

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 He Sells Shell Scripts to Intersect Sets
Thomas Guest demonstrates the capabilities of
command shells.

7 The PfA Papers
Kevlin Henney traces the early history of the
elusive ‘Parameterise from Above’ design pattern.

8 Release Mode Debugging
Roger Orr considers the difficulties when bugs can
only be seen in release builds.

12 auto_value: Transfer Semantics for Value
Types (Part Two)
Richard Harris investigates the use of ‘Copy on
Write’ to avoid unnecessary copies.

20Guidelines for Contibutors
Thinking of writing for us? Follow these guidelines
to help smooth the way.

OVERLOAD 80

August 2007

ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Alistair McDonald
alistair@inrevo.com

Anthony Williams
anthony.ajw@gmail.com

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Ric Parkin
ric.parkin@ntlworld.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Farnsworth
simon@farnz.co.uk

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for
publication in Overload 81
should be submitted to the
editor by 1st September 2007
and for Overload 82 by
1st November 2007.

EDITORIAL ALAN GRIFFITHS
Consensus
It should be obvious that the process
of agreeing effective standards must be
dependant on attaining consensus

It should be obvious that the process of agreeing seem to have any measure of regional or even national consensus.

effective standards must be dependant on attaining
consensus.Over recent editorials I’ve commented on the
increasingly concerning activities occurring in the ISO
PAS standardisation process. One of the cases I’ve been

following (the C++/CLI standard) came to an early resolution as a result
of the efforts of Herb Sutter (Microsoft’s liaison to the C++ community,
and a major contributor to the ECMA C++/CLI work). Despite his
investment in C++/CLI after seeing the reaction of the C++ community
he managed to steer a path through the rules and regulations of ISO and
stop the progress of this purportive standard at the ballot resolution stage.
Initially JTC1 [ISO’s Joint Technical Committee 1] refused ECMA’s
attempt to withdraw C++/CLI, but after lining up support for this
withdrawal from a number of national bodies a second attempt to cancel
the Ballot Resolution Meeting was allowed.
I’m sure that as developers many of us have experience of projects that
only progress in something resembling an orderly manner as a result of
the heroic efforts of individuals. Indeed, it is part of the description of
CMM Level 1. Despite it being common this really is no way to run a
project. (Sooner or later any organisation will run out of heroes.) It is also
no way to run a standardisation process!
In Overload 75 I wrote the following:

Every organisation develops a culture over the course of time that
reflects the way it tries to work. And ISO is no exception to this. Most
of its standards are of interest to a minority of those on the decision
making panels (not surprising really, there are a lot of standards and
very limited resources to pursue them). A consequence of this is
that national bodies with no interest in a particular standard try to
keep out of the way by automatically voting ‘approve’ to anything
that comes up for a vote. For traditional standards this is justified
on both the tit-for-tat principle that others will do the same for
standards that do interest them and on the assumption that those
national bodies forming the working group have been diligent.

In organisational terms the fast-track is a new thing and the existing
culture of ‘approve’ by default is still operating. However, for a PAS
submission there may be no national bodies interested in the
standard – with the consequence that neither the tit-for-tat principle
nor the presumption of diligence need apply. The effect of this can
be quite alarming.

Given these concerns I was very pleased when a paper written by one of
the national standards bodies was brought to my attention:

South Africa is concerned about what seems
to be a growing number of standards
submitted under the PAS process that,
although publically [sic] available, do not

These therefore tend not to have been referred to any of the JTC
1 sub-committees, and have obviously not been discussed at [sub-
committee] level.

Our experience is that the result of this is then a round of intense
lobbying by various other stakeholders for us to vote negatively on
the PAS. Often these other groups take the trouble to compile a list
of contradictions that are also widely distributed in order to justify
the request for the negative vote.

A recent example is the proposed PAS on Open XML/ODF.

It is our opinion that the submission of such ‘standards’ directly to
JTC 1 via the PAS route, where the standard has not been
discussed within the relevant SC, was never the intention of the
PAS System. The fact that some consortium has published a
document that they refer to as a standard does not automatically
imply that it has any sort of widespread industry acceptance. The
fact that the publisher might claim international usage or
acceptance is not longer a valid reason in these days of large
multinationals, and the SABS [South African Bureau of Standards]
has previously been approached by local branches of
multinationals to vote in support of such PAS submissions, even if
we have no local industry involvement or membership in the
appropriate JTC 1 SC.

As result of this, South Africa will tend to vote negatively on all future
PAS submissions to JTC 1 where they have not been appropriate
SC. We would like to ensure that proper consideration be given to
the PAS by technical experts. If the standard is indeed well known
within the industry then this process might be very short.

This will be a change from our previous tendency to ‘abstain’ where
we had no direct knowledge of the submission.

I may be reading more into the timing than is strictly warranted, but a
further standards body (this time DIN – representing Germany) has been
comparing the various standardisation processes that occur under the ISO
auspices. It has the following to say about the fast-track process:

In case of the Fast-Track process, the proposer does not need to
prepare any of the required information for a NP (certainly he is free
to do so to support the proposal). National Bodies have no influence
over the acceptance or rejection of a Fast-Track proposal at this
stage as there is no formal 'acceptance' ballot foreseen. Only when
‘perceived contradictions’ are identified can they raise concerns.
NBs/SCs have to ‘accept’ the additional workload brought in by a
Fast-Track proposal, which may also have an unforeseen impact
on their prioritised work plan (Art 6.3.1.4). In addition there is no
check if there are enough P-Members committed to work on the
proposal and to thoroughly review the proposed specification.

Alan Griffiths is an independent software developer who has been using “Agile Methods” since
before they were called “Agile”, has been using C++ since before there was a standard, has been
using Java since before it went server-side and is still interested in learning new stuff. His homepage
is http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | August 2007

EDITORIALALAN GRIFFITHS
Even if NBs can clearly demonstrate that the submitted
specification duplicates an existing standard, the Fast-Track
proposer can still request to enter the technical ballot phase. During
the technical ballot phase, a formal rejection is only allowed based
on technical arguments (see Annex G18: “If a national body finds
the DIS unacceptable, it shall vote negatively and state the
technical reasons.” and “We disapprove for the technical reasons
stated”). JTC1 and its NBs are therefore not able to reject standard
proposals based on arguments like business needs, stability,
maturity of the technology, lack of independent and interoperable
implementations, etc.

The other purportive standard I’ve been reporting on is that of OOXML
– an ECMA document format standard whose claimed scope is supporting
documents produced by MS Office (there are contentions that this
standard fails to address this scope adequately). There are now accounts
[Groklaw] appearing on the internet of national body committees being
‘packed’ with delegates with the intention of forcing a ‘yes’ vote on
approving this standard. Vis:

We’ve seen now reports from Italy and Portugal of what some are
describing as a kind of ballot-stuffing on the part of Microsoft and
supporters to get Ecma-376 approved as an ISO standard. Trust

me when I tell you that you haven’t heard the half of it yet. I feel
safe in saying that you will never hear the phrase ‘fast tracking’
again, without remembering what you are about to read.

It has never been a surprise that powerful organisations exert their power
in their own interests. But many may be surprised that there is sufficient
value in standardising a document format for these forces to come into
play. There are two reasons – there are some (usually government related)
markets that will insist on conformance to standards (because standards
promote competition and other good stuff) and Microsoft doesn’t want to
lose these markets, and also because competitors implementing the
alternative international standard (ODF) can use the interoperability this
enables to facilitate their own marketing.
Somewhere in the midst of all this manoeuvring the ideal of gaining
consensus has been replaced with that of competition. Consensus could
serve everyone – competition serves only one winner.

Reference
[Groklaw] http://www.groklaw.net/

article.php?story=2007071812280798
August 2007 | Overload | 3

Dear Alan,
I was delighted to read ‘C++ Unit Test Frameworks – a Comparison’ by
Chris Main in Overload 78. Obviously I am mostly pleased because Aeryn
(http://www.aeryn.co.uk/) came out pretty much on top compared to other
well known frameworks like Boost and against Peter Sommerlad’s new
CUTE framework. I am particularly grateful to Chris Main for his
comments on the readability of the Aeryn user guide and for highlighting
that Aeryn is missing at least one set of test condition macros. I am
currently in the process of incorporating these test condition macros into
Aeryn and they will be available in the next release (I should also point
out that this functionality is already available with Boost and CUTE).
Shortly before Overload 78 was published I had all but completed my own
article comparing Aeryn, CUTE and FRUCTOSE and demonstrating how
Aeryn is the only testing framework you need. Obviously to have a similar,
and mostly likely more balanced article, come from an independent author
who is not known to me is much better. It would have been even better to
have a comparison with CPPUnit. This is something Jim Hyslop and I
spoke about a few years ago, but never got around too.
Chris Main pointed out in his article that there have been quite a few C++
unit testing frameworks in Overload over the past few months and a
comment was made during the ‘writing for publication’ BoF session at
2007 ACCU conference that people would like a break from them for a
while. This is a shame as I am reasonably close to completing my first
introductory article for Aeryn. It’s difficult to believe that in the years I
have been developing Aeryn I have never written an article just about

Aeryn. Now I feel the opportunity has passed, which is entirely my own
fault, so I will only be publishing this article on the Aeryn website.
I’d also like to bring to the attention of Overload readers an Aeryn related
project being developed by Steve Love and a new Aeryn tool I’m intending
to develop.
I’ve often wanted to develop an NUnit style GUI for Aeryn. I’ve looked
at a number of solutions using shared libraries in C++ and using managed
C++ to enable integration into a C# GUI. Steve Love, as one of Aeryn’s
most avid users, has been having the same idea and is developing NAeryn
(http://naeryn.tigris.org/), a C# GUI which utilises Aeryn’s existing binary
interface and a custom XML report.
At the 2007 ACCU conference, Peter Sommerlad demonstrated a very
nifty Eclipse plug-in for his CUTE framework and prior to that a
(admittedly tongue in cheek) suggestion was made by Michael Baker that
he might use Aeryn if it was integrated into Eclipse. Therefore I am
intending to develop an Aeryn plug-in for Eclipse. Hopefully this will
encourage more open source projects to move across from CPPUnit to
Aeryn.
All that remains is for me to reiterate my thanks and
appreciation to Chris Main for all the positive and
constructive points he made about Aeryn in his article.
Thanks Chris!

Paul Grenyer
paul.grenyer@gmail.com

Letter to the Editor

FEATURE THOMAS GUEST
He Sells Shell Scripts to
Intersect Sets
Graphical User Interfaces are in great demand but for some
tasks there are better tools. Thomas Guest demonstrates the
capabilities of command shells.
Introduction
he Unix command shell contains a lot of what I like in a programming
environment: it’s dynamic, high-level, interpreted, flexible, succinct.
It’s even reasonably portable now that bash seems to have become

the shell of choice. Although there’s much about shell scripting I don’t like,
on many occasions it turns out to be the best tool for the job.
In this article we shall demonstrate how simple shell scripts can be used
to implement sets, providing one line recipes for set creation, set union,
set intersection and more. Having explored the power of the Unix shell
we’ll consider its limitations, before finally discussing the more general
lessons we can learn from the Unix tools.

An example: Apache server logs
As an example, let’s suppose we want to analyse sets of IP addresses
contained in a couple of Apache HTTP Server [Apache] access logs:
access_log1 and access_log2. Each log file contains many
thousands of lines which look something like this:

65.214.44.29 - - [25/Jun/2007:00:03:21 +0000] ...
74.6.87.40 - - [25/Jun/2007:00:03:24 +0000] ...
65.214.44.29 - - [25/Jun/2007:00:03:24 +0000] ...
74.6.86.212 - - [25/Jun/2007:00:03:36 +0000] ...
...

We can cut this file down to leave just the IP address at the start of each
line. cut is a simple tool which we’ll be using again later, and here we’re
passing it options -f1 to select the first field from each line and -d" "
to use the space character as a field separator.

$ cut -f1 -d" " access_log1
65.214.44.29
74.6.87.40
65.214.44.29
74.6.86.212
...

Set creation
The output from this command is likely to be full of duplicates. Regular
site visitors typically hit the web server a few times; web spiders and robots

are much more hungry. To obtain the sets of unique IP addresses contained
in each log file, we could do this:

$ cut -f1 -d" " access_log1 | sort | uniq > IP1
$ cut -f1 -d" " access_log2 | sort | uniq > IP2

Here cut picks out the IP addresses, sort orders the results, uniq
eliminates duplicates, and we’ve redirected the output into files IP1 and
IP2. By the way, we could have eliminated a link from the pipeline using
the -u option to sort. The Unix shell tools aren’t entirely orthogonal!

$ cut -f1 -d" " access_log1 | sort -u > IP1

The resulting sets are ordered – a set implementation which should be
familiar to C++ programmers. The IP addresses will be lexicographically
rather than numerically ordered, since we went with the sort defaults.
This means that, for example, 122.152.128.10 appears before
58.167.213.128 because 1 alphabetically precedes 5. With a little
more effort, we could probably persuade sort to yield a numeric ordering
(no, sort -n isn’t good enough).

Multiset creation
If instead we wanted a multiset – that is, a set in which elements may
appear more than once, we could count the number of times items are
repeated in the sorted output using the -c option to uniq.

$ cut -f1 -d" " access_log1 | sort | uniq -c
 8 12.153.20.132
 2 12.217.178.11
 14 12.30.66.226
 1 122.152.128.49
 ...

Here, each IP address is prefixed by the number of times it occurred in the
log file, so our multiset contains 12.153.20.132 8 times, etc. This will
be useful later when we discuss intersection operations.

Set union
Let’s assume we’ve followed the steps above and IP1 and IP2 contain the
set of IP addresses in the two access logs. Forming the union of these
sets is simple.
$ sort -m IP1 IP2 | uniq > IP1_union_IP2

The -m (merge) option to sort is purely for efficiency and the result
would be equally correct without it. Since the inputs are already sorted,
we can just merge them together, line by line. For C++ users, it’s the
difference between the std::sort and std::merge algorithms.

T

Thomas Guest Thomas is an enthusiastic and experienced
programmer. He has developed software for everything from
embedded devices to clustered servers. Contact him at
thomas.guest@gmail.com and his website is
 http://www.wordaligned.org
4 | Overload | August 2007

FEATURETHOMAS GUEST

you can create your own customised shell
working environment and port it from

platform to platform just by checking it out
Set intersection
The best recipe I’ve come up with for creating the intersection of the
sets IP1 and IP2 isn’t quite as simple. Here’s how it works. We form the
multiset union of IP1 and IP2, then filter it to leave just the elements which
appear twice in this multiset.
$ sort -m IP1 IP2 | uniq -c | grep "^ *2" | \
 tr -s " " | cut -f3 -d" " > IP1_intersection_IP2

Let’s unpick this pipeline. First, sort -m IP1 IP2 | uniq -c
generates the multiset of IP addresses in IP1 and IP2. Since IP1 and IP2
are sets and therefore individually contain no repeats, the resulting multiset
looks something like this:

$ sort -m IP1 IP2 | uniq -c
 1 12.30.66.226
 1 122.152.128.10
 2 122.152.128.49
 1 122.152.129.54
 ...

Each line in the output starts with a count which must be either 1 or 2. Lines
starting with 2 correspond to IP addresses common to both files – and these
are the IP addresses which form the intersection of IP1 and IP2. The other
lines, the ones starting with 1, are the IP addresses in just one of IP1 or IP2.
We then use grep to pick out lines starting with any number of spaces
followed by a 2. Next tr -s " " squeezes repeated spaces from each
line, making the output suitable for use with cut using the space character
as a field delimiter. Finally cut itself extracts the column we want (the
one with the IP address).

Set symmetric difference
The same recipe with a simple tweak finds the set symmetric difference
between IP1 and IP2 (the IP addresses in just one of IP1 and IP2 that is).
All we need to do is change the grep pattern to include a 1 instead of a
2. The magic of the shell command history allows us to hit the up arrow
key – – and edit the previous command directly; we don’t even have to
type it all in again.

$ sort -m IP1 IP2 | uniq -c | grep "^ *1" | \
 tr -s " " | cut -f3 -d" " > IP1_symmetric_diff_IP2

Set subtraction
What about the elements in IP1 but not IP2? We can just intersect IP1 and
IP1_symmetric_diff_IP2. Again, we can use the command shell
history to recall and adapt the previous command.

$ sort -m IP1 IP1_symmetric_diff_IP2 | uniq -c |
grep "^ *2" | \
 tr -s " " | cut -f3 -d" " > IP1_subtract_IP2

More set operations
One of the nice things about set operations is there aren’t many of them.
We’ve already covered the important ones, and these can easily be
extended. Try and work out what set operations are going on in the the
command history shown below.

$ diff -q S1 S2
$ head -1 S1
$ sort -m S1 S2 S3 S4 S5 | uniq
$ sort -m S1 S2 S3 | uniq -c | grep -c "^ *3"
$ sort -m S1 S2 | uniq -c | grep "^ *2" | tr -s " "
| cut -f3 -d" " | diff S1 -
$ sort -m S1 S2 | uniq -c | grep -c "^ *2"
$ tail -1 S2
$ wc -l S1

As a hint, the answers in lexicographical order are:
are two sets the same?
are two sets disjoint?
first element of a set
how big is the intersection of three sets?
how many elements in a set?
is a subset of?
last element of a set
unite five sets

Extending the toolset
The command shell is a powerful, dynamic and extensible programming
environment. Even these simple one-line scripts can be stored as functions
which can be sourced when a new shell is started; you can add command-
line help to them, you can find them using tab-completion, you can keep
them in your source control system. In this way you can create your own
customised shell working environment and port it from platform to
platform just by checking it out [Guest06a].

A script’s got to know its limitations
Apache server logs are no more and no less than line oriented text. Each
record in the log is terminated by a newline character, and each field within
each record is delimited in an obvious way: by brackets, spaces, hyphens,
whatever – who needs XML? This is the kind of format shell scripts handle
well. Conversely, anything more complicated, XML for example, or
records which span multiple lines, is likely to push the shell tools too far.
Maybe awk could cope, but I don’t think many people bother learning awk
these days: it’s better to use one of the popular high-level languages when
basic shell commands won’t do.
Shell scripts tend not to fail safely. For example, the following command
is meant to clear out files in a temporary directory:
August 2007 | Overload | 5

FEATURE THOMAS GUEST

a compact suite of orthogonal tools, each
with its own responsibility, which cooperate
using simple interfaces
Don't try this at home!
$ rm -rf $TEMP_WORK_DIR/*

You can imagine what happens if TEMP_WORK_DIR has not been set. In
general, the Unix commands build on a couple of dangerous assumptions:
that programmers know what they are doing; and that the show must go
on – by which I mean that, given malformed input, a shell script will not
throw an exception. The IP filters we discussed in this article work quite
happily with any old text file as input – if it wasn’t an Apache http server
log, the only indication of failure may well be smaller sets than expected.
I’ll admit that I personally avoid writing any shell scripts much longer than
the ones shown here. As with Makefiles, I admire and respect the
technology but I’d rather have someone else deal with the details. The
bash manual may be brief to a fault, but I’ve yet to get to grips with its
finer details. Sometimes it’s just too subtle.
On the subject of details, earlier in this article I said that by default sort
uses lexicographical ordering, which isn’t perhaps the ordering we’d
prefer for IP addresses; and I also said that a numeric sort -n wouldn’t
do the job either: IP addresses aren’t really numbers, they’re dot separated
number quartets. You can use sort to place IP addresses in a more natural
order, but the command you’ll need is anything but natural.

Natural ordering of IP addresses
$ sort -t. +0n -1n +1n -2n +2n -3n +3n IP

If you want to know how this works you’ll have to read the manual. The
code, on its own, is unreadable [Guest06b]. If you don’t know where the
manual is, just open a shell window and type man. If the output from this
command doesn’t help, try man man, and if you don’t know how to open
a shell window, I’m surprised you’re even reading this sentence!

Conclusion
Modern graphical development environments tend to hide the shell and the
command line, probably with good reason, and I don’t suppose this article
will persuade anyone they’re worth hunting out. And yet the Unix shell
embodies so much that is modern and, I suspect, future, best practice.
For me, it’s not just what the shell tools can do, it’s the example they set.
Look again at some of the recipes presented in this article and you’ll see
container operations without explicit loops. You’ll see flexible and generic
algorithms. You’ll see functional programming. You’ll see programs
which can parallel-process data without a thread or a mutex in sight; no
chance of shared memory corruption or race conditions here. The original
design of the shell tools may have become somewhat polluted – we’ve
already seen that sort does some of what uniq can do – but I think the
intent shines through as clearly as ever: we have a compact suite of
orthogonal tools, each with its own responsibility, which cooperate using
simple interfaces. We would do well to emulate this model in our own
software designs.

Credits
I would like to thank the Overload editorial team for their help with this
article.

References
[Apache]: http://httpd.apache.org/
[Guest06a]: http://blog.wordaligned.org/articles/2006/09/07/personal-

version-control
[Guest06b]: http://blog.wordaligned.org/articles/2006/08/06/readable-

code
6 | Overload | August 2007

FEATUREKEVLIN HENNEY
The PfA Papers: From the Top
A characteristic of patterns is that experienced developers
often experience a moment of recognition upon reading the
write up. Sometimes the write up isn’t even needed...
he PARAMETERISE FROM ABOVE pattern (PfA) has acquired a certain
notoriety on accu-general. I first described it by this name a number
of years ago as a general approach that reduced dependencies on

global assumptions, whether constants or environmental features. The
guideline covers a family of different techniques that all share an inversion
of responsibilities and dependencies in a design.
A by-product of PfA – and also a commonly cited motivation for it – is
the reduction of SINGLETONs and other globals in a body of code. It is this
characteristic that is most often associated with the pattern, as the
following quote indicates [Radford2006]:

One perspective on PARAMETERISE FROM ABOVE is that it is the
alter-ego of SINGLETON (and other approaches involving globally
accessible objects). SINGLETON is a dysfunctional pattern – one
that transforms the design context for the worse, rather than for
the better. PARAMETERISE FROM ABOVE is a pattern that is ‘out
there’, but for which (to the best of my knowledge) there is (so
far) no formal write up.

The closing sentence also hints at why this pattern has become notorious:
in spite of frequent citation of the pattern and encouragement to do so, I
have not yet documented it. I do not propose to break this tradition just
yet, but in response to a recent posting of mine [Henney2007] – and as an
antidote to Teedy Deigh’s seasonal foolishness [Deigh2007] – I have
decided to document some of PfA’s history and uses. So let’s take it from
the top.

Parameterisation from the top
The general formulation and naming of the pattern has its origins at a
particular client. It became a phrase and form of phrase I found myself
commonly using in making design suggestions at this particular site. This
much I remembered, and vaguely recalled it being around 2002 – there are
presentations I have dated 2002 where the PfA term is used explicitly.
What I had forgotten, until recently stumbling across it again, was that I
had actually documented the basic idea in the appendix of a report for the
client the previous year (July 2001, to be precise).
The client’s system comprised a number of applications built from a
common set of code. The report made a number of specific
recommendations for repartitioning the utility packages and features in
this system. The appendix in question was entitled ‘Parameterisation from
the Top’, the full text of which is as follows:

One of the recurring issues in the use of constants in the [...]
system is the hard coding of runtime-related names and
constraint values, such as path names, queue names, event
names, and so on. Although named constants have generally
been used to avoid hardwiring the literal constants into the code,
this has only made the coupling problem more obvious: the
whole system is tightly coupled to application-level concepts.
This means that even the smallest change to any of these values
in future will result in a total system rebuild, i.e. all of the
executables and libraries from which the system is comprised.

It also means that code cannot be reused simply in other
systems and that testing is always limited by these values,
where others might be more appropriate for a test harness.

Such configuration values are not global, and therefore the use
of global magic names has caused this problem. As the term
configuration suggests, these are runtime configuration values
that should supplied to each, and therefore by each, application
(i.e. process). These values should be supplied explicitly by the
initialising applications to the objects and classes that need
them (either as constructor arguments or as template
parameters, as appropriate). In other words, the practice being
described here is that the parameterisation of a system should
come from its top level downwards, and not from its bottom level
upwards.

The first step is to move all use of global constants to the top
layer of the system, and ensure that constants are passed down
the layers as necessary. The next step is to factor out the
commonality that exists between many of the applications,
creating a simple application framework: a base class that
handles command-line parsing, common initialisation, error
handling and program execution. Global constants can then be
migrated into the relevant derived classes. A final step would be
to support runtime specification of many of these parameters
through the application framework – configuration files, registry
entries, command-line arguments, environment variables, etc.

Although this note is missing much of the customer context and system
detail, the general idea comes through. In terms of PfA, it is pretty much
all there, but with a particular focus on constants, and the idea of a more
general design approach hinted at the end. The (dis)association with
SINGLETON and the associated with STRATEGY objects, CONTEXT
OBJECTs, MOCK OBJECTs, etc., became more prominent the following
year, as did the more relative – rather than absolute naming – of the
practice.

References
[Deigh2007] Teedy Deigh, ‘A Practical Form of OO Layering’, Overload

78, April 2007, http://accu.org/index.php/journals/1327
[Henney2007] Kevlin Henney, ‘Parameterisation from the Top’, accu-

general, 2nd June 2007
[Radford2006] Mark Radford, ‘C++ Interface Classes: Strengthening

Encapsulation’, Overload 76, December 2006, http://accu.org/
index.php/journals/1329

T

Kevlin Henney is a long-standing member of ACCU, joining
before it actually was ACCU and contributing to Overload
when it was numbered in single digits. He recently co-authored
two volumes in the Pattern-Oriented Software Architecture
series, A Pattern Language for Distributed Computing and On
Patterns and Pattern Languages. Kevlin can be contacted at
kevlin@curbralan.com.
August 2007 | Overload | 7

FEATURE ROGER ORR
Release Mode Debugging
Although we try not to put bugs into software,
sometimes we must track them down to remove them.
Roger Orr considers the difficulties when they can only
be seen in release builds.
Introduction
ost programmers are familiar with debugging; although the amount
of time spent debugging depends on the programmer as well as the
environment and the problem domain. However, in a number of

different segments of the I.T. industry, there is a dichotomy between
‘Debug’ and ‘Release’ builds. This is most often related to development
in a compilable language rather than one which is interpreted.
The phrasing implies you debug using the ‘Debug’ build and then release
software built with the ‘Release’ build. I personally don’t like this split –
my own preference is to have a single build – but in particular this
nomenclature is misleading.
Experience shows that it’s not this simple – not all the bugs are removed
during development, some will be discovered using the release build.
Unfortunately the phrasing (and some of the tool chains) make it harder
than it needs to be to debug any problems found in the release version of
the product.
I will re-examine the difference between the two builds and then provide
some examples of things that can be done to make it easier to find and fix
faults in the ‘Release’ build. The examples are for C/C++ but similar
concerns exist in build environments for other languages.

What is the difference between a ‘Debug’ and a
‘Release’ build?
The idea behind the split builds is fairly sound for all but the most agile of
development processes. There are two main target groups for software –
the developers and the users – whose use of the software places different
requirements on it. For example, during software development it is usually
preferable to stop the program as soon as possible after a problem is
detected to make the job of detecting – and removing – the cause of the
fault as easy as possible. By contrast, most users of the program would
prefer that some attempt is made to recover from the fault and to ensure
no valuable data is lost.
A second difference is the level of access that should be granted to the two
teams. The developers usually have full access to the original source code,
and can be allowed access to the internals of the program at runtime. The
users are probably not interested in the internal workings of the program
and, for commercial programs, there may be strong reasons to restrict such
access to try and retain intellectual property rights.
Hence many of the tool chains provide two (or sometimes more than two)
targets with different characteristics. A ‘Debug’ build is designed for
developers and typically:

contains full symbolic information for the binary files
has not been optimised
provides additional tracing and debugging functionality
often contains checks for memory use (stack, heap or both)

A ‘Release’ build is designed for users and typically:
is smaller in size and built with optimisation
is provided as an installable package
may contain other artifacts, such as documentation and release notes
may take longer to build

While agreeing that developers and users may have different requirements
for the software, I consider that the phrase ‘Debug build’ is a poor choice.
As an example, I was recently helping to solve a problem which had been
detected while running the release build of a product. The developer tried
to reproduce the problem by running the debug build of the program under
a debugger, but this did not fail. I suggested running the release build under
a debugger (since it was the release build which demonstrated the fault)
but the developer hadn’t realised you could do this – they had assumed only
a debug build could be debugged.
I prefer to use the descriptions ‘Developer’ and ‘Retail’ build to the more
traditional ‘Debug’ and ‘Release’ build as, to my mind, this moves the
spotlight onto the target audiences rather than focussing on the specific
issue of debugging the program. I’ll generally be using these phrases in
the rest of the article.

Disadvantages with having two builds
There are several disadvantages with having two builds. Firstly, there is
some duplication within the build process itself, and there is a danger that
the two build streams will diverge. If you are fortunate the divergence will
be caught by a compilation failure; if you are unlucky a necessary change
will be made to the developer build only and the same change will not occur
in the retail build. More importantly, you now have two different
executables and they may not have the same bugs. The developer build
usually has much more testing during product development so any
problems specific to the retail build are typically only found late in the
release cycle. To make this worse, these problems are build related, and
so will not be found if debugging is attempted with the developer build.
Some of the common causes of bugs that are visible only in a retail build
are:

Optimisation: either caused by compiler bugs, or exposing an
existing bug hidden in the non-optimised build
Use of assert or conditional code (eg trace or logging statements)
with unforseen side-effects
Memory set to fixed ‘fill’ values in a developer build and
uninitialised in a retail build causing different behaviour

Over the years I have encountered many problems that were only present
in the retail build; as well as some application bugs with different
symptoms in developer and retail builds (for example, local variable layout

M

Roger Orr has been programming for 20 years, most recently
in C++ and Java for various investment banks in Canary
Wharf. He joined ACCU in 1999 and the BSI C++ panel in
2002. He may be contacted at rogero@howzatt.demon.co.uk
8 | Overload | August 2007

FEATUREROGER ORR

you don’t need to ship all the resultant
information to your customers if you

wish to preserve your company’s
intellectual property
re-ordering meaning pointer errors corrupted different variables). These
bugs are often expensive to find and to fix because they do not occur in
the standard development environment.
As I mentioned at the start of the article, my own preference where possible
is to avoid having two separate builds and just have a single build. This
simplifies the build process and also means the end user gets the same code
that we’ve been testing during development. Where this is not achievable
I try and bring the two builds as close to each other as possible, at least in
terms of code generation. In practice nearly all tool chains provide ways
to configure the system to select which characteristics are part of which
build.

A ‘release’ build can be debugged
Even where a having two separate builds make good sense, there is often
no technical reason why a retail (‘release’) build of the program cannot be
run under a debugger. The main problems using a debugger with the usual
default retail build configuration are:

1. the order of execution may not match the source code (retail builds
are usually optimised)

2. there are no names for some (or all) functions (symbols are usually
omitted in retail builds)

3. variables may be missing or appear to have the wrong values (a
combination of the above reasons)

These problems may also affect dependent components – for example in
the Microsoft world there are different C runtime libraries for their
‘Debug’ and ‘Release’ builds and there is much more symbolic
information in the debug library than the release one.
If you have the source for a dependent component you can simply change
the retail build settings; in some cases you may be able to push back on
the supplier of third party components to deliver builds containing more
symbols or using different optimisation levels.

How fast is fast enough
The first problem to deal with is the effect of optimisation. There are three
potential problems with optimisation. Firstly, it makes the resultant code
harder to debug; secondly optimising the code may introduce bugs and
finally running an optimiser can make the whole build process take longer.
How much optimising does your program really need – and where?
Much of the code in your program may not gain value from optimising and
you may decide that the benefits of the developer and retail builds being
more similar are worth a slight performance degradation or a slight gain
in the size of the binary. Indeed, with most tool chains you can selectively
enable optimising just for the parts of the program that benefit from it.
The actual decision that you make will depend on factors such as how
important performance is to users of your application and how much time
is spent finding and fixing problems in the retail build.
One specific optimisation which should be considered for disabling,
especially on the Intel x86 architecture, is frame pointer optimisation. On
stack based machines each function has a ‘frame’ of memory which

contains the local variables, function arguments and the return address. On
entry to the function the pointer to the previous stack frame is saved, and
it will be restored when the function returns.
The stack frame pointers in un-optimised code normally form a chain
through the stack, allowing tools to work out the call chain for the current
function and identify the function arguments. This makes many debugging
tasks easier as knowing ‘how you got here’ is often a key component to
working out the root cause of a problem.
When code is optimised the stack frames can be set up in non-standard
ways – the code in the function itself knows how to unwind the frame but
a general purpose tool, such as a debugger, can’t work back up the call
stack. Both g++ (on many architectures) and Microsoft Visual C++ allow
you to turn this optimisation off.
I have measured the impact of turning this optimisation off and, in my own
experience, the impact has been minimal. As always with optimisation you
need to measure the impact in your own specific cases.

for MSVC use /Oy-
for g++ use -fno-omit-frame-pointer [WildingBehman]

Microsoft themselves seem to consider the ease of debugging outweighs
the performance improvement – starting with Windows XP service pack 2
the operating system itself has been compiled with frame pointer
optimisation disabled. This makes it much easier for debuggers to work
back up the stack from a problem detected in a system component to the
application code that, for example, passed a bad parameter to a Windows
API.

Names matter
Debugging programs without symbolic information is hard as all you have
are assembler mnemonics and memory addresses with no idea of their
usage. As John Robbins puts it: ‘If you’re paid by the hour, spending
forever at the assembly language level could do wonders for paying your
mortgage.’ [Robbins]
Both g++ and Microsoft Visual Studio allow you to add symbolic debug
information to retail builds. In both cases you don’t need to ship all the
resultant information to your customers if you wish to preserve your
company’s intellectual property. I strongly recommend that you check the
retail builds of your software do provide as much symbolic information as
possible.

Symbols for g++
Use -g debugging option(s) in combination with /O[n] optimising
options. The resultant program will be optimised and contain debugging
symbols.
The Unix model by default puts all the debugging information into the
exectable program. This does not usually cause any execution time
overhead since the data is not loaded from disk into memory unless a
debugger is being used. It does mean that the executable may be larger; in
some cases considerably larger, depending on how much debugging
information was created.
August 2007 | Overload | 9

FEATURE ROGER ORR

it can be quite hard to ensure that the right
version of the file is always kept with the
corresponding executable
On many platforms the debugging information can be extracted from the
executable enabling use of the debug information only at the time when
debugging is required. This also provides a way to restrict access to the
debugging symbolic information – simply don’t ship the debug
information to your customers!
An example of splitting the debug information out:

1. Link the executable with -ggdb -O2 producing, for example,
prog.

2. Run "objcopy --only-keep-debug prog prog.dbg" to
create a file containing all the debugging info.

3. Run "objcopy --strip-debug prog" to remove the
debugging info from the executable.

4. Run "objcopy --add-gnu-debuglink=prog.dbg prog" to
link the debugging info with the executable.

Symbols for MSVC
Visual Studio 2005 now puts debug information into Release builds by
default. For projects created with earlier versions of the tools you must

Use /Zi at compile time (in the C/C++ ‘General’ tab under ‘Debug
Information Format’)
Use /DEBUG at link time (in the Linker ‘Debugging’ tab under
‘Generate Debug Info’)
Additionally, to reduce the exectable size, set the linker /OPT:REF
and /OPT:ICF options (in the ‘Optimization’ tab)

Under Visual Studio the debugging symbols are stored in the PDB file with
a link record in the binary file. Note that the debuggers verify that the PDB
file was created by exactly the same linker execution that produced the
executable file. Some debuggers do allow you to use mismatched files, but
when this is possible the symbols in the PDB file may not longer have any
connection with the binary addresses in the exectable program, so make
sure you always keep the two files together.
Just as in the g++ case, you have the option on whether or not you ship the
symbolic information to your customers; simply miss out the PDB file.
There are also ways to provide PDB files with less information for public
consumption and retain the full symbol files for internal use. See the
program pdbcopy.exe in Microsoft Debugging Tools for Windows
[MSDebug] which allows you to strip private symbols from your PDB

files. Microsoft use this technique themselves for the symbols they make
publicly available.

Microsoft symbol servers
There are a couple of main problems with the debugging symbol files.
Firstly, it can be quite hard to ensure that the right version of the file is
always kept with the corresponding executable. Secondly the files are quite
large – often larger than the executable binaries – but only required when
someone is actually debugging the application.
Microsoft have addressed these problems in their recent debuggers with
the result that you need never be without the right symbols at the right time.
The secret weapon is the symbol server engine (symsrv.dll) which is
shipped with the Visual Studio Debugger and Windbg. This engine is able
to locate the right version of the symbol file for the executable being
debugged, either from a subdirectory on the hard disk or a networked drive,
or using http across the network (either Intranet or Internet).
Microsoft have been providing symbols for all their retail releases of
Windows and other of their products for some time now, and setting up
your machine to access this information can greatly improve debugging
on the Windows platform.
The engine uses the environment variable _NT_SYMBOL_PATH. This
environment variable can contain multiple paths (semicolon delimited)
and any path can be marked for the symbol server engine by using the
syntax SRV*cache location[*server].
For example, setting the value to SRV*C:\Symbols*http://
msdl.microsoft.com/download/symbols tells the debugger to
look for symbol files in the cache directory of C:\Symbols and, if not
found there, to look on the Microsoft Web site and download (and cache)
any matching debug files.
The symbol server makes sure the right PDB is always used for the
executable file by using subdirectories in the local cache and using
information put in the binary by the linker to access the correct
subdirectory for the executable.
So, for example, my cache directory contains several different versions of
kernel32.pdb reflecting different versions of Windows and various hot
fixes which have been applied (Figure 1).

Figure 1

Directory of U:\Symbols\kernel32.pdb
14/06/2007 20:03 <DIR> .
14/06/2007 20:03 <DIR> ..
02/07/2006 14:42 <DIR> 3E8016FF2
25/09/2006 22:37 <DIR> 44C5EB742
02/07/2006 14:42 <DIR> 75CFE96517E5450DA600C870E95399FF2
14/06/2007 20:03 <DIR> 7FD4C98964054C24B2C472948D829DF52
13/06/2007 01:15 <DIR> DAE455BF1E4B4E249CA44790CD7673182
10 | Overload | August 2007

FEATUREROGER ORR

automatically add the symbols from your
own application builds to a symbol store so

that people debugging the program have
access to the right symbols
Using the internal timestamp of the DLL automatically makes sure the
right symbols are always used with no need for input from the programmer
during debugging.
The downside with this approach is that the symbol server engine will look
on the Microsoft website for all symbol files, even for third party DLLs.
This can significantly slow down starting the debugger. My own technique
is to do most debugging with _NT_SYMBOL_PATH containing the
directory of the symbol cache but not the Microsoft website:
_NT_SYMBOL_PATH=SRV*U:\Symbols. If I find symbols are missing
for a Microsoft DLL or EXE then I attach a debugger with the full symbol
path to force a download of the relevant symbols.

Adding your own symbols to the symbol store
It can make a lot of sense to automatically add the symbols from your own
application builds to a symbol store so that people debugging the program
have access to the right symbols. This also enables easier debugging of
mini-dumps from customers since the debugger can automatically find and
load the right symbols for the actual versions of the program being run at
the time of the crash. There are several ways to do this, with varying levels
of complexity, and I refer anyone interested in this to the Microsoft
Debugging Tools documentation for a fuller explanation than this article
can provide.
The simplest way is to add your own builds into the symbol store used for
the files downloaded from Microsoft. The symstore program can be used
to add files to the symbol store. For example, to add all the binary and
symbol files from version 1.2 of ‘my product’ (Figure 2).
This step can be added to the automated build for retail versions of your
product to ensure the binaries are collected. Depending upon disk space

you might need to purge old versions (or pulled releases) from the symbol
server, but compare the costs of disk space to programmer time before
deleting any files.

Conclusion
The common paradigm of having ‘Debug’ and ‘Release’ builds has some
utility, reflecting the different needs of developing or testing code and
running it ‘for real’. I prefer to name the two builds ‘Developer’ and
‘Retail’ builds to express their intent more clearly.
However, there are downsides to having two different builds and it is worth
making an informed choice about whether the benefits outweigh the costs.
Should you choose to retain two builds, the retail build is likely to need
some debugging and it is well worth spending some time up-front to make
sure that this task will be as easy as possible. An important part of this is
to ensure that the debugger has maximal access to any available symbolic
information.

Acknowledgements
Thanks to the Overload review team for the various improvements they
suggested for this article.

References
[MSDebug] http://www.microsoft.com/whdc/devtools/debugging/

default.mspx
[Robbins] Debugging Applications for Microsoft .NET and Microsoft

Windows, John Robbins, Microsoft Press
[WildingBehman] Self-Service Linux, Mark Wilding and Dan Behman,

Prentice Hall

Figure 2

C:symstore add /r /s C:\symbols /t MyProduct /v 1.2 /f C:\MyProduct\Build
Finding ID... 0000000321

SYMSTORE: Number of files stored = 107
SYMSTORE: Number of errors = 0
SYMSTORE: Number of files ignored = 576
August 2007 | Overload | 11

FEATURE RICHARD HARRIS
auto_value: Transfer Semantics
for Value Types
“Copy On Write” (COW) sounds like an ideal idiom for
avoiding expensive copies. But care must be taken to
avoid producing a “mad cow”.

ast time we took a look at the various flavours of smart pointer and I

suggested that auto_ptr could be simplified by separating the
lifetime control and ownership transfer responsibilities into two

classes, scoped_ptr and auto_ptr respectively.
I closed with a brief mention of the copy-on-write, or COW for short,
optimisation for strings and the fact that it relies upon one of the smart
pointers, shared_ptr.
This time, we’ll take a detailed look at string.

string
Before we describe how COW works, let’s take a look at a naïve
implementation of a string class (Listing 1).
A scoped_array (identical to scoped_ptr, except that it uses
delete[] instead of delete) ensures that the data is deleted when a
string goes out of scope.

The constructors are pretty straightforward (Listing 2).
The copy and conversion constructors allocate new strings whose lifetimes
are managed by the scoped_array member data_. The constructor
bodies then simply copy the strings. Nothing particularly surprising.
The assignment operators are a little more complex, though. These days
the recommended way to implement assignment is with the copy and swap
idiom.
This is usually expressed as:
 T &
 T::operator=(const T &t)
 {
 T tmp(t);
 swap(tmp);
 return *this;
 }

The chief advantage of this approach (besides its relative simplicity) is that
it is guaranteed to leave the object in its original state if an exception is
thrown during the copy operation. This is because we don’t commit the
change until we swap the object with the temporary copy and the call to
swap is guaranteed not to throw.
In the case of string, the swap member function could be defined as:
 void
 string::swap(string &s)
 {
 std::swap(size_, s.size_);
 std::swap(data_, s.data_);
 }

Unfortunately std::swap will need to assign a new value to both data_
and s.data_ and since scoped_array doesn’t allow us to rebind the

L

Richard Harris Richard Harris has been a professional
programmer since 1996. He has a background in Artificial
Intelligence and numerical computing and is currently
employed writing software for financial regulation.

Listing 1

class string
{
public:
 typedef char value_type;
 typedef char * iterator;
 typedef char const * const_iterator;
 typedef size_t size_type;
 //...

 string();
 string(const char *s);
 string(const string &s);

 string & operator=(const string &s);
 string & operator=(const char *s);

 const_iterator begin() const;
 const_iterator end() const;
 iterator begin();
 iterator end();
 //...

private:
 size_type size_;
 scoped_array<char> data_;
};

Listing 2

string::string() : size_(0), data_(0)
{
}

string::string(const char *s) : size_(strlen(s)),
 data_(size)
{
 std::copy(s, s_size_, data_.get());
}

string::string(const string &s) : size_(s.size_),
 data_(new char[size_])
{
 std::copy(s.data_.get(), s.data_.get()+size_,
 data_.get());
}

12 | Overload | August 2007

FEATURERICHARD HARRIS

it seeks to eliminate unnecessary copies by
deferring them until they can no longer be

avoided
pointer, it doesn’t provide an assignment operator or reset member
function. If we want scoped_array to consider classes as scopes, we’ll
need to provide some mechanism to enable assignment.
Adding assignment operators to scoped_array would dramatically
weaken its guarantee that it will only ever point to one array.
Thankfully, we can achieve what we want by adding a swap member
function instead, defined as follows:

 void
 scoped_array::swap(scoped_array &a)
 {
 std::swap(x_, a.x_);
 }

This still weakens scoped_array’s guarantee, but in a way that’s less
appealing to use for ownership transfer than an assignment operator or
reset member function. Well, that’s my story and I’m sticking to it.
We can now redefine string’s swap member:

 void
 string::swap(string &s)
 {
 std::swap(size_, s.size_);
 data_.swap(s.data_);
 }

Now, the naïve approach is perfectly good for short strings, but those string
copies in the constructors, and indirectly in the assignment operator, start
to look pretty ominous in the face of very long strings.

For example, consider the sequence of events when storing the result of a
function call (Listing 3).

So what exactly happens when we call g?

 call g

 call f
 copy "hello, world" into s
 copy s into return temporary
 exit f

 copy return temporary into s
 exit g

Yikes. I count two completely unnecessary copies of the data. Now that’s
not such a problem for “hello, world”, but will hit hard for the King James
Bible, for example.
So how does copy-on-write help?
Well, it seeks to eliminate unnecessary copies by deferring them until they
can no longer be avoided. This is typically when an element of the string
is about to be changed, hence the name. Until that moment, a ‘copy’ of a
string simply holds a reference to the original.
This is related to, but subtly different from, reference counting for shared
ownership. Unlike shared ownership, COW allows multiple references to
the underlying data of an object only so long as the external behaviour is
unaffected.
With shared ownership, we expect multiple references to be able to change
the observed state of the object. With COW, this must be avoided at all
costs. We use reference counting merely to avoid making multiple copies
of provably identical data.
For example:

void
f()
{
 string s1("hello, world");
 string s2(s1); //s2 can hold a reference to
 //s1's data here
 std ::cout << s2 << std::endl;
 s2.replace(0, 5, "goodbye"); //s2 must copy
 //s1's data here
}

Until we actually change the state of s2 in the last line of f, the behaviour
of the function is unchanged whether s1 and s2 share their state or not.
Let’s have a look at how we might implement a string class that supports
COW (Listing 4).
The point to note about this definition is that the data is stored in a
shared_array (like shared_ptr, except that it uses delete[])
rather than as a scoped_ptr. With this we will share, rather than copy,
data for as long as possible.
To see how this works, let’s take a closer look at a few member functions.
First, the constructors (Listing 5).

Listing 3

string
f()
{
 string s("hello, world");
 return s;
}

void
g()
{
 string s = f();
}

August 2007 | Overload | 13

FEATURE RICHARD HARRIS

the same check for uniqueness and
subsequent copy must be present in every
function that presents an opportunity to
change the string
The sharp-eyed amongst you will have noticed that the copy constructor
is superfluous since the compiler generated version would have done
exactly the same thing.

The important point though is that when we construct a string with a C-
style point to character array, the data is copied, whereas when we copy
construct a string, the data is shared.
Now let’s have a look at the two flavours of begin to see how we make
sure that we don’t accidentally change a string’s value through this
shared data:

string::const_iterator
string::begin() const
{
 return data_.get();
}

Well, the first version is pretty simple. Since we’re returning a
const_iterator (defined as a pointer to const T), it’s not possible
to change the contents of the string so we can simply return the pointer to
the start of the character data.
Granted, const_cast could throw a spanner in the works, but I doubt
anyone would be too upset if we simply declared casting between iterator
types undefined behaviour and ignored the problem.
Clearly, it’s the non-const version of the function that is of interest:

string::iterator
string::begin()
{
 if(data_.get() && !data_.unique())
 {
 char *s = data_.get();
 data_.reset(new char[size_]);
 std::copy(s, s+size_, data_.get());
 }

 return data_.get();
}

And here we see the mechanism at work. If more than one string is
referring to the data, we copy it before we allow a means to change it to
escape. The same check for uniqueness and subsequent copy must be
present in every function that presents an opportunity to change the string.
In the following example:

void
f()
{
 const string s1("hello, world");
 string s2(s1);
 string::iterator i = s2.begin();
 *i = 'y';
}

Listing 4

class string
{
public:
 typedef char value_type;
 typedef char * iterator;
 typedef char const * const_iterator;
 typedef size_t size_type;
 //...

 string();
 string(const char *s);
 string(const string &s);

 string & operator=(const string &s);
 string & operator=(const char *s);

 const_iterator begin() const;
 const_iterator end() const;
 iterator begin();
 iterator end();
 //...

private:
 size_type size_;
 shared_array<char> data_;
};

Listing 5

string::string() : size_(0), data_(0)
{
}

string::string(const char *s) : size_(strlen(s)),
 data_(new
char[size_])
{
 std::copy(s, s+size_, data_.get());

}

string::string(const string &s) : size_(s.size_),
 data_(s.data_)
{
}

14 | Overload | August 2007

FEATURERICHARD HARRIS

for multi-threaded programs, the problem is
that sharing and releasing the string data

are not atomic operations
we have the following sequence of events:

construct s1
copy "hello, world"

construct s2
share "hello, world"

s2.begin
fail uniqueness check
copy data
return iterator

assign 'y' to start of s2

Given that we have already established the sharpness of your eyes, I have
no doubt that you have raced ahead of me and spotted that this code isn’t
remotely fit for purpose.
To hammer home why, consider the following example:

void
f()
{
 string s2("hello, world");
 string::iterator i = s2.begin();
 const string s1(s2);
 *i = 'y'; //oops, s1 has changed too
}

Let’s take a look at the sequence of events this time:

construct s2
copy "hello, world"

s2.begin
pass uniqueness check
return iterator

construct s1
share "hello, world"

assign 'y' to start of s1 and s2

It seems there was a potential alias that we overlooked, the iterator itself.
This is harder than I expected. Perhaps I should be more forgiving of my
unnamed library vendor.
Worse still, even if we correctly identify and protect all possible aliases,
we still have made a rather sweeping assumption. Namely, that strings
will only be referred to by a single thread.

In a multi-threaded program, it is quite possible that a COW string’s data
could be manipulated by more than one thread at the same time. To
illustrate the problems that this can lead to, consider what happens when
two copies are made of a string.

void
f(const string &s)
{
 string s1(s);
}

void
g(const string &s)
{
 string g1(s);
}

In a single threaded program, f and g must be called sequentially:

 string s("hello, world");
 f(s);
 g(s);

leading to the following sequence of events:

 construct s
 copy "hello, world"

 call f
 share "hello, world"
 release "hello, world"
 exit f

 call g
 share "hello, world"
 release "hello, world"
 exit g

and everything goes smoothly.
For multi-threaded programs, the problem is that sharing and releasing the
string data are not atomic operations. Specifically, they must read the
reference count, manipulate it and finally write it. Unfortunately a thread
may be interrupted during these steps.
For example, if we were to call f and g on separate threads:

 string s("hello, world");
 run_threaded(f, s);
 run_threaded(g, s);

we might observe the following sequence of events:
August 2007 | Overload | 15

FEATURE RICHARD HARRIS

our checks end up taking longer than
making a copy of the string, rendering the
entire approach rather pointless
construct s
copy "hello, world"

call f
call g

f: read reference count (count == 1)
f: increment reference count (count == 2)
g: read reference count (count == 1)
f: write reference count (count == 2)
g: increment reference count (count == 2)
g: write reference count (count == 2)

oops

Because g read the reference count before f had committed its change,
we’ve lost the record of f’s interest in the string. This is certainly going
to lead to interesting behaviour at some point in the program.
To protect ourselves from this eventuality, we need to ensure that only one
thread can read or manipulate the reference count at any given time.
Fortunately there’s a specific threading tool to do this, the mutex (or mutual
exclusion) lock. Unfortunately it’s not free. And since we need to lock each
uniqueness check we’ll need a lot of locks. So many that it’s perfectly
possible that our checks end up taking longer than making a copy of the
string, rendering the entire approach rather pointless.
I’ve heard of at least one string implementation that sought to reduce the
number of mutex locks by having a single mutex for every string in the
program. This does cut down on the cost of creating locks, but has the
unfortunate side effect that every access of every string is synchronised,
rather defeating the point of multi-threaded string manipulation.
So is it worth it?
For my part, the chief justification for using COW is that I hate
temporaries. Or, more accurately, I hate the expense of copying them left,
right and centre. Winds me right up, it does.
Recall that with our naïve string, storing the result of a function call
involved two unnecessary copies of the data.
Hold on a sec.
Did I say two unnecessary copies?
Doesn’t the C++ language specifically allow compilers to avoid making
unnecessary copies?
There I go with my little lies again. It’s been quite a while since compilers
would create any temporaries at all in this situation. C++ specifically
allows such temporaries to be side-stepped (‘elided’, in the terminology
of the standard) and the result of the call to f to be constructed directly
into s.
There are two situations where a C++ compiler is legally allowed to avoid
copying an object.

Firstly when a function return expression is the name of a local object of
the same type as the return value, the object can be constructed directly
into the return value rather than copied. For example:

string
f()
{
 string s;
 s = "hello, world";
 return s;
}

In this case, rather than constructing s, manipulating it and copying it into
the return value a C++ compiler can, by treating s as an alias for the return
value, simply construct the return value and manipulate it directly, saving
a copy.
Secondly when a temporary that has not been bound to a reference would
be copied to an object of the same type, the temporary can be constructed
directly into the object. For example:

string t = f();

In this case, the temporary return value of f can be treated as an alias of
t, saving a copy.
Note that the two optimisations can be applied to the same statement. In
the above example, this means that the string s in the function f can be
treated as an alias for the string t, effectively eliminating two copies.
So are there any situations where unnecessary copies still exist?
Well, firstly there’s the case when strings are passed by value, but are not
consequently changed. But const references capture this behaviour
perfectly, so this doesn’t seem to be particularly compelling.
Secondly there’s the case when a function has multiple points of return.
For example:

string
f(bool b)
{
 string s, t;
 s = "hello, world";
 t = "goodbye, world";

 if(b) return s;
 return t;
}

In such cases it can be difficult for the compiler to predict which of the
return expressions should be treated as an alias for the return value. In this
case, should the compiler pick s or t?
16 | Overload | August 2007

FEATURERICHARD HARRIS
Of course, a simple restructuring of the code would make things easier for
our beleaguered compiler:
 string
 f(bool b)
 {
 string s;
 if(b) s = "hello, world";
 else s = "goodbye, world";
 return s;
 }

But there will inevitably be situations where such restructuring is difficult,
or at least unwieldy.
Finally there’s the case when a temporary is assigned to a string. In this
case COW may save us a copy. (Listing 6.)
The reason why COW won’t always save a copy in this case is a little
subtle.
As I mentioned before, the recommended way to implement assignment
is with the copy and swap idiom:
T &
T::operator=(const T &t)
{
 T tmp(t);
 swap(tmp);
 return *this;
}

In this form, we will definitely pay for a copy during assignment of a naïve
string. This is because the compiler binds the temporary to a const

reference, rather than to a newly constructed object so it can’t be elided.
On the following line we copy construct the temporary, but by then it’s
too late, since the function can’t know if the reference is to a temporary or
a named variable.
Fortunately, we can rewrite the code to take advantage of copy elision:
T &
T::operator=(T t)
{
 swap(t);
 return *this;
}

Now the temporary is passed directly to the copy constructor of the named
argument, and is therefore a candidate for the copy elision rule. The result
of a function call can be constructed directly into t which is then swapped
with the object.
So that’s that for COW then, isn’t it?
Well, COW can also save us a copy or two when we might need to change
a string, but aren’t certain.
For example, consider a function to strip a trailing newline from a string
(Listing 7).

Listing 6

string
f()
{
 string s("hello, world");
 return s;
}

string
g()
{
 string s("goodbye, world");
 return s;
}

void
h()
{
 string s = f();
 //...
 s = g(); //COW may save us a copy here
}

Listing 7

string
f(string s)
{
 if(!s.empty() && *s.rbegin()=='\n')
 {
 return s.substr(0, s.size()-1);
 }
 else
 {
 return s;
 }
}

void
g()
{
 string s("Hello, world\n");
 //...
 std::cout << f(s) << std::endl;
}

void
h()
{
 string s("Hello, world");
 //...
 std::cout << f(s) << std::endl;
}

August 2007 | Overload | 17

FEATURE RICHARD HARRIS

we’d have to let the newline stripping logic
leak out into the calling function
In the function g, string makes a copy since the original string has a
trailing newline. In h, however, no change is required so no copy will be
made.

We can get the same benefit, however, if we rewrite the code so that a copy
is only made if we need one. For example, Listing 8 or Listing 9.
OK, I’ll admit it, this isn’t really a very compelling argument. We’d either
need a different version of the function for every operation we want to
perform on the resulting string or we’d have to let the newline stripping
logic leak out into the calling function, neither of which are particularly
attractive prospects.
Well, that and the fact that a more sophisticated COW string wouldn’t
make a copy if you were just creating a sub-string. Adding offset and length
members to string would allow sub strings to share a reference into the
original string, delaying the copy until we do something really destructive
like change some characters.
Nevertheless, I contend that this aspect of COW does not confer that big
an advantage. Consider Listing 10.
This still has the unfortunate property that we’d need one function for each
operation, but gains the significant advantage of making no copies
whatsoever. Furthermore, with a few minor changes, we have something
that looks suspiciously like a function from <algorithm> (Listing 11).
This being a generic algorithm to perform an operation, in our case
printing, on every element in the iterator range except the last if it is equal
to t.

Listing 8

void
f(const string &s)
{
 if(!s.empty() && *s.rbegin()=='\n')
 {
 std::cout << s.substr(0, s.size()-1) <<
std::endl;
 }
 else
 {
 std::cout << s << std::endl;
 }
}

Listing 9

void
g()
{
 string s("Hello, world\n");
 //...
 if(!s.empty() && *s.rbegin()=='\n')
 {
 std::cout << s.substr(0, s.size()-1) <<
std::endl;
 }
 else
 {
 std::cout << s << std::endl;
 }
}

void
h()
{
 string s("Hello, world");
 //...
 if(!s.empty() && *s.rbegin()=='\n')
 {
 std::cout << s.substr(0, s.size()-1) <<
std::endl;
 }
 else
 {
 std::cout << s << std::endl;
 }
}

Listing 10

void
f(const string &s)
{
 if(!s.empty())
 {
 string::const_iterator first = s.begin();
 string::const_iterator last = s.end();

 --last;
 while(first!=last) std::cout << *first++;
 if(*first!='\n') std::cout << *first;
 }
}

Listing 11

template<class BidIt, class T, class UnOp>
void
f(BidIt first, BidIt last, T t, UnOp op = UnOp())
{
 if(first!=last)
 {
 --last;
 while(first!=last) op(*first++);
 if(*first!=t) op(*first);
 }
}

18 | Overload | August 2007

FEATURERICHARD HARRIS

if you really care about the efficiency of your
string processing, I very much doubt that

you would rely on delayed copy
optimisation
Personally, I tend to view the STL less as a library than as a way of life,
or at least I did until my girlfriend threatened to leave me if I didn’t start
washing once in a while. Now I guess I see it more as a way of
programming.
If the STL doesn’t have the algorithm or data structure I want I implement
it myself and add it to my own extensions library. This can be a lot of work
at the outset, but starts paying dividends fairly quickly.
I doubt I’d consider this a candidate for my extensions library, but my point
is that if you really care about the efficiency of your string processing, I
very much doubt that you would rely on delayed copy optimisation. A
much better approach is to think very carefully about the algorithms you
need to perform and to implement them in an efficient manner.
So, given my assertion that we can write our code in such a way that copy-
on-write optimisation is unnecessary and that it has synchronisation
problems to boot, is this kind of approach really worth further
consideration?
Well, the growing opinion is no. Some string implementations (notably
STLport) are turning to alternative optimisations such as the short string
optimisation and expression templates.
The short string optimisation involves adding a small array member to the
string class. (Listing 12, for example.)

When the string is less than 16 characters long the array data_ can be used
to store it in its entirety, eliminating the need for a relatively expensive
allocation when copying. Longer strings must be allocated from the free
store as usual. The begin_ and end_ pointers are used both to manage
the extent of the string and determine whether the internal array or the free
store have been used to store it, enabling the destructor to ensure that the
memory is correctly released when the string is destroyed.
Note that this optimisation does not reduce the number of characters that
are copied when strings are copied. Instead it relies upon the speed of
allocating and copying memory on the stack rather than the free store.
Expression templates are altogether more complicated beasts and their
precise mechanics are beyond the scope of this article. Put simply they
work by deferring string manipulation operations until the result is actually
assigned to something. For example, in the code snippet:

string s1 = "Hello";
string s2 = "world";
string s3 = s1 + ", " + s2;

the strings s1, ", " and s2 are not actually concatenated until s3’s
constructor requires the result. At this point a triple concatenation is
performed, rather than the two double concatenations that a simple string
implementation would perform. This saves both the creation of a
temporary sub string and copying it into the final string.
In fact, expression templates are a very powerful technique that can be used
for far more sophisticated optimisations than simply eliminating copies.
Despite this, I’m not yet willing to dismiss COW like optimisations out of
hand, although you’ll have to wait until next time before I explain why.

Acknowledgements
With thanks to Kevlin Henney for his review of this article and Astrid
Osborn, Keith Garbutt and Niclas Sandstrom for proof reading it.

Listing 12

class string
{
public:
 typedef char value_type;
 typedef char * iterator;
 typedef char const * const_iterator;
 //...

 string();
 string(const char *s);
 string(const string &s);

 string & operator=(const string &s);
 string & operator=(const char *s);

 const_iterator begin() const;
 const_iterator end() const;
 iterator begin();
 iterator end();
 //...

private:
 char data_[16];
 char *begin_;
 char *end_;
};
August 2007 | Overload | 19

FEEDBACK
Guidelines for Contributors
Thinking of writing for us? Follow these
guidelines to help smooth the way.
hese guidelines provide general instructions on the submission of
articles for publication. For more detailed information, please contact
the editor of the relevant publication (cvu@accu.org or

overload@accu.org).
For examples of the elements described, please see recent issues of the
journals.
With your article, you need to send:

A short personal profile (see ‘Profile’)
Any images used in your article as separate files (see ‘Illustrations’)
An introductory line or sentence (see ‘Structure’)

Format
Articles can be accepted as Word or Open Office documents; alternatively,
save your file as RTF. If your article is in any other format, please check
with the production team that it can be opened and the text extracted.
If you are using a text editor, devise and explain a convention for your
document. For example, ‘Heading 1 in block capitals, heading 2
underlined, code snippets in text surrounded by <<c>>’. You can use a
numbered system for headings to help with this – the numbers will be
removed from the finished article. Clearly separate any such instructions
from the body of the document.
Text for sidebars or panels can either be inserted in the approximate
position in the text or provided at the end if its location is unimportant.
Clearly mark the beginning and end of the text forming the sidebar.
Please do not apply complex formatting to your articles – this will almost
certainly be changed during the typesetting process to comply with the
journal standards. The formatting you apply is, however, used as a guide
by the production editor when determining how to format particular
elements.
A fixed width font is used to display code fragments and filenames (bold
for code and non-bold for comments and filenames) – if possible, use a
suitable font in your article to indicate this (Courier, for example).
The formatting of listings will almost certainly be changed due to space
constraints. Unless there is good reason to do otherwise, code is placed in
a single column, giving a maximum number of characters per line of 48.
If the formatting of your code is important to you, you are welcome to
ensure your listings fit within this number of characters and every attempt
will be made to retain your personal style, although this cannot be
guaranteed. If the formatting of the code is particularly relevant to a point
you are making (for example, contrasting two different styles of writing),
please say.
A Word template is available containing a Code paragraph style set to the
correct width.

Profile
A short profile of the author is required for all articles. This should be brief
– approximately 50 words – and may need to be shortened if space is short.
Please ensure your name is as you would wish it to appear in the journal
and include an email address or another means of contact (for example,
via a website).

For C Vu only, a photograph of the author (head and shoulders) is also
required. This should be high-contrast and at a minimum resolution of 200
dpi (ideally 300 dpi).

Structure
Try to keep titles short and relevant – they should ideally fit on a single
line and definitely require no more than two lines. A short strapline (C Vu)
or introductory sentence (Overload) is required – if these are not provided
by the author, they will be created as part of the editorial process.

Both publications have provision for three levels of heading within the
body of the article, although the third should be used rarely. Headings are
not numbered, so please do not reference other sections by heading number
in your article, even if you use them to indicate levels.

Illustrations
You must supply images as separate files, as well as placing them in your
article to show approximate location. The journals are printed in black and
white, so please make sure that your images do not rely on colour alone
to differentiate between the components. Also check that any lettering can
be seen when the image is converted to greyscale and it has been scaled
to fit on a page. (Note: Colour images are still useful, as a PDF version is
produced in colour).

Supply images in common formats such as JPG, TIFF, or PNG.

Photographs and similar images must be a minimum of 200 dpi,
ideally 300 dpi, at the size to be printed.

Save diagrams and line drawings in vector format if possilbe. Do not
attempt to convert raster images to vector format.

Screenshots should be saved in a non-lossy format. TIFF and PNG
have been used successfully. GIF is also a suitable format, but check
that the colour depth supported by your application has not
adversely affected the image.

References and Notes
CVu and Overload treat references and footnotes differently. Please ensure
that references are as complete as possible.

CVU: References and notes are marked by placing numbers in
brackets in the text; for example: [1]. References and notes are both
numbered in the same sequence and the corresponding information
provided in a Notes and References section at the end of the article.

Overload: Notes are treated as footnotes - number these and supply
the text either as footnotes or at the end of the article. References are
marked in the text using the author’s name and final two digits of the
year of publication (for example, [Griffiths06]). The full reference
is placed at the end of the article. If you cannot specify an author or
year, choose a suitable word. For example, if you are referencing the
Boost libraries, use [Boost] as the reference marker.

T

20 | Overload | August 2007

	Consensus
	He Sells Shell Scripts to Intersect Sets
	The PfA Papers: From the Top
	Release Mode Debugging
	auto_value: Transfer Semantics for Value Types
	Guidelines for Contributors

