
3

overload issue 70 december 2005

contents credits &
contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Advertising:

Thaddaeus Frogley
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letter to the Editor 6

The Curate’s Wobbly Desk

Phil Bass 8

Better Encapsulation for the

Curiously Recurring Template

Pattern

Alexander Nasonov 11

How to Quantify Quality:

Finding Scales of Measure

Tom Gilb 13

“Here be Dragons”

Alan Griffiths 18

Two-Thirds of a Pimpl and a Grin

David O’Neill 24

Copy Deadlines

All articles intended for publication in Overload 71 should be submitted to the editor by
January 1st 2006, and for Overload 72 by March 1st 2006.

overload issue 70 december 2005

Editorial:
The “Safe C++ Standard Library”

One of the points we explored was that the approach to
developing software reflected the context in which the
developers work. There is a place in the world for quickly
developed “burger and fries” software – I occasionally
write throwaway scripts to munge data from one format
to another or to generate test data. This type of software
is effective in meeting the immediate needs of the
business, but achieves this with potentially poor error
detection and handling, or with performance
characteristics that scale poorly, and is written with no
thought to reuse or maintenance. Also, it is all too common
for such software to be unusable without the author on
hand to deal with odd behaviour. There is, of course, a
medium to long term cost of this sort of diet. Since this
conversation Morgan Spurlock shot to fame with his
demonstration of this in the context of food: “Supersize
Me”. (And a similar problem arises when organisations
clog up their arteries with this sort of software.)

For the more discerning organisation there is a
requirement for developers to craft something that can be
used without the author standing by to fix problems if
they occur, or that may be maintained over a long period
of time, or used in a variety of contexts, or meets stringent
performance characteristics. Different skills come into
play when writing such software. A lot more care with
the preparation of the ingredients, a different set of tools
and a lot more thought. But the results are worth the
effort: a diet of quality software base makes for a fitter
and happier organisation.

One of the things that we were considering was the
mismatch that occurs if a developer accustomed to
working in one way encounters a situation that required
the other approach. We can all imagine the consequence
of swapping the kitchen staff of a burger chain with
those from a good restaurant. (I hope I’ve not just
invented another theme for “reality TV”.) When this
happens the frustration of all involved in such situations
will be obvious – even if the true causes are not. All too
often the incompetence is assumed where a failure to
communicate what is needed is the cause.

During these conversations we also examined the role
that tools played in the analogy – are great tools required
to produce great software? Or can bad software be
avoided by the use of good tools? It was my contention
that it is the skills that matter: a top class chef would be
able to produce good quality food even when separated
from their kitchen. On the other hand, if separated from
the freezer full of frozen burgers the results would not
be so good for the McDonald’s kitchen staff. The killing
argument against this however was that “a real chef
would not be separated from his knives”.

These conversations – especially the usefulness of
potentially dangerous tools to an expert in the craft –
came to mind recently. I was reading the reactions of a
group of C++ experts to the recent discovery that a
vendor plans to ship an implementation of C++ that
produces messages like the following:

c:\program files\microsoft visual studio

8\vc\include\algorithm(637) : warning C4996:

'std::swap_ranges' was declared deprecated

c:\program files\microsoft visual studio

8\vc\include\algorithm (625) : see

declaration of 'std:: swap_ranges'

Message: 'You have used a std:: construct

that is not safe. See documentation on how to

use the Safe Standard C++ Library' ...

This discussion was the first I’d heard of the “Safe
Standard C++ Library” – which is a bit surprising as for
some years I’ve been involved with both the BSI and ISO
working groups that define the standard C++ library. And,
as it was the latter group who were discussing this
development, I’m pretty sure most of the rest of them did
not know about it either. We were also surprised to see the
term “deprecated” used in this context – it has a technical
meaning within the standard that is not applicable here.

Let me be quite clear about this: the so called “Safe
Standard C++ Library” has no standing outside of
Microsoft – it is neither an official standard nor a de-
facto one. Also the ISO C++ working group has not
deprecated std::swap_range (or any of the other

At a conference some years ago a group of us developed an analogy for software
development over a series of lunchtime conversations. (I won’t mention names as
my memory is sufficiently vague as to who participated in these conversations and

who was simply around at the time.) The analogy was with the preparation of food. The
circumstances under which software is developed vary from “fast food” to “gourmet” –
and the way it is developed differs just as much. At the time the point of these discussions
and the building of this analogy was a discussion of the differences between types of
developer and the way in which they approach their work.

4

5

overload issue 70 december 2005

functions that can lead to these messages appearing). So,
what on earth is this all about?

There are representatives of Microsoft that participate
in the standardisation of C++, and they were able to
supply some of the details. It seems that Microsoft have
identified a number of “unsafe” constructs in the standard
C and C++ libraries: that can overwrite memory, or
functions that return pointers to static data, or ... There is
nothing very contentious about there being “sharp knives”
in the C++ library – although there may be some debate
about some of the specific choices made by Microsoft.

To assist themselves in eliminating these “unsafe”
uses from their own codebase Microsoft have modified
their compiler to flag them. This is illustrated by the
message shown above. (This was posted to the library
working group reflector – I presume that somewhere in
the part of the error message I’ve not seen it identifies
the code that uses swap_ranges.) If carelessly written this
code could lead to memory being overwritten.

Microsoft have also developed some “safe” alternatives
to the standard functions they have “deprecated” – and
this alternative is what they have called “The Safe C++
Library”. Well, their code is developed in their “kitchen”
– so they are perfectly entitled to ban sharp knives there
and from their account of their experience it seems that
they had good results (although it hasn’t been made clear
to me how they measured this).

Full of enthusiasm for these benefits that this initiative
has achieved, they’ve decided that all their users will gain
from having these facilities made available to them.
However, many of the experts working in C++ resent the
idea of these rules being imposed upon their kitchens! In
these kitchens the sharp knives are there because they are
useful and are (hopefully) used with the care they require.

Many of the experts involved in this discussion
provide libraries that need to compile cleanly with a
wide range of C++ implementations. Some have already
announced that they will be disabling this message in
their code – they clearly don’t want to spend time
producing a special version of their code for clients that
happen to use the Microsoft compiler.

There are also concerns for the ordinary C++
developer. Like many others I require clean compiles, and
while a few of us might recognise that the above message
is misleading I’ve certainly worked for organisations
where an extended debate would ensue about how to
adapt to it. (Which is a waste of time and energy.) And
there will be some organisations or developers that will
blithely follow the advice to use “The Safe C++ Library”
without realising that doing so locks their codebase into
a library that is only available from a single vendor.

The Microsoft representatives seem to be surprised at
the negative reaction of the other experts to their plans.
They had come up with a way to improve the quality of
their customer’s code and had not foreseen the possibility
that people would not want to have these “unsafe” uses

of C++ highlighted or to be offered a safe alternative.
They really hadn’t considered how their efforts would be
perceived by the remainder of the C++ community.

Now there are many things that Microsoft could have
done differently if only they had realised the need. And,
after the feedback they have received, they may indeed do
things differently when they ship the next version! They
could have avoided terminology that suggests that their
coding guidelines are connected with the C++ standard,
they need not have made these messages the default option,
and they could have provided better mechanisms for
controlling these messages. (In the current version if a
library vendor disables them for the duration of a header
from their library, then the messages are not always emitted
for users that choose to adopt Microsoft’s guidelines.)

A more generous option would be to ensure that their
“Safe Standard C++ Library” is made widely available
– preferably under a licence that allows it to be used and
supported on other platforms. If it brings the benefits to
others that Microsoft have experienced then it could be
of real benefit to developers. I don’t know how common
they are in the wider community but there is certainly a
class of buffer-overrun errors addressed by these efforts.
If they are as common as Microsoft believes, it would
be a shame if these warnings are ignored (or simply
disabled) by developers as “yet another attempt to
achieve vendor lock-in” – but that has been precisely the
reaction of those developers I’ve consulted about this.

The “Safe Standard C++ Library” might even form the
basis for future revisions to the C++ standard. The
Microsoft representatives have indicated that the parts of
this work applicable to the C standard have already been
adopted by the ISO C working group as the basis for a
“Technical Report” (due next year) and that “once there
is a little more community experience” Microsoft intends
to do the same with the work on C++. So, in a future
revision of C++, using swap_ranges with pointer
arguments (which Microsoft considers an unsafe
practice) may indeed become deprecated!

From what I’ve seen on TV every chef thinks the way
that they run their kitchen is the right way – and that
everyone else can gain by emulating them. So it is not too
surprising that the developers at Microsoft think the same
way. On the other hand the resistance to new ideas cannot
be absolute – otherwise we’d still be using wooden
implements to cook over open fires. Chefs (and
developers) are impressed by results – and if the results
of using these tools are good enough they will be adopted.

And what will I be doing in “my kitchen”? Well, I see
C++ developers writing needlessly platform specific code
far more often than I see them misusing swap_ranges (and
I don’t think I’ve seen gets used since the mid-’80s). So
I'll be turning that warning firmly to the “off” setting.

Alan Griffiths
overload@accu.org

6

overload issue 70 december 2005

Adding Stakeholder
Metrics to Agile Projects
(Article in Overload 68)
From: Anthony Williams

Tom, Alan,
Whilst I found this article interesting, and accept that Tom has

found “Evo” to be a useful process for developing software, there
are a few comments in the article that indicate a lack of awareness
of other agile processes.

In the detail of the process description, item 1 (gather critical
goals from stakeholders), the article says By contrast, the typical agile
model focuses on a user/customer ‘in the next room’. Good enough if
they were the only stakeholder, but disastrous for most real projects.
Most agile processes view the “Customer” as a role, and whoever
fills that role has the responsibility of obtaining the key goals from
all stakeholders, not just one; this role is often filled by the project
manager. Most agile processes also recommend that the Customer
is in the same room as the rest of the team, not the next one.

TG: In that case we should call it a ‘Stakeholder
Representative’. My experience is that:
1. People are very incomplete (not just in Agile methods) in

defining the many stakeholders, and their requirements
2. I would not trust a representative to define their goals clearly,

nor would I trust them to give feedback from real evolutionary
deliveries, that should be trialled by real stakeholders as far
as possible.

3. Keep in mind that even on small projects we find there are 20
to 30 or more interesting stakeholders, each with a set of
requirements.

AW: I agree with you on the importance of identifying who the
real stakeholders are, and ensuring they actively participate in
the development process.

Scott Ambler has an article on the subject of Active
Stakeholder Participation, at:
http://www.agilemodeling.com/essays/

activeStakeholderParticipation.htm

TG: Great paper - I heartily agree with him and wish more of
these thoughts got into agile culture.

Item 2 says Using Evo, a project is initially defined in terms of clearly
stated, quantified, critical objectives. Agile methods do not have any
such quantification concept. Again, this flies in the face of my
experience with agile methods - most agile processes recommend
that requirements are expressed in the form of executable
acceptance tests; I cannot think of any more quantified objective
than a hard pass/fail from an automated test.

TG: This remark just proves my point! A testable requirement is
NOT identical with a quantified requirement. Please study
Sample Chapter: How to quantify any quality:
http://books.elsevier.com/bookscat/samples/

0750665076/0750665076.pdf

to understand the concept of quantification.
AW: If my comment proves your point, I guess I didn’t explain
myself correctly, or I really don’t understand where you’re
coming from.

Mike Cohn says in User Stories Applied that stories need to be
testable: a bad story is “a user must find the software easy to

use”, or “a user must never have to wait very long for a screen
to appear”; he then goes on to point out that better stories are
“novice users are able to complete common workflows without
training”, and “new screens appear within two seconds in 95%
of cases”. The first is still about usability, so needs manual testing
with real “novice users”, but the second can be automated. Agile
practices prefer automated tests to manual ones.
Do Mike’s examples better reflect your quantification goals?
TG: YES we are getting there, I found his chapter at
http://www.mountaingoatsoftware.com/articles/

usa_sample.pdf and he is moving in the right direction. I
never saw things like that from any other agile source. I wonder
how frequently this is applied in practice? The term ‘story’ is
misleading here since he is really speaking about what others
would call requirements. But OK!

Thanks for pointing this excellent source out to me I will
certainly quote it to others in the agile field! I wrote him an email
and copied you. Nice website.

Though item 5 doesn’t explicitly say anything about what agile
processes do or don’t do, the implication is that they don’t do
what is recommended here. Popular agile processes recommend
that the person or people in the Customer role writes the
acceptance tests; it is their responsibility to ensure that what they
specify represents the needs of the stakeholders.

TG: Craig Larman (Agile and Iterative Development: a Managers
Guide) has carefully studied my Evo method and compared it to
other Agile methods in his 2003 book.

The difference here between what I am trying to say and what
a reader might wrongly guess I am saying is probably due to
misunderstandings. A good picture of my Evo method in practice
is the Overload 65 paper by Trond Johansen of FIRM. Part of
this can deeper arguments can be found by downloading my XP4
talk “WHAT IS MISSING FROM THE CONVENTIONAL
AGILE AND eXtreme METHODS? …” available at
http://xpday4.xpday.org/slides.php

AW: I’ve just looked at the slides; I think they explain your point
better than the Overload article.

Finally, the Summary says “A number of agile methods have
appeared ... They have all missed two central, fundamental
points; namely quantification and feedback”. Quite the contrary:
these are fundamental principles of agile methods.

TG: the summary must be interpreted in the light of the
preceding detail. I agree there is some feedback and some
quantification in agile methods, but my point was there is no
quantification of primary quality and performance objectives
(merely of time and story burn rates). The main reasons for a
project are NOT quantified in any of the other Agile methods.
Consequently the feedback is not based on measurement of step
results compared to estimated effect (see above FIRM example
to see how this works). I do apologize that my paper might not
have been long enough or detailed enough to make their points
clear to people from a non quantified quality culture (most
programmers). But I hope the above resources help to clarify.

The relentless testing at both unit level (TDD) and acceptance
test level is designed to get fast feedback as to the state of the
project, both in terms of regressions, and in terms of progress
against the goals.

Letter to the Editor

7

overload issue 70 december 2005

TG: I agree, but this is not the quantified feedback I was
referring to.

The iterative cycle is designed to allow fast feedback from the
stakeholders as to whether the software is doing what they want.
It also provides feedback on the rate of development, and how
much progress is being made, which allows for realistic estimates
of project completion to be made.

TG: There is no quantified feedback, in conventional agile
methods, as to progress towards the quantified goals. For
example FIRM set a release 9.5 target of 80% intuitiveness and
met it. Such concepts are entirely alien to the rest of the agile
world. They cannot even conceive of quantification of such
usability attributes. The rate of story burn is a very crude
measure of progress. But the actual impact on most quality levels
is impossible to say anything about from a story burn rate.
AW: I have no idea what it can possibly mean for delete “to” for
something to have “80% intuitiveness”, so I guess you’re right
that “they cannot even conceive of quantification of such
usability attributes”. Could you explain in more detail?

Story burn rates give you real measures of progress in terms
of money spent, features completed, and estimated project
completion time. If you want to know details about how close
you are to specific goals, then you need to look at what the
features are that have been completed.

Automated acceptance tests provide the “quantification” Tom
seeks: the stakeholders specify desired results, and the acceptance
tests tell them whether the software meets their targets. These
don’t have to be functional tests, they can be non-functional too -
if it is important that the time for a given operation is less than a
specified limit, the team is encouraged to write a test for that.
Likewise, if it is important that a certain number of simultaneous
users are allowed, or the system must handle a certain amount of
data, then there should be tests for those things, too.

TG: Well this sounds like moving in the right direction. But it is
not anywhere near enough, for real systems, and not done at all
as far as I have seen, and not instructed in the agile textbooks.
Automated acceptance tests DO NOT by any stretch of the
imagination provide the quantification I seek! Nowhere near!
AW: I agree that this is not necessarily focused on in the agile
textbooks. They generally skip over it by saying that the
acceptance tests define what the application should do. It is up
to the team to realize that if the performance matters, then they
need a test for that; if the usability matters, they need a test for
that, etc.

However, agile processes are not just defined by the
textbooks. They are defined by the community of people who
use them, and are continually evolving; there’s recently been
discussion of performance testing on the agile-testing mailing
list, for example, and there is a whole mailing list dedicated to
the discussion of usability, and how to achieve it with agile
methods.
TG: Show me a real case study that like FIRM tracks 25
simultaneous quality attributes over 10 evo steps to a single release
cycle, and in addition spends one week a month working towards
about 20 additional internal stakeholder measures of quality (I am
happy to supply illustrations for the latter, they are recent).
AW: Examples of the tracked quality attributes would be useful.

Just to recap, whilst I don’t disagree with Tom’s recommendations,
he does other agile methods an injustice in suggesting that these are
new recommendations: much of what he suggests is already a key

part of agile methods.
Anthony

TG: I maintain they are new, if you understand what I mean by
quantification. I do apologize if I have done conventional agile
methods an injustice. I have no such intent. But of course I cannot
know undocumented private practices! I have made these
assertions to several agile conferences and not one participant,
who heard and saw what I said suggested that I had misrepresented
the current state of agile methods. I think the main problem here is
things like believing that testing of the conventional kind constitutes
measurement of quantified qualities. I hope that a study of the
above links will help clarify this. My apologies if I have not in my
paper been able to convey what I intended immediately to some
readers. I hope this extensive reply to Anthony will enable readers
to progress their understanding of my intent.

Best wishes.
Tom

AW: I now feel that I understand what you were getting at. Most
agile methodologies are very generic in their descriptions, and
just identify that the customer representative should write
acceptance tests for the stories, with no explicit focus on what
the tests should look like, or what should be tested. Your key
recommendation, as I understand it, is that when writing stories
and acceptance tests, then the customer should focus on the
benefits the stakeholders are expecting to see, and identify strict
quantifiable measurements for these benefits, which can then be
used for evaluating the software, even if these benefits are not
obviously quantifiable, like “improved usability”.

If I have understood correctly, then I think this is indeed an
important focus, and not something that the descriptions of most
agile methods focus on in any great depth. As a reader, I would
appreciate an article explaining how to achieve such focus, and
how to quantify such things as “ease of use” and “intuitiveness”.

TG: See CE chapter 51, but here are some other: (See “How
to Quantify Quality” in this Overload -AG)

AW: Primarily, my reaction was to the tone of your Overload article,
which struck me as very adversarial - EVO good, other agile
methods bad. From my point of view, everything you have
suggested falls on the shoulders of the agile Customer; it is their
responsibility to identify the stakeholders and their needs, and write
acceptance tests that reflect those needs. If your article had started
with this in mind, and presented the same information as a way of
assisting the agile Customer in fulfilling their responsibilities, it
would have come across better to me; I felt that the slide from your
XPDay presentation did a better job of this than the Overload article.

TG: It is of course the responsibility of the customer and
stakeholders to articulate what they want. But they are not
professionally trained to do it well and they usually do it
badly. So one possibility is that ‘we’ train ourselves to help
them articulate what they really want, and not expect too
much clarity from them. But we do expect them to know their
business and be able to have a dialogue leading to clarity with
professional assistance.

AW: Again, thank you for taking the time to respond to my
comments. I have found the discussion most enlightening.

TG: Me too thanks Anthony, hope to meet you someday soon,
maybe at XP5?

1 CE = “Competitive Engineering: A Handbook for Systems Engineering, Requirements
Engineering, and Software Engineering using Planguage” by Tom Gild published by
Elsevier.

8

overload issue 70 december 2005

The Curate’s Wobbly
Desk

by Phil Bass

The Vicar’s Lodger

The story of the curate’s egg is well known [1], but I bet you’ve
never heard about the curate’s wobbly desk.

When Aubrey Jones was first ordained he was
appointed curate to St Michael’s church, Belton Braces. It
was a small parish serving just a few quiet hamlets and
there would have been nowhere for Mr. Jones to stay if he
had not been offered lodgings at the vicarage. The vicar,
the Reverend Cuthbert Montague-Smith, was a large and
imposing man with strong opinions on how to do God’s
bidding. The timid Aubrey Jones found him rather... well,
intimidating.

The bishop had suggested that Aubrey would benefit
from studying the early history of the Christian church and
the vicar expressed a hope that this research would turn up
some interesting material for the parish magazine. Eager
to please, Aubrey went out and bought a cheap, mass-
produced, self-assembly desk to work at. The D.I.Y. shop
was running a special offer – free delivery – and the curate
felt he was getting a bargain.

Secret Drawers

Reading through the assembly instructions Aubrey was
delighted to find that the desk contained a secret drawer.
He had fond notions of keeping a diary and one day,
perhaps, writing a book on the life of an English pastor
based on his own ministry and experiences. But he
suspected that Cuthbert would regard such activities as
of little practical value and it would be better for the
vicar to remain ignorant of those particular jottings.

As chance would have it, the vicar’s desk also had a
secret drawer. I don’t know what Cuthbert kept in that
drawer, or even if he knew it was there. But I do know that both
Aubrey’s and Cuthbert’s secret drawers were operated by two
catches. If you press both catches at the same time the drawer
slides out. I remembered the vicar, the curate and the secret
drawers when I was working on the software for a computer
game. (It would have been called “Murder at the Vicarage”, but
Agatha Christie got there first.) “Let’s use that in the game”, I
thought, and wrote an interface class representing the secret
drawer based on classes from my Event/Callback library [2].
Listing 1 shows the Event class template used for the drawer
release mechanism and the Callback::Function class
template used for the catches.
The Drawer class interface is shown in Listing 2. The key
feature here is that Digital_Input is an abstract base class
with a pure virtual function call operator. When catch A’s
Digital_Input callback is invoked the lock/unlock state for
catch A must be updated, the state of catch B must be read and,
if both catches are in the unlock position, the drawer release
mechanism must be activated by triggering the
Digital_Output event. The overall effect is that the Drawer
class behaves like an And gate in an electronic circuit.
In the game, a Drawer object is created and GUI push-button
widgets are attached to the drawer’s inputs (the catches). The

drawer itself is represented by an Image widget which shows
either a closed drawer or an open drawer. A callback that toggles
between the open and closed images is attached to the drawer’s
output (the drawer release mechanism). The player has to find a
way of pressing both of the catches at the same time to open the
drawer – not easy using just a mouse. A rough sketch of the client
code is shown in Listing 3.
The rest of this paper describes two ways of implementing the

// Event classes.

template< typename Arg >

struct Event : std::list< Callback::Function<Arg>* >

{

typedef Arg argument_type;

typedef Callback::Function<Arg> callback_type;

void notify(Arg arg)

{

std::for_each(this->begin(), this->end(),

bind_2nd(

memfun(&callback_type::operator()),

arg));

}

};

// Callback function base classes.

namespace Callback

{

template< typename Arg >

struct Function

{

typedef Arg argument_type;

virtual ~Function() {}

virtual void operator() (argument_type) = 0;

};

}

Listing 1 - the Event and Callback::Function classes.

// A value type with just two values.

enum Digital_Value { off, on };

// Input and output types.

typedef Callback::Function< Digital_Value >

Digital_Input;

typedef Event< Digital_Value > Digital_Output;

// A secret drawer operated by two catches.

class Drawer

{

public:

Drawer();

Digital_Input& catch_A(); // catch A

Digital_Input& catch_B(); // catch B

Digital_Output& output(); // drawer release

private:

. . .

};

Listing 2 - Secret drawer interface.

9

overload issue 70 december 2005

Drawer class with the help of our curate, his vicar and their
furniture.

The Curate’s Self-Assembly Desk

As soon as he had a spare half-hour Aubrey Jones opened the box
containing his flat-pack desk, carefully laid out the panels,
runners, feet, dowels, nuts and bolts, and began to assemble
them. He paid particular attention to the secret drawer. The
drawer itself had a grain-effect finish that looked remarkably like
real wood, but probably wasn’t. The release mechanism was an
integral part of the drawer, located at the back. The secret catches
were separate – metal, with knobs in the same fake wood as the
drawer and disguised as decorative features. The catches had to
be fastened to the front of the drawer and connected to the release

mechanism with two long,
thin and worryingly flimsy
metal rods.

The structure of my code
was very similar, as you can
see from the overview in
Listing 4 and the function
bodies in Listing 5. The
drawer release mechanism
was represented by
Digital_Value and
Digital_Outputmembers
of the Drawer class. The
catches were separate classes
(Catch_A and Catch_B)
and they were attached to the
Drawer class by pointers.
With this design the

functions in the public interface are trivial and shown here defined
within the class declaration.

This design is conceptually simple, but it didn’t feel quite right. Like
cheap, mass-produced furniture it seemed inelegant and unsatisfying.
Did the Catch classes really have to store a pointer to their parent
object? After all, the address of the Drawer object is a fixed offset from
each of the Catch objects. Couldn’t we just subtract that offset from
the Catch object’s this pointer and apply a suitable cast?

After some thought I decided that pointer arithmetic and casting
would be worse than the disease I was trying to cure. A case of
premature optimisation, and an ugly one at that. I needed to think like
the master craftsmen of old. And that reminded me of the vicar’s desk.

The Vicar’s Antique Writing Table

Cuthbert Montague-Smith loved his big
sturdy old desk. It was reminiscent of the
magnificent library writing table at
Harewood House, near Leeds [3].
Cuthbert suspected it was built by Thomas
Chippendale himself, although he was
unable to provide a shred of evidence to
support that view.

I don’t suppose the great furniture maker
would appreciate the finer points of
software design in C++, but I tried to
imagine the approach he would use. He
would surely pay considerable attention to
detail and not rest until he had discovered a
method that was both elegant and practical.

With this in mind I thought again about
the Drawer class implementation. The
curate’s desk design in Listings 4 and 5
contains Catch classes that reference an
external object (the Drawer itself); that is
why it needs those inelegant pointers. If we
could move the external data into the Catch
classes the pointers would not be necessary.
So the question is, how can we make the
Drawer state variables part of two separate
Catch objects?
It’s no good putting member variables into
the concrete Catch classes because that

// Internal objects.

Drawer drawer; // secret drawer

// User interface.

GUI::Button catch_A, catch_B; // buttons to release the drawer

GUI::Image picture; // picture of open/closed drawer

Toggle_Image toggle_image(picture); // functor that toggles open/closed

// Connect the UI widgets to the internal objects.

catch_A.push_back(&drawer.catch_A());

catch_B.push_back(&drawer.catch_B());

drawer.output().push_back(&toggle_picture);

// Run the GUI scheduling loop.

GUI::run();

Listing 3 - Using the Drawer class.

class Drawer

{

public:

Drawer();

Digital_Input& catch_A() { return catch_A_input; }

Digital_Input& catch_B() { return catch_B_input; }

Digital_Output& output() { return output_event; }

private:

struct Catch_A : Digital_Input

{

Catch_A(Drawer* d) : value(off), drawer(d) {}

void operator()(Digital_Value);

Digital_Value value;

Drawer* const drawer;

};

struct Catch_B : Digital_Input

{

// . . . same as Catch_A . . .

};

void sync(); // set output value from inputs

Catch_A catch_A_input; // catch A's lock/unlock state

Catch_B catch_B_input; // catch B's lock/unlock state

Digital_Value output_value; // drawer release state

Digital_Output output_event; // drawer release event

};

Listing 4 - Overview of the Drawer with separate Catch classes.

10

overload issue 70 december 2005

would just duplicate the data; and we can’t put data into the
Digital_Input class because that would compromise the
Event/Callback library. The only option is to put them in a shared
base class. The key to the desk is virtual inheritance.1 Listing 6

and Listing 7 show how I chose to
use this technique.

All the variables have been
moved to the private nested class,
Data. As this is an implementation
detail of the Drawer class I have not
bothered to create separate interface
and implementation sections for
Data. Purists can add a private
section and suitable access functions
if they wish. It is appropriate,
however, to provide Data with a
constructor and a function that sets
the drawer release mechanism’s
state from the Catch values to avoid
duplicating these operations in both
the Catch classes.

The Catch classes themselves use
virtual inheritance to “import” the
shared Data object. They also provide
a function that updates their own
lock/unlock state, calculates the
drawer release state and publishes the
drawer release state to the client code.

The Drawer class could inherit
directly from the Catch classes, but

// Operate Catch A

inline void Drawer::Catch_A::operator()(Digital_Value value)

{

drawer->catch_A_input.value = value;

drawer->sync();

}

// Operate Catch B

inline void Drawer::Catch_B::operator()(Digital_Value value)

{

drawer->catch_B_input.value = value;

drawer->sync();

}

// Create the Drawer

inline Drawer::Drawer()

: catch_A_input(this), catch_B_input(this), output_value(off)

{}

// Set and publish the state of the drawer release mechanism

inline void Drawer::sync()

{

output_value =

Digital_Value(catch_A_input.value & catch_B_input.value);

output_event.notify(output_value);

}

Listing 5 - Implementation of the Drawer with separate Catch classes.

class Drawer

{

public:

. . .

private:

struct Data

{

Data();

void sync();

Digital_Value catch_A_value,

catch_B_value;

Digital_Value output_value;

Digital_Output output_event;

};

struct Catch_A : Digital_Input, virtual Data

{

void operator()(Digital_Value);

};

struct Catch_B : Digital_Input, virtual Data

{

void operator()(Digital_Value);

};

struct Body : Catch_A, Catch_B {} body;

};

Listing 6 - Overview of the Drawer using virtual
inheritance.

// Operate Catch A

inline void Drawer::Catch_A::operator()(

Digital_Value value)

{

catch_A_value = value;

sync();

}

// Operate Catch B

inline void Drawer::Catch_B::operator()(

Digital_Value value)

{

catch_B_value = value;

sync();

}

// Initialise the Drawer's state

inline Drawer::Data::Data()

: catch_A_value(off),

catch_B_value(off),

output_value(off)

{}

// Set and publish the state of the drawer

// release mechanism

inline void Drawer::Data::sync()

{

output_value = Digital_Value(

catch_A_value & catch_B_value);

output_event.notify(output_value);

}

Listing 7 - Implementation of the Drawer using virtual
inheritance.

[concluded at foot of next page]1 I claim poetic licence for bending the rules of English grammar here.

11

overload issue 70 december 2005

that would mean exposing the Data class and the concrete Catch
classes to its clients. Instead, I have chosen to write a nested Body
class that completes the virtual inheritance diamond and then store
a Body member within the Drawer class. That way, none of the
classes used in the Drawer implementation pollute the namespaces
used in the client code.

The Catch class member functions in the vicar’s desk design
are slightly simpler than those in the curate’s version. Moving the
data to a base class enables them to access the variables directly
instead of via those ugly and unnecessary pointers. Initialisation of
the data members is also slightly simpler because there are no
pointer values to set (which means one less opportunity for a bug).
And the sync() function is the same in both designs. Chippendale
would have been proud.

It All Falls Apart

The curate struggled to assemble his desk. The instructions
seemed to have been translated from a foreign language (badly),
the diagrams didn’t seem to match the parts he had and Aubrey
Jones’ mind wasn’t good at 3D visualisation. The release
mechanism for the secret drawer, in particular, baffled the poor
man. Eventually, the desk was completed and moved into

position under the window of Aubrey’s bed sitting room where he
could look out over the garden.

The desk was always a bit wobbly and the secret drawer never
did work. (The connecting rods were not installed correctly, so the
drawer release would not activate.) Aubrey never quite found the
time to research the early history of the Christian church and with
no place to hide his private writings he soon lost the urge to keep a
diary. Indeed, after a few years as the vicar of a provincial parish
on the borders of London and Essex his ecclesiastical career took
a turn for the worse [4]. He may yet write a book. If he does, it will
be about temptation, greed and the frailty of man, but sadly it will
not be about a life of service to the church.

Phil Bass
phil@stoneymanor.demon.co.uk

References

1 See http://www.worldwidewords.org/qa/qa-cur1.htm,
for example.

2 Phil Bass, “Evolution of the Observer Pattern”, Overload 64,
December 2004.

3 http://www.harewood.org/chippendale/index2.htm.
4 http://www.lyricsfreak.com/g/genesis/58843.html

[continued from previous page]

Better Encapsulation
for the Curiously
Recurring Template
Pattern
by Alexander Nasonov

C++ has a long, outstanding history of tricks and idioms. One
of the oldest is the curiously recurring template pattern
(CRTP) identified by James Coplien in 1995 [1]. Since then,
CRTP has been popularized and is used in many libraries,
particularly in Boost [3]. For example, you can find it in
Boost.Iterator , Boost.Python or in
Boost.Serialization libraries.

In this article I assume that a reader is already familiar with
CRTP. If you would like to refresh your memory, I would
recommend reading chapter 17 in [2]. This chapter is available for
free on www.informit.com.

If you look at the curiously recurring template pattern from an
OO perspective you’ll notice that it shares common properties with
OO frameworks (e.g. Microsoft Foundation Classes) where base
class member functions call virtual functions implemented in
derived classes. The following code snippet demonstrates OO
framework style in its simplest form:

// Library code

class Base

{

public:

virtual ~Base();

int foo() { return this->do_foo(); }

protected:

virtual int do_foo() = 0;

};

Here, Base::foo calls virtual function do_foo, which is
declared as a pure virtual function in Base and, therefore, it must

be implemented in derived classes. Indeed, a body of do_foo
appears in class Derived:

// User code

class Derived : public Base

{

private:

virtual int do_foo() { return 0; }

};

What is interesting here, is that an access specifier of do_foo has
been changed from protected to private. It’s perfectly legal in
C++ and it takes a second to type one simple word. What is more,
it’s done intentionally to emphasize that do_foo isn’t for public
use. (A user may go further and hide the whole Derived class if
she thinks it’s worth it.)

The moral of the story is that a user should be able to hide
implementation details of the class easily.

Now let us assume that restrictions imposed by virtual functions
are not affordable and the framework author decided to apply CRTP:

// Library code

template<class DerivedT>

class Base

{

public:

DerivedT& derived() {

return static_cast<DerivedT&>(*this); }

int foo() {

return this->derived().do_foo(); }

};

// User code

class Derived : public Base<Derived>

{

public:

int do_foo() { return 0; }

};

Although do_foo is an implementation detail, it’s accessible
from everywhere. Why not make it private or protected? You’ll

12

overload issue 70 december 2005

find an answer inside function foo. As you see, the function calls
Derived::do_foo. In other words, base class calls a function
defined in a derived class directly.

Now, let’s find an easiest way for a user to hide implementation
details of Derived. It should be very easy; otherwise, users won’t
use it. It can be a bit trickier for the author of Base but it still should
be easy to follow.

The most obvious way of achieving this is to establish a
friendship between Base and Derived:

// User code

class Derived : public Base<Derived>

{

private:

friend class Base<Derived>;

int do_foo() { return 0; }

};

This solution is not perfect for one simple reason: the friend
declaration is proportional to the number of template parameters
of Base class template. It might get quite long if you add more
parameters.

To get rid of this problem one can fix the length of the friend
declaration by introducing a non-template Accessor that forwards
calls:

// Library code

class Accessor

{

private:

template<class> friend class Base;

template<class DerivedT>

static int foo(DerivedT& derived)

{

return derived.do_foo();

}

};

The function Base::foo should call Accessor::foo which in
turn calls Derived::do_foo. A first step of this call chain is
always successful because the Base is a friend of Accessor:

// Library code

template<class DerivedT>

class Base

{

public:

DerivedT& derived() {

return static_cast<DerivedT&>(*this); }

int foo() {

return Accessor::foo(this->derived()); }

};

The second step succeeds only if either do_foo is public or if the
Accessor is a friend of Derived and do_foo is protected.
We are interested only in a second alternative:

// User code

class Derived : public Base<Derived>

{

private:

friend class Accessor;

int do_foo() { return 0; }

};

This approach is taken by several boost libraries. For example,
def_visitor_access in Boost.Python and
iterator_core_access in Boost.Iterator should be declared

as friends in order to access user-defined private functions from
def_visitor and iterator_facade respectively.

Even though this solution is simple, there is a way to omit the
friend declaration. This is not possible if do_foo is private – you
will have to change that to protected. The difference between these
two access specifiers is not so important for most CRTP uses. To
understand why, take a look at how you derive from CRTP base class:

class Derived : public Base<Derived> { /* ... */ };

Here, you pass the final class to Base’s template arguments list.
An attempt to derive from Derived doesn’t give you any

advantage because the Base<Derived> class knows only about
Derived.1

Our goal is to access protected function Derived::do_foo
from the Base:

// User code

class Derived : public Base<Derived>

{

protected:

// No friend declaration here!

int do_foo() { return 0; }

};

Normally, you access a protected function declared in a base class
from its child. The challenge is to access it the other way around.
The first step is obvious. The only place for our interception
point where a protected function can be accessed is a descendant
of Derived:

struct BreakProtection : Derived

{

static int foo(Derived& derived) {

/* call do_foo here */ }

};

An attempt to write
return derived.do_foo();

inside BreakProtection::foo fails because it’s forbidden
according to the standard, paragraph 11.5:

When a friend or a member function of a derived class references
a protected nonstatic member of a base class, an access check
applies in addition to those described earlier in clause 11. Except
when forming a pointer to member (5.3.1), the access must be
through a pointer to, reference to, or object of the derived class itself
(or any class derived from that class) (5.2.5).

The function can only be accessed through an object of type
BreakProtection.

Well, if the function can’t be called directly, let’s call it indirectly.
Taking an address of do_foo is legal inside BreakProtection class:

&BreakProtection::do_foo;

There is no do_foo inside BreakProtection, therefore, this
expression is resolved as &Derived::do_foo. Public access to
a pointer to protected member function has been granted! It’s
time to call it:

struct BreakProtection : Derived

{

static int foo(Derived& derived)

{

int (Derived::*fn)() =

&BreakProtection::do_foo;

return (derived.*fn)();

}

};

[concluded at foot of next page]

13

overload issue 70 december 2005

For better encapsulation, the BreakProtection can be moved to
the private section of Base class template. The final solution is:

// Library code

template<class DerivedT>

class Base

{

private:

struct accessor : DerivedT

{

static int foo(DerivedT& derived)

{

int (DerivedT::*fn)()

= &accessor::do_foo;

return (derived.*fn)();

}

};

public:

DerivedT& derived() {

return static_cast<DerivedT&>(*this); }

int foo() { return accessor::foo(

this->derived()); }

};

// User code

struct Derived : Base<Derived>

protected:

int do_foo() { return 1; }

};

Note that the user code is slightly shorter and cleaner than in the
first solution. The library code has similar complexity.

There is a downside to this approach, though. Many compilers
don’t optimize away function pointer indirection even if it’s called
in-place:

return (derived.*(&accessor::do_foo))();

The main strength of CRTP over virtual functions is better
optimization.

CRTP is faster because there is no virtual function call overhead
and it compiles to smaller code because no type information is
generated. The former is doubtful for the second solution while the
latter still holds. Hopefully, future versions of popular compilers
will implement this kind of optimization. Also, it’s less convenient
to use member function pointers, especially for overloaded
functions.

Alexander Nasonov
alnsn@yandex.ru

References

[1] James O. Coplien. “Curiously Recurring Template Patterns”,
C++ Report, February 1995.

[2] David Vandevoorde, Nicolai M. Josuttis. “C++ Templates: The
Complete Guide”.
http://www.informit.com/articles/article.asp

?p=31473

[3] Boost libraries. http://www.boost.org.
[4] ISO-IEC 14882:1998(E),Programming languages - C++.

[continued from previous page]

How to Quantify
Quality: Finding Scales
of Measure
by Tom Gilb

Abstract. ‘Scales of measure’ are fundamental to the definition of all
scalar system attributes; that is, to all the performance attributes
(such as reliability, usability and adaptability), and to all the resource
attributes (such as financial budget and time). A defined scale of
measure, allows you to numerically quantify such attributes.

‘Scales of measure’ form a central part of Planguage, a
specification language and set of methods, which I have developed
over many years.

This paper describes how you can develop your own tailored
scales of measure for the specific system attributes, which are
important to your organization or system. You cannot rely on being
‘given the answer’about how to quantify. You will lose control over
your current vital system performance concerns if you cannot, or
do not, quantify your critical attributes.

Scales of Measure and Meters

Scales of measure (Scales) are essential to quantify system
attributes. A Scale specifies an operational definition of ‘what’ is
being measured and it states the units of measure. All estimates
or measurements are made with reference to the Scale.

The practical ability to measure where you are on a Scale (that
is to be able to establish the numeric level) is also important. A
Meter (sometimes known as a ‘Test’) is a practical method for
measuring. A Scale can have several Meters.

Finding and Developing Scales of
Measure and Meters

The basic advice for identifying and developing scales of
measure (Scales) and meters (Meters) for scalar attributes is as
follows:
1. Try to re-use previously defined Scales and Meters.
2. Try to modify previously defined Scales and Meters.

Tag: <assign a tag name to this Scale>.
Version: <date of the latest version or change>.
Owner: <role/email of who is responsible for

updates/changes>.
Status: <Draft, SQC Exited, Approved>.
Scale: <specify the Scale with defined [qualifiers].>.
Alternative Scales: <reference by tag or define other Scales of

interest as alternatives and supplements>.
Qualifier Definitions: <define the scale qualifiers, like ‘for

defined [Staff]’, and list the options, like {CEO,
Finance Manager, Customer}.>.

Meter Options: <suggest Meter(s) appropriate to the Scale>.
Known Usage: <reference projects & specifications where this

Scale was actually used in practice with designers’
names>.

Known Problems: <list known or perceived problems with this
Scale>.

Limitations: <list known or perceived limitations with this
Scale>.

Figure 1: Draft template

14

overload issue 70 december 2005

3. If no existing Scale or Meter can be reused or modified, use common
sense to develop innovative, homegrown quantification ideas.

4. Whatever Scale or Meter you start off with, you must be
prepared to learn. Obtain and use early feedback, from
colleagues and from field tests, to redefine and improve your
Scales and Meters.

Reference Library for Scales of
Measure

‘Reuse’ is an important concept for, sharing experience and saving
time when developing Scales. You need to build reference libraries
of your ‘standard’ scales of measure. Remember to maintain details
supporting each ‘standard’ Scale, such as Source, Owner, Status and
Version (Date). If the name of a Scale’s designer is also kept, you
can probably contact them for assistance and ideas.

Figure 1 is a draft template with <hints>, for specification of
scales of measure in a reference library. Figure 2 is an example of
the use of this template.

Reference Library for Meters

Another important standards library to maintain is a library of
‘Meters.’ ‘Off the shelf’ Meters from standard reference libraries
can save time and effort since they are already developed and are
more or less ‘tried and tested’ in the field.

It is natural to reference suggested Meters within definitions of
specific scales of measure (as in the template and example above).
Scales and Meters belong intimately together.

Managing ‘What’ You Measure

It is a well-known paradigm that you can manage what you can
measure. If you want to achieve something in practice, then
quantification, and later measurement, are essential first steps for
making sure you get it. If you do not make critical performance
attributes measurable, then it is likely to be less motivating for
people to find ways to deliver necessary performance levels.
They have no clear targets to work towards, and there are no
precise criteria for judgment of failure or success.

Practical Example: Scale Definition

‘User-friendly’ is a popular term. Can you specify a scale of
measure for it?

Here is my advice on how to tackle developing a definition for
this quality.
1. If we assume there is no ‘off-the-shelf’ definition that could be

used, then you need to start describing the various aspects of the
quality that are of interest.

There are always many distinct dimensions to qualities such
as usability, maintainability, security, adaptability and their like
[Gilb 2003]. (Suggestion: Try listing about 5 to 15 aspects of
some selected quality that is critical to your project.)

For this example, let’s select ‘environmentally friendly’as the
one of many aspects that we are interested in, and we shall work
on this below.

2. Invent and specify a Tag: ‘Environmentally Friendly’ is
sufficiently descriptive. Ideally, it could be shorter, but it is very
descriptive left as it is. We indicate a formally defined concept
by capitalizing the tag.

Note, we usually don’t explicitly specify ‘Tag: ’ but this
sometimes makes the tag identity clearer.

3. Check there is an Ambition statement, which briefly describes
the level of requirement ambition. ‘Ambition’ is one of the
defined Planguage parameters.

4. Ensure there is general agreement by all the involved parties with
the Ambition definition. If not, ask for suggestions for
modifications or additions to it. Here is a simple improvement
to my initial Ambition statement. It actually introduces a
‘constraint’.

5. Using the Ambition description, define an initial Scale that is
somehow quantifiable (meaning – you can meaningfully
attach a number to it). Consider what will be sensed by the
stakeholders if the level of quality changes. What would be a
visible effect if the quality improved? My initial, unfinished
attempt, at finding a suitable Scale captured the ideas of
change occurring, and of things getting better or worse:

However, I was not happy with it, so I made a second attempt.
I refined the Scale by expanding it to include the ideas of specific
things being effected in specific places over given times:

Figure 2: Use of the template
Tag: Environmentally Friendly.

Ambition: A high degree of protection, compared to
competitors, over the short-term and the long-term, in near
and remote environments for health and safety of living
things.

Ambition: A high degree of protection, compared to
competitors, over the short-term and the long-term, in near
and remote environments for health and safety of living
things, which does not reduce the protection already
present in nature.

Scale: The percentage (%) change in positive (good
environment) or negative directions for defined
[Environmental Changes].

Tag: Ease of Access.
Version: August 11, 2003.
Owner: Rating Model Project (Bill).
Scale: Speed for a defined [Employee Type] with defined

[Experience] to get a defined [Client Type]
operating successfully from the moment of a
decision to use the application.

Alternative Scales: None known yet.
Qualifier Definitions:

Employee Type: {Credit Analyst, Investment
Banker, …}.
Experience: {Never, Occasional, Frequent, Recent}.
Client Type: {Major, Frequent, Minor, Infrequent}.

Meter Options: EATT: Ease of Access Test Trial. “This tests
all frequent combinations of qualifiers at least
twice. Measure speed for the combinations.”

Known Usage: Project Capital Investment Proposals [2001,
London].

Known Problems: None recorded yet.
Limitations: None recorded yet.

15

overload issue 70 december 2005

This felt better. In practice, I have added more [qualifiers] into
the Scale, to indicate the variables that must be defined by specific
things, places and time periods whenever the Scale is used.

6. Determine if the term needs to be defined with several different
scales of measure, or whether one like this, with general
parameters, will do. Has the Ambition been adequately captured?
To determine what’s best, you should list some of the possible
sub-components of the term (that is, what can it be broken down
into, in detail?). For example:

This example means: ‘Thing’ is defined as the set of things:
Air, Water, Plant and Animal (which, since they are all four
capitalized, are themselves defined elsewhere).

Or alternatively, instead of just the colon after the tag, ‘=’ or
the more explicit Planguage parameter, ‘Consists Of’can be used
to make this notation more immediately intelligible to novices
in reading Planguage:

Then consider whether your defined Scale enables the
performance levels for these sub-components to be expressed.
You may have overlooked an opportunity, and may want to add
one or more qualifiers to that Scale. For example, we could
potentially add the scale qualifiers ‘…. under defined
[Environmental Conditions] in defined [Countries]…’ to make
the scale definition even more explicit and more general.

Scale qualifiers (like …‘defined [Place]’…) have the
following advantages:
● they add clarity to the specifications
● they make the Scales themselves more reusable in other

projects

● they make the Scale more useful in this project: specific
benchmarks, targets and constraints can then be specified for
any interesting combination of scale variables (such as,
‘Thing = Air’).

7. Start working on a Meter – a specification of how we intend to
test or measure the performance of a real system with respect to
the defined Scale. Remember, you should first check there is not
a standard or company reference library Meter that you could
use. Try to imagine a practical way to measure things along the
Scale, or at least sketch one out. My example is only an initial
rough sketch defined by a {set} of three rough measurement
concepts. These at least suggest something about the quality and
costs with such a measuring process.

Meter: {scientific data where available, opinion surveys,
admitted intuitive guesses}.

The Meter must always explicitly address a particular Scale
specification. It will help confirm your choice of Scale as it will
provide evidence that practical measurements can feasibly be
obtained on the given scale of measure.

Environmentally Friendly:
Ambition: A high degree of protection, compared to competitors, over the short-term and the long-term, in near and remote

environments for health and safety of living things, which does not reduce the protection already present in nature.

Scale: The percentage (%) destruction or reduction of defined [Thing] in defined [Place] during a defined [Time Period] as caused
by defined [Environmental Changes].

============= Benchmarks =================
Past [Time Period = Next Two Years, Place = Local House, Thing = Water]: 20% <- intuitive guess.
Record [Last Year, Cabin Well, Thing = Water]: 0% <- declared reference point.
Trend [Ten to Twenty Years From Now, Local, Thing = Water]: 30% <- intuitive. "Things seem to be getting worse."
============ Scalar Constraint ==========
Fail [End Next Year, Thing = Water, Place = Eritrea]: 0%. "Not get worse."
=============== Targets ===================
Wish [Thing = Water, Time = Next Decade, Place = Africa]: <3% <- Pan African Council Policy.

Goal [Time = After Five Years, Place = <our local community>, Thing = Water]: <5%.

Figure 3: Benchmarks, targets and constraints

Environmentally Friendly:
Ambition: A high degree of protection, compared to

competitors, over the short-term and the long-term,
in near and remote environments for health and
safety of living things, which does not reduce the
protection already present in nature.

----Some scales of measure candidates – they can be used as a
complementary set ---

Air: Scale: % of days annually when <air> is <fit for all
humans to breath>.

Water: Scale: % change in water pollution degree as defined
by UN Standard 1026.

Earth: Scale: Grams per kilo of toxic content.
Predators: Scale: Average number of <free-roaming

predators> per square km, per day.
Animals: Scale: The percentage (%) reduction of any defined

[Living Creature] who has a defined [Area] as their
natural habitat.

Figure 4: Alternative scales

Scale: The percentage (%) destruction or reduction of
defined [Thing] in defined [Place] during a defined [Time
Period] as caused by defined [Environmental Changes].

Thing: {Air, Water, Plant, Animal}.
Place: {Personal, Home, Community, Planet}.

Thing: = {Air, Water, Plant, Animal}.
Place: Consists of {Personal, Home, Community, Planet}.

16

overload issue 70 december 2005

8. Now try out the Scale specification by trying to use it to specify
some useful levels on the Scale. Define some reference points
from the past (Benchmarks) and some future requirements
(Targets and Constraints). See Figure 3, at the bottom of the
previous page, for an example.

If this seems unsatisfactory, then maybe I can find another, more
specific, scale of measure? Maybe use a ‘set’of different Scales to
express the measured concept better? See examples below.
Here is an example of a single more-specific Scale:

Figure 4 shows an example of some other and more-specific
set of Scales for the ‘Environmentally Friendly’ example. They
are perhaps a complimentary set for expressing a complex
Environmentally Friendly idea.

Many different scales of measure can be candidates to reflect
changes in a single critical factor.

Environmentally Friendly is now defined as a ‘Complex
Attribute,’ because it consists of a number of ‘elementary’
attributes: {Air, Water, Earth, Predators, Animals}. A different
scale of measure now defines each of these elementary attributes.
Using these Scales we can add corresponding Meters,
benchmarks (like Past), constraints (like Fail), and target levels
(like Goal), to describe exactly how Environmentally Friendly
we want to be.

Level of Specification Detail. How much detail you need to
specify, depends on what you want control over, and how much
effort it is worth. The basic paradigm of Planguage is you should
only elect to do what pays off for you. You should not build a
more detailed specification than is meaningful in terms of your
project and economic environment. Planguage tries to give you
sufficient power of articulation to control both complex and
simple problems. You need to scale up, or down, as appropriate.
This is done through common sense, intuition, experience and
organizational standards (reflecting experience). But, if in doubt,
go into more detail. History says we have tended in the past to
specify too little detail about requirements. The result
consequently has often been to lose control, which costs a lot
more than the extra investment in requirement specification.

Language Core: Scale Definition

Now let’s discuss the specification of Scales in more detail,
particularly the use of qualifiers.

The Central Role of a Scale within Scalar Attribute
Definition. The specified Scale of an elementary scalar attribute
is used (re-used!) within all the scalar parameter specifications of
the attribute (that is, within all the benchmarks, the constraints and
the targets). In other words, a Scale parameter specification is the
heart of a specification. Scale is essential to support all the related
scalar level parameters: for example Past, Record, Trend, Goal,
Budget, Stretch, Wish, Fail and Survival.

Each time a different scalar level parameter is specified, the
Scale specification dictates what has to be defined numerically and
in terms of Scale Qualifiers (like ‘Staff = Financial Manager’). And
then later, each time a scalar level parameter definition is read, the
Scale specification itself has to be referenced to ‘interpret’ the
meaning of the corresponding scale level specification. So the Scale
is truly central to a scalar definition. For example, ‘Goal [Staff =

Financial Manager]: 23%.’ only has meaning in the context of the
corresponding scale: for example ‘Scale: % of defined [Staff]
attending the meeting’, Well-defined scales of measure are well
worth the small investment to define them, to refine them, and to
re-use them.
Specifying Scales using Qualifiers. The scalar attributes
(performance and resource) are best measured in terms of
specific times, places and events. If we fail to do this, they lose
meaning. People wrongly guess other times, places and events
than you intend, and cannot relate their experiences and
knowledge to your numbers. If we don't get more specific by
using qualifiers, then performance and resource continues to be a
vague concept, and there is ambiguity (which times? which
places? which events?).

Further, it is important that the set of different performance and
resource levels for different specific time, places and events are
identified. It is likely that the levels of the performance and resource
requirements will differ across the system depending on such things
as time, location, role and system component.

Embedded Qualifiers within a Scale. A Scale specification can
set up useful ‘scale qualifiers’ by declaring embedded scale
qualifiers, using the format ‘defined [<qualifier>]’.

It can also declare default qualifier values that apply by default
if not overridden, ‘defined [<qualifier>: default: <User-defined
Variable or numeric value>]’. For example, […default: Novice].

Additional Qualifiers. However, embedded qualifiers should
not stop you adding any other useful additional qualifiers
later, as needed, during scale-related specification (such as
Goal or Meter). But, if you do find you are adding the same
type of parameters in almost all related specifications, then
you might as well design the Scale to include those qualifiers.
A Scale should be built to ensure that it forces the user to
define the critical information needed to understand and
control a critical performance or resource attribute. This
implies that scale qualifiers serve as a checklist of good
practice in defining scalar level specifications, such as Past
and Goal.

Here is an example of how locally defined qualifiers (see the
Goal specification below) can make a quality specification more
specific. In this example we are going to see how a requirement
can be conditional upon an event. If the event is not true, the
requirement does not apply.
First, some basic definitions are required (Note that ‘Basis’,
‘Source’ and ‘State’ are Planguage parameters):

Scale: % change in water pollution degree as defined by
UN Standard 1026.

Decomposing complex performance and resource ideas, and
finding market-segmenting qualifiers for differing target levels
is a key method of competing for business.

Assumption A: Basis [This Financial Year]: Norway is still
not a full member of the European Union.

EU Trade: Source: Euro Union Report "EU Trade in Decade
2000-2009".

Positive Trade Balance: State [Next Financial Year]:
Norwegian Net Foreign Trade Balance has Positive
Total to Date.

17

overload issue 70 december 2005

Now we apply those definitions below:

The Fail and the Goal requirements are now defined partly with the
help of qualifiers. The Goal to achieve 50% (or more, is implied) is
only a valid plan if ‘Positive Trade Balance’ is true. The Fail level
requirement of 40% (or worse, less, is implied) is only valid if
‘Assumption A’ is true. All qualifier conditions must be true for the
level to be valid.

Principles: Scale Specification

1. The Principle of ‘Defining a Scale of Measure’
If you can’t define a scale of measure, then the goal is out of

control.
Specifying any critical variable starts with defining its units

of measure.
2. The Principle of ‘Quantification being Mandatory for

Control’
If you can’t quantify it, you can’t control it.1

If you cannot put numbers on your critical system variables,
then you cannot expect to communicate about them, or to control
them.

3. The Principle of ‘Scales should control the Stakeholder
Requirements’

Don’t choose the easy Scale, choose the powerful Scale.
Select scales of measure that give you the most direct control

over the critical stakeholder requirements. Chose the Scales that
lead to useful results.

4. The Principle of ‘Copycats Cumulate Wisdom’
Don’t reinvent Scales anew each time – store the wisdom of

other Scales for reuse.
Most scales of measure you will need, will be found

somewhere in the literature, or can be adapted from existing
literature.

5. The Cartesian Principle
Divide and conquer said René – put complexity at bay.
Most high-level performance attributes need decomposition

into the list of sub-attributes that we are actually referring to.
This makes it much easier to define complex concepts, like
‘Usability’, or ‘Adaptability,’ measurably.

6. The Principle of ‘Quantification is not Measurement’
You don’t have to measure in order to quantify!
There is an essential distinction between quantification and
measurement. “I want to take a trip to the moon in nine
picoseconds” is a clear requirement specification without
measurement.” The well-known problems of measuring
systems accurately are no excuse for avoiding quantification.

Quantification allows us to communicate about how good
scalar attributes are or can be – before we have any need to
measure them in the new systems.

7. The Principle of ‘Meters Matter’
Measurement methods give real world feedback about our ideas.
A ‘Meter’ definition determines the quality and cost of

measurement on a scale; it needs to be sufficient for control and
for our purse.

8. The Principle of ‘Horses for Courses’2

Different measuring processes will be necessary for different
points in time, different events, and different places.3

9. The Principle of ‘The Answer always being ‘42’ ’4

Exact numbers are ambiguous unless the units of measure are
well-defined and agreed.

Formally defined scales of measure avoid ambiguity. If you
don’t define scales of measure well, the requirement level might
just as well be an arbitrary number.

10.The Principle of ‘Being Sure About Results’
If you want to be sure of delivering the critical result – then

quantify the requirement.
Critical requirements can hurt you if they go wrong – and you

can always find a useful way to quantify the notion of ‘going
right’ to help you avoid doing so.

Conclusions

This paper has tried to show how to define scales of measure for
system attributes. It has also introduced the pragmatic detail
available in Planguage for such specification and, for exploiting
scales of measure to define benchmarks, targets and constraints.

Scales of measure are an essential means towards quantifying
and getting control of your critical system attributes.

Tom Gilb
tom@gilb.com

References

Gilb, Tom, Principles of Software Engineering Management. Addison-
Wesley, 1988, 442 pages, ISBN 0-201-19246-2. See particularly
page 150 (Usability) and Chapter 19 Software Engineering
Templates.

Gilb, Tom and Graham, Dorothy, Software Inspection. Addison-
Wesley, 1993, ISBN 0-201-63181-4, 471 pages.

Gilb, Tom, Competitive Engineering, Elsevier 2005 This book defines
Planguage.)

Gilb, Tom. Various free papers, slides, and manuscripts on
http://www.Gilb.com/. The manuscripts include:
● Quantifying Quality (Book manuscript draft Summer 2004,

available from Tom@Gilb.com by request if not on website yet.)
● Requirements Engineering (about 500 slides giving examples

and theory.) http://www.Gilb.com/courseinfo
Version April 15 2003 for INCOSE June Wash DC, updated Dec
14 2004. Paper accepted as a talk at INCOSE 2003, Washington
DC, and published in the CD Proceedings.

Be clear about one thing. Quantification is not the same as
Estimation and Measurement.

1 Paraphrasing a well-known old saying.

Quality A:
Type: Quality Requirement.
Scale: The percentage (%) by value of Goods delivered that

are returned for repair or replacement by
consumers.

Meter [Development]: Weekly samples of 10,
[Acceptance]: 30 day sampling at 10% of representative cases,
[Maintenance]: Daily sample of largest cost case.
Fail [European Union, Assumption A]: 40% <- European

Economic Members.
Goal [EU and EEU members, Positive Trade Balance]:

50% <- EU Trade.

2 ‘Horses for courses’ is a UK expression indicating something must be appropriate for
use, fit for purpose.

3 There is no universal static scale of measure. You need to tailor them to make them
useful.

4 Concept made famous by Douglas Adams in The Hitchiker’s Guide to the Galaxy.

18

overload issue 70 december 2005

“Here be Dragons”
by Alan Griffiths

“The use of animals in maps was commonplace from the earliest
times. Man's deepest fears and superstitions concerning wide
expanses of uncharted seas and vast tracts of 'terra incognita' were
reflected in the monstrous animals that have appeared on maps ever
since the Mappa Mundi.” (Roderick Barron in “Decorative Maps”)

For many developers C++ exception handling is like this - a
Dark Continent with poor maps and rumours of ferocious beasts.
I’m Alan Griffiths and I’m your guide to the landmarks and fauna
of this region.

In order to discuss exception safety we need to cover a lot of
territory. The next section identifies the “exception safe” mountains
in the distance. Please don’t skip it in the hope of getting to the good
stuff - if you don’t take the time to get your bearings now you’ll
end up in the wastelands.

Once I’ve established the bearings I’ll show you a well-trodden
path that leads straight towards the highest peak and straight
through a tar pit. From experience, I’ve concluded that everyone
has to go down this way once. So I’ll go with you to make sure you
come back. Not everyone comes back; some give up on the journey,
others press on deeper and deeper into the tar pit until they sink
from sight.

On our journey I’ll tell you the history of how the experts sought
for a long time before they discovered a route that bypasses that tar
pit and other obstacles. Most maps don’t show it yet, but I’ll show
you the signs to look out for. I’ll also show you that the beasts are
friendly and how to enlist their aid.

If you look into the distance you’ll see a range of peaks, these
are the heights of exception safety and are our final destination. But
before we proceed on our trek let me point out two of the most
important of these peaks, we’ll be using them as landmarks on our
travels…

The Mountains (Landmarks of
Exception Safety)

The difficulty in writing exception safe code isn’t in writing the
code that throws an exception, or in writing the code that catches
the exception to handle it. There are many sources that cover
these basics. I’m going to address the greater challenge of writing
the code that lies in between the two.

Imagine for a moment the call stack of a running program,
function a() has called function b(), b() has called c(), and so
on, until we reach x(); x() encounters a problem and throws an
exception. This exception causes the stack to unwind, deleting
automatic variables along the way, until the exception is caught and
dealt with by a().

I’m not going to spend any time on how to write functions a() or
x(). I’m sure that the author of x() has a perfectly good reason
for throwing an exception (running out of memory, disc storage, or
whatever) and that the author of a() knows just what to do about it
(display: “Sorry, please upgrade your computer and try again!”).

The difficult problem is to write all the intervening functions in
a way that ensures that something sensible happens as a result of
this process. If we can achieve this we have “exception safe” code.
Of course, that begs the question “what is ‘something sensible’?”
To answer this let us consider a typical function f() in the middle
of the call stack. How should f() behave?

Well, if f() were to handle the exception it might be reasonable
for it to complete its task by another method (a different algorithm,
or returning a “failed” status code). However, we are assuming the
exception won’t be handled until we reach a(). Since f() doesn’t
run to completion we might reasonably expect that:
1. f() doesn’t complete its task.
2. If f() has opened a file, acquired a lock on a mutex, or, more

generally; if f() has “allocated a resource” then the resource
should not leak. (The file must be closed, the mutex must be
unlocked, etc.)

3. If f() changes a data structure, then that structure should remain
useable - e.g. no dangling pointers.

In summary: If f() updates the system state, then the state must
remain valid. Note that isn’t quite the same as correct - for
example, part of an address may have changed leaving a valid
address object containing an incorrect address.

I’m going to call these conditions the basic exception safety
guarantee, this is the first, and smaller of our landmark mountains.
Take a good look at it so that you’ll recognise it later.

The basic exception safety guarantee may seem daunting but not
only will we reach this in our travels, we will be reaching an even
higher peak called the strong exception safety guarantee that places
a more demanding constraint on f():
4. If f() terminates by propagating an exception then it has made

no change to the state of the program.

Note that it is impossible to implement f() to deliver either the
basic or strong exception safety guarantees if the behaviour in the
presence of exceptions of the functions it calls isn’t known. This
is particularly relevant when the client of f() (that is e())
supplies the functions to be called either as callbacks, as
implementations of virtual member functions, or via template
parameters. In such cases the only recourse is to document the
constraints on them - as, for example, the standard library does
for types supplied as template parameters to the containers.

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support
nor disparage any trade mark claim. On request we will withdraw all references to a specific trade mark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author
is, by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column
(not a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

19

overload issue 70 december 2005

If we assume a design with fully encapsulated data then each
function need only be held directly responsible for aspects of the
object of which it is a member. For the rest, the code in each
function must rely on the functions it calls to behave as
documented. (We have to rely on documentation in this case, since
in C++ there is no way to express these constraints in the code.)

We’ll rest here a while, and I’ll tell you a little of the history of this
landscape. Please take the time to make sure that you are familiar with
these two exception safety guarantees. Later, when we have gained
some altitude we will find that there is another peak in the mountain
range: the no-throw exception safety guarantee - as the name suggests
this implies that f() will never propagate an exception.

A History of This Territory

The C++ people first came to visit the land of exceptions around
1990 when Margaret Ellis and Bjarne Stroustrup published the
Annotated Reference Manual [1]. Under the heading “experimental
features” this described the basic mechanisms of exceptions in
the language. In this early bestiary there is an early description of
one of the friendly beasts we shall be meeting later on: it goes by
the strange name of RESOURCE ACQUISITION IS
INITIALISATION.

By the time the ISO C++ Standards committee circulated
Committee Draft 1 in early 1995 C++ people were truly living in
exception land. They hadn’t really mapped the territory or produced
an accurate bestiary but they were committed to staying and it was
expected that these would soon be available.

However, by late 1996 when Committee Draft 2 was circulated the
difficulties of this undertaking had become apparent. Around this
time there came a number of reports from individual explorers. For
example: Dave Abrahams identified the mountains we are using as
landmarks in his paper Exception Safety in STLPort [2] although the
basic exception safety guarantee was originally dubbed the “weak
exception safety guarantee”.

Some other studies of the region were produced by H Muller [3],
Herb Sutter [4] and [5]. A little later came a sighting of another of
the friendly beast that we will meet soon called ACQUISITION
BEFORE RELEASE. This beast was first known by a subspecies
named it COPY BEFORE RELEASE and was identified by Kevlin
Henney [6] it is distinguished by the resources allocated being
copies of dynamic objects.

By the time the ISO C++ Language Standard was published in
1998 the main tracks through the territory had been charted. In
particular there are clauses in the standard guaranteeing the
behaviour of the standard library functions in the presence of
exceptions. Also, in a number of key places within the standard,
special mention is made of another friendly beast - SWAP in its
incarnation as the std::swap() template function. We will be
examining SWAP after our detour through the tar pit.

Since the publication of the ISO standard more modern charts
have been produced: the author in an early version of this article
[7]. A similar route is followed by Bjarne Stroustrup [8]. Herb
Sutter [9] takes a different route, but the same landmarks are
clearly seen.

OK, that’s enough rest, we are going to take the obvious path
and head directly towards the strong exception safety guarantee.

The Tar Pit

It is time to consider an example function, and for this part of the
journey I have chosen the assignment operator for the following
class:

class PartOne { /* omitted */ };

class PartTwo { /* omitted */ };

class Whole

{

public:

// ...Lots omitted...

Whole& operator=(const Whole& rhs);

private:

PartOne* p1;

PartTwo* p2;

};

Those of you that have lived in the old country will know the
classical form for the assignment operator. It looks something
like the following:

Whole& Whole::operator=(const Whole& rhs)

{

if (&rhs != this)

{

delete p1;

delete p2;

p1 = new PartOne(*rhs.p1);

Destructors That Throw
Exceptions

Exceptions propagating from destructors cause a number of
problems. For example, consider a Whole that holds pointers to
a PartOne, a PartTwo, and a PartThree that it owns (ie it
must delete them). If the destructors of the parts propagate
exceptions, we would have trouble just writing a destructor for
Whole. If more than one destructor throws, we must suppress
at least one exception while remembering to destroy the third
part. Writing update methods (like assignment) under such
circumstances is prohibitively difficult or impossible.

There many situations where an exception propagating from
a destructor is extremely inconvenient - my advice is not to allow
classes that behave in this manner into your system. (If forced to,
you can always ‘wrap’ them in a well behaved class of your own.)

If you look at the standard library containers, you’ll find that
they place certain requirements on the types that are supplied as
template parameters. One of these is that the destructor doesn’t
throw exceptions. There is a good reason for this: it is hard to
write code that manipulates objects that throw exceptions when
you try to destroy them. In many cases, it is impossible to write
efficient code under such circumstances.

In addition, the C++ exception handling mechanism itself
objects to destructors propagating exception during the “stack
unwinding” process. Indeed, unless the application developer
takes extraordinary precautions the application will be terminated
in a graceless manner.

There is no advantage in allowing destructors to propagate
exceptions and a whole host of disadvantages. It should be easy
to achieve: in most cases all a destructor should be doing is
destroying other objects whose destructors shouldn’t throw, or
releasing resources - and if that fails an exception won’t help.

Apart from the practicalities what does an exception from a
destructor mean? If I try to destroy an object and this fails what
am I supposed to do? Try again?
Destructors that throw exceptions? Just say no.

20

overload issue 70 december 2005

p2 = new PartTwo(*rhs.p2);

}

return *this;

}

If you’ve not seen this before, don’t worry because in the
new land it is not safe. Either of the new expressions could
reasonably throw (since at the very least they attempt to
allocate memory) and this would leave the p1 and p2
pointers dangling. In theory the “delete” expressions could
also throw - but in this article we will assume that destructors
never propagate exceptions. (See: “destructors that throw
exceptions”.)

The obvious solution to the problems caused by an exception
being propagated is to catch the exception and do some clean up
before throwing it again. After doing the obvious we have:

Whole& Whole::operator=(const Whole& rhs)

{

if (&rhs != this)

{

PartOne* t1 = new PartOne(*rhs.p1);

try

{

PartTwo* t2 = new PartTwo(*rhs.p2);

delete p1;

delete p2;

p1 = t1;

p2 = t2;

}

catch (...)

{

delete t1;

throw;

}

}

return *this;

}

Let’s examine why this works:
1. An exception in the first new expression isn't a problem - we

haven't yet allocated any resources or modified anything.
2. If an exception is propagated from the second new expression,

we need to release t1. So we catch it, delete t1 and throw the
exception again to let it propagate.

3. We are assuming that destructors don't throw, so we pass over
the two deletes without incident. Similarly the two assignments
are of base types (pointers) and cannot throw an exception.

4. The state of the Whole isn't altered until we've done all the
things that might throw an exception.

If you peer carefully through the undergrowth you can see the
first of the friendly beasts. This one is called ACQUISITION
BEFORE RELEASE. It is recognised because the code is
organised so that new resources (the new PartOne and
PartTwo) are successfully acquired before the old ones are
released.

We’ve achieved the strong exception safety guarantee on our
first attempt! But there is some black sticky stuff on our boots.

Tar!

There are problems lying just beneath the surface of this
solution. I chose an example that would enable us to pass over
the tar pit without sinking too deep. Despite this, we’ve

Standard Algorithms and User
Defined Template Classes

The std::swap() template functions are one example of an
algorithm implemented by the standard library. It is also an
example of one where there is a good reason for C++ users to
endeavour to provide an implementation specific to the needs of
the classes and class templates that they develop. This need is
particularly significant to developers of extension libraries - who
would like to ensure that what they develop will both work well
with the library and with other extension libraries.

So consider the plight of a developer who is writing a template
class Foo<> that takes a template parameter T and wishes to SWAP
two instances of T. Now Foo is being instantiated with a fundamental
type, or with an instance of any swappable type from the standard
library the correct function can be resolved by writing:

using std::swap;

swap(t1, t2);

However, the primary template std::swap() that will be
instantiated for other types is guaranteed to use copy construction
and assignment unless an explicit specialisation has been provided
(and this is impractical if T is a specialisation of a template class).
As we have seen, copy construction and assignment probably
won’t meet the requirements of SWAP. Now this won’t always
matter, because a language mechanism “Argument-dependent
name lookup” might introduce into overload resolution a function
called swap() from the namespace in which T is declared, if this
is the best match for arguments of type T then it is the one that
gets called and the templates in std are ignored.
Now there are three problems with this:
1. Depending on the context of the above code Koenig Lookup

produces different results. (A library developer might reasonably
be expected to know the implications of a class member named
“swap” and how to deal with them - but many don’t.) Most C++
users will simply get it wrong - without any obvious errors when
only the std::swap() templates are considered.

2. The standard places no requirements on functions called “swap”
in any namespace other than std - so there is no guarantee that
bar::swap() will do the right thing.

3. In a recent resolution of an issue the standards committee has
indicated that where one standard function/template function is
required to be used by another then the use should be fully
qualified (i.e. std::swap(t1, t2);) to prevent the application
of Koenig Lookup. If you (or I) provide
yournamespace::swap() the standard algorithms won’t use
it.

Since the standards committee is still considering what to do
about this I can’t give you a watertight recommendation. I am
hoping that in the short term a “technical corrigenda” will permit
users to introduce new overloads of such template functions in
std. So far as I know this technique works on all current
implementations - if you know of one where it doesn’t please let
me know. In the longer term I am hoping that the core language
will be extended to permit the partial specialisation of template
functions (and also that the library changes to use partial
specialisation in place of overloading).

For those that follow such things this is library issue 226
(http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/lwg-
active.html).

21

overload issue 70 december 2005

incurred costs: the line count has doubled and it takes a lot more
effort to understand the code well enough to decide that it works.
If you want to, you may take some time out to convince yourself
of the existence of the tar pit - I’ll wait. Try the analogous
example with three pointers to parts or replacing the pointers
with two parts whose assignment operators may throw
exceptions. With real life examples things get very messy very
quickly.

Many people have reached this point and got discouraged. I
agree with them: routinely writing code this way is not reasonable.
Too much effort is expended on exception safety housekeeping
chores like releasing resources. If you hear that “writing exception
safe code is hard” or that “all those try...catch blocks take up
too much space” you are listening to someone that has discovered
the tar pit.

I’m now going to show you how exception handling allows you
to use less code (not more), and I’m not going to use a single
try...catch block for the rest of the article! (In a real program
the exception must be caught somewhere - like function a() in the
discussion above, but most functions simply need to let the
exceptions pass through safely.)

The Royal Road

There are three “golden rules”:
1. Destructors may not propagate exceptions,
2. The states of two instances of a class may be swapped without

an exception being thrown,
3. An object may own at most one resource.

We’ve already met the first rule.
The second rule isn’t obvious, but is the basis on which SWAP

operates and is key to exception safety. The idea of SWAP is that
for two instances of a class that owns resources exchanging the
states is feasible without the need to allocate additional resources.
Since nothing needs to be allocated, failure needn’t be an option
and consequently neither must throwing an exception. (It is worth
mentioning that the no-throw guarantee is not feasible for
assignment, which may have to allocate resources.)

If you look at the ISO C++ Language Standard, you’ll find that
std::swap() provides the no-throw guarantee for fundamental
types and for relevant types in the standard library. This is
achieved by overloading std::swap() - e.g. there is a template
corresponding to each of the STL containers. This looks like a
good way to approach SWAP but introducing additional
overloads of std::swap() is not permitted by the language
standard. The standard does permit to explicit specialisation of
an existing std::swap() template function on user defined
classes and this is what I would recommend doing where
applicable (there is an example below). The standards committee
is currently considering a defect report that addresses the problem
caused by these rules for the authors of user defined template
classes. (See: Standard Algorithms and User Defined Template
Classes.)

The third rule addresses the cause of all the messy exception
handling code we saw in the last section. It was because creating a
new second part might fail that we wrote code to handle it and
doubled the number of lines in the assignment operator.

We’ll now revisit the last example and make use of the above
rules. In order to conform to the rule regarding ownership of
multiple objects we’ll delegate the responsibility of resource

ownership to a couple of helper classes. I’m using the
std::auto_ptr<> template to generate the helper classes here
because it is standard, not because it is the ideal choice. (See: “The
Trouble With std::auto_ptr<>” for reasons to avoid using
auto_ptr<> in this context.)

class Whole {

public:

// ...Lots omitted...

Whole& operator=(const Whole& rhs);

private:

std::auto_ptr<PartOne> p1;

std::auto_ptr<PartTwo> p2;

};

Whole& Whole::operator=(const Whole& rhs)

{

std::auto_ptr<PartOne> t1(

new PartOne(*rhs.p1));

std::auto_ptr<PartTwo> t2(

new PartTwo(*rhs.p2));

std::swap(p1, t1);

std::swap(p2, t2);

return *this;

}

Not only is this shorter than the original exception-unsafe
example, it meets the strong exception safety guarantee.

Look at why it works:
1. There are no leaks: whether the function exits normally, or via

an exception, t1 and t2 will delete the parts they currently own.
2. The swap expressions cannot throw (second rule).
3. The state of the Whole isn’t altered until we’ve done all the

things that might throw an exception.

Oh, by the way, I’ve not forgotten about self-assignment. Think
about it - you will see the code works without a test for self-
assignment. Such a test may be a bad idea: assuming that self-
assignment is very rare in real code and that the branch could
have a significant cost. Francis Glassborow suggested a similar
style of assignment operator as a speed optimisation [10].
Following on from this, Kevlin Henney explored its exception
safety aspects in [11], [12] and [6].

We are on much firmer ground than before: it isn’t hard to see
why the code works and generalising it is simple. You should be
able to see how to manage a Whole with three auto_ptrs to
Parts without breaking stride.

You can also see another of the friendly beasts for the first time.
Putting the allocation of a resource (here a new expression) into the
initialiser of an instance of a class (eg auto_ptr<PartOne>) that
will delete it on destruction is RESOURCE ACQUISITION IS
INITIALISATION. And, of course, we can once again see
ACQUISITION BEFORE RELEASE.

(Yes, in this case we could use assignment instead of SWAP to
make the updates. However with a more complex type SWAP is
necessary, as we shall see later. I use SWAP in this example for
consistency.)

The Assignment Operator - a
Special Case

Before I go on to deal with having members that may throw when
updated, I’ve a confession I need to make. It is possible, and usual,
to write the assignment operator more simply than the way I’ve

22

overload issue 70 december 2005

just demonstrated. The above method is more general than what
follows and can be applied when only some aspects of the state are
being modified. The following applies only to assignment:

Whole& Whole::operator=(const Whole& rhs)

{

Whole(rhs).swap(*this);

Return *this;

}

Remember the second rule: Whole is a good citizen and provides
for SWAP (by supplying the swap() member function). I also
make use of the copy constructor - but it would be a perverse
class design that supported assignment but not copy construction.
I’m not sure whether the zoologists have determined the
relationship between SWAP and copying here, but the traveller
won’t go far wrong in considering COPY AND SWAP as species
in it own right.

For completeness, I'll show the methods used above:
void Whole::swap(Whole& that)

{

std::swap(p1, that.p1);

std::swap(p2, that.p2);

}

Whole::Whole(const Whole& rhs)

: p1(new PartOne(*rhs.p1)),

p2(new PartTwo(*rhs.p2))

{

}

One further point about making Whole a good citizen is that we
need to specialise std::swap() to work through the swap()
member function. By default std::swap() will use assignment
- and not deliver the no-throw guarantee we need for SWAP. The
standard allows us to specialise existing names in the std
namespace on our own types, and it is good practice to do so in
the header that defines the type.

Namespace std

{

template<>

inline void swap(exe::Whole& lhs,

exe::Whole& rhs)

{

lhs.swap(rhs);

}

}

This avoids any unpleasant surprises for client code that attempts
to swap() two Wholes.
Although we’ve focused on attaining the higher peak of strong
exception safety guarantee, we’ve actually covered all the
essential techniques for achieving either strong or basic exception
safety. The remainder of the article shows the same techniques
being employed in a more complex example and gives some
indication of the reasons you might choose to approach the lesser
altitudes of basic exception safety.

In Bad Weather

We can’t always rely on bright sunshine, or on member variables
that are as easy to manipulate as pointers. Sometimes we have to
deal with rain and snow, or base classes and member variables
with internal state.

To introduce a more complicated example, I’m going to elaborate
the Whole class we’ve just developed by adding methods that update

p1 and p2. Then I’ll derive an ExtendedWhole class from it that
also contains an instance of another class: PartThree. We’ll be
assuming that operations on PartThree are exception safe, but, for
the purposes of discussion, I’ll leave it open whether PartThree
offers the basic or the strong exception safety guarantee.

Whole& Whole::setP1(const PartOne& value)

{

p1.reset(new PartOne(value));

return *this;

}

Whole& Whole::setP2(const PartTwo& value)

{

p2.reset(new PartTwo(value));

return *this;

}

class ExtendedWhole : private Whole

{

public:

// Omitted constructors & assignment

void swap(const ExtendedWhole& rhs);

void setParts(

const PartOne& p1,

const PartTwo& p2,

const PartThree& p3);

private:

int count;

PartThree body;

};

The examples we’ve looked at so far are a sufficient guide to
writing the constructors and assignment operators. We are going
to focus on two methods: the swap() member function and a
setParts() method that updates the parts.

Writing swap() looks pretty easy - we just swap the base class,
and each of the members. Since each of these operations is "no-
throw" the combination of them is also "no-throw".

void ExtendedWhole::swap(ExtendedWhole& rhs)

{

Whole::swap(rhs);

std::swap(count, rhs.count);

std::swap(body, rhs.body);

}

Writing setParts() looks equally easy: Whole provides
methods for setting p1 and p2, and we have access to body to set
that. Each of these operations is exception safe, indeed the only
one that need not make the strong exception safety guarantee is
the assignment to body. Think about it for a moment: is this
version of setParts() exception safe? And does it matter if the
assignment to body offers the basic or strong guarantee?

void ExtendedWhole::setParts(

const PartOne& p1,

const PartTwo& p2,

const PartThree& p3)

{

setP1(p1);

setP2(p2);

body = p3;

}

Let’s go through it together, none of the operations leak
resources, and setParts() doesn’t allocate any so we don’t
have any leaks. If an exception propagates from any of the

23

overload issue 70 december 2005

operations, then they leave the corresponding sub-object in a
useable state, and presumably that leaves ExtendedWhole
useable (it is possible, but in this context implausible, to
construct examples where this isn’t true). However, if an
exception propagates from setP2() or from the assignment then
the system state has been changed. And this is so regardless of
which guarantee PartThree makes.

The simple way to support the strong exception safety guarantee
it to ensure that nothing is updated until we’ve executed all the steps
that might throw an exception. This means taking copies of sub-
objects and making the changes on the copies, prior to swapping
the state between the copies and the original sub-objects:

Void ExtendedWhole::setParts(

Const PartOne& p1,

Const PartTwo& p2,

Const PartThree& p3)

{

Whole temp(*this);

Temp.setP1(p1).setP2(p2);

Body = p3;

Whole::swap(temp);

}

Once again does it matter if the assignment to body offers the
basic or strong guarantee? Yes it does, if it offers the strong
guarantee then all is well with the above, if not then the
assignment needs to be replaced with COPY AND SWAP vis:

PartThree(p3).swap(body);

Once again we have attained the highest peak, but this may not be
healthy. On terrestrial mountains above a certain height there is a

The Trouble With std::auto_ptr<>

By historical accident, the standard library provides a single
smart pointer template known as auto_ptr<>. auto_ptr<> has
what I will politely describe as “interesting” copy semantics.
Specifically, if one auto_ptr<> is assigned (or copy
constructed) from another then they are both changed - the
auto_ptr<> that originally owned the object loses ownership
and becomes 0. This is a trap for the unwary traveller! There are
situations that call for this behaviour, but on most occasions that
require a smart pointer the copy semantics cause a problem.

When we replace PartXXX* with auto_ptr<PartXXX> in
the Whole class we still need to write the copy constructor and
assignment operator carefully to avoid any PartXXX being
passed from one Whole to another (with the consequence that
one Whole loses its PartXXX).

Another effect of the odd copy behaviour is that auto_ptr
does not meet the constraints stated in the standard for the
std::swap template. So, technically the code in the main body
isn’t guaranteed to work. However, having discussed this issue
in the “library” group of the standards committee it is clear that
std::swap is intended to work with auto_ptr<>, and that no
“reasonable” implementation would fail.

We encounter a further problem if we attempt to hide the
implementation of PartXXX from the client code by using a
forward declaration: we would also need to write the destructor.
If we don’t, the one the compiler generates for us will not
correctly destroy the PartXXX. This is because the client code
causes the generation of the Whole destructor and consequently
instantiates the auto_ptr<> destructor without having seen the
class definition for PartXXX. Technically, this is forbidden by
the standard. But, as no diagnostic is required, the effect of this
is typically to instantiate the auto_ptr destructor. This deletes
an incomplete type - unless PartXXX has a trivial destructor this
gives “undefined behaviour”.

Although the standard library doesn’t support our needs for a
smart pointer very well it is possible to write ones which do.
There are a couple of examples in the arglib library on my
website.

(Both arg::body_part_ptr<> and arg::grin_ptr<>
are more suitable than std::auto_ptr<>.) An excellent
C++ library (that contains smart pointers) is boost [13].

The Cost of Exception Handling

Compiler support for exception handling does make the
generated code bigger (figures vary around 10-15%), but only
for the same code. However, code isn’t written the same way
without exceptions - for example, since constructors cannot
return an error code, idioms such as “two phase construction”
are required. I have here a comparable piece of code to the final
example that has been handed down the generations from a time
before the introduction of exception handling to C++. (Actually
I’ve made it up - but I was around back then and remember
working with code like this, so it is an authentic fake.)

int ExtendedWhole::setParts(

const PartOne& p1,

const PartTwo& p2,

const PartThree& p3)

{

Whole tw;

int rcode = tw.init(*this);

if (!rcode) rcode = tw.setP1(p1);

if (!rcode) rcode = tw.setP2(p2);

if (!rcode)

{

PartThree t3;

Rcode = t3.copy(p3);

If (!rcode)

{

Whole::swap(tw);

body.swap(t3);

}

}

return rcode;

}

To modern eyes the need to repeat this testing and branch on
return codes looks very like the tar-pit we encountered earlier -
it is verbose, hard to validate code. I’m not aware of any trials
where comparable code was developed using both techniques,
but my expectation is that the saving in hand-written code from
using exceptions significantly outweighs the extra cost in
compiler-generated exception handling mechanisms.

Please don’t take this as a rejection of return codes, they are
one of the primary error reporting mechanisms in C++. But if an
operation will only fail in exceptional circumstances (usually
running out of a resource) or cannot reasonably be expected to
be dealt with by the code at the call site then exceptions can
greatly simplify the task.

[concluded at foot of next page]

24

overload issue 70 december 2005

“death zone” where the supply of oxygen is insufficient to support
life. Something similar happens with exception safety: there is a
cost to implementing the strong exception safety guarantee.
Although the code you write isn’t much more complicated than the
‘basic’ version, additional objects are created and these allocate
resources at runtime. This causes the program to make more use of
resources and to spend time allocating and releasing them.
Trying to remain forever at high altitude will drain the vitality.
Fortunately, the basic exception safety guarantee is below the death
zone: when one makes a composite operation whose parts offer this
guarantee one automatically attains the basic guarantee (as the first
version of setParts() shows this is not true of the strong
guarantee). From the basic guarantee there is an easy climb from
this level to the strong guarantee by means of COPY AND SWAP.

Looking Back

Before we descend from the peak of strong exception safety
guarantee and return to our starting point look back over the route
we covered. In the distance you can see the well-trampled path
that led to the tar pit and just below us the few tracks leading
from the tar pit up a treacherous scree slope to where we stand.
Off to the left is the easier ridge path ascending from basic
exception safety guarantee and beyond that the road that led us
past the tar pit. Fix these landmarks in your mind and remember
that the beasts we met are not as fierce as their reputations.

Alan Griffiths
alan@octopull.co.uk

References

[1] Ellis & Stroustrup, The Annotated C++ Reference Manual ISBN
0-201-51459-1

[2] Abrahams, Dave Exception Safety in STLPort
http://www.stlport.org/doc/exception_safety.html

[3] Muller, H Ten rules for handling exception handling successfully
C++ Report Jan.'96

[4] Sutter, Herb Designing exception-safe Generic Containers C++
Report Sept.'97

[5] Sutter, Herb More exception-safe Generic Containers C++ Report
Nov-Dec.'97

[6] Henny, Kevlin Creating Stable Assignments C++ Report June'98
[7] Griffiths, Alan The safe path to C++ exceptions EXE Dec.'99
[8] Stroustrup, Bjarne The C++ Programming Language (3rd Edition)

appendix E “Standard Library Exception Safety”
(this appendix dies not appear in early printings, but is available
on the web at http://www.research.att.com/~bs/
3rd_safe.pdf)

[9] Sutter, Herb Exceptional C++ ISBN 0-201-61562-2
[10]Glassborow, Francis, “The Problem of Self-Assignment” in

Overload 19 ISSN 1354-3172
[11]Henney, Kevlin “Self Assignment? No Problem!” in Overload

20 ISSN 1354-3172
[12]Henney, Kevlin “Self Assignment? No Problem!” in Overload

21 ISSN 1354-3172
[13]boost http://www.boost.org/

Two-thirds of a Pimpl
and a Grin
by David O'Neil

This article describes an easy method to reduce compilation
dependencies and build times. This method would not be interesting
enough to warrant an article on it, except that it is the key to an
interesting method of managing project-wide objects, and I have not
seen this method mentioned anywhere.

Background

While watching another religious war starting to erupt over the
use of Singletons, I realized that I had not seen the method I use
discussed anywhere else, including The Code Project [1]. It has
some advantages to it, and, as I haven’t seen it mentioned, I
figured I’d post it. (Of course, having said that, I’ll probably
come across an article on the exact same thing tomorrow.)

The Method

The method itself, as I said, is not very interesting. Simply use smart
pointers to hold all non-POD objects stored in your class interface.

Well, there is one interesting thing about it - you cannot use
auto_ptr’s or many other smart pointers in order to store your
objects if you don’t include at least an empty destructor inside the
unit’s .cpp file. That is the reason the following uses Alan Griffiths’
grin_ptr [2]. You could also use boost::shared_ptr, and
probably some others that I am unaware of.

The reason that you can’t use an auto_ptr for this purpose is
simply that auto_ptrmust have a complete definition of the forward
declared class at the point of destruction, and if you rely upon the
default destructor, the forward declaration of the class is the only thing

the auto_ptr has, so it will generate a ‘do-nothing’default destructor
for the class being held. This is rarely, if ever, what you want.

(If you are unsure whether a smart pointer can be used for this
purpose without creating a destructor in the holding class’s .cpp
file, look in the smart pointer’s documentation for a statement
saying something to the effect that it can hold and correctly destroy
an incomplete type. If it says that, you can safely use it without
having to remember to supply a destructor in the .cpp file.)
As a quick example of the pattern I am talking about, here is a
theoretical implementation of my wallet:

//Header file, include guards not shown

#include "arg.h"

//Only uses forward declarations:

class CreditCard;

class BusinessCard;

class DollarBill;

class Wallet {

private:

// Make it simple - just one of each

arg::grin_ptr<CreditCard> masterCardC;

arg::grin_ptr<BusinessCard> businessCardC;

arg::grin_ptr<DollarBill> dollarBillC;

// anything else, but if they are classes,

// wrap them in pointers as above.

public:

Wallet();

BusinessCard & businessCard()

{ return *businessCardC.get(); }

// I really don't want to

// expose the following two,

// but this is simply an example...

[continued from previous page]

25

overload issue 70 december 2005

CreditCard & masterCard()

{ return *masterCardC.get(); }

DollarBill & dollarBill()

{ return *dollarBillC.get(); }

// anything else...

};

//Implementation file

#include "Wallet.h"

#include "CreditCard.h"

#include "BusinessCard.h"

#include "DollarBill.h"

Wallet::Wallet() :

masterCardC(new MasterCard(/*any args*/)),

businessCardC(new BusinessCard(/*any

args*/)),

dollarBillC(new DollarBill()) { }

// And anything else...

(Feel free to ‘new’ me some more dollar bills. :))
Anyway, as you can see, nothing to get excited over, until you
think about it for a second. We have just entirely eliminated all
external dependencies except the arg.h file from the Wallet
header. If the implementation to CreditCard, BusinessCard,
or DollarBill changes, the only units that need to be
recompiled in the project are the Wallet unit and the unit that
you changed. This is a big saving over having ‘hard objects’ in
the class’s header file. In that case, every unit that #included
Wallet.h would be recompiled anytime the implementation to
CreditCard, BusinessCard, or DollarBill changed.

The saving with the above method is not as good as a full pimpl
implementation, as a full pimpl implementation enables you to
recompile CreditCard, BusinessCard, or DollarBill,
without the Wallet unit or any other unit in the project needing to
be recompiled. (Of course, changing the interface to a pimpl can be
a PITA, and will require more to be recompiled at that time.)

The method I have just outlined is simpler than the pimpl pattern,
as it does not require you to create an intermediary PimplHolder
class. You do, however, have to use -> notation to access all of the
smart pointer held objects from within the class they are held in, unless
you create a local reference to them within the function using them.

The ‘Interesting Use’

The above method can be used to easily manage project-wide
objects. This method, when used in a global, can quite often be
used as a quasi-Singleton manager. Doing so will often simplify
some aspects of your overall design, and it will do so without
increasing compilation dependencies.

Please do not take this to mean that I don’t like Singletons. The
pattern I am about to show you does not replace Singletons. There is
nothing in this pattern to keep you from instantiating multiple copies
of the objects held in this container. This pattern simply makes it very
easy to manage and use project-wide objects, and it may be an
appealing alternative if you do not really care to mess with figuring
your way around Singleton instantiation order dependencies.

Also, do not take this to mean that I am a huge proponent of
globals. This pattern allows me to minimize the use of globals to two
or three for my entire project, and I am happy with that. I do store
quite a few variables within the global objects, though, and as these
variables are defined within the header file of the global, whenever
their interface changes, or I add another item to the global, every unit

that #includes "Globals.h" will be recompiled at that time. If
your project takes considerable time for a rebuild of such a nature,
you will want to carefully atomize your globals, maybe even to the
point of making each object (like TextureManager in the following
code) into its own global item. I outline a wrapper that will simplify
this for you in the addendum at the end of this article.

Let me give a simple example of this ‘interesting use’. The two
changes to the previous example that are needed are to change it so
that it holds things commonly held in Singletons, and make the class
into a global. The example I gave while the religious war was raging
was the following:

// Header file (minus include guards again)

#include "arg.h"

class TextureManager;

class LoggingSystem;

class ObjectManager;

// ...

class Globals {

private:

arg::grin_ptr<TextureManager>

textureManagerC;

arg::grin_ptr<LoggingSystem> loggerC;

arg::grin_ptr<ObjectManager> objectManagerC;

// ...

public:

Globals();

TextureManager & textureManager()

{ return *textureManagerC.get(); }

LoggingSystem & logger()

{ return *loggerC.get(); }

ObjectManager & objectManager()

{ return *objectManagerC.get(); }

// ...

};

// Implementation file:

#include "TextureManager.h"

#include "LoggingSystem.h"

#include "ObjectManager.h"

Globals::Globals() :

textureManagerC(new TextureManager()),

loggerC(new LoggingSystem()),

objectManagerC(new ObjectManager())

/* and any other stuff */ { }

// Here is a sample of a 'main' file:

#include "Globals.h"

Globals gGlobals;

// The following #include is only

// so we can access 'doSomething'.

// We don't need it for the global creation.

#include "TextureManager.h"

int main() {

gGlobals.textureManager().doSomething();

//...

return 0;

}

And that is it, although if you need to pass in initialization
parameters, in order to pass them to one of your classes, you will
need to implement gGlobals as a pointer, and initialize it after
whatever parameter it is dependant upon is obtained. The best
option is to implement it through the use of an auto_ptr (in

26

overload issue 70 december 2005

which case auto_ptr has no problems):
Globals * gGlobals;

int main() {

// Do whatever in order to get your 'args'

// ... and finally

std::auto_ptr<Globals> tGlobals(

new Globals(/*args*/));

gGlobals = tGlobals.get();

//...

}

Using the method outlined above, you can explicitly control your
object creation order, and very easily overcome the issues that arise
when trying to control multiple Singletons with inter-singleton
creation order dependencies. In addition, this method has a simpler
syntax than Singletons. Singletons require something like:

SingletonManager::getInstance().

textureManager().doSomething()

in order to use them from a Singleton manager. The above
method boils down to:

gGlobals.textureManager().doSomething()

But the truly interesting part is that using this technique, if you
only modify the TextureManager.cpp file, it will be the
only file recompiled at recompilation. If you modify the
TextureManager.h file, only units that explicitly #include
"TextureManager.h" will be recompiled. This will include the
Globals unit, but will not include every file that #includes
"Globals.h".

It is worth reading the last paragraph again, and looking at the
code, until you understand that this system is not exposing any of
the other objects being managed by the Globals unit to any unit
that is not #include-ing the sub-unit you wish access to. You can
#include "Globals.h" in every .cpp file in your program, but
they won’t link to TextureManager until you explicitly
#include "TextureManager.h" as well as Globals.h in the
unit you want to access the TextureManager from. There are no
other compilation dependencies to be aware of, and the Globals
unit does not impose any more overhead than a few forward
declarations, the class declaration of Globals itself, and a few bits
for the grin_ptr’s internals.

The secrets to this whole technique: using only forward
declarations and a capable smart pointer.

I hope that you find this technique useful, and wish you happy
coding.

Addendum

If you do atomize your globals, and do not wish to use
Singletons, you can modify the previous method to instantiate
your globals within main , and completely control your
instantiation and destruction order:

Globals * gGlobals;

TextureManager * gTextureMan;

// ...

int main() {

std::auto_ptr<Globals> tGlobals(

new Globals(/*args*/));

gGlobals = tGlobals.get();

std::auto_ptr<TextureManager>

tTextureMan(new TextureManager());

gTextureMan = tTextureMan.get();

// And, if you want, you can even destroy

// them in any order. Just manually call

// 'release' on the pointers in the order

// you want at the end of 'main', rather

// than relying upon the auto_ptr's

// destructors.

}

You could even create a class to manage these atomized globals.
Doing so would overcome the previous objection to long build
times. I envision something of the following nature:

// GlobalManager.h w/o include guards

class TextureManager;

class OtherGlobals;

class GlobalManager {

private:

arg::grin_ptr<TextureManager>

textureManagerC;

arg::grin_ptr<OtherGlobals> otherGlobalsC;

//...

};

//GlobalManager.cpp

#include "TextureManager.h"

TextureManager * gTextureMan;

#include "OtherGlobals.h"

OtherGlobals * gOtherGlobals;

GlobalManager::GlobalManager() {

textureManagerC.reset(new TextureManager());

gTextureMan = textureManagerC.get();

otherGlobalsC.reset(new OtherGlobals());

gOtherGlobals = otherGlobalsC.get();

// ...

}

//Main unit:

#include "GlobalManager.h"

int main() {

// Automatically instantiate all

// globals in one fell swoop:

std::auto_ptr<GlobalManager>

globals(new GlobalManager());

// ...

}

Using this method, all of your globals will automatically be
instantiated for you in a manner that only forces your main unit
to recompile if you add more globals. You no longer have the
‘hiding’ that took place in the earlier pattern I discussed, but you
have a simple method of controlling your global class
instantiation order. You can even explicitly control the
destruction order, if you desire, by creating a destructor for the
global organizer class, and calling ‘release’ upon the smart
pointers in the order you want the objects to be released.

Hopefully, the above discussion has given you more options
when it comes to implementing global objects. As always, use what
works for you, and keep the religious wars to a minimum :)

David O’Neil
david@randommonkeyworks.com

References

[1] The Code Project, http://www.codeproject.com/
[2] Alan Griffiths, 1999, Ending with the Grin,

http://www.octopull.demon.co.uk/arglib/

TheGrin.html

