

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 The PfA Papers: Context Matters
Kevlin Henney looks at Singletons and Context
Objects.

7 The Model Student
Richard Harris models ‘The Regular Travelling
Salesman’.

13 Functional Programming Using C++
Templates (Part 2)
Stuart Golodetz continues his exploration of
template metaprogramming.

17 Java Protocol Handlers
Roger Orr demonstrates URL handling in Java.

20Upgrading Legacy Software in Data
Communication Systems
Omar Bashir presents us with a case study.

25Creating Awareness
Exposing Problems
Allan Kelly reviews his presentation at the ACCU
conference.

OVERLOAD 82

December 2007

ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Alistair McDonald
alistair@inrevo.com

Anthony Williams
anthony.ajw@gmail.com

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Ric Parkin
ric.parkin@ntlworld.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Farnsworth
simon@farnz.co.uk

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for
publication in Overload 83
should be submitted to the
editor by 1st January 2008 and
for Overload 84 by 1st March
2008.

EDITORIAL ALAN GRIFFITHS
The Essence of Success
What makes a successful project?
Looking both ways
Last month you had a guest editor – Ric Parkin – one of
the regular team that stepped into the editorial role whilst
I went off on holiday. I’m pleased that things went
smoothly, and I enjoyed the rest. In fact I enjoyed the rest

so much that I’ve taken the opportunity for another one for the next issue:
this time another team member – Roger Orr – is going to take over for an
issue. I’m very confident that this too will go smoothly.
This seems very different from the situation this time last year when Ric,
Roger and others first volunteered to help out with issue 76 and much
closer to the ‘golden age’ story I told in that editorial:

At the moment it seems like it was a long time ago and in a galaxy
far, far away that lots of material was submitted to Overload by
enthusiastic authors, an enthusiastic team of volunteer advisors
reviewed it all, the editor swiftly passed their comments back to the
authors who produced a new, much improved draft of the article
which then was seen to be good by all and put in the magazine for
your reading pleasure.

I’d like to thank everyone who contributed to realising this vision: the
overload review team, the authors and my very understanding fiancée.
Please keep up the good work!

What criteria identify success?
We often hear about the high rate of failure of software development
projects. But are the right criteria being used to assess success? The usual
measure quoted is ‘on time, on budget, to specification’ – and this ignores
several important issues. Firstly, the specification is rarely nailed down
adequately at the start of the project (and – far too often – not even at the
end); secondly, the budget is rarely immovable either; and thirdly, except
in rare cases (Y2K, statuary requirements, etc.) the timing isn’t a business
requirement.
There are good reasons why specifications are not generally fixed – most
software projects are explorations of a both the problem and solution
domains. While the high level requirements are often discoverable up
front, the way in which they will met is only determined as the project
progresses. The investigative nature of most projects also affects the

budget and time scale.
Even though delivery dates, costs and functionality
are written down at the start of projects (in many cases
into contracts) it is very rare that they don’t change.

In the case of small changes no-one worries, in the case of large changes
even contracts get renegotiated. But, is a project that doesn’t meet its
starting scope, budget and delivery date really a failure if it the customer
gets what they need, when they need it and for a cost they can afford?
Well, there are other measures of success. One can look at whether the
resources invested in a project could have been better deployed elsewhere:
is it more profitable to spend time and money on better advertising or on
better software? The value of the results of this work is the ‘return on
investment’ and is a key factor in deciding whether a project is worthwhile.
Generally, a business will only undertake projects that are expected to
exceed a ‘minimum return on investment’ – and, if a project exceeds this,
then it can be counted a partial success. (Of course, if it exceeds the
expected return on investment it can be counted a total success.)
We all like to contribute to the profitability of the company that we work
for. But for most of us that isn’t our sole goal in life. There is a perspective
that says a successful project is one that the participants would like to
repeat. It is quite easy to imagine projects that are highly profitable, but
where the developers on the project turn around and say ‘I never want to
do anything like that again’. This happens when their personal costs (in
time, goodwill and opportunity) are greater than the rewards (in money
and recognition).
These are not the only definitions of success – I once worked on a project
that no-one enjoyed, went on for far longer than planned (and therefore
cost far more than expected and, in particular, more than the customer
paid), failed to deliver a key customer requirement (which happened to be
impossible) and was still a ‘success’. I did see the spreadsheet produce by
the project manager concerned to justify this classification. In my more
cynical moments I feel it owed more to the bonus structure he was working
to than to anything else (several significant costs were not shown as part
of the project budget), but it appears that his definition of success was
accepted.
Most projects fail on some measures of success and succeed on others –
I’ve just participated in a retrospective of a project that went far over the
original time and budgets (but these were changed to reflect scope changes
during the course of the project – it came in to their current values). It very
narrowly passed a few regulatory milestone deliveries. The developers
were all stressed by the lack of time to do things well – and there is a big
build up of technical debt to be addressed. But there is a lot of value
delivered to the business, and there is an appreciation of their achievement.
I’d call it a successful project, but this would not qualify using the usual
‘on time, on budget, to specification’ criteria (or, for that matter, everyone
wanting to ‘do it again’).

Alan Griffiths is an independent software developer who has been using “Agile Methods” since
before they were called “Agile”, has been using C++ since before there was a standard, has been
using Java since before it went server-side and is still interested in learning new stuff. His homepage
is http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | December 2007

EDITORIALALAN GRIFFITHS
The right sort of success
Indeed it is easy to demonstrate that not all software development projects
can be measured by the same criteria – one only has to consider a typical
free/open source project like the Mozilla web browser. This project cannot
be judged by the traditional ‘on time, on budget, to specification’ criteria.
Admittedly the participants in this project could well be delivering
benefits to their businesses (by implementing features or fixing bugs that
allow them to provide value) and such contributions could be judged on
this basis. However, closer examination shows this to be in error, it would
be considerably easier and deliver the same value to a business to create
an enhanced or fixed version that can be used internally – so why
undertake the additional cost of getting a submission approved? And how
could one fit the contributions of Toronto’s Seneca College into this
model?
One reason for highlighting the different flavours of success is that
everyone should know which one matters in the current circumstances.
When different participants in a project are seeking different goals none
of these goals are likely to be achieved.
One of the identifying features of Agile Methods is the focus on
identifying the piece of work that will deliver the best value (to the
business) for development effort, and to tackle that next. The nature of the
‘value’ is deliberately left unspecified and assessed by the business
concerned. Always allocating the work offering the best return is an easy
way to communicate what is valuable: developers on these (and
traditional) projects will naturally focus on the piece of work they are
undertaking at the time and with this approach to planning are focussed
on the work that gives the best return. In contrast traditional planning
methods treat the project as a whole as delivering ‘value’ and only coarse
classification of features into ‘essential’ or ‘desirable’ are even undertaken
– with the possibility that high value items can end up at risk because of
schedule overruns or resource overruns. (And when the project manager
realised this, incomplete pieces of work will be abandoned in order to
progress them – with all the pain and cost of context switching that this
implies.)
However a project is planned, it is a good idea to know which (if any)
features are fixed and which may be adjusted in scope without risking the
success of the project itself.
So what about a project like Overload? How do we measure success?
Clearly, the return is self-improvement: improving our knowledge of

software development (or, in the case of authors, our ability to
communicate what we know about it). Currently it feels like a success.
What do you think?

Better late than never
At the last ACCU conference I ran a workshop on ‘Agile Tools for C++’
– the idea being to use the expertise available at the conference to collate
knowledge about the wide range of alternative tools available. Why for
C++? Well, as Russel Winder recently posted on accu-general:

Unlike most languages where there are one or two standard [unit-
testing] frameworks and everyone just uses them, C++ seems to
generate a plethora so no-one has any idea which one to use
(unless you are a member of one of the tribes of course).

What Russel claims about unit testing frameworks applies to a lot of other
things too: comms libraries, editors, build systems, etc. Because none of
us has the time and energy to invest in trying the whole range of tools I
arranged the workshop and promised to write up the results. To my
embarrassment, since the conference the notes produced by this workshop
have been sitting in a file awaiting this happening.
Three things brought this to mind recently – firstly the next conference is
getting closer and with it my sense of guilt has been increasing; secondly,
Allan Kelly has just written up his session from the same conference; and
thirdly, at XPDay I encountered one of the participants of the workshop
who asked me what had happened to the write up.
Anyway – I haven’t forgotten, I just haven’t got around to it yet.
Hopefully, in time for the next issue. (And yes, not having to edit the next
issue has a lot to do with getting the article finished at last.)

Seasons comments
This is the Christmas issue of Overload, but unfortunately there is no
seasonal article this year. But it is a good occasion for you to take a moment
to reflect upon the last year and what has happened. The production of
Overload has changed a lot for the better. I hope that the reading of
Overload is providing benefits to you readers.

Merry Christmas to you all!
December 2007 | Overload | 3

FEATURE KEVLIN HENNEY
The PfA Papers: Context Matters
Continuing his history of Parameterise from
Above, Kevlin Henny looks at Singletons
and Context Objects.
he odyssey of the PARAMETERIZE FROM ABOVE (PFA) pattern started
in 2001. It emerged from a recurring recommendation made during
design consultancy [Henney2007a] and matured through its

incorporation in the Programmer’s Dozen collection of thirteen
recommendations [Henney2007b]. The essence of the pattern is that
parameterization is better done through explicit parameters at the point of
configuration or call than through the automagic and coupling of global
state.
In this third instalment of ‘The PfA Papers’, I will continue to chart the
emergence and refinement of PARAMETERIZE FROM ABOVE by pursuing
another strand in its history and development: the context object.
(Although it may seem a little strange to chart the development of a pattern
that has yet to be documented, things can exist in a culture without actually,
err, needing to exist, so to speak.)

Context objects
The brute-force approach to capturing and passing execution context
between components in a program sidesteps the question of passing
altogether: represent the execution context as global state in the program.
If you are feeling a little guilty about having global variables in your code
(sometimes they are called static variables just to assuage your guilt), you
can always use SINGLETON – it may not do much for the quality of your
code, but you get to accumulate another Gang-of-Four pattern-usage point!
(Yes, there are teams and developers who do something like this and take
it seriously.) However, whichever way you look at it, SINGLETON simply
wraps up the global state and puts a nice face on it. SINGLETON doesn’t
address the deeper issues of coupling and hardwiring that are the real
problem with global variables. And, for good measure, SINGLETON makes
the basic problem harder by introducing new challenges, such as the
subtleties involved in correctly initialising a SINGLETON in a multithreaded
environment.
However, this is not just a random excuse to pick on the faults of
SINGLETON and global variables. In a system where the code, the program
state, the execution paths, etc., are all partitioned across projects, packages,
classes and functions, objects, processors and threads, and so on, the notion
of global state is less meaningful and less manageable. This is the root of
the problem.
OK, so perhaps a little PFA would do the trick? Well, the smallest
application of PFA you can have is to pass a single argument of simple type.
So, it stands to reason that a slightly larger application of PFA is to pass
two arguments, each of simple type. A little induction suggests that you
can pass all the execution context you ever need by having a sufficiently
long argument list. However, a little reality check tells you that this is not
going to work out too well: long argument lists are a pain [Henney2006].
As Alan Perlis once put it [Perlis1982]:

If you have a procedure with 10 parameters, you probably missed
some.

The issue is that not only is a long argument list cumbersome, its content
is inherently unstable. It is the wrong application of PFA: rather than PFA

in sprinkles, you need to PFA in chunks. The solution is to recognise that
the unit of stability is the concept of what the argument list represents –
the context – and not the individual elements. What you parameterize
should ideally be aligned with the concept as a whole and the unit of
stability, which, in this case, means that you pass through an object
representing the context, not a fragmented set of individual properties. Of
course, that’s not the end of the story: if you treat your context object as
little more than a bucket of arbitrary parameters, you shouldn’t be surprised
when it degenerates into a bucket of arbitrary parameters.

From prehistory to the present
There are many ways to look at patterns: one is that a pattern is a recurring
practice; another identifies the pattern as the documented description of
said practice. The former view means that many patterns are in use without
documentation or even agreement on a common name: they are just ‘the
way we do things here’ or ‘how I’ve always seen that problem solved most
effectively’. The latter view emphasises that pattern authors do not own
the patterns they describe: they own their descriptions. You cannot steal a
pattern, only be inspired by its description or application.
Taking these two views together, it seems obvious that there can be many
competing descriptions for the same practice. Some of these may emerge
independently; some of these may be related by refinement or
specialisation to a context. So it is with the CONTEXT OBJECT pattern. The
story of CONTEXT OBJECT’s description in pattern form is a little like a long
wait for a bus, only to have two (or more) turn up at once.
In 2002 Allan Kelly started documenting what came to be called
ENCAPSULATED CONTEXT and has since been included in Pattern
Languages of Program Design 5 in 2006 [Manolescu+2006]. It was some
of the discussion and feedback around the pattern that prompted me to
write up CONTEXT ENCAPSULATION, a pattern language of four patterns
that covered the design space of context objects – as it turned out, a small
pattern language but a big paper. This paper was workshopped at the
EuroPLoP conference in 2005 [Henney2005]. The root pattern description
went on to form the basis of the CONTEXT OBJECT write-up in POSA4
[Buschmann+2007a].
This thread of history is interwoven with other threads, making the
timeline a little more tangled. In September 2003 I was in Oslo attending
the JavaZone conference. John Crupi, one of the authors of Core J2EE
Patterns [Alur+2003], was presenting some of what was new in the second
edition of that book, including – you guessed it – the CONTEXT OBJECT
pattern. I was there presenting the Programmer’s Dozen [Henney2007b],

T

Kevlin Henney is a long-standing member of ACCU, joining
before it actually was ACCU and contributing to Overload
when it was numbered in single digits. He recently co-authored
two volumes in the Pattern-Oriented Software Architecture
series, A Pattern Language for Distributed Computing and On
Patterns and Pattern Languages. Kevlin can be contacted at
kevlin@curbralan.com.
4 | Overload | December 2007

FEATUREKEVLIN HENNEY

The idea of capturing execution context as
an object or some kind of structure is

perhaps older than you think
so the connection to PFA was reinforced, as was the commonality with
Allan’s work.
It turns out that 2005 was a busy year for CONTEXT OBJECT on the pattern
conference front: I submitted CONTEXT ENCAPSULATION at EuroPLoP in
Bavaria; Arvind Krishna, Doug Schmidt and Michael Stal wrote a version
of CONTEXT OBJECT as a standalone pattern for PLoP in Illinois
[Krishna+2005]; Uwe Zdun included CONTEXT OBJECT as one of a
collection of patterns at VikingPLoP in Finland [Zdun2005]. Each paper
took a different point of view and placed the pattern in a different context,
but the recurrence and soundness of the practice was clearly established.
And, because pattern papers are considered to be works in progress, later
versions of each paper cross-referenced one another!
The idea of capturing execution context as an object or some kind of
structure is perhaps older than you think. For example, in the 1970s the
technique was used in Scheme’s eval procedure to provide context for
evaluation of an expression [Abelson+1984, Scheme]. It has also appeared
in pattern form many times, but hidden as part of a larger pattern. For
example, CONTEXT OBJECT is a key player in the INTERPRETER pattern
[Gamma+1995], which, with hindsight, can be seen as a pattern compound
compr i s ing C O M M A N D , C O N T E X T O B J E C T and C O M P O S I T E
Buschmann+2007b]. Likewise, CONTEXT OBJECT plays an essential role
in the Interceptor pattern [Schmidt+2000]. More explicitly, PARAMETER
OBJECTSs or ARGUMENTS OBJECTs have also previously been identified
and described in pattern form [Noble1997, Fowler1999].
So, it’s not just that two (or more) buses turn up at the same time: quite a
few buses have already been past.

Encapsulated Context
Documenting a pattern is a journey of understanding, with snapshots taken
along the way. One example of how things can change is the name. Allan’s
pattern description started life with the longer, imperative name of
ENCAPSULATE EXECUTION CONTEXT. This was later shortened to
ENCAPSULATE CONTEXT. The directive-based name then shifted to a noun
phrase that described the resulting outcome, ENCAPSULATED CONTEXT.
My interest and involvement goes back to the ENCAPSULATE EXECUTION
CONTEXT days, but what happened later was just as interesting
[Henney2005]:

It all started a couple of years ago – the summer of 2002, to be
precise. Following a discussion thread on the ACCU’s main list,
Allan Kelly decided to document a pattern for addressing the
problem of propagating context through a program that neither
relied on the coupling of global variables and their kin nor on the
unmanageability of long argument lists. I volunteered to shepherd
the paper informally, which Allan then submitted it to EuroPLoP
2003. It received further shepherding from Frank Buschmann and
was accepted and workshopped at the conference.

There was recognition that the scope of the pattern was perhaps
greater than could be contained conveniently within a single pattern.
Most of the subtlety was in realizing the pattern effectively, and the
options available and decisions that needed to be taken formed a

long tail in the presentation of the pattern. Following its inclusion in
the EuroPLoP proceedings [Kelly2003], the paper was also
published in the ACCU’s Overload magazine [Kelly2004], where it
generated some heated discussion on the editorial review team
[Overload2004] and the letters page [Overload2005]. Although
ENCAPSULATED CONTEXT’s description contained careful
discussion of how to avoid having a context object turn into an
uncohesive blob of code, this discussion sometimes appeared to be
overlooked.

Allan managed to sum up the tension felt by someone struggling not just
with the root problem that leads to ENCAPSULATED CONTEXT, but also in
its effective application [Henney2005]:

The devil is in the detail.

You have this system...

Try globals... well, probably you don’t: the one thing you learned
in school was no globals.

You try for SINGLETON, it is in the book, it is good... but then you
find you have these nasty ripples... then someone tells you it’s
a bad thing and it’s obvious to you.

So you try passing parameters: they overwhelm you.

You refactor a bit (à la Fowler) and before you know it you’ve
got ENCAPSULATED CONTEXT.

You carry on down this path, you get more mileage here, but
over time it starts to look like Foote’s BIG BALL OF MUD.

The solution is to reduce the coupling, improve the cohesion, but
how?

The question of how to deal with the BIG BALL OF MUD is an important
consideration in applying the pattern. Don’t mention it, and that will be
considered an oversight or weakness of the pattern. However,
documenting everything as equally significant is likely to overwhelm the
reader. The core advice remains sound, but what is needed is separation.

Context Encapsulation
It was this question of communicating the core idea while still
communicating the follow-on considerations, as well as the flurry of
correspondence in Overload, that got me interested in looking at
ENCAPSULATED CONTEXT from a different point of view [Henney2005]:

Recasting the pattern in terms of a pattern language rather than a
single pattern allows the flow of design issues to be identified more
explicitly, promoting each of the considerations and decisions as a
response to the issues raised in another pattern. Instead of
considering the coupling and cohesion issues as simply being
implementation details within a single pattern, the design process
is made more explicit by naming and connecting some of these
design decisions. Pulling support patterns out of a larger root pattern
helps to manage pattern scope, which can otherwise creep with
each new consideration that is incorporated.

At the beginning of 2005 I had been playing around with the idea of
reasoning about pattern languages in terms of processes, which gave rise
to a grammatical perspective, and relating this to pattern compounds and
December 2007 | Overload | 5

FEATURE KEVLIN HENNEY
pattern sequences. That sounds like a lot of abstract pattern theory, but does
it have any practical application? The discussion about ENCAPSULATED
CONTEXT came along at just this point. I realised that it might offer a
particular vehicle for exploring the idea in a practical way: small enough
to keep down to a handful of patterns and combinations; rich enough and
real enough to illustrate the idea in practice.
The Context Encapsulation pattern language contains four patterns. The
root of the language is ENCAPSULATED CONTEXT OBJECT, a name that
blends ENCAPSULATED CONTEXT with CONTEXT OBJECT. The other three
patterns in the language address the design decisions that can flow from
an ENCAPSULATED CONTEXT OBJECT. These four protagonist patterns are
summarised as follows [Henney2005]:

ENCAPSULATED CONTEXT OBJECT: Pass execution context for a
component, whether it is a layer or an individual object, as an object
rather than as a long argument list of individual configuration
parameters or implicitly as a global service. The execution context
may include external configuration information and services such as
logging.

DECOUPLED CONTEXT INTERFACE: Reduce the coupling of a
component to the concrete type of the ENCAPSULATED CONTEXT

OBJECT by defining its dependency in terms of an interface, whether
interface or INTERFACE CLASS, rather than the underlying
implementation type. This allows substitution of alternative
implementations, including NULL OBJECTS and MOCK OBJECT.

ROLE-PARTITIONED CONTEXT: Split uncohesive ENCAPSULATED

CONTEXT OBJECT interfaces into smaller more cohesive context
interfaces based on usage role, each expressed with a DECOUPLED

CONTEXT INTERFACE or through a ROLE-SPECIFIC CONTEXT

OBJECT.

ROLE-SPECIFIC CONTEXT OBJECT: Multiple context interfaces may
be realized either together in a single object or with one object per
role. The latter option allows independent parts of a context to be
more loosely coupled and separately parameterized.

The devil may well be in the details, but the details are in the paper. ‘The
PfA Papers’ is intended to shed light on the history and insights around
PARAMETERIZE FROM ABOVE, so we should probably get back to the main
act.

And so to PARAMETERIZE FROM ABOVE...
Given the undocumented state of the PARAMETERIZE FROM ABOVE
pattern, it is perhaps noteworthy that tucked away in the notes at the end
of CONTEXT ENCAPSULATION is a discussion of PFA and the relationship
both to the patterns in the paper and elsewhere. The notes include the
following summary of PARAMETERIZE FROM ABOVE:

Within a layered system, some commonly used complex objects or
simple values, used by different layers or by many different parts of
a given layer, may find themselves expressed in global form, e.g.
as SINGLETON or MONOSTATE objects. This parameterizes
components from below, but hardwires their dependencies,
increasing the coupling of the component and making alternatives
difficult or impossible to substitute. Instead, invert the relationship,
so that these objects are passed in from above, i.e. so that the
calling or owning component in the layer above passes in the
appropriate instance.

The relationship to CONTEXT OBJECT s is also made clear:
Whether in terms of individual parameterizing integers or larger-
scale, architecturally significant objects, to PARAMETERIZE FROM

ABOVE represents a common reaction to unnecessary system-wide
hardwiring of certain assumptions and facilities, and hence it is often
employed in reaction to global variables, SINGLETONs, etc. Thus, an
ENCAPSULATED CONTEXT OBJECT is an appl icat ion of
PARAMETERIZE FROM ABOVE, made more specific with respect to
its context (sic) of application and its decomposition in terms of other
patterns.

References
[Abelson+1984] Harold Abelson, Gerald Jay Sussman and Julie Sussman,

The Structure and Interpretation of Computer Programs, MIT Press,
1984

[Alur+2003] Deepak Alur, John Crupi and Dan Malks, Core J2EE
Patterns, 2nd edition, Addison-Wesley, 2003

[Buschmann+2007a] Frank Buschmann, Kevlin Henney and Douglas C
Schmidt, Pattern-Oriented Software Architecture, Volume 4: A
Pattern Language for Distributed Computing, Wiley, 2007

[Buschmann+2007b] Frank Buschmann, Kevlin Henney and Douglas C
Schmidt, Pattern-Oriented Software Architecture, Volume 5: On
Patterns and Pattern Languages, Wiley, 2007

[Fowler1999] Martin Fowler, Refactoring, Addison-Wesley, 1999
[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson and John

Vlissides, Design Patterns, Addison-Wesley, 1995
[Henney2005] Kevlin Henney, ‘Context Encapsulation’, EuroPLoP 2005,

July 2005, http://www.two-sdg.demon.co.uk/curbralan/papers/
europlop/ContextEncapsulation.pdf

[Henney2006] Kevlin Henney, ‘Long Argument Lists’, Reg Developer,
June 2006, http://www.regdeveloper.co.uk/2006/06/28/
argument_lists/

[Henney2007a] Kevlin Henney, ‘The PfA Papers: From the Top’,
Overload 80, August 2007, http://accu.org/index.php/journals/1411

[Henney2007b] Kevlin Henney, ‘The PfA Papers: The Clean Dozen’,
Overload 81, October 2007, http://accu.org/index.php/journals/1420

[Kelly2003] Allan Kelly, ‘Encapsulate Context’, EuroPLoP 2003,
June 2003

[Kelly2004] Allan Kelly, ‘Encapsulate Context’, Overload 63, October
2004, http://accu.org/index.php/journals/246

[Krishna+2005] Arvind S Krishna, Douglas C Schmidt and Michael Stal,
‘Context Object’, September 2005, http://www.dre.vanderbilt.edu/
~arvindk/Context-Object-Pattern.pdf

[Manolescu+2006] Dragos Manolescu, Markus Voelter and James Noble
(editors), Pattern Languages of Program Design 5, Addison-
Wesley, 2006

[Noble1997] James Noble, ‘Arguments and Results’, The Computer
Journal, 1997, http://citeseer.ist.psu.edu/107777.html

[Overload2004] ‘Editorial’, Overload 64, December 2004, http://
accu.org/index.php/journals/249

[Overload2005] ‘Letters to the Editor’, Overload 65, February 2005,
http://accu.org/index.php/journals/259

[Perlis1982] Alan J Perlis, ‘Epigrams in Programming’, ACM SIGPLAN,
September 1982, http://www.cs.yale.edu/quotes.html

[Scheme] ‘Scheme in Scheme’, http://academic.evergreen.edu/curricular/
fofc00/eval.html

[Schmidt+2000] Douglas C Schmidt, Michael Stal, Hans Rohnert and
Frank Buschmann, Pattern-Oriented Software Architecture, Volume
2: Patterns for Concurrent and Networked Objects, Wiley, 2000

[Zdun2005] Uwe Zdun, ‘Patterns of Argument Passing’, VikingPLoP
2005, September 2005, http://wi.wu-wien.ac.at/~uzdun/
publications/arguments.pdf
6 | Overload | December 2007

FEATURERICHARD HARRIS
The Model Student
Richard Harris begins a series of articles
exploring some of the mathematics of interest
to those modelling problems with computers.
Part 1: The Regular Travelling Salesman.
he travelling salesman problem, or TSP, must be one of the most
popular problems amongst computer science students. It is extremely
simple to state; what is the shortest route by which one can tour n

cities and return to one’s starting point? Figure 1 shows random and
optimal tours of a 9-city TSP.

On first inspection, it seems to be fairly simple. The 9-city tour in figure 1
can be solved by eye in just a few seconds.
However, the general case is fiendishly difficult. So much so that finding
a fast algorithm to generate the optimal tour, or even proving that no such
algorithm exists, will net you $1,000,000 from the Clay Mathematics
Institute [Clay].
This is because it is an example of an NP-complete (nondeterministic
polynomial complexity) problem. This is the class of problems for which
the answer can be checked in polynomial time, but for which finding it has
unknown complexity. The question of whether an NP-complete problem
can be solved in polynomial time is succinctly expressed as ‘is P equal to
NP?’ and answering it is one of the Millennium Prize Problems, hence the
substantial cash reward.
The answer to this question is so valuable because it has been proven that
if you can solve one NP-complete problem in polynomial time, you can
solve them all in polynomial time. And NP-complete problems turn up all
over the place.
For example, secure communication on the internet relies upon .
The cryptographic algorithms used to make communication secure depend
on functions that are easy to compute, but hard to invert. If P=NP then no
such functions exist and secure communication on an insecure medium is
impossible. Since every financial institution relies upon such
communication for transferring funds, I suspect that you could raise far
more than $1,000,000 if you were able to prove that P=NP. Fortunately
for the integrity of our bank accounts the evidence seems to indicate that
if the question is ever answered it will be in the negative.
So, given that some of the keenest minds on the planet have failed to solve
this problem, what possible insights could an amateur modeller provide?
Not many, I’m afraid. Well, not for this problem exactly.
I’d like to introduce a variant of the TSP that I’ll call the regular travelling
salesman problem. This is a TSP in which the cities are located at the
vertices of a regular polygon. Figure 2 shows the first four regular TSPs.
The question of which is the shortest tour is rather uninteresting for the
regular TSP as it’s simply the circumference of the polygon. Assuming that

the cities are located at unit distance from the centre of the polygons (i.e.
the polygons have unit radius), the length of the optimal tour can be found
with a little trigonometry. Figure 3 shows the length of a side.

T

P NP≠

Richard Harris Richard has been a professinal programmer
since 1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.

Figure 1

Figure 2

Figure 3
December 2007 | Overload | 7

FEATURE RICHARD HARRIS

So are there any remotely interesting
questions we can ask about the

regular TSP?
For a tour of n cities, the length, l, of the optimal tour is given by:

As n gets large, so gets small, and for small , is well approximated
by itself. We can conclude, therefore, that for large n, the length of the
optimal tour is approximately equal to . This shouldn’t come as much
of a surprise since for large n a polygon is a good approximation for a circle.
In fact, it was this observation that Archimedes [Archimedes] used to prove
that

The ratio of the circumference of any circle to its diameter is less
than 31/7 but greater than 310/71.

It’s also fairly easy to find the length of the most sub-optimal tour. The
key is to note that for odd n the furthest two cities from any given city are
those connecting the opposite side of the polygon. Figure 4 shows the
longest single steps and tour in a 5-city regular TSP.

For odd regular TSPs, we can take a step of this length for every city, giving
us a star shaped tour. We can calculate the length of this tour in a similar

way to that we used to calculate the shortest tour length. Figure 5 shows
the length of the longest single step.
So for a tour of odd n cities, the length, l', of the worst tour is given by:

This time for sufficiently large n, is small enough that cos is well
approximated by 1. For large odd n, therefore, the length of the worst tour
is approximately equal to 2n. Once again, we could have equally well
concluded this from the fact that for large n the polygon is a good
approximation for a circle for which the largest step is across the diameter.
For an even number of cities the worst single step is to the city on the
opposite side of the polygon with a distance of 2. Unfortunately each time
we take such a step we rule it out for the city we visit, which will have to
take a shorter step. So we can have ½n steps of length 2 and ½n steps of
length strictly less than 2, giving a total length strictly less than 2n.
This doesn’t show that for an even number of cities the limit is 2n, just
that it cannot exceed 2n. However, we can follow the longest step with the
second longest to one of the first city’s neighbours. We can repeat this for
all but the last pair of cities for which we can take the longest step followed
by the shortest. Figure 6 shows a 2n-2 limit tour for 6 cities.

Whilst I haven’t shown that this is the worst strategy, it does have a limit
close to 2n for large n. It takes ½n steps with length 2, ½n-1 steps with
length approximately equal to 2 and one step with length approximately
equal to 0 giving a total of 2n-2.
So are there any remotely interesting questions we can ask about the
regular TSP?
How about what the average length of a tour is? Or, more generally, how
are the lengths of random regular TSP tours distributed?
This is where the maths gets a little bit tricky, so we’ll need to write a
program to enumerate the tours directly. The simplest way to do this is to

θ 2π
n

------=

θ
2
---sin h

2
---=

l n h× 2n π
n
---sin= =

θ θ θsin
θ

2θ

θ 2π
n

------ n 1–
2

------------× π π
n
---–= =

θ
2
---sin h

2
---=

l′ n h× 2n π
2
--- π

2n
------–⎝ ⎠

⎛ ⎞sin 2n π
2n
------cos= = =

θ θ

Figure 4

Figure 5

Figure 6
8 | Overload | December 2007

FEATURERICHARD HARRIS

We can exploit the fact that our cities are
located at the vertices of regular polygons
assign each city a number from 0 to n-1 so we can represent a tour as a
sequence of integers. Figure 7 shows labels for a 5-city regular TSP.
A tour can be defined as:
#include <vector>
 namespace tsp
 {
 typedef std::vector<size_t> tour;
 }

We’ll need some code to calculate the distance between the cities. We can
save ourselves some work if we calculate the distances in advance rather
than on the fly. We can exploit the fact that our cities are located at the
vertices of regular polygons by noting that due to rotational symmetry the
distance between two cities depends only on how may steps round the

circumference separate them. Listing 1 shows a class to calculate distances
between cities.
The constructor does most of the work, calculating the distances between
cities 0 to n-1 steps apart. Listing 2 calculates the distances between cities.
Of course we could have also exploited the reflectional symmetry that
means the distance between cities separated by i and n-i steps are also the
same, but I’m not keen to make the code more complex for the relatively
small improvement that results.
The code to retrieve the distance between two cities is relatively simple
and is shown in Listing 3.

Figure 7

Listing 1

namespace tsp
{
 class distances
 {
 public:
 distances(size_t n);

 size_t size() const;
 double operator()(size_t step) const;
 double operator()(size_t i, size_t j) const;

 private:
 typedef std::vector<double> vector;

 size_t n_;
 vector distances_;
 };
}

Listing 2

tsp::distances::distances(size_t n) : n_(n),
 distances_(n)
{
 if(n_<3) throw std::invalid_argument("");

 static const double pi = acos(0.0) * 2.0;
 double theta = 2.0*pi / double(n_);
 double alpha = 0.0;

 vector::iterator first = distances_.begin();
 vector::iterator last = distances_.end();

 while(first!=last)
 {
 *first = 2.0 * sin(alpha/2.0);
 ++first;
 alpha += theta;
 }
}

Listing 3

double
tsp::distances::operator()(size_t step) const
{
 if(step>=distances_.size())
 throw std::invalid_argument("");
 return distances_[step];
}

double
tsp::distances::operator()(size_t i,
 size_t j) const
{
 if(i>=n_ || j>=n_)
 throw std::invalid_argument("");
 return (*this)((i>j) ? i-j : j-i);
}

December 2007 | Overload | 9

FEATURE RICHARD HARRIS

unless we specify otherwise, we’ll use twice
as many buckets as we have vertices
To calculate the length of a tour we need only iterate over it and sum the
distances of each step (Listing 4, overleaf).
The final thing we’ll need before we start generating tours is some code
to keep track of the distribution of tour lengths. Listing 5 shows a class to
maintain a histogram of tour lengths.
Most of the member functions of our histogram class are pretty trivial, so
we’ll just look at the interesting ones. Firstly, the constructors. Listing 6
shows how the tour histograms are constructed.

As you can see, unless we specify otherwise, we’ll use twice as many
buckets as we have vertices. This is because we’ve already proven that the
maximum tour length is bounded above by 2n, so it makes sense to restrict
our histogram to values between 0 and 2n and dividing this into unit length
ranges is a natural choice.

Listing 4

double
tsp::tour_length(const tour &t,
 const distances &d)
 {
 if(t.size()==0)
 throw std::invalid_argument("");

 tour::const_iterator first = t.begin();
 tour::const_iterator next = first+1;
 tour::const_iterator last = t.end();

 double length = 0.0;
 while(next!=last) length += d(*first++,
 *next++);
 length += d(*first, t.front());

 return length;
}

Listing 5

namespace tsp
{
 class tour_histogram
 {
 public:
 struct value_type
 {
 double length;
 size_t count;
 value_type();
 value_type(double len, size_t cnt);
 };

 typedef std::vector<value_type>
 histogram_type;
 typedef histogram_type::
 size_type size_type;
 typedef const value_type &
 const_reference;
 typedef histogram_type::
 const_iterator const_iterator;

 tour_histogram();
 explicit tour_histogram(size_t vertices);
 tour_histogram(size_type vertices,
 size_type buckets);

 bool empty() const;
 size_type size() const;
 size_type vertices() const;

 const_iterator begin() const;
 const_iterator end() const;
 const_reference operator[](
 size_type i) const;
 const_reference at(size_type i) const;
 void add(double len, size_t count = 1);

 private:
 void init();
 size_type vertices_;
 histogram_type histogram_;
 };
}

Listing 6

tsp::tour_histogram::tour_histogram(
 size_t vertices) :

vertices_(vertices),

histogram_(2*vertices)
 {
 init();
 }

tsp::tour_histogram::tour_histogram(
 size_type vertices,
 size_type buckets) :

vertices_(vertices),

histogram_(buckets)
{
 init();
}

10 | Overload | December 2007

FEATURERICHARD HARRIS

The problem is that the number of tours
grows extremely rapidly with the number
of cities.
n n!

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

The init member function simply initialises the ranges for each of the
buckets and sets their counts to 0. Note that, for our default histogram, the
bucket identified with length l records tours of length greater than or equal
to l-1 and less than l.
Listing 6 shows initialising the tour histogram.
We can exploit the fact that our histogram buckets are distributed evenly
over the range 0 to 2n when recording tour lengths. To identify the correct
bucket we need only take the integer part of the tour length multiplied by
the number of buckets and divided by 2n.
Listing 7 shows adding a tour to the histogram
Now we have all of the scaffolding we need to start measuring the
properties of random tours of the regular TSP. Before we start, however,
we should be mindful of the enormity of the task we have set ourselves.

The problem is that the number of tours grows
extremely rapidly with the number of cities. For a TSP
with n cities, we have a total of n! tours which are
going to take a lot of time to enumerate.
Table 1 shows the growth of n! with n.
We can improve matters slightly by considering
symmetries again.
Firstly we have a rotational symmetry, in that we can
start at any of the cities in a given tour and generate a
new tour. By fixing the first city, we improve matters
by a factor of n.
Secondly we have a reflectional symmetry in that we
can follow any given tour backwards and get a new
tour. By fixing which direction we take around the
polygon, we reduce the complexity of the problem by
a further factor of 2.
Whilst exploiting the rotational symmetry is relatively straightforward, the
reflectional symmetry once again requires quite a bit of house-keeping.
Hence I shall only attempt to exploit the former for the time being.
The first thing we’re going to need is a way to generate the initial tour.

 void
 tsp::generate_tour(tour::iterator first,
 tour::iterator last)
 {
 size_t i = 0;
 while(first!=last) *first++ = i++;
 }

Once we can do that it is a simple matter of iterating through each of the
remaining tours and adding their lengths to our histogram. Fortunately
there’s a standard function we can use to iterate through them for us;
std::next_permutation. This takes a pair of iterators and transforms
the values to the lexicographically next largest permutation, returning false
if there are no more permutations.

Listing 6

void
tsp::tour_histogram::init()
{
 if(empty()) throw std::invalid_argument("");

 double step =
 double(2*vertices_) / double(size());
 double length = 0.0;

 histogram_type::iterator first
 = histogram_.begin();
 histogram_type::iterator last
 = histogram_.end();
 --last;

 while(first!=last)
 {
 length += step;
 *first++ = value_type(length, 0);
 }

 *first = value_type(double(2*vertices_), 0);
}

Listing 7

void
tsp::tour_histogram::add(double len)
{
 size_type offset((double(size())*len)/
 histogram_.back().length);
 if(offset>=size())
 throw std::invalid_argument("");
 histogram_[offset].count += 1;
}

Table 1

Listing 8

void
 tsp::full_tour(tour_histogram &histogram)
 {
 distances dists(histogram.vertices());
 tour t(histogram.vertices());
 generate_tour(t.begin(), t.end());

 do histogram.add(tour_length(t, dists));
 while(std::next_permutation(t.begin()+1,
 t.end()));
 }
}

December 2007 | Overload | 11

FEATURE RICHARD HARRIS
Using this function to calculate the histogram of tour lengths is relatively
straightforward, as shown in Listing 8.
Note that exploiting the rotational symmetry of the starting city is achieved
by s imp ly l e av ing ou t t he f i r s t c i t y i n ou r ca l l t o
std::next_permutation.
Now we are ready to start looking at the results for some tours, albeit only
those for which the computational burden is not too great.
Figure 8 shows the tour histograms for 8, 10, 12 and 14 city regular TSPs.
We can also use the histograms to calculate an approximate value for the
average length of the tours. We do this by assuming that every tour that is
added to a bucket has length equal to the mid-point of the range for that
bucket. For our default number of buckets, this introduces an error of at
most 0.5, which for large n shouldn’t be significant. If you’re not
comfortable with this error it would not be a particularly difficult task to
adjust the add member function to also record the sum of the tour lengths
with which you could more accurately calculate the average length. I’m
not going to bother though.
The approximate average lengths of the above tours, as both absolute
length and in proportion to the number of cities, are given in Table 2.
The distributions shown by the histograms and the average tour lengths
both hint at a common limit for large n, but unless we can analyse longer
tours we have no way of confirming this. Unfortunately, the computational
expense is getting a little burdensome as Table 3 illustrates.

So can we reduce the computational expense of generating the tour
histograms? Well that, I’m afraid, is a question that shall have to wait until
next time.

Acknowledgements
With thanks to Larisa Khodarinova for a lively discussion on group theory
that lead to the correct count of distinct tours and to Astrid Osborn and John
Paul Barjaktarevic for proof reading this article.

References & Further Reading
[Clay] Clay Mathematics Institute Millennium Problems,

http://www.claymath.org/millennium.
[Archimedes] Archimedes, On the Measurement of the Circle, c. 250–

212BC.
[Beardwood59] Beardwood, Halton and Hammersley, The Shortest Path

Through Many Points, Proceedings of the Cambridge Philosophical
Society, vol. 55, pp. 299-327, 1959.

[Jaillet93]Jaillet, Analysis of Probabalistic Combinatorial Optimization
Problems in Euclidean Spaces, Mathematics of Operations Research,
vol. 18, pp. 51-71, 1993.

[Agnihothri98] Agnihothri, A Mean Value Analysis of the Travelling
Repairman Problem, IEE Transactions, vol. 20, pp. 223-229, 1998.

[Basel01] Basel and Willemain, Random Tours in the Travelling
Salesman Problem: Analysis and Application, Computational
Optimization and Applications, vol. 20, pp. 211-217, 2001.

[Hoffman96] Hoffman and Padberg, Travelling Salesman Problem,
Encyclopedia of Operations Research and Management Science,
Gass and Harris (Eds.), Kluwer Academic, Norwell, MA, 1996.

Figure 8

Table 2

n ? ? /n

8 10.99 1.37

10 13.51 1.35

12 16.07 1.34

14 18.62 1.33

Table 3

n time (seconds)

8 0.002

10 0.180

12 22.140

14 4024.410
12 | Overload | December 2007

FEATURESTUART GOLODETZ
Functional Programming Using
C++ Templates (Part 2)
Continuing his exploration of functional
programming and template metaprogramming,
Stuart Golodetz looks at some data structures.
Introduction
n my last article [Golodetz], I explored some of the similarities between
functional programming in languages such as Haskell, and template
metaprogramming in C++. This time, we’ll look at how to implement

compile-time binary search trees (see Figure 1 for an example). As
mentioned previously, these are useful because they allow us to implement
static tables that are sorted at compile-time.
Figure 1 is an example of a binary search tree. Note that an in-order walk
of the tree produces a list which is sorted in ascending order.

Orderings
Our finished tree code will implement a compile-time map from a key type
to a value type. Since binary search trees are sorted (an in-order walk of
the tree will produce a sorted list), we’ll need to define an ordering on the
key type to do this.
We’ll start by defining a default ordering of our various element types.
Bearing in mind our definitions of the Int and Rational types in the
last article, we can write this as follows:

 template <typename x, typename y> struct Order
 {
 enum { less = x::value < y::value };
 enum { greater = x::value > y::value };
 };

We’ll also define ordering predicates for later use with Filter
(Listing 1).

As we’ll see later, our trees will be constructed from a list of (key,value)
pairs. We can define a simple compile-time pair type as follows:

 template <typename F, typename S>
 struct Pair
 {
 typedef F first;
 typedef S second;
 };

The above definition is for a generic pair (not just one which can be used
with our tree code). We can define an ordering for a (key, value) pair as
follows (note that I’ve called this KeyOrder rather than defining it as a
partial specialization of the Order template – we don’t really want there
to be a ‘default’ ordering for pairs):

 template <typename x,
 typename y> struct KeyOrder;

 template <typename k1, typename v1,
 typename k2, typename v2>
 struct KeyOrder<Pair<k1,v1>, Pair<k2, v2> >
 {
 enum { less = Order<k1,k2>::less };
 enum { greater = Order<k1,k2>::greater };
 };

Building a balanced tree
For a binary search tree to be ‘efficient’, we want it to be as balanced as
possible; in other words, we ideally want its height to be logarithmic rather

I

Stuart Golodotz Stuart has been programming for 13 years
and is currently studying for a computing doctorate at Oxford
University. His next project involves the geometric modelling
of kidney cancer. He can be contacted at
stuart.golodetz@comlab.ox.ac.uk

23

84

42

Null Null

Null

Null

9

177

NullNullNull

Figure 1

Listing 1

template <typename y,
 template <typename,typename> class Ordering>
struct LessPred
{
 template <typename x>
 struct Eval
 {
 enum { value = Ordering<x,y>::less };
 };
};

template <typename y,
 template <typename,typename> class Ordering>
struct GreaterPred
{
 template <typename x>
 struct Eval
 {
 enum { value = Ordering<x,y>::greater };
 };
};
December 2007 | Overload | 13

FEATURE STUART GOLODETZ
than linear in the number of its elements. A good way to go about arranging
this when constructing a tree is to start from a list l of (key,value) pairs
(key1, value1) ... (keyn, valuen), where all the keyi values are distinct, and
proceed as follows:

1. Choose a pair (keys, values) from l such that:

is minimised, i.e. such that keys divides the list of keys as evenly as
possible. (Note that < and > in the above are defined in terms of the
ordering on the key type.)

2. Generate two sublists:

and

(Note that).
3. Recursively construct a tree for each of the sublists (unless they are

the empty list) and attach the generated trees as the children of the
current node. Set the splitter at the current node to be (keys, values).

Modulo minor alterations for different scenarios, this algorithm is a
standard way of building (reasonably) balanced trees. (A similar sort of
approach is used when building binary space partitioning (BSP) trees or
decision trees.) How do we go about coding it using templates?
Conceptually, it’s probably easiest to use a top-down approach to the
problem in this instance (especially given the way the description above
is written). We start by defining the BuildNode template. This takes a
list of (key, value) pairs and an ordering, and defines a typedef called
result which will be the type defining the resulting tree (Listing 2).
The way this works is exactly as you’d expect. First we choose a splitter,
then we filter the list l (list in the code) twice to get lL (leftList) and
lR (rightList). Finally, we recursively build the subtrees and combine
them into a TreeNode.
When it comes to looking up values in the tree (which we will see later),
we will need to know what ordering was used when building it. The
BuildTree template uses BuildNode to build the actual tree, then
wraps the tree and the ordering into a compound type:

 template <typename xs, template <typename,
 typename> class Ordering = KeyOrder>
 struct BuildTree
 {
 typedef Tree<typename BuildNode<xs,Ordering>::
 result,Ordering> result;
 };

Choosing a splitter
We now need to decide how to choose a splitter for a list. The basics of
the idea were given in the high-level description above; the way we
implement it in practice is to evaluate a metric for each element of the list
and pick the one with the lowest score (or any one of those with the lowest
score, if necessary). The metric computes the absolute difference between
the number of elements less than the potential splitter and the number of
those greater than it (Listing 3).
The ChooseSplitter template then uses this to pick the best possible
splitter each time (Listing 4).

Outputting a tree
We have code for building a tree, but before we can test it we need some
way of outputting trees. The code in Listing 5 does exactly that, indenting
each layer of the tree by a fixed amount to make it easier to read.

An example
Figure 2 shows a key -> value map, implemented using a binary search
tree. Null nodes are not shown.
Now that we can output trees, we can examine a concrete example of tree-
building. Specifically, we will build the tree shown in Figure 2.
First of all, we define some macros to make the final code easier to read
(see Listing 6).

i k: eyi keys<{ } # i keyi keys>:{ }–

lL keyi valuei,() keyi keys<:{ }=

lR keyi valuei,() keyi keys>:{ }=

lL lR keys values,(){ } l=∪ ∪

Listing 2

template <typename xs,
 template <typename,typename> class Ordering>
struct BuildNode;

template <template <typename,typename>
 class Ordering>
struct BuildNode<NullType, Ordering>
{
 typedef NullType result;
};

template <typename k, typename v, typename xs,
 template <typename,typename> class Ordering>
struct BuildNode<List<Pair<k,v>,xs>, Ordering>
{
 typedef List<Pair<k,v>,xs> list;
 typedef typename ChooseSplitter<list,list,
 Ordering>::result splitter;

 typedef typename Filter<LessPred<splitter,
 Ordering>::Eval, list>::result leftList;
 typedef typename Filter<GreaterPred<splitter,
 Ordering>::Eval, list>::result rightList;

 typedef typename BuildNode<leftList,
 Ordering>::result leftChild;
 typedef typename BuildNode<rightList,
 Ordering>::result rightChild;

 typedef TreeNode<splitter, leftChild,
 rightChild> result;
};
14 | Overload | December 2007

FEATURESTUART GOLODETZ
The KPLISTn macros take a key type and a value type, followed by a list
of (key,value) pairs. Given the above definitions, we can build and output
our tree as follows:
 OUTPUT_TREE(BUILD_TREE(KPLIST7(Int,Int,0,23,1,9,
 2,84,3,24,4,12,5,18,6,42)));

(3,24)

(5,18)

(4,12) (6,42)

(1,9)

(2,84)(0,23)

template <int n>
struct Abs
{
 enum { value = n >= 0 ? n : -n };
};

template <typename y, typename xs,
 template <typename,typename> class Ordering>
struct EvaluateMetric;

template <typename y,
 template <typename,typename> class Ordering>
struct EvaluateMetric<y, NullType, Ordering>
{
 enum { less = 0, greater = 0 };
};

template <typename y, typename x, typename xs,
 template <typename,typename> class Ordering>
struct EvaluateMetric<y, List<x,xs>, Ordering>
{
 enum { less = Ordering<y,x>::less +
 EvaluateMetric<y,xs,Ordering>::less };
 enum { greater = Ordering<y,x>::greater +
 EvaluateMetric<y,xs,Ordering>::greater };
 enum { value = Abs<(greater - less)>::value };
};

template <typename ys, typename xs,
 template <typename,typename> class Ordering>
struct ChooseSplitter;

template <typename y, typename xs,
 typename Ordering>
struct ChooseSplitter<List<y,NullType>, xs,
 Ordering>
{
 typedef y result;
 enum { metric = EvaluateMetric<y,xs,Ordering>::
 value };
};

template <typename y, typename ys, typename xs,
 template <typename,typename> class Ordering>
struct ChooseSplitter<List<y,ys>, xs, Ordering>
{
 typedef typename ChooseSplitter<ys,xs,
 Ordering>:: result candidate;
 enum { candidateMetric = ChooseSplitter<ys,xs,
 Ordering>:: metric };
 enum { metric = EvaluateMetric<y,xs,Ordering>::
 value };
 typedef typename Select<(
 metric < candidateMetric), y, candidate>::
 result result;
};

Listing 3

Listing 4

template <typename T, int offset = 0>
struct OutputNode;

template <int offset>
struct OutputNode<NullType, offset>
{
 void operator()()
 {
 for(int i=0; i<offset; ++i) std::cout << ' ';
 std::cout << "Null\n";
 }
};

template <typename Splitter, typename Left,
 typename Right, int offset>
struct OutputNode<TreeNode<Splitter, Left, Right>,
 offset>
{
 void operator()()
 {
 for(int i=0; i<offset; ++i) std::cout << ' ';
 std::cout << Splitter::first::value << ' ' <<
 Splitter::second::value << '\n';
 OutputNode<Left, (offset+2)>()();
 OutputNode<Right, (offset+2)>()();
 }
};
template <typename Tree> struct OutputTree;

template <typename Root,
 template <typename,typename> class Ordering>
struct OutputTree<Tree<Root,Ordering> >
{
 void operator()()
 {
 OutputNode<Root>()();
 }
};

Listing 5

Figure 2

#define KPLIST1(kt,vt,k1,v1) List<Pair<kt<k1>,vt<v1> >, NullType>
#define KPLIST2(kt,vt,k1,v1,k2,v2) List<Pair<kt<k1>,vt<v1> >, KPLIST1(kt,vt,k2,v2)>
#define KPLIST3(kt,vt,k1,v1,k2,v2,k3,v3) List<Pair<kt<k1>,vt<v1> >, KPLIST2(kt,vt,k2,v2,k3,v3)>
...
#define KPLIST7 ...

#define BUILD_TREE(L) BuildTree<L>::result
#define OUTPUT_TREE(T) OutputTree<T>()()

Listing 6
December 2007 | Overload | 15

FEATURE STUART GOLODETZ
This gives the expected result:
 3 24
 1 9
 0 23
 Null
 Null
 2 84
 Null
 Null
 5 18
 4 12
 Null
 Null
 6 42
 Null
 Null

Lookup
Tree-building is all well and good, but to finish implementing compile-
time maps, we now need to implement a lookup function on our trees. This
turns out to be relatively straightforward: we locate the key we want to find
in the tree recursively by comparing it against the key at the current node
at each stage; if it’s less than the nodal key, we recurse down to the left
child, if it’s greater than the nodal key, we recurse down to the right child,
and if it’s equal then we’ve found what we’re looking for and ‘return’ the
nodal value by means of a typedef. If the current node is null, the key
can’t be found in the tree and we ‘return’ null (or NullType). The code
is shown in Listing 7.
One slight trick lies in the way we handle orderings: the ordering stored
with the tree itself is an ordering over (key,value) pairs, since it was an
ordering over the list from which the tree was built. The ordering we want
for lookup, on the other hand, is an ordering over the key type. There are
two equivalent ways of dealing with this: either we initially define an
ordering on the key type and lift it to (key,value) pairs, or we initially define
one on (key,value) pairs and lower it back to the key type. The first way
probably makes more intuitive sense (since the alternative relies on the fact
that the (key,value) pair ordering we define depends only on the key) and
is left as a mini-exercise for the reader. In the code in Listing 7, we use the
SubsidiaryOrdering template to lower the (key,value) pair ordering
back to the key type; its definition is as shown in Listing 8.
Having thus finished our lookup implementation, we can try it out, again
defining some macros to make things neater:

 #define LOOKUP(kt,kv,T)Lookup<kt<kv>,T>::result
 #define OUTPUT_VALUE(v)OutputValue<v>()()

 ...

 OUTPUT_VALUE(LOOKUP(Int,4,BUILD_TREE(KPLIST7(
 Int,Int,0,23,1,9,2,84,3,24,4,12,5,18,6,42))));

This correctly outputs the value 12, as we expect.

Conclusion
Let’s take a step back from the code-face and take a look at what we’ve
gained from this. Aside from seeing how to implement a compile-time
map, which is a valuable technique in itself, we’ve seen that template
metaprogramming in general can be a really useful technique, and (as
discussed in the last article) one that needn’t unnecessarily befuddle us if
we keep in mind its similarities to functional programming in other
languages. Aside from providing an interesting programming challenge in
its own right, template metaprogramming has applications which are
useful in the real world and is well worth looking into.

References
[Golodetz] Functional Programming Using C++ Templates (Part 1),
Overload 81, October 2007.

template <typename Key, typename Node,
 template <typename,typename> class Ordering>
struct LookupInNode;

template <typename Key,
 template <typename,typename> class Ordering>
struct LookupInNode<Key, NullType, Ordering>
{
 typedef NullType result;
};

template <typename Key, typename Value,
 typename Left, typename Right,
 template <typename,typename> class Ordering>
struct LookupInNode<Key, TreeNode<Pair<Key,Value>,
 Left,Right>, Ordering>
{
 typedef Value result;
};

template <typename Key, typename SplitKey,
 typename SplitValue, typename Left,
 typename Right, template <typename,typename>
 class Ordering>
struct LookupInNode<Key, TreeNode<Pair<SplitKey,
 SplitValue>,Left,Right>, Ordering>
{
 // Note that the = case is handled by the
 // partial specialization above.
 typedef typename Select<Ordering<Key,SplitKey>::
 less,LookupInNode<Key,Left,Ordering>,
 LookupInNode<Key,Right,Ordering>
 >::result::result result;
};

template <typename Key, typename Tree>
struct Lookup;

template <typename Key, typename Root,
 template <typename,typename> class Ordering>
struct Lookup<Key, Tree<Root,Ordering> >
{
 typedef typename LookupInNode<Key,Root,
 SubsidiaryOrdering<Ordering>::Eval>::
 result result;
};

Listing 7

template <template <typename,typename> class
Ordering> struct SubsidiaryOrdering;

template <>
struct SubsidiaryOrdering<KeyOrder>
{
 template <typename x, typename y>
 struct Eval
 {
 enum { less = Order<x,y>::less };
 enum { greater = Order<x,y>::greater };
 };
};

Listing 8
16 | Overload | December 2007

FEATUREROGER ORR
Java Protocol Handlers
Roger Orr demonstrates the use of Java’s URL
handling to make code independent of the
source of data.
Introduction
n today’s programming environment data can be sourced from a variety
of locations, using a range of protocols. In many cases the actual source
of the data is irrelevant to the application; when this is the case then

being able to abstract details of location away from the code means that
we can process data from a variety of different places by simply changing
a configuration string.
So, for example, the configuration for the common Java logging suite log4j
[log4j] can be provided as easily from a local file on the hard disk as from
an Internet web site without any changes being required to the application
code.
As another example, an overnight batch process might take data via ftp
from a remote server, but be more easily tested by running against a sample
disk file containing a known dataset.
The standard method of describing such abstract locations for data is
through a URL (Universal Resource Locator) – the most common example
of these being web site address such as http://www.accu.org.
Java comes with built-in support for URLs, most obviously through the
java.net.URL class.

A simple example of using the URL class
Listing 1 is a trivial Java program which makes use of the URL class to
read data in a location agnostic manner.

This program can be run against:
a local file using an argument like file:example.txt
a remote file using an argument like file://server/path/file
a Web site using an argument like http://www.accu.org/
(subject to any restrictions by network firewalls or proxies).

URLs – or ‘what's in a name?’
The syntax of a URL is defined by RFC 2396 [RFC2396] which,
confusingly perhaps, uses the term URI (Universal Resource Identifier)
rather than URL. The difference between the two is that a URI is more
general; it can describe resources that aren’t locations, for example
urn:isbn:978-0-470-84674-2 which is the ISBN number of a book. In
practice, however, the distinction between the two terms is often blurred.
There is a fuller discussion of this issue on the w3c site [W3C – URI].
Each identifier before the first colon in a URI name defines a ‘scheme’ and
schemes such as http and ftp are globally recognised as standard. The
full list of official schemes is held by the Internet Assigned Numbers
Authority [IANA].
Java has support for URIs and URLs through the java.net.URI and
java.net.URL classes. Additionally, Java is supplied with inbuilt
support for a number of different schemes, as a minimum support for the
following is guaranteed: http, https, ftp, file, and jar.
Note that Java refers to these schemes as ‘protocols’ although, for example,
processing an http URL involves two protocols – DNS to resolve the host
name and HTTP to access the data.
Although the five standard protocols are often adequate, there are
sometimes cases where access is required to other data sources. Often the
location of this data can be described using the URI syntax but it may not
be an ‘official’ URI scheme.
For example, data might be obtainable using scp (secure file copy) and
the obvious URI of scp://user@host/path/file could be used to
represent the location of a file on some remote host. Or again, data may
be supplied in a zip file or some other compressed format and you want to
be able to access the data uncompressed from within your program.
Fortunately Java allows us to supply our own protocol handlers to extend
the set of supported schemes.
There are existing extensions to the Java protocol handlers provided by
various sites on the Internet and supporting various protocols; one such
example is Hansa [Hansa]. If your requirements are for support of a well-
known protocol you may be able to find a pre-written protocol handler.

I

Roger Orr Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in Canary Wharf
and the City. He joined ACCU in 1999 and the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

Listing 1

package howzatt;

public class Example {
 public static void main(String[] args) {
 for (String uri : args) {
 read(uri);
 }
 }

 public static void read(String uri) {
 try {
 java.net.URL url = new java.net.URL(uri);
 java.io.InputStream is = url.openStream();
 int ch;
 while ((ch = is.read()) != -1) {
 System.out.print((char)ch);
 }
 is.close();
 }
 catch (java.io.IOException ex) {
 System.err.println("Error reading " +
 uri + ": " + ex);
 }
 }
}

December 2007 | Overload | 17

FEATURE ROGER ORR

For stand-alone applications the easiest
way to register your new protocol is to
define the system property used by the URL
class
However, there may be times when you want to implement a protocol
handler yourself – whether for an unsupported official scheme or for a
proprietary one.

Extending Java’s URL handling
Java supplies a standard mechanism for extending the supported protocol
schemes, which is described in brief in the documentation for the URL
class. The process consists of three parts:

writing a class, derived from java.net.URLStreamHandler,
that knows how to open a connection to URLs of the new scheme
writing a class derived from java.net.URLConnection, to
access data from these connections
associating the stream handler class with the protocol name

The first two steps will obviously depend heavily on the specifics of the
protocol being supported, and may involve such actions as opening
network connections or invoking external programs. I’ll illustrate the
process with a very simple example that uses the ‘quote of the day’ service
to make the general principle clear without requiring too many protocol-
specific details.
The final step involves plugging your new classes into the processing the
URL class uses when it comes across a protocol for the first time. The URL
class attempts to create an instance of the correct URLStreamHandler
class in the following order:

If a factory has been registered with the URL class then the
createURLStreamHandler method of the factory is called with
the protocol name.
If there is no factory, or the factory does not recognise the protocol,
then Java looks for the system property
java.protocol.handler.pkgs which is a | delimited list of
packages. For each package it tries to load the class
<package>.<protocol>.Handler, which, if present, must be
the URLStreamHandler for the given protocol.
Failing this the system default package is searched for a handler in
the same way.

For stand-alone applications the easiest way to register your new protocol
is to define the system property used by the URL class; so let’s see how
this might work.

A ‘quote of the day’ handler
A standard Internet service is supported, on many operating systems, on
port 17. This service simply returns a random quote whenever a TCP/IP
connection is made to it. If this service is available on your machine, you
can see it at work using telnet. Here is a Windows example:
 C:> telnet localhost qotd
 "We want a few mad people now. See where the sane
 ones have landed us!"
 George Bernard Shaw (1856-1950)
 Connection to host lost.

If this attempt fails, you might need to start the service (or connect to
another machine that does offer the qotd service). On Windows it is one
of the ‘Simple TCP/IP Services’.
In order to access this service from my example program at the start of the
article I need a URL syntax, so I’ve picked the simple format:
qotd://hostname.
Since we are using an unofficial scheme there are several alternative ways
of encoding the data as a URI.
Listing 2 contains example code for a simple stream handler for the qotd
protocol and the actual connection handling code itself is in Listing 3.

Listing 3

package howzatt.qotd;

public class QotdConnection
extends java.net.URLConnection {

 private static final int QOTD = 17;
 private java.net.Socket socket;

 public QotdConnection(java.net.URL u) {
 super(u);
 }

 public void connect()
 throws java.io.IOException {
 final String host = getURL().getHost();
 socket = new java.net.Socket(host, QOTD);
 connected = true;
 }

 public java.io.InputStream getInputStream()
 throws java.io.IOException {
 if (! connected)
 connect();
 return socket.getInputStream();
 }
}

Listing 2

package howzatt.qotd;

public class Handler
extends java.net.URLStreamHandler {
 protected java.net.URLConnection
 openConnection(java.net.URL u)
 throws java.io.IOException {
 return new QotdConnection(u);
 }
}

18 | Overload | December 2007

FEATUREROGER ORR
Now if we compile these two additional classes, we can use the qotd
protocol with the example program shown earlier like this:
java -Djava.protocol.handler.pkgs=howzatt howzatt.
Example qotd://localhost

If all is well we get a quote displayed – we have transparently extended
our simple application to acquire data from a different source.

Problems with protocol handlers
In my experience the biggest problem with extending Java’s protocol
handlers is with the registration process. Writing the code to handle the
specific protocol is a fairly clear task, it requires a decision about the URI
syntax to be used for and the code written for the particular connection
type.
The registration problem is harder because of two design issues.

The factory registration is inextensible
The class loader used by the URL class cannot be changed

As a mentioned earlier, one way of registering your URLStreamHandler
class with the URL class is to provide a factory object. Unfortunately this
m echan i sm i s somewha t i n f l ex ib l e ; spec i f i ca l l y t he
setURLStreamHandlerFactory method can be called at most once
in a given Java Virtual Machine.
This may be a valid restriction for a small Java application but it becomes
hard to manage when two different parts of the application, possibly
written by unrelated teams, each wish to register a factory for their own
protocol with the URL class.
However, even leaving this problem aside, the factory approach requires
the application code to register the factory explicitly which makes it hard
to add new protocols to existing programs. This is what we did earlier to
the example program, and is one of the most powerful aspects of Java’s
protocol handler support.
On the other hand, using the protocol.Handler convention can be
problematic because of the way Java class loaders work.
When a new protocol is detected by the URL class it tries to load the
appropiate handler class but using the class loader that was used to load
the URL class itself.
For a stand-alone application this does not usually present a problem, but
where the Java code is running inside a web service or as an applet it is
normal for user-supplied code to be loaded by a different class loader than
the core Java classes.
In these cases, any protocol handler class supplied in the user code will
not be found by the system class loader used to load the java.net.URL
class.
In these cases it also may not be as simple to externally configure the
system property used by the URL class and the System.setProperty

method can be used at runtime to add additional packages. Note however
that this approach might be barred by the security manager and care must
also be taken to ensure that any existing packages defined by this system
property are retained. See Listing 4.

Alternative approaches
Given the problems with registration, other approaches can be taken. One
is to jettison the Java URL and provide a different abstraction; this seems
to be the approach favoured by the Apache ‘Commons Virtual File
System’, which retains the use of the URI syntax but provides an
alternative method of access the data using a FileSystemManager
class.
The weakness with such an approach is that it does not of itself support
handling of additional protocols when using existing code that uses the
java.net.URL class internally to connect to a URL.
Another approach is to use the factory registration, but to provide a factory
class that itself supports registration of multiple different stream handlers
using different names.
This approach supports code using the java.net.URL class but it does
require a registration call for each protocol and so hence changes are
needed to an application before it can make use of the new URLs. However
the approach gets around the problems discussed above with multiple class
loaders since the factory is loaded by the user code class loader rather than
by the class loader for the URL class.

Restrictions
The Java protocol handlers are not suitable for every situation. There are
two main reasons for this.

The URL abstraction may hide too much detail of the underlying
data representation. For example, processing might require file-
system specific methods, or be intolerant of network latency.
Not all resources are easily described by a URI, and not all protocols
fit into the URLConnection model. Security can be a particular
problem here since the usual way of including a username/password
into a URL uses plain text which is obviously rather insecure.

Conclusion
The location abstraction provided by the URL notation makes it possible
to write programs that can transparently access data from a wide variety
of different places.
There is a parallel with the way that Unix treats ‘everything like a file’ –
even access to system information. This common view of data means that
simple tools may have wide applicability. The same principle applies with
the use of URLs in Java – the abstraction can make programs able to
process a wide range of data from a variety of sources without needing
explicit coding.
Java provides a relatively simple mechanism to add new protocols to your
applications and hence widen the range of locations for sourcing data.
There is a great deal of power in this approach; sadly the specific details
of registering with the URL class are not very flexible but in most cases
there are various techniques to work around the limitations.

References
[log4j] ‘Apache log4j’, http://logging.apache.org/log4j/
[RFC2396] ‘Uniform Resource Identifiers (URI): Generic Syntax’, http:/

/www.ietf.org/rfc/rfc2396.txt
[W3C-URI] ‘URIs, URLs, and URNs: Clarifications and

Recommendations’, http://www.w3.org/TR/uri-clarification/
[IANA] ‘Uniform Resource Identifer (URI) Schemes’, http://

www.iana.org/assignments/uri-schemes.html
[Hansa] ‘Project Hansa’, http://wiki.ops4j.org/dokuwiki/

doku.php?id=hansa:hansa
[VFS] ‘Commons Virtual File System’, http://commons.apache.org/vfs/

Listing 4

public static void register() {
 final String packageName =
 Handler.class.getPackage().getName();
 final String pkg = packageName.substring(
 0, packageName.lastIndexOf('.'));
 final String protocolPathProp =
 "java.protocol.handler.pkgs";

 String uriHandlers = System.getProperty(
 protocolPathProp, "");
 if (uriHandlers.indexOf(pkg) == -1) {
 if (uriHandlers.length() != 0)
 uriHandlers += "|";
 uriHandlers += pkg;
 System.setProperty(protocolPathProp,
 uriHandlers);
 }
}

December 2007 | Overload | 19

FEATURE OMAR BASHIR
Upgrading Legacy Software in
Data Communications Systems
Changing operational software is a risky
business. Omar Bashir offers a case study in
matching risk with reward.
Introduction
he article ‘Trouble with TCP’ in the CVu issue of December 2006
[CVu06] highlighted issues in implementing (near) real-time point
to multipoint communications over TCP. The author had highlighted

the constraint of minimum code rewrite that most developers face while
upgrading legacy systems to resolve various issues. This constraint had
prevented the author from applying any of the alternative solutions that he
mentioned at the end of his article. This article describes a similar legacy
system that faced serious performance issues when traffic on the system
increased from moderate to high levels. A solution that did not involve
legacy software rewrite was attempted to resolve these performance issues.
Various aspects of this solution are explained here.

The legacy system
The legacy system was a monitoring application aggregating data from a
number of sensors in a data multiplexer (MUX) and displaying this data
in real time on a number of workstations on a LAN. The sensors are
connected to the MUX via dedicated and secure communication links. In
addition to the workstations, the LAN also hosts a database server logging
the data from the sensors for historical analysis and an application server
on which various near real time trend analysis applications are executed.
Figure 1 shows the physical topology of the system.
Operator workstations, database server and application server (referred to
as clients) established connections to the MUX over TCP upon boot up.
Copies of every message received by the MUX from the field sensors were
transmitted over each established connection. At a modest message arrival
rate of 100 messages a second and with the resulting LAN packet size of
256 bytes, communicating these messages to 5 clients only will result in
traffic rates of over 1 Mbps. Therefore, this system operated satisfactorily
at low message rates for a few clients. Only by increasing the number of
clients, the data rate on the LAN increased appreciably. This coupled with
higher incoming message rates (due to either increased field events being
monitored or increased number of field sensors) could cause congestion
either due to network limitations or limitations of the MUX platform
software (e.g., buffer sizes).
As often happens with useful applications, a few months after its induction,
the number of operator workstations was increased and so were the number
of field sensors. This resulted in a noticeable delay between monitoring
events at the sensors and those events being displayed on the operator
workstations.

It was decided to consider changing the transport protocol to UDP with
minimal (preferably no) change to the existing software. The remaining
article discusses various factors that were considered while deciding the
change in the transport protocol for the application and the resulting
solution that required no change in the existing software.

Considering a UDP-based solution
TCP, because of the reliability guarantees it offers, is generally considered
suitable for loss sensitive applications whereas UDP is connectionless and
inherently unreliable. However, compared to UDP, TCP’s reliability is
associated with overheads in its implementation and operation. This
difference in the fundamental principles of these transport protocols has
given rise to some practices in network programming. For example, TCP
is considered suitable for reliable and sequenced but non real-time delivery
of application data. UDP, on the other hand, has been the protocol of choice
for (near) real-time applications that are insensitive to a degree of loss.
The choice of transport protocol, however, needs to be based on a
comprehensive analysis of application requirements. For instance, the
performance of TCP in comparison to that of UDP has been argued in high
throughput and loss sensitive environments. The performance of UDP-
based applications is expected to drop due to the retransmission of packets
lost because of the absence of flow control [Snader00]. On the other hand,
broadcast and multicast communications is a feature inherently supported
by the connectionless nature of UDP whereas this feature has to be
engineered at the application layer in TCP-based applications as multiple
unicast transmissions. As discussed above, the feasibility of the latter
approach is questionable at higher throughputs coupled with increasing
number of receivers as the transmitter iterates over a list of receivers
practically replicating every packet for every receiver.
UDP’s susceptibility to loss can cause failure in applications sensitive to
packet loss. Even if every packet is not required for the real-time operation,
it may be necessary to record all data communicated between different

T

Omar Bashir Omar first experienced software development
about 15 years ago writing programs for automatic test
systems while working as an avionics system engineer. He
has ever since written software for telecommunications,
logistics and financial applications and enjoys integrating
machines and proceses.

He can be reached at obashir@yahoo.com

Field Sensor Field SensorField SensorField Sensor

MUX

Database
Server

latigid

Application
Server

Workstations

Figure 1
20 | Overload | December 2007

FEATUREOMAR BASHIR

fragmented packets are only reassembled
at the destination and the loss of even a

single fragment results in considering the
entire packet being lost
components of the system for historical analysis. A degree of reliability
can be engineered over UDP at the application layer but over-engineering
leading to re-engineering TCP at the application layer over UDP is usually
discouraged (e.g., [Snader00]).
A simple approach to mitigate packet losses over UDP is defined for
facsimile transmissions over UDP in the ITU-T.38 standard [ITU-T.38].
This approach employs redundancy to overcome packet losses. Each UDP
datagram encapsulates, along with the current Internet fax packet, a
predetermined number of previously transmitted Internet fax packets. For

example, with Internet fax packet n5, packets n4, n3 and n2 are also
transmitted and with Internet fax packet n6, packets n5, n4, and n3 are also
transmitted. Thus, even if packets n4, n3 and n2 are lost, n5 packet allows
the recreation of the missing stream. Implementations of redundancy-
based schemes to mitigate packet losses should restrict the overall packet
size to lower than the smallest MTU (Maximum Transmission Unit) along
the packet’s path otherwise fragmentation of the packet may occur thereby
increasing the packet loss probability. This is because fragmented packets
are only reassembled at the destination and the loss of even a single

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol)
form the transport layer protocols (layer 4 protocols) for the Internet
Protocol suite. Although the primary objective of both these protocols is
the same, i.e. to allow distributed and networked application components
to communicate with each other via message passing without concerning
themselves with the characteristics of the network(s) connecting them,
the characteristics of these two protocols are very different making them
suitable for applications with specific communication requirements.

The network layer protocol of the Internet Protocol suite is called the
Internet Protocol (IP) and it is a best-effort protocol. Therefore, it makes
the best possible effort (without any guarantees) to deliver packets
containing user messages to the destination. It treats each packet
differently, determines the route these packets need to take to reach the
destinations and possibly even break them into smaller packets if
required. If a packet is fragmented, it is reassembled only at the
destination and not at the intermediate nodes (routers). Packets may,
therefore, get lost, duplicated or arrive out of order at the destination.

TCP sits over IP and provides message validation facilities. It ensures
that messages sent by the remote application layer processes are
received without errors and in the sequence in which they are
transmitted. Therefore, TCP handles retransmission of lost and corrupted
packets, discards duplicates and rearranges the received packets to
reconstruct the message stream. Furthermore, TCP manages flow of the
data streams to avoid and alleviate congestion.

In order to perform these operations, a connection needs to be
established between source and destination applications. In order to
establish a connection, one process listens for a connection request
where as the other attempts the connection. A listener is usually the
process that provides services to the connecting process and is referred
to as a server. The connector is, therefore, referred to as a client.
However, logically it is possible but not common for clients to be listeners
and servers to connect to listening clients and provide information when
the required information is available.

As multiple networked applications may execute concurrently over the
same host, they need to be identified using a unique identifier called the
port number. Combination of the port number of an application and the IP
address of the host on which it executes uniquely identifies that
application on the Internet. This combination is referred to as socket
endpoint. A TCP connection is an association between two endpoints,
one identifying the client and the other identifying the server. Therefore, a
connected socket endpoint pair uniquely identifies a TCP connection.

Messages are transmitted between the connected applications as a
stream of sequenced bytes. Therefore, for most implementations of TCP,
an application may provide TCP with discrete units of data at the
transmitting end but TCP returns to the application at the receiving end
an unfragmented stream of bytes. If messages are to be retrieved as
discrete units of data then message boundaries need to be explicitly
specified and then looked for within the received byte stream. For
example, if lines of text are transmitted using TCP and the receiving
application needs to receive and process these lines individually, the
received byte stream needs to contain line feeds that the receiving
application can look for to determine line boundaries within the stream. A
common method of delineating binary messages in a TCP byte stream is
to insert a message header of a fixed size containing the message length.
The receiver initially reads the header (as it is of fixed size), determines
the size of the remaining message and then read it. This process is
repeated for the subsequent messages.

IP creates packets containing portions of these streams and transmits
these packets to the destination. TCP at the receiving end attempts to
recreate the stream using the sequence numbers providing by TCP at the
transmitting end. Receiving TCP acknowledges the receipt of the last
sequenced byte received indicating the receipt of all bytes up to the
sequence number. Absence of an acknowledgment at the transmitting
TCP indicates a packet loss, necessitating the retransmission of all
packets from the last successful acknowledgment.

The connection-oriented nature of TCP does not allow multicast or
broadcast communication of messages. This is accomplished by UDP.
UDP is a connectionless protocol, i.e. the receiver of messages can be
sent messages arbitrarily as long as transmitters know the socket
addresses of the receiver without establishing a connection prior to
transmitting these messages. UDP is a very simple protocol that provides
the same best effort delivery of messages that IP offers to packets at the
network layer. Therefore, each message (or datagram) at UDP is treated
independently; it can be lost, duplicated and delivered out of sequence.
For this reason, delineation of messages with UDP is not required.
Multiple receiver processes can bind to a multicast or the broadcast IP
address and a common port to simultaneously receive broadcast or
multicast messages. Usually, applications using UDP need to provide
mechanisms to deal with packet losses, duplications and out or sequence
arrival. However, care needs to exercised while developing such
applications so as not to re-engineer TCP over UDP.

TCP and UDP
December 2007 | Overload | 21

FEATURE OMAR BASHIR

the communication protocol was required
to be changed from TCP to UDP with
preferably no software change in the
existing software suite
fragment results in considering the entire packet being lost [RFC0791].
UDP may also be appropriate for tunneling non-Internet protocols that
provide end-to-end reliability, e.g. facsimile communication [ITU-T.30].

Solution architecture and implementation
In the system described earlier, the communication protocol was required
to be changed from TCP to UDP with preferably no software change in
the existing software suite. This was accomplished by implementing proxy
servers on both the MUX and the client platforms. The MUX-based proxy
server executes on the MUX platform and acts as a client application to
the MUX. In this case, the MUX has only one client and that is the local
proxy server, which connects to the MUX over TCP via local loopback.
Upon receiving data from the MUX application, the proxy server
broadcasts the data on the LAN over UDP to be picked up by the client-
based proxy servers.
The client-based proxy servers are bound to a broadcast port and receive
the data broadcast by the MUX-based proxy server. These client-based
proxy servers act as MUX applications for the client applications executing
on their respective platforms. Client applications are reconfigured to
connect to their local proxy servers over TCP via local loopback. Client
applications thus consider their local proxy servers to be the MUX
application. The data received by the client-based proxy servers via the

broadcast ports is transmitted to the respective local client applications via
a TCP connection over the local loopback. Figure 2 shows the high-level
architecture of the proposed solution.
Client applications may need to communicate with the sensors in the field
via the MUX. Data from the client applications is communicated to their
respective local proxy servers over TCP connections via local loopback.
The local client-based proxy servers transmit these messages over UDP to
the MUX-based proxy server, which passes it to the MUX application over
the TCP connection via the local loopback. The MUX application can
determine from the message the sensor to which this message is to be
transmitted and this message is then transmitted over the relevant
dedicated link to the sensor.
Because only one client (i.e., the MUX-based proxy server) connects to
the MUX application, only one copy of each incoming message from the
sensors is transmitted over the local loopback to the proxy server. As these
messages are broadcast over the LAN, only one copy of each message ever
exists over the network.

Detailed description of proxy servers
Figure 3 shows the high-level block diagram of the proxy server. For full-
duplex communication, the proxy server needs four threads. Two of the

MUX Application

 MUX-based Proxy Server

Local Loopback
TCP Connection

Client Application

 Client-based Proxy Server

Local Loopback
TCP Connection

Client Application

 Client-based Proxy Server

Local Loopback
TCP Connection

Client Application

 Client-based Proxy Server

Local Loopback
TCP Connection

UDP Broadcasts

UDP Unicast Replies

UDP Unicast
Replies

UDP Unicast Replies

D
ed

ic
at

ed
 L

in
ks

To
/F

ro
m

 S
en

so
rs

MUX Platform

C
lie

nt
 P

la
tfo

rm
s

Figure 2
22 | Overload | December 2007

FEATUREOMAR BASHIR

a proxy server may be required to transform
messages it relays between the systems it

connects
threads are used for communicating over two UDP sockets and the
remaining two are used for communicating over a single TCP socket. For
the MUX-based proxy server, a UDP socket is used to transmit to a
broadcast port and a socket bound to a unicast port is used for reception.
For client-based proxy servers, a socket bound to a broadcast port is used
for reception and messages for the MUX-based server are transmitted by
another UDP socket to a port open at the MUX-based proxy server for
reception.
The TCP Receiver Thread communicates with the UDP Transmitter
Thread using a queue. Similarly, the UDP Receiver Thread communicates
with the TCP Transmitter Thread over another queue. These queue objects
are instantiations of a wrapper around an STL queue providing thread
safety and blocking read operation using mutexes and condition variables
provided by the operating system.
A relatively more detailed class diagram of the proxy server is shown in
figure 4. Communicator Thread is the abstract base class for the classes
that implement thread objects in the proxy server. Each communicator
thread uses a Thread Safe Queue object to either write received messages
to (in case of objects of the Receiver Thread sub-class) or read received
messages from (in case of objects of the Transmitter Thread sub-class).
A proxy server may be required to transform messages it relays between
the systems it connects. This transformation is performed in the
Transmitter Thread class using an appropriate concrete extension of the
Transformer abstract class. Transformation is performed in the
Transmitter Thread as it may be more time consuming for large messages
or messages requiring significant processing during transformation. If
performed in the Receiver Thread, it may cause packet losses. It is possible

to apply different transformations to different types of messages or
messages containing specific content by implementing transformers using
the Strategy design pattern [Gamma95].
Transmitter and Receiver Thread objects use objects of concrete sub-
classes of the Communicator abstract base class to receive and transmit
data over sockets. Objects of UdpCommunicator class are used to
communicate over UDP sockets whereas objects of TcpCommunicator
class are used to communicate over TCP sockets. Messages received over
TCP need to be delineated from the input stream. TcpCommunicator
objects use objects of sub-classes of AbstractDelineator to perform
delineation of the input stream. These classes implement application
specific stream delineation logic.
TcpCommunicator objects are created by Initiator or Acceptor
factory classes which are derived from the Connector abstract base class.
This is a variation of the ABSTRACT FACTORY design pattern [Gamma95].
An Acceptor object accepts connection requests from TCP clients and
returns a TcpCommunicator object encapsulating the connected socket.
Similarly, a TCP client uses an Initiator object to initiate a connection
to a TCP server. Initiator also returns a TcpCommunicator object
encapsulating the connected socket.

Concluding remarks
TCP is usually the transport protocol of choice in data communication
applications that are loss sensitive. However, TCP’s inherent inability to
handle point to multipoint communication can severely restrict system
scalability resulting in latencies that may be unacceptable even in systems
with relatively relaxed delay sensitivities. Increase in message sizes,
number of clients or number of messages to be broadcast per unit time can
result in increased delays as well as resource utilization at the servers.
UDP’s ability to broadcast and multicast packets over a LAN can provide
the required scalability. However, UDP being a best effort protocol is not
considered suitable for loss sensitive applications. Some application level
enhancements can provide a degree of resilience against packet losses.
However, migrating an application from TCP to UDP may require a
significant rewrite. A proxy server based approach is presented here that
allows TCP based point to multi-point applications to be migrated to UDP
without rewriting the existing application. Each host on the network
executes a proxy server, which communicates over UDP with other proxy
servers. Proxy servers communicate with the application components on
the local host via TCP over local loopback.
Using proxy servers helped in future product growth as further
developments could be phased appropriately. The design mentioned above
was generalized and formalized as the Active Transceiver architectural
pattern for data communication systems [Bashir03]. The next phase of
development resulted in a MUX software that communicated over UDP
without the MUX-based proxy server while not changing any of the client
applications. In the subsequent phases, each different client application
was modified to communicate over UDP, in addition to other application
specific enhancements.

UDP
Transmitter

Thread

TCP
Transmitter

Thread

UDP
Receiver
Thread

TCP
Receiver
Thread

Queues
Proxy
Server

UDP over LAN

TCP over local
loopback

UDP Transmission Socket:
Broadcast port for MUX-
based proxy,
unicast port for client-based
proxy

UDP Reception Socket
Broadcast port for client-
based proxy,
unicast port for MUX-
based proxy

Figure 3
December 2007 | Overload | 23

FEATURE OMAR BASHIR
References
[Easterbrook06] Mark Easterbrook, ‘Trouble with TCP’, CVu, December

2006, pp 8-9.
[Snader00] Jon Snader, Effective TCP/IP Programming: 44 Tips to

Improve Your Network Programs, Addison Wesley, 2000.
[ITU-T.38] International Telecommunication Union, ‘ITU-T T.38

Procedures for real-time Group 3 facsimile communication over IP
Networks’, 1998.

[RFC0791] J Postel, ‘RFC-0791 Internet Protocol’, Internet Engineering
Task Force (IETF), September 1981.

[ITU-T.30] International Telecommunication Union, ‘ITU-T T.30
Procedures of document facsimile transmission in the general
switched telephone network’, 1997.

[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson, John
Valissides, Design patterns : elements of reusable object-oriented
software, Addison Wesley, 1995.

[Bashir03] Omar Bashir, Mubashir Hayat, Active Transceiver Design
Pattern for Data Communication Applications, IEEE 7th
International Multi-topic Conference 2003 (INMIC 2003),
Islamabad, Pakistan, November 2003.

Communicator

SocketCommunicator

UdpCommunicator TcpCommunicator AbstractDelineator

ConcreteDelineator

Connector

Initiator Acceptor

1 1

Communicator Thread

Transmitter Thread Receiver Thread

1 1 1 1

Thread Safe Queue

1 1

Transformer

Concrete Transformer

Queue

1

1

1

1..*

1..*

1

1..*

1

Figure 4
24 | Overload | December 2007

FEATUREALLAN KELLY
Creating Awareness
Exposing Problems
One of the good things about presenting at the ACCU
conference is what you learn there. Allan Kelly reviews the
results of his last conference talk.

Option 1: Tell them what to do
Background
t the last three ACCU conferences I have given semi-interactive
sessions. Anyone who has attended these sessions will know the
form: I present some slides and talk about some ideas for the first

half. As I talk people respond and contribute their thoughts and ideas. I
note these ideas down on a flip chart and after about 30–40 minutes nobody
really cares about my slides because we are having a really good
discussion. The audience learns something and more importantly so do I.
What might be less well know is that I take these flip charts home – or at
least good digital pictures of them. Then sometime after the conference I
write up notes. In 2005 this was just a web-page with 31 bullets points to
capture the ideas . The 2006 presentation, ‘Changing your organization’
led to a six-page write up on thoughts and ideas .
This year I’ve repeated the process, only this time I decided to expand the
write up with some notes on the presentation and publish it here in
Overload (unfortunately this rather grander ambition also accounts for the
lateness). I hope those of you who attended the presentation will find this
reminder useful and I hope those who were not able to attend will find
something of interest here. Although the audience suggested most of the
ideas presented here I have added my own notes and thoughts to expand
on the ideas.

Creating awareness and exposing problems
In many ways this session was a continuation from the previous two years.
The unifying theme is that in order to develop software better we need to
learn and our organizations need to change. It is not enough to learn, we
need to act on that learning. For learning to be meaningful it must lead to
action and create change.
The first step in this process needs to be exposing the problems we face
and the opportunities available, and creating awareness about these issues.
Hence this session.
Of course we all want to live a better life: write new code, have less bugs,
get paid more, have a bigger house but things get in the way, and
overcoming these obstacles is difficult. This is hard enough when it is just
us but when it is our team or our entire company it is more and more
difficult. It is far easier to shut up, stay quiet and accept things the way
they are; but if you were such a person you probably wouldn’t have joined
the ACCU, probably wouldn’t read Overload and certainly wouldn’t
attend the conference!
Overcoming these obstacles and making life better requires effort. All too
often the effort required stops us from changing things. So how can we
overcome these obstacles?
As it happens some of these blocks are in our own heads. These blocks are
relative easy of overcome because we are in complete control of them. All
we have to do is recognise the block and choose to change ourselves.
Nothing is stopping us except ourselves.
Other obstacles are more difficult. In order to introduce a change into our
team or organization then we need other people to agree to the change and
help out. There are basically three approaches to this.

This is the Hollywood model. Arnold Schwarzenegger parachutes into the
development department to save the project. Armed only with an Uzi sub-
machine gun, several hand-grenades and a hybrid-Hummer H2 he orders

You, you and you, code up the user interface – no bugs or the blonde
gets it
You there, take 3 programmers, secure the bug tracking system and
eliminate all bugs.
I’ll deal with the customers... If I’m not back in 30 minutes call in an
air-strike.

Well there are a few problems here:
Do you know enough to tell them? Before you can tell someone what
to do you need to know what to tell them. For big, complex,
problems this isn’t a trivial matter.
Will they do what you say? Maybe people you work with recognise
your good ideas, understand them perfectly and act on them exactly
as you describe. But since I’ve never ever encountered such an
environment I’m guessing you don’t work in such a place either.
Will they understand your commands? Most developers know how
ambiguous requirements can be: the same is true with instructions to
change. When people don’t do what you expect it may they simply
don’t understand your request or don’t see the world the way you do.
Try not to jump to the assumption that they are deliberately trying to
be difficult and obstructing your efforts.
Do you need to check on them? Unless you are confident that people
understand what you expect, and you trust them to do what you want
then you will spend a lot of time checking on them. And if you find
you are spending a lot of time checking on them then ask yourself:
Am I really trusting them?
If you need to check on people then it is going to take a lot of your
time so you will be less productive. Plus to this the people you are
checking up on are unlikely to enjoy the checks and will feel less
trusted. Should you leave, or stop checking, things might just go
back the way they were.
What about motivation? People who just do what they are told are
usually a lot less motivated than those who are involved with the
decision making process. Motivated people are more productive so
we need to find a way to keep people’s motivation while we change
the way they work.

A

Allan Kelly Allan served his apprenticeship developing
software for financial, communication and utility systems. He
is now a consultant and interim manager who specialises in
advising and helping the most challenged development teams
deliver and improve. His first book, Changing Software
Development, is published by John Wiley and Sons early next
year. Allan can be reached at allan@allankelly.net
December 2007 | Overload | 25

FEATURE ALLAN KELLY

Faced with fear and threats people are
quite likely to stick their head in the sand,
put problems out of their mind and carry on
as before
This option is predicated on the assumption that you have authority to tell
people what to do; and that the people you are telling will accept your
authority. On balance this probably isn’t a good option.

Option 2: Scare them into changing

Faced with serious problems like ‘the company is going bust’ or threats
like ‘our new zero tolerance programme means we will shoot the next
developer who writes a bug’, it is quite possible you can persuade people
to change. After all who wouldn’t?

However it is also quite possible that your scare tactics will have the
opposite effect. Faced with fear and threats people are quite likely to stick
their head in the sand, put problems out of their mind and carry on as
before. You may even make things worse, individuals may well adopt
behaviours which shield them from any threat at the expense of addressing
it. For example, threatened with a company failure people may decide to
find a new job; or faced with penalties for writing bugs they may simply
stop writing any code.

You might just scare people into doing things differently and it might just
work – great! However, what happens next time you need a change? Will
the scare tactics work a second time? A third?

To complicate things further, success can breed complacency and it can
make things hard to change in future. When people have success doing
things one way they are likely to want to repeat that success. Persuading
them to try something different risks losing the past success. It seems
counter intuitive to be told that future success depends on dropping
existing practices that have brought success.

So option two isn’t reliable either.

Option 3: Help others to change

Suppose most people probably feel the way you do: they would like the
world to be better too. These people also have ideas on how to improve
things. However for them, unlike you, the effort is too much. The solution
therefore is to help them, reduce the effort needed and overcome the
blocks.

The first thing to do is recognise the blocks, understand where effort is
needed. When you recognise blockages and share the understanding it
becomes easier to remove the blocks – many hands make for light work.

This option starts to sound a lot better. And this is what the rest of the
presentation and this report looks at.

Recognising obstacles is half the problem, but it is not enough for you to
see the obstacles. Other people must see the same problems, opportunities
and obstacles that you do. If they can’t then maybe you see the wrong ones.
In order to agree on the issues you need to share the understanding.

Ideas from the group
That was the introduction. Next I asked the audience for ideas. What
follows are the best suggestions from the group, with some elaboration
from me.

Retrospectives

It was hardly surprising that one of the first ideas suggested from the
audience was ‘hold project retrospectives’. Now retrospectives are a great
idea, they can work wonderfully. Project retrospectives are not confined
to the software development domain; under the name ‘After action
reviews’ they are used by the US Army, Marines Corp and the British
National Health service. (I’m not saying every NHS operation or military
battle is subject to a review but they do hold some.)

Many books on process improvement suggest project retrospectives and
there are two excellent books on the subject. Norm Kerth’s Project
Retrospectives is orientated towards reviews at the end of long projects.
Diane Larson and Esther Derby published Agile Retrospectives last year,
which discusses the use of retrospectives in Agile teams and over a shorter
period (several weeks as opposed to several years in Kerth’s.)

The conference audience came up with a few more ideas, some of which
are covered in these books and some not:

Writing things down can help record them; projects could have a log
book that records the events in a project as it unfolds.

Retrospectives should be held regularly and acted upon within the
project.

Choice of retrospective facilitator is important. The facilitator needs
to be able to facilitate the retrospective, i.e. encourage people to
speak and explore the issues raised.

They also need to be apart from the retrospective, if the facilitators
have a lot to say themselves then they aren’t going to be able as
effective in getting others to speak. Secondly, if the facilitator is in
the management team of a project their presence and control of the
retrospective may inhibit the free discussion.

Retrospectives can become dominated by one or more “big mouths”
– someone who uses the forum as an opportunity to talk and talk and
talk. A good facilitator will know how to manage these people and
give others a chance to speak, in the extreme you may want to
exclude these people from the retrospective.

Retrospectives need safety: people can’t speak openly and discuss
problems unless they feel they are in a safe environment.

The group also identified and discussed several ‘failure modes’ of
retrospectives. By far the most common failure of retrospectives is that
they simply don’t happen. Everyone seems to agree that ‘retrospectives are
good’ but many people are reluctant to schedule the time for them to
happen.

A second failure mode occurs when a retrospective happens but it is too
late for it to make any difference. In many companies project teams are
broken up after a project finishes, this makes it harder to hold a
retrospective and harder to apply the lessons of the retrospective.
Similarly, when project teams are staffed with a lot of contractors and
consultants who leave at the end of the project it is both difficult to learn
and apply the lessons. One solution to these problems is to put
26 | Overload | December 2007

FEATUREALLAN KELLY

In most organizations the people who do the
work know what is wrong, they know what

needs fixing and they know who are the
effective people and who is free-loading
retrospectives inside the project rather than at the end – following the
Derby and Larson model rather than the Kerth one.

When retrospectives do happen the biggest problem seems to be obtaining
buy-in from everyone concerned and acting on the conclusions. Lack of
buy-in manifests itself in two ways, firstly getting the right people (i.e.
everyone involved with the project) to actually attend and contribute to the
session. Secondly getting buy-in from those in authority to act on the
conclusions.

However acting on the conclusions is not a management problem alone.
Developers, testers, analysts and others need to act too when the
retrospective suggests changes. It is not enough to blame management for
a lack of change.

Personally I would add one more item to the problems identified by the
group. This is: time. Almost without exception whenever I have scheduled
a retrospective people have been taken aback by the amount of time I have
allowed. For a project of six months I might schedule a whole afternoon,
for a six-week project I might want two hours. If a project has not held a
retrospective before I would allow more time.

This looks like a long time to people with busy schedules but if you want
to understand what happened, understand the causes and devise
meaningful solutions it is barely enough time. (And that is not counting
write up time after the session is finished.) Looked at in terms of the overall
project these time periods are not long: a three-developer project lasting
six weeks represented over 90 days of effort, probably more when you add
in project management and software testing. Is two hours really too much
time to spend on learning the lessons of such a project?

Pub conversations / Safe and trusting environment

One idea that came up in the discussion was the ‘pub’ or ‘water cooler
conversation’. These are the conversations that occur out-of-band from the
office work. The fact that these conversations occur isn’t surprising
however they are symptomatic of an environment where people cannot talk
about these things in the office or to their managers.

In most organizations the people who do the work know what is wrong,
they know what needs fixing and they know who are the effective people
and who is free-loading. However all too often this knowledge is not
available to managers. People talk about these things but they talk outside
the office, in the pub, the coffee shop or at the water cooler in the corner
of the office.

This information is not available to managers for a variety of reasons.
Firstly managers need to make time to join these conversations and listen.
Sometimes this requires creating a forum (like a retrospective) where the
discussion can happen. The manager could simply join the guys in the pub
but it’s better if such discussions can occur in a more sober environment.

A second block to making these conversations more useful is trust. People
will not discuss some matters unless they trust the person they are talking
with. Without trust people will not feel safe enough to hold open
conversations. Managers need to create an environment were people feel

safe and can trust one another. Without trust and safety people will doubt
others’ motives and guard what they say.
This is not to say that every pub conversation needs bringing inside the
organization and acting on. Many such conversations are riddled with
personal opinions, biases and large quantities of alcohol. There may also
be legal limits in both what people say and what they choose to hear. For
example, if a company is likely to be taken over in the next few days people
may not be able to speak freely about the future. Neither are managers at
liberty to discuss individuals who may have resigned or be under
disciplinary action.
It was suggested that one way of promoting safety is to keep people
informed. Again there may be legal limits here, particularly if a company
is publicly listed. Organizations do need to communicate with themselves,
without communication different groups within organizations may
become detached. This is bad enough when it is between business units,
e.g. sales and development, it is worse when it occurs between the
company’s leaders and the workers.

Publish problem and solution
Identifying and solving a problem is not necessarily the end of the story.
In an organization that is trying to learn and improve widely – especially
if the organization is large – it is reasonable to try and share your new
knowledge. Even if your organization is small and ad hoc there is still
benefit from writing up what you have achieved:

You might learn something new as a result of writing up the solution
You have a record for yourself
You could share your solution with others outside the organization,
say in the pages of Overload.

Give someone else your idea
Sometimes when you see a problem or an opportunity you are not in a
position to act on it yourself. Or perhaps you can act on it but you need
others to help you. In these circumstances don’t be scared to give your idea
away. Mention it to others, spread the idea and make sure those who can
do something about it know.
However, you cannot be possessive. When you hear someone else talking
about your idea, don’t rush to say ‘I told you that’ or ‘That was my idea’.
Smile to yourself but let others own your idea too. After all it is more
important that the idea is acted upon than it is for the credit to be
apportioned.
Over time people will notice you are the source of good ideas, and they
will remember it was you who first pointed out what is now obvious. You
have to play the long game.
One more point from my personal observation. If you have suggested or
warned of something and it comes to pass then avoid the temptation to say
‘I told you so’ or ‘That is what I have been saying’. Saying this once in a
while is fine, but it can be tiring when someone constantly tells you they
foresaw events. So before you say ‘I told you this two months ago’, ask
yourself if you really need to point out how right you were.
December 2007 | Overload | 27

FEATURE ALLAN KELLY

use good metrics to help understand
and visualise the system
Metrics

Metrics can be a useful way to expose problems. However there are a
number of problems with metrics that the group was quick to identify.
Finding a good metric is difficult: ideally they need to be easy to capture
(and/or calculate) and they need to be easy to understand. If it isn’t easy
to get a metric they will fall into disuse, and if they are difficult to
understand only a few people will be able to use them.

Do people work to a metric? Numerous studies show that people will
change their performance when a metric is introduced. As a result the
metric may improve but some other aspect of the system may change.

The British tabloid press have labelled this condition ‘targetitis’ when it
occurs in relation to hospital targets. For example, a hospital may be set a
target of discharging patients within a certain time period, say two days.
In order to meet the target the hospital may discharge all patients after two
days and immediately re-admit them in. This would meet the target number
but not the target intention. More troublesome would be a patient
discharged prematurely who then develops complications and needs to be
re-admitted. In such a case the well intentioned target becomes dangerous.

Another variation on this is known as ‘gaming the system’. This occurs
when an individual stands to gain from some outcome. The individual
knows the rules of the game and attempts to use the rules to achieve the
outcome even at the expense of the overall outcome. For example, say a
developer offered a bonus for delivering on schedule. With this incentive
they may ignore requests for changes, refuse to acknowledge bugs or cut
functionality.

The problem is not so much to do with metrics but targets. Using a metric
to monitor and understand a system is one thing but targeting a numeric
value for a metric can change the behaviour of the system. This is known
as Goodhart’s law after the British economist who first identified this
effect.

So if you can find a good metric do not make it into a target! Measurements
are not targets.

One suggestion from the group was to use good metrics to help understand
and visualise the system. Burn-down charts are good example of this.
These show how the development system is performing without creating
targets.

Another suggestion was to use the metrics to promote competition between
teams. This might create indirect targets but if the competition is kept good
humoured and reasonable it could promote learning between the teams as
they compete to do better.

Show responsibility

Sometimes individuals can play a very direct role in uncovering problems
simply by taking responsibility and accepting their own mistakes. It is
natural that when one makes a mistake that creates problems for others we

don’t want to talk about it. We might even try to avoid it or hide it. This
can make life more difficult for others and sets a bad example. If we are
serious about improving our organizations, exposing problems and
creating awareness we need to set an example and own up to our mistakes.

The flip side of this is to be fair to people who admit to mistakes. We
shouldn’t single them out for criticism or behave detrimentally to them. If
someone has admitted a mistake then they show be respected and
rewarded. Again there is a need for a safe and trusting environment.

Showing responsibility also means you seek to understand other people
and their thinking. Before you rush to brand someone’s actions ‘a mistake’
and expect them to admit it, consider if it was a mistake by their norms.
What we see as a mistake, or wrong, might simply be a different way of
working. This is particularly true when co-workers come from a different
background, perhaps different technology, type or organisation or even
country. Things are not always so black and white.

Where is the Promised Land?

When we are aiming to improve our environment and solve problems it
helps if we know where we are heading. We, as individuals who read
Overload, might know exactly where we are heading: we are heading to a
bug free land where code is delivered on schedule, testing is fully
automated and we all work just 40 hours a week. However do others see
this land? Or do they see your efforts as pointless? Just something else to
make their lives hard?

Explaining where we are heading is only the first stage. You also need to
explain why we are heading there and get everyone to agree on where you
are going. I believe Steve Jobs once said:

It doesn’t matter how we get to San Francisco as long as we
all agree we are going to San Francisco. The problem is when

someone secretly wants to go to San Diego.

Once everyone agrees to go the same place it becomes much easier to do
the right thing.

Finally

Hopefully by the time you read this I’ll have my original presentation
posted on my website at http://www.allankelly.net.

I would like to thank my audience for their many good suggestions. I would
have liked to spend more time on some of the ideas in order to get down
to the detail of how they can be implemented but there is never enough
time to do everything.

In the end each of us has to find what works for us, in our own environment.
Knowing what other people do can inspire us but it can never give us all
the answers we need. Some things we have to discover for ourselves.
28 | Overload | December 2007

	The Essence of Success
	The PfA Papers: Context Matters
	The Model Student
	Functional Programming Using C++ Templates (Part 2)
	Java Protocol Handlers
	Upgrading Legacy Software in Data Communications Systems
	Creating Awareness Exposing Problems

