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EDITORIAL RIC PARKIN
All together now.
Can you do several things at once? Ric 
Parkin tries multi-tasking.
Whats going on here?
Time is time, like what prevents an ever-

rolling everything stream happening
bears at all its once sons away.

Clear? Perhaps we should try a different example.
He draweth words form out the thread, the thread of his

on which verbosity we string finer than the stable
experiences of his argument.

Hmm, not any better. Perhaps if we try enough times, it’ll eventually make
some sense. Prepare to wait a long time though – there are so many
possible sentences that will turn up, and the above examples are ones
where I tried to make them still make some vague semblance of sense. 
So where did they come from? Perhaps you have guessed: both are made
from two quotations interleaved with each other:

Time, like an ever-rolling stream, bears all its sons away
– Issac Watts

Time is what prevents everything happening at once
– John Wheeler

and
Words form the thread on which we string our experiences

– Aldous Huxley
He draweth out the thread of his verbosity finer than the staple

of his argument– Shakespeare (Loves Labours Lost)
Those of a mathematical bent could calculate how many possible
combinations of the sentences there are. Extrapolating further, how many
possible ways can an arbitrary number of extremely long strings be
interleaved? It gets to be a remarkably large number very quickly.
Now check them all. 
Sounds ridiculous to even think of doing so, doesn’t it?
If you haven’t guessed yet from my choice of quotes, I’ve recent been
thinking about concurrency and multithreading. Some of the reasons
should be obvious – despite C++0x coming a little later than originally
hoped, one of the areas which is comparatively mature is the memory
model, the threading primitives and the higher level library built upon it.
We’re quite lucky in the ACCU as many members have contributed
directly and indirectly to the design of this area, and in this issue Anthony
Williams introduces us to some of the new facilities. 

But mainly because I’ve realised that I’ve had to
deal with concurrency quite a lot in the last few
years, and this is a change. In much of my career,
I’ve not actually had to deal with multithreading

at all – for most of that time, the computers were single-cored, and the
operating systems would often use a cooperative form of multitasking, so
your application itself would just carry on as if it was the only thing
around, occasionally letting other programs have a chance to run. Even
when preemptive tasking appeared, most programs would be written as if
they were single threaded, and let the operating system sort out which
process would be running.
But now true mutithreaded machines are common, and the only way of
speeding up our programs now that processor speed has plateaued is to
find suitable ways of processing in parallel. Unfortunately this can be
really difficult to do in practice, for several reasons.
Sharing mutable data is difficult to get right, and can be expensive in many
ways – the locking adds expensive calls as an overhead; over-zealous
locking can stall other threads, reducing any benefits and potentially re-
serialising execution so that one one thread can run at a time! Also if the
data is shared across processors, the versions in their caches have to be
synchronised which can even lead to the odd situation where adding
processors slows things down!
This last is an example of the problems of predicting which areas can be
split into separate threads. It is difficult, and prone to counter-intuitive
results. Part of it comes from the overheads associated with threads and
locking tend to be quite expensive, and so too-fine-grained threading,
locks and cross-thread communication can slow things down.
Herb Sutter has pointed out that locks and other synchronisation
techniques are not composeable [DDJ]. That means that combining two
parts that work on their own may no longer work, and you have to consider
their interactions, and often the interactions between their internals. This
means that you potentially get a combinatorial explosion, and building a
large system becomes very difficult.
Testing is also much harder. I have already pointed out the huge number
of possible execution paths, depending on the whims of the scheduler.
This means that software is no longer easily deterministic – the same
program on the same input can have a slightly different interleaving, and
obtain locks in a different order. One will appear to work the other can
deadlock or, more subtly change some timings and things start to time out.
Even worse, future hardware can completely change the execution
environment. Consider the difference between a single core machine
interleaving threads verses a true multi-core machine where the threads
are truly running at the same time. In the former the threads sees a single
version of memory; in the latter they see two slightly different versions
depending on whether a write by one thread has propagated to the other
processor’s memory cache. The can be very hard to reason about – we’re
used to thinking though code as if the changes happen instantaneously.

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of 
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail 
of new members behind him. He can be contacted at ric.parkin@gmail.com.
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EDITORIALRIC PARKIN
And the number of possible execution orders is extremely high, which was
the point of my interleaved sentences example. So checking a threaded
program by running it empirically is a pretty poor way of testing as you’ll
only cover a vanishingly small set of the possible combinations, and yet
sometimes were are reduced to doing so. It can be useful so long as you
understand the limitations: if you find a problem, great you know there’s
a bug, and yet it might be hard to reproduce, and even if you have logs it
can be extremely hard to analyse what exactly happened. And if you don’t
find a problem, you haven’t proved one doesn’t exist as it might be that
you haven’t found it yet.
Unit testing can become much harder too. Trying to coordinate threads to
get to known places so you can query their state is non trivial. I’ve seen
naive programmers start a thread and sleep for a few milliseconds before
checking some variable has been set, which worked fine on their machine,
but on the heavily loaded build machine the thread would run too slowly
and the test would fail. A solution was to add synchronising locks and
semaphores on either side, and let the two sides let each only other run
once they had done their work, but this was an awful lot of infrastructure
to add that confused the code considerably (I’ve a gut feeling that there
are ways of encapsulating such a technique – I’ll leave it as an exercise
for the reader, but would be interested in seeing any ideas).
There are ways to deal with these problems though. Making a lock to only
allow one operation at a time works trivially, but would kill performance,
so the real challenge is to loosen such constraints such that independent
actions can occur simultaneously, but not to loosen any further. A good
approach is to separate the threads of execution as much as possible,
perhaps even into separate processes, and only communicate via
asynchronous message passing. This helps avoid the temptation to share
too much data, and gets the programmer into the habit of not expecting
the results of a cross-thread request to be ready immediately, and instead
go off and do something more useful in the meantime, waiting for
notification that it has completed. This also reduces the number of locks
that may be being used, which will reduce the locking overheads, and also
help to avoid deadlocks.
Having shared state be immutable also avoids the need for many locks
(which is one reason why Java and .Net have immutable string types), and
which has led to an upsurge of interest in functional programming
techniques. A good tip is to try and write code that has no side effects –

in other words functions that rely only on their input values, and avoid
aliases to mutable data. This means that there will be no possible
interactions with other threads changing things under your feet. This
means that you don’t need any locks, and that function is simpler to reason
about. It also has an effect that it’s much easier to test.
Other interesting ideas include things like the MapReduce technique, used
by many people such as Google to implement distributed processing
[MapReduce].
But concurrency is not just about multithreading – in a more general sense
it is about multiple ‘actors’ running independently yet interacting with
each other and shared resources. A simple example: two processes using
the file system will be having their file system calls being serialised via
some sort of locking mechanism. If they are reading and writing to the
same files you also now have a consistency problem, unless the processes
have some way of making their changes atomically with respect to the
other process. Also there can be deadlocks if multiple files with read/write
locking is involved, although a well designed API should time out for you
and return a failure.
Databases also provide a rich source of shared resources that can be
accessed by multiple machines, and so they provide lots of locking
mechanisms, such as the whole DB, individual tables or down to single
rows. Designing a database that provides proper consistency and yet scales
to a high number of users is non-trivial.
And the most obviously distributed system, is a distributed system built
out of separate machines passing messages to each other to trigger
manipulation of some resources, which need careful coordination to keep
consistency without sacrificing performance. What we need to come to
terms with are that these sorts of systems are already
to be found in a single box, and even within a single
chip. We’re moving from a simplistic single-threaded
world, and have to deal with the complexities of things
happening all at once.

References
[DDJ] http://www.ddj.com/architect/202802983 
[MapReduce] http://en.wikipedia.org/wiki/MapReduce
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FEATURE RICHARD HARRIS
The Model Student: A Primal 
Skyline (Part 2)
How do you measure the length of a curve? Richard Harris 
gets his ruler out.
n the previous article I described some of the important questions
regarding the lone wolves of the number line, the prime numbers; those
integers greater than 1 not wholly divisible by any positive integer other

than themselves and 1.
We discussed Euclid’s elegant proof that there are infinitely many of them
and described the prime number theorem which gives an approximate
estimate of π; the function that counts the number of primes less than or
equal to any given integer.

Recall that the lim term denotes the limit that the following term converges
to 1 as n grows ever larger.
Given that greater minds than mine have tried and failed to find the precise
pattern by which the prime numbers are found within the integers, I
suggested that we look at the prime factorisations of the integers instead.
Every positive integer can be uniquely represented by a prime
factorisation, the collection of prime numbers that when multiplied
together yield the integer in question.
The number 42, for example, has the prime factors 2, 3, and 7 since

.
The number 1 is, as you will no doubt recall, the special case of multiplying
no primes together.

Rather than completely analyse the prime factorisations of every integer,
we instead took a look at one of π’s relatives, the function that counts the
number of prime factors (including repeated factors) of a given integer, Ω,
shown in Figure 1.

Noting that 0 can be considered the result of dividing 1 by an infinite
number of prime factors, figure 1 gives the values of Ω for the integers
between 0 and 20.
Figure 2 reproduces the graphs of Ω for the integers from 1 to 20 (top) and
1 to 100 (bottom).
In pursuit of a pattern in these graphs, we introduced our own function n,
defined by

Recall that the odd brackets surrounding the 2nx term mean the largest
integer less than or equal to the value between them and that the expression
on the right with the rounded E mean that x lies between 0 and 1.

I

π n( )
n nln⁄
---------------

n ∞→
lim 1=

42 2 3 7××=

Figure 1

n Ω(n) n Ω(n) n Ω(n)

0 -∞ 7 1 14 2

1 0 8 3 15 2

2 1 9 2 16 4

3 1 10 2 17 1

4 2 11 1 18 3

5 1 12 3 19 1

6 2 13 1 20 3

Figure 2

x( )n
2Ω 2nx( )

2n
----------------------= x 0 1,[ ]∈

Richard Harris has been a professional programmer since 
1996. He has a background in Artificial Intelligence and 
numerical computing and is currently employed writing 
software for financial regulation.
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FEATURERICHARD HARRIS

a fractal is a curve, area, volume or higher
dimensional analogue that has a non-integer,

or in other words fractional, dimension
Two example graphs of n ( 5 on the left and 7 on the right) are given
in figure 3.
Finally, we demonstrated that successive versions of n are coincident for
half the points in the range 0 to 1 and that the infinite limit, ∞, sort of
exhibits the property of self similarity since it can be entirely recovered
from an arbitrarily small range of arguments.
Both of these properties bear a striking resemblance to those of fractals and
we closed on the question of whether ∞ is itself a fractal. Before
attempting to answer that question, I think it would be prudent to define
precisely what a fractal is.

OK, so what precisely is a fractal?
Beloved of undergraduate mathematicians the world over, fractals hit
mainstream popular culture in the late 1980s. In fact, I still have a T-shirt
with a black and white print of a fractal. Made from hemp. As is tragically
illustrated in figure 4: Dear God, what was I thinking?[Asti].
Whilst these beautiful images may have adorned the torsos of many of my
fellow unwashed hippies, I rather suspect that their exact definitions were
not so widely disseminated.
Strictly speaking, a fractal is a curve, area, volume or higher dimensional
analogue that has a non-integer, or in other words fractional, dimension.
A somewhat counter-intuitive description, it relies upon a very particular
definition of dimension; that of fractal dimension. There are many
different types of fractal dimension and we shall focus on one of the
simplest to calculate, the Minkowski, or box-counting dimension.
For a curve, this is a measure of how quickly its length grows as the ruler
you use to measure it shrinks.
Specifically, if a ruler of length ε can be lain end to end N(ε) times to cover
a curve, then its box-counting dimension is defined as

Note that the term to the left of the fraction means that we should consider
the limit of the term to its right as ε tends to 0.

The Koch curve
To demonstrate the idea, we introduce the Koch curve. This curve is
iteratively constructed from the element illustrated in figure 5.
The first iteration in the construction of the Koch curve is to replace each
of the 4 straight line segments with copies of the basic element shrunk in
length by 1/3, as illustrated in figure 6.

Figure 3

Figure 4

d N ε( )ln
1
ε
---ln

-----------------
ε 0→
lim=
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FEATURE RICHARD HARRIS

as we increase the number of sides of the inscribed 
polygon we both move closer and closer to the circle 
and make smaller and smaller corrections
We continue in the same vein for further iterations, ever replacing the
straight line segments with further and further scaled down copies of the
basic element.
Figure 7 illustrates the result of a few more iterations in the construction
of the curve.
Assuming that the curve ranges from 0 to 1 on the x axis, a ruler of length
1/3 can be laid end to end on the curve 4 times; at this scale it appears
identical to the basic element. Similarly, to a ruler of length 1/9, the curve
appears identical to the first iteration and can be covered with 16 of them.
Generalising this, to a ruler of length 1/3n the curve appears identical to
the n−1th iteration of its construction and, since at each iteration we replace
each line segment with 4 lines each 1/3 its length, will therefore be covered
by 4n of them.
The dimension of the Koch curve under this definition is therefore
approximately 1.2619 as shown in derivation 1.

The fractal dimension of a straight line
One thing we should check is that this measure of dimension yields the
correct value of 1 for simple curves such as, for example, the straight line
from (0,0) to (1,1). The length of this line is  and so, for a ruler of length
ε, we will need   of them to cover the line.
The dimension of this line using this measure is indeed 1, as demonstrated
in derivation 2.

The fractal dimension of the circumference of a circle
For a more complex example, consider the circumference of a circle with
radius 1 centred at the origin. If we choose our ruler lengths carefully, we
can join points on the circle to construct inscribed regular polygons of
increasing numbers of sides, as illustrated in figure 8.
We can see from this diagram that as we increase the number of sides of
the inscribed polygon we both move closer and closer to the circle and
make smaller and smaller corrections to the previous polygonal
approximation. This is highly suggestive that the fractal dimension is 1,
although proving it is a little more tricky, as illustrated in derivation 3.
Note that for areas, volumes and higher dimensional objects a similar
approach is used in which we cover the object of interest in 2 dimensional

Figure 5

Figure 6

Figure 7

Note that we take the limit as n tends to infinity, which since our ruler is
of length 1/3n is equivalent to the ruler length tending to 0 and the length
of the curve tending to infinity.

4nln
1

1 3n⁄
------------ln

------------------
n ∞→
lim 4nln

3nln
-----------

n ∞→
lim=

n 4ln
n 3ln
-----------

n ∞→
lim=

4ln
3ln

--------= 1.2619≈

2
2 ε⁄

2
ε

-------ln

1
ε
---ln

-------------
ε 0→
lim 2 εln–ln

εln–
---------------------------

ε 0→
lim=

2 x+ln
x

---------------------
x ∞→
lim=

1 2ln
x

------------
x ∞→
lim+=

1=

Derivation 2

Derivation 1
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FEATURERICHARD HARRIS

the box-counting measure of fractal
dimension is supremely simple to

implement as a numerical algorithm
patches of ever decreasing area, 3 dimensional blocks of ever decreasing
volume and so on.

The fractal dimension of ∞
One of the principal advantages of the box-counting measure of fractal
dimension is that it is supremely simple to implement as a numerical
algorithm. And since I wouldn’t even know how to start calculating the
fractal dimension of ∞ mathematically, this is going to prove rather
handy.
We have a natural choice for the ruler length for n, a new definition of
εn given by

since each horizontal line in the graph is exactly this long, and each vertical
line has a length equal to an integer multiple of this, namely

The straight line braces in this formula denote the absolute value of the
expression between them; the positive number with the same magnitude,
or size, as the value of the expression, or equivalently, the strictly positive
distance between it and 0.
Note that the admissible values of x will be precisely those for which the
graph has a vertical line; those that are equal to an integer multiplied by εn.

An upper bound for 

Before we start, however, we shall need an upper bound on the number of
rulers of length εn required to cover the graph of n, since we need to
ensure that the type we use to count them is large enough.
A simple curve that is guaranteed to be no shorter than n is one in which
for every number greater than or equal to 2i εn and less than 2i+1 εn is
associated with a vertical line of length 2i εn. The reason that this is an
upper bound is that above 0, there is no number that has negative infinity
factors or as many factors as the smallest power of 2 greater than or equal
to it. Hence at every point at which both curves have a vertical line that of
the upper bound curve must be the longer.

Figure 8

εn
1
2n
-----=

2Ω 2nx( ) 2Ω 2nx 1–( )– εn×

The circumference of a polygon with n sides is trivially n times the length
of each side, which for our measure of the circumference is equal to the
length of the ruler, εn, and which we can recover with a little trigonometry.

As n tends to infinity, so the length of our ruler, εn, tends to 0, enabling
us to express the box-counting dimension as

As n grows ever larger so π/n grows ever smaller and we can
approximate sin(π/n) with ever increasing accuracy using a few terms
of a Taylor’s series expansion in which a function is represented by a
polynomial with coefficients calculated from its derivatives

Here we use 1 dash to mean the first derivative, 2 dashes to mean the
second and (n) to mean the n’th, and the exclamation mark stands for
the factorial of the number preceding it, which is equal to the product of
every number from 1 up to and including that number.

Using just the first 2 terms with a equal to 0 to approximate the sine
function we have

The limit of our box-counting measure of the dimension of the
circumference of the unit circle now becomes

εn 2 1
2
---2π

n
------⎝ ⎠

⎛ ⎞sin× 2 π
n
---⎝ ⎠
⎛ ⎞sin×= =

nln
1
εn
-----ln

-----------
n ∞→
lim nln

εnln
----------–

n ∞→
lim nln

2 π
n
---⎝ ⎠
⎛ ⎞sinln+ln

-------------------------------------–
n ∞→
lim= =

f x( ) f a( ) f ′ a( ) x a–( ) 1
2
--- f ″ a( ) x a–( )2 ...

1
n!
-----f n( ) a( ) x a–( )n ...

+ + +

+ +

=

π
n
---⎝ ⎠
⎛ ⎞ 0( ) π

n
--- ′ 0( ) 0( ) π

n
--- 0( )

π
n
---=cos+sin=sin+sin≈sin

nln

2 π
n
---ln+ln

------------------------ nln
2 π nln–ln+ln

-------------------------------------- x
c x–
-----------–

x ∞→
lim=–

n ∞→
lim=–

n ∞→
lim 1=

Derivation 3

N εn( )
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FEATURE RICHARD HARRIS

a gross overestimate of the 
actual number of rulers we’ll 
need to cover the curve
We construct this curve by taking a value of 1 at 0 and then dropping to 0
and rising to the relevant power of 2 of εn at alternate steps of εn.
Figure 9 illustrates this curve for 4 in units of ε4.
The number of εn length rulers required to cover the horizontal lines in
this graph is trivially 2n. For the vertical lines, the calculation is a little more
complicated and results in approximately 22n-1 as shown in derivation 4.
Despite this being a gross overestimate of the actual number of rulers we’ll
need to cover the curve, we can be fairly sure that if we use inbuilt types
we shall overflow them in short order.
It seems reasonable, therefore, to create an accumulator type of our own
that won’t suffer from this problem, one that I shall imaginatively call
accumulator and whose definition is provided in listing 1.
The constructor is pretty trivial; we simply initialise the sum_ with a single
0 as shown below:

  accumulator::accumulator() : sum_(1, 0) {}

The operator+= member function requires a little more thought
however.
Recall that the C++ standard declares that arithmetic with unsigned integer
types cannot overflow and that arithmetic using n bit unsigned integer
types is performed modulo 2n [ANSI]. Any bits in the result of an
arithmetic expression that don’t fit into the unsigned integer type are
simply discarded and the result wraps around into the type’s valid range.
This is actually quite useful for us, since we’ll be keeping track of the
discarded bits ourselves and the correct value for our lowest unsigned
long digit is exactly the wrapped around result of the addition.
Noting that when an addition wraps around the result must be less than the
value that we are adding to our accumulator, listing 2 illustrates the
implementation of the in place addition operator.
Since an addition can only ever add 1 to the next most significant digit,
the loop we enter upon wrapping around simply checks whether
incrementing subsequent digits by 1 also wrap around, pushing a 1 onto
the end in the event that they all do.
The conversion to double is much simpler, as shown in listing 3. Here we
simply add up the elements of our accumulator as doubles of increasing
magnitude. It’s not as efficient as it might be since later digits may cause
the earlier ones to round off due to the limited precision of the double
type, meaning that some of the earlier calculations may be wasted.

Figure 9

Listing 1

  class accumulator
  {
  public:
    accumulator();
    accumulator & operator+=(unsigned long n);
    operator double() const;

  private:
    std::vector<unsigned long> sum_;
  };

Considering the 4 case will give us a hint as to how we might go about
counting the number of rulers.

The length of the vertical lines in this curve in units of 4 is given by

In general, the length of the vertical lines in the upper bound curve for

n is given by

and hence the total length of the upper bound curve is

since the sum is another example of a geometric series.

1 2 2 4 4 4 4 8 8 8 8 8 8 8 8 16+ + + + + + + + + + + + + + +
1 2 2 4 4 8 8 16+×+×+×+=

16 2i 2i×
i 0=

3

∑+=

16 4i

i 0=

3

∑+=

2n 4i

i 0=

n 1–

∑+

2n 2n 4i

i 0=

n 1–

∑+ + 2n 1+ 4i 2n 1+ 1
3
--- 4n 1–( ) 22n 1–≈+=

i 0=

n 1–

∑+=

Derivation 4
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FEATURERICHARD HARRIS
We shall rarely use the conversion though, so it’s really not worth making
the code more complicated to improve its efficiency.
So now we have all the pieces in place to calculate the box-counting
dimension of n. We will reuse the count_factors from the last article
as illustrated again in listing 4.

Recall that if a number has precisely 1 factor it is, by definition, prime and
we shall use this fact to update the sequence of primes whose first and last
iterators we’ll pass to subsequent calls to the count_factors function.
This time, however, we shall wish to push on to the very limits of
unsigned long and so shall need to take care that we do not fall foul
of the wrap around problems we identified in the previous part of this
article.
We shall do this by adding primes to our list when they are less than or
equal to the square root of the upper bound, or as it turns out the square
root of 1 less than it, rather than when their squares are less than or equal
to the upper bound itself.

Newton’s method for the integer square root
We shall calculate the integer square root using Newton’s method for
finding arguments at which functions return a value of 0, technically
known as roots.
Newton’s method is an iterative algorithm in which an initial estimate for
a root is repeatedly updated using the formula

where the dash after the f in the denominator indicates the derivative with
respect to its argument.
At each step, Newton’s method finds the root of a linear approximation of
the function in question, as demonstrated in derivation 5.
Newton’s method can fail to converge under certain conditions, but
thankfully these only arise at 0 when using it to calculate square roots.
The equation whose roots are the square roots of a given number a is simply

The first derivative of this function is 2x, meaning that Newton’s method
for finding the square root uses the iterative formula

I’m sure that some of you will have come across this algorithm for
computing square roots before, although you may not have seen its
derivation. I first learnt it from a book of mathematical tricks for the
primitive calculators of my youth, although I’m afraid I cannot remember
its name.
We implement this with the isqrt function, given in listing 5.
Note that we treat 0 as a special case and that rather than maintain the
estimate of the square root, we maintain the two terms that are averaged
to retrieve it, and that the iteration stops when these two terms differ by
no more than 1. At this point, therefore, one of them must be no larger than
the square root plus 1 and the other no smaller than the square root minus
1. Taking one final step ensures that we round down and can thus guarantee
that we choose the largest integer less than or equal to the root.

Listing 2

accumulator &
accumulator::operator+=(unsigned long n)
{
  assert(!sum_.empty());
  sum_.front() += n;
  if(sum_.front()<n)
  {
    std::vector<unsigned long>::iterator first =
       sum_.begin();
    std::vector<unsigned long>::iterator last  =
       sum_.end();

    while(++first!=last && ++*first==0);
    if(first==last)  sum_.push_back(1);
  }
  return *this;
}

Listing 3

accumulator::operator double() const
{
  static const int dig =
     std::numeric_limits<unsigned long>::digits;
  static const double base = pow(
     2.0, double(dig));
  std::vector<unsigned long>::
     const_iterator first = sum_.begin();
  std::vector<unsigned long>::
     const_iterator last  = sum_.end();
  double result = 0.0;
  double mult   = 1.0;
  while(first!=last)
  {
    result += mult * double(*first++);
    mult   *= base;
  }
  return result;
}

Listing 4

template<class FwdIt>
unsigned long
count_factors(unsigned long x, FwdIt first_prime,
   FwdIt last_prime)
{
  unsigned long count = 0;
  while(first_prime!=last_prime &&
     (*first_prime)*(*first_prime)<=x)
  {
    while(x%*first_prime==0)
    {
      ++count;
      x /= *first_prime;
    }
    ++first_prime;
  }
  if(x>1)  ++count;
  return count;
}

xi 1+ xi
f xi( )
f′ xi( )
------------–=

Using the first two terms of Taylor’s expansion as an approximation of f
we have

Solving for f(xi+1) equal to 0 yields

f xi 1+( ) f xi( ) f′ xi( ) xi 1+ xi–( )+≈

0 f xi( ) f′ xi( ) xi 1+ xi–( )+≈

xi 1+ xi–
f xi( )
f′ xi( )
------------≈

xi 1+ xi
f xi( )
f′ xi( )
------------–≈

Derivation 5

f x( ) x2 a–=

xi 1+ xi
xi

2 a–
2xi

---------------– xi
xi
2
----– a

2xi
-------+ 1

2
--- xi

a
xi
----+⎝ ⎠

⎛ ⎞= = =
October 2009 | Overload | 9



FEATURE RICHARD HARRIS
We can be sure that we won’t round down from the correct value for the
square root when it happens to be an integer, since the second term is
simply the argument divided by the first and so if one term is equal to the
root, the other must be also.
That I have bothered to implement an integer square root function rather
than casting to floating point and using the inbuilt square root function
might come as something of a surprise. In my defence I can assure you
that, at least on my machine, it is significantly faster. I cannot unfortunately
adequately explain why; I rather suspect it has something to do with stalling
the processor pipeline.

Counting the number of rulers
This time rather than print out the values of  n as we iterate over the
integers, we shall accumulate the number of rulers of length εn required
to cover their graphs and, if we have truly eliminated any possible
overflow, we shall be able to do so for every n up to the number of bits in
an unsigned long.
Recasting our formula for n in terms of our ruler’s length, εn, we have

since εn is just 1 divided by 2n. The vertical lines in its graph must lie at
points where x is an integer multiple of εn and will have length equal to
the positive difference in the function’s value at that point and its value at
the previous integer multiple of εn.
Noting that at 0, n has a value of 0, and that every subsequent vertical
line is preceded by a horizontal line of length εn, the total length of the
graph must be equal to

The number of rulers of length εn required to cover the graph is therefore
this expression divided by εn:

A C++ implementation of this calculation, named count_rulers, is
presented in listing 6.
Once again, we’ve had to jump through several hoops to ensure that we
can never encounter integer wrap around, as enumerated below.
Firstly, we bail out with an exception if n exceeds the number of bits in an
unsigned long, since this is the maximum value for which we will be
able to represent every non-negative integer less than 2n.
Secondly, we set the upper bound of the iteration to 2n-1, rather than 2n,
since the latter might be equal to 0. Note that we must treat n equal to the
number of bits in an unsigned long as a special case since the shift
operator irritatingly results in undefined behaviour if we shift by that many

bits. I had failed to account for this in my original treatment and my
compiler exacerbated my error by both failing to warn me and by doing
exactly what I expected. Fortunately the ACCU conference delegates were
far more standards compliant and pointed out my mistake. It just goes to
show how fiddly dealing with numeric types can be.
Thirdly, we use an integer square root rather than the square of the current
integer to determine whether an integer with just 1 factor is small enough
to be added to our list of primes. Once again 2n might be equal to 0 so we’re
forced to use the square root of 2n-1 instead. For n greater than 2, this
always yields the correct upper bound since in these cases the square root
of 2n is a compound number; specifically a power of 2. Fortunately, for n
equal to 2 or less, every number less than 2n must be 0, 1 or prime, so we
won’t actually need the list of primes during the calculation.
Finally, since we have not included the final term of the sum during the
iteration, we add it after the iteration has completed. For any n greater than
0, we can be sure that the penultimate term of n is not equal to 0, so the
final addition to our accumulator must involve a number strictly less
than 2n. 
Phew!
So are we finally ready to calculate the fractal dimension of ∞?
Well yes, dear reader, at long last we are. However, I have unfortunately
run out of space and so the final analysis shall have to wait until next time. 
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Listing 5

unsigned long
isqrt(unsigned long n)
{
  if(n==0)  return 0;
  unsigned long a0 = 2;
  unsigned long a1 = n/2;
  do
  {
    a0 = (a0+a1)/2;
    a1 = n/a0;
  }
  while((a0<a1) ? (a1-a0>1) : (a0-a1>1));
  return (a0+a1)/2;
}

x( )n εn2
Ω x

εn
-----⎝ ⎠

⎛ ⎞

= x 0 1,[ ]∈

εn εn 2Ω i( ) 2Ω i 1–( )–+
i 1=

2n

∑

N εn( ) 1 2Ω i( ) 2Ω i 1–( )–+
i 1=

2n

∑=

Listing 6

double
count_rulers(unsigned long n)
{
  static const int dig =
     std::numeric_limits<unsigned long>::digits;
  if(n>dig)  throw std::invalid_argument("");
  const unsigned long upper_bound =
    ((n==dig) ? 0UL : (1UL<<n))-1UL;
  const unsigned long max_prime   =
    isqrt(upper_bound);
  accumulator acc;
  std::vector<unsigned long> primes;
  unsigned long prev = 0;
  unsigned long i = 0;

  while(i!=upper_bound)
  {
    ++i;
    const unsigned long f = count_factors(i,
       primes.begin(), primes.end());
    const unsigned long curr = 1UL<<f;
    const unsigned long len  =
       (curr>prev) ? curr-prev : prev-curr;
    if(i<=max_prime && f==1) primes.push_back(i);
    acc += 1;
    acc += len;
    prev = curr;
  }
  acc += 1;
  acc += upper_bound+1-prev;
  return double(acc);
}
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Multi-threading in C++0x
Threading support is being added to C++. Anthony 
Williams introduces us to the new facilities.
oncurrency and multithreading is all about running multiple pieces
of code in parallel. If you have the hardware for it in the form of a
nice shiny multi-core CPU or a multi-processor system then this code

can run truly in parallel, otherwise it is interleaved by the operating system
– a bit of one task, then a bit of another. This is all very well, but somehow
you have to specify what code to run on all these threads.
High level constructs such as the parallel algorithms in Intel’s Threading
Building Blocks [Intel]  manage the division of code between threads for
you, but we don’t have any of these in C++0x. Instead, we have to manage
the threads ourselves. The tool for this is std::thread. (For full
documentation of this and the rest of the library, see my implementation
at  [JustThread]).

Running a simple function on another thread
Let’s start by running a simple function on another thread, which we do
by constructing a new std::thread object, and passing in the function
to the constructor. std::thread lives in the <thread> header, so we’d
better include that first (Listing 1).

If you compile and run this little app, it won’t do a lot: though it starts a
new thread, the thread function is empty. What it will do is terminate with
an unclean shutdown because we started a thread and then destroyed the
std::thread object without waiting. Leaving that aside for a moment,
let’s make it do something, such as print "hello" (Listing 2). 
If you compile and run this little application, what happens? Does it print
hello like we wanted? Well, actually there’s no telling. It might do or it
might not. I ran this simple application several times on my machine, and

the output was unreliable: sometimes it output "hello", with a newline;
sometimes it output "hello" without a newline, and sometimes it didn’t
output anything. What’s up with that? Surely a simple app like this ought
to behave predictably?

Waiting for threads to finish
Well, actually, no, this app does not have predictable behaviour. The
problem is we’re not waiting for our thread to finish. When the execution
reaches the end of main() the program is terminated, whatever the other
threads are doing. Since thread scheduling is unpredictable, we cannot
know how far the other thread has got. It might have finished, it might have
output the "hello", but not processed the std::endl yet, or it might
not have even started. In any case it will be abruptly stopped as the
application exits.
If we want to reliably print our message, we have to ensure that our thread
has finished. We do that by joining with the thread by calling the join()
member function of our thread object (Listing 3). 
Now, main() will wait for the thread to finish before exiting, and the code
will output "hello" followed by a newline every time. This highlights a
general point: if you want a thread to have finished by a certain point
in your code you have to wait for it. As well as ensuring that threads have
finished by the time the program exits, this is also important if a thread
has access to local variables: we want the thread to have finished before
the local variables go out of scope. It’s also necessary to avoid the unclean
shutdown – if you haven’t called join() or explicitly declared that you’re
not going to wait for the thread by calling detach(), then the
std::thread destructor calls std::terminate().

C

Listing 1

#include <thread>
void my_thread_func()
{}
int main()
{
  std::thread t(my_thread_func);
}

Listing 2

#include <thread>
#include <iostream>
void my_thread_func()
{
    std::cout<<"hello"<<std::endl;
}
int main()
{
    std::thread t(my_thread_func);
}

Listing 3

#include <thread>
#include <iostream>

void my_thread_func()
{
  std::cout<<"hello"<<std::endl;
}

int main()
{
  std::thread t(my_thread_func);
  t.join();
}

Anthony Williams is the Managing Director of Just Software 
Solutions Ltd, where he mainly develops custom software for 
clients. He maintains the Boost Thread Library, and has 
considerable experience with writing high-quality multi-
threaded software in C++. He can be contacted at 
anthony@justsoftwaresolutions.co.uk
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this is one way of passing data to the thread 
function: pass it in as a constructor 
argument and store it as a data member
Running a function object on another thread
It would be quite limiting if new threads were constrained to run plain
functions without any arguments – all the information needed would have
to be passed via global variables, which would be incredibly messy.
Thankfully, this is not the case. 
In keeping with the rest of the C++ standard library, you’re not limited to
plain functions when starting threads – the std::thread constructor can
also be called with instances of classes that implement the function-call
operator. Let’s say "hello" from our new thread using a function object
(Listing 4).
If you’re wondering about the extra parentheses around the SayHello
constructor call, this is to avoid what’s known as C++’s most vexing parse:
without the parentheses, the declaration is taken to be a declaration of a
function called t which takes a pointer-to-a-function-with-no-
parameters-returning-an-instance-of-SayHello, and which returns a
std::thread  object ,  rather than an object called t  of type
std::thread. There are a few other ways to avoid the problem. Firstly,
you could create a named variable of type SayHello and pass that to the
std::thread constructor:
  int main()
  {
    SayHello hello;
    std::thread t(hello);
    t.join();
  }

Alternatively, you could use copy initialization: 
  int main()
  {
    std::thread t=std::thread(SayHello());
    t.join();
  }

And finally, if you’re using a full C++0x compiler then you can use the
new initialization syntax with braces instead of parentheses: 
  int main()
  {
    std::thread t{SayHello()};
    t.join();
  }

In this case, this is exactly equivalent to our first example with the double
parentheses.
Anyway, enough about initialization. Whichever option you use, the idea
is the same: your function object is copied into internal storage accessible
to the new thread, and the new thread invokes your operator(). Your
class can of course have data members and other member functions too,
and this is one way of passing data to the thread function: pass it in as a
constructor argument and store it as a data member (Listing 5).
In this example, our message is stored as a data member in the class, so
when the Greeting instance is copied into the thread the message is
copied too, and this example will print "goodbye" rather than "hello".
This example also demonstrates one way of passing information in to the
new thread aside from the function to call – include it as data members of
the function object. If this makes sense in terms of the function object then
it's ideal, otherwise we need an alternate technique.

Passing arguments to a thread function
As we’ve just seen, one way to pass arguments in to the thread function is
to package them in a class with a function call operator. Well, there’s no

Listing 4

#include <thread>
#include <iostream>

class SayHello
{
public:
  void operator()() cons
  {
    std::cout<<"hello"<<std::endl;
  }
};

int main()
{
  std::thread t((SayHello()));
  t.join();
}

Listing 5

#include <thread>
#include <iostream>
#include <string>

class Greeting
{
  std::string message;
public:
  explicit Greeting(std::string const& message_):
    message(message_)
    {}
    void operator()() const
    {
      std::cout<<message<<std::endl;
    }
};

int main()
{
  std::thread t(Greeting("goodbye"));
  t.join();
}
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if you need to pass more than a couple of
parameters to your thread function then

you might like to rethink your design
need to write a special class every time; the standard library provides an
easy way to do this in the form of std::bind. The std::bind function
template takes a variable number of parameters. The first is always the
function or callable object which needs the parameters, and the remainder
are the parameters to pass when calling the function. The result is a
function object that stores copies of the supplied arguments, with a
function call operator that invokes the bound function. We could therefore
use this to pass the message to write to our new thread (Listing 6).
This works well, but we can actually do better than that – we can pass the
arguments directly to the std::thread constructor and they will be
copied into the internal storage for the new thread and supplied to the
thread function. We can thus write the preceding example more simply as
in Listing 7.
Not only is this code simpler, it’s also likely to be more efficient as the
supplied arguments can be copied directly into the internal storage for the
thread rather than first into the object generated by std::bind, which is
then in turn copied into the internal storage for the thread.
Multiple arguments can be supplied just by passing further arguments to
the std::thread constructor (Listing 8).
The std::thread constructor is a variadic template, so it can take any
number of arguments up to the compiler’s internal limit, but if you need

to pass more than a couple of parameters to your thread function then you
might like to rethink your design.

Invoking a member function on a new thread
What if you wish to run a member function other than the function call
operator?
To start a new thread which runs a member function of an existing object,
you just pass a pointer to the member function and a value to use as the
this pointer for the object in to the std::thread constructor. (Listing 9)
You can of course pass additional arguments to the member function too
(Listing 10).
Now, the preceding examples both use a plain pointer to a local object for
the this argument; if you’re going to do that, you need to ensure that the
object outlives the thread, otherwise there will be trouble. An alternative
is to use a heap-allocated object and a reference-counted pointer such as

Listing 6

#include <thread>
#include <iostream>
#include <string>
#include <functional>
void greeting(std::string const& message)
{
  std::cout<<message<<std::endl;
}
int main()
{
  std::thread t(std::bind(greeting,"hi!"));
  t.join();
}

Listing 7

#include <thread>
#include <iostream>
#include <string>
void greeting(std::string const& message)
{
  std::cout<<message<<std::endl;
}
int main()
{
  std::thread t(greeting,"hi!");
  t.join();
}

Listing 8

#include <thread>
#include <iostream>
void write_sum(int x,int y)
{
  std::cout<<x<<" + "<<y<<" =
     "<<(x+y)<<std::endl;
}

int main()
{
  std::thread t(write_sum,123,456);
  t.join();
}

Listing 9

#include <thread>
#include <iostream>
class SayHello
{
public:
  void greeting() const
  {
    std::cout<<"hello"<<std::endl;
  }
};
int main()
{
  SayHello x;
  std::thread t(&SayHello::greeting,&x);
  t.join();
}

October 2009 | Overload | 13



FEATURE ANTHONY WILLIAMS

What if you want to pass in a reference to an 
existing object, and a pointer just won’t do?
std::shared_ptr<SayHello> to ensure that the object stays around
as long as the thread does:
  #include <thread>
  int main()
  {
    std::shared_ptr<SayHello> p(new SayHello);
    std::thread t(&SayHello::greeting,p,"goodbye");
    t.join();
  }

So far, everything we’ve looked at has involved copying the arguments and
thread functions into the internal storage of a thread even if those
arguments are pointers, as in the this pointers for the member functions.
What if you want to pass in a reference to an existing object, and a pointer
just won’t do? That is the task of std::ref.

Passing function objects and arguments to a thread 
by reference
Suppose you have an object that implements the function call operator, and
you wish to invoke it on a new thread. The thing is you want to invoke the
function call operator on this particular object rather than copying it. You
could use the member function support to call operator() explicitly, but
that seems a bit of a mess given that it is callable already. This is the first
instance in which std::ref can help – if x is a callable object, then
std::ref(x) is too, so we can pass std::ref(x) as our function when
we start the thread, as Listing 11.
In this case, the function call operator just prints the address of the object.
The exact form and values of the output will vary, but the principle is the
same: this little program should output three lines. The first two should be
the same, whilst the third is different, as it invokes the function call
operator on a copy of x. For one run on my system it printed the following:

  this=0x7fffb08bf7ef
  this=0x7fffb08bf7ef
  this=0x42674098

Of course, std::ref can be used for other arguments too – the code in
Listing 12 will print "x=43".
When passing in references like this (or pointers for that matter), you need
to be careful not only that the referenced object outlives the thread, but also
that appropriate synchronization is used. In this case it is fine, because we
only access x before we start the thread and after it is done, but concurrent
access would need protection with a mutex.

Listing 10

#include <thread>
#include <iostream>
class SayHello
{
public:
  void greeting(std::string const& message) const
  {
    std::cout<<message<<std::endl;
  }
};
int main()
{
  SayHello x;
  std::thread t(
     &SayHello::greeting,&x,"goodbye");
  t.join();
}

Listing 11

#include <thread>
#include <iostream>
#include <functional> // for std::ref

class PrintThis
{
public:
  void operator()() const
  {
    std::cout<<"this="<<this<<std::endl;
  }
};
int main()
{
  PrintThis x;
  x();
  std::thread t(std::ref(x));
  t.join();
  std::thread t2(x);
  t2.join();
}

Listing 12

#include <thread>
#include <iostream>
#include <functional>

void increment(int& i)
{
  ++i;
}

int main()
{
  int x=42;
  std::thread t(increment,std::ref(x));
  t.join();
  std::cout<<"x="<<x<<std::endl;
}
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There are several consequences to being
able to transfer ownership of a mutex lock
Protecting shared data with std::mutex
We have seen how to start threads to perform tasks ‘in the background’,
and wait for them to finish. You can accomplish a lot of useful work like
this, passing in the data to be accessed as parameters to the thread function,
and then retrieving the result when the thread has completed. However, this
won’t do if you need to communicate between the threads whilst they are
running – accessing shared memory concurrently from multiple threads
causes undefined behaviour if either thread modifies the data. What you
need here is some way of ensuring that the accesses are mutually exclusive,
so only one thread can access the shared data at a time.
Mutexes are conceptually simple. A mutex is either ‘locked’ or ‘unlocked’,
and threads try and lock the mutex when they wish to access some
protected data. If the mutex is already locked then any other threads that
try and lock the mutex will have to wait. Once the thread is done with the
protected data it unlocks the mutex, and another thread can lock the mutex.
If you make sure that threads always lock a particular mutex before
accessing a particular piece of shared data then other threads are excluded
from accessing the data until as long as another thread has locked the
mutex. This prevents concurrent access from multiple threads, and avoids
the undefined behaviour of data races. The simplest mutex provided by
C++0x is std::mutex, which lives in the <mutex> header along with
the other mutex types and the lock classes.
Now, whilst std::mutex has member functions for explicitly locking
and unlocking, by far the most common use case in C++ is where the mutex
needs to be locked for a specific region of code. This is where the
std::lock_guard<> template comes in handy by providing for exactly
this scenario. The constructor locks the mutex, and the destructor unlocks
the mutex, so to lock a mutex for the duration of a block of code, just
construct a std::lock_guard<> object as a local variable at the start
of the block. For example, to protect a shared counter you can use
std::lock_guard<> to ensure that the mutex is locked for either an
increment or a query operation, as in Listing 13.
This ensures that access to counter is serialized – if more than one thread
calls query() concurrently then all but one will block until the first has

exited the function, and the remaining threads will then have to take turns.
Likewise, if more than one thread calls increment() concurrently then
all but one will block. Since both functions lock the same mutex, if one
thread calls query() and another calls increment() at the same time
then one or other will have to block. This mutual exclusion is the whole
point of a mutex.

Exception safety and mutexes
Using std::lock_guard<> to lock the mutex has additional benefits
over manually locking and unlocking when it comes to exception safety.
With manual locking, you have to ensure that the mutex is unlocked
correctly on every exit path from the region where you need the mutex
locked, including when the region exits due to an exception. Suppose for
a moment that instead of protecting access to a simple integer counter we
were protecting access to a std::string, and appending parts on the
end. Appending to a string might have to allocate memory, and thus might
throw an exception if the memory cannot be allocated. With
std::lock_guard<> this still isn’t a problem – if an exception is
thrown, the mutex is still unlocked. To get the same behaviour with manual
locking we have to use a catch block, as shown in Listing 14.
If you had to do this for every function which might throw an exception it
would quickly get unwieldy. Of course, you still need to ensure that the
code is exception-safe in general – it’s no use automatically unlocking the
mutex if the protected data is left in a state of disarray.Listing 13

#include <mutex>
std::mutex m;
unsigned counter=0;
unsigned increment()
{
  std::lock_guard<std::mutex> lk(m);
  return ++counter;
}
unsigned query()
{
  std::lock_guard<std::mutex> lk(m);
  return counter;
}

Listing 14

#include <mutex>
#include <string>
std::mutex m;
std::string s;
void append_with_lock_guard(
   std::string const& extra)
{
  std::lock_guard<std::mutex> lk(m);
  s+=extra;
}
void append_with_manual_lock(
   std::string const& extra)
{
  m.lock();
  try
  {
    s+=extra;
    m.unlock();
  }
  catch(...)
  {
    m.unlock();
    throw;
  }
}
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The ability to transfer lock ownership 
between instances also provides an easy way 
to write classes that are themselves movable
Flexible locking with std::unique_lock<>
Whilst std::lock_guard<> is basic and rigid in its usage, its
companion class template –  std::unique_lock<> – is more flexible.
At the most basic level you use it like std::lock_guard<> – pass a
mutex to the constructor to acquire a lock, and the mutex is unlocked in
the destructor – but if that’s all you’re doing then you really ought to use
std::lock_guard<> instead. There are two primary benefits to using
std::unique_lock<> over std::lock_guard<>:

1. you can transfer ownership of the lock between instances, and 
2. the std::unique_lock<> object does not have to own the lock

on the mutex it is associated with. 
Let’s take a look at each of these in turn, starting with transferring
ownership.

Transferring ownership of a mutex lock between 
std::unique_lock<> instances
There are several consequences to being able to transfer ownership of a
mutex lock between std::unique_lock<> instances: you can return a
lock from a function, you can store locks in standard containers, and so
forth. 
For example, you can write a simple function that acquires a lock on an
internal mutex:
  std::unique_lock<std::mutex> acquire_lock()
  {
    static std::mutex m;
    return std::unique_lock<std::mutex>(m);
  }

The ability to transfer lock ownership between instances also provides an
easy way to write classes that are themselves movable, but hold a lock
internally, such as Listing 15.:
In this case, the function lock_data() acquires a lock on the mutex used
to protect the data, and then transfers that along with a pointer to the data
into the data_handle. This lock is then held by the data_handle until
the handle is destroyed, allowing multiple operations to be done on the data
without the lock being released. Because the std::unique_lock<> is

Listing 15

#include <mutex>
#include <utility>
class data_to_protect
{
public:
  void some_operation();
  void other_operation();
};
class data_handle
{
private:
  data_to_protect* ptr;

Listing 15 (cont’d)

  std::unique_lock<std::mutex> lk;
  friend data_handle lock_data();
  data_handle(data_to_protect* ptr_,
     std::unique_lock<std::mutex> lk_):
     ptr(ptr_),lk(lk_)
  {}

public:
  data_handle(data_handle && other):
     ptr(other.ptr),lk(std::move(other.lk))
  {
    other.ptr=0;
  }
  data_handle& operator=(data_handle && other)
  {
    if(&other != this)
    {
      ptr=other.ptr;
      lk=std::move(other.lk);
      other.ptr=0;
    }
    return *this;
  }
  void do_op()
  {
    ptr->some_operation();
  }
  void do_other_op()
  {
    ptr->other_operation();
  }
};

data_handle lock_data()
{
  static std::mutex m;
  static data_to_protect the_data;
  std::unique_lock<std::mutex> lk(m);
  return data_handle(&the_data,std::move(lk));
}

int main()
{
  data_handle dh=lock_data(); // lock acquired
  dh.do_op();                 // lock still held
  dh.do_other_op();           // lock still held
  data_handle dh2;
  dh2=std::move(dh);          // transfer lock to
                              //other handle
    dh2.do_op();              // lock still held
}                             // lock released
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movable, it is easy to make data_handle movable too, which is
necessary to return it from lock_data.
Though the ability to transfer ownership between instances is useful, it is
by no means as useful as the simple ability to be able to manage the
ownership  of  the  lock separa te ly  f rom the  l i fe t ime of  the
std::unique_lock<> instance.

Explicit locking and unlocking a mutex with a 
std::unique_lock<>
As we saw in earlier, std::lock_guard<> is very strict on lock
ownership – it owns the lock from construction to destruction, with no
room for manoeuvre. std::unique_lock<>  is rather lax in
comparison. As well as acquiring a lock in the constructor as for
std::lock_guard<>, you can:

construct an instance without an associated mutex at all (with the
default constructor); 
construct an instance with an associated mutex, but leave the mutex
unlocked (with the deferred-locking constructor); 
construct an instance that tries to lock a mutex, but leaves it
unlocked if the lock failed (with the try-lock constructor); 
if you have a mutex that supports locking with a timeout (such as
std::timed_mutex) then you can construct an instance that tries
to acquire a lock for either a specified time period or until a specified
point in time, and leaves the mutex unlocked if the timeout is
reached; 
lock the associated mutex if the std::unique_lock<> instance
doesn't currently own the lock (with the lock() member function); 
try and acquire lock the associated mutex if the
std::unique_lock<> instance doesn’t currently own the lock
(possibly with a timeout, if the mutex supports it) (with the
try_lock(), try_lock_for() and try_lock_until()
member functions); 
unlock the associated mutex if the std::unique_lock<> does
currently own the lock (with the unlock() member function); 
check whether the instance owns the lock (by calling the
owns_lock() member function; 
release the association of the instance with the mutex, leaving the
mutex in whatever state it is currently (locked or unlocked) (with the
release() member function); and 
transfer ownership between instances, as described above. 

As you can see, std::unique_lock<> is quite flexible: it gives you
complete control over the underlying mutex, and actually meets all the
requirements for a Lockable object itself. You can thus have a
std::unique_lock<std::unique_lock<std::mutex>> if you
really want to! However, even with all this flexibility it still gives you
exception safety: if the lock is held when the object is destroyed, it is
released in the destructor.

std::unique_lock<> and condition variables
One place where the flexibility of std::unique_lock<> is used is with
std::condition_variable. std::condition_variable
provides an implementation of a condition variable, which allows a thread
to wait until it has been notified that a certain condition is true. When
waiting you must pass in a std::unique_lock<> instance that owns a
lock on the mutex protecting the data related to the condition. The
condition variable uses the flexibility of std::unique_lock<> to
unlock the mutex whilst it is waiting, and then lock it again before returning
to the caller. This enables other threads to access the protected data whilst
the thread is blocked. A full discussion of condition variables is a complete
article in itself, so we’ll leave it for now.

Other uses for flexible locking
The key benefit of the flexible locking is that the lifetime of the lock object
is independent from the time over which the lock is held. This means that
you can unlock the mutex before the end of a function is reached if certain
conditions are met, or unlock it whilst a time-consuming operation is
performed (such as waiting on a condition variable as described above) and
then lock the mutex again once the time-consuming operation is complete.
Both these choices are embodiments of the common advice to hold a lock
for the minimum length of time possible without sacrificing exception
safety when the lock is held, and without having to write convoluted code
to get the lifetime of the lock object to match the time for which the lock
is required.
For example, in the following code snippet the mutex is unlocked across
the time-consuming load_strings() operation, even though it must be
held either side to access the strings_to_process variable
(Listing 16).
Note that here we are relying on update_strings() being the only
function that can add strings to the list, and that it is only run on one thread
– if it may be called from multiple threads concurrently then we need to
ensure that load_strings() is itself thread-safe, and that the behaviour
is as desired. For example, if you only want one thread to call
load_strings() then additional checks may be required. In general, if
you unlock a mutex then you need to assume that the protected data has
changed when you acquire the lock again.

Summary
In C++0x, you manage threads with the std::thread class. There are
a variety of ways of starting a thread, but only one way to wait for it to
finish – the join() member function. If you forget to join your threads
then the runtime library will remind you by forcibly terminating your
application.
Once you’ve got your threads up and running, you need to ensure that any
shared data is correctly synchronized, and the most basic way to do that is
with a mutex such as std::mutex. The safest way to lock a mutex is with
an instance of std::lock_guard<>, though occasionally the flexibility
of std::unique_lock<> might be needed. 
Mutexes aren’t the only way to synchronize data in C++0x, and there are
other ways of acquiring locks than just std::lock_guard<> and
std::unique_lock<>, but those will have to wait for another time. 

References
[Intel]  http://www.threadingbuildingblocks.org/
[JustThread]  http://www.stdthread.co.uk/doc/

Listing 16

std::mutex m;
std::vector<std::string> strings_to_process;
void update_strings()
{
  std::unique_lock<std::mutex> lk(m);
  if(strings_to_process.empty())
  {
    lk.unlock();
    std::vector<std::string>
       local_strings=load_strings();
    lk.lock();
    strings_to_process.insert(
       strings_to_process.end(),
       local_strings.begin(),
       local_strings.end());
  }
}
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Quality Matters: Correctness, 
Robustness and Reliability
What do we mean by quality? Matthew Wilson considers 
some definitions.
n the previous instalment I defined correctness as ‘the degree to which
a software entity’s behaviour matches its specification’ [QM-1], but
didn’t offer definitions of robustness or reliability. This time I’m going

to take the plunge and attempt definitions of them. I embark on a (possibly
deranged) attempt to equate computing with the worlds of Newtonian and
Quantum Physics, along with the somewhat more obvious parallel drawn
between the behaviour of software systems and chaos theory. 
I’ll do my best to keep my feet on planet Earth by using examples from
real-world experience, illustrating how some software entities can be
established to be correct, but the best we can hope for with most is to ensure
adequate levels of robustness. I’ll also comment on why correctness may
be of no interest to non-programmers, and reliability is not of much interest
to programmers.
Weaving together a cogent narrative for this instalment has been
exceedingly difficult, and you may well feel that it’s escaped me. If so, all
I can say is watch out for the instalment on contract programming!

Extant definitions
Before I can begin to pontificate about robustness and reliability, I need
to consider the definitions that currently exist in the canon.

The Shorter Oxford English Dictionary (SOED) [SOED] gives the
following definitions:

Correct: Free from error; accurate; in accordance with fact, truth, or
reason. Conforming to acknowledged standards of style, manners,
or behaviour; proper.
Robust: Strong and sturdy in physique or construction. Involving or
requiring bodily or mental strength or hardiness. Strong, vigorous,
healthy; not readily damaged or weakened.
Reliable: That which may be relied on; in which reliance or
confidence may be put; trustworthy, safe, sure.

Steve McConnell [CC] gives these definitions:
Correctness: The degree to which a system is free from [defects] in
its specification, design, and implementation.
Robustness: The degree to which a system continues to function in
the presence of invalid inputs or stressful environmental conditions.
Reliability: The ability of a system to perform its requested
functions under stated conditions whenever required – having a long
mean time between failures.

Bertrand Meyer [OOSC] gives these definitions:
Correctness: The ability of software products to perform their exact
tasks, as defined by their specification.
Robustness: The ability of software systems to react appropriately
to abnormal conditions.
Reliability: A concern encompassing correctness and robustness.

As is probably quite obvious, my definition of correctness is informed by
these definitions, which I’ve examined many times previously. The
important aspect taken from Meyer’s definition [OOSC] is that correctness
is relative to a specification. Indeed, Meyer states this most clearly in his
Software Correctness Property [OOSC]:

Software Correctness Property: Correctness is a relative
notion

Without a specification against which to compare behaviour, the notion of
correctness is meaningless.
The important aspect taken from McConnell [CC] is that correctness is a
variable notion, and that a software entity's behaviour may correspond to
a specification to a certain degree. At first blush this may seem a bizarre
idea. Certainly, a software entity that is known to fail to meet its
specification is defective (aka incorrect), plain and simple. From the
perspective of a potential user of a software entity, that its creator (or any
other agent) may volunteer that it is 50% correct or 90% correct is of no
use, because such figures, even if obtained by repeatable quantitative
measurements, e.g. unit-tests, cannot be meaningfully used in the
calculation of quantitative failure probabilities of a software system built
from the offending entity. We’ll discuss why in the next section.
Beyond this, there are other, serious, objections to attempting to make use
of a software entity that is known to be defective – something known as
the Principle of Irrecoverability – but those discussions will have to wait
until another time.
So what is the purpose of considering correctness as a quantitative concept
(in addition to its being a relative one)? Well, there are the practical
benefits to the producers of a software entity in being able to quantify its
degree of divergence from a specification. Of course, we all know that any
given defect can, upon cursory examination, appear to be of the same
magnitude (of corrective development effort) as another, and yet take two,
five, ten, sometimes hundreds of times longer to correct. But averaged out
over the course of a project, team, career, there is a usefulness to being able
to quantify. Certainly, when I’m developing software libraries, I can take
the temperature for the project velocity (if you’ll pardon the atrocious
mixing of my metaphors) via the defect fix rate in a new (or regressive)
group of tests.
But all of the foregoing paragraph, while having some utility to our
consideration of the subject, is pretty pedestrian stuff, infused with more
than a whiff of equivocation. It could even be taken as an invitation to
debates I’m not much interested in having. In point of fact, we needn’t care
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about this stuff, because there’s a point of far greater significance in
eschewing the speciously attractive binary notion of correctness. Simply,
a given software entity can exist in three apparent states of correctness:

correct. It has been established correct against its specification
defective. It has been established incorrect against its specification
unknown. Its correctness has not been established against a
specification

The third state is somewhat like poor old Schrödinger’s cat [GRIBBIN],
who is neither dead nor alive until examined. So too, software can be
correct, or defective, or neither (known to be) correct nor defective. The
latter state collapses into exactly one of the former when it is evaluated
against a specification.
In this instalment I’m going to consider the notion that most, perhaps all,
software systems are built up from layers of abstraction most of which are
in the disconcerting third state of uncertain correctness. Furthermore, I’m
going to argue that software has to be like this, and that’s what makes it
challenging, fun, and not a little frightening.
(Note: I’m still not going to discuss the definitions of what a specification
is in this instalment. What a tease …)

Exactitude, non-linearity, Newtonian software, 
quantum execution environments, and why Software 
Development is not an engineering discipline.
A perennial debate within (and without) the software community is
whether software development is an engineering discipline, and, if not,
why not. Well, despite plentiful (mis)use of the term ‘software engineer’
in my past, I’m increasingly moving over to the camp of those whose
opinion is that it is not an engineering discipline. To illustrate why I’m
going to draw from three of my favourite branches aspects of science:
Newtonian physics, Chaos theory, and Quantum physics, with a modicum
of logic thrown in for good measure.

The Unpredictable Exactitude Paradox
As my career has progressed – both as practitioner (programmer,
consultant) and as (imperfect) philosopher (author, columnist) – the issues
around software quality have grown in importance to me. The one that
confounds and drives me more than all others is (what I believe to be) the
central dichotomy of  software system behaviour:

The Unpredictable Exactitude Paradox: Software entities are
exact and act precisely as they are programmed to do, yet the
behaviour of (non-trivial) computer systems cannot be precisely
understood, predicted, nor relied upon to refrain from exhibiting
deleterious behaviour.

Note that I say programmed to do, not designed to do, because a design
and its reification into program form are often, perhaps mostly, perhaps
always, divergent. Hence the purpose of this column, and, to a large extent,
the purposes of our careers. (The issue of the commonly defective
transcription of requirements to design to code will have to wait for another
time.)
Consider the behaviour of the computer on which I’m writing this epistle.
Assuming perfect hardware, it’s still the case that the sequence of actions
– involving processor, memory, disk, network – carried out on this
machine during the time I’ve written this paragraph have never been
performed before, and that it is impossible to rely on the consequences of
those actions. And that is despite the fact that the software is doing exactly
what it’s been programmed to do.
I mentioned earlier that the relationship between the size/number of defects
and the effort involved to remedy them is not linear. This non-linearity is
also to be seen in the relationship between the size/number of defects and
their effects. Essentially, this is because software operates on the certain,
strict interpretation of binary states, and there are no natural attenuating

mechanisms in software at the scale of these states. If one Iron atom in a
bridge is replaced by, say, a Molybdenum atom, the bridge will not
collapse, nor exhibit any measurable difference in its ability to be a bridge.
Conversely, an errant bit in a given process may have no effect whatsoever,
or may manifest benignly (e.g. a slightly different hue in one pixel in a
picture), or may have major consequences (e.g. sending confidential
information to the wrong customer).
We, as software developers, need language to support our reasoning and
communication about software, and it must address this paradox,
otherwise we’ll be stuck in fruitless exchanges, often between
programmers and non-programmers (clients, users, project managers),
each of whom, I believe, tend to think and see the software world at
different scales. I will continue the established use of the term correctness
to represent exactitude. And I will, influenced somewhat by Meyer and
McConnell, use the terms robustness and reliability in addressing the
inexact, unpredictable, real behaviour of software entities.

Bet-Your-Life?: review
Let’s look at some code. Remember the first of the Bet-Your-Life? Test
cases from the last instalment [QM-1]:
  bool invert(bool value);

We can implement this easily, as follows:
  bool invert(bool value)
  {
    return !value;
  }

In fact, it’d be pretty hard to write any implementation other than this.
Certainly there are plenty of (possibly apocryphal) screeds of long-winded
alternative implementations available on the web (such as on
www.thedailywtf.com), but pretty much any functionally correct
implementation that does not involve fatuous complexity/dependencies –
such as converting value to string and them using strcmp() against "0"
or "1" – will evaluate to the following pseudo-machine code in Listing 1.
With languages that have a bona-fide Boolean type, such as Java and C#,
the value may not need to be compared against 0, and may well be
implemented as equal to true (or to false). Other languages such as C
and C++ represent (for historical and performance reasons [IC++]) a
notional Boolean false value as being 0, and a notional Boolean true value
as being all non-0 values. In those, comparison against zero is necessary,
even for their built-in bool types! In either case, it’s almost impossible to
implement this function incorrectly.
If we permit ourselves the luxury of assuming a correctly functioning
execution environment, then without recourse to any automated
techniques, or even to a detailed written specification, we may reasonably
assert the correctness of this function by visual inspection.
Now consider the definition of strcmp(), the second Bet-Your-Life?
Test case:
  int strcmp(char const* lhs, char const* rhs);

Listing 1

bool invert(register bool value)
{
  register bool result;
  if(0 != value)
  {
    result = 0;
  }
  else
  {
    result = 1;
  }
  return result;
}
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Here’s an implementation I knocked up during the preparation of this
instalment, without recourse to any I’ve written in the past (or to various
open-source and commercial implementations).
  int strcmp(char const* s1, char const* s2)
  {
    for(; '\0' != *s1 && *s1 == *s2; ++s1, ++s2)
    {}
    return (int)(unsigned char)*s1 - (int)(
       unsigned char)*s2; /* C99: 7.21.4(1) */ 
  }

Notwithstanding an issue I had with the signedness of the comparison (see
sidebar), I intended to use the example of strcmp() as a (modest)
stepping-stone in complexity – up from invert(), and down from
b64_encode() – which relies on more assumptions about the execution
environment:

That s1 points to a region of memory that is read-accessible over the
range [s1, s1 + N1], where N1 is a non-negative integer
representing the number of char elements in the memory starting at
s1 that do not have the value '\0'
That s2 points to a region of memory that is read-accessible over the
range [s2, s2 + N2], where N2 is a non-negative integer
representing the number of char elements in the memory starting at
s2 that do not have the value '\0'

If this smells suspiciously like a contract pre-condition [OOSC, IC++],
well, that’s something we’ll examine in a later instalment.
This additional reliance on external factors is a significant part of the
increased complexity over invert(). In languages such as C#(/.NET)
and Java, it is reasonable to assume that an object reference is valid (or is

the sentinel value, null), but in C (and C++) where pointers have free
range, it is possible for strcmp() to receive pointers that:

are intentionally valid, and point into a C-style string (which might
be the empty string "")
are null, having the value NULL, representing "no string". For
strcmp(), this is unequivocally a defect, and in many execution
environments will precipitate a hardware event that should be
interpreted as a fatal condition, stopping the process, which is a good
thing
are invalid, in that they point into areas in the address range that are
reserved for the kernel, are unmapped, write-only, and so forth. In
many execution environments this will precipitate a hardware event,
and in most cases this will be interpreted as a fatal condition, and the
process stopped
are unintentionally apparently valid, in that they point into some
area of the address range in which the memory is read-accessible in
a range that includes a (byte that can be interpreted as a) nul-
terminator character ('\0'). In this case, what is unequivocally a
defect (in the caller) will not be detected, and the defective process
may continue to execute, with unpredictable outcomes

The possibility of the latter two options makes reasoning about the
correctness of strcmp() and software entities build in terms of it more
complicated than is the case for invert(). Specifically, it is possible for
strcmp() to be passed invalid arguments (as a result of a defect
elsewhere within the program), whereas all ‘physically’ possible
arguments to invert() are valid.
The next Bet-Your-Life? Test case is b64_encode() (see Listing 2).
I’m not going to show the full implementation of this for brevity’s sake.
(If you’re interested you can download the library [B64] and see for
yourself.) Like strcmp() (and invert()), the b64 library has no
dependencies on any other software libraries, not even on the C runtime
library (except when contracts are being enforced, e.g. in debug builds).
This permits a substantial level of confidence in behaviour, because only
the b64 software entities themselves are involved in such considerations.
Broadly speaking, it means that behaviour, once ‘established’, can be
relied on regardless of other activities in the execution environment.
However, it’s fair to say that the internal complexity of b64_encode()
is substantially increased over that of strcmp(). Consequently, I think
it is impossible in a library such as this to stipulate its correctness based
on visual inspection of the code; anyone who would do so would be rightly
seen as reckless (at best).
Thus we can see that increasing complexity acts strongly against human-
assessed correctness. But there’s more to this than correctness. Let’s now
consider the final member of the Bet-Your-Life? Test cases,
Recls_Search() from the recls library [RECLS]:
  RECLS_API Recls_Search(
      char const* searchRoot
  ,   char const* patterns
  ,   int         flags
  ,   hrecls_t*   phSrch
  );

An incomplete description of the semantics of this function are as follows:
The function conducts a search of the file-system location specified
by searchRoot, looking for entries that match the given patterns,
according to the given search flags. If a file-system search can be
initiated then a search context is created and assigned to *phSrch
(to be used to elicit search results via other API functions), and a
success return code returned; if not, a failure code is returned.
If searchRoot is NULL or empty, the current directory is used.
If patterns is NULL, the ‘all entries’ pattern – "*" on UNIX, "*.*"
on Windows – is assumed.
Multi-part patterns may be specified, separated by the ‘|’ symbol,
e.g. "makefile*|*.c"

Even with a function as logically straightforward as strcmp() there are
different ways to implement it. Rather than this implementation shown,
we could instead take the difference between *s1 and *s2 for each
iteration and, when != 0, return that value. What was interesting to me
was that I  had forgotten the nuances resolved in previous
implementations, and I initially wrote the last line as:

  return *s1 - *s2; 
Then (being as how I’m writing a column about software quality, and my
Spidey-sense is set to max) I stopped and wondered how this would work
between compilation contexts where char is signed or unsigned.
Clearly, for certain ranges of values, the negation result will be different
between the two. I then immediately set about writing a test program, and
building for both signed and unsigned modes, and saw the suspected
different behaviour for certain strings (with values in the range 0x80 –
0xff).

My next instinct was to include stlsoft/stlsoft.h – STLSoft has limited C-
compat ib i l i t y  –  and wr i te  the  imp lementa t i on  in  an
STLSOFT_CF_CHAR_IS_UNSIGNED -dependent  manner .
Serendipitously, it was at this point that I thought to check with the C-99
standard, in order to verify my recollection that the return values could
be any negative value for less-than (rather than strictly -1) and any
positive value for greater-than (rather than strictly +1). What I was wrily
amused to learn (and not a little appalled to have forgotten/not known)
was that clause 7.21.4(1) stipulates that the return value ‘is determined
by the sign of the difference between the values of the first pair of
characters (both interpreted as unsigned char) that differ in the objects
being compared’. I've been programming C for, ulp!, 21 years, and have
written several implementations of strcmp() (which, by happy
coincidence, have done the right thing), but either I’ve forgotten that
comparison was to be done unsigned, or I never knew it in the first place.
Either way, it’s quite sobering.

What this illustrates all too well is that software is exact, humans operate
on assumption and expectation, and the two are not good bedfellows.
(When I spoke to my good friend and regular reviewer, Garth Lancaster,
about this, he too was ignorant of the unsigned comparison aspect of
strcmp(). He was equally abashed by this omission/presumption, but
callously stated that I bear more shame than he because I’ve written more
articles/libraries/books. Bah!)

The Sign of Shame
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File entries can be included in the search by specifying the
RECLS_F_FILES flag. Directories by the
RECLS_F_DIRECTORIES flag. (Files is assumed if neither
specified.)
etc. etc. … 

Clearly the recls library (or at least this part of it) has substantial
behavioural complexity. That alone makes it, in my opinion, impossible
for any reasonable developer to stipulate its correctness. But that’s only
part of it. Of greater significance is that recls is implemented in terms
of a great many other software entities, including library components
(from STLSoft) and operating system facilities (e.g. the opendir() API
on UNIX and the FindFirstFile() API on Windows). And even that
is not the major issue. The predominant concern is that recls interacts
with the file-system, whose structure and contents can (and do) change
independently of the current process. By definition, it is impossible to
establish correctness for recls or any other software entities who interact
with aspects of the execution environment that are subject to change from
other, independent software entities.
By now you’re probably starting to worry now that I’m asserting that
correctness cannot be stipulated. Am I saying that software cannot be
correct?

Newtonian software, quantum execution environment
At the risk of embarrassing myself, because it’s been 20 years since I did
any formal study of the subject, I will now draw parallels between
software+hardware and Newtonian+quantum physics.
Consider a point object travelling through an empty universe. In
Newtonian physics, the object will continue to travel in the same line, at
the same speed, forever more. If there are two point objects, they will
influence each other’s travel in predictable ways, based on their masses,
positions and velocities. But add in a third, fourth, … trillionth object, and
the behaviour of the universe becomes complex, and therefore
unpredictable (beyond small timescales within which simplifying
assumptions may be used to form reasonable approximate results). As is
the case in reality, if the objects are non-point, then we have to consider
rotation of the bodies, and heat, and a whole lot more besides, including
chemistry, biology, even sociology and technology! Thus, even in a
Newtonian universe, behaviour is non-linear (and unpredictable) due to the
interactions of entities (in part because some of the quantities involved are
irrational, and calculations thereby require infinite precision).
In a quantum universe, there are two challenges to our understanding even
in the case of a single point object. For one thing, it is, in principle,
impossible to state with certainty the position and momentum of the object.
Second, it’s possible that a virtual particle will spring into existence in any
part of the otherwise empty universe at any time. (Here my inadequate
training lets me down in understanding whether a virtual particle can have
a net effect on our single travelling particle, but I think you get enough of
the picture for us to have a working analogy.)
I contend that software is conceived in a Newtonian frame, where we
imagine we can rely on perfect (non-defective) execution environments,
and that hardware, necessarily, introduces a quantum aspect, due to the
imperfect reliability of hardware systems (and the occasional cosmic ray
that might flip a bit inside your processor) and the actions of other
operating entities (programs, hardware, etc.). Let’s look back to the Bet-
Your-Life? Test examples from the previous instalment, and consider the
behaviours in light of the two perspectives, where imperfect execution
environments are subject to ‘Quantum’ surprises:

invert() is subject only to failures in the execution environment
– specifically the processor
In addition to execution environment failures – in this case
processor and memory system (e.g. bus + virtual memory) –
strcmp() will also fail if it is passed invalid inputs as a result of a
defect in another part of the program. The same goes for
b64_encode()Listing 2

size_t b64_encode(
    void const* src
,   size_t      srcSize
,   b64_char_t* dest
,   size_t      destLen
)
{
  . . .
  b64_char_t* p   =   dest;
  b64_char_t* end =   dest + destLen;
  size_t      len =   0;
  for(; NUM_PLAIN_DATA_BYTES <= srcSize;
     srcSize -= NUM_PLAIN_DATA_BYTES)
  {
    b64_char_t
       characters[NUM_ENCODED_DATA_BYTES];
    characters[0] = (b64_char_t)(
       (src[0] & 0xfc) >> 2);
    characters[1] = (b64_char_t)(((src[0] & 0x03)
       << 4) + ((src[1] & 0xf0) >> 4));
    characters[2] = (b64_char_t)(((src[1] & 0x0f)
       << 2) + ((src[2] & 0xc0) >> 6));
    characters[3] = (b64_char_t)(src[2] & 0x3f);
    src += NUM_PLAIN_DATA_BYTES;
    *p++ = b64_chars[(
       unsigned char)characters[0]];
    ++len;
    *p++ = b64_chars[(
       unsigned char)characters[1]];
    ++len;
    *p++ = b64_chars[(
       unsigned char)characters[2]];
    ++len;
    *p++ = b64_chars[(
       unsigned char)characters[3]];
    if( ++len == lineLen &&
        p != end)
    {    {
      *p++ = '\r';
      *p++ = '\n';
      len = 0;
    }
  }

  if(0 != srcSize)
  {
    unsigned char dummy[NUM_PLAIN_DATA_BYTES];
    size_t        i;
    for(i = 0; i < srcSize; ++i)
    {
      dummy[i] = *src++;
    }
    for(; i < NUM_PLAIN_DATA_BYTES; ++i)
    {
      dummy[i] = '\0';
    }
    b64_encode_(&dummy[0], NUM_PLAIN_DATA_BYTES,
       p, NUM_ENCODED_DATA_BYTES * (1 + 2),
       0, rc);
    for(p += 1 + srcSize; srcSize++ <
       NUM_PLAIN_DATA_BYTES; )
    {
      *p++ = '=';
    }
  }
  . . .
}
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With Recls_Search(), we have a great many more reliances,
both hardware and software. As well as failures in execution
environment – processor, memory, disk – recls must also handle
asynchronous external non-failure events of the disk system (such as
examining a directory concurrent with files being added/removed
from it by a different process/thread). And in pure software terms, it
depends on the software entities from the system APIs and other
open-source libraries

Specification
I’m not going to engage in discussion about specifications in this
instalment, but must at least provide a definition in order that we can
properly engage in further reasoning about correctness. Without further
ado, a specification is one (or both, if used in concert) of two things:

Specification: A software entity’s specification is the sum of all
its passing unit-tests.

and

Specification: A software entity’s specification is the sum of all
its unfired active contract enforcements.

Everything else is fluff and air.
(Note: for today, I’m considering only functional aspects of specifications.
Other aspects, such as performance – time and/or resource consumption –
are outside the scope of this instalment, and will be discussed at another
time. I’m also only going to be talking about measuring specifications in
terms of unit-tests.)

Final definitions
Given the forgoing discussion, I'm now in a position to offer my definitions
of these three important aspects of software quality.

Correctness: The degree to which a software entity's
behaviour matches its specification.

Robustness: The adjudged ability of a software entity to
behave according to the expectations of its stakeholders.

Reliability: The degree to which a software system behaves
robustly over time.

Correctness
Correctness is exact and measurable. It is the concern of software
developers.
When measured (against its specification), the correctness of a software
entity ‘collapses’ from the unknown state to exactly one of two states:
correct and defective.
The binary nature of measured correctness is a great thing. For example,
consider that we measure the correctness of invert() as shown in
Listing 3 (assuming a C# implementation, with NUnit [NUNIT]).

That’s a complete functional test for BetYourLifeTests.Invert().
Informed by this, we could now implement another function, Nor(), as
shown in Listing 4 (sticking with C#).
Knowing that Invert() is correct, we may choose to assert that Nor()
will faithfully give expected behaviour  based on visual inspection. And
we could go on to completely measure that correctness with ease, involving
just four unit-tests.

Robustness
However, add in just a little complexity and things get sticky very quickly.
Consider that we’ve measured strcmp()’s correctness against a unit-test
suite as shown in Listing 5, this time in C, with xTests [XTESTS].
Clearly, this is not a comprehensive test suite. But the permutations of
arguments passed to strcmp() in the myriad programs built from it will
dwarf that found in any unit-test suite. Consequently, we are all using
strcmp() beyond its specification. Specifically, we are using strcmp()
in a state of unknown correctness. How do we get away with it? We apply
judgement.
A correct software entity has been proven so by mechanical means. A
robust software entity has been judged as likely to behave according to
expectations. This judgement is based on our knowledge of the software
entity’s interface, its likely complexity, its author(s), its published test
suite, the skills and experience of the judge, and many other factors.
We can define a principle for robustness as:

Listing 3

[Test]
public void Test_False()
{
  Assert.IsTrue(BetYourLifeTests.Invert(false));
}
[Test]
public void Test_True()
{
  Assert.IsFalse(BetYourLifeTests.Invert(true));
} Listing 4

public static class LogicalOperations
{
  public static bool Nor(bool v1, bool v2)
  {
    return BetYourLifeTests.Invert(v1) &&
       BetYourLifeTests.Invert(v2);
  }
}

Listing 5

static void test_equal()
{
  XTESTS_TEST_INTEGER_EQUAL(0, strcmp("", ""));
  XTESTS_TEST_INTEGER_EQUAL(0, strcmp("a", "a"));
  XTESTS_TEST_INTEGER_EQUAL(0, strcmp("ab",
     "ab"));
  XTESTS_TEST_INTEGER_EQUAL(0, strcmp("abc",
     "abc"));
}

static void test_less()
{
  XTESTS_TEST_INTEGER_LESS(0, strcmp("a", "b"));
  XTESTS_TEST_INTEGER_LESS(0, strcmp("ab", 
     "bc"));
  XTESTS_TEST_INTEGER_LESS(0, strcmp("abc",
     "bcd"));
}

static void test_greater()
{
  XTESTS_TEST_INTEGER_GREATER(0, strcmp("b",
     "a"));
  XTESTS_TEST_INTEGER_GREATER(0, strcmp("bc",
     "ab"));
  XTESTS_TEST_INTEGER_GREATER(0, strcmp("bcd",
     "abc"));
}
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The Robustness Principle: A robust software entity is
comprised of:

  0 or more correct software entities
  0 or more robust software entities
  0 defective software entities

We must now concern ourselves with how correctness propagates between
software entity dependencies. Consider the function f(), which is
implemented in terms of strcmp():
  int f(char const* s)
  {
    return strcmp(s, "fgh");
  }

What can we say about the correctness of f()? Well, until we test it, by
definition it has unknown correctness. But howsoever we make use of it
– whether in test or in a software application – we are using strcmp()
outside the bounds of its specification, because "fgh" is not included in
strcmp()’s test suite. By definition, therefore, we will be using
strcmp() in a manner in which its correctness is unknown.
Consider that we now write a suite of tests for f(), as in Listing 6.
Since we have a specification for f(), and f() meets that specification,
we can state that f() is correct. However, there is something a little strange
about having a component that is correct when it is implemented using
another component that has unknown correctness.
Taking this notion to extreme, we might wonder whether we can
implement a correct software entity in terms of a defective one? Let’s
imagine that our implementation of strcmp() always returns a value of
0 when passed a string of less than three characters. With this behaviour
it would fail four of the tests of its specification and thus be proven
defective. But since the test suite for f() always uses strings of length
three, it would still pass all cases. f() is proven correct, yet is implemented
in terms of a defective component. That is more than a little strange, and
violates the robustness principle given above.
The answer to this apparent conundrum lies in the notion of robustness.
Confidence is placed in a software entity based on a number of factors,
knowing that it will be used outside the exact, but necessarily limited,
aspects of its specification. An implementation of f() that uses a correct
strcmp() outside the bounds of its specification is, while common,
something that should give pause for thought. An implementation of f()
that uses a defective implementation of strcmp() violates the robustness
principle and, in my opinion, should never be countenanced.
In both cases, the implementation of f() is brittle. And as each layer of
abstraction and dependency is added, this brittleness spreads and
compounds, and the combinatorial cracks through which extra-correctness
behaviour can permeate increase. Thus, an important part of the skill/art
of the software developer list in making judgements about robustness when

implementing software entities in terms of others that have unknown
correctness (and that must therefore be judged on their robustness).
Robustness is inexact and subjective. It cannot be measured or proven, and
it cannot be automated (beyond a few static analysis tricks). It is equally
the concern of software developers, who must provide it, and stakeholders,
whose experiences of the software system define it.

Reliability
I am moved to almost completely agree with McConnell’s definition of
reliability, but I do feel that reliability is a measurable, quantifiable,
emergent property of a software system’s behaviour. In some senses, it
could be thought of as robustness over time, but robustness can’t measured,
so maybe it’s better thought of as apparent robust action over time.
Reliability is more a concern to stakeholders than it is to developers,
reflecting the differing perspectives between these groups. To
stakeholders, it is almost entirely irrelevant how many constituent software
entities were correct versus those adjudged robust. To stakeholders, the
proof of the pudding is the eating, and that’s its reliability.
Conversely, to software developers, the more correctness that can be
adduced the better, because it simplifies the construction of dependent
software entities. Reliability, on the other hand, is a distant prospect to a
developer, and probably viewed in different ways. For example, I can say
that I am motiviated, by pride, to have 0 failures ever; 1 or 10 failures would
be equally galling. Conversely, frequency of failures is of proper relevance
to a user, who may well tolerate one failure per month if the software can
cost him/her significantly less than the version that fails once per year (or
never). Many do, and many others just expect software failure, otherwise
how do we explain the popularity of certain operating systems, editors,
websites, …
Naturally, I’m not suggesting that tuning software failure frequencies is a
good thing; I believe that we can all write much more robust software
without suffering in the process. That’s the raison d'être of this column,
and as we proceed I intend to pursue the notion that we should all be aiming
for maximum quality all the time.

Summary
At this point I’d intended to go on to examine some of the interesting
conflicts between correctness and robustness, and between them and other
software characteristics, as well as discussing practical techniques for
ensuring robustness when correctness is not achievable. I’ve even got an
argument in favour of Java’s hateful checked exceptions. But I’ve run out
of space (and time), and these will have to wait until another instalment.
For the moment, I’ll posit a parting rubric that correctness is the worthy
aim wherever possible (which is rare), and robustness is the practical must-
have in all other circumstances.
I’m not sure what’s coming in the next instalment, but I’m determined that
it’s going to have a lot more code, and a lot less philosophy than this one.
It’s too exhausting!
See you next time. 
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The Generation, Management 
and Handling of Errors (Part 2)
Dealing with errors is a vital activity. Andy Longshaw and Eoin 
Woods conclude their pattern language.
his is the second part of a paper that presents patterns for handling
error conditions in distributed systems. The patterns in the collection
are illustrated in Figure 1.

Some of the patterns (SPLIT DOMAIN AND TECHNICAL ERRORS, LOG AT
DISTRIBUTION BOUNDARY, UNIQUE ERROR IDENTIFIER) were discussed in
the first part of the paper in the previous issue. The remaining patterns are
covered in this second part. At the end of the paper, a set of proto-patterns
is briefly described. These are considered to be important concepts that
may or may not become fully fledged patterns as the paper evolves.

BIG OUTER TRY BLOCK

Problem
Unexpected errors can occur in any system, no matter how well it is tested.
Such truly exceptional conditions are rarely anticipated in the design of
the system and so are unlikely to be dealt with by the system’s error
handling strategy.  This means that these errors will propagate right to the
edge of the system and will appear to ‘crash’ the application if not handled
at that point.  This may lead to some or all of the information associated
with such unexpected errors being lost, leading to difficulties with the
rectification of underlying problem in the system. 

Context
A distributed system with a largely ‘lay’ user community, probably using
graphical user interfaces. The interface is likely to be very simple: possibly
even a ‘kiosk style’ interface. Users are mostly on remote sites and will
not do much to report errors if they can work around them.

Forces
If an in-depth error report, particularly for a technical error, is
presented to an end user, they are unlikely to be able report its
content in enough detail for the underlying problem to be
unambiguously identified and so the details of the error are likely to
be lost.
If technical errors are presented to users on a regular basis, they will
start to ignore them rather than to go through the process of trying to

report them and knowledge of the existence, as well as the details,
of these errors will be lost entirely.
Members of the support staff need to be able to associate user
problem reports with logged error information, but detailed error
information can be very big and it all looks the same to an end user,
making it difficult to report.
We want to avoid having to write code to handle technical errors at
multiple layers of the application but this opens up the risk that such
errors will ‘leak’ through to the user.

Solution
Implement a BIG OUTER TRY BLOCK at the ‘edge’ of the system to catch
and handle errors that cannot be handled by other tiers of the system.  The
error handling in the block can report errors in a consistent way at a level
of detail appropriate to the user base.

Implementation
In the system’s ultimate client, wrap the top-level invocation of the system
in a BIG OUTER TRY BLOCK that will catch any error – domain or technical
– propagating up from the rest of the system.  The BIG OUTER TRY BLOCK
should differentiate between technical errors (such as databases not being
available) and domain errors (such as performing business process steps
in the wrong order) as suggested in SPLIT DOMAIN AND TECHNICAL
ERRORS.
Technical errors should be logged for possible use by technical support
staff and the user should then be informed that something terrible has
happened in general terms, making it clear that what has happened is not
related to their use of the system.

T
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The technical details of errors that
occur are typically of no interest to

the end-users of a system.
A domain error that reaches the BIG OUTER TRY BLOCK is probably a
failure in the design of the user interface that resulted in an unanticipated
business process state being reached and as such should be treated as a
system fault.  In such cases, again the error should be logged and a user-
friendly message displayed, but in this case the message can include details
of the problem encountered, as these details are likely to be meaningful to
the user since they relate to the business process that they were performing.
Finally, a totally unpredictable error (such as an exception indicating a
resource shortage due to having run out of memory) that reaches the BIG
OUTER TRY BLOCK is some form of internal or environmental error that
could not be handled at a lower level.  As with a technical error, a generic
error should be displayed to the user and the details of the error logged
locally.
An example of the structure of a BIG OUTER TRY BLOCK’s implementation
is shown in Listing 1.

Positive consequences
Error information is never lost because of unexpected errors
propagating to the edge of the system and ‘leaking out’. The error
information is always captured in its entirety to allow it to be
retrieved for support and diagnostic purposes.
Users are never surprised by an application simply stopping or
crashing, but are always informed that something has gone wrong in
a user comprehensible form.
If the application does fail in an unexpected way, it always handles
this condition in a consistent manner.
Other parts of the system may have simpler error handling as they
do not need to include handling for totally unpredictable errors.

Negative consequences
The outer catch block needs to be carefully implemented so that
exception information from the very wide range of possible
exception types that it must handle does not get lost when handling
that scenario.

Related patterns
Implementing SPLIT DOMAIN AND TECHNICAL ERRORS makes the
implementation of BIG OUTER TRY BLOCK simpler because the
different types of error can be easily differentiated and handled
differently.
This pattern can be combined with the HIDE TECHNICAL DETAILS
FROM USERS pattern in order to ensure that suitable messages are
reported to the user when the BIG OUTER TRY BLOCK is triggered.
BIG OUTER TRY BLOCK combines with LOG AT DISTRIBUTION
BOUNDARY so that the errors that it receives are more relevant and
potentially suitable for display to the user.
This pattern can be combined with UNIQUE ERROR IDENTIFIER in
order to ensure that errors logged by the BIG OUTER TRY BLOCK can
be clearly identified.
A BIG OUTER TRY BLOCK is a form of DEFAULT ERROR HANDLING
[Renzel97]
This concept is also mirrored in the Java idiom SAFETY NET in
[Haase]

HIDE TECHNICAL ERROR DETAIL FROM USERS

Problem
The technical details of errors that occur are typically of no interest to the
end-users of a system. If exposed to such users, this error information may
cause unnecessary concern and support overhead.

Context
An application with a largely non-technical user community, probably
using the system via some sort of graphical interface.Listing 1

public class ApplicationMain
{
  ...
  public static void main(String[] args)
  {
    try
    {
      ApplicationMain m = new ApplicationMain() ;
      m.initialize() ;
      m.execute() ;
      m.terminate() ;
    }
    catch(AppDomainException de)
    {
     // Domain exceptions shouldn't get to this
     // level as they should be handled in the
     // user interface. If they get here, report
     // the text to the user and log them in a
     // local log file
    }
    catch(AppTechnicalException te)
    {
     // Technical exceptions here are probably
     // user interface problems. Display a
      // generic apology and log to a local log file
    }
    catch(Throwable t)
    {
     // Other exception objects must be internal
     // errors that could not be caught and
     // handled elsewhere. Display a generic
     // apology and log to a local log file
    }
  }
}
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Forces
If a detailed error report, particularly for a technical error, is
presented to an end user, they are likely to find its content
incomprehensible.
If technical errors are presented to end users or the application
simply stops or crashes unexpectedly then this is likely to cause a
loss of confidence in the application, possibly leading to a reluctance
to use it.
Inconsistent user error reporting makes the system difficult to
support as it confuses the users and prevents them reporting
problems accurately and consistently.
Technical errors generally have a lot of information that is useful for
support staff but it is irrelevant to the end user.
If the system under consideration offers a limited capability user
interface (such as that offered by a mobile device), the interface may
not be capable of reporting detailed error information in a
comprehensible manner.

Solution
Implement a standard mechanism for reporting unexpected technical
errors to end-users.  The mechanism can report all errors in a consistent
way at a level of detail appropriate to the different user constituencies who
need to be informed about the error.

Known uses
The authors are aware of a number of instances of this pattern in enterprise
systems, although none of them are available for public study.  Some
examples of using this pattern outside the domain of enterprise systems
include the following.

A number of self service web-sites report a generic error message if
an internal error occurs, including a unique error identifier that can
be used to report the situation to a helpdesk.
Some intelligent hardware devices respond to errors that occur by
displaying a simple error screen (in some cases including a unique
error identifier to allow the error to be uniquely identified by the
hardware supplier), that instructs the owner to call a telephone
hotline in order to obtain assistance.
The Microsoft Windows error dialog that is displayed when an
application encounters an internal error is an example of the use of
this pattern.

Implementation
Within the system’s user interface implementation, provide a single,
straightforward mechanism for reporting technical errors to end-users.
The mechanism is almost certainly going to be a simple API call of the
general form:
  void notifyTechnicalError(Throwable t) ;

The mechanism created should perform two key tasks:
Log the full technical details of the error that has occurred for
possible use by technical support staff.
Display a friendly, user-centric message to inform the user that
something terrible has happened in general terms, making it clear
that what has happened is not related to their use of the system.  The
user message should include some form of unique identifier to allow
the user to easily report what has happened, via some form of
helpdesk. 
Ideally, the user reporting of the error should be automated in some
way (for example using desktop email automation) in order to make
the process of reporting as simple as possible and to avoid errors
during the process.  If the process is automated, this will avoid the
problem of users ignoring the errors because reporting them is too
much trouble and will ensure accurate reporting of each error.

From the information in the user’s error report, a helpdesk can esca-
late the problem to an administrator who can access detailed error
information elsewhere in the system, using the identifier as a key.

Use this mechanism to handle all technical errors encountered by the
system’s user interface.

Positive consequences
Users of the system are never presented with technical error
information that could confuse or worry them.
The system becomes easier to support because support staff can
correlate fatal system errors with logged information in order to
allow them to understand and investigate the problem.
Error handling in the GUI implementation is simplified and
standardized.

Negative consequences
Concealing all error information from the end-user means that a
knowledgeable end-user is powerless to apply their own knowledge
to solve the problem.  This could mean that a number of avoidable
calls are made to helpdesks, that could otherwise be resolved by the
users themselves.
The implementation of this pattern may require the implementation
of a reasonably sophisticated error-handling framework and this
may be perceived as a significant overhead within the development
process.

Related patterns
This pattern fits very naturally with the BIG OUTER TRY BLOCK to
ensure that technical errors are displayed and logged appropriately.
Using the LOG AT DISTRIBUTION BOUNDARY pattern to govern
where technical errors are logged ensures that the received are
suitable for reporting to the end user and include a suitable unique
identifier.
This pattern can alternatively be combined directly with UNIQUE
ERROR IDENTIFIER to ensure that errors can be clearly identified and
to mitigate the potential confusion arising from one error causing
multiple log entries.
An ERROR DIALOG [Renzel97] forms part of a strategy to hide errors
from users.

LOG UNEXPECTED ERRORS

Problem
Much domain code includes handling of exceptional conditions and is
designed to recognize and handle each condition according to a business
process definition (typically the offending transaction being rejected or a
new domain entity being created). If such routine error conditions are
logged, this makes real errors requiring operator intervention difficult to
spot.

Context
Where systems are created in organizations with complex domain
processing, or systems with a large number of routinely expected error
conditions to which the processes specify the response.

Forces
The system should report errors when they occur so that they can be
investigated and fixed but it is easy for serious errors to be hidden
under large numbers of spurious or trivial problems. It should be
obvious when operator intervention is required.
If all possible error conditions, including those routinely
encountered during normal operation, are reported then log
management becomes much more difficult due to the speed at which
the error logs fill up.
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Recording lots of errors increases the amount of logging code and
the number of error messages that need to be managed, which
reduces the maintainability of the system.

Solution
Implement separate error handling mechanisms for expected and
unexpected errors.  Error conditions that are expected to arise in the course
of normal domain processing should not be logged but handled in the code
or by the user. Hence, any logged error should be viewed as requiring
investigation.

Implementation
Throughout the system’s implementation, use two distinct error handling
approaches for expected and unexpected errors:

Log unexpected errors according to the other patterns, such as LOG
AT DISTRIBUTION BOUNDARY, and put in place a process that
ensures the error triggers operator intervention to resolve the
situation.
Do not log expected errors, but handle them as part of the system’s
normal operation. This may be done in the code itself, maybe by
trying different domain logic that may be able to handle the given
inputs or scenario or creating alternative domain entities.

Alternatively, the application may interact with the user, inform them of
the problem (in appropriate terms – see HIDE TECHNICAL DETAIL FROM
USERS) and prompt them to re-start part or all of the current operation.
By following these principles, errors such as ‘could not connect to
database’ are not hidden by hundreds of routine error conditions such as
‘no such product code’ (perhaps caused by a user misreading a code from
a piece of product packaging).  As the former error is a significant error
requiring investigation, while the second is an expected error condition,
the former would be logged and the latter handled algorithmically by the
business logic, without logging the condition.
One variation on this approach is to log different types of error message
to different places. For example, in terms of the application itself a user
failing to authenticate may not be worth recording. However, from the
system’s point of view (i.e. the operating system) the security policy may
require all failed authentications to be logged. This is usually resolved by
logging different types of errors to different logs, such as the application
event log and security event log provided under Windows. Such
partitioning allows different logs to be created to serve the needs of
different areas of concern.  Another example of this is where knowledge
of the patterns in which errors occur would be of interest to developers –
large numbers of failed searches at a search engine site may indicate a
usability problem. However, such errors are not of interest to the
operations team who are responsible for keeping the system running. In
this case, the expected errors could be logged to a different location where
they will not interfere with the operational errors but can be retrieved later
by the development team for further analysis.
A second variation is to log different types of error message in one location
but to mark each log message with one or more attributes that allow a set
of filters to be created to provide the ability to extract various subsets of
the log content on demand to support different uses (such as error
monitoring versus usability analysis).

Positive consequences
Errors that appear in logs always indicate exception conditions and
so can be used to initiate support and diagnostic activities.
Spurious messages indicating that expected conditions have
occurred do not prevent easy recognition of the occurrence of
exceptional conditions.
Logs do not quickly fill up with spurious messages created as a
result of normal operation.
Application code is simplified as a result of the reduction in the
number of log messages that need to be produced.

Negative consequences
If the recognition of expected errors is not specific or accurate
enough then there is the danger of masking or ignoring exceptional
conditions, by incorrectly assuming them to be manifestations of
expected error conditions.

Related patterns
You need to ensure that the correct distinction is made between
expected errors and exceptional occurrences as described in MAKE
EXCEPTIONS EXCEPTIONAL.
It may be helpful to classify errors as ‘domain’ or ‘technical’ errors,
as described in SPLIT DOMAIN AND TECHNICAL ERRORS.
An approach such as 3 CATEGORY LOGGING [Dyson04] can help to
make a log filterable.

MAKE EXCEPTIONS EXCEPTIONAL

Problem
A number of languages include exception handling facilities and these are
powerful additions to the error handling toolkit available to programmers.
However, if exceptions are used to indicate expected error conditions
occurring, then the calling code becomes much more difficult to
understand.

Context
Any situation where a language with exception handling built into it is in
use.

Forces
An application should be designed to handle and recover from most
domain errors but some unexpected errors will always occur.
Examples of the latter include incorrect or missing application data
in the database and incorrect or missing values in configuration files.
The code paths for handling ‘recoverable’ errors and
‘unrecoverable’ errors are usually quite distinct so they should be
easily differentiated.
Large numbers of exceptions generated cause problems for the
consumer of a class/method – especially in a language that uses
checked exceptions.
We want to avoid convoluted code and algorithm distortion when
routine error conditions (such as ‘end of list’) are encountered.

Solution
Indicate expected domain errors by means of return codes. Only use
exceptions to indicate runtime problems such as underlying platform
errors or configuration/data errors.

Implementation
When designing the interfaces in your system you should classify errors
into two types:

Conditions that will occur routinely in standard algorithms, which
should be indicated by returning a reserved return value. This could
be a null pointer, an empty list or a specific return code
(E_INVALID). An example of this would be returning an empty list
from a search operation that did not match any items.
Conditions that will only occur due to unexpected errors, which
should be indicated by raising language exceptions. Examples of
such conditions include those caused by underlying platform or
network failure (cannot connect to database), incorrect
configuration (bad database connection string) or bad application
data (customer id – not name – could not be found).

Errors of the first type will be handled as part of the standard business logic
in the system. On the other hand, errors of the second type will normally
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be handled by a combination of logging and exiting the current code block
via an exception path.
It is worth briefly exploring the differences and the blurring of the
boundaries here through an example. Consider a component in a retail
system that offers out two methods to look up product information. One
of these methods allows you to look up products either by keyword or
wildcard text string and returns a list of matching products. The other
method requires a numeric product code such as a barcode and returns the
single product matching that code. The component is backed by a database
containing all the products stocked by the retailer.
The search by keyword/wildcard has no guarantee of finding a matching
product. Typically, the keyword/wildcard will be entered by a user and so
could be subject to all forms of data problems such as mis-spelling or
unrealistic expectations (e.g. entering "Elton John" when the retailer
just sells food – not CDs). Hence, semantically you could expect no
products to be returned – this is an expected business condition, however
unhelpful it is to the user of the calling application. Having said that, the
user can always get the answer they want by trying again – providing
sensible input to the search.
On the other hand, there is more of a semantic implication that the method
that requires a product code should find something. Unless users of the
system are prone to scanning in barcodes from random products they bring
into work, any product scanned in store should be in the database: you
should not be able to provide a code that cannot be found. In this case, you
could justifiably throw an exception as the only way this condition can
occur is if there is a problem with the data in your database. Not only can
the user not get the right answer by re-scanning the product (same answer
each time…), but in terms of the system this situation needs resolving (i.e.
the data in the database needs correcting).
Finally, in either case if the component cannot connect to the database for
whatever reason a technical exception should be raised (indeed, the
underlying platform will probably raise one for you).

Positive consequences
Application code is simplified as it does not need to include
exception handling constructs within normal algorithms.
Exceptional conditions in code can all be treated as abnormal
situations requiring error handling and as such can be handled via a
uniform strategy.

Negative  consequences
None

Related patterns
Expected errors should not be logged, as described in DON’T LOG
BUSINESS PROCESS ERRORS, but unexpected errors – whether
technical or domain exceptions – should be logged.
Ward Cunningham’s CHECKS pattern language for information
integrity [Cunningham] provides a great deal of guidance relating to
the design of data validation in user interfaces (i.e. ‘Type 1’ errors
in this pattern’s Implementation section).

Proto-Patterns

IGNORE IRRELEVANT ERRORS

Problem
Sometimes technical errors or exceptions do not denote a real prob-
lem and so reporting them can just be confusing or irritating for sup-
port staff.
Solution
Assess what action can be taken in response to an error and only log
it if there is a relevant course of action. An example is
ThreadAbortException  which is raised under ASP.NET when-
ever you transfer to another page using Server.Transfer().
This is not an error condition – just a side-effect – and so is of no
consequence to support staff. Also, you will get lots of these in any
busy web-based system.

SINGLE TYPE FOR TECHNICAL ERRORS 
Problem
There are a myriad different technical errors that may occur during
a call to an underlying component.
Solution
When you create your exception/error hierarchy for your applica-
tion, define a single error type to indicate a technical error, e.g.
SystemError. The definition and use of a single technical error
type simplifies interfaces and prevents calling code needing to un-
derstand all of the things that can possibly go wrong in the underly-
ing infrastructure. This is especially useful in environments that use
checked exceptions (e.g. Java). 
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