
3

overload issue 69 october 2005

contents credits &
contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Advertising:

Thaddaeus Frogley
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Incremental Design:
A Case Study of a Compiler

Bryce Kampjes 6

Vorsprung Durch Testing
Kevlin Henney 13

Polynomial Classes
William Hastings 16

A Framework for Generating Numerical
Test Data

Peter Hammond 21

With Spirit
Tim Penhey 26

4

overload issue 69 october 2005

I once worked in an organisation where two teams adopted new
development practices and both significantly outperformed the
company norm for projects of the sort. One team embraced unit
tests as part of the deliverable for each piece of work, the other
adopted a strong independent verification culture. (Depending on
the metric they were around 60-100% more efficient than would
be expected from historical data.) Attempts to introduce practices
from either team to the other were singularly unsuccessful –
they’d be tried briefly and, even if they worked better, were soon
abandoned in favour of the original strategy.

It may seem a long step from experiments on animals to software
development, but if Pete Goodliffe can draw comparisons between
programmers and monkeys, then surely I can be allowed one
between developers and apes. I’ve seen many attempts to introduce
more efficient ways of doing things fail in just this way. Depressing
isn’t it? (By the way, the New Scientist article is at
http://www.newscientist.com/article.ns?id=dn7913 -
it summarises a report in Nature and gives the reference as
“DOI:10.1038/nature04047”.)

I’ve given an example of the failure to adopt new habits from
developing software, but there are others from other aspects of life
(without stopping I can think of examples of driving, drinking and
housework habits that illustrate the same theme). People, like the
other apes described above, learn habits from their peers and then
are very reluctant to change them. And groups that have a way of
doing things will try to impose them on a newcomer with a better
way rather than embracing change.

In the two teams described above there were two mindsets at
work – one believed that developers could be trusted to have the
discipline to produce working code, the other that developers need
to be policed to impose the discipline to produce working code. The
incompatibility of these mindsets was demonstrated when
management shuffled the team members around to staff new
projects. The new projects were far less successful because team
members were being asked to work in ways that they knew were
less effective than when they’d worked on one of the successful

projects. The intended “spreading of new ideas” backfired as each
camp demonstrated that the unfamiliar approach was unworkable.
When the dust settled, both approaches had been abandoned and
the community returned to the comfortable practices that pre-dated
these two innovative projects.

Change is hard – I know that. I resist change all the time: I use
C++ for some tasks that, for example, Python is more suited to.
(The last time was “flattening” a directory structure while
avoiding name clashes by incorporating the path elements in the
target file names. And yes, there are probably tools that would be
even better than Python.) Part of the reason is that I knew
immediately how to do it in C++ but would need to look things
up in Python (or any other tool) - this introduces unpredictability
into the length of the task. But equally, I know that if I were to
spend the time learning the tools to do these things that way I’d
soon doing them faster.

Sometime in the last year a colleague was having trouble
avoiding a lot of duplicate code and asked for suggestions. After a
quick explanation it appeared that the problem was deducing an
appropriate intermediate type for processing before conversion to
a target type. I showed him a trick that introduced the needed “extra
level of indirection” (what the cognoscenti would call a C++
template metafunction). He was initially very taken with this
technique as it factored out the variability in just the way he was
trying to achieve. But after a few days of working with this
approach he went back to duplicating the code (with minor
variations) for each of the types he was working with. Maybe a
template metafunction was wrong in this case and there was a better
solution (Adaptor pattern, perhaps), but the point is that he stuck
with the comfortable old way of doing things. (And he did want to
change – he had asked me for a way to avoid all this duplicate code
in the first place.)

I’ve heard countless stories from developers that have
successfully fought against the accepted way of running a project
in order to introduce practices they then proceed to demonstrate are
better. After which the organisation, for no very clear reason (and

Copy Deadlines

All articles intended for publication in Overload 70 should be submitted to the editor by November 1st 2005, and for Overload 71
by January 1st 2006.

Editorial:
Can We Change For The Better?

I
’ve just read in the 27th August copy of New Scientist about some experiments
with “cultural transmission” - one chimpanzee from each of two groups was taught
a method of getting food from a complicated feeder. When the groups were

allowed to watch, they followed the lead of their respective expert in spite of one
method being more efficient. Even when some members of the less efficient group
learnt the better way the majority reverted to the original inefficient strategy.

with a great sigh of relief), reverts to the “normal” way of doing
things. And, in these case, the people involved will frequently have
all agreed that the changes should be adopted.

The same report in New Scientist tells another story that
indicates that there is hope. This story is of a killer whale that
invented a new way of catching seagulls. (For those that are
interested in catching seagulls the method is this: he regurgitates
some fish onto the water’s surface; then he waits below the surface
for a seagull to appear and take the fish, whereupon the whale
lunges catching the seagull in its mouth.) Whales do not patent such
innovations and this idea spread rapidly through the local whale
community. Clearly the reward of a tasty feathery snack was enough
to overcome any natural reluctance to change. Or perhaps whales
are just more intelligent than apes?

Maybe changes in behaviour are successful for reasons that have
nothing to do with the effectiveness of the new behaviour? Certainly
there is little evidence for many of the “best practices” adopted in
our industry (and even less for many “standard practices”). There
are plenty of practices in common use whose only merit appears to
be that they are in common use and, therefore, one cannot be
blamed for using them.

The role of cultural groupings in the adoption of new practices
is also significant. An idea will only succeed if adopted by the
majority of a group. This must make small groups more susceptible
to change – an idea can circulate quickly around a small community
and gain acceptance, whereas most of a large community may never
become aware of it at all.

A lot of small communities all following their own whim means
that a lot of ideas are being tried. My question, therefore, is whether
there is any way to tell the good ones from the bad? If this is easy
and the good ideas stay, then the division of the C++ community I
wrote about in Overload 67 may be a blessing. But how to tell the
good ideas from the bad?

It may sound easy – the ideas that work are good, the ones that
don’t are bad – but it isn’t. Consider the two teams I described
above. Both had ideas that worked, both had successful projects
that appear to have proved them right. But the ideas didn’t work
together – indeed the two groups had difficulty finding enough
common ground to establish a dialogue.

If you believe developers cannot be relied on to validate their
own code then discussion of programmer-written tests is missing
the point (and risks both the tests and code making the same error),
while if you believe in testing your own work the idea of co-
ordinating with an independent tester seems cumbersome (and risks
disrupting the flow of work).

And it is rarely as simple as comparing two ideas. There are a
lot of ideas in play simultaneously in any software development
project. Projects vary in many ways: budgets, technology, etc.
Teams also vary in size, experience and skills. In short, a direct
comparison between two ideas in software development is rarely
possible.

I started with an example of two teams in the same organisation,
which eliminates a lot of variability. The teams were of similar
size and experience and the projects had comparable time and
staffing budgets and were based on the same technology. And
even then there was no clear answer – except that by changing
their development processes both teams improved on past results.

While these teams both succeeded in producing good results
the benefit of this was short term. A larger group, the
organisation, reacted in the same way as the apes in the New
Scientist story – although a few individuals learnt a better way
of developing software, the organisation as a whole reverted to
the earlier, less efficient, methods. (And the individuals who
wanted to practice what the organisation had enabled them to
learn chose to leave.)

Knowing about a problem is not enough, nor is knowing the
solution, nor even intending to apply the solution. Change requires
a firm intent that doesn’t come easily or cheaply, which is why
habits are so persistent. Not changing also has a cost. The difference
is that change is a one-off cost whereas not changing is a continual
drain.

There is a very interesting attempt to change being made by the
Commonwealth of Massachusetts. They appear to have realised that
the choice of data formats for storing documents is significant. As
they have an “open government” obligation to ensure that the
information is accessible to members of the public both now and
in the future, they are required to care about this.

In order to address this need they have been working with a range
of parties in the software to identify a strategy that meets their goals
of accessibility to these documents, and have adopted one based on
open standards for their document formats. The point of this is that
anyone can produce software that works with these formats now,
or at any time in the future. And by working with suppliers on the
choice of standard they have ensured that suitable software is
already available – no doubt more will follow if this initiative
survives.

Why do I say “if”? Well, they have a good technical solution to
a problem, but that is far from all that is required to make a change.
I’m sure that their current principle supplier of office applications
would prefer not to have competition. (And Microsoft has
considerable influence.)

After decades of suffering incompatibilities between office
applications from different vendors, and even different versions
from the same vendor, I think a change to a common standard
could be a change for the better. The opportunity for change is here,
and there has recently been a dramatic demonstration of the costs
of a lack of interoperability in FEMA’s handling of Hurricane
Katrina.

Whales can learn new, improved ways to do things. Can we?
Alan Griffiths

overload@accu.org

5

overload issue 69 october 2005

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trade mark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

6

overload issue 69 october 2005

Incremental Design:
A Case Study of a Compiler
by Bryce Kampjes

Introduction
Agile development is great for keeping control of details, but
how well does it deal with development involving heavy design?
This article is about using a very agile approach to write a
dynamic compiler. Compilers are probably the best area to do
design in because of the large body of compiler literature and
theory.

I’ll discuss my experience of writing a compiler using an agile
approach. The key challenge is working a lot of design, often from
papers not personal experience, into an agile development process.
Agile incremental development works very well for writing a
compiler because it’s a very effective way to learn from other
people’s written experience. It’s a very effective way to learn while
developing and get the learning into the code quickly.

The compiler, Exupery, is a hobby project. It compiles Squeak
Smalltalk bytecodes into x86 machine code which is then executed
inside the same process that is running the compiler. One of the
original goals was to learn something general about software
engineering by personally writing a technically difficult piece of
software. The other original goal was to produce a useful open
source project. Hopefully, you’ll gain some insight from this article.

Compilers

A minimally useful compiler is a large project and a fully
optimising compiler doing everything imaginable is impossibly
large (a trip to the library or CiteSeer1 makes it even bigger).

There are several diferent compiler designs that could make
sense for an object oriented dynamically typed language. The
possible compiler designs run from compiling as quickly as an
interpreter interprets [1] [2] to very slow compilers that produce
very high quality code. [3]

Most JIT (Just-in-Time) compilers compile fast but not as fast
as interpreters, they stick to linear time worst case algorithms
because compilation happens at run time where noticable pauses
are not acceptable. Most mature batch compilers tend to be very
slow, aiming at fast execution times (at least at higher optimisation
levels) though a lot are simpler to make them buildable.

JITs are a great strategy for very fast compiling compilers
because they can recoup on the second execution. But they are
much less appealing when execution time is important because the
compile time pauses will get longer (potentially a lot longer, as
compilers often use O(N2) - or greater - algorithms).

Compilers offer some strong benefits for up front design because
of the rich body of literature, but they also have some strong
disadvantages. It’s likely that there are no successful projects
working in the same design space: language implementation;
optimisation style (fast compilation or fast execution); and basic
framework (SSA, dataflow, simple tree walkers, one pass). It is also
very likely that no-one on the team has done anything similar.

Judging design literature without having personally implemented
similar projects is hard, if not impossible, but many key decisions
have to be made early. These are really project-level design, not
technical, but they’ll influence the choice of algorithm and
intermediate forms.

Register Allocation

Register allocation is the process of assigning all the variables
(including ones holding intermediate values) to a fixed number of
physical registers. There are several different approaches to register
allocation. The main two are colouring register allocators and linear
scan allocators. Colouring register allocators are slower but produce
better code. Linear scan allocators have seen a lot of work recently
because they are more suitable for JIT compilers.

A colouring register allocator works by first building an inteference
graph. Nodes represent the variables, and edges mean the variables
can be live at the same time. If two variables have an edge
connecting them then they cannot be assigned to the same register.

Simplification is the process of removing nodes where their
degree (number of edges) is less than the number of registers
available. While simplifying we also remove moves to and from
registers where possible (coalescing). As variables are simplified
they are pushed onto a stack. If no variable can be simplified then
one is chosen and pushed onto the stack as a spill candidate.

Selecting registers involves popping variables off the stack then
assigning them to a register that isn’t used by any of their neighbours.
It will be possible to find a register for it because when it was selected
it had less neighbours than the number of registers . If a variable was
pushed as a spill candidate then we try and find a register for it if
some of its neighbours were allocated to the same register but if we
can’t it will be spilled (stored in memory rather than a register).

Colouring register allocation was first practically formulated in
1981 by Chaitin [5]. Briggs introduced a few key improvements in
1992 [6] including making final spill decisions during selection, which
is more efficient because some of a variable’s neighbours might have
been allocated the same register, so spilling would have been overly
pessimistic. George and Appel in 1996 [7] extended Briggs’ work by
coalescing moves while simplifying, rather than as a separate phase,
which allows a lot more moves to be removed. There’s a lot more
work on colouring register allocators – Google scholar finds over 500
documents. It would be stupid not to do a serious literature search
before implementing in a domain which has been studied so much.

Squeak and Why It’s Challenging to
Implement Efficiently

Squeak is the main open source implementation of Smalltalk.
Smalltalk is a pure dynamically-typed object oriented programming
language. Everything is an object including Contexts (stack frames),
Blocks (closures), and integers. SmallIntegers fit into a machine
word with a tag and will overflow into large integers.

The core language is very pure. Even conditionals ifTrue: and
ifFalse: (the equivalent of if statements in C) are implemented
in the library, but Squeak, and most other Smalltalks, cheat here for
speed. SmallIntegers are only slightly different from other
objects - it’s possible to add methods to SmallIntegers but not to

Colouring Register Allocators
while hasSpills

build interference graph

simplify and move removal

hasSpills := select registers

if hasSpills

insert spill code

else

assign variables to registers

1 http://citeseer.ist.psu.edu/

7

overload issue 69 october 2005

subclass them. Squeak, and most other implementations, provides
special bytecodes that perform SmallInteger operations. If the
arguments are not SmallIntegers or the operation fails then a
normal message send will be performed.

Every expression needs type checking, which is the cost of being
a pure dynamically typed language. This costs about 2 cycles to
type check per operand. Theoretically type checking can be
removed in most cases.

Tagging and detagging integers in Squeak is slower than necessary
because the integer tag is 1 rather than 0. Small integer operations
need to remove the 1 tag before operating then add it afterwards.

Booleans are real objects. The only restriction is there can only
be one true object and one false object in the system. This means
that the expression a < b ifTrue: [do something] naively
needs to perform the comparison, convert the control flow into a
boolean object (a little if then else sequence), then convert the
boolean back into control flow (another if object is true
then else sequence). That’s a lot of instructions and also an extra
conditional branch for the processor to (potentially) mispredict.

Sends (function calls) are very common. Theoretically all
expressions are sends and most are in practice. While loops, if
expressions, and small integer operations are theoretically sends
but are expanded when generating bytecodes.

Smalltalk runs in an image which hosts both the IDE and the
program being developed. The entire system is written in itself and
modifiable live. Smalltalk systems host their own development tools.
It’s possible, and normal, to change how the development system works
live during normal development. The debugger, profilers, and editors
(called browsers) are normal code that can be inspected and changed.

Compilation is done incrementally. When developing, individual
methods are compiled as they are edited and will be used for every
call after they have compiled. It’s also possible to modify the system
programmatically. This is how the programming environment is
implemented. Any method may be modified at any time including
by code. Any object may be swapped with any other object at any
time (become:), all references to the objects get changed by this
operation. A lot can be changed during normal program execution.

Squeak is currently implemented by an interpreter. The
interpreter executes a bytecode in about 10 clocks which is the
branch misspredict penalty. That’s a fairly tough target to beat with
a naive compiler but a well designed simple compiler could do it.

Initial Planning

When starting a large project, the first problem is deciding if the
project is worthwhile, which involves enough design to estimate
the costs of a minimally useful system. A minimally and generally
useful compiler is probably around 10-20kloc which is a large
system to write as a hobby. It’s possible to write a compiler in
less, but to be worth the cost of maintenance it must be noticably
faster than the interpreter. Simple compilers can be slower than
tuned interpreters. Exupery is a big project for a single person’s
hobby, so ideally it should also have big motivating goals. The
end goal is to be as fast as C or Fortran for most programs.

Exupery is designed to become faster than any previous Smalltalk
implementation by combining a solid classical optimiser with inlining
driven by dynamic type feedback. That’s too much to achieve in one
step but it still helps to know that the end goals are possible.

To completely eliminate the cost of Smalltalk’s dynamic power
we need to:
1. Remove integer tagging and detagging.

2. Remove boxing and deboxing of Booleans and Floats
3. Remove all send overhead including calling blocks (higher order

functions)
4. Optimise the low level intermediate to an equivalent level to C

This could be done by:
1. Having solid back end producing good code. In practice this just

means a good register allocator and some care. This was the
biggest source of remaining waste noticed in Self [4]

Smalltalk Syntax
Smalltalk syntax is very simple. There are three types of
messages, blocks, and literal expressions.

Precedence is unary messages then binary messages then
keyword messages. So aStream nextPutAll: 10 * 200
factorial fully bracketed is: aStream nextPutAll: (10
* (200 factorial)). The result is to print a very large
number on aStream.

Control flow is logically implemented using message sends
and blocks. a < b ifTrue: [self doSomething] executes the
block [self doSomething] if a < b. [a < b]. whileTrue:
[a := a + 1] is a basic while loop. It first executes [a := a
+ 1] while executing [a < b] returns true. #at:ifAbsent:
used as an example of a keyword message will execute its block
argument if it couldn’t find the key (the first argument). Reading
[] brackets as if they were brackets from C is tolerable but
Smalltalk’s [] are semantically richer because they return a first
class object.

Smalltalk is a natural environment for JITs (which it’s had
since ’83). Writing a traditional JIT inside the language poses
problems. A JIT normally stops execution until it has compiled
a method then jumps into it. What happens if it’s written and
running in the environment it’s compiling and needs to compile
part of itself to finish compiling a method?

Factorial printString
Unary messages are a single
word.

* + ** <= Binary messages look like
operators in other languages.
They have an argument before
and after them.

Receiver printOn: 'hello'.

Receiver

at: 'a key'

ifAbsent:

[self doSomething]

Key word messages are a
sequence of words ending in :.
Each argument always has a
keyword before it ending in :

[1+ 20] [:each| each + 10]
Blocks are bits of code that
can be executed later. They
look like [anExpression] or
[:each| self aMessage:

each] . They can take
arguments, each argument
begins with a :, after the last
argument there is a |.

|a b c| Defines three local variables
called a, b, and c. Definitions
can only occur at the start of
methods or the start of blocks.

8

overload issue 69 october 2005

2. Using dynamic type feedback to discover what types are used
for each send site then inlining commonly called messages.

3. Using type analysis to remove unnecessary type checks and
boxing/ unboxing of Booleans and Floats

4. Induction variable analysis will allow the removal of most type
checks of loop counters and array range checks

Dynamic type feedback provides information on what types were
actually used. The solid optimisation framework can then remove
redundant tagging and detagging in the common case code2 and
moving unnecessary code out of loops (e.g. the code that figures
out how big an object is to range check it. The array is almost
certainly the same object across the entire loop).

So long as compilation happens in a background thread and never
causes execution to halt, it’s possible to combine very fast generated
code with no pauses. Background compilation also makes it possible
to run the compiler in the same environment that’s being compiled.
The advantages are: there are no compilation pauses, slow
optimisations can be used, and the compiler can be written in Smalltalk
as a normal program. The key disadvantage is there must be another
way of executing Smalltalk but we already have an interpreter.

Task Breakdown

The vision of a compiler above is too big to commit to building. So
let’s break it down into three different projects. First the full
compiler meeting the initial ambitious goals. This is the goal that’s
really motivating. Second the simplest possible compiler that would
be useful. This is the first version that should get widespread use.
Third the simplest possible compiler that can be built and tested.
This compiler is the first stepping stone to the second project.

The project’s current high level breakdown (release plan) is:
1 Get it compiling a basic program. Just to compile an iterative

factorial
2 Make that faster than the interpreter.
3 Compile the bytecode benchmark in the same process as the

interpreted compiler
4 Make that faster than the interpreter
5 Add support for most of the language. (minus blocks)
6 Optimise sends with PICs
7 Optimise bytecodes. Make it faster than VisualWorks, the fastest

commercial Smalltalk
8 Make it practical. This is the current task
9 Make sends fast. Full message and block inlining
10 Build a basic optimiser. Just to remove integer tagging and

untagging
11 Extend the optimiser to handle classical optimisations such as

common sub expression elimination and code hoisting. Moving
#at: overhead and write barrier checks out of loops is a specialised
case of code hoisting which may double the bytecode performance

12 Extend the optimiser down to replace the low level optimiser.
This will allow the classical optimisations to remove redundancy
that was hidden inside the tagging and boxing code.

13 Add floating point support. To be worthwhile, native compiled
floating point support needs to remove most of the boxing and

deboxing of floats. This may require the entire optimiser in this
plan or it might be worthwhile just with tree traversal based
optimisations and dynamic type feedback. Measurements on real
code could answer this question.

14 Induction variables. Extend the optimiser to optimise induction
variables (a fancy name for loop counters and friends). This
should allow all range checks using looping variables to be fully
optimised and to remove the overflow checks when
incrementing loop counters. It should remove the last remaining
overhead in common array loops.

The original release plan was for five major releases 1) a basic
compiler, 2) decent bytecode performance (at least twice the
interpreter’s) and compiling inside the image, 3) add most of the
bytecodes, 4) decent send performance (probably inlining), 5)
make it practical. Each release is a few months’ full time work.

Implementing the release plan up to “Make it practical” or
“Make sends fast” would produce a roughly minimal compiler that
was practically useful. This is where the compiler is up to now, it’s
four times faster for the bytecode benchmark and twice as fast for
the send benchmark than the interpreter. The only algorithm that’s
more complex than a tree traversal is the colouring register
allocator. That such a simple compiler could be so much faster than
the interpreter was easy to predict initially by looking at the
performance of traditional JITs, which cannot use any complex
optimisations because they cannot afford long compile time pauses.

From the minimal practical compiler, I broke out a minimal
testable compiler which was the first thing built. The minimal
testable compiler just compiles an iterative factorial method into
assembly which was then assembled and linked to a C driver
routine. The next iteration added a register allocator and some
performance tuning to instruction selection to use some addressing
modes. Then I started compiling directly to machine code and
running the generated code inside the same process that was
running the compiler.

This little compiler could then be extended by adding language
features and optimisations. It is the core of the minimal useful
compiler. The overall architecture is there, all the phases exist in a
nontrivial form. Building up towards the basic minimal compiler is
now just work and keeping control of the details. It’s a recursive
process that’s re-entered in the section “Later Design”.

Breaking down large tasks is critical. There are too many details
to keep straight. Stuff that isn’t important at the strategic level
because it definitely can be made to work can still cause crashes or
wrong answers. Making a task breakdown is often enough design
to safely begin implementation.

At the beginning a brief project plan is useful to plan just enough
to see that the project is worth starting, however, justifying a large
project by its end goals is a mistake. Ideally each iteration should
pay for itself. [9]

Testing and Small Steps

The main benefit of tests is the ability to work in very small chunks.
It’s possible to write (or modify) tests one evening then modify the
code later. It’s very easy to pick up coding on a broken test.3

Exupery is written using two separate test suites; each has almost
complete test coverage. The programmer tests are unit tests with some

2 Common case might just mean any code path that’s ever been called. There is a lot
of code generated for cases that are not expected to happen but theoretically might.
For eample, the integer addition code includes a full message send just in case the
arguments are not integers or the addition overflows. Moving type checks and
tagging out of the common case code and into the return from an uncommon send is
a simple and effective optimisation, it just needs the level of abstraction.

3 This is vital for hobby projecs where 2 full days in a row is rare (there's always something
else to do in a weekend) and very nice for professional work where distractions from
coding are often unavoidable (live customer problems, meetings, whatever).

9

overload issue 69 october 2005

code integration tests thrown in, they will never crash the
development environment. The customer tests compile and run
example fragments4 which can crash the development environment
if they generate faulty programs (programs that corrupt memory etc).

When writing code to extend the language coverage, first I write
some customer tests while figuring out what all the special cases
are for the new statement. Then I’ll run them, they break. Then it’s
time to write programmer tests to drive the implementation. The
programmer tests drive the implementation of the language feature
for each component. For a new integer operation this will start with
byte code reading, then intermediate generation, then adding the
new instruction to the back end. One the tests have been written,
it’s possible to focus on the details without needing to keep the
entire picture in mind all the time, if a critical detail is ignored the
tests break. Tests specify behaviour precisely enough to allow it to
be safely ignored, this reduces the amount that I need to keep in my
head, which allows me to work with smaller chunks of time.

Just having a customer test suite that compiles and runs programs
is not enough. There are too many ways to implement, the test that
drives development should provide the direction to develop. The
test will often be written one evening, and the code a few days later,
therefore the test must carry the subtlties to be implemented because
short term memory cannot.

Debugging and Reliability

Debugging can be a major problem because bugs usually show
up when you run a compiled program and it crashes (or produces
the wrong answer). The first stage is figuring out why the
generated program is crashing. Then figuring out where the bug
is in the compiler, which is non-trivial because one stage may be
failing because a previous stage did something unanticipated.

Reliability is a big problem when writing a compiler, there is a
lot of functionality, and every user visible action involves most of
the compiler, including several complex algorithms . Thus tracking
down a bug can be a lot of work, because first it must be found in
the compiled code, then it must be traced back though the compiler.
Even when compilation fails it’s often not clear which stage is at
fault, is the register allocator failing because it’s complex and still
buggy, or is the input invalid because of an upstream bug?
Reliability is a key issue for compilers, not just because it’s better
not to have real compiler bugs, but also because it’s easy to lose
control of quality. They are too complex to debug into shape if
the quality ever drops.
Non-deterministic bugs are surprisingly easy to create. First
because analysis algorithms may only exhibit a bug on one
ordering (iterating over hash tables can make order
nondeterministic) – the order isn’t important for correctness, but
it can expose or hide bugs. Having a large automated test suite
and running it frequently makes intermittent bugs obvious as the
suite will only sometimes fail or crash.

Large test suites help to ratchet up the quality. By keeping all the
tests passing it’s easy(ish) to avoid introducing new bugs. Adding
more optimisations however adds more ways for subtle bugs to creep
in as there are more ways for features to interact. Optimisations require
more customer/integration tests to get the same level of coverage.

Originally I thought that I’d need to run my acceptance tests in
a separate forked image to make it safe. The customer tests run
generated machine code which can crash the development

environment. Having your development enviroment which includes
the editors and debuggers crash regularly during development is
painful. Forking separate processes hasn’t been necessary, manually
identifying the crashing tests from the stack trace when it crashes
and throwing an exception at the beginning of the crashing tests has
proved enough. It’s very unusual for a lot of tests to be broken for
a long time. The programmer tests keep the quality high enough
that unexpected customer test crashes are sufficiently rare.

It’s important to be able to quickly fix broken tests. The code
would get very brittle because it would take too long to debug if
any test started failing. Knowing that all the tests passed recently
reduces the amount of code that could have introduced a bug and
thus the time required to fix it.

A Little Duplication

Often there isn’t a clear right way to factor (erm, design) some
code but it is painfully clear that the current structure is
inadequate. Sometimes there are obvious small improvements
that we can make but there are still cases where there isn’t an
obvious way to improve the structure. There it’s worthwhile to
introduce some duplication.

A common case is test code, what should vary between the tests?
What should be factored into helper methods and hidden? There’s a
cost, more context is needed to read the method, if it’s reused this is
a big saving. Copying and pasting the first test 10 times, changing the
parts needed, then refactoring away the duplication has worked well.

Intermediate creation and assembling are good examples in the
production code, both have an involved detail driven design which
evolved through refactoring. The initial duplication provided the
environment to find the right structure, then refactoring
consolidated the winning design features.

One big problem with intermediate creation was finding a design
that was both clean and easy to test without duplication in the tests.
The obvious way to test intermediate creation is to compile short
methods into intermediate then check that the intermediate
generated is correct. The problem is the basic intermediate building
blocks such as integer tagging are repeated, making them very hard
to change without needing to change a lot of tests.

My first approach was to break the intermediate generator into two
objects, the first handling the higher level logic and the second
handling the repeated low level operations. This helped, but there
was often too much code in each test. The next insight was to make
the intermediate emitter mock itself by having an instance variable
that normally just impersonated self (this in C++). This provides a
flexible recursive way to test intermediate emission. A message can
be sent either to self (included in the test) or to the mockable instance
variable (which is normally the same as self). This provides enough
flexibility to test any part of intermediate generation in isolation.
Testing components in isolation requires very decoupled design.

A little duplication is often a good thing, especially when there
isn’t an obviously right answer and a better design is obviously
needed. The duplication allows the code to evolve in different ways
without being overly constrained with the requirements from
elsewhere. Duplication and copy and paste programming makes
experiments with design cheap. Refactoring will remove the
duplication later, once the kernel of a design has been found. Tests
over the duplicated code makes it safe to refactor once a decent
structure is found. Refactoring away the duplication is likely to
refine the design as it needs to generalise to deal with more
solutions.

4 There are also performance tests, but their use is separate, they do not check
correctness.

10

overload issue 69 october 2005

Refactoring and Architectural
Correctness

Large refactoring often involves moving temporarily away from
architectural correctness.

For instance, there are two different, and both correct, ways of
generating expressions in a simple intermediate language. Either
expressions are written in trees representing the abstract syntax tree,
or individual sub-trees are written out sequentially as a list.
Eventually the code will end up as a sequential list, but the tree form
provides a lot of cheap and simple manipulative power (the tree
optimisers). Either has obviously correct semantics but mixing them
arbitrarily will produce bugs when side effecting expressions are
executed in a different order.

Who is responsible for unique execution of expressions is a
similar problem. The expression array at: anExpression

uses anExpression multiple times. First to type check it (is it an
integer), then to lower range check it (is it greater or equal to 1),
then to upper range check it, then finally to index into the array. Is
anExpression responsible for returning a register in case it’s used
multiple times or is #at: responsible for placing the result in a
register before using it multiple times?

In both cases I’ve switched from one architecturally correct style
to the other. The simplest way to work is to generate code adding it
directly to a basic block and make each expression responsible for
returning a register which is given to any expression which receives
its result. This is very easy to test – check that all results from
expressions are either a literal or a register. However tree optimisations
require expressions in trees so they can optimise operation sequences
across bytecodes (high level tree optimisations). Also it’s slightly more
optimal to make the user responsible for uniqueness because then
larger trees are formed to feed into instruction selector.

The problem is, when refactoring from one style to another, there
will be a noticeable time when the entire system is broken. Either
format in both cases is correct but half and half is always wrong
although it may work sometimes. But to refactor, we should be
moving in small steps keeping a working system. Breaking the
system provides a lot of tactical guidance (fix what’s broke until
everything works again).

Here, there’s a key difference between having strong guarantees and
having all tests pass. The strong guarantee is the reason to believe the
current tests are sufficient. If all tests are passing and they are good
enough to provide a strong guarantee then the program should be bug
free. Finding strong guarantees is definitely a heavy thought activity,
closer to Dijkstra than TDD is normally portrayed. An architectural
refactoring will often need the the test suite to be changed, not to make
it pass again, but to make it cover the new design well enough.

Later Design

Design after the project has started is building the understanding
needed to make decisions when required. It’s best to make major
decisions by deferring them to the last possible moment, but
that’s the wrong time to build the understanding required to make
them.

Later design involves exploring how different infrastructure
investments produce different performance improvements. The
tactical decisions will be driven by specific benchmarks, but
choosing which benchmarks (and tests) will drive is important. Also
looking for powerful combinations that enable a lot of later features
to be easily implemented is important.

When key decisions need to be made early it pays to make them
by default, say by ignoring the cost of moves and registers
knowing a colouring register allocator can clean this up. It’s
important to do the thought experiments to know that there are
good ways to solve the problems when they come up.

Many design decisions are easy to make at the right time but
some are not. The best that I can do is guess which decisions need
thought then start thinking and reading about them preferably well
before they really need to be made.

Often the key long term decisions are attempts to find optimal
and minimal sets of optimisations – to find the different hills. Key
questions worth thinking about are:
● What is the minimal infrastructure needed to compete with C in

speed for most programs?
● What is the minimal infrastructure required for high speed

floating point and what is required for a useful floating point
speed improvement?

● What is the minimal system that is practically useful and worth the
risk of using for real production use for any major market segment?

There are some features that are worth investing in because they
will take us to a better hill. Dynamic inlining is the ideal solution
to common message sends as it makes common sends nearly free.
Building a decent optimisation framework will make a lot of
serious classical optimisations very cheap to build. Often key
pieces of infrastructure can not be justified by their first use
(register allocation could be) but are still worth building.

Register Allocation, the First Big
Piece of Infrastructure

Why choose to use a colouring register allocator?
1. Removes complexity from the front end
2. Hides two address operations from the front end which both

simplifies the front end and makes it more portable
3. Provides an efficient general solution
4. Not optimal for the x86 without using very sophisticated

solutions because of register pressure due to only having 6-7
usable registers, however, move coalsecing is very useful to
avoid the front end needing to know about 2 operand addressing.

I chose to implement a naive register allocator first then evaluate
whether it was worthwhile to use a complex colouring allocator. I
also made design decisions heavily favouring a colouring register
allocator by ignoring the cost of moves and registers in the front
end. The rest of the code was designed to work well with a
colouring register allocator but debugged with a very simple
allocator. This meant that when writing the allocator it was much
easier to debug because the rest of the initial compiler was
written and tested. Delaying the final decision to implement
meant that when I did implement I was sure it was necessary
rather than just relying on a (correct) guess.

The colouring register allocator was the first, and currently only,
complex algorithm in Exupery. It was in the initial design but not
implemented until the second iteration. The first iteration compiler
was very slow, it assumed that there was a good register allocator
that would remove unnecessary moves and efficiently allocate the
remaining registers. The colouring register allocator was needed to
make Exupery faster than the interpreter.

The register allocator serves to hide most of the oddness of the
x86 from the compiler’s front end. It cleans up the moves introduced

11

overload issue 69 october 2005

to fake 3 operand instructions and removes most of the short lived
temporaries used to by general code sequences in the front end.

At what stage is it justified to introduce a complex register
allocator? The choice is either a single complex register allocator
or adding a lot of complexity to the front end of the compiler to
minimise the use of registers and move instructions generated.

Design Lock In, Assumptions Can
Spread

Good design is keeping each decision in its own module so that
each design decision can be changed independently.
Unfortunately, a very usefully made decision can leak as the rest
of the system starts to rely on it.

A separate version of the #at: primitive is now compiled for each
receiver. This enables some code to be calcalated at compile time
rather than run time. This means that the versions of the #at:
primitive that are used for getting characters out of strings are
compiled into different methods to the versions used to get objects out
of Arrays. Squeak only uses one primitive for all common #at: calls.

Compiling each form of #at: efficiently is fairly easy but
creating a single implementation that deals with all cases is hard.
A case statement would be needed for the type of the receiver which
adds to the overhead. As the compiler inlines calls to #at: it would
mean that every call would have code for every kind of optimised
#at: implementation.

Compiling a different method for each receiver also allows the
compiler to calculate the offset where indexed variables start.
Objects in Squeak start with some named instance variables then
may have indexed (array) instance variables afterwards. This way
a simple array can be implemented as a single object, the named
instance variables contain any bookkeeping the class needs, and the
indexed instance variables contain the array data. It’s a space
optimisation from the ’70s, changing it would be a lot of work and
would also make it much harder for people to use Exupery.

The array #at: primitive in Squeak looks in the class to find out
how many named instance variables the class has, looks at the
object to find out how big it is, range checks, then does the lookup.
By specialising for each receiver class we can avoid all overhead
from having a variable number of named instance variables. The
primitive code can also ignore all the other implementations of
#at: in the system because they are sent to other classes, a
bytecode implementation needs to deal with this type checking.
However, having a separate compiled representation for each
receiver type opens up the possibility of inlining self sends with no
run time overhead, because the receiver type is known at compile
time. As more code starts to rely on the receiver type being known
at compile time then this decision will slowly get locked in.

The register allocator has been locked in by a similar process. The
front end assumes that registers and move instructions are free.
Switching to a simplier register allocator would involve a lot of rework
for the rest of the compiler to avoid generating wildly inefficient code.

How Should Compiled Code
Interact with Objects?

Compiled code often needs to refer to objects in garbage
collected object memory (the image). This is tricky because
objects may be moved on a full garbage collect as the garbage
collector will compact memory.

The current solution is naive but it works. There is an array of
objects which the VM has a pointer to. Compiled code accesses

objects indirectly through this array. This way there is only one
pointer that needs to be coordinated with the compacting garbage
collector. It does add an extra level of indirection to every object
access. These accesses happen during the method entry code and
also during an inlined primitive.5

Ideally, it would be nice to be able to hard code a pointer to an
object in the compiled code. However if there is a garbage collect then
the object may have been moved leaving a dangling pointer, unless
something is done. There are two options, either update all the pointers
to objects in compiled code, or discard all the code in the code cache
(flushing it). Code can be regenerated dynamically, so throwing it
away is a simple and viable solution to managing dependencies.

If there weren’t pointers from objects into the code cache then
discarding all the code would be a very simple operation.
Unfortunately CompiledContexts (stack frames) contain pointers
into the code cache which make it very quick to perform returns.
The pointer is the machine code return address. There is also a
dictionary (hash table) used to look up compiled methods. Another
option to speed up sends and returns would be a send cache [2]
which is more complex but the contents could easily be discarded.

Luckily, Squeak objects have a few common classes encoded
directly into the header in a 5 bit field. This means that type checks
will be fast for common operations such as arrays. Having three
different encodings for classes (SmallIntegers, compact classes
using the bit field, and classes requiring a pointer to the class) is
unfortunate when implementing fast sends or general type lookups.

My first cut simple approach of using indirection through an
array turned out to be good enough especially with a simple
optimisation relying on the compact class encoding. This will make
it a little harder to eliminate compact classes (it could be done in a
few lines of Smalltalk). A better solution may be needed sometime
in the future but there is no urgency.

Making Exupery Practical, the
Current Design Problem

Making Exupery practical is the current major strategic problem.
The basic requirements have been met, Exupery is four times
faster for the bytecode benchmark and two times faster for the
send benchmark. Most of the implementation is solid and the last
few pieces of scaffolding (early implementations that were too
naive to be left in but allowed other parts to be built properly)
have been removed.
The goal is to provide a good useful speed improvement for normal
code. Fast benchmark performance is nice, but it doesn’t guarantee
a useful speed improvement for general code especially when only
a few benchmarks are used. That a lot of the inner loop methods
have been rewritten in Slang6 or C doesn’t help, because it removes
a lot of the easy methods which Exupery could have optimised.

The issues stopping usefulness are bugs, driving the compiler,
and missing features. When compiling code outside of the test suite
it’s still too common to run into bugs, to be generally useful it must
be trusted, preferably to compile anything at any time. Driving
dynamic inlining manually is not pleasant, you need to specify what
sends will be inlined and with what receivers. There are also
probably a few missing features, for example, blocks (closures)
5 A send to some primitive operation that isn't implemented in Smalltalk, either

because it is a basic operation or for performance.
6 Slang is the language that the Squeak interpreter is written in. It is a cross between

Smalltalk's syntax and C's semantics. One advantage of Slang is it's possible to debug
the interpreter in Squeak before compiling down to C. It also provides a clean way of
writing primitives to speed up slow loops from code that was originally Smalltalk.

12

overload issue 69 october 2005

might be needed, or support for more of the super extended
bytecodes (bytecodes that have an extended argument field).

There are a host of small issues, including bugs when compiling
things that have never been compiled before, and small features that
will really matter if the compiler is running in a background thread
automatically compiling methods. For instance, compiled code does
not listen for interrupts, so it can not be aborted and compiled code
can not currently be single stepped.

Most of these issues are small, the key decision is figuring out what
needs to be done for the compiler to become practical. That’s best done
incrementally by fixing the current most obviously limiting problem
until it isn’t a significant problem. These kinds of problems are best
solved with plenty of feedback by fixing one then re-evaluating.

Inlining and Polymorphic Inling
Caching

Send performance is critical to high performance Smalltalk. One
current goal is improving the general send performance. This is
building towards full dynamic inlining.

Dynamic inlining is strategic, because it changes both how the
compiler is used and also the overall cost structure. Dynamic
inlining makes common sends free, this means a lot of optimisations
to work around slow sends can be removed.
The phases are:
1. Polymorphic Inline Caches
2. Specialised Primitives
3. Inlined Specialised Primitives
4. Inlined General Methods

The breakdown was to get a useful speed improvement as early as
possible and also to make the individual sections as short as possible.

Polymorphic inline caches provide two things, first they provide
a fast form of sends, second they provide a way to get dynamic
type information. Dynamic type information may be required to
drive inlining7.

Specialised primitives are compiled versions of a method
containing a primitive. They are compiled for each different
receiver type, this allows the compiler to generate custom code for
each implementor. They need PICs to make the sends fast enough
to compete with local implementations.
While having fast primitives with fast sends to them is nice, it’s
still not as quick as a specialised version of the message (say
#at: and #at:put:). One way to speed them up further would
be to inline the primitives. Specialised inlined primitives are very
nice because they provide a generalised framework to speed up
many primitives to the same levels that the basic integer
operations enjoy. The type feedback means that your method
dynamically gets the right primitives inlined rather than a specific
one chosen by the VM implementor. It’s also a building block
towards full inlined primitives.

Specialised inlined primitives was the last thing added to the
breakdown. They change the shape of the breakdown because they
remove the need for PICs to get inlined primitives working. There’s
still a practical issue that non-inlined primitives will be slower,
compiling shouldn’t make code slower, even temporarily (at least
until compilation is automatic). The idea of specialised inlined
primitives didn’t occur to me until after I’d implemented PICs and

specialised primitives. Insight is nice but it doesn’t necessarily come
at the right time.

It could be argued that it would have been better to go straight for
profile driven inlining rather than using PICs. With hindsight, and
original foresight, just using inlining might have been better than
beginning with PICs, because inlined primitives were needed to
regain enough #at: performance. This would have involved finding
a way to inline #at: methods without using PICs to get type
information, instrumenting a compiled non-PICed specialised
primitive might have been possible. The problem is it would have
been much slower after the first compile but before inlining. Whether
this would have been tolerable is hard to say (without having
dynamically driven inlining to perform real empirical experiments)

Design as Reading, Writing and
Discussion

A lot of initial design work involved reading around the field,
there’s a lot to know - from modern CPU architecture to the two
main compiler approaches that it’s based on (Self and
classical/SSA optimising compilers).

Moving into new areas also will bring on a lot of design by
reading. Adding a solid optimiser will involve hitting the books.
My current feeling is using SSA from the beginning makes
sense, it’s not that much more complex (and probably simpler
including a basic optimiser) than building a traditional dataflow
analyser.

Documentation is something that you shouldn’t do too much of
on an agile project because demanding documentation increases the
cost of change. Agility is producing a low cost of change instead of
guaranteeing a perfect result first time. But some is helpful.

One group of documents that’s always worth having is those that
pay for themselves in writing. Writing is a good way to regain the
big picture. Writing can be a good way to have a conversation
without anyone to talk to, it’s a form of documentation that’s more
valuable for single person projects than larger projects where there
are other people to talk to.

Open source projects also have interesting documentation
requirements. The teams are dispersed with different goals and
sources of funds (often people’s hobby and education time). Being
developer driven, documentation often suffers (though commercial
development is often undocumented for very similar reasons). But
being made up of geographically and organisationally diverse groups,
having decent documentation is a serious asset. A key reason is to
minimise the amount of time needed to come up to speed on a project.
There are a lot more people who have a few weekends available than
a few months. But there have to be sub-projects available that could
be done by a new person in a few weekends.

Critical reading is essential, the only way to work effectively is to
build from experience in literature. There is the trap of implementing
something that only works on paper and not in code. Writing is very
useful for a single person project because it replaces conversations
with peers who are knowledgable about the projects specifics.

Conclusion

Both theory and incremental design are invaluable tools when
writing a compiler. Incremental design provides a great way to
understand how to apply theory, and also the means to escape from
theory’s traps where things work brilliantly, but only on paper.
Thinking and doing at the same time, or very closely interwoven, is

7 It can also be obtained by profiling if the profiler records a method and its receiver as
well as its sender. this may not be enough for some primitives which is partially why I
originally decided to implement PICs. [concluded at foot of next page]

13

overload issue 69 october 2005

a critical technique when working on software in an area with a lot
of design literature, especially when lacking first hand experience.

Using a simple solution to a sub-problem at a minimum enables
everything else to be debugged separately to the complex solution.
Often the simple solution is enough.

Breaking large problems down into smaller ones that can be
solved individually is vital to keep the risks low [8] and also
because, often, the experience of building the component is required
to understand how to design it.

The major goals of the project were valuable for providing
consistency and focus, but have yet to become useful when
justifying the time spent so far because they are too far away. The
short term rewards have been enough to make it worthwhile but
they do change, at the beginning working on a hard problem really
deepens understanding, as the project progresses community
membership becomes more important.

Bryce Kampjes
bryce@kampjes.demon.co.uk

References

1 May, C. Mimic: a fast System/370 simulator., 1987 Symposium on
Interpreters and Interpretive techniques.

2 Deutsch, L. Peter, Schiffman, Allan M. Efficient Implementation of the
Smalltalk-80 System, Principles of Programming Languages ? 1983

3 Appel, Andrew, Modern Compiler Implementation in C, 1998,
Cambridge University Press

4 Holzle, Urs, Adaptive Optimization for Self: Reconciling high
performance with Exploratory Programming, 1994, PhD Thesis

5 Chaitin, M.A., Register allocation via coloring, 1981, Computer
Languages 6, pp. 47-57

6 Briggs, P., Register Allocation via Graph Coloring, 1992, PhD from
Rice University

7 George, L. and Appel, A. W., Iterated register coalescing, 1996, ACM
Trans. on Programming Languages and Systems 18(3), pp. 300-324

8 Henney, K., Stable Intermediate Forms: A foundation Pattern for
Derisking the Process of Change, Overload issue 65 February 2005

9 Beck, K. and Fowler, M., Planning Extreme Programming, 2001,
Addison-Wesley

Vorsprung Durch
Testing

by Kevlin Henney

At times it might seem as if the T in TDD stands for Trendy, but
there is more to Test-Driven Development than just a statement
of fashion. There is also more to it than just testing.

It is possible to identify a subset of three motivating practices in
TDD that characterise a fairly conventional and uncontentious form
of unit testing [1]: programmer testing responsibility, automated
tests and example-based test cases. These form a unit-testing base
that can be employed in the context of both static and agile
development macro processes, and were motivated and
demonstrated previously on the humble but surprisingly rich
example of a sorting function in C [2]. Thus, programmers are
responsible for unit testing their work, with system-level testing a
separate and complementary role and activity; tests should be
executed automatically — execution of code by code — rather than
manually; tests are black-box tests expressed as specific examples
of typical or edge cases of using the unit under test.

The next step is to recognise that effective testing can be more than
just bug hunting. In TDD unit testing helps to support and drive design,
and vice-versa. Three more practices can be identified that build on
the core unit-testing foundation to provide us with a micro-process
component that also supports design: active test writing, sufficient
design and refactoring. These design-focused practices expand the
role of the basic unit-testing practices: examples drive the scope of
design [3], programmer responsibility extends to the suitability and
quality of code over time — not just at a single point in time — and
automation underpins the practical execution of this approach.

Active Test Writing

Black-box testing by example is not just limited to exploring the
correctness of an implementation against an interface contract: it
is also useful for framing and presenting it, and for formulating
and exploring the contract itself. In other words, design.

Passive testing is essentially the process whereby the feedback of
tests is limited to defect detection. Tests are typically written some

time after the code they test, where they play what is essentially a
destructive role: they cannot confirm total correctness, only the
presence of incorrectness. Although such an approach to testing has
obvious value, it can encourage an approach to both design and testing
that is overly formal and sequential. The opportunity to learn about
what is being designed, and how to design it better as a whole, is
missed [4]. Defects lead to localised fixes, but the test-writing process
does not influence the key decisions in a design, which in effect is
considered frozen. The feedback loop is too long, so there is less
motivation to change things because of the feeling of “what’s done is
done”. The code has effectively gone into conventional maintenance
mode early, even though initial development may be ongoing.
Active test writing adopts a more balanced perspective, using the
act of test writing as a creative exercise to balance the more
destructive intentions of test execution. Tests represent a first
point of use of an interface, and the ease or difficulty of writing
test cases gives instant feedback on the qualities of the interface
and the implementation behind it.
High coupling manifests itself in tests that are difficult or — in
simple unit-testing terms — impossible to write. For example, an
object that depends on data that could be passed in, but has instead
ended up being coupled to a configuration file or registry, a database
connection or some global variable (whether expressed obviously as
such a variable or disguised as a singleton object).

Low cohesion manifests itself in supernumerary test cases that test
quite unrelated features, suggesting that inside a given unit there are
smaller units struggling to get out. For example, the standard C
realloc function expresses three quite distinct behaviours: malloc,
free and, err, realloc [5]. The standard java.util package
contains miscellaneous unrelated facilities — collections, event-
handling models, date and time handling, internationalisation features...
and further miscellaneous miscellanea. It also stands as a caution to
anyone who might consider util, utils, utilities, utility, etc,
to be a clear and cohesive name for a header, a package, a library, etc.

In terms of organising the active part of active test writing, there
are many options. The bottom line is that writing of test code is
carried out in close proximity — both space and time — to writing
of production code. The writing of test cases and corresponding

[continued from previous page]

14

overload issue 69 october 2005

implementation can be interleaved, with one following or
preceding the other closely, or stepped a little further apart. Being
able to write a test case first is a useful and helpful discipline, but
only dogma would suggest that its exclusive use is an absolute
requirement and a necessary prerequisite of TDD. However,
although writing test cases much later than the target code can
work, both the quality of the feedback and the motivation to do so
is weaker.

Sufficient Design

This continuous and reflective view of design at the code face
may raise another question in some minds about the whole
nature of developing iteratively and incrementally: why not just
“do the right thing first time”? Perhaps surprisingly, I have
heard this question posed as a serious criticism, but the question
itself raises more questions about the meaning of the question
and the questioner’s assumptions than it does about agile
development techniques at any level. It assumes that the “right
thing” is in some way knowable “first time” and constant
thereafter. However, the “right thing” is dependent on time and
is anything but constant, so both “right thing” and “first time”
lose their simple interpretations. The learning nature of software
development pretty much guarantees that the knowledge of what
it is to be built and how it can be built are moving targets. While
they may not necessarily be wild and erratic, their variability
stands to undermine any approach that is based on constancy
and precognition. The difference between a process with no
variables and one with some is the difference between defined
and empirical processes. Treating an empirical process as a
defined process is a problem waiting to happen [6].

Yet there can still be a lingering sense that sorting everything
out up front is both reasonable and do-able, leading one way or
another to a big up-front design (BUFD) phase (see sidebar, “Big”,
as in “a Lot of”, not just “a Bit of”). This inevitably leads to
overdesign. Design based on assumptions that turn out to be
incorrect needs to be reworked, often quite late. Design that tries
to tackle uncertainty by being less specific becomes lost in
technical detail focused on generality rather than on the actual
problems that need to be addressed. At the opposite end of the
spectrum is no up-front design (NUFD), which represents a failure
to exercise, in a timely manner, even the most basic knowledge
about what is to be developed. An approach based on a view that
accepts change but seeks stability is likely to be a more reasoned
one, albeit a little rougher in its detail up front, where roughness
implies sketched rather than shoddy. An approach based on what
I have referred to in recent years as rough up-front design (RUFD)
can steer this middle path. Establish a stable baseline architecture
that expresses a common vision and a sketch of what is to be
worked on, without wasting time on details that are better
expressed and handled in code or that are best left until more
concrete knowledge is available. Note that stable is not the same
as static, so the architecture is open to change rather than being
frozen. This approach can also be dubbed sufficient up-front design
(SUFD).

Sufficient design in TDD manifests itself in test-bounded
design increments, where tests describe the scope of what is being
worked on at any point in time. This moderates creeping
featurism, cuts extraneous code and encourages incremental and
measured progress. Active testing supports the goal of sufficient
design by keeping the role of functions, classes and packages

“Big”, as in “a Lot of”, not just “a Bit of”

It is worth clarifying what BUFD (or BDUF, as it is also known)
entails, because this appears to be an occasional source of
confusion. For example, misunderstanding its meaning can lead to
proclamations such as the following [9]:

I can’t tell you how strongly I believe in Big Design Up Front, which
the proponents of Extreme Programming consider anathema. I have
consistently saved time and made better products by using BDUF and
I’m proud to use it, no matter what the XP fanatics claim. They’re just
wrong on this point and I can’t be any clearer than that.

And, to demonstrate the point, Joel Spolsky makes available for
download a so-called functional spec of a commercial product,
codenamed Aardvark. However, the deeds do not support the words.
The document may have been written up front, but hunt all you like
for big design because you won’t find it. Strong belief and pride
appear to have clouded correct use of accepted terminology.

The accepted archetype of BUFD arises from the strict waterfall
approach of defining development as a precisely phased pipeline of
activities, so that requirements analysis strictly precedes design activity,
which strictly precedes coding, which strictly precedes testing. In a bid
to reduce risk from unknowns later in the lifecycle, a BUFD approach
doesn’t just do a bit of design up front, it does a lot. Hence the use of
the term big rather than a bit of or some. The BUFD path is paved with
good intentions — even if somewhat suspect — but the idea is that the
design goes into a lot of detail, specifying internal structure to the nth
degree — from packages and classes right down to private methods
and private data. In essence, a blueprint that supports a plan-driven
model of development.
However, at the beginning of the Aardvark spec is the following note:

This specification is simply a starting point for the design of Aardvark
1.0, not a final blueprint.As we start to build the product, we’ll discover a
lot of things that won’t work exactly as planned.We’ll invent new features,
we’ll change things,we’ll refine the wording,etc.We’ll try to keep the spec
up to date as things change. By no means should you consider this spec
to be some kind of holy, cast-in-stone law.

So, of all the things this spec might be, a big, up-front design
document is not one of them. It makes this quite clear to the reader
by describing itself as “a starting point for the design” not “the
design”. Reading further into the spec uncovers frequent use of
words such as “maybe”, “probably” and “possibly” to describe
certain technical decisions. And then there is the length of the
document itself: twenty pages. When you strip away the
extraneous details, such as the front cover, preamble and the neo-
Hungarian coding conventions, you are left with a shorter
document that outlines some of the core requirements, proposes a
user interaction model and sketches a few features of the
architecture. The document is also not heavy on text and is fairly
generous with its use of spacing. Whichever way you look at it,
this is not big design. Which all comes as a welcome relief, but
does rather undermine the claim of its author.

Advocates of genuine BUFD would regard the Aardvark spec as
incomplete and insubstantial, lacking detailed specifications of code
structure or the look and feel of the application. They would tar it
with the same brush that the article uses to daub XP. I believe that
the contrast the article is trying to make is to compare no up-front
design with some up-front design, not with big up-front design. Joel
Spolsky is actually advocating a design approach based on
sufficiency, exploration and incrementalism. So although he may not
be on the same page as XP advocates, he is many pages short of being
a fully paid-up BUFD practitioner.

15

overload issue 69 october 2005

clearly defined. Tests bound the functional behaviour of these
units, keeping them ‘honest’ with respect to their current role in
the enclosing system.

Driving the design from the baseline architecture through tests
leads to more cleanly separated units with a close dependency horizon
(a dependency occurs where one unit, e.g. class or header, depends on
another unit for its definition, e.g. inheritance or inclusion, and the
dependency horizon for a given unit is where its dependencies end,
i.e. where its immediate dependencies, and their immediate
dependencies in turn, and so on, have no further dependencies). Of
course, there needs to be some coupling at certain levels otherwise,
by definition, no coupling results in no system.

Refactoring

Mrs Beeton’s Victorian domestic advice [7] is surprisingly
relevant to modern code:

A dirty kitchen is a disgrace to all concerned. Good cookery
cannot exist without absolute cleanliness. It takes no longer to keep
a kitchen clean and orderly than untidy and dirty, for the time that is
spent in keeping it in good order is saved when culinary operations
are going on and everything is clean and in its place. Personal
cleanliness is most necessary, particularly with regard to the hands.

This is the very motivation and essence of refactoring.
Refactoring preserves the functional behaviour of a piece of code
while changing — and, one hopes, improving — its
developmental qualities. Refactoring is a stable and local change,
typically motivated by a required change in functionality.
Operational behaviour, such as performance or memory usage,
may change, but improvement of operational qualities rather than
developmental qualities is the focus of the similar but distinct
activity of optimisation.

Changes to functionality may follow the line of the existing code
easily, requiring no more than a consistent extension or in-place
modification of the code. At other times a change in functionality
may also suggest a change in implementation of an interface. An
existing implementation may be OK in other respects, but may
support the functionality change poorly, requiring undue effort to
implement it. For example, the need to perform general date
arithmetic on an existing date representation that favours
presentation over calculation, such as YYYY-MM-DD, suggests that
a change in representation may be appropriate before extending the
functionality [8]. Alternatively, the quality of an existing piece of
code may generally be poor, caught in a tangle of spaghetti flow or
spaghetti inheritance. For example, a self-aware class hierarchy,
where the root of the class hierarchy depends on other classes in
the hierarchy, can be a troublesome knot in the dependency graph
of a program, rather than an exemplary pattern to be followed
elsewhere.
Refactoring acknowledges that we can lay down code in
confidence but still learn better ways of achieving the same end.
Indeed, it is more than this: the learning is not simply passive; it
is put into practice and draws from practice. Of course, there is a
risk that making such a change is not necessarily an
improvement: any modification runs the risk of introducing a
bug. Therefore, practise with a safety net: refactoring should be
undertaken with a clear head, with another pair of eyes, with
tools, with tests, or with any suitable combination of these. In
the context of a test-driven approach, test cases offer a

regression test suite that act as a baseline for both refactoring
and optimisation.

Given that the inevitability of change is one of the few constants
in software development, this active acknowledgement and positive
support of change through tests is reassuring. Refactoring is the
other side of the design coin from what we might consider to be
prefactoring. Refactoring adjusts the design vision and detail after
the fact to balance the formulation beforehand.

Test Match Report

Test-Driven Development is a bar-raising, learning process.
Removing the tests leaves the safety net at ground level and
knowledge localised, isolated and transitory. A TDD approach
offers more than just a pile of tests: it offers specification as well
as confirmation. Both of these reasons are sufficient to justify
writing tests that sometimes apparently test the trivial. And
specifying even the trivial to be sure that it always works means
that regression testing comes for free as part of the deal.

Another consequence of TDD is the resolution of an imbalance
in the traditional view of testing. Testing is often characterised as
a destructive activity, and one that is predominantly quantitative in
its feedback. TDD makes testing a constructive activity, with
qualitative feedback on design, not just defect reports.

TDD is not a total process: you need other complementary
drivers to move development forward. For example, an incremental
macro process where each increment is scoped with respect to
functional or technical objectives provides a good backdrop to the
code-facing emphasis of TDD. Likewise, practices such as
reviewing, joint design meetings and continuous integration support
and are supported by TDD. It is also important to distinguish TDD
from XP: although historically it emerged from XP, TDD is neither
a synonym nor a metonym for XP. Implementing XP necessitates
employing TDD, but the converse is not true. TDD fits with many
different macro-process models. There are many more
programmers practising TDD in other processes than are using it
in a strict XP environment.

kevlin@curbralan.com
kevlin@acm.org

References

1 Kevlin Henney, “Driven to Tests”, Application Development Advisor,
May 2005, available from http://www.curbralan.com.

2 Kevlin Henney, “C-side Re-sort”, Overload 68, August 2005.
3 Brian Marick, Driving Software Projects with Examples,

http://www.exampler.com.
4 Kevlin Henney, “Learning Curve”, Application Development Advisor,

March 2005, available from http://www.curbralan.com.
5 Kevlin Henney, “No Memory for Contracts”, Application

Development Advisor, September 2004, available from
http://www.curbralan.com.

6 Ken Schwaber and Mike Beedle, Agile Development with Scrum,
Prentice Hall, 2002.

7 Isabella Beeton, Mrs Beeton’s Every-Day Cookery and Housekeeping
Book, Ward, Lock & Co Ltd, 1872.

8 Kevlin Henney, “The Taxation of Representation”, artima.com, July
2003, http://www.artima.com/weblogs/viewpost.jsp?thread=8791.

9 Joel Spolsky, “The Project Aardvark Spec”, August 2005,
http://www.joelonsoftware.com/articles/Aardvark

Spec.html.

16

overload issue 69 october 2005

Polynomial Classes
by William Hastings

A multivariate polynomial in several variables, for example,
7 + 4x2y3 – 5yz6, may be thought of as a polynomial in z with
coefficients that are themselves polynomials in x and y. These
coefficients, in turn, are polynomials in y with coefficients that are
polynomials in x. How can we implement this recursive definition in
C++? In this installment and the next we will explore two distinct
solutions. In the first solution the number of variables is built into the
definition of the class. In the second, the number of variables may
vary at runtime. Before proceeding, note that similar issues arise if
we define a multi-dimensional array as an array of arrays (which is
useful if the number of non-zero entries is relatively small).

The Straightforward Approach

If we know the number of variables at compile time, then the
overall structure of a possible solution is straightforward.
Suppose we define a template class

template <typename C> class polynomial {...};

where C is the type of the coefficients. This class is a container of
pairs of the form [power, coefficient]. For the polynomial above, we
have two pairs, [0, 7 + 4x2y3] and [6, –5y]. A polynomial in three
variables with numerical coefficients of type double has type

typedef class polynomial<polynomial<polynomial

<double> > > poly3_type;

A useful way to define poly3_type is:
typedef class polynomial<double> poly1_type;

typedef class polynomial<poly1_type>

poly2_type;

typedef class polynomial<poly2_type>

poly3_type;

We can write
variable_list<char> vars3("xyz");

poly3_type p(vars3), q(vars3);

p.read("5-3x^2y^4+x^3z^3");

std::cin >> q;

std::cout << "p has " << p.number_terms()

<< "terms.\n";

std::cout << "p+q=" << p + q << '\n';

Note that the caret (^) means exponentiation, so y^3 means y*y*y.
The role of class variable_list will be explained below.

Problems With This Approach

This approach works well, but there are a few problems to
overcome. First, suppose we want our polynomial class to have a
method that returns the number of terms. In our example
polynomial there are three terms. This is easy to compute – just
sum the number of terms in each coefficient:

template <typename C>

int polynomial<C>::number_terms() const

{

int count = 0;

for (const_iterator it(begin());

it != end(); ++it)

count += it->coefficient().number_terms();

return count;

}

Here, the method coefficient() returns a const reference to
the second element of a pair in our container. The problem is that
this code will not compile. Note that the call to number_terms()
inside the for loop is not a true recursive call. For example, if we
call this method for a polynomial of type poly3_type, then it
>coefficient() has type poly2_type and so we are calling
poly2_type::number_terms , which in turn calls
poly1_type::number_terms. It is this last call that causes the
problem, since now it >coefficient() has type double, and
type double has no method named number_terms.

There are at least three ways to deal with this problem. First, we
could use partial specialization to handle the end case. Having defined

template <typename C> class polynomial;

we can now define, for example,
template <> class polynomial<double>;

But this requires specializing class polynomial for each
possible numerical type, for example,

template <>

class polynomial<std::complex<double> >;

A better way is to turn this approach on its head and define the
partial specialization for the case where the coefficients are
themselves polynomials:

template <typename C>

class polynomial<polynomial<C> >

{ . . . };

With this approach, we have
template <typename C> class polynomial {

//Coefficients are numeric

public:

int number_terms() const {

int count = 0;

for (const_iterator it(begin());

it != end(); ++it)

if (it->coefficient() != 0)

++count;

return count;

}

//other methods . . .

}

and the partial specialization
template <typename C>

class polynomial<polynomial<C> > {

//Coefficients are polynomials

public:

int number_terms() const {int count = 0;

for (const_iterator it(begin());

it != end(); ++it)

count +=

it->coefficient().number_terms();

return count;

}

//other methods . . .

}

Using a Traits Class

The objection to this approach is that we must repeat all of the
code in the definition of the class and in its partial specialization,

17

overload issue 69 october 2005

even if the code is identical. A variant on this approach is to use a
traits class[1]. We define (for numeric coefficients)

template <typename C> class coefficient_traits

{

public:

static int number_terms(C const &c)

{ return c != 0 ? 1 : 0; }

//other methods . . .

};

As above, we need to specialize this for the case of a multivariate
polynomial:

template <typename C>

class coefficient_traits<polynomial<C> >

{

public:

typedef polynomial<C> coef_type;

static int number_terms(coef_type const &c)

{

int count = 0;

for (coef_type::const_iterator

it(c.begin());

it != c.end(); ++it)

count +=

it->coefficient().number_terms();

return count;

}

//other methods . . .

};

Then we can define number_terms() in class polynomial by
int number_terms() const {

int count = 0;

for (const_iterator it(begin());

it != end(); ++it)

count += coefficient_traits<C>::

number_terms(it->coefficient());

return count;

}

Of course, the traits class can be used to record other properties.
Suppose we have a template class called numeric_traits that
includes all the methods required for coefficient_traits with
definitions that are appropriate for most numeric types. Then we
define coefficient_traits by

template <typename T>

class coefficient_traits

: public numeric_traits<T> { };//Default case

Of course, we must provide a partial specialization for
coefficients that are polynomials:
template <typename C>

class coefficient_traits<polynomial<C> > {...};

We can also specialize as needed for numeric coefficients. For
example, to output the polynomial x – 3y, we need to know that
the coefficient of y is negative. (Otherwise, we would output
x + –3y.) Now for a coefficient c of type double, we can ask if
c<0, but not if c has type complex. Therefore, we include in
coefficient_traits a method

static bool is_negative(C const &c);

For C of type std::complex<T>, we can override this method
in an appropriate way.
One possibility is:

template <typename T>

class coefficient_traits< std::complex<T> >

: public numeric_traits<std::complex<T> >

{

public:

static bool is_negative(coef_type const & c)

{ return c.imag() == 0 && c.real() < 0; }

//other overrides

};

Numeric versus Polynomial
Coefficients – a Third Way

Let’s get back to our original problem, namely how to differentiate
between coefficients that are polynomials and those that are
numeric. Our third approach relies on the fact that in a template
class, a method that is not invoked must not be instantiated. With
this approach the method number_terms calls one of two methods
depending on the coefficient type. For this to work, the choice must
be made at compile time. To this end we use a technique described
in Alexandrescu’s book [2]. First an auxiliary class will be used to
distinguish the two cases:

template < bool b > struct Bool2Type { };

Now, define in class polynomial<C>
int number_terms() const

{

return number_terms(

Bool2Type<(nbr_vars==1)>());

}

int number_terms(Bool2Type<false>) const

{

int count = 0;

for (const_iterator it(begin());

it != end(); ++it)

count += it->coefficient().number_terms();

return count;

}

int number_terms(Bool2Type<true>) const

{

int count = 0;

for (const_iterator it(begin());

it != end(); ++it)

if (it->coefficient() != 0)

++count;

return count;

}

Depending on the type C, exactly one of the latter two methods
will be invoked; the other will not be instantiated, so there will be
no compile-time error. The compile-time constant nbr_vars has
other uses as we will see below. It is defined by

namespace detail

{

//Count the number of variables in a poly

18

overload issue 69 october 2005

template <typename C>//Base case

struct var_count

{

static const int nbr_vars = 0;

};

template <typename C>

struct var_count<polynomial<C> >

{

static const int nbr_vars =

1 + var_count<C>::nbr_vars;

};

}

and then in class polynomial<C>:
static const int nbr_vars =

detail::var_count<polynomial<C> >::nbr_vars;

In class polynomial most of the methods do not depend on
the coefficient type; for the few that do, I have used both the
traits class and method pairs using Bool2Type.

Variables

Before proceeding with how class polynomial is constructed,
we need to consider variable names and polynomials with
different numbers of variables. The representation of polynomials
we are examining here implies an ordering of the variables. For
example, we may think of p as a polynomial in y with
coefficients that are polynomials in x. Of course, we could just as
well think of p as a polynomial in x with coefficients in y. What
is essential, of course, is consistency. To compute p + q , for
example, we want p and q to have variables in the same order.
Furthermore, to simplify input it is useful to know in advance
what the variable names are.

Let’s put the responsibility for maintaining a collection of
variable names with order in a separate class

template <typename NameType>

class variable_list;

This class is just an ordered container of names of type
NameType (e.g. char)[3]. Its primary constructor is

variable_list(char const * vars);

where the character string vars might be "xyz". The constructor
will transform vars into an ordered list. (By default, this is
reverse alphabetical order.) So, for example,

variable_list<char> vars1("xyz");

and
variable_list<char> vars1("zyx");

are equivalent.1

Now, to construct polynomials we have
typedef variable_list<char> var_list_type;

var_list_type vars3("xyz"), vars2("xy");

poly2_type p(vars2);

poly3_type q(vars3);

Polynomial Arithmetic

Suppose we want to compute q -= p. (We use subtraction as an
example since p – q <> q – p , and so it is slightly more
complicated than addition.) Mathematically, q – p makes sense as

a polynomial whatever the variables of p and q. It will have three
variables if the variables of p are also variables of q. For example,
if p = x + z and q = xyz, then q – p is x + z – xyz. On the other
hand, if p = w + x, then we have a problem with q –= p, since q –
p now has four variables while the number of variables of q is
fixed at three. (We’ll see how to solve this problem in part 2.)

In any event, I would like to be tolerant and allow p and q to have
different variables, or at least a different number of variables. This
implies that we need to declare the subtraction operator by

template <typename C1, typename C2>

????? operator -(polynomial<C1> const & p,

polynomial<C2> const & q);

The fun begins with the return type. If C1 and C2 are not the
same, the return type should be the type of the argument that has
more variables. For example, the return type of p – q (of types
poly2_type and poly3_type , as above) should be
poly3_type. Here are two ways to deal with this problem. Both
approaches need to compare the number of variables of types
polynomial<C1> and polynomial<C2>, so let’s encapsulate
this information in a class:

namespace detail

{

template

<typename C1, typename C2, bool b>

struct pick_poly //case b is false

{ typedef polynomial<C2> type; };

template <typename C1, typename C2>

struct pick_poly<C1, C2, true>

{ typedef polynomial <C1> type; };

template <typename C1, typename C2>

struct compare_coefs {

static const bool use_c1 =

(polynomial<C1>::nbr_vars >=

polynomial <C2>::nbr_vars);

typedef typename

pick_poly<C1,C2,use_c1>::type return_type;

};

}

Here the constant use_c1 is true if polynomial<C1> has at
least as many variables as polynomial<C2> and
compare_coefs<C1,C2>::return_type is either
polynomial<C1> or polynomial<C2>, depending on which
has more variables. Hence this type should be the return type of
operator -. Our first approach to defining subtraction uses
Bool2Type defined above:

namespace detail {

template <typename C1, typename C2>

polynomial<C1> do_subtract(

polynomial<C1> p,

polynomial<C2> const & q,

Bool2Type<true>)

{

return p -= q;

}1. This default behaviour is easy to change.

19

overload issue 69 october 2005

template <typename C1, typename C2>

polynomial<C2> do_subtract(

polynomial<C1> const & p,

polynomial<C2> const & q,

Bool2Type<false>)

{

//create a polynomial of type polynomial<C2>:

return -q += p;

}

}

template <typename C1, typename C2>

typename detail::compare_coefs<C1,C2>

::return_type

operator-(polynomial<C1> const &p,

polynomial<C2> const &q)

{

return detail::do_subtract(p, q,

Bool2Type<detail::compare_coefs<C1,C2>

::use_c1>());

}

The third argument to do_subtract ensures that we return a
polynomial of the correct type. Note that if p and q always have the
same number of variables, then the second version of do_subtract
will not be instantiated. Also note that the types of the first argument
in the two versions of do_subtract are slightly different: the first
takes a polynomial by value, the second by const reference. To see
why, examine the bodies of the two versions.

Using enable_if
The second approach uses boost::enable_if, which is based
on the SFINAE [5] principle. Two versions of operator – are
defined, but only one version is valid:

template <typename C1, typename C2>

typename

boost::enable_if_c<detail::compare_coefs

<C1,C2>::use_c1, polynomial<C1> >::type

operator -(polynomial<C1> p,

polynomial<C2> const & q)

{

return p -= q;

}

template <typename C1, typename C2>

typename

boost::disable_if_c<detail::compare_coefs

<C1,C2>::use_c1, polynomial<C2> >::type

operator-(polynomial<C1> const &p,

polynomial<C2> const &q)

{

return -q += p;

}

Suppose use_c1 is true. Then in the second version of
operator -, disable_if_c<…>::type is undefined, while in
the first version, enable_if_c<…>::type is its second
template argument, i.e. polynomial<C1>. By SFINAE the
second version is not considered by the compiler when it looks
for an appropriate candidate for operator-= (because the return
type does not make sense). If use_c1 is false, then the first
version is invalid and in the second, disable_if_c<…>::type
is its second template argument, i.e. polynomial<C2>.

Handling Different Variables

We are now ready to consider how to deal with polynomials in
different variables. Before proceeding, note that our
representation of a polynomial implies an ordering of the
variables. The polynomial p= x + y + z, for example, is a
polynomial in z with coefficients that are polynomials in x and y.
These coefficients, in turn, are polynomials in y with coefficients
that are polynomials in x. Of course, we could have used any
other order. (For example, we could represent p as a polynomial
in x with coefficients in y and z.) To the extent possible, our code
should not make assumptions about this order. One assumption
we will make, however, is that if two polynomials p and q appear
in an arithmetic expression, then the ordering of the variables in p
and q agree. For example, suppose p has variables z, x, and w (in
this order) and q has variables z, y and x. The ordering of the
variables in q must have z before x. (The variable y, however,
could be first, second or third.)

Let’s look at the implementation of the member function
template <typename C>

template <typename C2>

inline polynomial<C> &

polynomial<C>::operator -=

(polynomial<C2> const & q) {

//. . .

return *this;

}

If the variables of q are a subset of the variables of p, then
computing p-=q is straightforward. We can relax this
requirement somewhat: if q is not constant with respect to some
variable, then that variable must be a variable of p. If, as in the
last paragraph, p has variables z, x and w and q has variables z, y
and x, then q must be constant in y (i.e. no term of q contains a
non-zero power of y).

Now, there are two ways to handle the case where p and q have
different variables. In the first case, we assume that what must be
true is true:

template <typename C>

template <typename C2>

inline polynomial<C> &

polynomial<C>::operator -= (polynomial<C2>

const & q) {

//Compute p -= q

if (this->first_variable() ==

q.first_variable()) {

//subtract two polys in same (first)

//variable:

// . . .

}

else if (q.is_constant_in_first_variable())

*this -= q[0];

else {

(*this)[0] -= q;

}

return *this;

}

Some explanation is in order. Let’s suppose that the first variable
of q is z. The method first_variable, returns a name, so
q.first_variable() returns 'z'. The expression q[n] is the

20

overload issue 69 october 2005

coefficient of the nth power of z (because z is the first variable of
q), so q[0] is the constant part (with respect to z) of q. If q is
constant in z, then q and q[0] are the same polynomial, so
*this -= q[0] makes sense in the middle branch.

The last branch is more subtle. Since q is not constant in its first
variable z, the variable z must be a variable of p, for otherwise this
subtraction must fail. But p and q do not have the same first variable,
so the first variable of p is not a variable of q. (It is here that we are
using the assumption that the order of the variables of p and q are
compatible, as described above.) In short, the subtraction will work
in this case only if the variables of q are variables of p[0].

What happens if our assumptions do not hold? That is, what
happens if q is not constant in some variable that is not a variable
of p? The key is to examine the call in the last branch. If p and q
have three variables (e.g. have type poly3_type), then
(*this)[0] -= q invokes operator -= with arguments of
types poly2_type and poly3_type, which in turn will invoke
operator -= with arguments of types poly1_type and
poly3_type. In this last invocation, (*this)[0] has type
double. In order for this to compile, we need to define something
like the following. (The actual signature is a little more complicated
since the numerical coefficients may have type other than double.)

template <typename C> inline

double & operator -= (double & x,

const polynomial<C> & q)

{

if (! q.is_constant())

throw std::domain_error(

"Different variables in subtraction");

x -= q.leading_constant();

return x;

}

Here is where the error is detected. The method
leading_constant returns the numerical coefficient of the first
term (i.e. the “leading” term). When q is constant, this method
returns that constant.

Code Explosion

There is a serious problem with this approach. Even though our
implementation of operator -= may seem compact, in fact it
forces the instantiation of several versions of this operator. For
example, if p and q both have type poly3_type (i.e. polynomials
in 3 variables), then fifteen versions of operator -= are
instantiated. For example, the statement

(*this)[0] -= q;

means that operator -= is instantiated for arguments of types
poly2_type and poly3_type. We saw above that the statement

*this -= q[0];

invokes operator -= with arguments of types poly3_type and
poly2_type. In short, we have every pair of arguments of
polynomial type with 0 to 3 variables (except 0 and 0, i.e. double
operator-=(double,double).) All of this for just one of the
basic arithmetic operators to handle cases that may never arise!

There is a remedy for this combinatorial explosion of code. We
are requiring that the result of p -= q be a polynomial with the
same variables as p. This is possible only if q can be expressed as
a polynomial in the same variables as p. In C++ terms this means
that we can construct a polynomial that equals q mathematically
but has the same type and variables as p:

template <typename C>

template <typename C2>

inline polynomial<C> &

polynomial<C>::operator -= (polynomial<C2>

const & q)

{

if (first_variable() == q.first_variable())

{

//subtract two poly in the same (first)

//variable: . . .

}

else if (! q.is_zero()) {

try {

polynomial<C> qq(build_variable_list(),

q);

//Compute p -= qq . . .

}

catch (construction_error const &) {

throw std::domain_error (

"Different variables in subtraction");

}

}

return *this;

}

The key element here is in the call to the constructor inside the
try block. The method build_variable_list() returns the
variables of *this. The constructor creates a polynomial with
these variables and then attempts to copy the terms of q into this
polynomial. If q has terms involving nonzero powers of some
other variable, the attempt fails and a construction_error
exception is thrown. With this approach we do not get the
cascading calls to distinct versions of operator -= (assuming
that the user does not try to subtract polynomials of different
types.)

Conclusion

This polynomial class (and two other versions) are available
online at http://www.fordham.edu/mathematics/
hastings/polynomialclasses/.

The class described in this article is called fixed_poly<C> to
emphasize that the number of variables is fixed at compile time. It
is defined in FixedPoly.hpp and is available at this web
address. Also at this address are several other necessary include
files and one source file.

In the next installment, I examine how we can modify the
approach described here to allow the number of variables to vary
at run time.

William Hastings
<hastings@fordham.edu>

References

1 Alexandrescu, Andrei and Herb Sutter C++ Coding Standards,
item 65.

2 Alexandrescu, Andrei Modern C++ Design, pp29ff.
3 For details see http://www.fordham.edu/mathematics/

hastings/polynomialclasses/var_list.htm

4 See http://www.boost.org/libs/utility/
enable_if.html

21

overload issue 69 october 2005

A Framework for
Generating Numerical
Test Data
by Peter Hammond

Abstract

While attempting to bring the benefits of early unit testing to a
highly numerical application, we found a need to generate large
quantities of test data using several independent variables. We
found the obvious approach using nested loops unsatisfactory. An
alternative was developed using chained objects to represent the
independent variables, with minimal repetition of either code or
structure.

Introduction

The work described here was part of the development of a highly
numerical component within a subsystem of a large (>$200M)
defence system project. The component uses Kalman filters [1] to
assist in target tracking. The Kalman filter algorithm is a method
for reducing noise on measured data, and also allows for
interpolation and extrapolation of measurements. The component
also does a considerable amount of other processing related to the
tracking loop. Not surprisingly for a project of this size, the main
project management processes are rooted in high-ceremony,
document-centric methods. The data processing subsystem was
developed in Ada, using the Rational Unified Process. The
development environment used ColdFrame [2] to generation the
framework from UML, and encouraged early unit testing using
the AUnit unit test framework, an Ada version of the well known
xUnit family [3].

We developed this component with a view to using as agile a
process as possible within the constraints of the overall project
policies. In particular, we wanted to explore the claimed benefits
of early testing methodologies such as Test Driven Design, although
automatic code generation was used for the structural framework
of the component. To reconcile the two, we used a test-first strategy
to implement the method bodies within the generated framework.
Some parts of the component contain a great deal of numerical
code, which poses challenges for this style of testing; there may be
many input combinations that need to be tested to give confidence
that the function's implementation will perform correctly across the
entire input domain. For testing those parts, the following procedure
was adopted:
1. One engineer implemented the function in C++.
2. This implementation was used to generate a file containing

inputs and outputs for the function, covering as many odd cases
as possible (maximum and minimum values, zeroes and angles
such as π/2).

3. Another engineer implemented an AUnit test harness that uses
this data.

4. The second engineer implemented the function in production
code, directly from the specification without reference to the
initial implementation.

5. If the two implementations do not agree within suitable
tolerances, allowing for rounding errors, there is most likely a
bug in at least one of the implementations. We then entered a
debugging phase, as far as possible retaining the independence
of the two implementations.

While this procedure does not completely guarantee the
correctness of the code, it does provide a valuable check, and a
regression test to prove that nothing changes later. The highly
numerical code was also Fagan inspected to further add
confidence. We see the two approaches as complementary; both
approaches found some defects in code that had been through the
other.

The Problem

The original test data generators used a simple structure of nested
for loops. An example is shown in Listing 1, which creates
solutions of quadratic equations using the well known formula.
This is of course not a real example; the real algorithms that were
being tested are not available for publication. While the nested
loops were easy to implement at first, this approach suffered from
a number of drawbacks:
● Indentation quickly used up screen space, reducing readability.
● It was necessary to ensure manually that header and data

columns match up in the output file, which introduced
duplication of structure.

● Code to show progress was repeated by copy and paste
throughout the numerous dataset generators, which is clearly
duplication of code.

● Housekeeping (managing the loops and files) and performing
the calculation were not separated.

● Amongst other faults, this design is therefore breaking two well-
known principles in good software: separation of concerns, and
avoiding duplication.

void generate_quadratic ()

{

FILE* f = fopen ("quad.txt", "w");

fprintf (f, "a,b,c,x1,x2\n");

const int max_column = 30;

int column = 0;

for (double a = 0.1; a <= 5.0; a += 0.1)

{

printf (".");

if (++column == max_column)

{

printf ("\n");

column = 0;

}

for (double b = 10.0; b <= 20.0; b += 0.1)

{

for (double c = 0.0; c <= 5.0; c += 0.1)

{

double z = sqrt (b * b - 4.0 * a * c);

double x1 = (-b + z) / (2.0 * a);

double x2 = (-b - z) / (2.0 * a);

fprintf (f, "%.16lf, %.16lf, %.16lf,"

"%.16lf, %.16lf\n",

a, b, c, x1, x2);

}

}

}

fclose (f);

}

Listing 1: A simple example using for loops

22

overload issue 69 october 2005

A more elegant design was indicated, one which would:
● Remove duplication, both of code and of structure.
● Automate as much as possible, including progress reporting.
● Separate management of the loops from the business of

calculating the test values;.
● Support linear and logarithmic iterations.
● While being minimally intrusive in the implementation of the

equations being tested.

Dead Ends

The problem of iterating several functions with the same values
could easily be solved by providing the iteration as an algorithm,
and passing it the function to be called with the iterated values.
An example of this is shown in Listing 2. It would clearly be
straightforward to extend this to variable limits and steps by
passing in {step, min, max} tuples for each variable. It seems

intuitive that this could be extended to arbitrary numbers of
iterated values, and probably logarithmic iterations, using
template meta-programming techniques. However, despite some
considerable head-scratching I could not find a suitable solution
along this route. This is not to say that such a solution does not
exist, but an easier alternative was found first.

A Solution

Being a “classic” C++ programmer at heart, it seemed natural to
look for an object based solution, using some kind of object to
represent iteration over a range of values, and for these to be
chained together to create the nesting by functional recursion. The
problem was that the values of all the iterated variables have to be
available to the final function that will create the output values.

The first successful form of the framework used objects of a
Value_Iterator class as members of the client class to do the
iteration, with operator double() to access the values. The name
Iterator may not have been the best choice, as it perhaps implies too
strongly the iterators of the standard library collections. However,
it does iterate over the input values for the test. Value_Iterator
is derived from the Iterator_Base interface, which defines the
methods needed to take part in the recursion. The client of the

// Supply test values to f.

void generate (FILE* out, void (*f)(FILE*,

double, double, double))

{

const int max_column = 30;

int column = 0;

for (double a = 0.1; a <= 5.0; a += 0.1)

{

printf (".");

if (++column == max_column)

{

printf ("\n");

column = 0;

}

for (double b = 10.0; b <= 20.0; b += 0.1)

{

for (double c = 0.0; c <= 5.0; c += 0.1)

{

(*f)(out, a, b, c);

}

}

}

};

// output test values and results.

void quadratic(FILE* out, double a, double b,

double c) {

double z = sqrt (b * b - 4.0 * a * c);

double x1 = (-b + z) / (2.0 * a);

double x2 = (-b - z) / (2.0 * a);

fprintf (out, "%.16lf, %.16lf, %.16lf,"

"%.16lf, %.16lf\n", a, b, c, x1, x2);

};

const char*

const quadratic_hdr = "a,b,c,x1,x2\n";

int main()

{

FILE* out = fopen("quad.txt", "w");

fprintf (out, quadratic_hdr);

generate(out, quadratic);

fclose(out);

};

Listing 2: A possible solution using an algorithm and function
separation.

class Quadratic_Generator : private

Iterator_Manager

{

public:

Quadratic_Generator () :

a (0.1, 10.0, 0.1, "a", this),

b (10.0, 20.0, 0.1, "b", &a),

c (0.0, 10.0, 0.1, "c", &b)

{};

void start ();

private:

void iterated_function ();

Iterator* get_head () {return &c;}

FILE* f;

Lin_Iterator a, b, c;

};

void Quadratic_Generator::start () {

f = fopen ("quad.txt", "w");

get_head()->

write_chained_descriptions (f);

fprintf (f, ",x1,x2\n");

start_iteration();

fclose (f);

}

void Quadratic_Generator::iterated_function ()

{

double z = sqrt (b * b - 4.0 * a * c);

double x1 = (-b + z) / (2.0 * a);

double x2 = (-b - z) / (2.0 * a);

get_head()->write_chained_values (f);

fprintf (f, ",%.16lf, %.16lf\n", x1, x2);

}

int main (void) {

Quadratic_Generator().start();

}

Listing 3: Example of usage of the first attempt.

23

overload issue 69 october 2005

framework is a class derived from an abstract base,
Iterator_Manager, which encapsulates common behaviour for
managing the recursion. Two concrete Value_Iterator classes
are declared apart from the manager, to provide linear or
logarithmic steps. The framework is shown in the UML diagram
figure 1, and an example of its usage is shown in Listing 3.
The Iterator_Manager is responsible for managing a chain of
Value_Iterator objects, although the objects themselves are
members of its client specialisation, here Test_File_Generator.
It provides some functions for management, but it is still abstract, as
it requires the client class to define the iterated function and the head
of the chain. Its start_iteration method is responsible for doing
the iteration, by calling the iterate method on the head of the
chain, and doing any necessary preparation and cleanup. It
implements the Iterator_Base methods to terminate the iteration;
its iterate method calls the final iterated function, and its other
Iterator_Base methods return straight away. It is therefore
responsible for both the head and tail of the chain of iterators, the
head being provided by Iterator_Manager::get_head, and the
tail being its Iterator_Base part.
The Test_File_Generator class is the client of the framework
in this example. It is responsible for implementing the final
function that uses the iterated values, and writing the input and
output values to file. It writes the input values by calling
write_chained_values on the iterator returned by the base
class get_head method.
The Value_Iterator is responsible for doing the looping and the
recursion. Its iterate method runs its loop from begin to end,
relying on its specialisations to provide the next value, given the

class Iterator_Base {

public:

virtual ~Iterator_Base() {};

virtual void iterate () = 0;

virtual int get_expected_count () = 0;

virtual void write_chained_descriptions (

FILE* f) = 0;

virtual void write_chained_values (

FILE* f) = 0;

virtual void dispose () = 0;

};

class Value_Iterator : public Iterator_Base

{

public:

virtual void iterate ();

int get_expected_count ();

void write_chained_descriptions (FILE* f);

void write_chained_values (FILE* f);

void dispose ();

protected:

Value_Iterator (double* value,

double begin,

double end,

std::string dscr,

Iterator_Base* next);

private:

virtual double next_value (double v) = 0;

double begin;

double end;

double* value;

std::string description;

Iterator_Base* next;

};

class Log_Iterator : public Value_Iterator

{

public:

Log_Iterator (double* value,

double begin,

double end,

double step,

const std::string& desc,

Iterator_Base* next)

: Value_Iterator (value, begin, end,

std::string (desc), next),

step (step)

{};

private:

double step;

double next_value (double v)

{return v * step;}

};

class Lin_Iterator : public Value_Iterator {

public:

Lin_Iterator (double* value,

double begin,

double end,

double step,

const std::string& desc,

Iterator_Base* next)

: Value_Iterator (value, begin, end,

std::string (desc), next),

step (step)

{};

private:

double step;

double next_value (double v)

{return v + step;}

};

class Iterator_Manager : public Iterator_Base

{

protected:

Iterator_Manager (Value_Iterator* head);

~Iterator_Manager();

void start_iteration ();

int get_loop_num() {return loop_num;}

virtual void iterated_function () = 0;

Value_Iterator* get_head() {return head;}

private:

void iterate ();

void dispose () {;}

int get_expected_count () {return 1;}

void write_chained_values (FILE*) {;}

void write_chained_descriptions (FILE*)

{;}

Value_Iterator* head;

Iterator_Progress* prog;

int loop_num;

};

Listing 4: Listing of the final header file.

24

overload issue 69 october 2005

current value. This allows specialisations for linear or logarithmic
steps, or potentially for some other sequencing method not yet
thought of. Within that loop it calls the iterate method on its next
member. Its write_chained_values method recurses to the next
iterator in the chain, and then writes its own value to the file.

The Iterator_Progress class, which is omitted from the
listings for brevity, prints a “% complete” message to the console
using the expected total number of steps. It calculates the expected
number of steps at the start by calling get_expected_count on
the head iterator, which multiplies each iterator’s own number of
loops by the next iterator’s total number of loops, recursively.

This approach was reasonably satisfactory, but had some
drawbacks:
● It was necessary to duplicate the names of the variables: the

iterators are named once in the declaration of the client class,
and once in the definition of its constructor.

Value_Iterator::Value_Iterator (

double* value,

double begin,

double end,

string descr,

Iterator_Base* next) : value (value),

begin (begin),

end (end),

description (description),

next (next)

{}

void Value_Iterator::iterate () {

for (*value = begin; *value <= end;

*value = next_value (*value)) {

next->iterate();

}

}

int Value_Iterator::get_expected_count () {

int i = 0;

for (*value = begin; *value <= end;

*value = next_value (*value)) ++i;

return i * next->get_expected_count();

}

void

Value_Iterator::write_chained_descriptions

(FILE* f) {

next->write_chained_descriptions(f);

fprintf (f, ",%s", description.c_str());

}

void Value_Iterator::write_chained_values

(FILE* f) {

next->write_chained_values(f);

fprintf (f, ",%0.16e", value);

}

void Value_Iterator::dispose () {

next->dispose();

delete this;

}

Iterator_Manager::Iterator_Manager

(Value_Iterator* head) : prog (0),

loop_num (0), head (head)

{}

Iterator_Manager::~Iterator_Manager() {

delete prog;

head->dispose();

}

void Iterator_Manager::iterate () {

++loop_num;

prog->update();

iterated_function();

}

void Iterator_Manager::start_iteration () {

loop_num = 0;

prog = new Iterator_Progress (head);

head->iterate();

delete prog;

prog = 0;

}

Listing 5: Listing of the final implementation file

Log_Iterator
step

next_value()

Lin_Iterator
step

next_value()

Iterator_Progress
expected_num
current_num
current_percent

update()

Iterator_Base

iterate()
write_chained_values()

write_chained_descriptions()
get_expected_count()

Test File Generator

iterated_funct ion()
get_head()

Value_I terator
begin
end
descript ion
value

it erate()
write_c hained_values()
write_c hained_descriptions()
get_expected_count ()
next_value()
operator double()

1

1

-next

1

1

1..*

1

1..*

1

Iterator_Manager

iterate()
writ e_chained_values()
writ e_chained_des criptions()
get_expec ted_c ount()
start_i teration()
iterated_function()
get_head()

11

1

-/head

1

Figure 1: First successful version of the framework

25

overload issue 69 october 2005

● This decision of linear or logarithmic type of iterator is separated
from the definition of its step and limits, although these are
clearly related.

● The iterators have to be chained together manually in the
constructor, introducing a third place where the iterator is named.

Listing 3 shows an example of usage of this approach. The
implementation is not shown as it adds little to the discussion.

A Refinement

Most of the drawbacks in the Iterator method derive from the
duality of the Iterator object, as both the iterator and the value
being iterated. This leads to the object being known to both the
framework's Iterator_Manager class and its derived client class,
as shown by the derived association1 from Iterator_Manager to
value_Iterator in Figure 1. A clearer separation of concerns
was found by binding the Iterator objects to members of an
enclosing class. This leads to the class model shown in Figure 2.
Note that the derived association has been replaced by two distinct
associations, each with its own clear purpose.

Listing 4 is the code for the header file of the framework, with
the implementation in Listing 5. Assertions, error handling and
private/protected constructors/destructors are omitted for brevity.
Note the use of the C library FILE I/O mechanism; we found that
this was significantly faster than iostream on the implementation
used, and performance is fairly important here. A “gold plated”
solution might use a policy or helper class to parameterise the
choice of output library, but that was not necessary in this project.

Listing 6 gives a code listing for an example usage of the
framework. The client creates instances of Value_Iterator in its
constructor, chaining them together as it does so, and binding them
to its own member variables. Thus when the iterate method on the
head iterator finally ends up calling the iterated_function
method on the client, its data members hold the current values for
this step and can be used without further ado.

Discussion

By making the iterator objects themselves anonymous, it becomes
possible to declare the type of the iterator and initialise the step
values on the same line, which makes the connection between log
iterator and log steps clearer. It also means that the iterators can be
chained by chaining the constructors, rather than by naming them
again. In the previous example, adding a new iterator meant

class Quadratic_Generator : private

Iterator_Manager {

public:

Quadratic_Generator () : Iterator_Manager (

new Lin_Iterator (&a, 0.1, 5.0, 0.1, "a",

new Lin_Iterator (&b, 10.0, 20.0, 0.1, "b",

new Lin_Iterator (&c, 0.0, 5.0, 0.1,

"c", this))))

{};

void start ();

private:

void iterated_function ();

FILE* f;

double a, b, c;

};

void Quadratic_Generator::start () {

f = fopen ("quad.txt", "w");

get_head()->write_chained_descriptions (f);

fprintf (f, ",x1,x2\n");

start_iteration();

fclose (f);

}

void Quadratic_Generator::iterated_function ()

{

double z = sqrt (b * b - 4.0 * a * c);

double x1 = (-b + z) / (2.0 * a);

double x2 = (-b - z) / (2.0 * a);

get_head()->write_chained_values (f);

fprintf (f, ",%.16lf, %.16lf\n", x1, x2);

}

int main (void) {

Quadratic_Generator().start();

}

Listing 6: Listing of example usage for the final version.

1 In UML, a / in front of a role name or attribute indicates that it can be derived from
something else on the model.

Log_Iterator
step

next_value()

Lin_Iterator
step

next_value()

Test File Generator

it erated_funct ion()

Iterator_Base

iterate()
write_chained_values()

write_chained_descriptions()
get_expected_count()

double

1..*1 1..*1

Value_I terator
begin
end
descript ion

it erate()
write_c hained_values()
write_c hained_descrip tions()
get_expected_count ()
next_value()

1

1

-next

1

1

-value

Iterator_Progress
expected_num
current_num
current_percent

update()

Iterator_Manager

iterate()
write_chained_values()
write_chained_des criptions()
get_expec ted_c ount()
start_i teration()
iterated_function()
get_head()

-head

11

Figure 2: Class hierarchy for the framework
with value and iterator separated.

[concluded at foot of next page]

26

overload issue 69 october 2005

With Spirit
by Tim Penhey

Spirit is an object-oriented recursive-descent parser generator
framework implemented using template meta-programming
techniques. Expression templates allow us to approximate the
syntax of Extended Backus-Normal[sic] Form (EBNF)
completely in C++. [1]

EBNF is also known as Extended Backus-Naur Form [2]. EBNF
is a metasyntax used to formally describe a language. In this
example the language is the set of possible expressions that are used
to restrict SQL select statements.

The sample code shown is all real code, shown with permission
of the owner (a financial institution that wishes to remain
anonymous). This piece of code was chosen as a “proof of concept”
to show how Spirit works and how it is implemented, both to the
management and to the other developers.

The application is a trading system in a bank, and the piece of code
is responsible for interpreting what the user enters in a free-text field
in the interface used to specify search restrictions. For example, the
user may just want to search for certain instruments, or all trades in
books starting with the letters B through D. The function
query_parse (shown below) is the old C version that takes this free
text and produces one or more “tokens” for generating the SQLwhere
clause.
---- some header.h

/***

* SQL Token: consists of :

* 1. logical operator : and, or, like

* 2. mathematical operator : <, >, =, <=,

* >=, <>,

* 3. value : the real value

* - i.e. < 30, 30 is the value

* Before any cell string gets built into an SQL

* sub-clause, it'll be parsed by query_parse()

* into a linked-list of SQLTokens, and

* query_doit() will build using such SQLTokens,

* instead of cell strings directly.

**/

typedef struct _SQLToken

{

char* logic_op;

char* math_op;

char* value;

struct _SQLToken *next;

} SQLToken;

---- source file.cpp

static SQLToken* query_parse (char *string)

{

typedef enum { NEUTRAL, LOP, MOP, VALUE }

STATE;

char c;

having to change the argument to another iterator's constructor,
which was a small but noticeable hassle in maintenance.

In the original example progress was indicated by printing a
chain of dots, with no indication of how many to expect. When the
loops were coded in place in each generator, calculating how many
to expect would have required repeating the loop parameters.
Extracting the increments into the iterators enables the
get_expected_count method to do a “dry run”, which means a
useful progress indicator can be provided without this repetition.

The framework fails to meet the objectives in two points Firstly,
the variable name must be duplicated in the constructor of the Iterator
object in order to make the binding. While this does seem to be an
improvement over repeating the object name twice in the constructor
list, it is still less than satisfactory . Secondly, the output column
headings written in the generator's start method are still separated
from the output of the column data in iterated_function. There
is therefore a maintenance risk that the column heading could get out
of step. No way around this was found that did not result in
unjustifiable complexity elsewhere. However, by removing most of
the management code, the two relevant lines are now much closer
together than in the naïve solution, so the risk is at least to some extent
mitigated. An additional minor drawback in this version is that
binding the iterator object to a member variable could be seen as
breaking the encapsulation of the classes.

Presently the bound member variables must be doubles, which
was sufficient for our needs. It would be straightforward to
parameterise the Iterator class on the type of bound variable.

Conclusions

The final version meets most of the drivers listed in the introduction:
● It avoids unnecessary complexity and advanced techniques;

● It supports linear and logarithmic steps and progress reporting;
● Most of the duplication is avoided as the iterator objects do not

need to be declared in the class.
This framework provides a simple way of producing deep nested
loops, with readable client code, clear separation of concerns
between client and framework classes, and improved progress
reporting. It meets most of the design objectives in a natural,
“classic” C++ style, without resort to possibly obscure C++
techniques. This solution is simpler than was expected at the start
of the work, which is pleasing.

Peter Hammond
peter.hammond@baesystems.com

References

1 Greg Welch & Gary Bishop, An Introduction to the Kalman Filter,
TR 95-041, University of North Carolina Chapel Hill,
http://www.cs.unc.edu/~welch/kalman/kalmanIntro

.html

2 ColdFrame project home page:
http://coldframe.sourceforge.net

3 http://libre.act-europe.fr/aunit/main.html

Acknowledgements

The author wishes to thank the reviewers for their helpful
comments, particularly Alan Griffiths for the basis for listing 2.

Only a couple of issues ago I was writing about the variety of C++
dialects in use. This article illustrates this: after the author tried using
some ideas from “Modern C++ Design” he was inspired to show that
“Classic C++” also solves problems. However, some members of the
Overload team feel that “Modern C++” offers a better solution.

- ed.

[continued from previous page]

27

overload issue 69 october 2005

int index = 0, blank = 0;

SQLToken *token, *tmp=0, *head;

// fix compiler warning - tmp

STATE state = NEUTRAL;

head = sqltoken_alloc();

token = head;

while((c = string[index]) &&

(c != '\n')) {

blank = 0;

switch(state) {

/***/

case NEUTRAL:

switch(c) {

case ' ':

case '\t':

blank = 1;

++index;

break;

case '+':

case '|':

state = LOP;

break;

case '<':

case '>':

case '=':

case '!':

/* if (first != 0) return NULL; */

/* only the begin of string may have */

/* no LOP first = 1; */

state = MOP;

break;

default :

/* return NULL; */

state = VALUE;

break;

}

/* alloc space for next SQLToken, if needed */

if ((token == NULL) && (!blank)) {

token = sqltoken_alloc();

tmp->next = token;

}

break;

/***/

case LOP:

switch(c) {

case '|':

while ((c != ' ') && (c!= '\0') &&

(c != '"') && (c != '>') &&

(c!= '<') && (c != '=') &&

(c != '!'))

c = string[++index];

strcat(token->logic_op, "or");

break;

case '+':

while ((c != ' ') && (c!= '\0') &&

(c != '"') && (c != '>') &&

(c!= '<') && (c != '=') &&

(c != '!'))

c = string[++index];

strcat(token->logic_op, "and");

break;

default:

return NULL;

}

state = NEUTRAL;

if ((c != '"') && (c != '>') && (c!= '<')

&& (c != '=') && (c != '!'))

index++;

break;

/***/

case MOP:

switch(c) {

case ' ':

case '\t':

state = VALUE;

index++;

break;

case '<':

case '>':

case '=':

case '!':

strncat(token->math_op, &c, 1);

index++;

break;

default:

/* if (token->math_op == NULL)

return NULL; MOP missing */

state = VALUE;

}

break;

/***/

case VALUE:

switch(c) {

case ' ':

index++;

break;

case '"':

while (((c = string[++index]) != '"')

&& (c != '\0') && (c != '\n'))

strncat(token->value, &c, 1);

index++;

state = NEUTRAL;

tmp = token;

token = token->next;

break;

default:

while ((c != ' ') && (c != '\0')&&

(c != '\n')&& (c != '"'))

{

strncat(token->value, &c, 1);

c = string[++index];

28

overload issue 69 october 2005

}

state = NEUTRAL;

tmp = token;

token = token->next;

}

break;

}

}

return head;

}

You can see that this code is not very easy to follow, and not
overly descriptive in what it does. Clearly it iterates over the
character array switching on a remembered state to build up the
SQLToken instance. However it is not apparent if there is a bug
in the code, and should this method need to be extended due to a
change in the grammar, much rework may be needed.

A small piece of history. The application was started around 12
years ago and was originally all C. Policy is now that new
development should be in C++, updating old code where necessary.
So to bring the interface more into line with C++ the signature was
changed to:

std::vector<SQLToken> query_parse(

char const* input)

The input parameter was not changed to a string as that would
not really have gained anything. The calling function had the data
as a char const*, and that is also the type for the parameter for
the parser. Also the SQLToken definition changed to use
std::string:

struct SQLToken

{

std::string logic_op;

std::string comp_op;

std::string value;

};

In order to move the legacy function to Spirit, the grammar had
to be defined. By meticulous iteration of the existing function
with sample input, the following grammar was extracted.

comp_op ::= '<' | '<=' | '<>' | '>' | '>=' |

'=' | '!='

logic_op ::= '+' | '|'

value ::= '"' not_quote+ '"' | not_space+

element ::= (logic_op? comp_op? value)+

where not_quote is any character except the quote character
("), and not_space is any character except white space (space,
tab, or new line).

Now the documentation of the boost website for Spirit gives a
great, easy to follow introduction [3]. The management summary
equivalent goes something like this:
● a parser is made up from rules
● rules are place holders for expressions
● expressions are either primitives or combinations
Spirit provides classes that define rules and parsers. It also
provides a fairly complete set of primitives. The main primitives
used for this example are spirit::str_p and spirit::ch_p.
str_p matches a string, and ch_p matches a single character.

Expressions can be grouped with brackets, alternatives defined
by | (bar character), and combined using the >> operator. The bar
operator is overloaded in Spirit allowing us to not explicitly wrap
alternatives in constructor calls. This is a convenience especially

when trying to fit examples in a small text area.
The first two grammar components are quite simple. For now

just accept that what is being assigned is some form of rule class
and the declaration will come later.

comp_op = spirit::str_p("<>") | "<=" | "<" |

">=" | ">" | "=" | "!=";

logic_op = spirit::ch_p('+') | '|';

The quirky parts of this are that the expressions are evaluated in a
short circuit manner, so for the comparison operators you need to
list the longest first, so <> needs to come before < otherwise the
< will be matched for that expression. The Spirit library does
provide a way to get around the short circuit nature with a
directive. Directives could be thought of as modifiers to an
expression. Here use of the longest_d directive would suffice,
which would give:

comp_op = spirit::longest_d[

spirit::str_p('<') | '<=' | '<>' | '>' |

'>=' | '=' | '!=']

However the choice was to go with the simpler definition and a
comment.

Now for the value rule. Some of the predefined character parsers
were used for this.

ch_p('"') matches the quote character, ~ch_p('"') matches
any character except the quote character, and +(~ch_p('"'))
matches one or more non-quote characters. So the first part of the
value is

'"' >> (+(~spirit::ch_p('"'))) >> '"'

The alternative to a quote enclosed string is a single word, where
the contents of the word is anything that isn’t whitespace. Spirit
provides a space_p that matches whitespace characters, so
~space_p will match non-whitespace characters. To make a
word, we use

(+(~spirit::space_p))

Most of the time when parsing, whitespace is ignored, however
in this case whitespace matters. This rule as it stands actually
matches the string "a b c d" as "abcd". In order to tell the
parser that we are concerned about the whitespace, we use the
directive lexeme_d. The full rule for value is then:

value = '"'

>> (+(~spirit::ch_p('"')))

>> '"'

|

spirit::lexeme_d[(+(~spirit::space_p))];

The element then is an accumulation of the other rules.
operator! is used as zero or one, so the element is then

element = +(!logic_op >> !comp_op >> value);

The complete definition for the grammar object is then:
struct query_grammar : public spirit::

grammar<query_grammar>

{

template <typename ScannerT>

struct definition

{

definition(query_grammar const& self)

29

overload issue 69 october 2005

{

// short circuit, so do longer

// possibilities first

comp_op = spirit::str_p("<>") | "<="

| "<" | ">=" | ">" | "=" | "!=";

logic_op = spirit::ch_p('+') | '|';

value = '"'

>> (+(~spirit::ch_p('"')))

>> '"' | spirit::lexeme_d[

(+(~spirit::space_p))];

element = +(!logic_op >>

!comp_op >> value);

BOOST_SPIRIT_DEBUG_RULE(comp_op);

BOOST_SPIRIT_DEBUG_RULE(logic_op);

BOOST_SPIRIT_DEBUG_RULE(value);

BOOST_SPIRIT_DEBUG_RULE(element);

}

spirit::rule<ScannerT> comp_op,

logic_op, value, element;

spirit::rule<ScannerT> const& start()

const { return element; }

};

};

The BOOST_SPIRIT_DEBUG_RULE macro enables some very
useful debugging output which is handy when tracing your
grammar if it is going wrong. A quick interactive test program
allows us to test the grammar.

int main()

{

std::cout << "> ";

std::string input;

std::getline(std::cin, input);

query_grammar parser;

while (input != "quit") {

if (spirit::parse(input.c_str(), parser,

spirit::space_p).full)

std::cout << "parse succeeded";

else

std::cout << "parse failed";

std::cout << "\n> ";

std::getline(std::cin, input);

}

}

Ths was used to prove that the grammar was correct. The next
challenge is how to get the parser to populate the vector of
SQLToken objects while parsing? I want the SQLToken object to
be populated during parsing and, once a complete token has been
processed (!logic_op >> !comp_op >> value), it should
be pushed on to the vector.

The interesting part of handling assignment is that the definition
struct constructor takes a constant reference to the outer grammar
structure, so you cannot change normal member variables. This leaves
the choices of mutable and references, and personally I tend to shy
away from mutable where there is another choice. So the outer
grammar stuct holds references to objects that we want to populate.

struct query_grammar :

public spirit::grammar<query_grammar>

{

// definition structure here...

query_grammar(std::vector<SQLToken>&

tokens, SQLToken& token)

: tokens_(tokens), token_(token) {}

std::vector<SQLToken>& tokens_;

SQLToken& token_;

};

The next step is to add the actions to the rules, and this is done
through the use of “actors”. There are a number of predefined actors.
The main one used here is assign_a. The function call operator on
this actor takes one or two parameters. The first parameter is a
reference to the string object to populate. If the second parameter is
passed in, it assigns the second parameter to the first, and if not, the
text that is matched for the rule is assigned.

There is the situation where we want to assign "and" when the
parser finds '+', and "or" for '|', so the logic_op rule is
changed to look like this:

logic_op = spirit::ch_p('+')[spirit::assign_a(

self.token_.logic_op, "and")]

| spirit::ch_p('|')[spirit::assign_a(

self.token_.logic_op, "or")];

Since the action is being used on the components of the rule, the
definition now has to specify ch_p('|') instead of just '|', as
there is no operator[] on a char.

For the value, if it was quote enclosed, the value is the contents
of the string without the quotes, otherwise the value is the whole
single word, so the actor is applied to the parts of the value rule,
not on the rule as a whole.

value = '"'

>> (+(~spirit::ch_p('"')))

[spirit::assign_a(self.token_.value)]

>> '"' | spirit::lexeme_d[

(+(~spirit::space_p))

[spirit::assign_a(self.token_.value)]];

The comparison operator can be handled at the whole rule level
as the text of the parsed rule is the string value that we want to
store for the SQLToken. This is achieved by specifying the action
for the comp_op rule in the element.

element = +(!logic_op

>> !(comp_op[spirit::assign_a(

self.token_.comp_op)]) >> value);

The last part of the parsing is to add the token to the vector. One
way of doing this is through a functor object. Standard Spirit
functors need to handle two char const* parameters. These are
the start and end of the “match” for the rule. In this case they
aren’t used at all, but instead the functor operates on the
references that it is constructed with.

struct push_token

{

push_token(std::vector<SQLToken>& tokens,

SQLToken& token) : tokens_(tokens),

token_(token) {}

void operator()(char const*,

char const*) const

{

tokens_.push_back(token_);

// reset token_ to blanks

token_ = SQLToken();

}

std::vector<SQLToken>& tokens_;

SQLToken& token_;

};

30

overload issue 69 october 2005

To incorporate this functor into our element rule, we specify it as
the action and construct it with the same references as the grammar.

element = +(!logic_op

>> !(comp_op[spirit::assign_a(

self.token_.comp_op)])

>> value)[push_token(self.tokens_,

self.token_)];

Now it’s done. After testing the results, which to my initial surprise
worked perfectly, the old function was replaced with this:
namespace {

using namespace boost;

struct push_token

{

push_token(std::vector<SQLToken>& tokens,

SQLToken& token) : tokens_(tokens),

token_(token) {}

void operator()(char const*,

char const*) const

{

tokens_.push_back(token_);

// reset token_ to blanks

token_ = SQLToken();

}

std::vector<SQLToken>& tokens_;

SQLToken& token_;

};

struct query_grammar : public spirit

::grammar<query_grammar>

{

template <typename ScannerT>

struct definition

{

definition(query_grammar const& self)

{

// short circuit, so do longer

// possibilities first

comp_op = spirit::str_p("<>") | "<=" |

"<" | ">=" | ">" | "=" | "!=";

// + -> and, | -> or. Could now

// easily add in "and" and "or"

logic_op = spirit::ch_p('+')[spirit

::assign_a(self.token_.logic_op,

"and")] | spirit::ch_p('|')[spirit

::assign_a(self.token_.logic_op,

"or")];

// values are single words or

// enclosed in quotes.

value = '"' >> (+(~spirit::ch_p('"')))

[spirit::assign_a(self.token_.value)]

>> '"' | spirit::lexeme_d[

(+(~spirit::space_p))

[spirit::assign_a(self.token_.value)]

];

// EBNF: (logic_op? comp_op? value)+

// parsing fails if there are no values.

element = +(!logic_op

>> !(comp_op[spirit::assign_a(

self.token_.comp_op)])

>> value)[push_token(self.tokens_,

self.token_)];

}

spirit::rule<ScannerT> comp_op, logic_op,

value, element;

spirit::rule<ScannerT> const& start() const

{ return element; }

};

query_grammar(std::vector<SQLToken>& tokens,

SQLToken& token)

: tokens_(tokens), token_(token) {}

std::vector<SQLToken>& tokens_;

SQLToken& token_;

};

std::vector<SQLToken> query_parse(

char const* input)

{

Logger logger("gds.query.engine.parse");

GDS_DEBUG_STREAM(logger)

<< "query_parse input: " << input;

std::vector<SQLToken> tokens;

SQLToken token;

query_grammar parser(tokens, token);

if (spirit::parse(input, parser,

spirit::space_p).full)

{

if (logger.isDebugEnabled()) {

for (unsigned i = 0;

i < tokens.size();

++i) GDS_DEBUG_STREAM(logger)

<< tokens[i];

}

}

else

{

GDS_DEBUG(logger, "parse failed");

tokens.clear();

}

return tokens;

}

} // anon namespace

An anonymous namespace is used instead of the old static C
function, some logging was added using our logging classes, but
apart from that, the code went in without other modifications.

In total, I achieved a reduction of about 40 lines of code, which in
itself is completely meaningless. The general complexity of the code
increased, but at least in my opinion, it is now more maintainable and
extensible. Should the client want to make modifications to the
grammar it is now a relatively simple operation compared to the
nightmare of altering the original embedded switch statements.
Special thanks to Phil Bass and David Carter-Hitchin for
reviewing this article.

Tim Penhey
<tim@penhey.net>

References

1 http://www.boost.org/libs/spirit/doc/

introduction.html

2 http://en.wikipedia.org/wiki/Extended_Backus-

Naur_form

3 http://www.boost.org/libs/spirit/doc/

basic_concepts.html

