

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Shadow Data Types
Jon Jagger looks at hiding implementation details in C.

7 Creating a Framework for the iPhone
Pete Goodliffe tries to share code between iPhone
applications.

11 The Model Student: A Primal Skyline (Part 3)
Richard Harris concludes his investigation of the prime
factors of integers.

17 Project-Specific Language Dialects
Yaakov Belch, Sergey Ignatchenko and Dmytro
Ivanchykhin present a flexible approach to project-
specific language dialects.

26 Quality Matters: A Case Study in Quality
Matthew Wilson assesses the quality of a simple
library.

OVERLOAD 94

December 2009

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Simon Farnsworth
simon@farnz.co.uk

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 95 should be submitted by
1st January 2010 and for
Overload 96 by 1st March 2010.

EDITORIAL RIC PARKIN
A Crack in Time
Encoding messages has a long history.
Ric Parking looks back at how this
affected computing.
A couple of weeks ago, I attended the new ACCU
autumn conference held at Bletchley Park – home of
the Enigma Code crackers. I won’t go into much detail
– there should be some writeups in the next CVu – but
suffice to say it was a splendid day, full of fascinating
details of the history of computing, held at what could

be described as its birthplace.
One remarkable part of the day was going around the National Museum
of Computing, which is based in some of the maze of sprawling huts that
housed much of the original code breaking activity. You can imagine that
wandering around with around 90 fellow computer geeks made for some
interesting anecdotes, especially once you got to the rooms holding the
earliest home and personal computers – coos and sighs of “Ah I had one
of them” abounded. But one thing that really stuck in the mind was how
limited those computers were compared to now, and yet how the designers
and users were so ingenious at getting around those limitations. My
personal favourite was on the WITCH [WITCH] – it could use punched
paper tapes to load a program to run from its central store, but as that store
was very small they also used loops of tapes to hold subroutines that could
be run directly from the paper (this had one side effect that you’d have to
write your program so that a subroutine mustn’t get called too many times
– after about 500 calls the paper would break!)
But the main thrust of the day was all about codes and code breaking, and
it is significant that the first computers were created to make and break
codes. At the most simple level, it is because of the sheer amount of
repetitive actions that are involved, which have to be performed
accurately. But I think there’s something deeper going on here: codes and
cyphers are all about manipulation of symbolic representations, which
when you think about it, is all that a computer ever does – even the simplest
number type is actually stored as a pattern of bits, and it’s the
interpretation of that pattern that makes that pattern ‘be’ the number. The
fact that when you tell the computer to add two ‘numbers’, it actually does
manipulations of the symbols, such that the new interpreted pattern will
be as if it had added the two interpreted input numbers. (This idea is not
exactly new – see sidebar) How it achieves it can be very simple, or very
complex. An example would be ‘multiply by two’ – a compiler could use
the knowledge that numbers are stored as binary to turn that into a bitshift
operation, or invoke a large multiplication routine.
This sort of thinking can be very useful at times. For example, when I was
trying to get my head around the various flavours of Unicode, what really

made things fall into place was realising that a
‘Character’ is really just an interpretation of one
or more ‘Values’ – years of generally only using
7 bit US ASCII had lulled me into conflating the

two. Realising that the interpretation is just as important as the actual
values involved suddenly made everything make sense. This then also led
me to ‘get’ a lot of the 8-bit extended ASCII issues.
And it goes further. How we choose to represent information can have a
significant effect on what we can do with it. Choose the right data structure
and a program can perform quickly in a small memory footprint.
Conversely a poor choice can mean it runs slowly, consume excessive
resources, and perhaps it might not even run at all – a totally unsuitable
choice may make implementing an algorithm too difficult, such that it’ll
either never be completed or be too buggy to use. Take as an example the
problem of organising 24-hour support cover. Everyone in your team
volunteers the hours they can cover, and you need to check that someone
will be on call at any time. One approach would be to make a list for each
person of the blocks of hours they can do, then iterate over them and
remove that hour from a list of uncovered hours (taking into account that
the hour might already be covered). That’s rather complex, will probably
have lots of memory allocations/deallocations, and will have some slow
lookups. Might even contain some bugs. An alternative is to represent the
hours a person can cover as a bitmask, then checking that all hours are

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.

Precursors go all the way back to Babbage, but the purest form
is surely that of Alan Turing (who of course is the most famous
of code breakers at Bletchley), in his paper ‘On Computable
Numbers, With an Application to the Entscheidungsproblem’
[Turing]. In it he proposed a thought experiment of a machine that
worked on an infinitely long paper tape divided into cells that
could either be empty or be filled with a symbol. It had a readwrite
head that would be positioned on a single cell, read the contents,
and could write or erase a symbol. It could also move the tape
left or right. A program was a simple table of rules. Each rule
consisted of what actions to do depending on the symbol at the
current position. Each action would erase or write a symbol at the
current location, then move the tape left, right or stay still, and
then change which rule to now apply.

Despite its extreme simplicity, Turing and Alonzo Church
suggested that any computable algorithm could be written on a
Turing machine (while not completely proven, this is now pretty
much accepted as true). Turing went further and wrote a set of
rules whose first act would be to read in from a tape the
description of a second set of rules, and then process the rest of
the tape as if it were the machine described by that input. In other
words, a programmable computer.

Symbolic Computing and Alan Turing
2 | Overload | December 2009

EDITORIALRIC PARKIN
covered is just a matter of ORing together all the masks, and checking all
the bits are set.
So in a sense, everything in a computer is already in code, it’s just that we
know how to interpret it. Encryption is only slightly different in that the
author is now actively trying to hide the method of interpretation.
(Although technically what’s usually being hidden is the key used to drive
an encryption algorithm, as it’s easy to create a new key but very very hard
to create a new algorithm). How hard they try to hide it depends on how
much it costs to do the encryption, and how valuable the information is.
Let’s quickly look at those two variables.
The cost of encryption is usually due to difficulty of knowing what to do,
inconvenience in doing it, and the cost of actually doing so, in time and
opportunity cost (that is the value of what else you could have been doing
instead). Many of these costs have plummeted over time, as encryption
algorithms have been publicised, and automated, and computing power
has increased so it doesn’t take too long to encrypt to a fairly strong
standard.
The value of the information can vary widely and depends on many things.
Simple monetary value is obvious. From Bletchley we learn that
government and military information can be very valuable, as knowing
where a U-boat pack is can mean the difference between a convoy getting
through with vital equipment, or being sunk. This also hints at the temporal
aspect of information’s value – it’s not much use knowing where those

subs were a week after they’ve sunk your ships. So the value of
information often decreases over time, sometimes very rapidly. This is a
very useful guide for deciding how strongly to encrypt something – you
want the information to be worthless by the time it is cracked. There’s also
a rather subtle value of the mere existence of a message. This is exploited
by traffic analysis, which tries to gather information from the patterns of
messages over time and where they are sent, so you don’t even need to
decrypt the messages to get information. For example using mobile phone
records to track a gang planning a robbery – from who calls whom you
can often learn about the command structure, and from number and time
of the calls you can spot that something is about to happen. You can defeat
traffic analysis by hiding the patterns in noise, such always sending a
message at the same time each day even if it only contains the equivalent
of ‘This page left intentionally blank’, but this increases the cost of hiding
your information.
Putting these two costs together, you should choose to encrypt your
messages such that the cost to you of encryption is less than the expected
cost of that information being disclosed at the time it can be deciphered.
So if the costs are so cheap, why aren’t we all encrypting as a matter of
course? Well, for several decades, governments have been trying to
control access to cryptography on the grounds that they need to be able to
read your messages in the name of law enforcement. In the 90s the US
government tried to impose the Clipper chip [clipper] to give them a
backdoor to voice communications. There was also the classification of
encryption as a munition and so liable to strict export controls, which led
to the absurdity of the T-shirt that would land you in prison for wearing
it as you left the US, as it had a four line implementation of the RSA
algorithm printed on it [Back]. And now, we recently had the full
Regulation of Investigatory Powers Act come into force, which makes it
a serious offence not to disclose your encryption keys.
And which dangerous criminal or terrorist was the first
to be jailed for this? A rocket hobbiest who distrusted
the police [RIPA]. Best not forget those passwords.

References
[Back] http://www.cypherspace.org/adam/shirt/
[Clipper] http://en.wikipedia.org/wiki/Clipper_chip
[RIPA] http://www.theregister.co.uk/2009/11/24/ripa_jfl/
[Turing] http://www.thocp.net/biographies/papers/

turing_oncomputablenumbers_1936.pdf
[WITCH] http://en.wikipedia.org/wiki/WITCH_(computer)

Figure 1

One of the few pictures of Alan Turing
as an adult, running in 1946.
December 2009 | Overload | 3

http://www.cypherspace.org/adam/shirt/
http://en.wikipedia.org/wiki/Clipper_chip
http://www.theregister.co.uk/2009/11/24/ripa_jfl/
http://www.thocp.net/biographies/papers/turing_oncomputablenumbers_1936.pdf
http://www.thocp.net/biographies/papers/turing_oncomputablenumbers_1936.pdf
http://en.wikipedia.org/wiki/WITCH_(computer)

FEATURE JON JAGGER
Shadow Data Types
Hiding implementation details is a good idea.
Jon Jagger shows a technique in C that avoids
some of the common problems.
uppose we have a type called wibble defined as a concrete data type
(that is, a type whose representation is fully visible) as shown in
Listing 1.

The definition of wibble exposes the types involved in its representation
(grommet and flange in this made up example), and hence requires a
#include for those types in its header file. This exposure has a price. One
cost is that any change to the grommet or flange header files, or any
header files they in turn #include, at any depth, will require a
recompilation of any source file that #includes wibble.h (either
directly or transitively). Another cost is that client code can easily become
reliant on the exposed representation rather than relying solely on the
functional api. Note that in C++ you can avoid this latter problem by
declaring your data members private.
These costs are sufficiently high that software developers have invented
techniques to hide a type’s representation: turn it into an Abstract Data
Type. This is simply a type that does not reveal its representation; a type
that abstracts away its representation. In this article I’ll look at two abstract
data type implementation techniques: Opaque Data Types, and Shadow
Data Types.

Opaque data types
The term Opaque Data Type is a well established term for the technique
of exposing only the name of the type in its header file. This is done with
a forward type declaration. This certainly has the effect of not exposing
any representation!
 typedef struct wibble wibble;

 wibble * wopen(int);
 ...
 void wclose(wibble *);

A definite downside with this approach is that clients cannot create objects
themselves.
 #include "wibble.h"

 void eg(void)
 {
 wibble * ptr; // ok
 wibble value; // constraint violation
 ptr = malloc(sizeof *ptr);
 // constraint violation
 }

The wibble type’s representation is defined in its source file and so only
code in the source file can create wibble objects. Furthermore, these wibble
objects have to be returned to users as pointers. These two constraints mean
the created objects cannot have auto storage class. This is a great loss since
auto storage class alone of the three storage class options allows the clients
to decide where the objects live which can greatly improve locality of
reference.
So how can wibble’s source file actually create them? The first
possibility is to use an object with auto storage class:
 ...
 wibble * wopen(int value)
 {
 wibble opened;
 ...
 return &opened; // very very bad
 }
 ...

A second possibility is to create the objects with static storage class:
 ...
 static wibble wstorage[42];
 static size_t windex = 0;
 ...
 wibble * wopen(int value)
 {
 wibble * opened = wstorage[windex];
 windex++;
 ...
 return opened;
 }
 ...

The final possibility is to create the objects with allocated storage class.
That is, to create the objects dynamically on the heap:
 ...
 wibble * wopen(int value)
 {
 wibble * opened = malloc(sizeof *opened);
 ...
 return opened;
 }
 ...

S

Listing 1

#include "grommet.h"
#include "flange.h"

typedef struct
{
 grommet g;
 flange f;
} wibble;

void wopen(wibble * w, int i);
...
void wclose(wibble * w);

Jon Jagger is a self-employed software consultant-trainer-
coach-mentor-programmer who works on a no-win no-fee
basis. He likes the technical aspects of software development
but mostly enjoys working with people. He can be contacted at
jon@jaggersoft.com.
4 | Overload | December 2009

FEATUREJON JAGGER
The static and the allocated approaches have opposing advantages and
disadvantages. Static storage is very fast and doesn’t fragment the memory
but the type has to decide the maximum number of objects the application
will need. That might be a dependency going in the wrong direction.
Allocated storage is much slower and can create memory fragmentation
issues, but the application decides how many objects it needs.
In short, the classic ADT technique creates an abstraction that is very
opaque and pays a hefty price for this ‘over-abstraction’. Abstracting away
the representation also abstracts away the size details of a type and it is the
loss of the size information that creates the storage class restrictions. The
Shadow Data Type implementation technique attempts to rebalance these
forces of abstraction by separating size abstraction from representation
abstraction.

Shadow Data Types
The term Shadow Data Type, in contrast to Opaque Data Type, is not a
well established term. The technique has probably been around for a long
time, it’s just that it doesn’t seem to have ever been documented anywhere
and so a term for it has never become established. I’ve chosen the term
Shadow Data Type to try and convey the idea that when you shine a light
on an object it casts a shadow which reveals something of the size of the
object but nothing of the details of the object. In other words, a Shadow
Data Type has a ‘full’ type declaration (rather than a forward type
declaration) but one revealing only the size of type.
 typedef struct
 {
 unsigned char size_shadow[16];
 } wibble;

 void wopen(wibble *, int);
 ...
 void wclose(wibble *);

The ‘true’ definition of the type (together with its accompanying
#includes) moves into the source file (Listing 2).
However, there are two problems needing attention.

Synchronized alignment?
Firstly, there is no guarantee the two types (wibble and wibble_rep)
are alignment compatible. We can solve this problem. The trick is to create
a union containing all the basic types. We don’t know which basic types
have the strictest alignments but if the union contains them all the union
must also have the strictest alignment.
 typedef union
 {
 // one of each of all the basic types go here
 // including data pointers and function pointers
 } alignment;

We redefine wibble to be a union with two members; one member to take
care of the memory footprint and one member to take care of the alignment:
 #include "alignment.h"

 typedef union
 {
 unsigned char size_shadow[16];
 alignment universal;
 } wibble;
 ...

The main problem with wibble being a union is that unions are rare.
Suppose you want to forward declare the wibble type in a header. You’re
quite likely to forget it’s a union.
 typedef struct wibble wibble; // Oooops

We can fix this by simply putting the union inside a struct!
 #include "alignment.h"

 typedef struct
 {
 union
 {
 unsigned char size[16];
 alignment universal;
 } shadow;
 } wibble;
 ...

This is now sufficiently tricky to warrant an abstraction of its own
(Listing 3).

Synchronized size?
The second problem is hinted at by the comment in wibble.c
 // sizeof(wibble) >= sizeof(wibble_rep)

This comment, like all comments, has no teeth. Ideally we’d like an
assurance that if the sizes lose synchronization we’re told about it. This
can be done by asserting the relationship inside a unit test of course. The
problem with this is the possibility that the runtime check inside a unit-
test won’t get run. Or, more likely, that the unit-test simply won’t get
written at all. Fortunately in this case we can check the relationship using
a compile time assertion. We start with the fact that you cannot declare an
array of negative size:
 extern char wont_compile[-1];
 extern char will_compile[+1];

Now we have to select a size of either +1 or -1 if the asserted expression
is true or false respectively.
 // may or may not compile
 extern char compile_time_assert[sizeof(wibble)
 >= sizeof(wibble_rep) ? +1 : -1];

Listing 2

#include "wibble.h"
#include "grommet.h"
#include "flange.h"
#include <string.h>
typedef struct
{
 grommet g;
 flange f;
} wibble_rep;
// sizeof(wibble) >= sizeof(wibble_rep)
void wopen(wibble * w, int value)
{
 wibble_rep rep;
 ...
 memcpy(w, &rep, sizeof rep);
}
...

Listing 3

#ifndef SHADOW_TYPE_INCLUDED
#define SHADOW_TYPE_INCLUDED
#include "alignment.h"
#define SHADOW_TYPE(name, size) \
 typedef struct \
 { \
 union \
 { \
 unsigned char bytes[size]; \
 alignment universal; \
 } shadow; \
 } name
#endif
#include "shadow_type.h"
SHADOW_TYPE(wibble, 16);
December 2009 | Overload | 5

FEATURE JON JAGGER
Hiding this mechanism behind a macro inside a dedicated header helps to
make the code more Intention Revealing (Listing 4).
Note that the assertion uses >= rather than ==. This allows binary
compatibility with any alternative smaller representation.
It’s worth spending a few moments to think about alignment carefully. The
wibble type contains a union to give us the strictest alignment. This
means a single wibble_rep and a single wibble can overlay each other
in either direction.
If we create an array of wibbles the compiler will ensure the address of
each wibble is suitably aligned. To do this it may add trailing padding to
the wibble type but this padding will be reflected by sizeof(wibble).
Similarly, any padding for the wibble_rep type will also be reflected by
sizeof(wibble_rep).
Importantly, since sizeof(wibble_rep) may be strictly less than
sizeof(wibble) we cannot overlay an array of either type directly onto
an array of the other type.
However, we are only concerned with creating an array of wibbles since
that is the type the client uses. There should never be any need to create
an array of wibble_reps. Nevertheless, the .c file implementation must
always do any array pointer arithmetic in terms of wibbles and never in
terms of wibble_reps.
Note also that using >= rather than == allows binary compatibility with
any alternative smaller representation.

Casting the shadow
Inside the source file we can create a helper function to overlay the true
representation onto the client’s memory (the fragment in Listing 5 uses the
dot designator syntax introduced in c99).
Careful use of memcpy can help to make the wibble functions behave
atomically from the users perspective. That is to say, the function can do
the work off to the side in a local wibble_rep, and copy back into the
shadow only if everything is successful.
An alternative to memcpy is to cast the pointer on each access (Listing 6).

Constness?
It makes no sense to declare a wibble object with a const modifier
unless the object can be initialized.
 void pointless(void)
 {
 const wibble w; // :-(
 // ... ?
 }

However, this is not an issue since the wibble type is opaque anyway.
Nevertheless, a slight redesign can accommodate const wibble objects
if desired, at the cost of copying struct objects (Listing 7).

Summary
In C it is impossible to expose a type’s size without also exposing its
representation. It is possible to explicitly specify a concrete type’s
representation as being ‘unpublished’ but since C does not offer the C++
private keyword using the representation is always possible and remains
a constant temptation.. Once one piece of client code succumbs more are
sure to follow and like a dam bursting the client and implementation
quickly become tightly coupled and any separation is washed away.
Completely hiding a type’s representation behind an opaque pointer/
handle removes the temptation and creates a powerful abstraction but at
the price of hiding the size of the type and the consequent restriction on
the storage class of client memory.
A shadow data type offers a half-way house where a type is effectively split
into two, with one part exposing the size and the other part holding the
representation. The alignment and sizes of the two parts must correspond.
Client code is then able to use all three storage class options. The
implementation code takes the full load of the extra complexity mapping/
overlaying between the split parts. One interesting observation is that the
client code would be unaffected (other than needing recompilation) if the
representation was moved back into the client side type (to try and improve
performance perhaps).
No mechanism is universally applicable and the shadow data type is no
exception! Experience and time alone will tell if and how useful it is.
Caveat emptor.

Listing 4

#define COMPILE_TIME_ASSERT(description, \
 expression) extern char \
 description[(expression) ? 1 : -1]
...
#include "compile_time_assert.h"
...
COMPILE_TIME_ASSERT(
sizeof_wibble_is_not_less_than_sizeof_wibble_rep,
sizeof(wibble) >= sizeof(wibble_rep));
...

Listing 5

static inline void shadow(wibble * dst,
wibble_rep * src)
{
 memcpy(dst, src, sizeof *src);
}

bool wopen(wibble * w, const char * name)
{
 wibble_rep rep =
 {
 .g = ...,
 .f = ...,
 };
 shadow(w, &rep);
 ...
}

Listing 6

static inline wibble_rep * light(wibble * w)
{
 return (wibble_rep *)w;
}
void wclose(wibble * w)
{
 wibble_rep * rep = light(w);
 rep->g = ...;
 rep->f = ...;
 ...
}

Listing 7

...
wibble wopen(int value)
{
 wibble_rep rep = { ...value... };
 wibble w;
 memcpy(&w, &rep, sizeof rep);
 return w;
}
void ok(void)
{
 const wibble w = wopen(42);
 ...
}

6 | Overload | December 2009

FEATUREPETE GOODLIFFE
Creating a Framework for the
iPhone
Apple’s iPhone SDK doesn’t allow you to create a Framework.
Pete Goodliffe explains how to build one manually.
pple’s iPhone SDK and the Xcode development environment are a
powerful and very easy way to develop incredible mobile
applications. The facilities they provide (in ease development,

debugging, and the rich Cocoa Touch libraries) far exceed what was
available on desktop platforms only a few years ago.
However, there is still a natural bias to simple stand-alone application
development – you cannot build your own shared libraries to reduce
memory footprint; you can only create applications or simple static
libraries. There are some good reasons for this, security and ease of
installation being two of the most obvious.
However, seasoned Apple developers are not used to simple static
libraries; they are used to Apple’s OS X Frameworks (essentially a shared
library on steroids, see the sidebar) which are a very convenient method
for code sharing and reuse.
Despite the restriction, with a little elbow work and some simple scriptery
it is possible to enjoy most of the benefits of a Framework on the iPhone
platform. This article explains how to build your own framework for
Apple’s iPhone OS. I presume a level of familiarity with static and shared
libraries. You’ll also need to understand bash shell scripting.
Understanding the rudiments of Apple development is useful, particularly
the Xcode development environment.

The problem
Apple’s Xcode development environment does not let programmers create
their own framework for use in iPhone OS applications. As you can see
from Figure 1, when targeting the iPhone you can only create an
Application, a Static Library, or a Unit Test Bundle (I have to give Apple
credit for including the last item, and for its integrated support of unit tests

in the Xcode IDE. But that’s a different article). This has caused many
iPhone developers great frustration, although the restriction is for fairly
sensible reasons (Figure 1).
So why this restriction?
A framework usually contains a dynamically loaded shared library, and the
associated header files a client application requires to be able to access its
facilities. iPhone OS keeps applications very separate from one another,
and so there is no concept of a user-created dynamic library shared between
applications. There is no central library install point accessible to the
developer. Indeed, managing such a software pool would be rather
complex on iPhone-like devices (the OS hides the file system from
developer and user alike). Preventing developers from installing their own
shared frameworks neatly sidesteps a whole world of painful shared library
compatibility issues, and simplifies the application uninstall process.
It’s one, fairly final, way to avoid DLL hell [DLL]!
All applications may link to the blessed, system-provided frameworks1.
The only other libraries they may use must be standard static libraries,
linked directly to the application itself.

A

1. Indeed, they may only use the public, documented methods of
the system frameworks. Applications that discover and use
undocumented APIs will not be allowed onto Apple’s carefully
policed App Store. This seems draconian, but again, is for fairly
obvious reasons.

Figure 1

Although the Apple build technologies for Mac OS and iPhone OS are
essentially Unix-like (using the gcc compiler and binutils linker) Apple
have applied a number of tucks and tweaks. The addition of Frameworks
is one such addition; support for Frameworks has been added into the
Apple versions of gcc and binutils.

Frameworks are hierarchical directory structures grouping related but
separate items, for example: dynamic libraries, header files, user
interface assets and documentation. They provide an internal versioning
facility (defined by the directory hierarchy). The OS provides support for
loading items from a framework directory, ensuring only one copy is in
memory at any time.

Almost all Mac OS and iPhone SDK services are packaged as
Frameworks and most third party Mac OS libraries also ship as
frameworks. Using a framework in Xcode is as simple as a drag-and-drop

What is a framework?
December 2009 | Overload | 7

Pete Goodliffe is a software developer, columnist, speaker
and author who never stays at the same place in the software
food chain. Pete’s popular book, Code Craft, is a practical and
entertaining investigation of the entire programming pursuit. In
about 600 pages. No mean feat! He has a passion for curry
and doesn’t wear shoes.

operation; header paths and linkage are looked after for you
automatically.

Frameworks (and the “Bundle” directory format they are based on) date
back to the NextStep platform, which was acquired by Apple and used
as the foundation for OS X. More on information frameworks can be found
at Apple’s Developer Connection site [Apple].

FEATURE PETE GOODLIFFE

As you can see, static library usage on the
iPhone is clumsy. But fear not, there is a way...
For most simple application developers this situation is perfectly fine.
However, those of us who’d like to supply functionality to other users in
library form are left at somewhat of a disadvantage. Most Apple-savvy
application developers are used to the simplicity of dragging a framework
bundle onto their application target in Xcode, and not worrying about
header paths or link issues. #include magically works, and the linkage
issues are sorted out under the covers.
As a library provider, it is nowhere near as neat to have to provide a static
library and a set of associated header files in a separate flat directory. Doing
this requires your clients to work out how to integrate your library in their
application by hand. And it’ll make integrating a new version of your
library into the application more work. Granted, it’s not hard (for people
who know what they’re doing), but it is tedious. That’s not the Apple Way,
is it?!
When shipping a static library, you will also have to ship a library version
for each platform the developer will need (at the very least, an ARM code
library for use on the iPhone OS device itself, and an i386 build for them
to use in the iPhone simulator).
As you can see, static library usage on the iPhone is clumsy. But fear not,
there is a way...

How to build your own framework
I have worked out how to create a usable Framework that you can ship to
other iPhone OS application writers. You can ship libraries that are easy
to incorporate into other projects, and can exploit the standard framework
versioning facilities.
There is one caveat: because of iPhone OS limitations the framework will
not be a shared library; it will only provide a statically linked library. But
the application writer need not be concerned about this issue. As far as
they’re concerned everything will just work as if they were using a
standard OS framework.
Here’s how to do it:

1. Structure your framework’s header files.
Let’s say your library is called MyLib. Structure your project with a top-
level directory called Include, and inside that make a MyLib
subdirectory. Put all your public header files in there.
To be idiomatic, you’ll want to create an umbrella header file Include/
MyLib/MyLib.h that includes all the other headers for the user’s
convenience. See Figure 2.
Set up your Xcode project Header Search Paths build parameter to
include Include (note, do not include the MyLib subdirectory) as in
Figure 3.
Now your source files can happily #import <MyLib/MyLib.h> in the
same way they’d use any other framework. Everything will include
properly.

2. Put your source files elsewhere
I create a Source directory containing subdirectories Source/MyLib
and Source/Tests. You can put your implementation files (and private
header files) wherever you want. Just, obviously, not in the Include
directory!

3. Create a static library target
Create an iPhone OS static library target that builds all your library sources.
Call this target MyLib, and by default it will create a static library called
libMyLib.a.

4. Create the framework plist file
Create a plist file that will be placed inside your framework, describing it.
Plist files are Property Lists, used to store settings about an object (in this
case the details about this framework).
I keep my plist file in Resources/Framework.plist. It’s a piece of XML joy
that should look like Listing 1.

5. Construct the framework by hand
Now this is where the real magic happens. Create a shell script to build
your framework. I have a Scripts top-level directory that contains it,
because I like to keep things neat like that. Make sure your script file is
executable2.

2. Type man chmod in Terminal for details.

Figure 3

Figure 2
8 | Overload | December 2009

FEATUREPETE GOODLIFFE

There is one caveat: because of
iPhone OS limitations the framework

will not be a shared library
The first line is the canonical hashbang [Shebang]:
 #!/bin/bash

Following this there are two parts to the file...

5a. Build all the configurations that you need your framework to
support
There must be at least a build for armv6 for the iPhone device itself, and
an x386 build for the iPhone simulator. Application developers will require
both of these to be able to work. You'll want these to be Release
configuration libraries.
 xcodebuild \
 -configuration Release \
 -target "MyLib" \
 -sdk iphoneos3.0
 xcodebuild \
 -configuration Release \
 -target "MyLib" \
 -sdk iphonesimulator3.0

So that’s our libraries built. That was the simple bit. Now...

5b. Piece it all together
With a little understanding of the canonical structure of a framework
directory, our ability to write a plist, and the knowledge that putting a static
library in the framework instead of a dynamic library works fine, you can
create your framework using the script in Listing 2. The comments in the
listing describe exactly what’s going on.

Listing 1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0
 //EN" "http://www.apple.com/DTDs/PropertyList-
 1.0.dtd">
<plist version="1.0">
 <dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleExecutable</key>
 <string>MyLib</string>
 <key>CFBundleIdentifier</key>
 <string>com.MyLovelyDomain.MyLib</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundlePackageType</key>
 <string>FMWK</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>1.0</string>
 </dict>
</plist>

Listing 2

Define these to suit your nefarious purposes
 FRAMEWORK_NAME=MyLib
 FRAMEWORK_VERSION=A
 FRAMEWORK_CURRENT_VERSION=1
FRAMEWORK_COMPATIBILITY_VERSION=1
 BUILD_TYPE=Release

Where we'll put the build framework.
The script presumes we're in the project root
directory. Xcode builds in “build” by default
FRAMEWORK_BUILD_PATH="build/Framework"

Clean any existing framework that might be there
already
echo "Framework: Cleaning framework..."
[-d "$FRAMEWORK_BUILD_PATH"] && \
 rm -rf "$FRAMEWORK_BUILD_PATH"

This is the full name of the framework we'll
build
FRAMEWORK_DIR=$FRAMEWORK_BUILD_PATH/
$FRAMEWORK_NAME.framework

Build the canonical Framework bundle directory
structure
echo "Framework: Setting up directories..."
mkdir -p $FRAMEWORK_DIR
mkdir -p $FRAMEWORK_DIR/Versions
mkdir -p $FRAMEWORK_DIR/Versions/$FRAMEWORK_
 VERSION
mkdir -p $FRAMEWORK_DIR/Versions/$FRAMEWORK_
 VERSION/Resources
mkdir -p $FRAMEWORK_DIR/Versions/$FRAMEWORK_
 VERSION/Headers

echo "Framework: Creating symlinks..."
ln -s $FRAMEWORK_VERSION $FRAMEWORK_DIR/Versions/
 Current
ln -s Versions/Current/Headers $FRAMEWORK_DIR/
 Headers
ln -s Versions/Current/Resources $FRAMEWORK_DIR/
 Resources
ln -s Versions/Current/$FRAMEWORK_NAME $FRAMEWORK_
 DIR/$FRAMEWORK_NAME

Check that this is what your static libraries
are called
FRAMEWORK_INPUT_ARM_FILES="build/$BUILD_TYPE-
 iphoneos/libMyLib.a"
FRAMEWORK_INPUT_I386_FILES="build/$BUILD_TYPE-
 iphonesimulator/libMyLib.a
December 2009 | Overload | 9

FEATURE PETE GOODLIFFE

If calling scripts from the command line
scares you, you may choose to make a ‘Run
Script Build Phase’ in your Xcode project
In summary, this script:
Cleans up any existing Framework (this is cleaner than simply
building over the top of anything that may be already there)
Creates the canonical directory structure for a Framework.
Creates a single library file that supports all necessary platforms
using the lipo tool.
Copy header files into the Headers directory.
Copy the plist file into the Framework.

This script generates a fully usable Framework bundle in the build/
Framework directory. It is called MyLib.framework. This bundle can
be shipped to your external application developers. They can incorporate
it into their iPhone OS applications like any other framework.

Other remarks
I have presented here the most basic structure of a shell file. My production
version includes more robust error handling, and other steps that are
relevant to my particular project.

I also have a build script that automatically creates documentation for the
framework that I can ship with it. Indeed, I have a release script that applies
versioning information to the project, builds the libraries, creates a
framework, assembles the documentation, compiles release notes and
packages the whole thing in a pretty DMG.
If calling scripts from the command line scares you, you may choose to
make a ‘Run Script Build Phase’ in your Xcode project to call your
framework script from there. Then you can create a framework without
having to creep to the command line continually.
In summary, the final file layout of my project looks like Figure 4.
I hope you have found this tutorial useful.

References
[Apple] ‘What are Frameworks?’ Apple Developer Connection. http://

developer.apple.com/mac/library/documentation/MacOSX/
Conceptual/BPFrameworks/Concepts/WhatAreFrameworks.html

[DLL] ‘DLL Hell’, Wikipedia. http://en.wikipedia.org/wiki/DLL_hell
[Shebang] ‘Shebang (Unix)’, Wikipedia. http://en.wikipedia.org/wiki/

Shebang_%28Unix%29

Listing 2 (cont’d)

The trick for creating a fully usable library is
to use lipo to glue the different library
versions together into one file. When an
application is linked to this library, the
linker will extract the appropriate platform
version and use that.
The library file is given the same name as the
framework with no .a extension.
echo "Framework: Creating library..."
lipo \
 -create \
 -arch armv6 "$FRAMEWORK_INPUT_ARM_FILES" \
 -arch i386 "$FRAMEWORK_INPUT_I386_FILES" \
 -o "$FRAMEWORK_DIR/Versions/Current/
$FRAMEWORK_NAME"

Now copy the final assets over: your library
header files and the plist file
echo "Framework: Copying assets into current
 version..."
cp Include/$FRAMEWORK_NAME/* $FRAMEWORK_DIR/
 Headers/
cp Resources/Framework.plist $FRAMEWORK_DIR/
 Resources/Info.plist

Figure 4
10 | Overload | December 2009

http://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WhatAreFrameworks.html
http://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WhatAreFrameworks.html
http://en.wikipedia.org/wiki/DLL_hell
http://en.wikipedia.org/wiki/Shebang_%28Unix%29
http://en.wikipedia.org/wiki/Shebang_%28Unix%29

FEATURERICHARD HARRIS
The Model Student: A Primal
Skyline (Part 3)
The prime factors of the integers show some repeating patterns.
Richard Harris investigates whether they have fractal properties.
n part 1 of this investigation I introduced some of the great questions,
both answered and unanswered, about those elitists of the integers, the
primes; those whole numbers greater than or equal to 2 that will not

suffer to be wholly divided by any other than themselves and the singularly
noble 1.
We took a look at Euclid’s impressively straightforward proof of the
infinitude of the primes and introduced the prime number theorem which
states that the number of primes less than or equal to a given number n,
denoted by the function π, is approximately equal to

where the lim term denotes the limit of the fraction as n grows larger and
larger.
Moving on, we considered the factorisations of the integers; the unique sets
of primes that when multiplied together result in any given integer greater
than 0. I pointed out that 1 can be considered the product of no primes and
that 0 can be considered the product of negative infinity of them, or
equivalently of dividing 1 by infinitely many primes.
We then took a look at a relative of π, the function that counts the number
of prime factors of its argument, Ω. For example, the number 42 can be
represented as the product of the primes 2×3×7 and hence Ω(42)=3.
Recall that Ω counts repeated prime factors, so that 84, which has the
factorisation 22×3×7 has a value of Ω equal to Ω(84)=4.
Building upon this, and in pursuit of a pattern in the factorisations of the
integers, I introduced the function n, defined for non-negative integer n,
real number arguments greater than or equal to 0 and less than or equal to
1 and the expression

Figure 1 illustrates two example graphs of n (5 and 7).
We next showed that, for any n greater than 0, n and n+1 are coincident
for half the points in the range 0 to 1 and also that the infinite limit, ∞,
can be entirely recovered from an arbitrarily small range of arguments,
both of which bear a resemblance to the properties of many fractals.
In part 2, we gave fractals the sound definition of being objects that have
a fractional dimension. Of the many definitions of dimension we chose the
Minkowski, or box-counting dimension, defined in terms of the number
of rulers of length ε required to cover a curve, N(ε), by

where the lim term means the limit of the expression to its right as ε tends
to 0.
As a motivating example, I introduced the Koch curve, generated by
iteratively replacing every straight in its fundamental element, illustrated

in figure 2 (the basic element of the Koch curve), with a scaled down
version of itself.
A later iteration in the construction of this curve is illustrated in figure 3.
Noting that every time we divide the length of the ruler by 3, we increase
the number of them required to cover the curve by a factor of 4, we can

I

π n()
n nln⁄

n ∞→
lim 1=

x()n
2Ω 2nx()

2n
----------------------=

d N ε()ln
1
ε
---ln

ε 0→
lim=

Figure 1

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
December 2009 | Overload | 11

FEATURE RICHARD HARRIS

it’s not at all obvious exactly what
that limit might be
deduced that the fractal dimension of the Koch curve is approximately
1.2619.
We also demonstrated that the number of rulers of length εn, equal to 1
divided by 2n, required to cover the graph of n would probably exceed
the maximum value of an unsigned long and so implemented an
accumulator class to keep track of them, as illustrated in listing 1.
We reused the count_factors function we implemented in the first
part, declared as shown below.
 template<class FwdIt>
 unsigned long
 count_factors(unsigned long x, FwdIt first_prime,
 FwdIt last_prime);

Finally, taking great care to ensure that we couldn’t possibly be laid low
by integer wrap-around, even for n equal to the number of bits in an

unsigned long, we implemented a function to calculate the required
number of rulers, whose declaration is given again below:
 double count_rulers(unsigned long n);

The box-counting dimension of ∞
You will no doubt be relieved to read that we are at long last ready to
investigate whether ∞ is fractal or not.
The results of the successive approximations of the box-counting
dimension calculation using n for n from 1 to 32 (the number of bits in
an unsigned long on my, and I suspect almost everyone’s, machine)
are given in figure 4.
Clearly it has not yet reached its limit and, as illustrated by the graph of
these values in figure 5, it’s not at all obvious exactly what that limit might
be.

Figure 3

Figure 2

Listing 1

class accumulator
{
public:
 accumulator();

 accumulator & operator+=(unsigned long n);
 operator double() const;

private:
 std::vector<unsigned long> n_;
};

Figure 4

n d n d n d n d

1 2.0000 9 1.4745 17 1.3612 25 1.2913

2 1.5000 10 1.4575 18 1.3505 26 1.2845

3 1.5283 11 1.4411 19 1.3405 27 1.2781

4 1.5000 12 1.4258 20 1.3311 28 1.2720

5 1.5229 13 1.4114 21 1.3222 29 1.2662

6 1.5181 14 1.3976 22 1.3138 30 1.2606

7 1.5039 15 1.3846 23 1.3059 31 1.2554

8 1.4906 16 1.3725 24 1.2984 32 1.2503

Figure 5
12 | Overload | December 2009

FEATURERICHARD HARRIS

The length of a straight line is constant
no matter what the length of the ruler
That said, since the graph changes fairly smoothly for the larger values of
n, we may very well be able to extrapolate it to the limit of n equal to
infinity, or equivalently εn equal to 0, and hence determine the fractal
dimension of ∞.

The length of n
Rather than consider the successive approximations to the box-counting
dimension of ∞, hereafter denoted by Dn, we shall instead consider the
lengths of n for each n, given by

Note that the two values are related by the equations

Plotting the length of n against n, we discover a suspiciously familiar
graph, as illustrated in figure 6.
In fact, this curve is reasonably well approximated by the formula

and is very well approximated by

especially so for large n.

This implies that the approximate fractal dimension Dn is itself accurately
approximated by 1, as shown in derivation 1.

So it’s not a fractal?
Well, whilst I haven’t provided anything remotely close to a proof, I very
much suspect that it isn’t.
Nevertheless, the fact that its length is a function of the length of the ruler
used to measure it is still an interesting property. Specifically, since n can
be recovered from εn, we have

The length of a straight line is constant no matter what the length of the
ruler, and is in some sense less fractal-like than ∞.
Since a fractal has a dimension greater than 1, let’s say d, it has a length
that is an exponential function of the logarithm of the reciprocal of the
length of the ruler, as shown in derivation 2, and is in the same sense more
fractal-like than ∞.

And what of simple curves?
Recall that we derived the fractal dimension of the circumference of the
unit circle using inscribed polygons as illustrated in figure 7.
Now as our ruler gets smaller and smaller, the measured length of the
circumference gets closer and closer to 2π. Any formula relating the log
of the length of the ruler to the measured length of the circumference must

ln εn N εn()×=

ln εn e
Dn

1
εn
-----ln×

×=

Dn
ln
εn
-----ln 1

εn
-----ln⁄=

Figure 6

ln
1
4
---n2 1+≈

ln 0.26397450n2 0.45141160n– 1.85600512+≈

Derivation 1

As n grows ever larger, so the linear and constant terms in the argument
of the first logarithm becomes ever less significant, implying that

and since, for n greater than 1, lnn is always absolutely smaller than n,
and significantly so for large n, we have

Dn
0.26397450n2 0.45141160n 1.85600512+–

εn
--- 1

εn
-----ln⁄ln≈

0.26397450n2 0.45141160n 1.85600512+–
2 n–

--- 1
2 n–
--------ln⁄ln=

0.26397450n2 0.45141160n 1.85600512+–()ln n 2ln–
n 2ln–

---=

Dn
0.26397450n2ln n 2ln–

n 2ln–
--

n ∞→
lim≈

2 n 0.26397450 n 2ln–ln+ln
n 2ln–

--
n ∞→
lim=

D∞ 1≈

n
1 εn⁄()ln

2ln
----------------------=

ln 1
1 εn⁄()ln

2 2ln
----------------------⎝ ⎠

⎛ ⎞
2

+≈
December 2009 | Overload | 13

FEATURE RICHARD HARRIS

the log of the ruler length grows
increasingly negative as the ruler
length decreases
be dominated by the constant term of 2π, since the log of the ruler length
grows increasingly negative as the ruler length decreases. A rough
mathematical treatment of this is given in derivation 3.

Mocktals? Or faketals?
What we appear to have found is a curve that sits somewhere between a
fractal and a simple curve; a curve whose length increases without limit
as the length of the ruler shrinks, but is governed by a polynomial, rather
than an exponential, function of the logarithm of the reciprocal of the
length of the ruler.
I shall christen these curves mocktals, or perhaps faketals (I can’t decide),
and use the power of the dominant term in the polynomial function that
determines their length, which I shall call the mocktal (or faketal) order or
the curve, to compare them to each other.
Note that this order is exactly the sense in which ∞ is more fractal-like
than a simple curve. A simple curve, tending as it does to a constant value,

has a mocktal order of 0. A fractal, having a length equal to an exponential
function of the logarithm of the reciprocal of the ruler length, has infinite
mocktal order. This is because the exponential function can be exactly
defined for all arguments, using Taylor’s expansion about 0 again, by a
polynomial with an infinite number of terms. This is such an important
result that the expansion has its own name; the exponential series. The
relationship between e, i, π and -1 that we briefly mentioned in the first
part of this article can be demonstrated using it, for example.
Of course, thus far we have seen but one example; the mocktal of order 2,

∞. Is there a family of such curves, or is our ∞ a solitary fellow?

A mocktal sinusoid
Focusing on the partial self similarity exhibited by ∞, I propose that we
begin our hunt for another mocktal with a function that displays the same
property:

Like ∞, this passes through both (0,0) and (1,1), as illustrated in figure 8.
Now, unfortunately, this curve isn’t so easy to measure with fixed length
rulers. We can, however, calculate a reasonable approximation of its length

Derivation 2

ln εn e
d 1 εn⁄()ln×

×=

e
1 εn⁄()ln–

e
d 1 εn⁄()ln×

×=

e
1 εn⁄()ln– d 1 εn⁄()ln×+

=

e
d 1–() 1 εn⁄()ln×

=

Figure 7

Derivation 3

Note than an n-sided polygon has sides of length

Recall how we used Taylor’s theorem to approximate a function for small
arguments in previous articles

Using these first 4 terms to approximate the sides of the polygon, we have

The length of the circumference is therefore

Using the first term in our approximation of εn to estimate n in terms of
the log of its reciprocal, we have

and hence

εn 2 π
n
---⎝ ⎠

⎛ ⎞sin×=

f x() f 0() f′ 0()x 1
2
---f″ 0()x2 1

6
---f″′ 0()x3+ + +≈

εn
2π
n

------ 1
3
--- π

n
---⎝ ⎠

⎛ ⎞ 3
–≈

ln n εn× 2π π3

3n2
--------–≈=

n 2πe
1 εn⁄()ln

≈

ln 2π π

12e
2 1 εn⁄()ln

-----------------------------–≈

f x() 1
2
---x 1 2π

x
------cos+⎝ ⎠

⎛ ⎞×= x 0 1,[]∈
14 | Overload | December 2009

FEATURERICHARD HARRIS

the distances between subsequent
points in the graph increase as we move

from left to right, greatly mitigating our
exposure to loss of precision
by summing the distances between points on the graph at fixed steps along
the x axis. Specifically, with

where, once again, εn is equal to 1 divided by 2n.
Since we do not have a fixed length ruler in this case, we shall instead use
the average distance between the points we use to calculate the length of
the curve as an analogue for the ruler length:

Because of this lack of a fixed length ruler, we cannot use our
accumulator to count the number of rulers and so shall have to accept
the potential precision issues that might arise during the calculation and
settle instead for accumulating the length of the curve with a double.
Fortunately, the distances between subsequent points in the graph increase
as we move from left to right, greatly mitigating our exposure to loss of
precision.
The code to calculate the length of this sinusoid is a reasonably
straightforward adaptation of the count_rulers function, as illustrated
in listing 2.
Plotting the lengths returned by this function for n from 1 to 32 against the
logarithm of the reciprocal of the average distance between the points quite
strikingly reveals the mocktal order of this curve, as illustrated in figure 9.

As the ruler reaches its smallest values, the graph approaches a straight line
with a slope of approximately 1.05. Hence, I believe we can be reasonably

Figure 8

ln εn
2 f i εn×() f i 1–() εn×()–()2+

i 1=

2n

∑=

1
2n
----- εn

2 f i εn×() f i 1–() εn×()–()2+
i 1=

2n

∑ εn ln×=

Listing 2

double
sinusoid_length(unsigned long n)
{
 static const int dig =
 std::numeric_limits<unsigned long>::digits;
 static const double pi = 2.0*acos(0.0);

 if(n>dig) throw std::invalid_argument("");
 const unsigned long upper_bound =
 ((n==dig) ? 0UL : (1UL<<n))-1UL;
 const double step = pow(2.0, -double(n));
 double length = 0.0;
 double prev = 0.0;
 unsigned long i = 0;

 while(i!=upper_bound)
 {
 ++i;
 const double x = double(i)*step;
 const double curr = 0.5*x*(1.0+cos(2.0*pi/x));
 length += sqrt(
 step*step + (curr-prev)*(curr-prev));
 prev = curr;
 }
 length += sqrt(
 step*step + (1.0-prev)*(1.0-prev));
 return length;
}

Figure 9
December 2009 | Overload | 15

FEATURE RICHARD HARRIS

the infinitesimal numbers have
enjoyed something of a resurgence
confident that this curve has a mocktal order of 1 and consequently falls
precisely between a simple curve and ∞.

To be a curve, in the summertime, close to a fractal
The mocktal orders of these two curves are infinitely smaller than that of
a true fractal, since fractals have infinite mocktal order, but crucially they
are not equal to 0. In this sense, these curves can be thought of as
infinitesimally fractal-like.
Infinitesimal numbers were introduced in the original, somewhat hand-
waving, definition of the calculus. Defined as numbers smaller than any
of the real numbers, but nevertheless greater than 0, their very existence
has always been in question. A great deal of effort was expended to define
the calculus without them during the 19th century, a time during which the
modern, relentlessly rigorous approach to mathematics was adopted.
Those of you who have studied the mathematical subject of analysis will
appreciate just how much more convoluted the calculus is without them.

Non-standard numbers
In more recent times, the infinitesimal numbers have enjoyed something
of a resurgence with both the surreal numbers [Knuth74] and the non-
standard numbers [Robinson74] providing them with a secure footing.
Just as the real numbers can be represented with an infinite sequence of
integers, so the non-standard numbers can be represented with an infinite
sequence of reals.
The familiar real numbers are those sequences which, at least after some
point in the sequence, have elements forever equal to a given real number.
For example, the non-standard number

(1,2,3,π,π,π,π,…)
is equal to π.
Similarly, we can strictly order the non-standard numbers by defining one
to be less than another if, after some point in both their sequences, the
elements of the first are always less than the elements of the second.
Strictly speaking, given two non-standard numbers a and b defined by

a = (a0,a1,a2,a3,a4,...)

b = (b0,b1,b2,b3,b4,...)

we say that a is less than b if there is some n for which

where the upside down A means ‘for all’.
Finally, we define arithmetic operations on the non-standard numbers by
applying the operations element by element to the sequences that represent
them. For example, adding a and b yields

a + b = (a0+b0,a1+b1,a2+b2,a3+b3,a4+b4,...)

Given these definitions we can construct non-standard numbers that are
greater than 0, but less than any real number. For example, the sequence

consists of elements that are always greater than 0, but growing ever
smaller, must after some element always be less than any given real
number.
Note that we can also define strictly ordered infinities in the same fashion.
For example, inverting the infinitesimal above yields

(1,2,4,8,16,...)
which by our definitions is greater than any real number.

Mocktals, fractals, infinities and infinitesimals
If we choose a universal sequence of ruler lengths, εn, we can relate straight
lines to the non-standard representation of the real numbers since the
length of a straight line measured by those rulers is an infinite sequence
of identical numbers.
Simple curves, whose length gets closer and closer to some limit as the
ruler gets shorter, can be similarly related to non-standard numbers that
differ infinitesimally from that limit.
Finally, the mocktals are in this sense equivalent to non-standard infinities
ranked by their mocktal order and hence all are smaller than the non-
standard infinities to which we can map the fractals.
Dividing any of the mocktal non-standard infinities by any of the fractal
non-standard infinites yields an ultimately ever decreasing sequence of
numbers which is, by definition, a non-standard infinitesimal.
So there we have it. A mathematically sound mapping by which the
mocktals can be described as both infinitesimally fractal-like and yet
infinitely more so than simple curves, and an object lesson in the care that
must be taken when pushing C++ integers to their very limits to boot.
In parting, I should like to pose the question of whether we can construct
curves with any given mocktal order, even non-integer. I haven’t found any
more yet, but then I haven’t really looked very hard.
If you do, dear reader, I would be delighted to hear about them.

Acknowledgements
With thanks John Paul Barjaktarevic and Lee Jackson for proof reading
this article.

References and further reading
[Devlin05] Devlin, K., The Millenium Problems, Granta Books, 2005.
[Knuth74] Knuth, D., Surreal Numbers, Addison-Wesley, 1974.
[Robinson74] Robinson, A., Non-Standard Analysis, Princeton

University Press, 1974.

ai bi< i n>∀

1 1
2
--- 1

4
--- 1

8
--- 1

16
------ …, , , , ,⎝ ⎠

⎛ ⎞
16 | Overload | December 2009

FEATUREBELCH, IGNATCHENKO AND IVANCHYKHIN
Project-Specific Language
Dialects
Today’s languages force a one-size-fits-all approach on
projects. Yaakov Belch, Sergey Ignatchenko and
Dmytro Ivanchykhin suggest a more flexible solution.
‘When I use a word,’ Humpty Dumpty said in a rather
a scornful tone, ‘it means just what I choose it to mean

– neither more nor less.’
Lewis Carroll, Through the Looking Glass

hen we started our most recent project, we had quite substantial
discussions on the programming languages and libraries to be
used and to our surprise found that, despite our very different

backgrounds, we all agreed that existing programming languages are
rather inadequate for certain aspects of otherwise pretty straightforward
programming tasks. In our case, discussion started with rather routine
issues like support for serialization and configuration, but eventually
extended to much more complicated issues like the ability to write the very
same code only once for several different programming languages (like
C++ and Java) and compile-time detection of certain types of
multithreading bugs.
The most substantial issue we have found in modern mainstream
programming languages like C/C++/Java, was that they are mostly
languages aiming to instruct a computer what it should do, but what we
needed was a language which provides a straightforward and easy way to
express our thoughts. While certain thoughts can, indeed, be directly
expressed with modern mainstream programming languages, there is still
a wide range of thoughts and concepts which require rather artificial,
inefficient or outright mindless and repetitious coding to be done. We feel
that the worst part about it is that it tends to affect developers’ way of
thinking, causing a developer to pay more attention to how to get around
language/compiler/library problems rather than to think what the program
logic should do, with the worst case being the developers’ attempts to
redefine the original task, and degrading the end-user experience merely
because of language or library limitations1.
Another way to represent the same basic idea is to consider it as a way to
shift the burden of repetitive, mundane tasks from developer to compiler,
freeing developers’ time for more creative work. As a common wisdom
says, ‘Computers will never do anything really smart for you. But they can
do something dumb, freeing you some time to do something really smart’.
As a result of all those discussions, we have tried to find out if there is some
way to address the limitations of modern mainstream programming
languages while keeping their positive aspects substantially intact, and
taking into account certain practical aspects of organization of medium-
to large-scale programming projects.

Current practice – project-specific vocabularies,
guidelines and problems resulting from lack of their
enforcement
In practice, every medium- to large-scale software project has its own
project-specific vocabulary as well as formal or informal usage
conventions and guidelines.
Such vocabularies include class hierarchies, APIs, macros and templates.
For example, for Apache projects there is an ‘Apache Portable Runtime’
library, which forms a substantial part of Apache projects’ vocabulary, and
the ‘Linux Kernel API’ forms a substantial portion of the vocabulary for
writers of Linux drivers. Current programming languages provide means
to manage and control such vocabularies.
However, conventions and guidelines for the correct use of project-
specific vocabulary are no less important, and existing programming
languages usually don’t provide much help for managing and controlling
them. In an average medium-size software project there are many implicit
conventions as well as formal or informal guidelines, which are at best
documented (within source code comments or a separate document), and
at worst exist as an undocumented bunch of ‘everybody knows it’ rules
which are passed from one generation of developers to another, often only
via trial and error. Even if there is the will to enforce those conventions
and guidelines, missing support from the programming language easily
leads to dilution of those guidelines, in extreme cases up to the point of
the whole project becoming one big plate of spaghetti code, with the need
to throw it away and restart the whole project from scratch.
For example, if the project is designed to be cross-platform but is compiled
only on one platform for the time being, there is usually a guideline ‘never
ever use platform-specific APIs’. Another typical example of guideline is
‘Resource Allocation Is Initialization’ (RAII), which aims to reduce/
eliminate resource leaks. Unfortunately, as there is no way of enforcing
these guidelines, project architects tend to find that the burden of such strict
self-discipline proves to be too much for at least some of developers. As
a result, in the case of the ‘no platform-specific API calls’ guideline,
architects either need to spend a significant portion of their time to ‘police’
the code for inappropriate API calls, or find when they want to compile
the project elsewhere that it will require major refactoring, up to the point
of complete rewrite. Effects of violating ‘RAII’ guideline are usually less
devastating, but still can easily lead to many months spent on isolating and
fixing resource leaks. To make things worse, not enforcing guidelines

1. The idea that the language used by people can affect the way they
think is nothing new, and in non-programming world is known as
‘Sapir-Whorf Hypothesis’. While we're not aware of extensive
discussions of its applicability to programming languages and
developers, some observations implying such applicability were
made by Iverson [Iverson79] and Graham [Graham03].

W

Dr. Yaakov Belch joined Blue Whale Software to turn Sergey’s
vision of C+– into a reality. He can be contacted at
yaakov@yaakovnet.net

Dmytro Ivanchykhin is currently working primarily on system-level
programming, with a focus on chipping off all unnecessary material.
He can be contacted at di@bluewhalesoftware.com

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
December 2009 | Overload | 17

FEATURE BELCH, IGNATCHENKO AND IVANCHYKHIN

Developments in programming languages
are very often related to adding more and
more features to the language
leads to new developers seeing code which does not comply with the
guidelines, assuming that this code is OK and then using it as a model. The
very same thing happens with virtually any non-enforced guideline – it
takes significant effort to keep it from being violated, and if this effort is
not made, it usually means a downward spiral towards a complete ignoring
of the guideline.
Therefore, it seems beneficial to provide some way to enforce project-
specific guidelines; we will discuss more detailed requirements for such
control below.

Requirement – need to restrict language features at
least in certain cases
Developments in programming languages are very often related to adding
more and more features to the language. As one of the most prominent
examples, the new programming language ‘D’ [Alexandrescu09] takes
C++ (which is already very far from being simple) and adds an impressive
number of new features to it (from garbage collection to closures). Planned
developments for the C++ standard [ISO09], while are less impressive in
scope, also include a number of new features, including lambda-functions.
While we agree that there are some projects which do need those features,
we want to show that restricting available language features can be a good
thing, at least in some cases.
First of all, let’s take a look at the non-programming world. Even at first
glance it becomes apparent that excluding certain words from vocabulary
can help to keep language clarity; one notable example is ‘Seven dirty
words’ banned on American TV; while their prohibition obviously
restricts available vocabulary, it is quite difficult to argue that at least in
some contexts agreement on not using them indeed promotes language
clarity rather than impeding the expression of thoughts2.
Now let’s see how it applies to programming languages. Take as an
example a project designed to be cross-platform and the unenforced
guideline ‘never ever use platform-specific code’ (see above). It seems
quite obvious that the ability to enforce this guideline (restricting
programmers from using platform-specific language features) would
benefit that hypothetical project.
Moreover, from our observations of trends within the industry we have
found that, ironically, the more features a programming language provides
and the bigger the project it is used for, the more project architects will be
cautious and reluctant to adopt it exactly because of increased efforts to
enforce guidelines. For example, we see the (in)famous Linus Torvalds’
post ‘C++ is a horrible language’ [Torvalds] as a prominent example of
such reluctance of a project architect to move to a language with more
features. In particular, Linus wrote: ‘You invariably start using the ‘nice’
library features of the language like STL and Boost and other total and utter
crap, that may ‘help’ you program, but causes... [here follows list of
problems]’; we think that if Linus could choose which features of C++ to
allow into git or Linux kernel and which not to allow, he would be much

less reluctant to allow a feature or two from C++ (but just those 2 features
he needs, not more) into Linux kernel or git.

Requirement – need to provide more language
features
Another problem of existing project-specific vocabularies is that usually
they are just vocabularies, not real languages. It means that basically you
can specify ‘words’ to be used, but cannot really specify the patterns they
can belong to. Even for now ubiquitous classes, while you can easily
specify acceptable APIs, there is usually no way to enforce at compile-time
that, for example, the function init() must always be called before any
other function (excluding the constructor), or that the function deinit()
must always be called right before the destructor. When dealing with
features which cannot be easily described in terms of classes, the situation
is even worse. For example, let’s consider MFC’s ‘message cracking’
wh i ch u se s mac ros l i ke DECLARE_MESSAGE_MAP ,
BEGIN_MESSAGE_MAP and END_MESSAGE_MAP. While it indeed
provides a way to define message maps, they are far from being easily
readable, and the error messages the compiler gives about malformed
message maps tend to be perfectly useless (which is inevitable as compiler
operates at the stage after the preprocessor). Add to the mix the not-100%-
efficient code it generates (which was the case last time we checked), and
you’ll get a typical pattern of the effects of emulating a missing language
feature without the direct support of the language.
There are many such missing features in different languages, with the
obvious examples of reflection and serialization being just the tip of the
iceberg.
Adding all of those new features into the same language doesn’t look like
a good option either. Take serialization, for instance. Some can say, ‘wait,
languages like Java already have it, so let’s just switch to Java’, but
unfortunately it won’t always help. Java indeed provides built-in
serialization, but the problem is that it is only one of many possible
serializations, and if you need, for example, ASN.1 [Larmouth99]
serialization (and don’t forget about at least the BER and DER variations),
or JSON serialization, or even IIOP serialization (not ‘RMI over IIOP’,
but real IIOP) at some point, developers will still need to code it manually
(which requires substantial effort even for medium-sized projects). It
means that to satisfy all requirements for all possible projects, language
will need to provide support for all possible serializations, which most
likely is not feasible.

Resolving requirements conflict – a call for cheap
creation of project-specific languages
At this point we seem to have two conflicting sets of requirements for the
programming language. One set of requirements calls for restricting
features, another one asks for adding more and more new features.
Fortunately, it seems that there is a way to satisfy both those sets of
requirements simultaneously; it is to allow different projects to have their
own different languages. While such an option to create project-specific
languages has existed for a long time (using tools like YACC), apparently

2. Late during review the real-world example of Simplified English was
suggested [SE].
18 | Overload | December 2009

FEATUREBELCH, IGNATCHENKO AND IVANCHYKHIN

Currently, choosing a programming language
is basically a ‘once and forever’ decision, which
is made very early in the development process
the cost of language creation was too high for real-world projects. It means
that the way to create such a new project-specific language should be
substantially cheaper than that of YACC to become usable in practice.
Also we should emphasize that here we’re not speaking about domain-
specific languages, we’re speaking about project-specific languages,
where every single project should have its own programming language (or
more likely, programming language dialect). It obviously makes the
requirement for development of such a language to be cheap even more
important.

Requirement – support for architect’s role and
control over features
In practice, in order to succeed in building a software project with more
than 2–3 developers, a project usually has one or more project architects.
The distinction between architect and developer roles is vital to the success
of the project, but unfortunately there is no direct support for such
distinction in modern software languages. From our own experience and
discussions with project architects within the industry, it becomes quite
clear that architects would clearly appreciate having more control over the
language features allowed for use in their specific project.
The most important reasons why architects want to control language
features are:

Ability to enforce a common style for the project, reducing potential
misunderstandings between team members. The bigger the project,
the more likely developers will need to work with code written
earlier by some other programmer. Even if some piece of code is
trivial to the author, it may well be incomprehensible by others,
especially if their coding style is substantially different. And here we
don’t mean ‘style’ as the way to indent curly brackets, but rather
‘style’ as the approach to solving certain types of problems.
Ability to enforce common requirements for the project, aiming to
stimulate a more efficient coding style, where efficiency can be
measured in terms of CPU/RAM, bugs or security flaws per
thousand lines of code, or development time spent on a certain
feature. The problem here is that different projects have very
different aims, and no approach works universally well for
everybody; eg a coding style which is good for writing a Flash-based
Tetris game will probably be devastating for Linux kernel (and vice
versa).
Ability to prevent ‘vendor lock-in’. When you start using some non-
standard feature of one platform or tool, you may soon be unable to
switch to a competing platform or tool. The advantage of this one
feature right now may turn out to be much smaller than the
advantage of using a more appropriate tool later on.

One of the important aspects of control over language features is the ability
to use different sets of rules for different parts of the project. For example,
it is fairly obvious that the set of rules and/or guidelines for server-side
business logic code will be quite different than those for the UI code within
the same project.

It is worth noting that support for the other roles which exist in modern
projects (most notably the ‘Business Analyst’ role) can also be achieved
using the same mechanism, creating special dialects easily usable by the
target group.

Requirement – ‘Agile programming language’
In recent years, agile software development [Agile01] [Newkirk01] has
become more and more popular among software developers, and we think
this is no coincidence. One of the biggest reasons for its efficiency is that
modern business requirements tend to evolve much more rapidly than the
program can possibly be developed, which implies that the ability to react
to the changing requirements is extremely important for the success of the
project.
We feel that the very same logic should apply to programming languages
too. Currently, choosing a programming language is basically a ‘once and
forever’ decision, which is made very early in the development process
(essentially this is a ‘waterfall’ decision with no ability to change it later).
Ideally, we think that the project language should be able to evolve as the
needs of project grow.
For example, one of us as an architect prefers to start projects with a
minimal vocabulary provided to the developers, and then when a
requirement for a new feature arises the developer is able to come to the
architect and to argue that a certain language feature should be introduced.
Our ideal ‘Agile programming language’ should support this development
model (allowing to introduce new language features along the road) and
as well should support any other model when the programming language
needs to evolve with the project.
Extending our earlier analogy, we should note that language on TV also
evolves as the time goes on. Certain things, which were off limits 10 years
ago, have become mainstream now, certain words have gone out of
circulation, and new words have been invented. The very same process is
natural for any successful software project which lives for many years.

Requirements – industry ‘use cases’ for project-
specific languages
One of the important factors to consider when trying to design something
is to understand its potential uses within the target industry. Our
preliminary analysis has revealed several areas where project-specific
languages could be useful. This analysis was the basis for our
programming language discussed later, which (as we hope) should be able
to cover all these areas by using language extensions/dialects. These areas
include:

Bigger projects, where keeping the language clean is a
significant concern
Actually, we think that almost any project which has more than one
developer can benefit from enforcing currently informal (and therefore
unenforced) guidelines. Still, usually the bigger the project, the more
significant the requirements to keep the code clean tend to become. Ability
December 2009 | Overload | 19

FEATURE BELCH, IGNATCHENKO AND IVANCHYKHIN

enforcing certain existing guidelines can
substantially improve both program
security and reliability
to enforce guidelines will help improve code readability and clarity, while
keeping necessary requirements like portability (if it exists) under control,
without spending ongoing significant effort on enforcing them.
Examples of requirements for such projects can include:

Portability: don’t use features that are not provided by all target
platforms
Avoiding vendor lock-in
Abstractions at the proper level and efficient implementation on
each platform
Avoiding constructs which are deemed inefficient by the project
architect (as discussed above, definition of efficiency depends on
the project, ranging from CPU efficiency to development efficiency)
Enforcing naming conventions
Forbidding use of confusing language features (with the list of
confusing features being up to project architect)
Replacing macro-preprocessor and/or templates by more
predictable mechanisms
Replacing pointers with alternative abstractions, like references and
arrays. We understand that this item is rather controversial and will
probably cause a lot of opposition from existing C/C++
programmers, but as long as it is only an optional feature, we don’t
see it as a big problem.

Projects with high requirements for security and/or reliability
We feel that enforcing certain existing guidelines can substantially
improve both program security and reliability. Examples of such
guidelines include:

Limiting access to certain resources (like the file system and
network)
Preventing buffer overflows
Addressing resource leaks
Preventing at least some kinds of multithreading bugs (which tend
to be extremely difficult to find)

Projects with a need to extend an existing language
It is fairly common that projects are happy with C/C++ or Java, and need
just a few minor adjustments to make life easier. Examples of such new
features include:

different serialization mechanisms (from IIOP and JSON to custom
storage-optimized or legacy-system-compatible ones)
Built-in testing support
Design By Contract
Introspection
Nested functions
Anonymous functions

Closures and lambda-functions

Projects which need inter-language portability
Sometimes a project needs to be compilable across multiple languages.
Usually it applies to the C++/Java pair, to make sure essentially the same
logic can run optimally on both C/C++ platforms like Windows/Linux/
Solaris/... and on Java-only platforms like in-browser JVM, Android or
BD-J. Achieving this goal will most likely require to use a ‘Replace
pointers’ dialect.

Projects with a need for user-definable scripts
Usually projects which need user-definable scripts, tend either to invent
their own script language, or to use an existing one (such as JavaScript).
Ideally though, it often should be a rather close dialect of the very same
language within the program itself, and in part allowed to the user.
Example requirements for such projects can include:

Should be easy to learn
Should be easy to integrate
Should be easy to transfer features from the ‘compiled-into-the-
program’ domain to ‘user-definable’ one.
User dialect might even need to be a weakly typed one

UI projects
We feel that current state of programming is pretty sad in the field of UI
projects. For example, all the UI code written for Apple Cocoa API, is
essentially useless for any other platform, and the very same is true for
most of the platform-specific APIs (obviously including the Windows
API). One can argue that Java provides a good solution for a cross-platform
UI, but our understanding of ideal cross-platform UI is much wider then
just an ability to run a client-based UI on different platforms.
Within our philosophy that ‘language is to express thoughts’, we
understand portability in much wider sense. We think that in most cases
it is indeed possible to create a UI which is suitable not only for an
application on an end user’s PC, but also for a completely different media.
Example requirements for such projects can include:

Portability across different platforms
Portability to use with remote-access protocols like VNC
Portability between client-based UI and web-based UI
Portability to text UI where applicable (obviously, you cannot make
PhotoShop work in a text-only window, but we feel that the UI to
install an OS security upgrade should translate into text easily).

Summarizing requirements
It seems that now we can summarize requirements for a programming
language that will address the issues we have outlined above. This
programming language should:

allow creation of project-specific language dialects, including
20 | Overload | December 2009

FEATUREBELCH, IGNATCHENKO AND IVANCHYKHIN

one of our requirements is to keep readability
for users of existing programming languages
ability to restrict certain existing language features;
ability to add new language features;
ability to apply somewhat different requirements to different
subprojects

have low cost of creation for project-specific language dialects
mentioned above;
be ‘agile’, allowing ability to create project-specific language
dialects as the need arises, not necessarily at the very beginning of
the project;
have explicit (but optional) support for ‘Architect’/‘Developer’
distinction
keep the positive aspects of existing programming languages;

preferably including easy readability for those with experience
of existing languages.

In the rest of this article, we will propose a way to address all of those
requirements. It is to define a ‘basic language’ (based on some existing and
popular language) and to allow extensions to be written for it easily (much
more easily than it can be done now with YACC). As the library of such
publicly available extensions grows, project architects will be able to
choose their project-specific dialect mostly by choosing which extensions
to this ‘basic language’ they want and which ones they don’t want; this
should make dialect creation even cheaper.

Consideration – comparing programming languages’
popularity
As one of our requirements is to keep readability for users of existing
programming languages, we need some data on programming language
popularity to understand what kind of syntax is the most popular one (and
therefore will be the most easily recognized). We took the popularity of
projects on SourceForge [Labelle] as a baseline (adding a new point for
2009, see Figure 1.), and have found that at least over last 8 years,
programming languages with C-like syntax3, were used for at least 80–
90% of all the SourceForge projects. This data is also corroborated by
independent research [DedaSys]. Therefore, we can safely assume that
C-like syntax is quite universally recognized in the industry, and using it
as a baseline will have substantial benefits at least because of this universal
recognition.
Based on this research, we have decided to use a subset of a C++ (close to
‘C with classes’, [Stroustroup94]) as our ‘basic language’, and to name it
‘C+–’, to show that it provides options to be either more feature-rich, or
to be less feature-rich than C or C++. C+– will also allow language
extensions (to form language dialects) but they will be restricted to similar
syntactic patterns.

It’s important to note that in C+–, we do not support all of the subtleties
described in the C++ standard (even the C standard is not 100%
implemented, though most of the features can be reinstated using C+–
extensions). Instead, in certain situations we require the programmer to use
simpler alternative methods to express the same thought. According to our
experience, most programmers4 already tend to avoid most of these
complexities and opt for simpler alternatives. Hence, we feel that our
limitations don’t substantially reduce the usability of C+–. This issue will
be discussed in more detail below.

Consideration – common extension types
Based on the ‘Industry use cases’ above, we tried to analyze what different
types of extensions might be needed, and our analysis has revealed that
virtually all language extensions and dialects we could think of fall into
one of two classes:

Limit or forbid use of a certain feature/feature combination in C++.
Sometimes, this involves complex program-scale checks to detect
such usage (for example, it might involve memory leak detection
during compile-time; while it’s not always possible, some memory
leaks can indeed be detected, with the expected number of cases
detected being significantly higher than that of LINT [Kunst88]).
Copy a proven feature from another language. In some cases, this
will require removing conflicting features from C/C++.

Researchers from the field of domain-specific languages may be surprised
by the virtual lack of demand for completely new features. This industry
inertia may be explained by the following observations:

3. Languages C, C++, C#, Java, PHP, Perl, JavaScript (and many
more) all are using common syntactic structure borrowed from classic
C: operators with generally accepted precedence levels, nested curly
brackets and commonly accepted control structures like if-else,
while, for etc.

4. Obviously excluding those who’re competing in the ‘Obfuscated C
Contest’ [OCC]

Figure 1

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

year

5

10

15

20

25

30

%
 o

f
to

ta
l

19.8% Java
18.3% C++
15.0% C
13.3% PHP
6.2% Python
5.3% Perl
4.8% C#
4.1% JavaScript
1.8% Unix Shell
1.4% Visual Basic
1.4% Delphi/Kylix
1.1% Assembly
0.8% PL/SQL
0.7% Tcl
December 2009 | Overload | 21

FEATURE BELCH, IGNATCHENKO AND IVANCHYKHIN

there are already lots of languages
which ‘tell computers what to do’
rather efficiently
The chances of misunderstandings and inconsistencies grow quickly
with project and team size. Enforcing even simple rules in medium
to large projects is a much more pressing concern than in small
projects.
Even in the most innovative projects, the innovation is usually
contained in a few modules and complemented by a larger amount
of existing industry code.
It is natural for managers to limit the risk of a large project by mainly
using ideas and tools that have been tested in smaller projects
before. Even when they are not perfect, this experience will help to
avoid problems in planning and to resolve problems when they
occur.

Technically, C+– does allow completely innovative extensions, but we
expect more conservative extensions to dominate.

Consideration – what to compile to?
Whenever somebody wants to develop new programming language, they
usually face a tough question of ‘how we’re going to compile it on all
existing platforms?’.
Fortunately, as we feel that there are already lots of languages which ‘tell
computers what to do’ rather efficiently, we didn’t aim to compile C+–
code directly into binary code. Instead, we are aiming to compile C+– into
the source code of a certain ‘target programming language’, such as a C/
C++/Java; we also aim, where possible, to make this ‘target programming
language’ code be human-readable, and to correspond line-to-line to the
original C+– code. This approach has the additional benefit that the same
framework can be used to compile C+– code into languages like C and
Java, which are similar source-wise but are rather different binary-code-
wise. This approach does not preclude us (or anybody else) from
developing a ‘native’ compiler at some point later.

Implementation – ‘Basic C+–’, extensions and dialects
C+– is essentially an extensible language, consisting of ‘Basic C+–’ plus
all kinds of different extensions to it. Language extensions can be
combined together to form ‘C+– dialects’, specific to the project.
Extensions themselves are also written in one such C+– dialect (specific
to the task of writing language extensions).
It is important to note that technically a very wide range of extensions can
be created for C+–, with some extensions even breaking the overall ‘feel’
and readability of C+–. To address this problem and avoid too much
dilution of the meaning of ‘C+–’, we intend to disallow certain extensions
from being named ‘C+– extensions’ (such extensions and dialects will still
be possible, but without ‘C+–’ being attached to the name of the resulting
language/dialect). We also intend to discourage different extensions from
doing essentially the same thing and encourage authors to consolidate their
efforts to avoid unnecessary duplication. This corresponds to our feeling
that differences in language dialects should be motivated by different
needs, not by a need to differ.

Implementation – ‘Basic C+–’ as a subset of existing
C/C++
We tried to make Basic C+– more or less ‘the least common denominator’
of the most popular programming languages; this logic has lead us to
making our language rather close to ‘C with Classes’ [Stroustrup94], but
with certain technical incompatibilities with C.
These incompatibilities include:

1. a*b; // error - binary expression as a statement

2. A x[3][]; // OK
int (*ptrToFunc)(int, int) = NULL; // error:
 // "complex" type in variable declaration;
 // need to use the following instead:
typedef int (*)(int, int) FuncPtr; // OK
FuncPtr ptrToFunc = NULL; // OK

3. A* xx = (A*)x; // error:
 // C-style cast is not supported,
 // need to use the following instead:

A* xx = c_cast<A*>(x); // OK, c_cast<>
 // is similar to the C++ *_cast<> family of casts

4. int x = sizeof(a*b);// error:
 // sizeof(expression) is not supported;
 // only sizeof(type) is supported now

While we have quite strong feelings about items (1) and (2) and they are
unlikely to be introduced later (as we don’t feel obligated to support what
we feel is a ‘cumbersome and obfuscated coding style’), items (3) and (4)
can be reinstated at some point if there is enough pressure from the
community to do so.
As of now though none are supported by C+–, which made the initial
implementation much easier; in particular, these restrictions allowed the
grammar of C+– to be a LALR(1) grammar, substantially reducing the cost
of initial implementation.
Another problem such an extensible language can face is the pollution of
the namespace of global keywords with extension-introduced keywords.
To address this issue, we plan to impose the following guideline on official
C+– extensions (those which can have ‘C+–’ in their name): any keyword
accepted by the parser must either:

comply with the current C, C++ standard, or
start with a leading @

While exceptions are possible (for example, c_cast<> is likely to be
introduced without @ to be consistent with the C++-style *_cast<>
family of casts), in general we’re going to apply this guideline both to our
own and to 3rd-party extensions.
22 | Overload | December 2009

FEATUREBELCH, IGNATCHENKO AND IVANCHYKHIN

the very next problem developers face is
that of making sure that they didn’t forget

to protect all accesses to all variables
which need to be protected
Implementation – extension example
C+– aims to achieve the agility and flexibility requirements via the wide
use of language extensions. Let us consider one rather simple (but
practical) C+– extension.
There is one common problem with multithreaded programming, which
C+– can help with. Let’s assume that we have a C++ program with the
following model of synchronization between threads. There is class
Mutex and class Lock with constructor Lock(Mutex& mx). Lock()
acquires mutex mx in the constructor, and releases it in the destructor;
this simple technique protects developers from forgetting to release
Mutex. But the very next problem developers face is that of making sure
that they didn’t forget to protect all accesses to all variables which need
to be protected, by creating an instance of Lock for the appropriate Mutex.
In practice, such mistakes can live unnoticed for many months and will
manifest themselves at the worst possible time, causing a lot of time to be
spent figuring out what went wrong. As the job of checking that all
accesses to all relevant variables are protected looks rather mechanical, we
will try to write a C+– extension to handle it.
First, let us describe what we want to achieve. We want to create an
extension which will allow us to write a modifier
 @protected_by <mutex_name>

for any data member, and it should then become the job of the compiler
to check that every function which accesses one of those ‘protected_by’
variables, has a Lock object created for the relevant Mutex (in practice,
more sophisticated analysis of the call graph will be necessary, but for the
purposes of this article we will restrict the task definition to a single
function only).
Then our hypothetical extension protected_by will look something
like Listing 1.
It is rather obvious, that such an extension (even when production-quality
code) will not have 100% accuracy in detecting both mistakes and absence
of mistakes. It is fairly easy to write code which will make any such static
analysis impossible, leaving room for situations for which it cannot
possibly be decided for sure if they provide locking or not. Our approach
in this (and many similar cases, like detecting memory leaks) is to:

admit that for any such analysis there are 3 possible outcomes:
‘good’, ‘bad’ and ‘not sure’
in general, aim for ‘100% safe’ code, treating ‘not sure’ the same
way as ‘bad’. This behaviour can be overridden by the project
architect if really necessary. Our estimates show that in at least 90%
of cases it should be possible to rewrite the code into a ‘good’ form
(as an additional benefit, such a rewrite tends to make the code
cleaner). In those rare cases when the code indeed needs to be so
complicated that ‘not sure’ situations are indeed necessary, such
code can always be moved to a separate subproject with a different
set of restrictions, or in some cases extensions might need to be
customized for the specific needs of specific project.

Obviously, many other types of extension are possible within C+–. It
includes extensions to add new language constructs like functional-style

map(), reduce() and filter(), though the ability to affect operator
precedence or introduce new operators is not currently planned both
because of the language dilution issues and because of technical
complexity.

Implementation – combining extensions and agility
As we hope, most of the power of C+– extensions will come from the
publicly available library of extensions, and project architects will mostly
just select a set of features they want for their specific project (or a

Listing 1

@extension protected_by {

@additional_node_member
 string protected_by default "";
 // provides us with a data member 'protected_by'
 // in each node of the parsed semantic tree

@data_member_modifier @protected_by IDENTIFIER
 { protected_by = identifier_name($1); }
 // assigning data member defined a few lines
 // above

@data_member_access_hook(Node& node)
{
 Node& decl = find_data_member_declaration(node
);
 if (decl.protected_by == "")
 return;

 for (Node::going_up_code_iterator it =
 node.begin_going_up_code();
 it != node.end_going_up_code(); ++it)
 // going_up_code_iterator goes "up" the code
 // until it encounters function definition
 {
 Node& n = *it;
 if (n.nodeType() == Node::ObjectDeclaration
 && n.objectType().name() == "Lock"
 && n.nParameters() == 1
 &&
 test_reference_to_data_member_equivalency(
 n.parameters[0], node)
)
 return;
 }

 report_error(...);
}

};// @extension protected_by
December 2009 | Overload | 23

FEATURE BELCH, IGNATCHENKO AND IVANCHYKHIN

project architects will mostly just select
a set of features they want for their
specific project
subproject) forming a project (or subproject) dialect. This creates a very
agile language, where certain constructs can be added as easily as by
checking a checkbox and recompiling the compiler. Obviously, we cannot
hope that 100% of all cases for all projects will be covered by existing
extensions, and from time to time some project-specific extensions will
need to be written; we still hope that with all the measures we have taken
to make writing such extensions simpler, it will still be quite within the
abilities of even rather small projects (especially as it will always be
possible to start without certain extensions and introduce them later as the
need arises).
Such variety of extensions means that the problems of combining
extensions will be very important for the future of C+–. Fortunately, it
seems that as long as:

all extensions start with an extension-specific keyword
extensions are limited either to restricting a single feature, or to
introducing a new one, inter-extension interaction will be reduced to
a minimum, essentially allowing most extension combinations to be
valid. We have about 30 extensions we ourselves would like to have
on our list, and almost all of them can be combined with the others
easily (with one notable exception being an extension to replace
pointers with references and arrays).

In any case, C+– extensions will be checked for incompatibilities as early
as possible, and project architects will know that they selected an
impossible set of extensions at the stage of selection.
An essential part of C+– is an ability to have different subprojects with
different dialects and still be able to compile it all together. To deal with
this, C+– will require that each source file starts with a line declaring the
language dialect used in this file. The set of available dialects and their
names are specified by the project architects.

Implementation – ‘BetterCC’
To enable the writing of C+–, we needed to create a comiler to generate
the dialect compiler; we have named it ‘BetterCC’.
Basically, BetterCC is a platform to create different languages and dialects,
with C+– being just one of a multitude of possible languages. We intend
to license BetterCC for free under an open source licence. On the other
hand, as it was already mentioned above, we feel that we need to exercise
control over C+– extensions to avoid unnecessary language dilution.
BetterCC is implemented using common approaches and consists of the
following stages (with extensions allowed to interact with this process via
various hooks):

lexer: split sources into tokens
parser: detect language structures; build a semantic tree
resolver: build symbol tables and attach full semantic information to
the nodes of the semantic tree
target writer: convert semantic tree to the target language (e.g. C++)
target compiler: compile target code to objects or executables.

While some of these stages (e.g. lexer and parser) may interleave in
execution time, we avoid as much as possible pushing information back
into previous parts of the pipeline. In particular, we do not allow the lexer
to read symbol tables to determine the semantics of a non-keyword
identifier.
It’s interesting to note that most of the projects will involve two very
separate runs of the stages above. The first run happens when project
architects have defined which extensions they want, and then BetterCC is
used to compile these specifications (written in special C+– dialect
designed for writing extensions) into a ‘project compiler’. The second run
happens within this ‘project compiler’ when developers compile their C+–
code (in the dialect defined by project architects) into the target language.

Implementation – C+– and preprocessor
While we consider the preprocessor as a relatively minor issue, we expect
it to be rather frequently asked about, so we’ll try to address it quickly here.
Basically, we feel that a preprocessor as ‘something that runs before the
compiler’ is not a good thing. On the other hand, we recognize the need
for things like conditional compilation. To deal with it, we performed some
analysis of existing code, and found that in well-organized and well-
disciplined projects developers normally use the preprocessor as a just yet
another idiom from the ‘project vocabulary’. For example, constructs like

 #ifdef THREADS

 #else

 #endif

usually becomes ubiquitous all over the project, to denote ‘part of code
which is compiled only if we’re compiling for multithreaded mode’, which
makes it essentially an idiom which belongs to the ‘project-specific
language’, rather than a preprocessor trick.
Based on this analysis, we have decided that there will be no preprocessor
in C+–, but there will be an extension which will allow for easy creation
of language idioms like the one shown above. Among other things, this
approach will improve project discipline and also will allow for much
stricter enforcement of certain rules at compile-time.

Implementation – compatibility with existing
languages
Obviously, when one starts a new language, there is always an issue of
reusing existing libraries written in different languages. In this area we plan
to allow a project architect to choose one of two approaches:

rely on cross-platform and cross-language C+– libraries, ensuring
portability, avoiding vendor lock-in, etc. While we plan to provide a
certain set of such libraries, C+– will need support from the
programming community to make this set of libraries
comprehensive enough.
24 | Overload | December 2009

FEATUREBELCH, IGNATCHENKO AND IVANCHYKHIN

save valuable developer time from working
on issues which are purely mechanical
to reuse existing libraries in existing programming languages. While
this approach does not ensure a high degree of portability, and we
hope to be able to discourage using it at some point, C+– will need
to support it at least for a while. To facilitate it, we plan to have an
import tool which will import, for example, C/C++ headers into C+–
headers; then, when compiling C+– into C/C++, it will generate
source code which is C/C++ and will directly use appropriate C/C++
functions/classes. This approach won’t be restricted to C/C++; the
very same thing can be done with Java (though compiling to Java as
such will require some special extensions to C+–, eliminating
pointers from C+–).

Conclusion
We think that we have managed to find a solution which, while is not
absolutely universal, can help both academics and industry with common
problems. The advantages of the proposed approach compared to existing
programming languages are:

cheap creation of project-specific language dialects
‘agility’ to easily add/restrict language features as necessary
explicit (but optional) support for ‘Architect’/‘Developer’
distinction

All of that was achieved without affecting the existing positive aspects of
successful existing programming languages too much. We think that we
have managed to keep most of the most popular syntax, and most of the
concepts, while moving towards the ‘a programming language is to
express thoughts, not to tell a computer what to do’ paradigm. We hope
that going this way will save valuable developer time currently spent
working on issues which are purely mechanical or can be done
mechanically, and start spending it on tasks and algorithms in hand, which
we think will be more interesting for most developers and useful from the
point of view of end-results too.
Currently we are in the process of implementing these ideas in practice and
hope to present the first working implementation of C+– soon.

References
[Agile01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair

Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim
Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland and
Dave Thomas, ‘Agile Manifesto’, http://agilemanifesto.org/ (2001).

[Alexandrescu09] Andrei Alexandrescu, The D Programming Language,
Rough Cuts, Addison-Wesley, 2009 [work in progress].

[DedaSys] DedaSys LLC, ‘Programming Language Popularity’,
http://langpop.com/

[Graham03] Paul Graham, ‘Five Questions about Language Design’,
http://www.paulgraham.com/langdes.html (2003).

[ISO09] ISO, Working Draft, Standard for Programming Language
C++, ISO/IEC, N2914, 2009

[Iverson79] Kenneth E. Iverson, ‘Notation as a Tool of Thought’, 1979,
ACM Turing Award Lecture.

[Kunst88] Frans Kunst, ‘Lint’, a C Program Checker, Vrije Universiteit
Amsterdam 1988

[Labelle] François Labelle, ‘Programming Language Usage Graph’,
http://www.cs.berkeley.edu/~flab/languages.html

[Larmouth99] Prof. John Larmouth, ASN.1 Complete, Open Systems
Solutions, 1999

[Newkirk01] James W. Newkirk, Robert C. Martin, Extreme
Programming in Practice, Addison-Wesley, 2001.

[OCC] International Obfuscated C Code Contest, http://www.ioccc.org/
[SE] Simplified English: http://en.wikipedia.org/wiki/

Simplified_English
[Stroustroup94] Bjarne Stroustroup, The Design and Evolution of C++,

Addison-Wesley, 1994
[Torvalds] Linus Torvalds, ‘C++ is a horrible language’,

 http://thread.gmane.org/gmane.comp.version-control.git/57643/
focus=57918
December 2009 | Overload | 25

http://agilemanifesto.org/
http://langpop.com/
http://www.paulgraham.com/langdes.html
http://www.cs.berkeley.edu/~flab/languages.html
http://www.ioccc.org/
http://en.wikipedia.org/wiki/Simplified_English
http://en.wikipedia.org/wiki/Simplified_English
http://thread.gmane.org/gmane.comp.version-control.git/57643/focus=57918
http://thread.gmane.org/gmane.comp.version-control.git/57643/focus=57918

FEATURE MATTHEW WILSON
Quality Matters: A Case Study in
Quality
How do we assess quality? Matthew Wilson takes a look
at the design of one library.
few years ago I was tasked with the architecture/design and
implementation of a suite of middleware daemons, to arbitrate
between the external (point of sale) ingest lines and the processing

cores, old and new, for a large Australian insurer. The system uses the
AS2805 [AS2805] financial protocol, one of the more arcane and truculent
data-exchange protocols I’ve had the pleasure of working with. It
comprises variable-length fields, different character encodings (ASCII and
EBCDIC) and Base-64 encoded data [BASE-64]. We hunted around for
an open-source implementation of Base-64, but couldn’t find anything that
met our criteria, so I knocked one up. (Not on the client’s time, of course.)
In this instalment, I’ll be looking at the design and implementation of the
resulting library, b64 [B64], and will also discuss changes I’ve been
planning to make in light of matters arising in this column.

Base-64 encoding
Before we look at the library, let’s first do a quick refresher on Base-64
encoding/decoding: I’m covering only the basics sufficient to be able to
talk about the design of the library; if you want to know all the in-and-outs
you’ll have to do further reading.
As the name implies, Base-64-encoded data is encoded into 64-possible
values from the range character range represented by the string

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrst
uvwxyz0123456789+/"

Each value, obviously, requires 6-bits to represent the value. Binary data
is encoded in groups of three bytes, totalling 24-bits, into four Base-64
values. This may be shown pictorially (see Figure 1).
For example:
 0x000000 // => "AAAA"
 0x010000 // => "AAAB"
 0x190000 // => "AAAZ"
 0x330000 // => "AAAz"
 0x3d0000 // => "AAA9"
 0x3e0000 // => "AAA+"
 0x3f0000 // => "AAA/"
 0x400000 // => "AABA"
 0x000001 // => "AQAA"

If the source data does not contain a multiple of three bytes, then one or
two 0-bytes are used to pad out the last triple, and '=' characters used in
the encoded output. For example:
 0x0000 // => 0x000000 => "AAA="
 0x0100 // => 0x000100 => "AAE="
 0x00 // => 0x000000 => "AA=="
 0x01 // => 0x000001 => "AQ=="

Perfection?
When I’m talking to developers about software quality, I often use b64 as
an example of near perfection. It scores highly in all the following:

correctness
efficiency
modularity
portability
discoverability (though with some deficiencies; discussed later)
flexibility (in C++ API)
expressiveness (in C++ API)

(In my opinion, it also scores well in transparency, but I cannot be sure
that I’m not biased in that respect.)
Now, before you all accuse me of towering arrogance, I must point out that
several of these are an almost inevitable consequence of the simplicity of
the problem domain: these are credits by default, to be lost through haste
or carelessness, rather than won by skill or insight. (There’s also the not-
inconsequential fact that I fluffed the first implementation by following
too-old RFCs on Base-64 conversion, and so had to release a modified
version that still bears the scars to this day; see sidebar.)
Nonetheless, it’s a good little library, and its popularity, absent any serious
effort at popularisation prior to this article, is justified, as is our looking at
how and why it achieves its quality. Let’s now consider each in turn, and
discuss to what degree they’re to be expected and what design decisions
can influence their win/loss.

Design
The design of the library is informed by the following characteristics of
Base-64 conversion:

1. Given known input data size, the maximum required output data size
can always be calculated accurately.

2. The conversion to/from Base-64 format relies on a fixed, well-
known algorithm that is entirely predictable, and free from any
configuration or runtime influence.

These characteristics influence the design in several ways, including the
implementation of the conversion algorithms, the library API, the way in
which correctness (or robustness [QM-2]) will be assured, error indication/
handling, even the choice of implementation language.

A

Matthew Wilson is a software development consultant and
trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of
articles and books that attempt to do the same. He can be
contacted at matthew@synesis.com.au

Figure 1

0 1 2

0 1 2 3

raw data (bytes)

encoded data
(base-64)
26 | Overload | December 2009

FEATUREMATTHEW WILSON

I have not (yet) heard of an application where
Base-64 conversion is required to operate at

MIP-blistering speed
The main design features are:
The implementation of the core library is in C; a C++ API is
provided separately in header-only form
The library functions do not allocate memory; it must be supplied by
the caller
No diagnostic logging is used in the library; quality is assured by
automated testing and (optional) contract enforcement

Implementation language: C vs C++
The middleware suite was mainly C++, with a few modules written in C.
All the parts that would touch Base-64 were C++. Despite this, I chose to
implement it in C. As I’ve said before [!C^C++], absent any strong reasons
in favour of C++ – such as the need to use containers in the implementation
– I believe that C should be the default choice of implementation language.
There are many reasons for this, dependent on the type of software entity
being considered. In this case, the choice was based on portability and on
need.
By implementing in C there’s a modest advantage in portability. By
presenting a C API, there’s a considerable increase in the potential client
applications and languages, including those written in C, C++, D, .NET,
to name a few.
As far as need, there’s just no clear (to me anyway) requirement to
implement such conversion logic in C++. This may be because I have a
bias against unnecessary use of C++, and prefer C APIs with C++ wrappers
over pure C++ libraries whenever appropriate; if any readers can think of
an advantage to writing b64 in C++ I’d be genuinely interested to hear it.
The choice of language has other impacts. One of the more obvious ones
is that we don’t have to worry about exceptions; we’ll see how return codes
are handled shortly.

Memory allocation
In cases where one may choose, the choice between having a library
allocate memory and requiring users to provide memory depend on a
number of factors, including:

Whether the amount of memory to be used by the callee can be
accurately predicted/determined by the caller
For how long the memory may be required by the caller

This is also complicated by factors such as ensuring memory is allocated
and released by the same memory pool/allocator [IC++].
In the case of Base-64 conversion, we’ve already noted that the amount of
memory can be predicted by the caller based on the size of the data to
calculate. The b64 API helps out here, in returning the maximum required
size to the caller if they pass NULL for the destination to any encode/decode
method (and does so in O(1)). Thus, in C, you might see a call sequence
such as in Listing 1.
At face value, this complicates the life of the client coder: at least it appears
to add more code. However, by removing memory allocation entirely from

the library, the responsibilities are totally clear. And, even better, we can
implement b64 entirely without dependencies on any other functions
(including those of the standard library), which means that, discounting
cosmic rays in the processor, its ability to perform its task correctly is
dependent only on the code within.
Readers who managed to stay awake to the end of the last instalment should
recognise the significance of this. When we factor in that Base-64
conversion is deterministic, and therefore highly amenable to automated
testing, we realise that b64 is a software library for which we can
demonstrate correctness (as opposed to robustness): a highly desirable
characteristic of software.
(And, for C++ clients at least, we can and do provide useful, expressive
wrappers that minimise/remove the intrusion on the transparency of client
code, as I’ll discuss later.)

Quality assurance
Although I have not (yet) heard of an application where Base-64
conversion is required to operate at MIP-blistering speed, it does seem kind
of obvious that it shouldn’t have much fat in it. Consequently, one original
design decision – still upheld in my recent updates – is that it should not
have diagnostic logging. Of course, performance is not the only, or even
the most significant, factor in determining whether a software entity should
include diagnostic logging. (And if you believe the propaganda of, er, me

Listing 1

size_t n = b64_encode(src, srcLen, NULL, 0);
// get max required size
void* p = malloc(n);
. . . // handle allocation failure here
n = b64_encode(src, srcLen, p, n);
. . .

In my haste to implement a version of the library that would meet the
requirements of our commercial work, I, er, forgot to read the RFC specs
properly. One part of the MIME encoding requirements is that a Base-
64-encoded sequence be broken up with newline sequences ("\r\n")
such that each line have a maximum 76 characters (not including the
newline). Other and, if memory serves, earlier specifications require
maximums of 64 and 1000 characters.

Consequently, the first version consisted solely of a pair of API functions:

 size_t b64_encode(void const *src,
 size_t srcSize, char *dest, size_t destLen);
 size_t b64_decode(char const *src,
 size_t srcLen, void *dest, size_t destSize);
Each takes only two pairs of parameters, one for input data and one for
output data. Only later, when the error of my ways was pointed out by
the user Adam McLaurin, did I have to amend the API to what is described
in the main text. Doh!

Version 1 API
December 2009 | Overload | 27

FEATURE MATTHEW WILSON

Adding diagnostic logging is simply
a waste of time here
– in respect of the Pantheios diagnostic logging API library, anyway – you
don’t even need to sacrifice performance to have logging statements
compiled into released code. But that’s for another day …)
Back on point: the major factor at play here is that the algorithms are self-
contained and deterministic. For a given input, we must have a given
output, regardless of whether we’re running on a mainframe, Windows PC,
Linux quad-core server, iPhone, whatever. Adding diagnostic logging is
simply a waste of time here, because the diagnostic logging that will be in
the application in the code that calls into b64 will be sufficient to (i) record
its failure, and (ii) record the precipitating input data; the latter can be
replayed into the library at any later time to test the veracity of the expected
result.

The b64 C API
The b64 C API consists of two enumerations and six functions, enclosed
(in C++ compilation) in the b64 namespace. Listing 2 shows a truncated
form of the b64/b64.h header, including all the essential elements.

Listing 2

/* b64/b64.h */
#include <stddef.h>

#if !defined(B64_NO_NAMESPACE) && \
 !defined(__cplusplus)
define B64_NO_NAMESPACE
#endif /* !B64_NO_NAMESPACE && !__cplusplus */

#ifndef B64_NO_NAMESPACE
namespace b64
{
#endif /* !B64_NO_NAMESPACE */

typedef char b64_char_t;

enum B64_RC
{
 B64_RC_OK
 , B64_RC_INSUFFICIENT_BUFFER
 , B64_RC_DATA_ERROR
};
#ifndef __cplusplus
typedef enum B64_RC B64_RC;
#endif /* !__cplusplus */
enum B64_FLAGS
{
 B64_F_LINE_LEN_USE_PARAM = 0x0000
 , B64_F_LINE_LEN_INFINITE = 0x0001
 , B64_F_LINE_LEN_64 = 0x0002
 , B64_F_LINE_LEN_76 = 0x0003
 , B64_F_LINE_LEN_MASK = 0x000f
 , B64_F_STOP_ON_NOTHING = 0x0000

Listing 2 (cont’d)

 , B64_F_STOP_ON_UNKNOWN_CHAR = 0x0100
 , B64_F_STOP_ON_UNEXPECTED_WS = 0x0200
 , B64_F_STOP_ON_BAD_CHAR = 0x0300
};
#ifndef __cplusplus
typedef enum B64_FLAGS B64_FLAGS;
#endif /* !__cplusplus */

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

size_t b64_encode(
 void const* src
, size_t srcSize
, b64_char_t* dest
, size_t destLen
);
size_t b64_encode2(
 void const* src
, size_t srcSize
, b64_char_t* dest
, size_t destLen
, unsigned flags
, int lineLen /* = 0 */
, B64_RC* rc /* = NULL */
);
size_t b64_decode(
 b64_char_t const* src
, size_t srcLen
, void* dest
, size_t destSize
);
size_t b64_decode2(
 b64_char_t const* src
, size_t srcLen
, void* dest
, size_t destSize
, unsigned flags
, b64_char_t const** badChar /* = NULL */
, B64_RC* rc /* = NULL */
);
char const *b64_getErrorString(B64_RC code);
size_t b64_getErrorStringLength(B64_RC code);

#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#ifndef B64_NO_NAMESPACE
} /* namespace b64 */
#endif /* !B64_NO_NAMESPACE */
28 | Overload | December 2009

FEATUREMATTHEW WILSON

Strangely, for me, I’ve never actually
tested its performance
There are several aspects to note:
The API has include-dependency only on stddef.h, which will be
available on every compiler you come across.
If compiling for C, the namespace is suppressed. Otherwise, unless
B64_NO_NAMESPACE is defined, all elements will be within the
b64 namespace, according to best practice.
The b64_char_t typedef is used in case a widestring port will ever
be required. (This hasn’t come up yet.)
B64_RC is a value enumeration, representing result codes;
B64_FLAGS is a flags enumeration, used for moderating the
behaviour of encoding/decoding. The use of typedefs on the
enumeration names ensures that the same names are available in C
and C++, and the qualifying prefix enum is not required in C
[!C^C++].
The 2-variants cater to the needs of the RFC specifications in
working with newline-split input/output encoded sequences.
The aforementioned mistake is evident in the presence of
b64_encode()/b64_decode(), which are actually implemented
in terms of the corresponding 2-variants. More seriously, it means
that the return type of the 2-variants serves double duty, indicating
the number of elements (to be) converted and, by returning 0, that
an error may have occurred, in which case the caller must check the
out-parameter rc. Although we’ll see later that with the C++ API
implementation that this becomes unimportant, it is nonetheless a
detraction from discoverability for users of the C API. (-1 point
here.)
Conversion of B64_RC to string form (and length thereof) are
provided for using B64_RC with a diagnostic logging library (such
as, er, Pantheios); see [STRERROR] for details of how this works.

Let’s briefly examine my claims regarding the software quality
characteristics, before we move on to consider the implementation and the
C++ API.

Correctness
This is established by automated tests, which come with the library and
are built and executed by "make test".

Efficiency
Strangely, for me, I’ve never actually tested its performance. Since it
allocates no memory, uses static lookup tables for converting between
encoded and unencoded form, and doesn’t do anything more than once,
I’ve simply assumed that it has good performance. Were performance a
major criterion, or had anyone ever reported an issue, I guess I would do
so, but absent that, why bother?

Modularity
Here’s where b64 rises above just about any other non-trivial library: it
has 100% modularity in a release build; in debug form it relies on the

runtime’s assert() support and a couple of string functions. Obviously,
the acclaim for this is largely due to the characteristics of the problem area,
which then enable the choice to eschew memory allocation.

Portability
The implementation relies only on the standard headers string.h and
assert.h (in addition to b64/b64.h), so we can also claim that b64 also
has near perfect portability. In this case, it is a by-product of the problem
area; one would have to try hard to introduce non-portability. The only
non-portable aspect is the use of English result code strings, but this is not
a true break of localisation, as discussed in [STRERROR].

Expressiveness
The C API does no better or worse in terms of expressiveness than any such
API could, which is to say not very much. As we’ll see shortly,
expressiveness is dealt with in the C++ API, commensurate with the (my,
anyway) hypothesis that the major reason people choose C++ over C (or
any one language over another) is expressiveness.

Flexibility
The C API is not flexible at all, since few C APIs are able to offer any bona
fide flexibility, and those that do – e.g. the variadics – tend to be inherently
unsafe. Again, the C++ API takes care of flexibility.

Discoverability
Other than the result-code-as-out-parameter ugliness already discussed, I
contend that the API is largely discoverable. Ignoring the extensive per-
function documentation (not shown), the API functions are self-
documenting in the following ways:

The enumerators for both enumerations are pretty self-explanatory.
A function might succeed, or fail due to insufficient buffer or data
error (i.e. asking b64_decode2() to decode arbitrary text data
consisting of non-Base-64 characters). Encoding line length can be
a fixed infinite (no newline), 64 or 76, or a user specified length.
Decoding can be asked to stop on an unknown character, and/or on
unexpected whitespace, or simply ignore bad characters and
proceed.
The encoding/decoding functions represent input and output
memory ranges as matched pairs of length+pointer. This leaves only
three parameters to grok. flags should be obvious: a combination
of B64_FLAGS. rc is an optional (as denoted by the comment)
pointer to a variable to receive the return code. badChar is an
optional (as denoted by the comment) pointer to a (non-mutating)
pointer to a character, which will be set to refer to the bad character
that stops the decoding. lineLen specifies the required maximum
line length, but will be ignored unless

 B64_F_LINE_LEN_USE_PARAM
 == (flags & B64_F_LINE_LEN_MASK).
December 2009 | Overload | 29

FEATURE MATTHEW WILSON
The things you can glean only from the documentation are:
If you specify a lineLen of less than 0 (when
B64_F_LINE_LEN_USE_PARAM == (flags & B64_F_LINE_
LEN_MASK)), the line length defaults to 64.
If you specify a lineLen of 0, you get an infinite line length.
If you specify NULL for dest, the function returns the maximum
possible amount of memory (characters or bytes) required.

Transparency
In the previous instalment [QM-2] I gave a sample of the implementation
of b64_encode2(), from which you may make your own judgements.
In researching this instalment I had occasion to go back and try and
understand the implementation. Since the last modification of any
significance was done nearly a year ago, I therefore experienced the
transparency anew. Acknowledging a few minutes to acclimatise, I was
able to find my way pretty well. Of course, transparency is a very
subjective thing – coding styles (layout, naming), choice of idioms, and
so on all influence – and I’m the author! It’s quite conceivable you might
not find the implementation transparent and the only thing I can say for
certain is that it’s one of the more transparent implementation that I’ve
written.

The b64 C++ API
I don’t have space here to include the full implementation of the library.
As mentioned above, the essential elements from b64_encode2() were
shown in the last instalment [QM-2]; and you can download the library to
look at it if you wish. In any case it’s not really necessary. Given the design
decisions and the API outlined above, I think any competent C programmer
could produce a correct, portable, efficient and (reasonably) transparent
implementation.
What I think is of interest is in how the low-level C API can be mapped
into C++ with a good dose of expressiveness and flexibility. In my opinion,
the biggest issue C++ users will have with the C API are:

The need to manually manage memory
The abstraction dissonance [QM-1, Monolith] encountered when
having to work with ‘raw’ types such as ranges of characters and
bytes

Both of these are exemplified by what I consider would be the common
types – std::string and std::vector<unsigned char> – and
preferred usage patterns of the library in C++ code:
 typedef std::vector<unsigned char> bytes_t;

 bytes_t raw = . . .
 // read in from somewhere

 std::string encoded = AcmeBase64::encode(raw);

b64’s C API cannot support this. Instead, the user will be forced to write
something along the (possibly pseudo-code) lines in Listing 3.
Truly hideous stuff. Thankfully, b64’s C++ API does not require this of
the poor programmer. Consider the simplified listing of b64/b64.hpp
in Listing 4.
Once again, there are several points to note:

The API function names reflect the fact that they’re inhabiting the
b64 namespace, and dispense with the b64_-prefix of the C API.
Users now write the clearly digestible b64::encode() and
b64::decode().
The API raises the level of abstraction and deals with strings and
"blobs" (sequence of bytes), rather than size+pointer pairs.
The units of currency for string and "blob" types are assumed,
respectively, to be std::string and std::vector<unsigned
char>. But it’s flexible in two ways. First, custom types may be
specified at compile-time, via definition of the appropriate pre-
processor symbols, for string and/or blob. Second, the use of string

Listing 3

b64::B64_RC rc;
size_t n = b64::b64_encode2(&raw[0]. raw.size(),
 NULL, 0, 0, 76, &rc);
if(0 == n && b64::B64_RC_OK != rc)
{
 throw std::runtime_error(
 b64::b64_getErrorString(rc));
}
std::string encoded;
encoded.reserve(n);
// don't lose "buff" in an assign()-throw
char* buff = new char[n];
n = n = b64::b64_encode2(&raw[0], raw.size(),
 buff, n, 0, 76, &rc);
encoded.assign(buff, n);
delete [] buff;

Listing 4

#include <b64/b64.h>
#include <stlsoft/stlsoft.h>

#if defined(B64_USE_CUSTOM_STRING)
include B64_CUSTOM_STRING_INCLUDE
#else /* B64_USE_CUSTOM_STRING */
include <string>
#endif /* !B64_USE_CUSTOM_STRING */

#if defined(B64_USE_CUSTOM_VECTOR)
include B64_CUSTOM_VECTOR_INCLUDE
#else /* B64_USE_CUSTOM_VECTOR */
include <vector>
#endif /* !B64_USE_CUSTOM_VECTOR */

#include <stlsoft/memory/auto_buffer.hpp>
#include <stlsoft/shims/access/string.hpp>
#include <stdexcept>

#ifndef B64_NO_NAMESPACE
namespace b64
{
#endif /* !B64_NO_NAMESPACE */

class coding_exception
 : public std::runtime_error
{
public:
 coding_exception(B64_RC rc, char const*
badChar);
public:
 B64_RC get_rc() const;
 char const* get_badChar() const;
private:
 B64_RC m_rc;
 char const* m_badChar;
};

#if defined(B64_USE_CUSTOM_STRING)
typedef B64_CUSTOM_STRING_TYPE string_t;
#else /* B64_USE_CUSTOM_STRING */
typedef std::string string_t;
#endif /* !B64_USE_CUSTOM_STRING */

#if defined(B64_USE_CUSTOM_VECTOR)
typedef B64_CUSTOM_BLOB_TYPE blob_t;
#else /* B64_USE_CUSTOM_VECTOR */
typedef std::vector<unsigned char> blob_t;
#endif /* !B64_USE_CUSTOM_VECTOR */
30 | Overload | December 2009

FEATUREMATTHEW WILSON
access shims [IC++, XSTLv1, FF-2] means that b64::decode()
may be called on instances of arbitrary string types
Memory allocation is handled within the C++ API entirely, so users
need neither concern themselves with (de-)allocating the memory
nor detecting failure to allocate it (at the level of their client code).
The library reports coding errors via exceptions if users elect not to
receive the errors (by passing an address of a B64_RC variable).
The functions handle all the issues of standards conformance, such
as the fact that one cannot invoke the subscript operator on an empty
std::vector, nor assume the contiguity of storage in
std::string. Such things have a habit of leaking from one’s
(sub-)conscious onto the screen, as actually just happened to me in
the pseudo-code at the start of this section!
On reflection, the inclusion of the literal array overload of
encode() is probably gratuitous; more a ‘look what I can do’ than
‘we need this’. However, if anyone can think of a real scenario for
this, please let me know.

I contend that the discoverability of these C++ API functions is good, and
that the transparency is also reasonably good (assuming one understands
the notion and purpose of string access shims). But where it really shinesListing 4 (cont’d)

inline string_t encode(void const* src,
 size_t srcSize, unsigned flags,
 int lineLen = 0, B64_RC* rc = NULL)
{
 typedef
 stlsoft::auto_buffer<char, 1024> buffer_t;

 B64_RC rc_;
 if(NULL == rc)
 {
 rc = &rc_;
 }
 size_t n = b64_encode2(src, srcSize, NULL, 0,
 flags, lineLen, rc);
 buffer_t buffer(n);
 size_t n2 = b64_encode2(src, srcSize,
 &buffer[0], buffer.size(), flags, lineLen,
 rc);
 string_t s(&buffer[0], n2);
 if(0 != srcSize &&
 0 == n2 &&
 rc == &rc_)
 {
 throw coding_exception(*rc, NULL);
 }
 return s;
}
inline string_t encode(void const* src,
 size_t srcSize)
{
 return encode(src, srcSize, 0, 0, NULL);
}
template <typename T, size_t N>
inline string_t encode(T (&ar)[N])
{
 return encode(&ar[0], sizeof(T) * N);
}
inline string_t encode(blob_t const &blob)
{
 return encode(blob.empty() ? NULL : &blob[0],
 blob.size());
}
inline string_t encode(blob_t const &blob,
 unsigned flags, int lineLen = 0,
 B64_RC* rc = NULL)
{
 return encode(blob.empty() ? NULL : &blob[0],
 blob.size(), flags, lineLen, rc);
}

inline blob_t decode(char const* src,
 size_t srcLen, unsigned flags,
 char const** badChar = NULL,
 B64_RC* rc = NULL)
{
 B64_RC rc_;
 char const* badChar_;
 if(NULL == rc)
 {
 rc = &rc_;
 }
 if(NULL == badChar)
 {
 badChar = &badChar_;
 }
 size_t n = b64_decode2(src, srcLen, NULL, 0,
 flags, badChar, rc);

Listing 4 (cont’d)

 blob_t v(n);
 size_t n2 = v.empty() ? 0 : b64_decode2(src,
 srcLen, &v[0], v.size(), flags, badChar,
 rc);
 v.resize(n2);
 if(0 != srcLen &&
 0 == n2 &&
 rc == &rc_)
 {
 throw coding_exception(*rc,
 (badChar == &badChar_) ? *badChar : NULL);
 }
 return v;
}
inline blob_t decode(char const* src,
 size_t srcLen)
{
 return decode(src, srcLen, 0, NULL, NULL);
}
template <class S>
inline blob_t decode(S const &str)
{
 return decode(stlsoft::c_str_data_a(str),
 stlsoft::c_str_len_a(str));
}
inline blob_t decode(string_t const &str,
 unsigned flags = 0)
{
 return decode(stlsoft::c_str_data_a(str),
 stlsoft::c_str_len_a(str), flags, NULL,
 NULL);
}
inline blob_t decode(string_t const &str,
 unsigned flags, char const** badChar,
 B64_RC* rc = NULL)
{
 return decode(stlsoft::c_str_data_a(str),
 stlsoft::c_str_len_a(str), flags, badChar,
 rc);
}

#ifndef B64_NO_NAMESPACE
} /* namespace b64 */
#endif /* !B64_NO_NAMESPACE */
December 2009 | Overload | 31

FEATURE MATTHEW WILSON
is in the modest increase in flexibility and the substantial increase in
expressiveness. We can now write code such as Listing 5 and Listing 6.

New ‘software quality’ changes
When, some months ago, I’d planned an instalment of this column that
would discuss b64, I’d planned to include an evolution of the library
implementation to include the (removable) diagnostic measures [QM-1]:

Code Coverage, via the xCover library [XCOVER]
Contract Enforcement, via the xContract library

However, now I’ve got this far, I realise that I shouldn’t bother. This is
not, as the Overload editorial team may suspect, due to the fact that I’ve
overrun the submission deadline for the third instalment in a row. Rather,
it’s because I realise that neither of these measures are necessary for b64.
(I warned you when we started that this is a learning experience for me as
well.)
First, the code coverage. The implementation of encoding has three
branches and four loops. Decoding has nine branches and one loop.
Although nine could be argued as a decent amount of complexity, it’s the
case that each branch (and loop) can be determined by visual inspection
to be part of behaviour already established (by testing) as correct. Now,
it’s presumption bordering on hubris to say ‘the requirements’ won’t
change, or ‘my project’s not complex enough to need [insert useful
software quality assurance technique requiring a modicum of effort here]’.
So I won’t claim either of those. What I will claim, however, is that, given
the library has a pretty comprehensive test suite and has been in use for
several years without a report of defective conversion, it’s not worth the
cost of introducing code coverage. As well as introducing coupling to other
(admittedly open-source, and bundleable) libraries, it also introduces more
choices to users of the libraries, and choice is the enemy of discoverability.
Furthermore, it’d also mean more effort for me in teasing out a bit more

sophistication from my already moribund, kill-yourself-rather-than-
change-anything, ripe-for-rewrite makefile generator.
Things are a little less clear cut with contract enforcement. The library
already has contract enforcement implemented in the ‘usual way’, which
is to say via the C standard library’s assert() macro. For sure, this only
applies in debug builds, but contract enforcement is a removable
diagnostic measure, so that’s perfectly legitimate. It’s not always the
wisest choice to elide contract enforcements from release builds; I’ll cover
this a future instalment of the column, dedicated to contract programming
principles and practice. But in this case, I’m again inclined to live with the
status quo for the same reasons as for code coverage: b64 has a lot of tests;
it has an established history of correctness; I don’t want to burden users
with more choices / build hassles; I don’t want to burden myself with more
work for no tangible benefit.
It may seem a little perverse to be writing a column about the practical
application of software quality assurance measures, and then not actually
apply any. But we’re talking about removable diagnostic measures, and
perhaps it’s useful to start out by abstinence just to ram the removability
point home.
But fear not, earnest fellow appliers of software quality measures, these
things will soon be introduced to a library near you! In fact, for all the
reasons that b64 does not qualify for the various (removable) diagnostic
measures – logging, code coverage, contract enforcement – I have a library
that needs them for the same reasons, recls. I’ve recently released the first
100%-X rewrite – a 100% .NET implementation [RECLS100.NET] – and
am also planning to release a reworked version of the main C/C++ library
very soon. So, the next instalment will probably contain an examination –
theoretical and practical – of how I go about adding diagnostic measures
to recls in C and C++.

‘Quality Matters’ online
I just want to let you know that I’m in the process of setting up a website
for the column – at http://www.quality-matters-to.us/ – and hope to include
blog and/or discussion forum(s) in the non-too-distant future. To start with,
the website will contain definitions given in the column instalments, and
useful links (including to the article instalments on the Overload site), and
I invite you to check it out. (Even better, offer to do the design, and save
us all from my hideous lack of visual creativity!)

References and asides
[AS2805] http://en.wikipedia.org/wiki/AS_2805
[BASE-64] http://wikipedia.org/wiki/Base64
[B64] http://synesis.com.au/software/b64/
[!C^C++] ‘!(C ^ C++)’, Matthew Wilson, CVu, November 2008
[STRERROR] ‘Safe and Efficient Error Information’, Matthew Wilson,

CVu, July 2009
[IC++] Imperfect C++, Matthew Wilson, Addison-Wesley, 2004
[QM-2] ‘Quality Matters, Part 1: Correctness, Robustness and

Reliability’, Matthew Wilson, Overload 93, October 2009
[QM-1] ‘Quality Matters, Part 1: Introductions, and Nomenclature’,

Matthew Wilson, Overload 92, August 2009
[Monolith] http://breakingupthemonolith.com/
[RECLS100.NET] recls 100% .NET, Matthew Wilson, Dr Dobb’s

Journal, November 2009; http://www.ddj.com/cpp/221900083

Listing 5

unsigned char bytes0[] = { 0, 1, 2, 3, 4, 5, 6,
 7, 8 9 };
void* bytes1 = . . .
b64::blob_t bytes2 = . . .
// aka std::vector<unsigned char>

b64::string_t encoded0 = b64::encode(bytes0);
// aka std::string
b64::string_t encoded1 = b64::encode(bytes1);
b64::string_t encoded2 = b64::encode(bytes2);

Listing 6

char encoded0[] = { 'A', 'A', 'A', 'A' };
std::string encoded1("AAE=");
char const* encoded2 = "AQAA";

b64::blob_t decoded0 = b64::decode(encoded0);
b64::blob_t decoded1 = b64::decode(encoded1);
b64::blob_t decoded2 = b64::decode(encoded2);
32 | Overload | December 2009

http://en.wikipedia.org/wiki/AS_2805
http://wikipedia.org/wiki/Base64
http://synesis.com.au/software/b64/
http://breakingupthemonolith.com/
http://www.ddj.com/cpp/221900083

	A Crack in Time
	Shadow Data Types
	Creating a Framework for the iPhone
	The Model Student: A Primal Skyline (Part 3)
	Project-Specific Language Dialects
	Quality Matters: A Case Study in Quality

