterator
 first2 = x2.rbegin();

 while(first1!=last1 && *first1==*first2)
 {
 ++first1;
 ++first2;
 }

 if(first1==last1) return 0;
 if(*first1>*first2) return 1;
 return -1;
}

int
bignum::compare(const bignum &x) const
{
 const int dir = s_;

 if(x.s_!=s_) return dir;
 if(x_.size()>x.x_.size()) return dir;
 if(x_.size()<x.x_.size()) return -dir;

 return data_compare(x_, x.x_) * dir;
}

Listing 12

bool
data_add(bignum::digit_type &x1,
 const bignum::digit_type x2, const bool carry)
{
 x1 += x2;
 if(carry) ++x1;
 return x1<x2 || (carry && x1==x2);
}

18 | Overload | December 2010

FEATURERICHARD HARRIS

we can be certain that the product will have no
more digits than the sum of those in its term
Note that, since we ensure that the smaller number always is subtracted
from the larger, we don’t need to deal with a final carry. We do however
need to ensure that we strip any leading zeros since we are using the
number of digits during the comparison operation. Finally, we must also
return the sign of the result.
Now that we can add and subtract the underlying data_type we can
implement addition and subtraction operators for the bignum type itself.
We must take care to direct these operations to the addition and subtraction
helper functions according to whether the numbers have the same sign or
not, as shown in listing 16.
Irritatingly, multiplication is a little less straightforward. The scheme we
were taught as children is an O(n2) operation for multiplying two n digit
numbers. More efficient schemes exist but unfortunately they are much

more complicated. One, for example, recasts multiplication as a discrete
convolution operation and exploits the Fast Fourier Transform to compute
it efficiently [Press92].
For this treatment, the simpler, less efficient approach, as given in listing
17, will have to suffice.
We use product_type values during the multiplication of terms so that
we can represent numbers that would overflow digit_type. Note that
since we are assuming that the former is exactly twice as wide as the latter
it is guaranteed to be large enough to represent any such product.
Similarly, we can be certain that the product will have no more digits than
the sum of those in its terms, and hence do not need to check whether we
are accessing the result within its bounds whilst accumulating carries.
Note that the sign of the result is positive if both terms have the same sign
or if the result is zero and is negative otherwise. Checking that the leading

Listing 13

void
data_add(bignum::data_type &x1,
 const bignum::data_type &x2)
{
 typedef bignum::data_type::iterator
 iterator;
 typedef bignum::data_type::const_iterator
 const_iterator;
 if(x1.size()<x2.size()) x1.resize(x2.size(),
 0);
 iterator first1 = x1.begin(),
 last1 = x1.end();
 const_iterator first2 = x2.begin(),
 last2 = x2.end();
 bool carry = false;
 while(first2!=last2)
 carry = data_add (*first1++,
 *first2++, carry);
 while(first1!=last1 && carry)
 carry = data_add (*first1++, 0, carry);
 if(carry) x1.push_back(1);
}

Listing 14

 bool
 data_subtract(bignum::digit_type &y,
 const bignum::digit_type x1,
 const bignum::digit_type x2,
 const bool carry)
 {
 y = x1-x2;
 if(carry) --y;
 return y>x1 || (carry && y==x1);
 }

Listing 15

int
data_subtract(bignum::data_type &x1,
 const bignum::data_type &x2)
{
 typedef bignum::data_type::iterator
 iterator;
 typedef bignum::data_type::const_iterator
 const_iterator;
 const int dir = data_compare(x1, x2);

 if(x1.size()<x2.size())
 x1.resize(x2.size(), 0);
 const_iterator first1 =
 (dir>=0) ? const_iterator(x1.begin())
 : x2.begin();
 const_iterator last1 =
 (dir>=0) ? const_iterator(x1.end())
 : x2.end();
 const_iterator first2 =
 (dir>=0) ? x2.begin()
 : const_iterator(x1.begin());
 const_iterator last2 =
 (dir>=0) ? x2.end()
 : const_iterator(x1.end());
 iterator out = x1.begin();
 bool carry = false;
 while(first2!=last2)
 carry = data_subtract(*out++, *first1++,
 *first2++, carry);
 while(first1!=last1)
 carry = data_subtract(*out++, *first1++,
 0, carry);
 data_strip_leading_zeros(x1);
 return dir;
}

December 2010 | Overload | 19

FEATURE RICHARD HARRIS
digit is zero is sufficient for the latter since zero is the only number for
which we allow one.
A further irritation is that fact that division is more difficult still. Once
again we shall use the simple but inefficient scheme we learnt as children

rather than the efficient but complicated schemes that we should want to
use for any real-world implementation.
Specifically, we shall implement long division.
As it turns out, long division is algorithmically simplest in binary. This is
chiefly due to the fact that in binary we only need to find how far to the
left we can shift the number we are dividing and still be smaller than the
current remainder, rather than guess at what multiple of it and the current
power of 10 can be subtracted from the remainder.
For example, consider dividing 4735 by 68.

At first glance it might appear that there could be a 7 in the tens column,
but on closer inspection we find it must be a 6, yielding

It’s reasonably obvious that there must be a 9 in the units column, giving us

Performing the same division in binary requires more steps, but at none of
them do we need to guess at the multiplicative factor that we shall place
in each column; it is self-evident whether it should be a 0 or a 1.
Using the same example, but in binary, we have

This first step in the calculation is trivially

since this is largest shift which leaves a positive remainder.
Similarly, the remaining steps are

giving us again a result of 69 and a remainder of 43, but this time using
nothing but shift, compare and subtraction operations.
The first thing we shall need is a helper function to perform the shift
operation, given in listing 18.
The next thing we need is a function to calculate the number of significant
bits, as shown in listing 19. Note that, once again, we are relying upon the
fact that we do not allow leading zeros except for zero itself which consists
of a single digit and also that the underlying representation must
consequently have at least 1 digit.

Listing 16

bignum &
bignum::operator+=(const bignum &x)
{
 int dir = 1;
 if(x.s_==s_) data_add(x_, x.x_);
 else dir = data_subtract(x_, x.x_);

 if(dir < 0) negate();
 else if(dir == 0) s_ = positive;
 return *this;
}

bignum &
bignum::operator-=(const bignum &x)
{
 int dir = 1;
 if(x.s_==s_) dir = data_subtract(x_, x.x_);
 else data_add(x_, x.x_);

 if(dir < 0) negate();
 else if(dir == 0) s_ = positive;
 return *this;
}

Listing 17

bignum &
bignum::operator*=(const bignum &x)
{
 data_type result(x_.size()+x.x_.size());

 for(size_t i=0;i!=x_.size();++i)
 {
 for(size_t j=0;j!=x.x_.size();++j)
 {
 bool carry; size_t k;
 const product_type term
 = product_type(x_[i]) *
 product_type(x.x_[j]);

 const digit_type lo(term & mask);
 const digit_type hi(term >> shift);

 carry = data_add(result[i+j], lo, false);
 for(k=1;carry;++k) carry =
 data_add(result[i+j+k], 0, carry);

 carry = data_add(result[i+j+1], hi, false);
 for(k=2;carry;++k) carry =
 data_add(result[i+j+k], 0, carry);
 }
 }
 data_strip_leading_zeros(result);

 if(s_==x.s_ || result.back()==0) s_ = positive;
 else s_ = negative;

 x_.swap(result);
 return *this;
}

 473568

655
4080

6
473568

43
612
655

4080

69
473568

 11110010011111000100

101111111

1000100

1
11110010011111000100

0101011
1000100
1101111

1000100
101111111

1000100

1000101
11110010011111000100
20 | Overload | December 2010

FEATURERICHARD HARRIS
The implementation of division is fairly straightforward, as the description
of binary long division suggests. Once again we shall use a helper function
since we can calculate both the result of the division and the remainder at
the same time, which may prove useful. Its implementation is given in
listing 20.
Note that the original value is replaced by the remainder and the result is
returned.
Furthermore it is necessary to check whether the divisor is zero since the
main loop will never terminate if it is.
Since all of the work is being done in the helper function, the division
operator is fairly simple, as shown in listing 21.

Arbitrary precision fixed point
Using our arbitrary precision integer type as the underlying representation
for a fixed point type, we can trivially solve the problem of overflow. If
we are only performing additive operations on numbers that are sure to be
representable with some specific number of decimal places, then we are
set.

Unfortunately it does nothing to solve the problems of truncation error,
cancellation error or order of execution; as a case in point consider 1/3.
In addition it is not particularly efficient in time or space; to represent the
maximum double precision IEEE value would take 128 bytes, as opposed
to 8 for the former.
So, unfortunately, arbitrary precision fixed point also seems to be
something of a lame duck as far as general purpose arithmetic is concerned.
Quack quack.

References and further reading
[Press92] Press et al, Numerical Recipes in C (2nd ed.), Cambridge

University Press, 1992.

Listing 18

void
data_shift(bignum::data_type &y,
 const bignum::data_type &x,
 const size_t shift, const size_t bits)
{
 assert(!x.empty() && x.back()!=0);

 const size_t digits = (
 shift+bits+bignum::shift-1)/bignum::shift;
 y.assign(digits, 0);

 const size_t major = shift / bignum::shift;
 const size_t minor = shift % bignum::shift;

 for(size_t i=0;i!=x.size();++i)
 {
 const size_t lo = x[i]<<minor;
 const size_t hi = x[i]>>(
 bignum::shift-minor);

 y[i+major] |= lo;
 if(hi!=0) y[i+major+1] |= hi;
 }
}

Listing 19

size_t
data_bits(const bignum::data_type &x)
{
 assert(!x.empty());
 size_t n = (x.size()-1)*bignum::bits;

 bignum::digit_type digit = x.back();
 while(digit)
 {
 digit >>= 1;
 ++n;
 }
 return n;
}

Listing 20

bignum::data_type
data_divide(bignum::data_type &x1,
 const bignum::data_type &x2)
{
 if(x2.back()==0)
 throw std::invalid_argument("");

 const size_t bits2 = data_bits(x2);

 bignum::data_type y;
 bignum::data_type result(x1.size(), 0);

 while(data_compare(x1, x2)>=0)
 {
 const size_t bits1 = data_bits(x1);
 size_t shift = bits1-bits2;

 assert(shift>0 || data_compare(x1, x2)==0);

 data_shift(y, x2, shift, bits2);
 if(data_compare(x1, y)<0)
 data_shift(y, x2, --shift, bits2);
 data_subtract(x1, y);

 const size_t major = shift / bignum::shift;
 const size_t minor = shift % bignum::mask;

 result[major] |= 1U<<minor;
 }

 data_strip_leading_zeros(result);
 return result;
}

Listing 21

bignum &
bignum::operator/=(const bignum &x)
{
 x_ = data_divide(x_, x.x_);

 if(s_==x.s_ || x_.back()==0) s_ = positive;
 else s_ = negative;

 return *this;
}

December 2010 | Overload | 21

FEATURE STEVE LOVE
Interface Versioning in C++
Updating a widely used DLL interface is non-trivial.
Steve Love presents a practical approach.
Steve Love is an independent developer constantly searching for
new ways to be more productive without endangering his inherent
laziness. He can be contacted at steve@arventech.com

aving code that requires more than a single (binary) version of a
shared library is what is commonly referred to as ‘DLL Hell’ in
Windows. This can arise in a number of ways, but in particular, a new

version of a component is released which must be consumed by clients of
the previous version, as well as the new. Just as there are several reasons
this might occur, there are varied methods of handling the problem, from
the requirement for client code to handle unsightly conversions all the way
through to down-right nasty and undefined, or at best, non-portable,
behaviour. The approach described here attempts to find a best-of-all-
worlds leading to reasonable client code and well-defined, portable
implementation.

The problem
Consider a shared library1 which is used by multiple clients. Further, that
the library is developed and maintained by a team (or company) that is
different from those managing the clients. Any change to the library which
causes the client code to recompile is a potential deployment nightmare.
Release cycles need to be synchronised. Client teams need to co-ordinate
the release of the shared library so that all interested clients either upgrade
simultaneously, or else are quarantined to remain on the old version. In
short, a lot of to-ing and fro-ing from all the parties involved.
The real problem is one of dependency management. If clients didn’t need
to recompile, there would be no problem with deploying the new version
of the library, since (by definition) the client interface of the library must
be unchanged. However, this would be an unacceptably onerous restriction
on new library versions; the reality is that interfaces do grow stale from
time to time, as new features are required.

The goal
This article explores how to add new methods to a class interface in such
a way that client code need not recompile and redeploy if a new version
of the library is released. Other changes to the library cannot be supported
easily; deleting a method, or changing a signature (which is equivalent to
adding a new method and removing the old one) aren’t handled. It’s
possible to mark an old method as deprecated, allowing client code say one
release cycle to change their code, but for the purposes of this article, a
version upgrade means adding a new method to an existing type, or adding
a new type.
This latter change is easily handled -clients running against a new version
have no knowledge of the new type, and so cannot be dependent on it. This
also applies to free-standing functions.2 The interesting case is adding a
new method to a type already in use.

Consider the code in listing 1 (a concrete library). This code is intended
to be part of a shared library called inventory. The client code is shown
in listing 2.
As it stands, adding a new method to the part class would require the client
application to recompile against the new header, relink with the new library
and redeploy at the same time as the new library is released.
The goal is that when a new method is added to part, none of the above
need to happen -the existing released client application will work against
the new library version without changes.

H

Listing 1

// part.h
#pragma once

namespace inventory
{
 class part
 {
 public:
 unsigned id() const;
 private:
 unsigned num;
 };
}

Listing 2

// app.cpp
#include <part.h>
#include <iostream>
#include <memory>

// Also link to inventory.lib

int main()
{
 using namespace std;
 using namespace inventory;

 unique_ptr< part > p(new part);
 cout << p->id() << endl;
}

1 For the purposes of this discussion, the language is C++ and the
platform is Windows and DLLs. However, the principles described also
apply to other platforms and languages to a greater or lesser degree. In
any case, a stable and consistent ABI between clients and libraries is
presumed.

2 Care must be taken with adding a new overload for an existing function,
of course!
22 | Overload | December 2010

FEATURESTEVE LOVE

with most compilers, the undefined
behaviour is that the program will

still appear to work
Undefined behaviour is the result if the client doesn’t recompile, but much
worse than that is with most compilers, the undefined behaviour is that the
program will still appear to work in this example. The reasons why are
explored in ‘False hope’ (below).
But first things first.

Untying the knot
Any change to the library which requires the client to recompile also
requires the client to redeploy. Briefly, the changes which might cause that
are:

1. Changes to the public member functions
2. Changes to the base-class list.
3. Changes to any protected or private member functions
4. Changes to any data members (presumed to be private in any sane

system).
For all except number 1, there is a simple solution: introduce a level of
indirection. If the client code depended on a true interface type
representing a part, instead of a concrete class, then any implementation
details would be encapsulated by an implementing type, rather than the
interface itself. If any base classes are required by the resulting interface
type, then those must also be made into interfaces, because ‘Abstractions
should not depend upon details. Details should depend upon abstractions.’
[Martin96].
In the example shown in listing 1, only the private data needs hiding.
Listing 3 shows the changes required to make part an interface. Notice
the simple factory function to create a new instance. This is required since
the type that implements the part interface, realpart, is in effect
private to the library. For brevity, the necessary plumbing to make part a
complete interface type, such as handling or prohibiting copying, have
been left out.
The public-facing interface for the library now hides all the
implementation details from clients, such as data members and private or
protected member functions. These are significant changes, because it
means that realpart can change in any way, as long as it correctly
implements the part interface, without requiring any recompilation on
the part of clients.
The introduction of part as an interface is a necessary change to achieve
the goal of being able to add a method to that interface, but it is not
sufficient to achieve it. Adding a method to the interface still requires client
code to recompile.

False hope
Listing 4 shows an update to the part interface – a new method has been
added. Even though the client code doesn’t use the new method, it must
recompile against the new interface definition, and still needs to re-deploy
at the same time as the new library is deployed.
Suppose for a moment that the new library were deployed, and client code
remained as it was – using the old interface. The client code had compiled

against a definition of part that had only one method, and the deployed
library has a part type that has two methods.

Listing 3

// part.h
#pragma once
namespace inventory
{
 class part
 {
 public:
 virtual ~part();
 virtual int id() const = 0;
 };
 part * create_part();
}

// part.cpp
#include "part.h"
namespace
{
 class realpart : public inventory::part
 {
 public:
 realpart();
 int id() const;
 private:
 int num;
 };
}
namespace inventory
{
 part * create_part()
 {
 return new realpart;
 }
}

// app.cpp
#include <part.h>
#include <iostream>
#include <memory>

// Also link to inventory.lib
int main()
{
 using namespace std;
 using namespace inventory;
 unique_ptr< part > p(create_part());
 cout << p->id() << endl;
}

December 2010 | Overload | 23

FEATURE STEVE LOVE

It is not safe to depend on the
order of the vtable matching
the order of declaration
Common – but wrong
It’s a fairly common practice in, for example, COM to enhance an existing
interface by adding a new method to the end.3
This technique works, but does result in undefined behaviour, due to the
one definition rule. However, since COM is defined according to strict
compilation rules, and uses IDL to precisely specify object layout, this can
be passed-off as platform-specific behaviour -just taking advantage of the
code generated by the right compiler. It is not considered good practice in
any case; interfaces are supposed to be immutable.
However, COM is not C++ -at its most basic level it is C, and so therefore
doesn’t use the C++ virtual despatch mechanism.
Even so, adding methods to the end of the interface isn’t the real problem.
The real problem is with the implementation class, realpart.

Out of order
Changing the methods in a pure abstract class in C++ doesn’t cause much
of a problem at runtime (which is the point in the lifecycle about which
we’re most concerned here) because at the end of the day, a C++ interface
is largely a compile time animal; it’s purpose has to do with type,
something the runtime environment knows and cares little about.
In order to see the real problem here, we’ll have to start looking at the
assembly code. The following examples were compiled with the Microsoft
C++ compiler from Visual Studio 2010 (version 16 of cl.exe).
Listing 5 shows a very simple polymorphic class, properties. It
exposes two virtual functions, integer and floatingpoint. The fact
that they’re inlined is not relevant. Note, however, they are not pure virtual,
so a “real” vtable is defined. This file is then compiled with the following
command:
 cl /EHs /FAs test.cpp

/EHs means use ordinary C++ exceptions only (synchronous exceptions).
/FAs causes the compiler to generate an assembly file -test.asm – with
inline-source included. The interesting entries can be found by searching
for properties::‘vftable (That’s a back-tick character there).
The first such entry shows the general layout of the properties class,
including RTTI descriptors. The second instance shows the layout of the
virtual function table, and should look similar to Figure 1.
This section shows the physical storage for the vtable – the order of entries
in it.
If the properties class is now changed to that shown in listing 6, with
new method overloads for the same names, and recompiled with the same
options, the result is as shown in Figure 2
What’s really interesting about this result is the order of entries in the
vtable. Refer back to listing 6, and compare the order.
What has actually occurred is that functions with the same name are
grouped together, even though the actual order of declaration split the
functions by getter and setter behaviour. It should be obvious what this
means for our proposed method of adding new functions to the bottom of
an interface:
It won’t work.
It is not safe to depend on the order of the vtable matching the order of
declaration. It’s therefore unsafe to use a new version of the library without
recompiling against its declared classes. Without that recompilation, when
the client code calls on a virtual function, the wrong entry in the vtable is
invoked (in this example), ultimately calling the wrong function. The
results of that are hard to guess. Depending on the vtable order for a
particular compiler is, at best, non-portable.

The true path
As was previously mentioned, this means that turning the part type into
an interface isn’t sufficient, on its own, to achieve what we need, but it is
a necessary step.

Figure 1

??_7properties@@6B@ DD FLAT:??_R4properties@@6B@ ; properties::‘vftable’
 DD FLAT:?integer@properties@@EBEHXZ
 DD FLAT:?floatingpoint@properties@@EBENXZ
; Function compile flags: /Odtp

Figure 2

??_7properties@@6B@ DD FLAT:??_R4properties@@6B@ ; properties::‘vftable’
 DD FLAT:?integer@properties@@EAEXH@Z
 DD FLAT:?integer@properties@@EBEHXZ
 DD FLAT:?floatingpoint@properties@@EAEXN@Z
 DD FLAT:?floatingpoint@properties@@EBENXZ
; Function compile flags: /Odtp

3 There are many caveats to this regarding changing UUIDs which are
not really relevant to this article.
24 | Overload | December 2010

FEATURESTEVE LOVE

instead of adding methods to an interface
which is part of a deployed library, the new

methods are added to a new interface
The solution hinges around an observation made earlier in this article:
adding a new type to a library is easily handled – clients running against
a new version have no knowledge of the new type, and so cannot be
dependent on it.

Extending interfaces
The basic premise of this solution is that instead of adding methods to an
interface which is part of a deployed library, the new methods are added
to a new interface.
The key to this working is that the new interface inherits publicly from the
existing one.
Listing 7 shows the basic interface, part, which introduces simple get
properties called number and name, along with how the client code may
use it.
New requirements arise to have the properties’ values set by the client.
Listing 8 introduces part_v2, which extends part to add setters for the
properties. Note that the names are (deliberately) overloaded, and
imported to part_v2 with using statements.4.Listing 4

// part.h
#pragma once
#include <string>
namespace inventory
{
 class part
 {
 public:
 virtual ~part();
 virtual int id() const = 0;
 virtual std::string name() const = 0;
 };
 part * create_part();
}

// part.cpp
#include "part.h"
namespace
{
 class realpart : public inventory::part
 {
 public:
 realpart();
 int id() const;
 std::string name() const;
 private:
 int num;
 std::string namestr;
 };
}
namespace inventory
{
 part * create_part()
 {
 return new realpart;
 }
}

// app.cpp
#include <iostream>
#include <memory>
#include <inventory.h>

// Also link to inventory.lib
int main()
{
 using namespace std;
 std::unique_ptr< inventory::part > p(
 inventory::create_part());
 cout << p->number() << endl;
}

Listing 6

class properties
{
 public:
 virtual int integer() const { return 0; }
 virtual double floatingpoint() const {
 return 0;
 }
 virtual void integer(int){}
 virtual void floatingpoint(double){}
 };
 int main()
 {
 properties p;
 }

Listing 5

class properties
{
public:
 virtual int integer() const { return 0; }
 virtual double floatingpoint() const {
 return 0; }
};

int main()
{
 properties p;
}

December 2010 | Overload | 25

FEATURE STEVE LOVE

A new version of the same compiler might
choose to group the functions in a different way
Existing clients (as shown in listing 7) have no need to recompile, since
the object returned from the factory is still an ordinary part, which has
not changed. New clients wishing to take advantage of the new
functionality, such as in listing 8, must compile against the new library.

A wrong turn
The interface required to extend the original part type has been presented
(as part_v2), but what of the implementation? The factory must have
something to create, and clients must, ultimately, have a real implementing
object to do real work.
Listing 9 shows how one might approach the problem. Since clients only
ever use the interface, part, the details of the implementing class are
irrelevant. This code, however, suffers the same problem as the examples in section

2; it is the vtable of the implementing class that causes the problem, not
the interface at all.
As it happens, using the same compiler and flags as before, we can see that
this approach actually works in practice. For brevity, the code for part,

Listing 7

// part.h
#pragma once
#include <string>

namespace inventory
{
 class part
 {
 public:
 virtual ~part();
 virtual unsigned id() const = 0;
 virtual const std::string &
 name() const = 0;
 };
 part * create_part();
}

// app.cpp
#include <part.h>
#include <iostream>
#include <memory>

// Also link to inventory.lib
int main()
{
 using namespace std;
 using namespace inventory;
 unique_ptr< part > p(create_part());
 cout << p->id() << endl;
 cout << p->name() << endl;
}

Listing 8

// part.h

#pragma once
#include <string>
namespace inventory
{
 class part
 {
 public:
 virtual ~part();
 virtual unsigned id() const = 0;
 virtual const std::string &
 name() const = 0;
 };
 class part_v2 : public part
 {
 public:
 using part::id;
 using part::name;
 virtual void id(unsigned val) = 0;
 virtual void name(
 const std::string & val) = 0;
 };
 part * create_part();
}

// app.cpp
#include <part.h>
#include <iostream>
#include <memory>

// Also link to inventory.lib
int main()
{
 using namespace std;
 using namespace inventory;
 unique_ptr< part_v2 > p(
 dynamic_cast< part_v2* >(create_part()));
 p->id(100);
 p->name("wingnut");
 cout << p->id() << endl;
 cout << p->name() << endl;
}

4 In reality, a new header file for part_v2 would be better than adding
the new version to the end of the existing file.
26 | Overload | December 2010

FEATURESTEVE LOVE
part_v2, plus both complete versions of realpart have been put in a
single file.
Listing 10 shows two versions of the part interface, and two independent
implementing classes. realpart_v2 represents the code from listing 9
– a complete implementation of the part_v2 interface.
Compiled with the Microsoft Visual Studio 2010 C++ compiler as before:
 cl /EHs /FAs test.cpp

figure 3 shows the vtable layouts corresponding to realpart and
realpart_v2. As you can see, the compiler has helpfully laid the
realpart_v2 vtable out by ensuring that the derived interface,
part_v2, appears entirely after the base interface part.
This makes sense: realpart_v2 derives directly from part_v2, which
derives from part. It would be easy at this point to consider the job done.
It’s still not portable however. The code for realpart_v2 is still
dependent upon the implementation specific behaviour of the compiler in
laying out the vtable this way. A new version of the same compiler might
choose to group the functions in a different way, again resulting in
undefined behaviour unless client code recompiles.

Virtually done
As with splitting the interface in two so that new methods are added by
creating a new interface, so the implementation is split in a similar fashion,
and follows the same pattern.

The part class interface in listing 11 is identical to that in listing 8,
showing the part_v2 interface deriving from part. The implementation
of part_v2 in a new class, realpart_v2, which derives not only from
part_v2, but from the original realpart concrete implementation of
the part interface.

Listing 9

#include "part.h"

namespace
{
 class realpart : public inventory::part_v2
 {
 public:
 realpart();
 unsigned id() const;
 const std::string & name() const;
 void id(unsigned val);
 void name(const std::string & val);
 private:
 unsigned num;
 std::string namestr;
 };
}

namespace inventory
{
 part * create_part()
 {
 return new realpart;
 }
}

Figure 3

??_7realpart@@6B@ DD FLAT:??_R4realpart@@6B@ ; realpart::‘vftable’
 DD FLAT:?id@realpart@@UBEHXZ
 DD FLAT:?name@realpart@@UBEABV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@XZ
; Function compile flags: /Odtp

??_7realpart_v2@@6B@ DD FLAT:??_R4realpart_v2@@6B@ ; realpart_v2::‘vftable’
 DD FLAT:?id@realpart_v2@@UBEHXZ
 DD
FLAT:?name@realpart_v2@@UBEABV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@XZ
 DD FLAT:?id@realpart_v2@@UAEXH@Z
 DD
FLAT:?name@realpart_v2@@UAEXABV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@@Z
; Function compile flags: /Odtp

Listing 10

#include <string>

class part
{
 public:
 virtual int id() const = 0;
 virtual const std::string & name() const = 0;
};
class part_v2 : public part
{
 public:
 virtual void id(int val) = 0;
 virtual void name(
 const std::string & val) = 0;
};

class realpart : public part
{
 public:
 int id() const { return num; }
 const std::string & name() const {
 return namestr; }
 private:
 int num;
 std::string namestr;
};

class realpart_v2 : public part_v2
{
 public:
 int id() const { return num; }
 const std::string & name() const {
 return namestr; }
 void id(int val) { }
 void name(const std::string & val) { }
 private:
 int num;
 std::string namestr;
};

int main()
{
 realpart r1;
 realpart_v2 r2;
}

December 2010 | Overload | 27

FEATURE STEVE LOVE
The realpart_v2 class uses implementation inheritance to bring in the
pure-virtual declarations and implementations of the part interface, and
with using declarations brings those names into scope to allow them to
be overloaded with the new, setter, functions. Finally, the factory function
create_part is changed to return an instance of the new implementing
class.
In order to achieve the required behaviour, the data members of realpart
(the base class) have been made protected, since realpart_v2 inherits
from realpart and requires access to those members. A (possibly) neater
but more verbose way of achieving this would be to add protected data

accessors to realpart. Since client code has no knowledge of either
implementing type, protected data in this instance is not a great problem.
Much more of a problem is the fact that this code will not (or at least, should
not) compile.

Ambiguity banishment
Figure 4 shows the problem in stark relief. The relationships between
realpart, realpart_v2, part and part_v2 form the dreaded
diamond of multiple inheritance nightmares. The difficulty in compiling
comes from the ambiguity between the views of part as seen by
realpart_v2: one via part_v2, and another via realpart.
The solution to this is to use virtual inheritance, a technique that should
be infrequently required, but is essential in this instance.
Listing 12 shows the changes required.
part_v2 must virtually inherit from part, as must realpart. So,
indeed, must realpart_v2, since it is intended as a base class for a (as
yet non-existent) new extension, realpart_v3.
This is an ABI-breaking change in realpart, causing clients to
recompile, because it changes the way the vtables are organised. In order
to take advantage of the technique, it is necessary to plan for the future and
ensure all classes derive virtually from the outset to avoid ambiguity.
Virtual inheritance is normally used to avoid ambiguity between the data
members of a base class that appears twice in the inheritance family. The
ambiguity here is caused not by data members, but by the necessity of
overriding pure virtual functions. Without the virtual inheritance,
realpart_v2 remains abstract, since it overrides only one set of part’s
functions, which are pure virtual. Virtual inheritance ensures that only one
instance of the multiply-inherited base class appears in the derived class.

Finishing polish
With the technical problems solved, the necessary infrastructure is in place
to achieve the primary goal of allowing the shared library to redeploy
without requiring client code to also recompile and redeploy. However,
there is more that can still be done to make the necessary client code easier
to use.

Names have power
Note in listing 12 that the factory function, create_part, continues to
return a part pointer. This cannot change to return a part_v2, because
that would violate the one-definition rule, morally the same as changing a
member function on an interface. Clients of the original library don’t care,
but clients of the new version (as in listing 8) must cast the result to the
new version.
Ideally, clients should be able to use the result of the factory out of the box,
confident that its type is the latest version, and that if the library is updated
under their feet, so to speak, it will continue to work as before.
We can, in fact, go further than that.

Listing 11

// part.h
#pragma once
#include <string>
namespace inventory
{
 class part
 {
 public:
 virtual ~part();
 virtual unsigned id() const = 0;
 virtual const std::string &
 name() const = 0;
 };
 class part_v2 : public part
 {
 public:
 using part::id;
 using part::name;
 virtual void id(unsigned val) = 0;
 virtual void name(
 const std::string & val) = 0;
 };
 part * create_part();
}
// part.cpp
#include "part.h"
namespace
{
 class realpart : public inventory::part
 {
 public:
 realpart();
 unsigned id() const;
 const std::string & name() const;
 protected:
 unsigned num;
 std::string namestr;
 };
 class realpart_v2 : public inventory::part_v2,
 public realpart
 {
 public:
 using part::id;
 using part::name;
 void id(unsigned val);
 void name(const std::string & val);
 };
}
namespace inventory
{
 part * create_part()
 {
 return new realpart_v2;
 }
}

Figure 4
28 | Overload | December 2010

FEATURESTEVE LOVE
It would be nice if the new version of the interface could be named the same
as the old one. Then, clients who now require the new functionality don’t
need to find all the places they refer to part, and rename to part_v2.
We can go further still, and take the explicit responsibility for managing
the lifetime of the returned object away from the client.

Called by a common name
Since the second version of the interface is part_v2, it makes sense to
call the first one part_v1, and have something else which clients can refer
to as part. An initial idea might be to make part a typedef of whatever

the latest version of the part interface is, but even better than that, the
goal of removing explicit management of lifetime away from the client can
be met by making part a typedef to a smart pointer. Visual Studio 2010
comes with the right tool for this job as part of its C++0x (actually
C++TR1) libraries.
Listing 13 shows a simple scheme to achieve this. The typedef
part_current is used by the client to insulate it from the actual name
of the latest interface version. When a new version of the part interface is
added (e.g. part_v2), the part_current typedef also needs to change
to reflect that.

Cast-free client
It has already been pointed out that the factory function used to instantiate
a part cannot be modified to just return a pointer to whatever the current
interface version is. Even using the typedef described above for this still
results in a modified function when the typedef changes.
If clients are to be agnostic with regard to the actual version of the part
interface, then it follows that there needs to be some intermediate place
that can sensibly perform the right cast, and return the correct instance to
the client.
This is crying out for a simple function template that just performs the right
cast on the returned pointer from create_part().
Listing 14 shows how this can be done. The new create_part()
function now calls into the renamed create_part_ptr() factory
which performs the actual instantiation.
Making create_part a template neatly sidesteps the one-definition rule
violation; a function specialised on a new version of the interface is a
different function, and being a template, is compiled into the client, not the
library. It does mean, however, that clients must still refer to the name of
the interface’s current version, and this is where the part_current
typedef comes into play.
Listing 15 shows how these two facilities are used by the client.

Dependency management
The final piece of the puzzle is how to organise the libraries so that the
facilities are all available, without placing undue dependency strain on
clients. The key to this is in the principle alluded to earlier – that
abstractions should not depend upon details.
It’s a prime-directive of our craft -separate interface from implementation
– and to that end, the library will be split into two parts. One part contains
only the interfaces necessary for clients to refer to objects. The second part,

Listing 12

// part.h
#pragma once
#include <string>
namespace inventory
{
 class part
 {
 public:
 virtual ~part();
 virtual unsigned id() const = 0;
 virtual const std::string & name() const
 = 0;
 };
 class part_v2 : public virtual part
 {
 public:
 using part::id;
 using part::name;
 virtual void id(unsigned val) = 0;
 virtual void name(
 const std::string & val) = 0;
 };
 part * create_part();
}

// part.cpp
#include "part.h"
namespace
{
 class realpart : public virtual inventory::part
 {
 public:
 realpart();
 unsigned id() const;
 const std::string & name() const;
 protected:
 unsigned num;
 std::string namestr;
 };
 class realpart_v2
 : public virtual inventory::part_v2,
 public realpart
 {
 public:
 using part::id;
 using part::name;
 void id(unsigned val);
 void name(const std::string & val);
 };
}
namespace inventory
{
 part * create_part()
 {
 return new realpart_v2;
 }
}

Listing 13

#include "part_v1.h"
#include <memory>

namespace inventory
{
 typedef part_v1 part_current;
 typedef std::unique_ptr< part_current > part;
}

Listing 14

namespace inventory
{
 INVENTORY_LIB part_v1 * create_part_ptr();

 template< typename type_version >
 part create_part()
 {
 return part(dynamic_cast< type_version * >(
 create_part_ptr()));
 }
}

December 2010 | Overload | 29

FEATURE STEVE LOVE
the implementation, also contains the necessary facilities to instantiate
objects of the required interfaces.
This separation means that client code that has no need to create objects
need depend only on the interfaces themselves.

Interface-only project
The main currency of the library here is the part type, which is actually
an alias for a smart pointer to a specific version of an interface. It therefore
makes sense that the definition of the name part exists in the context of
the interface.
Listing 16 shows the contents of the library. This interface-only library is
also the one that will be used by the most clients, and so should bear the
name inventory. Client code need only include part.h, and ignore
part_v1 as effectively implementation detail.

The real thing
The implementation of the interface, and the means to instantiate it, are
the responsibility of the second library.
Since it’s expected to have fewer dependents than the interface library, the
implementation library in listing 17 can have a less obvious name, e.g.
inventory_impl. Note the virtual inheritance in listing 17; even though
there is as yet no multiple inheritance occurring, the base must be derived
virtually to avoid breaking changes when a new interface is added.

Version up!
When the time comes to add new functionality, four things are required
(Listing 18):

1. Add a new interface to the inventory project
2. Update the part_current typedef
3. Add a new class to implement the new interface
4. Return an instance of the new implementing class from the factory

For brevity, the realpart_v1 and realpart_v2 code shares the same
file.
At this point, the shared library can be released, and existing clients can
upgrade at leisure. The reason this works is due to the code in listing 19.
The template function compiled into those clients would effectively be as
follows:
 part create_part()
 {
 return part(dynamic_cast< part_v1 * >(
 create_part_ptr()));
 }

Even though the new version of the library is returning an object which
now derives from part_v2, those clients have no knowledge of that fact.

Listing 15

#include <part_factory.h>
#include <iostream>

int main()
{
 using namespace std;
 using namespace inventory;

 part p = create_part< part_current >();
 cout << p->number() << endl;
 cout << p->name() << endl;
}

Listing 16

// part_v1.h
#include <string>
namespace inventory
{
 class INVENTORY_LIB part_v1
 {
 public:
 virtual ~part_v1();
 virtual unsigned number() const = 0;
 virtual const std::string & name()
 const = 0;
 };
}

// part.h
#pragma once
#include "part_v1.h"
#include <memory>
namespace inventory
{
 typedef part_v1 part_current;
 typedef std::unique_ptr< part_current > part;
}

Listing 17

// realpart.h
#pragma once

#include <part_v1.h>

namespace inventory_impl
{
 class realpart_v1 : public virtual
inventory::part_v1
 {
 public:
 realpart_v1();
 virtual unsigned number() const;
 virtual const std::string & name() const;

 private:
 unsigned num;
 std::string namestr;
 };
}

// part_factory.h
#include <part.h>

namespace inventory
{
 INVENTORY_LIB part_v1 * create_part_ptr();

 template< typename type_version >
 part create_part()
 {
 return part(dynamic_cast< type_version * >(
create_part_ptr()));
 }
}

// part_factory.cpp
#include "realpart.h"
#include <part.h>

namespace inventory
{
 using namespace inventory_impl;

 INVENTORY_LIB part_v1 * create_part_ptr()
 {
 return new realpart_v1;
 }
}

30 | Overload | December 2010

FEATURESTEVE LOVE
Clients who now compile against the new version of the library effectively
compile against this:
 part create_part()
 {
 return part(dynamic_cast< part_v2 * >(
 create_part_ptr()));
 }

And so can see the new functionality.

Justifying the means
As with many things technical and otherwise, this solution is a trade-off
between convenience and effort. The convenience is provided by the fact
that the shared library is backwards-compatible with clients who are
already deployed, and does not require them to recompile and be re-
released with a new library version.
This convenience comes at the expense of the effort requried to understand
the interfaces in use, along with the fairly advanced techniques required
to make it work portably. Instead of a single point of reference for all the
facilities offered by an interface, the user must now follow a chain of base
interfaces to determine how to use the whole. Similarly, following the
chain of implementing classes is a definite obstacle to comprehending the
code.
The use-case for which this code was originally developed was specifically
focussed on the deployment dependencies between library and clients, in
particular allowing clients of a previous version to continue unchanged
when a new library was deployed. The cost of extra complexity in
understanding the library was accepted as a necessary one to provide this
feature. It is an idiom in common use, however, and understanding the
idiom can help to reduce the complexity of understanding the solution.
The original requirement is all about loosening the coupling between client
and library, achieved by judicious use of interfaces, then splitting the
library into separate interface and implementation libraries. This
separation allows clients to choose whether or not a dependency on the
implementation -and the factory to create one -is required. If it is not
needed, then the client can restrict their dependency to just the interface
library.

Acknowledgements
Many thanks to Roger Orr for identifying the real problem with extending
interfaces by adding methods to the end. It was he who spotted that the
vtable layout cannot be relied upon to match the declaration order, and who
showed me how to find that information from the compiler. Thanks to Pete
Goodliffe, Chris Oldwood and Frances Buontempo for providing valuable
feedback on early drafts, and to all those who attended the presentation at
Skills Matter in London, especially Sam Saariste, James Slaughter and
Martin Waplington for making me think harder about it, and for pointing
out some of the errors!

References
[Martin96] Robert C. Martin, ‘The Dependency Inversion Principle’,

C++ Report, May 1996

Listing 18

// part_v2.h
#include "part_v1.h"
#include <string>
namespace inventory
{
 class INVENTORY_LIB part_v2
 : public virtual part_v1
 {
 public:
 using part_v1::number;
 using part_v1::name;
 virtual void number(unsigned) = 0;
 virtual void name(
 const std::string &) = 0;
 };
}

// part.h
#include "part_v2.h"
#include <memory>
namespace inventory
{
 typedef part_v2 part_current;
 typedef std::unique_ptr< part_current > part;
}

// realpart.h
#pragma once
#include <part_v2.h>
namespace inventory_impl
{
 class realpart_v1
 : public virtual inventory::part_v1
 {
 public:
 realpart_v1();
 virtual unsigned number() const;
 virtual const std::string & name() const;
 protected:
 unsigned num;
 std::string namestr;
 };
 class realpart_v2
 : public virtual inventory::part_v2,
 public realpart_v1
 {
 public:
 using realpart_v1::id;
 using realpart_v1::name;
 virtual void number(unsigned);
 virtual void name(const std::string &);
 };
}

// part_factory.cpp
#include "realpart.h"
#include <part.h>

namespace inventory
{
 using namespace inventory_impl;
 INVENTORY_LIB part_v1 * create_part_ptr()
 {
 return new realpart_v2;
 }
}

Listing 19

#include <part.h>

namespace inventory
{
 INVENTORY_LIB part_v1 * create_part_ptr();
 template< typename type_version >
 part create_part()
 {
 return part(dynamic_cast< type_version * >(
 create_part_ptr()));
 }
}

December 2010 | Overload | 31

FEATURE MATTHEW WILSON
Quality Matters
Christmas Intermezzo
Sometimes it’s good to reflect. Matthew Wilson
considers what he’s learnt so far.
adly, despite Ric Parkin’s last-minute exhortation to contribute just
‘a single nugget of wisdom, and [an apology that] the next part is
delayed’, work pressures, chronic procrastination, and falling foul of

my own game of deadline-skirting-as-inspiration, I find myself coming up
short for a contribution for what will be, righteously, a grand celebration
of 100 instalments of Overload. Had I been able to do so, I might have
imagined a Quality Matters Yearly Round-up
in the form of one of those awkwardly self-
regarding missives that circulate during the
festive season. Something like:

Well, another year has gone by in a flash.
The family is just doing so well. Daddy
has been juggling work, exercise, being a
pompous ass, and writing his columns
and books: He says he’s happy, so we
just let him get on with it. The older
children – FastFormat, Pantheios, recls,
and STLSoft – are all doing well, in their
own way, and, despite their various
‘challenges’, plod along with reasonable
success. FF has settled into his life as a
niche player: he does his bit well, though
we do worry that he’s not making enough
friends. recls and STLSoft still can’t get
their homework complete, and have yet
to properly put on their school uniforms,
even after all these years! What good is
having good ideas if you can’t even do up
your tie, I ask you? We had hoped that,
wi th a l l h is qu ie t successes, our
Pantheios would finally get all his course
e lements comple te and go on to
University; but no, another year in class
B(eta)! He keeps making friends with C++
programmers from all around the world,
he excels at sprinting, gymnastics, and
composition. But we can’t get him to pay
attention in writing his essays or in
presenting his work clearly. Perhaps with
our youngest, CLASP, set to go to school this year – as part of an
exchange program with her uncle Garth (Lancaster) – she can show
her elder siblings how to do it all right from start to finish in 2011.
We live in hope.

Thankfully, I didn’t have time to write any such drivel. Instead, I’ll say
that it continues to be a real treat to write ‘Quality Matters’, and also a

major effort; though in a good way. I am definitely living up to James
Coplien’s philosophy that ‘an author should learn at least as much as his
or her constituency does through the process of writing and publication’.
When I started, I knew that there were some sacred cows that I would be
slaughtering, but I never imagined how many. That I’ve worked out that
hello, world is wrong is still quite amazing to me. (‘Uncle’ Garth and I are

about to embark on writing a C++ introductory
programming book with a difference, and so
I’ll be putting myself in the position of all those
authors whose first code examples to their
readerships were wrong. Eeep!) That I’ve
demonstrated – to myself at least; to QM
readers in two instalments’time – that
exceptions are antithetical to correctness, yet
essential for robustness, and that there’s merit
in Java’s checked exceptions, is another
entirely unanticipated outcome of this
enterprise.
Next year (and probably the one after, given my
proven difficulties in hitting all the QM
deadlines) will see me facing down more
difficult areas, several of which I’m (as yet)
imperfectly prepared for. The first two will be
the promised third and fourth in the exceptions
series, about which I have a reasonably clear
idea of what’s coming. Next I’m going to have
to tackle the issue of contract programming and
irrecoverability: adherents of the eggregious
practice of defensive programming better get
their defenses ready, as I plan to take no
prisoners on that subject. Then we’re probably
going to get into diagnostics. All of those
subjects I’m reasonably clear on. After that,
it’ll be unchartered territory: defining
‘debugging’ and examining its uses; seeing
how far TDD can be taken; looking at coding
with interface layers for increased reliability

(and thread-safety). I’m also going to bite the bullet – and embrace my own
(open-)sources of shame – and look at areas in which I’ve traditionally
done very poorly: packaging and documentation. In this regard, I may use
my own efforts to have Pantheios move out of its four years of beta and
be a properly packaged and documented library, as the gritty exemplar.
Doubtless all of these subjects will see me learning more than I teach, and
I will continue to be grateful that the Overload editor tolerates my
reliability, and humbled that the Overload readers tolerate my presents
(sic.), such that I have this forum in which to learn.
So, seasons greetings to all, and I look forward to blathering at you some
more next year. :-)

S

Matthew Wilson is a software development consultant and
trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of
articles and books that attempt to do the same. He can be
contacted at matthew@synesis.com.au
32 | Overload | December 2010

	Numbers and The Appliance of Science
	Bug Hunting and the Scientific Method
	From Occam’s Razor to No Bugs’ Axe
	The Quartermaster’s Store
	Why Fixed Point Won’t Cure Your Floating Point Blues
	Interface Versioning in C++
	Quality Matters Christmas Intermezzo

