
3

Overload issue 65 february 2005

contents credits & contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Chris Lowe
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letters to the Editor 6

From Waterfall to EVO in a Medium Size

Norwegian Software House

Trond Johansen 10

Multiple Streams Going Nowhere

Paul Grenyer 12

STABLE INTERMEDIATE FORMS: A Foundation

Pattern for Derisking the Process

of Change Kevlin Henney 16

C Abuse Thaddaeus Frogley 22

A Pair Programming Experience

Randall W Jensen 22

The Developer’s New Work

Allan Kelly 25

C++ Properties - A Library Solution

Lois Goldthwaite 28

4

Overload issue 65 february 2005

Editorial: “They” Have
Their Reasons

Contrast the following directions to a colleague’s desk:
“Go through those double doors, across the office and through

the next ones, down the stairs to the next floor, turn left and go
through the security door, follow the corridor around to the left and
right, when you go through the next door he’s over to the right by
the window.”

With:
“About twenty feet in that direction and one floor down.”

Which is easier to understand? Or easier to implement? I’d take
the goal oriented version – which tells me where I’m trying to
get to – every time.

More importantly, the first explanation is much more susceptible
to changes in circumstances: the stairs being out of use, extra doors
being introduced on the corridor...

A couple of years ago I spent several months working with
business analysts who regularly produced requirements
specification documents that read like the first quote above.
Actually, they were worse: although the business analysts avowed
no special knowledge of computers, and especially of user interface
design, they included screen layouts. I was involved for several
reasons, but two important ones were that the customer didn’t
accept the resulting software (it didn’t address their requirements)
and that the requirements capture process was far too slow (at the
rate it was going it would take several times the agreed time-scale
for the project).

It didn’t take long to establish that the business analysts didn’t
enjoy writing this stuff. Or that the customers struggled to approve
it (or “accepted it” without agreeing for contractual purposes). Or
that errors and omissions were not detected until late in the
development cycle (integration testing or acceptance testing). Or
that the developers were frustrated into blindly implementing
things they didn’t pretend to understand. And if a change in
understanding required changes to the product it was an intractable
problem to find all the documents affected.

Fortunately, by the time I got involved, the project was suffering
sufficient pain that enough people were willing to try something
else (so long as I took the blame if it didn’t work). Having quickly
read Cockburn’s “Writing Effective Use Cases” I chose to
introduce goal oriented “stories” describing what people would be
doing with the system we were developing. We also dispensed with
screen layouts and substituted lists of items to be input and
presented. The customers found the resulting documents more
accessible and contributed more to their creation, the business

analysts found the documents easier to produce, and the developers
felt they could identify and deliver what was wanted. Everyone
thought it an improvement.

Why then had the “old way” become established? Asking the
business analysts got responses along the lines of “we don’t like it,
but that is what they [the developers] want”. The developers had a
different version “we don’t like it, but they [the business analysts]
have to do it that way for customer sign off”. Somehow, no one had
been happy, but had just accepted that things were the way they
were because “they” needed it that way.

“They” is one of those stereotypes of social life – a faceless other
that behaves in inexplicable (and often damaging) ways. Users try
to do the weirdest things with the software we supply them,
managers seem determined to stop the work getting done,
prospective employers eliminate talented individuals during the
recruitment process, developers show no interest in avoiding
problems, accountants shut down successful projects. “They” cause
many of the problems and irritations we face in life. “They” are
stupid, malicious or ignorant.

Nonsense! If you can find and talk to them you will find that
“they” are normal human beings trying to achieve reasonable goals
in reasonable ways. And, all too frequently, “they” are just as
dissatisfied with the state of affairs as you are.
● When I’m using a piece of software I don’t suddenly lose all

sense – maybe it is hard to figure out how to achieve my
objectives. I’ll try things that make sense to me to try – which
is not always what the developer expected. (Even when the
developer has been diligent about getting feedback on the user
interface design.)

● If I’m running a project then I don’t forget that code needs to be
written, but sometimes ensuring that the functionality meets the
need or ensuring that funding continues requires something else
gets done first.

● If I’m recruiting I need to avoid people that won’t be effective
in the organisation – bringing someone disruptive into a team
costs their time and that of others. Given that cost is it surprising
that employers are not prepared to “take a chance” when there
is anything that raises doubts about the suitability of a candidate.

● If I’m developing software I can only tackle so many issues at
once. If an organisation lacks a repeatable build process and
version control then these are things that need fixing before
looking at the proposed list of new features. Some problems are
not serious enough to warrant effort right now.

People, by and large, work by trying to achieve goals – and it is by understanding
their goals that we can best understand their behaviour. That is why “user stories”
are such an effective way of capturing requirements (most approaches to

requirements capture are effective when they are used with a focus on what is being
attempted). But, as anyone that has done requirements capture should be able to tell
you, people tend to be poor at explaining what their goals are. Without guidance they will
focus on how they expect these goals to be achieved.

5

Overload issue 65 february 2005

● If I’m funding work I want to see a return (not necessarily
financial) that is better than alternative uses of those funds. The
way in which software developers sometimes report results can
make it very hard to assess that return.

I don’t consider any of these goals inexplicable or unreasonable –
nor should you.

It is a refusal to consider the reasons for the way “they” act that
builds the problems, and labelling them “they” is an abdication of
rationality. While there is a role for “they” and “we” in thinking it
is one that defines allegiances and trust, not one that helps to resolve
problems.

Some of this thinking seems to influence the content of Overload:
many potential authors think that “they” (the editorial team) are only
interested in C++, while the editorial team wonder why “they” (the
authors) hardly ever submit material relating to other languages.
Admittedly we do get a few Java articles, but where are the C,
Python, C# and SmallTalk articles? I know there are members that
are interested in these technologies, so there should be both an
audience and people with the knowledge to write something. Come
to think of it, if you think “they” are not publishing the right articles
why not get involved? You could write articles, you could even join
the team – we’ve not recruited any “new blood” to the Overload
team for two years now. Maybe “they” could include you?

ACCU Certification

As I’m writing this a discussion has sprung up on accu-
general about a topic that resurfaces every year or so: “why is
there no effective qualification for software developers?” There
are organisations (like the BCS, IEE or EC[UK]) that might be
thought suitable for supporting such – but “they” don’t provide
anything the list members feel is appropriate. This same issue
was raised in Neil Martin’s keynote at the last ACCU conference
when he suggested that the ACCU step in and address this need.
As a result, the ACCU Chair (Ewan Milne) asked me to arrange a
“Birds of a Feather” session for those interested in exploring this
possibility, and to represent the committee there.

The session was well attended, and there seemed to be a strong
consensus that there were potential benefits for both developers and
employers in some sort of certification-of-competence scheme. It
was also thought that it would be a good idea for ACCU to get
involved in producing such a scheme. Questions were raised about
what was involved in becoming a certificating body, what it was
practical to certify and what the mechanism for certification might
be. There seemed to be a lot of interest – so Neil promised to
research the certification issues and I took email addresses for those

interested in participating in further discussion and got the accu-
certification mailing list set up.

Clearly there was a misunderstanding: I expected “they” (the
people that signed up) would involve themselves in doing
something. It seems that those that signed up expected that a
different “they” (Neil, myself or the committee) would do
something. In practice only Neil did something – he reported back
as promised: ACCU could reasonably easily get itself recognised
as a “certification body” for this purpose. The details of what is
involved were circulated via the mailing list. And that was the end
of it until the discussion on accu-general.

It is easy to be critical and say that “they” should do something.
In this case that “they” (the ACCU) should do something about
certifying developers as being competent. But just think for a
moment: you are a member of ACCU, and ACCU works through
members volunteering to do things. So you are one of this particular
“they”, and you know exactly why “they” are doing nothing –
because you are doing it yourself.

In practice though, I feel that the ACCU already does provide a
useful qualification: I did hundreds of “technical assessments” for
a client last year – most candidates failed in ways that gives cause
for concern about an industry that employs them. (Interestingly I
had feedback both from the group that I was working with about
how competently the “passes” fitted in and also from other groups
in the client organisation that decided to employ some of those I
had failed at interview – and then found them deficient.) The
qualification that ACCU provides? I can’t recall any candidates that
mentioned the ACCU on their CV failing the technical part of the
process (while the client wasn’t prepared to exempt them from the
assessment on that basis, the manager selecting the candidates to
interview noticed this).

Before you go

I was very pleased with the feedback on accu-general and
elsewhere to the report by Asproni, Fedotov and Fernandez on
introducing agile methods to their organisation (I’d spent some
time persuading them to write this material up). As a result I
reviewed some material that Tom Gilb had passed me at an
Extreme Tuesday Club meeting last year looking for things that
might interest Overload readers. Amongst this material was a
couple of articles (Jensen and Johansen) that appear in this issue
by kind permission of their authors. I hope that these too meet
with your approval.

Alan Griffiths
overload@accu.org

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines

All articles intended for publication in Overload 66 should be submitted to the editor by March 1st 2005, and for Overload 67 by
May 1st 2005.

6

Overload issue 65 february 2005

Letters to the Editor
Encapsulate Context
Mr. Griffiths,

When I read the title and abstract for the pattern, I thought it
might be really useful. Instead, this Pattern is simply a global
wrapped in a shroud. I would like to say, at the outset, that I do
believe there is a place for global variables (std::cout being an
excellent example). I also like the concept of contextually global
variables – variables that are global within a given context. To
make my argument I offer the following:
A There are two ways a variable becomes global within a program:

1) it is intentionally declared global, or 2) it is passed to every
function as a parameter.

B The ENCAPSULATE CONTEXT pattern suggests that there is a
single variable that should be passed to all functions within
a given context, effectively making the variable global (via
A.).

C The ENCAPSULATE CONTEXT pattern as written, does not build a
context into the variable, but rather provides a global that can be
provided within context. There is nothing to define or constrain
the context under which variables within the structure should be
accessed.

In short, the functionality provided by the ENCAPSULATE CONTEXT

pattern as written can be easily achieved by declaring some
global variables in a namespace that is shared by the functions
that need access to these variables. This “solution” is far cheaper,
more effective, and clearly delineates the level of coupling the
functions share, whereas the ENCAPSULATE CONTEXT solution as
written only serves to obfuscate the level of coupling, not
mitigate it.

Were I a sufficiently adept programmer, I would propose an
alternative to the ENCAPSULATE CONTEXT solution as written.
Sadly, my skills do not lie in this area and it would take me ages
to accomplish this task. At best I can offer some design
suggestions.

It strikes me that the container which “collects data together”
needs to do more than simply provide a pointer that can be passed
around on the parameter line. It should have a built in hierarchy of
contexts that allow functions to pass not simply the container, but
also information about the context under which the data should be
accessed. By providing the context (albeit dynamically) it is
possible to limit the scope of the variables that are accessible as the
context tree is traversed.

Taking the straw man stock exchange trading system that Allan
Kelly used, I would see the calls to the functions something like
this:

ProcessMarketTrade(msg,

context->constrain(data_store

|| log));

MarketStore::Sell(msg,

context->constrain(log));

the constrain function from within context should look
something like:

MarketContext * MarketContext::constrain(

ContextLevel level);

In this case, the parameters to context.constrain() define
the highest point in the hierarchies of data stored within the
context to which the function should have access and the call
returns a pointer to a variable which has been so constrained (I
can envision several objections to this particular implementation,
but I hope that the idea is clear). The hierarchy within the
context container might look something like:

config_data

parms

app_data

data_store

run_time_data

log

error_log

transaction_log

Within the hierarchy there might be variables associated with
that point in the hierarchy ... in run_time_data/log/error_log
there might be a lock that is used to lock the file while a set of
error messages is being written, the file pointer, etc. It is worth
noting that you shouldn’t be able to pass a context above your
current context. Thus, if you had received the container with
the context level of log you would be able to pass on log ,
error_log, or transaction_log , but not parms or
run_time_data. Maybe all of this could be done with
templates somehow.

This would encapsulate the context and refine how generally
global variables might be accessed. A function with access to “log”
might not have access to “parms” and this would help with
decoupling. It strikes me that this is still a long-winded and
complicated way to achieve the same thing as globals within a
namespace. Given your concerns, however, that it might be good
to be able to recover from the state in which you find the application
rather than simply rewriting it so that such coupling is either not
needed or explicit, this may be a reasonable approach. Again, I
wish I had the necessary skills to adequately program such a
structure, but my “back of the envelope” efforts have not come to
fruition and I’m wondering if I have grasped the whole of the
problem or just a piece.

As a final note, I would like to say that the article was clear, well
written, and was on topic for Overload. I do feel that the solution
given represents a “bad programming practice” but I readily
concede to those more learned in this area then myself. I also think
that the solution given is a very complicated way to ignore
namespaces for no particular gain and some loss.

Sincerely,
William Fishburne

Allan’s Reply

Dear Editor,
I’m rather surprised by the amount of attention my little pattern,

ENCAPSULATE CONTEXT, in Overload 63 has generated. However,
I regard this as a good thing.

I’m a little disappointed that I was not given the opportunity to
respond to Phil Bass’s points in the same issue of Overload as his
letter appeared. Phil’s technical points are all valid, the problem is:
how do we balance all these forces? That is the problem that
ENCAPSULATE CONTEXT addresses.

7

Overload issue 65 february 2005

Phil is also concerned about the resulting coupling. I too am
concerned about this and would draw his attention to the Solution
and Consequences sections. These deal with some of the
problems which can arise when this pattern is used – or misused.
This paper does not claim to be a solution to every programming
problem. Like any other pattern this one may be useful sometimes
and not others. If a system can be partitioned to avoid this
problem then great, if not, then this pattern has a use. Unlike
many other patterns this one knows its limitations and highlights
these to the reader.

Readers must decide whether this pattern stands or falls.
However I am more concerned about a non-technical point Phil
makes in his letter. He states “mention of Kevlin Henney, Frank
Buschmann and EuroPLoP gives the article an unwarranted air of
authority.” Let me say that these people are mentioned not to
aggrandise the pattern or myself but to acknowledge their
assistance in creating the pattern. I am most grateful to these
people – and the others mentioned – for all their help. It is in the
culture of the patterns community that such assistance is
acknowledged.

In no way did I hide anything from these people, there was no
attempt to pull the wool over their eyes and slip a dodgy pattern
past them. The final choice of words may have been mine but this
pattern wouldn’t be what it is without the review and comments of
others.

These names were not mentioned to create a false authority for
the pattern. If the pattern has authority it comes not from mention
of these names but form the fact that others have reviewed it on
multiple occasions. (In fact, I find it hard to think of any other
piece of writing in Overload that has been reviewed as much as
this – and that was before the Overload editorial board got to see
it.)

Moving onto the comments from William Fishburne. First, let
me encourage William to write up his thoughts. I’m sure his skills
are up to the job.

Reading William’s comments I take two main points. Firstly his
suggestion to use a namespace as part of the solution. What he
describes sounds like the MONOSTATE pattern – otherwise known as
THE BORG. This pattern has its uses but – as the alternative name
suggests – it too has problems.

The second solution is to constrain the parameters passed to a
function. This may well be a solution in some contexts, but in the
context taken by ENCAPSULATE CONTEXT it is not. In ENCAPSULATE

CONTEXT we wish the caller to remain ignorant of what is being
passed down. This is a deliberate selective ignorance. While this
approach introduces compile time coupling the coupling is less than
would be introduced by either global variables or an extra parameter
in the function signature.

We could remove this coupling were we to use dynamic
members within the context, this is the approach taken by Patow
and Lyaret in PARAMETER BLOCK pattern (another pattern presented
at EuroPLoP 2003.)

Both Phil and William describe my example as a straw man. To
some degree this is true, like any example it is an abstraction which
ignores some elements, however, I can assure them it is not a straw
man example.

The example given comes from a very real system. Two
explanations are therefore possible:
Option #1: A better design was possible that would have avoided

this design situation. Undoubtedly other designs where possible,

would other designs have avoided this problem? I don’t know.
I do know that this solution troubled me as it emerged; this was
the trigger for deeper investigation and ultimately writing the
pattern.
More importantly, like any design this evolved, knowing what
one knows at the end of a design one might not always chose the
same design again. However, I am convinced that given the
constraints at the time (knowledge of domain, time to market,
programming interfaces, experience, etc.) this was the best
design possible.

Option #2: Simply that I am a poor designer. I will let readers
decide this for themselves but I will note that others have come
to similar conclusions in similar circumstances.

Finally, I welcome this debate, it’s good to hear other views and
it demonstrates that software development is not black and white,
different opinions exists and always will. I look forward to
hearing more comments and opinions.

Allan Kelly
allan@allankelly.net

Alan’s reply to Allan

Allan is right: if a “letter to the editor” had expressed the views
that Phil propounded then I would have sought a response from
the author. For that I have to apologise, both to Allan and to the
readership. Sorry.

Phil’s comments caused discussion within the editorial team –
not so much because of the views expressed, but how to deal with
them. Given Phil’s position as one of Overload’s advisors his
comments needed different treatment to those of most
correspondents. Especially as the main point was regarding
editorial policy: should material that an advisor has concerns about
be published without warning?

My experience with the solution Allan proposes is that a number
of problems experienced on the project that I employed it on were
resolved without unexpected effects. Hence, I didn’t feel it
appropriate to give any warning beyond those Allan himself
provides.

I trust that Overload readers are sufficiently sophisticated to
make up their own minds about both the validity of Allan’s
pattern paper and also about Phil’s concerns regarding
publishing it.

Alan Griffiths (editor)

Developing a Pattern

Dear Editor,
I was a little surprised and more than a little worried by the

comments made by Phil Bass (included in the editorial of Overload
64) on the ENCAPSULATE CONTEXT pattern by Allan Kelly (published
in Overload 63). They were quite strongly against Allan’s article,
which is a personal preference anyone is allowed to express, but
for reasons that I felt were ungrounded, and which undermined the
value of those comments as a review.

The first concern I had was with Phil’s question over the validity
of the pattern. Given Phil’s experience and the way that he has
approached design in his articles, this is surprising. The solution
outlined in the pattern is both valid and good for the problem it
addresses, and a standard tool in the toolkit of experienced OO
developers. For the record, and to assuage Phil’s concerns, it can
be found in a number of well-designed systems; it can also be found
missing in several systems that are not so well designed, where

8

Overload issue 65 february 2005

instead single, fixed points of contact (globals, SINGLETONs,
MONOSTATEs, etc) are employed or long, unstable and tedious
argument lists are passed around.

Unifying sets of distinct items, such as all or part of an
argument list, that are bound by common use or an invariant is
one of the diverse range of techniques OO developers use to
identify object types. Phil considers such a use to be trivial,
which appears to go against much of the accumulated wisdom on
identifying stable elements in a design. Such normalisation is a
common and accepted practice, whether carried out explicitly or
intuitively.

The second concern I had is concerned with a fundamental
part of the pattern concept. A pattern is not an unconditional piece
of design advice, a blanket recommendation that covers all
designs. Its applicability is very much dependent on context and
the acceptability of trade-offs involved in applying it. A robustly
written pattern will make clear that it is not a panacea, publicising
its benefits, liabilities and alternatives quite openly. This is a
point that Mark Radford made clearly and well in his editorial of
Overload 63. Hence the reason for my surprise: Phil’s comments
suggest that he views the pattern as unconditional design advice
that has neither a discussion of consequences nor a discussion of
techniques involved in applying it, such as partitioning the
context. I don’t believe that this is the way that Phil actually
views patterns, but that is the message that comes across in this
instance.

Allan’s pattern is quite clear in its caution, making explicit
the many design decisions and alternative paths that would lead
to or away from encapsulating the execution context of an
object. Phil does not seem to have picked up on some of the
other points made in the paper, such as partitioning the execution
context. He proceeds to misapply the pattern in his discussion,
and then claim that it is the pattern that is broken and not his
reading of it. It is important to recognise that the pattern does
not unconditionally propose that there be only one context type
or context object (or, to pick up a previous point a conditional
application, that context objects are needed in all system
designs). To claim that the system’s coupling will rise if
ENCAPSULATED CONTEXT is applied both misses and makes the
point: employ the pattern to reduce the coupling rather than
increase it; if that doesn’t work, do it differently or do something
else. If Phil does not wish to apply the pattern, I have no problem
with that; if he has been unable to evaluate it on its own terms
and is cautioning others that it should not be used at all, I
question that.

The first two concerns are technical in character, and are the stuff
of lively technical debate, whatever views we hold. However, the
third concern I had was more ad hominem in nature. Phil’s claim
that “the mention of Kevlin Henney, Frank Buschmann and
EuroPLoP gives the article an unwarranted air of authority” is an
inappropriate claim that potentially insults all those involved –
Allan, Frank, me and the EuroPLoP workshop participants who
offered Allan feedback on his paper.

In his prologue and his acknowledgements section Allan
offers an insight into the history and evolution of the paper. In
recognising that it has evolved, and the journey taken so far, he
mentions those who have contributed in some way to the paper.
That is part of telling the story of the paper, but it is also why
“acknowledgements” sections are so called. Our names were not
picked out of thin air to aggrandise Allan’s work: we offered

Allan feedback in one form or another. It is generally considered
polite to acknowledge such contributions. Such
acknowledgements are also part of the cultural expectation for
pattern papers.

It is perhaps worth understanding a little more about the process
that surrounds the reviewing of many pattern papers. A shepherd is
someone who offers comments structured as iterative feedback with
dialogue, with the goal of giving the author a different insight into
their paper and the means to improve it. This is the role that I took
on voluntarily when the pattern originally came up in discussion in
2002. At this point Allan was working on the paper without a
distinct publication goal in mind. Allan decided to submit it to
EuroPLoP 2003, and at this point Frank Buschmann took on the
role of the shepherd. Papers are not accepted for the PLoP family
of conferences without some amount of shepherding and
acceptance by the shepherd. The shepherding is intended to improve
the paper to a point where it can be opened to further structured
feedback at the conference in the form of a workshop, which is
where Allan received further suggestions for improvement.
Publication in the EuroPLoP proceedings is not a mark of
perfection, but is a visible outcome of the reviewing process, and
to reference it is a statement of fact rather than an appeal to
authority.

Given the depth and breadth of the review process, it seems only
good manners to include a list of acknowledgements. And, given
the common characterisation of a pattern paper as a work that is
always in progress, it is possible that Allan will take Phil’s
comments on board and address them in some way. In such a case,
it is also likely that Phil’s name will appear in the list of
acknowledgements, because in one way or another he will have
contributed to improving the paper.

Kevlin Henney
kevlin@curbralan.com

Phil’s Response

Dear Editor,
The only comment I really wish to make is that I apologise

unreservedly to Allan, Kevlin and anyone else who feels insulted
by my remarks. When I said that “the mention of Kevlin Henney,
Frank Buschmann and EuroPLoP gives the article an unwarranted
air of authority” I chose my words badly. I still believe Allan’s
article over-states the value of this “pattern”, but I never intended
to question anyone’s integrity.

The real technical issue, here, lies with Allan’s initial premise
that “A system contains data, which must be generally available to
divergent parts of the system”. That is a description of a problem.
ENCAPSULATE CONTEXT is a sticking plaster that can be applied if
you wish, but it doesn’t begin to tackle the problem itself. What we
should be doing is analysing the system’s design with a view to
removing (as far as possible) the need for such data.

Phil Bass
phil@stoneymanor.demon.co.uk

C++ Lookup Mysteries

Dear Editor,
Sven Rosvall’s “C++ Lookup Mysteries” in Overload 63

couldn’t have been better timed as it provided a solution to a
problem I had been struggling with – a test harness that failed to
compile after a new feature was added to the main product because
of C++’s non-intuitive name lookup rules.

9

Overload issue 65 february 2005

The problematic code, trimmed to the minimum to illustrate the
problem, was:

template<class C>

void DebugPrint(const string& description,

const C& container) {

cout << description << "\n";

// some stuff

copy(container.begin(), container.end(),

ostream_iterator<typename C::iterator

::value_type>(cout, " "));

cout << endl;

// some other stuff

}

This works fine for standard containers containing either built-in
types or user defined types that define an output operator in the
same namespace as the type is defined. The code that broke the
test harness was a standard container of std::pair. The
obvious solution, defining operator<<(std::pair) in the test
harness namespace, didn’t work because the compiler cannot
“see” this definition. The problem is that operator<< is already
defined (for the built-in types) in namespace std and masks
my definition, as Sven explains “Firstly, the nearest enclosing
namespace is searched for ‘entities’ with the same name. Note
that as soon as a name is found the search stops” (my italics).
C++ name lookup says that the only place that the compiler will
look for operator<<(std::pair) is in std.

Ah, so all I have to do is define it in std:

namespace std {

template<class T1, class T2>

std::ostream& operator<<(std::ostream& os,

const std::pair<T1,T2>& p) {

return os << "(" << p.first

<< "," << p.second << ")";

}

}

except that adding declarations or definitions to namespace std
is undefined behaviour according to the standard (Clause 17.4.3.1).

Of course the name lookup will find operator<<(pair) in the
test harness namespace for a pair also in that namespace. The
standard fully defines std::pair (Clause 20.2.2) so I can copy the
source code to define my own pair (in my workspace) and expect
identical behaviour. Although legal, this has a number of problems:
● It breaks the rule of least surprise. A future maintainer may wonder

why there are two identical pairs in different namespaces.
● It requires the main product source code to use this new pair,

and thus adds a dependency on the test harness code.
● Although the two pairs are binary compatible, they are not

interchangeable in source code without considerable scaffolding,
and even then not fully.

To force the name lookup to find my operator<<(std::pair)
without duplicating std::pair, I took Sven’s wrapper class,
PrintSpannerNameAndGap, and made it into a template class
and output function:

template<class T>

class osformatter {

public:

osformatter(const T& t) : t_(t) {}

void print(std::ostream& os) const {os << t_;}

private:

const T & t_;

};

template<class T>

std::ostream& operator<<(std::ostream& os,

const osformatter<T>& f) {

f.print(os);

return os;

}

and changed the line in the debug function to use it:

copy(container.begin(), container.end(),

ostream_iterator<osformatter<typename

C::iterator::value_type> >(cout, " "));

This now works for all built-in types and any user defined types
that define an operator<< in the same namespace.

Now it is possible to write a specialisation of osformatter for
any type that does not support the output operator or for which we
want some special formatting, for example, fixed precision doubles:

class osformatter<double> {

public:

osformatter(const double& d) : d_(d) {}

void print(std::ostream& os) const {

int p=os.precision();

os.precision(4);

os << d_;

os.precision(p);

}

private:

const double& d_;

};

I can now apply the same specialisation to std::pair, which,
being a template itself, needs a template declaration for the types
contained within it:

template<class T1, class T2>

class osformatter<std::pair<T1,T2> > {

public:

osformatter(const std::pair<T1,T2>& p)

: p_(p) {}

void print(std::ostream& os) const {

os << "(" << p_.first

<< "," << p_.second << ")";

}

private:

const std::pair<T1,T2>& p_;

};

This now compiles because the std::pair output code is
contained in osformatter, and thus explicitly called, and so is no
longer dependent on the name lookup rules.

This not only solved my name lookup problem but provided a
nice way of changing the default output format of built-in types
when using copy.

Regards,
Mark Easterbrook

mark@easterbrook.org.uk

10

Overload issue 65 february 2005

From Waterfall to EVO in a
Medium Size Norwegian
Software House

The path and experiences
by Trond Johansen

Background

FIRM was established in 1996, and has 70 employees in 4
offices (Oslo, London, New York and San Francisco). FIRM
delivers one software product: Confirmit. Confirmit is a web-
based application which enables organizations to gather,
analyze and report key business information across a broad
range of commercial applications. Confirmit can be applied to
any information-gathering scenario. Its three main data sources
are: Customer Feedback, Market Feedback and Employee
Feedback.

The FIRM R&D department consists of about 20 people,
including a Quality Assurance department of 3 people where I work.
We are mainly involved in product development of Confirmit, but
we also do custom development for clients who fund new modules
of the software.

In the very beginning, when FIRM only had a couple of clients,
our development was very ad-hoc and customer driven. The
software was updated on an almost daily basis based on client
feedback. As our client base grew, we formalised the development
process according to a waterfall model. We were unhappy with
several aspects of the model: risk mitigation postponed until late
stages, document-based verification postponed until late stages,
attempting to stipulate unstable requirements too early, operational
problems discovered too late, lengthy modification cycles and much
rework. The requirements were focused on functionality, not on
quality attributes.

FIRM CTO Peter Myklebust and I heard Tom Gilb speak about
Evolutionary Project Management [EVO] at a software conference
(ITPro 2003). We found the ideas very interesting, and Tom and
Kai Gilb offered to give a more detailed introduction to the concept.
They spent one day in our offices teaching and preaching EVO. We
decided to use EVO as best as we could for the next release, with
a development phase of 3 months.

FIRM’s Interpretation of EVO:
Basis for the 3 Month Trial Period

EVO is in short: Quickly evolving towards stakeholder values &
product qualities, whilst learning through early feedback.

After the one day crash course with Tom and Kai Gilb and a
literature study (“Competitive Engineering” by Tom Gilb and
other material on the subject), our overall understanding of EVO
was this:
● Find stakeholders (End users, super-users, support, sales, IT

Operations etc)
● Define the stakeholders’ real needs and the related Product Qualities
● Identify past/status of product qualities and your goal (how much

you want to improve)
● Identify possible solutions for meeting your goals
● Develop a step-by-step plan for delivering improvements with

respect to Stakeholder Values & Product Quality goals:
● Deliveries every week
● Measure: are we moving towards our goals?

Requirements

With EVO, our requirements process changed. Previously we
focused mostly on function requirements, and not on quality
requirements. It is the quality requirements that really separate us
from our competitors. There is an analogy with the spell checker
in MS Word: why was this a killer application? There was no
new functionality; authors of documents have been able to spell
check with paper dictionaries for ages. The real difference was a
superior product quality: speed of spell checking and usability.
[Surely MS-Word wasn’t the first WP with automated spell checking?
Ed.]

We tried to define our requirements according to a basic
standard:
● Clear & Unambiguous
● Testable
● Measurable
● No Solutions (Designs)
● Stakeholder Focus

Example:
Usability.Productivity
Scale: Time in minutes to set up a typical specified Market

Research Report (MR)
Past: 65 min, Tolerable: 35 min, Goal: 25 min (end result was 20

min)
Meter: Candidates with knowledge of MR-specific reporting

features performed a set of predefined steps to produce a
standard MR Report. (The standard MR report was designed by
Mark Phillips, an MR specialist at our London office)

The focus is here on the day-to-day operations of our MR users, not
a list of features that they might or might not like. We know that
increased efficiency, which leads to more profit, will please them.

After one week we had defined more or less all the requirements
for the next version of Confirmit.

Solutions/Designs

For every quality requirement we looked for possible solutions
(Design Ideas)

E.g. for Quality Requirement: Usability.Productivity we
identified the following design ideas:
● DesignIdea.Recoding (See IET below)
● DesignIdea.MRTotals
● DesignIdea.Categorizations
● DesignIdea.TripleS
● ...and many more
We evaluated all these, and specified in more detail those we
believed would add the most value (take us closer to the goal).

EVO

We collected the most promising solutions/design ideas and
included them in an Impact Estimation Table (IET) – see Figure 1.

The IET is our tool for controlling the qualities and deliver
improvements to real stakeholders, or as close as we can get to
them. (E.g. ProS/Support department acting as clients)

FIRM EVO Week

We decided that one EVO step should last one week (see Table 1)
because of practical reasons, even though we violate the rule of
not spending more than 2% of project schedule in each step.

11

Overload issue 65 february 2005

At the Project Management meetings on Fridays each project
leader presented the results from the previous step (IET), as well
as the content of next EVO step (one week). Possible new Solutions
are discussed and weighed against each other.

We launched our first major release based on EVO in May 2004
and we have already received feedback from users on some of the
leaps in product qualities. E.g. the time for the system to generate
a complex survey has gone from 2 hours (of waiting for the system
to do work) to 20 seconds!

Internal Feedback on EVO After
the Trial Period

Project leaders:
1. Defining good requirements can be hard.
2. It can be hard to find meters which were practical to use, and at

the same time measured real product qualities.
3. Sometimes you think it’s necessary to spend more than a day on

designs, but this was not right according to our understanding of
EVO – the concept of backroom1 activity was new to us.

4. Sometimes it takes more than a week to deliver something of
value to the client – again, the concept of backroom activity was
new to us.

Team members (developers):
1. Sometimes it felt like we’re rushing to the next weekly step

before we had finished the current step.
2. Testing was sometimes postponed in order to start next step, and

some of these mistakes were not picked up in later testing.

Overall, the whole organization has embraced EVO. We all think
it has great potential, and we will work hard to utilize it to the
full.

Trond Johansen
trond.johansen@firmglobal.com

Figure 1: Impact Estimation Table

Table 1: An EVO Step

Development Team Users (PMT, Pros, CTO (Sys Arch, QA (Configuration
Doc writer, other) Process Mgr) Manager & Test

Manager)

Friday ● PM: Send Version N detail plan to ● Approve/reject design ● Run final build and create
CTO + prior to Project Mgmt meeting & Step N setup for Version N-1

● PM: Attend Project Mgmt ● Attend Project Mgmt ● Install setup on test servers
meeting: 12-15 meeting: 12-15 (external and internal)

● Developers: Focus on general ● Perform initial crash test
maintenance work, documentation and then release Version N-1

Monday ● Develop test code & code for Version N ● Use Version N-1 ● Follow up CI
● Review test plans, tests

Tuesday ● Develop test code & code for Version N ● Meet with developers to give ● System Architect: review ● Follow up CI
● Meet with users to discuss action taken feedback and discuss action taken code and test code ● Review test plans, tests

regarding feedback from Version N-1 from previous actions

Wednesday ● Develop test code & ● Review test plans, tests
code for Version N ● Follow up CI

Thursday ● Complete test code & code for Version N ● Review test plans, tests
● Complete GUI tests for Version N-2 ● Follow up CI

1 A backroom activity is programming activity not visible for the end user. This is not
essential information, we seldom use this activity. We always try to produce some
value to some stakeholders every week.

12

Overload issue 65 february 2005

Multiple Streams Going
Nowhere

by Paul Grenyer

In this case study I am going to describe two streams I
developed for use within my C++ testing framework, Aeryn
[Aeryn]. Aeryn has two output streams. One is minimal and only
reports test failures and the test, pass and failure counts. The
other is more verbose and includes all the output from the
minimal stream, plus a list of all test sets along with their
individual test cases. The minimal stream is intended to be sent
to the console and the verbose stream to a more permanent
medium such as a log file or database, but either can be sent to
any sort of output stream.

The use of the two streams introduces two specific problems:

1. The stream sink for both streams must be passed into the function
that runs the tests. For example:
std::ofstream verbose("testlog.txt");

std::stringstream minimal;

testRunner.Run(verbose, minimal);

Even if only one of the two outputs is required, both streams
must be specified.

2. The same information must be sent to both streams, which results
in duplicate code. For example:
verbose << "Ran 6 tests, 3 passes, 3 failures";

minimal << "Ran 6 tests, 3 passes, 3 failures";

This is far from ideal as every time the text sent to one stream is
modified, the text sent to the other stream must also be modified.
It would be all too easy to forget to update one or other of the
streams or to update one incorrectly.

Both of these problems can be solved by writing a custom
stream. Writing custom streams is covered in detail in section
13.13.3 (User-Defined Stream Buffers) of The C++ Standard
Library [Josuttis]. As Josuttis does such a good job of describing
custom streams and his book is widely distributed, I will only
cover the necessary points relevant to this case study.

Null Output Stream

Problem 1 can be easily solved with a null output stream. A null
output stream is a type of null object [Null Object]. Kevlin
Henney describes a null object as follows: “The intent of a null
object is to encapsulate the absence of an object by providing a
substitutable alternative that offers suitable default do nothing
behaviour.” So basically a null output stream is a stream that does
nothing with what is streamed to it. Therefore if either the
minimal or verbose stream is not required it can be directed to a
null output stream. For example:

cnullostream ns;

testRunner.Run(ns, std::cout);

The key to writing a custom stream is implementing its stream
buffer. The functionality for stream buffers is held in the standard
library template class std::basic_streambuf. Custom stream
buffers can be written by inheriting from
std::basic_streambuf and overriding the necessary member
functions.

It is not necessary for the custom stream buffer to be a template,
but it makes life a lot easier if you want your custom stream to work

with char, wchar_t and custom character traits. This is also
discussed in detail in The C++ Standard Library.

template<typename char_type, typename traits

= std::char_traits<char_type> >

class nulloutbuf : public

std::basic_streambuf<char_type, traits> {

protected:

virtual int_type overflow(int_type c) {

return traits::not_eof(c);

}

};

The code above shows the complete implementation for the null
output stream buffer. The overflow member function is all that
is needed to handle characters sent to the stream buffer. The
traits::not_eof(c) function ensures that the correct
character is returned if c is EOF.

Now that the stream buffer is complete it needs to be passed to
an output stream. The easiest way to do this is to inherit from
std::basic_ostream and have the stream buffer as a member
of the subclass.

template<typename char_type, typename traits

= std::char_traits<char_type> >

class null_ostream : public

std::basic_ostream<char_type, traits> {

private:

nulloutbuf<char_type, traits> buf_;

public:

null_ostream()

: std::basic_ostream<char_type,

traits>(&buf_), buf_() {}

};

Notice the constructor initialisation list. The buf_ member of
null_ostream is passed to the basic_ostream base class before
it has been initialised. In his book Josuttis actually puts buf_ first in
the list, but this makes no difference. The base class is still initialised
before buf_. This could give rise to a problem where buf_ is
accessed by a nullstream base class prior to it being initialised.

Some standard library implementations do nothing to avoid this
and they don’t need to. A library vendor knows their own
implementation and if protection was required it would be provided.
As the C++ standard gives no guarantee it is sensible for a custom
stream to take steps to avoid the stream buffer being accessed before
it is created. One way to do this is to put it in a private base class,
which is then initialised before basic_ostream:

template<typename char_type, typename traits>

class nulloutbuf_init {

private:

nulloutbuf<char_type, traits> buf_;

public:

nulloutbuf<char_type, traits>* buf() {

return &buf_;

}

};

13

Overload issue 65 february 2005

template<typename char_type, typename traits

= std::char_traits<char_type> >

class nullostream : private virtual

nulloutbuf_init<char_type, traits>,

public

std::basic_ostream<char_type, traits> {

private:

typedef nulloutbuf_init<char_type, traits>

nulloutbuf_init;

public:

nullostream() : nulloutbuf_init(),

std::basic_ostream<char_type,

traits>(nulloutbuf_init::buf()) {}

};

The code above shows that as well as being inherited privately,
nulloutbuf_init is also inherited virtually. This makes sure
that nulloutbuf and nulloutbuf_init are initialised first,
avoiding the undefined behaviour described in 27.4.4/2 of the
[C++ Standard]. The undefined behaviour would occur if
nulloutbuf’s constructor was to throw in between the
construction of basic_ios (a base class of basic_ostream)
and the call to basic_ios::init() from basic_ostream’s
contrustor. See the C++ standard for more details.

Now that the implementation of null_ostream is complete two
helpful typedefs can be added. One for char and one for wchar_t:

typedef null_ostream<char> cnullostream;

typedef null_ostream<wchar_t> wnullostream;

I always like to unit test the code I write and usually the tests
are in place beforehand. Naturally I use Aeryn for unit testing.
Testing null_ostream has its own interesting problems. I
started by writing two simple tests to make sure that
cnullostream and wnullostream compile and accept
input:

void CharNullOStreamTest() {

cnullostream ns;

ns << "Hello, World!" << '!' << std::endl;

}

void WideNullOStreamTest() {

wnullostream wns;

wns << L"Hello, World!" << '!' << std::endl;

}

The whole point of a null output stream is that it shouldn’t
allocate memory when something is streamed to it; otherwise
something like a std::stringstream could be used instead.
Wanting to test for memory allocation caused me to write, with
considerable help from accu-general members, a memory
observer library, called Elephant (see sidebar) [Elephant].
Elephant allows me to write an observer (NewDetector) which
can detect allocations from within null_ostream’s header
file, which in this case, also holds its definition. Originally the
observer was intended to monitor all allocations that occurred
while using null_ostream, but as the standard permits stream
base classes to allocate memory to store the current locale, I
restricted the observer to allocations from null_ostream
itself:

class NewDetector : public

elephant::IMemoryObserver {

private:

bool memoryAllocated_;

public:

NewDetector()

: memoryAllocated_(false) {

}

virtual void OnAllocate(void*, std::size_t,

std::size_t,

const char* file) {

// Crude black list.

if(std::strcmp(file,

pg::null_ostream_header)) {

memoryAllocated_ = true;

}

}

virtual void OnFree(void*) {}

bool AllocationsOccurred() const {

return memoryAllocated_;

}

};

In order to get OnAllocate to be called by the Elephant
operator new overload that includes the name of the file it was
called from, a macro must be introduced into null_ostream’s
definition. The easiest way to do this is to wrap null_ostream’s
header file with the macro in the test source file:

// nullostreamtest.h

#define new ELEPHANTNEW

#include "nullostream.h"

#undef new

Elephant: C++ Memory Observer

A full discussion of the design of Elephant is beyond the
scope of this case study, but the principles on which it is
based are simple and easy to explain. Elephant consists of
two main components:
new / delete overloads: Elephant has a total of eight pairs

of new / delete overloads. As well as allocating and
freeing memory, each overload registers its invocation with
the memory monitor by passing the address of the memory
that has been allocated or freed. Four of the eight new
overloads also pass the line and file from which new was
invoked.

Memory monitor: Calls to the new / delete overloads are
monitored by the memory monitor. The memory monitor is
observer-compatible and users of Elephant can write custom
observers (or use those provided) and register them with the
memory monitor. Every time memory is allocated or freed
via the new / delete overloads each observer is notified
and passed the memory address and, where available, the
line and file from which new was invoked.

14

Overload issue 65 february 2005

In order to make sure that OnAllocate only registers allocations
from null_ostream, a variable must be introduced into
null_ostream’s header file:

const char* const null_ostream_header

= __FILE__;

An ideal solution would not require the null_ostream header
to be modified at all for testing. However I could not find a
satisfactory alternative. Suggestions will be gratefully received.

Moving CharNullOStreamTest and WideNullOStreamTest
into a class, and giving them new names to better represent what they
now test for, allows NewDetector to be added as a member, and
using Aeryn’s incarnate function allows a new instance to be
created for each test function call.

class NullOStreamTest {

private:

NewDetector newDetector_;

public:

NullOStreamTest()

: newDetector_() {

using namespace elephant;

MemoryMonitorHolder().Instance().

AddObserver(&newDetector_);

}

~NullOStreamTest() {

using namespace elephant;

MemoryMonitorHolder().Instance().

RemoveObserver(&newDetector_);

}

void NoMemoryAllocatedTest() {

cnullostream ns;

ns << testString << testChar

<< std::endl;

IS_FALSE(

newDetector_.AllocationsOccurred());

}

void NoMemoryAllocatedWideTest() {

wnullostream wns;

wns << wtestString << wtestChar

<< std::endl;

IS_FALSE(

newDetector_.AllocationsOccurred());

}

};

Multi Output Stream

Problem 2 can be solved with what I have called a multi output
stream. A multi output stream forwards anything that is streamed
to it onto any number of other output streams. To solve the
problem faced by Aeryn the multi output stream could simply
hold references to two streams (one verbose, one minimal) as
members, but this could potentially restrict future use when more
than two streams may be required.

Again, the key is the output buffer. The first element to consider
is how the multiple output streams, or at least some sort of reference

to them, will be stored and how they will be added to and removed
from the store. The easiest way to store the output streams is in a
vector of basic_ostream pointers.

The original design for the multi output stream I came up with
managed the lifetime of the output streams as well. This involved
the output streams being created on the heap and managed by a
vector of smart pointers. Therefore a smart pointer either had to be
written or a dependency on a library such as boost [boost]
introduced. As the lifetime of the multi output stream would be the
same or very similar to the lifetime of the output streams there was
really no need.

The easiest way to add and remove output streams is by way of
an add function and a remove function. This functionality is shown
in the code below.

template<typename char_type, typename traits

= std::char_traits<char_type> >

class multioutbuf : public

std::basic_streambuf<char_type,

traits> {

private:

typedef std::vector<std::basic_ostream<

char_type, traits>* >

stream_container;

typedef typename stream_container::iterator

iterator;

stream_container streams_;

public:

void add(std::basic_ostream<char_type,

traits>& str) {

streams_.push_back(&str);

}

void remove(std::basic_ostream<char_type,

traits>& str) {

iterator pos = std::find(streams_.begin(),

streams_.end(), &str);

if(pos != streams_.end()) {

streams_.erase(pos);

}

}

};

The add function simply adds a pointer to the specified output
stream to the store. The remove function must first check that a
pointer to the specified output stream exists in the store, before
removing it.

Josuttis describes the std::basic_streambuf virtual
functions that should be overridden in a custom output buffer:
overflow for writing single characters and xsputn for efficient
writing of multiple characters.

template<typename char_type, typename traits

= std::char_traits<char_type> >

class multioutbuf : public

std::basic_streambuf<char_type,

traits> {

...

15

Overload issue 65 february 2005

protected:

virtual std::streamsize xsputn(

const char_type* sequence,

std::streamsize num) {

iterator current = streams_.begin();

iterator end = streams_.end();

for(; current != end; ++current) {

(*current)->write(sequence, num);

}

return num;

}

virtual int_type overflow(int_type c) {

iterator current = streams_.begin();

iterator end = streams_.end();

for(; current != end; ++current) {

(*current)->put(c);

}

return c;

}

};

A different approach would be to write three function objects and
use for_each to call the appropriate function for each output
stream in the store. However, this would not add a lot to the
clarity and would not provide any better performance, but would
create a lot of extra code.

The output buffer must be initialised and passed to an output
stream and the output stream needs to have corresponding add and
remove functions that forward to the output buffer’s functions:

template<typename char_type, typename traits>

class multioutbuf_init {

private:

multioutbuf<char_type, traits> buf_;

public:

multioutbuf<char_type, traits>* buf() {

return &buf_;

}

};

template<typename char_type, typename traits

= std::char_traits<char_type> >

class multiostream : private

multioutbuf_init<char_type, traits>,

public

std::basic_ostream<char_type, traits> {

private:

typedef multioutbuf_init<char_type, traits>

multioutbuf_init;

public:

multiostream() : multioutbuf_init(),

std::basic_ostream<char_type,

traits>(multioutbuf_init::buf()) {}

bool add(std::basic_ostream<char_type,

traits>& str) {

return multioutbuf_init::buf()

->add(str);

}

bool remove(std::basic_ostream<char_type,

traits>& str) {

return multioutbuf_init::buf()

->remove(str);

}

};

All that remains is to provide two convenient typedefs, one for
char and one for wchar_t:

typedef multi_ostream<char> cmultiostream;

typedef multi_ostream<wchar_t> wmultiostream;

The multi output stream is quite easy to test and should be tested
for the following things:

1. Output streams can be added to the multi output stream.
2. All added output streams receive what is sent to the multi output

stream.
3. Streams can be removed from the multi output stream.

Although this looks likes three separate tests they are all linked
and the easiest thing to do is to write a single test for char:

void CharMultiOStreamTest() {

std::stringstream os1;

std::stringstream os2;

cmultiostream ms;

ms.add(os1);

ms.add(os2);

ms << "Hello, World";

IS_EQUAL(os1.str(), "Hello, World");

IS_EQUAL(os2.str(), "Hello, World");

ms.remove(os1);

ms << '!'

IS_EQUAL(os1.str(), "Hello, World");

IS_EQUAL(os2.str(), "Hello, World!");

}

and a single test for wchar_t:

void WideMultiOStreamTest() {

std::wstringstream wos1;

std::wstringstream wos2;

wmultiostream wms;

wms.add(wos1);

wms.add(wos2);

wms << L"Hello, World";

[concluded at foot of next page]

STABLE INTERMEDIATE FORMS
A Foundation Pattern for
Derisking the Process

of Change
by Kevlin Henney

The universe is change; life is what thinking makes of it.
Marcus Aurelius

Change is often associated with risk, in particular the risk of
failure or unwanted side effects. Whether such change is the
move from one position on a rock face to another during a climb,
or the progress of development through a software project, or the
change of state within an object when it is being copied to, risk is
ever present. In all cases, change is associated with questions of
confidence, consequence and certainty. In the event of any failure
or unknowns, change can cause further failure and greater
unknowns – a missed foothold, a missed deadline, a missed
exception.

STABLE INTERMEDIATE FORMS is a general pattern for making
progress with confidence and limiting the effect of failure. When
undertaking a change or series of changes to move from one state
to another, rather than carrying out a change suddenly and boldly,
with a single large stride but uncertain footfall, each intermediate
step in the process of change is itself a coherent state. This high-
level pattern manifests itself in various domain-specific patterns,
three of which are reported informally in this paper and used as
examples: THREE POINTS OF CONTACT for rock climbing; ITERATIVE

AND INCREMENTAL DEVELOPMENT for software development
process; and COPY BEFORE RELEASE for exception safety in C++. It
is a matter of preference and perspective as to whether this paper
is considered to document one, three or four patterns.

Thumbnail

Change typically involves risk. Any change from one state of
affairs to another that cannot be characterised as atomic
inevitably involves a number of steps, any one of which could

fail for one reason or another, leaving the change incomplete and
the circumstances uncertain. Therefore, ensure that each
intermediate step in the process of change expresses a coherent
state, one that in some meaningful way represents a whole rather
than a partial state of affairs.

Example: THREE POINTS OF CONTACT

There you are, halfway up a cliff. Your face pressed against the
rock face. Gravity is carefree but ever present. The ground is
unforgiving and ever distant. The rock is your friend. And you
hope that your friend, standing on the ground below you, is like a
rock. In the event of a slip, his belaying should provide you with
the failsafe that prevents you from joining him too rapidly.

To go up, you need to go right and then up. To do this you need
to reach for what promises to be a good hold, but it is a little too far
away to reach comfortably. There is no convenient ledge or outcrop
to rest your whole weight on, and the rock is both sheer and wet.
You recall that really cool bit at the beginning of Mission Impossible
2 where free-climbing Tom Cruise, presented with a challenge,
leaps from one rock face to another and manages, with a little
grappling, to secure himself. Very cool... but not really an option:
(1) Tom Cruise loses his grip and only just manages to avoid falling;
(2) you are not in a movie; (3) you are the lead climber, so there is
still a little way to fall and some significant rock to bounce off
before the rope becomes taut and carries your weight; and (4) you
are a relatively inexperienced climber and new to leading, so
experience is less likely to be on your side.

Alternatively, you can try leaning over, with one foot jammed in
the crack you are currently using as a handhold, and reaching for
the new hold with your right hand as you angle to the right. There
is nothing substantial that your left hand can hold once you have
stretched to the right and the other foot would have to be free,
providing balance but not support. Should work, if you have the
distance right (being a little taller at this point would have helped...),
but not exactly a sure thing.

However, there is yet another way. By dropping down a little,
reversing some of your ascent, and then climbing across and then
up, you could do it without either the dramatics or the uncertain

16

Overload issue 65 february 2005

IS_EQUAL(wos1.str(), L"Hello, World");

IS_EQUAL(L"Hello, World", wos2.str());

wms.remove(wos1);

wms << '!';

IS_EQUAL(L"Hello, World", wos1.str());

IS_EQUAL(L"Hello, World!", wos2.str());

}

Conclusion

Streams are a hugely powerful part of the C++ language; which
few people seem to make use of and even fewer people customise
for their own uses. The null_ostream and multi_ostream
are very simple examples of customisation and I have shown here
just how easy stream customisation is.

Paul Grenyer
paul@paulgrenyer.co.uk

References

[Aeryn] Aeryn: C++ Testing Framework.
http://www.paulgrenyer.co.uk/aeryn/

[Josuttis] Nicolai M. Josuttis, The C++ Standard Library, Addison-
Wesley, ISBN: 0-201-37926-0.

[Null Object] Kevlin Henney. Null Object, Something for Nothing,
http://www.two-sdg.demon.co.uk/curbralan/

papers/europlop/NullObject.pdf

[C++ Standard] The C++ Standard, John Wiley and Sons Ltd.
ISBN: 0-470-84674-7.

[Elephant] Elephant: C++ Memory Observer:
http://www.paulgrenyer.dyndns.org/elephant/

[Boost] Boost. http://www.boost.org/

Acknowledgements

Thank you to Jez Higgins, Alan Stokes, Phil Bass, Alan Griffiths,
Alisdair Meredith and Kevlin Henney for their comments at
various stages of this case study.

[continued from previous page]

17

Overload issue 65 february 2005

leaning. There are enough handholds to afford you three points of
contact most of the way, ensuring that you can shift your weight
more easily across the rock face – two feet and one hand or two
hands and one foot providing support at all times. Although it’ll
take another minute there is a much greater chance of success and
much greater certainty that it will be only a minute.

Example: ITERATIVE AND INCREMENTAL
DEVELOPMENT

There are a number of different activities involved in taking a
software development project from inception through to
deployment, and a project will pass through a number of distinct
phases. Whether it is the comprehension of what needs to be
built, the formulation of an architectural vision, the writing of
code, the running of tests, and so on, there is a question of how
the activities should be played out over time, how they relate to
one another, and how they relate to the planned, sequential
phases of a project.

The manufacturing metaphor of software development has a
certain simple attraction. Activities are strictly aligned with phases,
so that comprehension of the problem domain is done during a
phase dedicated to understanding the problem domain, coding is
done during a phase of the project dedicated to writing code, and
so on. Because each phase is carried out in sequence, each activity
is also carried out in sequence, making the development a pipeline.

However, it is an idealised pipeline, where the output of one
activity becomes the input to the next, without a feedback loop, and
the pipeline is assumed to be non-lossy and free from interference.
These assumptions are somewhat difficult to replicate in the real
world. The pipeline is shielded – or rather, blinkered – from the
business of dealing with clients, responding to change and
clarification, or working with and learning from colleagues. Risks,
and the consequent element of surprise they bring to a schedule,
tend to stack up rather than drop down as development proceeds.
There is no adequate mechanism for handling additional
requirements, clarification of requirements, changes in staff or
organizational structure, shifts in objectives, as well as technical
issues and unknowns. The inevitability of any one of these
automatically jeopardises the assumptions that might make a
pipeline a valid and viable solution.

Pipeline approaches are exemplified by the conventional view
of the Waterfall Development Lifecycle, a term that conjures up a
majestic image, albeit one that ends with water crashing against
rocks with great force. The predicted and steady progression from
analysis, through design, into implementation, testing, and then
finally deployment, has an undeniable charm and simplicity. A
pipeline project plan looks great on paper. It is easy to understand.
It is easy to explain. It is easy to track. It is easy to fall under its
spell. The fact that it may bear little relation to how people work or
the actual progress of a project may seem somehow less important
when caught in its thrall.

There is an implicit assumption that when a project deviates from
its pipelined schedule it is due to some concrete aspect of the
development – the developers, the management, the optimism of
the schedule, external factors – rather than a fault in the underlying
development metaphor. The reaction is often to declare that “we’ll
do it right next time” and then throw all hands – and more – to the
pump to push through the delivery – more staff, more money, more
time, less testing, less attention to detail, less application of best
practice. The innate human response is that lost time can be made

up for, that continual requirements clarification and change is an
external factor not intrinsic to the nature of software development,
and that making the development process more formal “next time”
will address the shortcomings of the present.

For it to be of practical use, a development macroprocess should
give more than the illusion of order. However, the notion of making
something ordered by strictly pigeonholing one activity to one
phase is not a well-measured response. A development process
should also actively seek to reduce the risks inherent in
development rather than ignore or amplify them. Risk tends to
accumulate quietly in the shadow of planned development
pipelines, bursting at just the wrong moment – inevitably later
rather than sooner.

Activities do not need to be aligned discretely and exclusively
with phases. Instead, the lifecycle can be realigned so that the
activities run throughout. This is not to say that the emphasis on
each activity is identical and homogeneous throughout the
development, just that each is not strictly compartmentalised. There
is likely to be a stronger emphasis on understanding the problem
domain early on in the development than later, and likewise a
stronger emphasis on deployment and finalization towards the end
than at the start, but these different concerns are not exclusive to
the beginning and end.

Instead of aligning the development cycle with respect to a single
deadline and deliverable at its end, structure it in terms of a series
of smaller goals, each of which offers an opportunity for assessment
and replanning. Each subgoal should be a clearly defined
development increment. However, because usable functionality is
not proportional to quantity of code, the completion of code
artefacts (lines of code, classes, packages, layers) cannot
meaningfully be used as a measure of progress. As indicators they
are too introspective and are at best only weakly correlated with
accessible functionality. Functionality, whether defined by usage
scenarios or feature models, is a more visible indication of software
completeness. A development increment defined in terms of
functionality is a more identifiable concept for all stakeholders
concerned, whether technical or non-technical, whereas code
artefacts have meaning only for developers.

Breaking down development objectives into these smaller
increments allows all stakeholders to make a more meaningful
assessment of progress and provides more opportunities to refine
or rearrange objectives for future increments. However, should
increment deadlines be fixed or variable? In other words, should
development on an increment stop when its initial deadline passes,
regardless of the scope that has yet to be covered, or should the
deadline be pushed back until the intended scope of the increment
has been completed?

Spacing the increment deadlines regularly, whether one week or
one month apart, establishes a rhythm that offers a useful indication
of progress, answering the question of how much functionality can
be covered in a fixed amount of time. The scope is therefore
variable and functionality must be prioritised to indicate which
features can be dropped if the time does not allow for all intended
functionality to be completed. Fixing the scope rather than the time
means that the deadline, and therefore the point of assessment or
demonstration, is always unknown. It is difficult to schedule people,
meetings and subsequent development if dates are always the
unknown. Any unexpected problems in the development of an
increment can mean that the increment begins to drag on without
apparent end, when it would perhaps be better cut short and

subsequent iterations reconsidered. Therefore, fixed scope per
increment decreases rather than increases the knowability of
development progress, and is therefore a riskier option than
establishing a steady pulse and measuring scope coverage to date.

The development of each increment has its own internal lifecycle
that is made up of the activities that run through the whole
development. The repetition of this mini-lifecycle leads to an
iterative process that is repeated across the whole macro-lifecycle.
Each iteration has an associated set-up and tear-down cost, but with
regularity the effort involved in kick-off and increment finalization
is reduced through familiarity.

Iterative and incremental development derisks the overall
development process by distributing the risk over the whole
lifecycle, rather than towards the end, and making the progress
more visible. The difficult-to-obtain determinism of knowing all of
the problem before all of the solution, of writing all of the code
before all of the tests, and so on, is traded for scheduling
determinism and a more certain and empirical exploration of the
scope.

Example: COPY BEFORE RELEASE

Coding in the presence of exceptions is a very different context to
coding in their absence. Many comfortable assumptions about
sequential code have the rug pulled from beneath them. Writing
exception-safe code requires more thought than writing
exception-unsafe code. It is possible, if care is not taken, that an
object may be left in an indeterminate state and therefore, by
implication, the whole program put into an inappropriate state.

When an exception is thrown it is important to leave the object
from which it was thrown in a consistent and stable state:
● Ideally any intermediate changes should be rolled back.
● Alternatively the object may be left in a partial state that is still

meaningful.
● At the very least the object should be marked and detected as

being in a bad way.
The consequence of not taking responsive and responsible action
can lead to instability. This is both unfortunate and ironic:
exception handling is supposed to achieve quite the opposite!

Exception safety can be attained via one of three paths:
● Exception-aware code: Code may be scaffolded explicitly with

exception handling constructs to ensure that a restabilising action
is taken in the event of an exception, e.g. a finally block in Java
or C#.

● Exception-neutral code: Code can be written to work in the
presence of exceptions, but does not require any explicit
exception-handling apparatus to do so, e.g. EXECUTE-AROUND

OBJECT in C++ [Henney2000a] or EXECUTE-AROUND METHOD

in Smalltalk [Beck1997] or Java [Henney2001].
● Exception-free code: Guaranteeing the absence of exceptions

automatically buys code exception safety.
Exception-aware code is tempting because it is explicit, and
therefore has the appeal of safety by diligence. It makes it look as if
measures are being taken to deal with exceptions. However, such
explicit policing of the flow is not always the best mechanism for
keeping the peace. Exception-free code sounds ideal, but this path
makes sense only when there is either no change of state to be made
or the change is in some way trivial, e.g. assignment to an int or
setting a pointer to null. A forced and uncritical attempt to cleanse
code of exceptions leads to control flow that is far more complex
than it would be with exceptions – a lot of C code bears witness to

the twisted logic and opaque flow involved in playing return-code
football. In some senses, forcing exception freedom on code leads to
the same growth in supporting logic as the “be vigilant, behave”
exception-aware doctrine. As with Goldilocks, when she decided to
crash the Three Bears’ residence and then crash on their beds, we
find that exception-aware code can be too hard, exception-free code
can be too soft, but exception-neutral code can be just right.

Of the three paths, it is exception-neutral code that is most often
the path of enlightenment. Consider the following C++ example.
The code fragment sketches a HANDLE-BODY [Coplien1992,
Gamma+1995] arrangement for a value-object type, a class that
among other features supports assignment:

class handle {

public:

~handle();

handle &operator=(const handle &);

....

private:

class representation {

....

};

representation *body;

};

The memory for the body must be deallocated at the end of the
handle’s lifetime in its destructor, either by replacing the plain
pointer with a suitable smart-pointer type, such as std::auto_ptr,
or explicitly, as follows:

handle::~handle() {

delete body;

}

The default semantics for the assignment operator are shallow
copying, whereas a handle-to-handle assignment needs to deep copy
the body. The traditional model for writing an assignment operator is
found in the ORTHODOX CANONICAL CLASS FORM [Coplien1992]:

handle &handle::operator=(const handle &rhs) {

if(this != &rhs) {

delete body;

body = new representation(*rhs.body);

}

return *this;

}

An initial inspection suggests that this implementation has
addressed the core needs of correct assignment: there is a check
to prevent corruption in the event of self-assignment; the
previous state is deallocated; new state is allocated; *this is
returned as in any normal assignment operator. The construction
of the nested body is assumed to be self-contained, but what if
the representation constructor were to throw an exception? Or if
new were to fail and throw std::bad_alloc? Here be dragons!

A failed creation will result in an exception: control will leave
the function, leaving body pointing to a deleted object. This stale
pointer cannot then be dereferenced safely: the object is unstable
and unsafe. When the handle object itself is destroyed – for
instance, automatically at the end of a block – the attempt to
delete body will likely wreak havoc in the application and let slip
the dogs of core.

It is tempting to construct a try catch block to guard against
exception instability. This exception-aware approach normally
leads to quite elaborate and intricate code; the solution often looks
worse than the problem:

18

Overload issue 65 february 2005

19

Overload issue 65 february 2005

handle &handle::operator=(const handle &rhs) {

if(this != &rhs) {

representation *old_body = body;

try {

body = new representation(*rhs.body);

delete old_body;

}

catch(...) {

body = old_body;

throw;

}

}

return *this;

}

It is worth pausing a moment to consider the rococo splendour of
this code [Hoare1980]:

There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies and the
other is to make it so complicated that there are no obvious deficiencies.

Nonetheless, in spite of the ornate opaqueness, exception
awareness for safety is still a strongly tempting path to follow.
Such a solution reflects a way of thinking about the problem that
is too close to the problem: a haphazard solution grown by
grafting onto the original exception-unsafe code. A far simpler
and exception-neutral solution is found in careful ordering of
actions, so that the object’s state passes through valid
intermediate forms, stable no matter what rude interruption
befalls the object:

handle &handle::operator=(const handle &rhs) {

representation *old_body = body;

body = new representation(*rhs.body);

delete old_body;

return *this;

}

The essential flow expressed in the COPY BEFORE RELEASE C++
idiom [Henney1997, Henney1998] can be characterised simply:
1 Remember the old state.
2 Copy the new state.
3 Release the old state.
The same sequence of actions can be expressed using another
idiomatic C++ form that relies on the handle’s copy constructor:

handle::handle(const handle &other)

: body(new representation(*other.body)) {}

And on a non-throwing swap function, which allows two objects
to exchange their state without the possibility of generating an
exception [Sutter2000]. The copy of the object takes the role of
an EXECUTE-AROUND OBJECT:

handle &handle::operator=(const handle &rhs) {

handle copy(rhs);

std::swap(body, copy.body);

return *this;

}

The assignment operator takes a copy of the right-hand side. This
may throw an exception, but if it does the current object is
unaffected. The representation of the current object and the copy
are exchanged. The assigned object now has its new state and the
copy now has custody of its previous state, which is cleaned up
on destruction at the end of the function.

The general form of COPY BEFORE RELEASE can be found
repeated across other idioms for exception safety: checkpoint the

current state; perform state-changing actions that could raise
exceptions; commit the changes; perform any necessary clean up.

Problem

Change typically involves risk. Any change from one state of
affairs to another that cannot be characterised as atomic
inevitably involves a number of steps, any one of which could
fail. The effect of successful completion is understood, as is the
effect of failure at the start, but what of partial failure? Partial
failure can lead to instability and further descent into total failure.

The most direct path from one state to another is most often the
one with the strongest appeal and the greatest appearance of
efficiency. What needs to be done is clear, allowing a single-minded
focus on the path of change free of other distractions. All other
things being equal, it will be the shortest and most direct path.
However, when all other things are not equal the simple view
supported by a direct change becomes a simplistic view lacking in
care and foresight. The goal of minimizing overheads trades
priorities with the safety net of contingency planning and derisking.

Focusing on one goal to the exclusion of others can weaken
rather than strengthen control over risk, undermining rather than
underpinning certainty. The polymath Herbert Simon coined the
term satisfice to describe a form of behavioural satisfaction and
sufficiency that accommodates multiple goals [Wikipedia]:

In economics, satisficing is behaviour which attempts to achieve at
least some minimum level of a particular variable, but which does not
strive to achieve its maximum possible value. The most common
application of the concept in economics is in the behavioural theory of
the firm, which, unlike traditional accounts, postulates that producers
treat profit not as a goal to be maximized, but as a constraint. Under
these theories, although at least a critical level of profit must be achieved
by firms, thereafter priority is attached to the attainment of other goals.

However, it is not necessarily the case that there is more control
or predictability with respect to change simply because progress
does not become the sole concern of a change of state. The wrong
variables can be taken into account or an overcautious stance can
lead to wasted effort.

In an effort to combat the uncertainty of the future, overdesign
is a common response [Gibson2000]:

That which is overdesigned, too highly specific, anticipates
outcome; the anticipation of outcome guarantees, if not failure, the
absence of grace.

Thus, a total and explicit approach to design or planning can
become a measure that is overvalued and overused to the exclusion
of other quantities and qualities that are potentially more valuable
and balancing.

A big-bang approach to change proposes a discontinuous change
from one state to another, essentially an abrupt shift in observable
phenomena. Although it is easy to identify the point of change, there
is significant risk if the change does not go according to plan. By
contrast an approach that is chaotic rather than catastrophic
emphasises concurrency of change rather than a single point of
change. However, as with free-threaded approaches to concurrency
in software, change becomes difficult to trace, track and reason
about. A more bounded and constrained approach to concurrency
compartmentalises this uncertainty.

Solution

Ensure that each intermediate step in the process of change
represents a coherent state of play. The risk and consequences of

catastrophic failure are mitigated by ensuring that each mini-
change making up the intended change is itself a well-defined
and stable step that represents a smaller risk. The result of any
failure will be a fall back to a coherent state rather than a chaotic
unknown from which little or nothing can be recovered. Each
step is perceived as atomic and each intermediate state as stable.

This sequencing of STABLE INTERMEDIATE FORMS underpins rock
climbing, exception safety and many successful software
development strategies and tactics, as well as other disciplines of
thought and movement, for example, T’ai Chi. The term itself is
taken from the following observation by Herbert Simon (as quoted
by Grady Booch [Booch1994]):

Complex systems will evolve from simple systems much
more rapidly if there are stable intermediate forms than if there
are not.

The implication of stable intermediate forms is that change
is realised as a gradual, observable and risk-averse process
– secure the current situation; prepare for a small change;
commit to it; repeat as necessary. Not only does it break
change down into more than a single, sudden step, but the
steps in between have a stability and natural balance of
their own. They are visible and discrete, which means that
they can be used and measured without necessarily implementing
further change. But although discrete, there is enough continuity to
ensure that change can not only be paused, it can also take a new
direction, even a reversal, without requiring disproportionate effort
to replan and put into effect.

Failure does not unduly upset the system or require
disproportionate recovery effort to restore or move it to a sensible
state should the step to the next stable form falter. A missed
handhold need not result in a fall. A thrown exception need not
corrupt the state of the throwing object, nor does it require
disproportionate effort to rollback – rollback happens by default.

However, it is not necessarily the case that stability should simply
be seen as a synonym for good without understanding its potential
liabilities and context of applicability. There is a cautiousness,
thoroughness and deliberation about STABLE INTERMEDIATE FORMS

that is not necessarily appropriate for all systems and objectives.
Over a short enough timeframe the progression of small steps may
be slower than taking a single leap and, more importantly, slower
than is needed to achieve the end goal. For example, with at least
one foot on the ground at any one time, walking is an inherently
stable and leisurely activity. Running, on the other hand, is inherently
unstable, trading raw speed for stability and effort. If speed is the
goal a hundred meters is better covered with a run than a walk.

Ascending a familiar route on a climbing wall is derisked with
respect to both experience – it is familiar, and therefore not an
unknown – and environment – an indoor climbing centre has
limitations and facilities that make it a more controlled and
comfortable experience than being stuck on a real rock face in the
middle of nowhere in bad weather. Other sources of risk mitigation,
such as a no-throw exception guarantee or familiarity with a
particular climb, can moderate the need for further derisking
through STABLE INTERMEDIATE FORMS.

On the other hand, where a prime objective is to embrace rather
than mitigate risk – the thrill of a hard climb, the adrenalin rush of
a sprint, the intellectual high of tackling a hard problem by
immersion in detail, caffeine and the small hours – STABLE

INTERMEDIATE FORMS “spoils the fun” and may be seen as
inappropriate. Of course, if this prime objective is not shared by

others, a failure to progress through stable intermediate forms may
be perceived as subjective fancy rather than objective sensibility.

Discussion

As a pattern, STABLE INTERMEDIATE FORMS may be considered
general and abstract, a high-level – even meta-level –
embodiment of a principle that recurs in other more concrete,
domain-specific patterns where the context of applicability is
explicitly and intentionally narrowed to address more specific
forces, solution structures and consequences. The three examples
in this paper are realizations of STABLE INTERMEDIATE FORMS:

Evolving through stable intermediate forms to move from one state
to another, allowing adjustment and adaptation en route, can be
similar to a hill-climbing approach, where the overall goal is to
reach the brow but each step is taken based on local terrain.
However, with hill climbing it is possible to get caught in
suboptimal local maxima. The INTERMEDIATE AND INCREMENTAL

DEVELOPMENT of a system will ensure that its architecture addresses
the needs to date, but it may find itself unable to meet a new need
without significant reworking. STABLE INTERMEDIATE FORMS

fortunately complements the risk of ascending local peaks blindly
with the capacity to descend from them steadily. A clear vision not
only of the ultimate goal but also of the general lay of the land
ahead can help to mitigate the risk of getting into such situations –
for example, a shared notion of a stable baseline architecture and
the use of prototyping support architectural stability and evolution.

To stabilise an intermediate form is, in many respects, an act of
completion. To put something into a finalised state, such as finishing
a development increment, involves more effort in the short term than
simply continuing without such a reflective and visible checkpoint. For
development that is well-bounded in scope, occurs in a well-known
domain, and is carried out with an experienced and successful team, a
non-checkpointed strategy may sometimes be seen as appropriate, but
otherwise measures must be taken to avoid letting other development
variables and realities interfere, either by inserting STABLE

INTERMEDIATE FORMS or by shoring up other variables through other
guidance and feedback mechanisms, whether formal or informal.

STABLE INTERMEDIATE FORMS offers a path for change that offers
similar consequences for open-ended and continued development
as well as for more carefully scoped and goal-driven objectives.
This applies as much to software development, for example the
evolution of typical Open Source Software [Raymond2000], as it
does to other domains, such as building construction [Brand1994].

In moving from a state that is inherently complete to another
state there is also the implication that there is some rework involved,
so that not all of the effort invested will be used in making
externally visible progress, the remainder being used in revision or
considered redundant. In some cases this can represent overhead
and overcautiousness, particularly where the cost-benefit of a more

20

Overload issue 65 february 2005

21

Overload issue 65 february 2005

reticent and punctuated approach is not immediately clear. In others
the return on investment in effort comes over time. Revision is not
always an overhead: sometimes it is a necessary part of the creative
process. The body renews itself over time to ensure both growth
and the removal of damage. In STABLE INTERMEDIATE FORMS ,
stepping from one state to another allows consolidation as well as
a simple change of state. In refactoring the same process of
removing development friction over time can be seen
[Fowler1999]:

refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify
without changing its observable behavior.

refactor (verb): to restructure software by applying a series of
refactorings without changing the observable behavior of the software.

To clarify, it is the functional behaviour that remains unchanged
with respect to a refactoring: the operational behaviour, e.g.
performance or resource usage, may well change. Refactoring
needs to be informed by other practices that provide confidence
that a change is indeed stable and defect free, e.g. refactoring as
an integral practice in Test-Driven Development (TDD)
[Beck2003] or as complemented by some form of code review,
whether a simple desk check with a colleague or a full
walkthrough in a larger meeting.

Considering a test-driven microprocess as a variant of ITERATIVE

AND INCREMENTAL DEVELOPMENT raises the question of step size.
How large should the span between one intermediate form and
another be? In the case of TDD the granularity of change is visible
to an individual developer over a minute-to-hour timeframe, for
continuous integration stable changes are visible to a development
team over an hour-to-day timeframe, and for NAMED STABLE BASES

[Coplien+2005] in an ITERATIVE AND INCREMENTAL DEVELOPMENT

the visibility of change to all stakeholders occurs on the order of a
day-to-week timeframe.

Class invariants present a non-process example of STABLE

INTERMEDIATE FORMS where the process of change is taken over an
object’s lifetime and the step size is defined in terms of public
methods on an object [Meyer1997]:

An invariant for a class C is a set of assertions that every instance
of C will satisfy at all “stable” times. Stable times are those in which
the instance is in an observable state: On instance creation... [and]
before and after every [external] call... to a routine....

A method may be too fine grained to establish a simple invariant
simply [Henney2003], in which case a larger step size is needed.
Granular methods that are used together can be merged into a
COMBINED METHOD [Henney2000b] so that the footfalls between
observable stable forms are further apart.

In situations where there is no need for revision, the balancing
efforts required to support STABLE INTERMEDIATE FORMS may
seem superfluous. Repeatedly achieving temporary stability may
seem to incur additional effort and redundancy that has reduced
return on investment. The context determines whether such an
approach is genuinely wasteful or not. For example, in COPY

BEFORE RELEASE a replacement representation object is always
created and the current one discarded even in the event of self
assignment. Although the self assignment is safe, the extra
allocation-deallocation cycle might be seen as overhead.
However, self assignment is not a typical mode of use, so this
cost tends toward zero.

Kevlin Henney
kevlin@curbralan.com

Acknowledgments

I would like to thank James Noble for his patience and
shepherding of this paper for EuroPLoP 2004, Klaus
Marquardt for being a party to this and a foil for the humour
and foot dragging of both shepherd and sheep, and the
members of the EuroPLoP workshop for their feedback: Paris
Avgeriou, Frank Buschmann, Kasper von Gunten, Arno Haase,
Wolfgang Herzner, Asa MacWilliams, Juha Pärssinen, Symeon
Retalis, Andreas Rüping, Aimilia Tzanavari, and Dimitrios
Vogiatzis.

The first notes on this pattern were scribbled during a
presentation at a patterns seminar in 1997. I would like to thank
Alan O’Callaghan for the session that provided the inspiration,
but I would also like to apologise for then paying less attention to
his slides than I did to my scribbles.

References

[Brand1994] Stewart Brand, How Buildings Learn, Phoenix, 1994.
[Booch1994] Grady Booch, Object-Oriented Analysis and Design

with Applications, 2nd edition, Addison-Wesley, 1994.
[Coplien1992] James O Coplien, Advanced C++: Programming

Styles and Idioms, Addison-Wesley, 1992.
[Coplien+2005] James O Coplien and Neil Harrison,

Organizational Patterns of Agile Software Development,
Prentice Hall, 2005.

[Fowler1999] Martin Fowler, Refactoring: Improving the Design
of Existing Code, Addison-Wesley, 1999.

[Gibson2000] William Gibson, All Tomorrow’s Parties, Penguin
Books, 2000.

[Henney1997] Kevlin Henney, “Self Assignment? No Problem!”,
Overload 20, June 1997.

[Henney1998] Kevlin Henney, “Creating Stable Assignments”,
C++ Report 10(6), June 1998, http://www.curbralan.com

[Henney2000a] Kevlin Henney, “C++ Patterns: Executing Around
Sequences”, EuroPLoP 2000, July 2000,
http://www.curbralan.com

[Henney2000b] Kevlin Henney, “A Tale of Two Patterns”, Java
Report 5(12), December 2000,
http://www.curbralan.com

[Henney2001] Kevlin Henney, “Another Tale of Two Patterns”,
Java Report 6(3), March 2001,
http://www.curbralan.com

[Hoare1980] Charles Anthony Richard Hoare, “The Emperor’s Old
Clothes”, Turing Award Lecture, 1980.

[Meyer1997] Bertrand Meyer, Object-Oriented Software
Construction, 2nd edition, Prentice Hall, 1997.

[Raymond2000] Eric S Raymond, The Cathedral and the Bazaar,
O’Reilly, 2000, http://www.tuxedo.org/~esr/writings
/cathedral-bazaar/

[Sutter2000] Herb Sutter, Exceptional C++, Addison-Wesley,
2000.

[Wikipedia] http://en.wikipedia.org/wiki/Satisficing,
definition of satisficing, June 2000.

The original version of this paper was accepted for the EuroPLoP
2004 conference. The current version incorporates feedback from
the conference workshop on the paper, as well as other revisions.
The Overload version has only minor editorial and typographical
differences from the version submitted for the final conference
proceedings.

22

Overload issue 65 february 2005

A Pair Programming
Experience

by Randall W. Jensen, Ph.D.
Agile methods and extreme programming have risen to the
forefront of software management and development interest over
the last few years. Two definitions of agile are: (1) able to move
quickly and easily, and (2) mentally alert. Both definitions rely
on the capabilities of the people within the development process.
The “Agile Manifesto” [1] published in Software Development in
2001 created a new wave of interest in the agile philosophy and
re-emphasized the importance of people. One of the points
highlighted in the Manifesto is “We value individuals and
interactions over processes and tools.” That does not mean
processes and tools are evil. It implies the individuals and
interactions (people) are of higher priority than processes and
tools. Textbooks [2,3] have been written to describe the
importance of people in these new software development
approaches that have demonstrated improved productivity and
product quality. “Extreme programming” [4] is one member
covered by the umbrella of agile methods. “Pair programming”
[5] is a major practice [6] of extreme programming.

The official definition of pair programming is two programmers
working together, side by side, at one computer collaborating on
the same, analysis, design, implementation and test. In other words
– two programmers, one pencil.

We have all experienced elements of the pair programming
concept in one way or another during our lives. How many times
have we been stuck removing an error from a design or program
with no success? When everything else failed, we went to our
neighbour programmer, the “casual observer”, to see if we could

get some assistance. While explaining our problem, we have a flash
of inspiration, and the problem is quickly solved. How much time
did we waste before asking a neighbour for insight? Can we relate
this to pair programming?

I was introduced to pair programming indirectly as an
undergraduate electrical engineering student in the 1950s. The class
and laboratory workload was such that any free time during the 4-
year program was more wishful thinking than reality. Working part
time made the program even more daunting. Fortunately, two other
EE students in the same academic program were struggling with
different sets of outside commitments. We decided to work together
on homework assignments, lab work and test preparation to lighten
the course load. We successfully maintained that approach through
the entire program in spite of having been conditioned throughout
our lives to perform solitary work. Our educational system does
not condone or encourage teamwork. That education philosophy
supports individual student evaluation, but works against learning.
The teamwork concept became ingrained in my thinking, as well
as in my programming and management research activities.

Later, much later, I was asked to find ways to improve
programmer productivity in a large software organization. The
undergraduate experience led me to propose an experiment in the
application of what we called “two-person programming teams.”
The term pair programming hadn’t been coined at that time. The
experiment results are the subject of this case study.

Development Task

Problem

A description of the results achieved through the use of pair
programming without knowledge of the project or development

C Abuse
by Thaddaeus Frogley

[Editorial note: I have often stated that one must consider the
intended audience in any piece of writing. I’ve also been known to
point out that code is a form of writing and that the principal
audience, in this case, is not the compiler. This article demonstrates
just how much the style of code can be affected by inverting the
usual assumption that the intent is to communicate what the code
does to your audience. - Alan]

Four years ago I collaborated on the THADGAVIN [1] entry to
the International Obfuscated C Code Contest [2]. It won an
award (Most Portable Output), but it was a behemoth, only just
scraping inside the maximum size limit for the contest. Much of
its complexity was inherent in the algorithm, the obfuscation was
a straightforward refactoring, and the reason for the award was
mostly due to the use of a cross platform library. In conclusion,
while it was a winner, in the end I was not happy with the “art” of
the code.

The following year I wrote another entry. This time I wanted to
do something functional and minimalist, something with a strong
theme, and something self-referential. I had striven, and in my
opinion failed, to make the 2000 entry a visual as well as an
intellectual appeal. I wanted to do the same again in 2001, but again
I wanted to be minimalist. I wanted to create a piece of code that
could be considered to be “art” on multiple levels. So here, for your
pleasure, I present my short (untitled) program:

/*(c) 2001 Thad */

#include<string.h>

#include <stdio.h>

#define abc stdout

int main(int a,ch\

ar*b){char*c="??="

"??(??/??/??)??'{"

"??!??>??-";while(

!((a=fgetc(stdin))

==EOF))fputc((b=s\

trchr(c,a))?fputc(

fputc(077,abc),abc

),"=(/)'<!>""-"??(

b-c??):a, abc);??>

I encourage you to study it. Try to work out what it does without
compiling and running it.

Now, assuming you’ve worked out what it does, can you work
out how many sins are committed in these 14 short lines of code?
How many good practice guidelines are broken?

Thaddaeus Frogley
codemonkey_uk@mac.com

References
[1] http://thad.notagoth.org/thadgavin/
[2] http://www.ioccc.org/
[3] http://developer.apple.com/documentation/

DeveloperTools/gcc-3.3/cpp/Initial-processing.html

23

Overload issue 65 february 2005

task underlying the experience would be meaningless. The
software to be developed in this project was a multitasking real-
time system executive. The product consisted of six independent
components containing a total of approximately 50,000 source
lines of code. The product contained no reused or COTS
[“Commercial, Off-the-Shelf”] components. FORTRAN was the
required software development language. The real-time
executive was to be used to support the development of a large,
complex software system by the developing organization. The
development schedule for the executive was critical and short.

Team Composition

The development team consisted of ten programmers with a wide
range of experience and a manager. I tend to divide managers
into two primary groups: Theory X [7,8] and Theory Y. The
manager for this task was experienced and from the Theory Y
group.

The ten programmers assigned to the executive development had
prior experience that ran the gamut from an expert system
programmer to a couple of fresh, young college graduates. None
of these programmers had any experience working in a team
environment. As a collection, I would place them as about average
for that development organization.

The manager grouped the programmers into five teams
according to their experience level. Each team pair was composed
of the most experienced and least experienced programmer of the
remaining group. The first team consisted of the expert system
programmer and a person who had just returned from a six-year
leave of absence. The fifth team consisted of two programmers of
near equal capability and experience. These first and fifth
programming teams were important in the way they impacted the
project. I will address their impacts in the Lessons Learned.

No special changes from normal were made to the development
environment. The facilities were essentially 2-person cubicles. The
programming pairs were co-located in these cubicles. Each cubicle
contained two computer workstations, two desks and a common
worktable. The pair programming approach dictated that the pair
(two programmers, one pencil) uses only one development terminal
located on the common worktable. The second terminal was be
used for documentation, etc. not related to the team’s assigned
development.

One programmer of the pair functioned as the “driver” operating
the keyboard and mouse, while the second programmer functioned
more as a “navigator” or “co-pilot.” The navigator reviewed, in
real-time, the information entered by the driver. The roles of the
two programmers were not permanent; frequent role changes
occurred daily. The navigator was not a passive role at any time.

Results

A Priori

A productivity and error baseline for the project could not be
directly obtained for the project individuals, but data was
available from past projects that allowed us to project
productivity and error averages for the project. The average
productivity and error rates in most organizations with consistent
management style and processes are near constant and quite
predictable. The baseline productivity was determined to be
approximately 77 source lines per person-month. The error rate
for the development organization was normal for the aerospace

industry. The numerical error rate value is not significant for this
presentation, and will remain unknown.

Formal design walkthroughs and software inspections were not
scheduled for this project. The project would follow a classic
waterfall development approach, which is inconsistent with today’s
agile methods. Formal preliminary and critical design reviews, as
well as a final qualification test, were planned. Formal review and
test documentation was reduced to essential information; that is, all
elements necessary to proceed with the development.

A Posteriori

The productivity achieved in the real-time executive development
was 175 source lines per person-month as shown in Table 1. We
hoped for a productivity gain of anything greater than 0 percent.
Any small gain would have compensated for the two
programmers loading on each task. The 127 percent gain
achieved was phenomenal and a cause for celebration.

The error analysis showed the project had achieved an error rate
that was three orders of magnitude less than normal for the
organization. Integration of the first two components
(approximately 10,000 source lines) was completed with only two
coding errors and one design error. The third component was
integrated with no errors. The remaining three components had
more errors, but the number of errors for these components was
significantly less than normal.

The “continuous walkthrough” assumption was demonstrated to
be very effective, and more than compensated for the lack of
formal walkthroughs. The formal preliminary and critical design
reviews, as well as a final qualification test, were effective in
keeping the five teams coordinated. Few problems were
uncovered in the review and test activities.

After the experiment was completed, the development manager
presented the very positive results to the organization’s
management staff. The project managers’ reaction to the results
was memorable. They claimed that their senior programmers
would quit before they would team with another programmer. The
use of pair programmers was never implemented in that
organization.

Lessons Learned

Several positive and some negative characteristics were
observed during the pair programming experiment. In general
the attributes of the college experience were exhibited here.
The positive attributes, not necessarily in any order, are as
follows:
● Brainstorming – According to the programmers, active real-

time produced higher quality designs than would have been
achieved working alone. Little time was lost optimizing code
with more than one brain working.

● Continuous design walkthrough – The design and code were
reviewed in real-time by both programmers who ultimately

Table 1. Pair programming productivity and error rate gains

Topic Historical Pair Results Gain

Productivity
(lines/person- 77 175 127%

month)

Error Rate - - 0.001 x normal

24

Overload issue 65 february 2005

produced fewer errors in each team product. Classic
walkthroughs and inspections are, whether we like it or not,
somewhat adversarial. The continuous walkthroughs within the
team were more positive and supportive.

● Focused energy – The individual teams appeared to be more
focused in their activities. The highly visible aspect of this
attribute was the programmers took fewer breaks for restrooms,
coffee, outside discussions, etc.

● Mentor – When we started work in this industry, we were
usually told about on-the-job training that never materialized.
Pair programming, when the two programmers were not of the
same experience level, provided a craftsman/apprentice
relationship that elevated the junior programmer’s skill quickly.
Conversely, the craftsman’s skill is extended by the apprentice’s
questions and thinking outside of the box.

● Motivation – In general, the programming pairs appeared much
more motivated than their single counterparts. The motivation
level cannot be solely attributed to the pair concept or the
experiment itself. Some of the motivation must be attributed to
the project manager. Some has to be attributed to rapid progress
and the product quality. One of the Theory Y assumptions is that
motivation occurs at the social, esteem and self-actualization
levels, as well as physiological and security levels.

● Problem isolation – The time wasted with two pairs of eyes (or
brains) is significantly less than the amount of time wasted trying
to solve a problem in isolation.

The negative observations cannot be ignored. The important
observations, not necessarily in order of importance, are as
follows:
● Programming pair of the same experience and capability

level is often counter-productive. The most troublesome
pairs we dealt with during the experiment were two teams in
which both members were near the same capability level. The
worst case team consisted of two “prima donna” programmers.
The programming pair theoretically has equal responsibility
for the team’s efforts and product. We found teams functioned
more smoothly, in spite of the members equally being driver
and navigator, if one member was slightly more capable than
the other. I read a statement by a software industry leader that
stated hiring software engineers from the top ten percentile of
the top ten universities would produce the best software
development teams. I cannot imagine the stress that many egos
can create on one project. Two strong egos of any caliber on
a team create chaos until they recognize the power of two
minds.

● Coordination between the five teams would have improved
if the teams had been working in a common area. Each team
was located in a two-person cubicle, which limited the
interaction between the teams. I use the term war room (or skunk
works) to describe the ideal open environment, which would be
a large area with worktables in the centre and cubicles around
the outside.

Some additional characteristics of the successful experiment are
worthy of note. First, one of the manager’s principal
responsibilities was to buffer the teams from outside interference.
The manager listed other important responsibilities that included
referee (in the case of the prima donnas), arbitrator, coordinator,
planner, cheerleader, and supplier of popcorn and other junk
food.

Second, project managers must be supportive of the pair
programming process. A classic (Theory X) manager observed a
programming pair working on a design over a period of time. This
manager suggested to their supervisor that one of the two
programmers be laid off because only one was doing anything
constructive. (The driver always gets the credit.) When the
supervisor heard the suggestion, he replied that these programmers
were the most productive people in the organization. The manager
answered that the programmers keep their office door closed so
others would not get the same idea.

Summary and Conclusions

Most managers who have not experienced pair programming
reject the idea without trial for one of two reasons. First, the
concept appears redundant and wasteful of computing resources.
Why would I want to use two programmers to do the work that
one can do? How can I justify a 100 percent increase in person-
hours to use this development approach? The project cannot
afford to waste limited resources.

The second reason is the assumption that programmers prefer to
work in isolation. Programmers, like most other people, have been
trained to work alone. Yet, according to the 1984 Coding War
Games sponsored by the Atlantic Systems Guild, only one third of
a programmer’s time is spent is isolation; two-thirds of the time is
spent communicating with team members. Managers wonder about
the adjustments necessary to adjust to another’s work habits and
programming style. They also worry about ego issues and
disagreements about the product’s implementation.

This experiment demonstrated strongly that programmers can
work together effectively and efficiently to produce a quality
product of which both programmers can be proud. Prior
programming experience is not an issue. There are situations that
initially occur, especially with a team of equal experience and
ego, where disagreements over who will be the driver arise.
Those situations are generally transient. The benefits listed in
the Results Section overwhelmed any personality issues that
arose.

The second major benefit demonstrated in this experiment, a
three order of magnitude improvement in error rate, is hard to
ignore. Repairing defects after developments are much more
expensive to fix than uncovering and fixing the defects where they
occur. The benefits of developing and delivering a stable product
faster, reducing maintenance costs, and gaining customer
satisfaction certainly minimizes the risk of using pair programming
teams.

Randall W. Jensen
Randall.Jensen@HILL.af.mil

This article has been previously published (as follows) and is used by
permission of STSC.

Jensen, Randall W., “A Pair Programming Experience,” CrossTalk:
A Journal of Defense Software Engineering, (Hill AFB, UT:
Software Technology Support Center), March 2003

References

[1] “The Agile Manifesto,” Software Development, Vol. 9, No. 8,
August, 2001

[2] DeMarco, T. and T. Lister, Peopleware, (New York: Dorset
House Publishers), 1977

[concluded at foot of next page]

25

Overload issue 65 february 2005

The Developer’s New Work
by Allan Kelly

I read Stefan Heinzmann’s piece(s) in Overload 61 with a feeling
of déjà vu. Not, you understand, because I’d wrestled with the
same coding problem as him – if you recall he just wanted to
store look up tables in ROM. No, the feeling of déjà vu came
from the other problem he was wrestling with: What is this
monster we have created called C++?

For me this thought is quickly followed by: How can anyone
ever expect to master it? And then: How can I expect anyone to
ever maintain this code?

Now I always consider the Overload readership to be a pretty
savvy bunch. People who are, on the whole, smarter than the
average C++ developer, but how many of us could have tackled
Stefan’s little task without encountering many of the same
problems? I’ll go out on a limb, I don’t think any Overload reader
could have tackled that problem and got it right in one sitting. I’ll
go further, I don’t think even Herb Sutter, Bjarne Stroustrup or
Andrei Alexandrescu could have done it in one sitting.

Partly that’s because Stefan was engaged in a learning exercise.
As he developed a little code his ideas became more refined. The
compiler forced him to remove every ambiguity from his original
idea. Hence, when he found the compiler inadequate or vague he
was lost.

The other part of his problem was that he was attempting to use
the compiler and language to the full. This was where the real
problems set in. This is where my sense of déjà vu came from.

Blast From the Past

Once upon a time I wrote an application. I thought it was a good
application, it was reliable (mostly), was fast, performed its job
and was easily understood through a few design patterns and
employed thoroughly modern C++ and standard library. Then it
came time to leave the company.

The company wasn’t a bad company so they selected a developer
to take over my work. He’d been with the company a few years
but had mostly done Visual Basic work. So they company sent him
on a course to learn C++. And then I tried to hand over to him.

Out of that experience came a short little piece of angst entitled
High Church C++ – for reasons which I don’t recall it never made
it into the pages of Overload but has been a popular download from
my web-site (Kelly, 2000). In High Church C++ I wrestled with
my conscience, was it right to write a program in a style which was
endorsed by an elite but foreign to the masses?

In truth, it wasn’t necessarily my style of writing, had I written
“low church C++” or some “MFC C++” style the code would have
been superficially clearer to the novice but the increased length
would have added to the complexity. Complexity can be like that,
you push it down in one place and it appears somewhere else.

The APPRENTICE pattern (Coplien and Harrison, 2004) suggests
it can take a year for someone to become proficient in a new system.
What is the best way to bring someone up to speed? Is High-Church
C++ better than Low-Church C++? Is Java better than C++? What
of Visual Basic? C#?

Whatever our language, whatever our choice of idioms, patterns
and style, the same problem exists. Someone ends up wrestling
with the code base to understand it.

Déjà Vu All Over Again

Contemporary C++ with heavy use of templates, standard library
and even exceptions adds a twist because it seems C++ has become
two different languages. What I called High-Church C++ and Low-
Church C++ might also be called Modern C++1 and Classic C++.
Whatever we call them there seems to be a disconnect between the
two schools. (If I recall correctly Kevlin Henney describes three
ages of C++.)

So it was I had the same déjà vu again a few weeks ago. My
office book group has been looking at Herb Sutter’s Exceptional
C++ (Sutter, 1999). In our discussion on exception handling several
people suggested that the nuances and intricacies of exception
handling meant it was too complicated to use. I think they have a
valid point, it is too complicated to use: the stack unwind, the need
to avoid resources leaks, the care and attention needed to every line
– for heavens sake, it took the brightest C++ minds nearly 5 years
to answer Cargill’s stack problem (Cargill, 1994).

But what’s the alternative?
To my mind the alternative to C++ style exception handling is

worse. It’s so much worse in fact that people don’t do it. They
simply ignore error handling2. C++ style exception handling forces
you to face up to resource management, error handling and the like,
but it does it at a cost. Get it wrong and the result can be awful.

The alternative isn’t the alternative people think it is. The
alternative, let’s call it “return codes,” suffers from most of the same

[3] Weinberg, G. M., The Psychology of Computer Programming
Silver Anniversary Edition, ((New York: Dorset House
Publishers), 1998

[4] Beck, K., Extreme Programming Explained: Embracing
Change, (Reading, MA: Addison-Wesley),2000

[5] Williams, L., R. R. Kessler, W. Cunningham and R. Jeffries,
“Strengthening the Case for Pair Programming,” IEEE Software,
Vol. 17, No. 4, (July/August 2000), pp. 19-25

[6] Beck, K., “Embracing Change with Extreme Programming,”
Computer, October, 1999, pg.71

[7] Hersey, P. and K. H. Blanchard, Management of Organizational
Behavior, Utilizing Human Resources, (Englewood Cliffs, NJ:
Prentice-Hall, Inc.), 1977

Theory X assumes: 1. Work is inherently distasteful to most
people. 2. Most people are not ambitious, have little desire for
responsibility, and prefer to be directed. 3. Most people have
little capacity for creativity in solving organizational problems.
4. Most people must be closely controlled and often coerced to
achieve organizational objectives.
Theory Y assumes: 1. Work is as natural as play, if conditions
are favourable. 2. Self-control is often indispensable in achieving
organization goals. 3. The capacity for creativity in solving
organizational problems is widely distributed in the population.
4. People can be self-directed and creative at work if properly
motivated.

[8] McGregor, D., The Human Side of Enterprise, (New York:
McGraw-Hill Book Co.), 1960

1 I use the term Modern C++ in a broader sense than Andrei Alexandrescu’s book
Modern C++ Design; that book is a good example of Modern C++.

2 For several years it was my point of view that the main difference between the
programming we learnt in college and that we did in industry was “Error handling
omitted to save space” – a popular textbook expression that doesn’t cut it in industry.

[continued from previous page]

26

Overload issue 65 february 2005

problems but it’s easier to hide from the problem and pretend you’re
doing it right.

It’s the complexity problem again. We push down complexity
in one place by establishing syntax and conventions in the language
to support good error handling, but more complexity arises in
getting developers to understand and use the conventions.

C++ is Not Alone

I’ve been talking about C++ because that’s where my personal
experience is, that’s where Stefan had his problem and that’s
what most Overload readers program in (I think.) But the
problem is not confined to this.

Other languages and technologies have their own problems. Java
too has exceptions – and imposes more complex syntax and idioms
to handle them correctly than does C++, Perl has its “write only
syntax”, nor should we think only of programming languages, Unix,
Linux and NT all have hidden depths.

And to make things worse we can’t just specialise in C++ or
Linux, we need to know a cross section: language, OS, database,
development techniques. How can we ever keep up?

Searching For a Solution

The angst in High Church C++ was very real, I was scared. But
what was the answer? I’ve been looking for a solution for five
years now.

We could “dumb down” our code, make it really simple. Trouble
is, we have real problems and we need real solutions. To tackle the
same problem with “low Church code” just moves the complexity
from the context to an overly verbose code base.

We could just hire real top-gun programmers. This isn’t really
a solution; once again we’re pushing the problem down in one place
and seeing it come up in another. Since there aren’t that many
super-programmers in the world finding them is a problem, keeping
them a problem, motivating them is a problem and even if we
overcome these problems it’s quite likely that within our group of
super-programmers we would see an elite group emerge.

Hiring a group of super-programmers is in itself an admission
of defeat, we’re saying: We don’t know how to create productive
employees; we’re going to poach people from companies who do.
In doing so we move the problem from our code to recruitment.

So, maybe the solution is to get management to invest more in
training. But this isn’t always the solution. The managers I had
when I wrote High Church C++ tried to do the right thing. Is it not
reasonable to assume that someone who has been on a C++ course
can maintain a system written in C++? As Alan Griffiths pointed
out, this is about as reasonable as expecting someone that has been
on a car maintenance course to change the tyres during an F1 pitstop.

The answer of course is: No, knowing C++ is a requirement for
maintaining a C++ based system but it isn’t sufficient of itself. One
needs to understand the domain the system is in and the system
architecture – this is why Coplien and Harrison say you need a
whole year to come up to speed.

How do we communicate these things? The classical answer is
“write it down” but written documentation has its own problems:
accuracy, timeliness, readability, and memorability to name a few.
In truth, understanding any modern software system is more about
tacit knowledge than it is about explicit knowledge.

So what are we to do?
I don’t claim I have the only answer, I don’t claim I have the best

answer, I don’t claim my answer even covers all the bases and it

certainly isn’t original. But after five years of searching I think I
have an answer, at least it’s the best answer I know at the moment.

The answer to the question, the great question, the question of
how do you teach someone about a software system... is... well, you
aren’t going to like it....

New Work

The developer’s new work is to help others learn. I don’t mean
you all rush off and become C++ trainers, I mean we all need to
work to improve the capabilities of our colleagues and especially
the less experienced around us. This isn’t about training, it is
about learning. It’s about redefining what it means to be a
software developer.

Implicit here is another role, to lead. When I mix with other
ACCU members I find I share an unspoken bond with them. We
all believe it is possible to write better software. Exactly how we
do this may be up for debate, maybe we should adopt Extreme
Programming, or maybe write in Java, or simply write our tests first.
These are all good answers, the real question is: how do we get from
here to there?

It is no longer enough to just cut code. Sure you may need to do
this too, but if you want to use modern C++ (or modern Java,
Python, or what ever) it is your job to lead others in a change. And
change doesn’t happen without learning. Indeed, learning isn’t
really happening if we don’t change, we may be able to recite some
piece of information but unless we act on it we haven’t really learnt
anything.

So, when it comes to improving your code it isn’t enough to sit
your colleagues down and tell them that a template-template
function is the thing they need here and expect them to make it so.
You’ve imparted information, you may even have ordered them to
do it, but they haven’t been led, they haven’t learnt and they won’t
have changed – they’ll do the same thing all over again.

Simply informing people “This is a better way” doesn’t cut it.
You can’t lecture, you can’t tell, you can’t enforce conformance.
You need to help others find their own way to learn. Helping them
find that way goes beyond simply giving them the book, they need
to be motivated, people who are told aren’t motivated, people who
are ordered aren’t motivated; motivating people requires leadership.

If you find yourself resorting to a rational argument to persuade
someone to do it your way you have failed. Your work is to help
them produce the rational argument themselves. We aren’t
abandoning rationality, just recognising that when you tell someone
“you are wrong, I am right” it doesn’t do much, far better to help
them realise a better way.

For many people simply being told “the correct way,” a “better
way” isn’t enough to bring about a change in their actions. It may
well demonstrate your intellectual superiority over them but it isn’t
going to change them. Telling them to “Read the frigging manual”
or “Read my document” isn’t useful.

Of course, this is easier said than done...

What Do I Do Now?

You need to change your mindset, you are no longer out to prove
you know C++ better than anyone else, you are here to lead them
in learning. Because you know C++ better than anyone else you
are in a position to do this.

The first change is to stop doing something: stop switching
people off. Telling people they are wrong, fixing their problems –
especially problems they don’t realise are problems – is a sure fire

27

Overload issue 65 february 2005

way of switching people off. Why learn something or do it the
proper way if someone else will always do the job for you?

Next you need to create awareness of the problem. Are your
developers really aware that there is a problem with SINGLETON

pattern? Of course, you can’t just tell them. Well, maybe you can
tell them, but it needs to be in an abstract kind of way, a way that
will spark their curiosity, help them find the problem themselves.

I can hear some people saying “But the developers I work with
just don’t care.” These are developers who have been switched off.
People are learning machines, if people have given up learning
about these things then why? Maybe they’ve been punished in the
past for free thinking. Maybe your company rewards conformance,
rocking the boat isn’t positive.

Of course, you don’t want to be seen as a boat rocker do you?
Maybe you do, maybe what you value is demonstrating how much
better your insights are? If so your attitude hasn’t changed. You
want to be somewhere between sparking curiosity and enquiry, so,
throw away those Dilbert cartoons.

You need to redefine your own job and your own self-image.
Start with yourself, as you are the only person you have complete
control over. What is stopping you helping others? Recognise the
barriers and over come them. Now move on and do the same with
your colleagues.

But I Don’t Have the Time...

None of us have enough time, but if you’re spending your time
rushing around fixing other people’s problems and policing their
actions you’re going to have even less time. There is never time
to start doing something new, so it is always the right time.

If you wait, the right time will never come along, there will never
be a day when your project has finished and the new one hasn’t
begun. And should that day come it’s probably a sign that you’ve
done something wrong.

Sure it’s hard to adopt a new way of working a few days before
a project deadline so maybe this isn’t actually the right time. But
if you are starting a project, or you’re half way through, and you
can’t find the time to change you never will.

As the people around you learn the new techniques and grow in
confidence you will find you don’t need to spend so much time
fixing their work and fire fighting.

Again, But What Do I Do Now?

I am sorry, dear reader, but I have to disappoint you. I have no
list of 35 things to do, I have no “Effective Learning” to give
you. You have to find your own “answers which work” for you,
your team and your company.

Anyway, I’m not the best person to ask on this subject. More
worthy authors than me have examined this question and they are
the place to start. This isn’t the first Overload article by me to cite
Senge’s The Fifth Discipline (1990) but I don’t apologise for
suggesting you read it3.

In dealing with people we are letting go of the Swiss-army knife
of rationality, emotions are more important so Goldman’s
Emotional Intelligence (1996) is well worth a read (and particularly
so if you’re a parent too.)

Somewhere along the line you should seek to improve yourself,
although its not my favourite book and I don’t agree with everything
he says Covey’s Seven Habits of Effective People (1992) is the book

to set you thinking about yourself. For those who can’t find the
time at least absorb his fifth habit: “Seek first to understand, Then to
be understood.” (Covey also has a solution to the “don’t rock the
boat” problem but I’ll let you read that for yourself.)

If you’ve made it this far your attitude will already be changing
and you’ll be looking for new ways of working. After all this
reading you’ll either be ready to dismiss my ideas or take up the
challenge. The next two books are more practical. You might want
to try coaching, Whitmore (2002) provides a good introduction to
the subject. You’ll also recognise the need to spread your ideas
subtly, this is where Linda Rising’s new book is useful. Fearless
Change (Manns and Rising, 2005) is a recipe book for introducing
new ideas. Pick a pattern try it, see what happens. Try another.

Maybe I’m ducking the issue. I haven’t given you any hard and
fast rules. I haven’t said “Say X to your developers” but I don’t
think I really can. You have to first learn yourself. Sure I could
give you a quick check-list of do’s and don’ts but I do not know
you, your developers or your environment. The books I’ve listed
here won’t give you all the answers but they should help you find
your own answers.

We’re a Long Way From Where We
Started...

There are no silver bullets. Technical solutions have a habit of
becoming technical problems – like Stefan’s templates. Or, to
put it another way:

“Today’s problems come from yesterday’s ‘solutions’.” (Senge,
1990, p.57)

Hope lies not in code, not in machines but in people. If we
believe that Modern C++ is best – and I truly, rationally, believe
it is – then I have no choice other than to develop the people
around me – and that belief is rational too.

So, I’m not giving you any silver bullets but I am telling you
where you can hunt for silver. True, it will take you time to find
the silver and you’ll need some help making the bullets so you have
plenty of opportunity to practise leaning and leading.

Allan Kelly
www.allankelly.net

Bibliography

Cargill, T. 1994, “Exception Handling: A False Sense of Security”,
C++ Report 6,
http://www.awprofessional.com/content/images/02

0163371x/supplements/Exception_Handling_Article

.html

Coplien, J. O. and Harrison, N. B. 2004, Organizational Patterns
of Agile Software Development, Pearson Prentice Hall, Upper
Saddle River, NJ.

Covey, S. R. 1992, The Seven Habits of Highly Effective People :
Restoring the Character Ethic, Simon & Schuster, London.

Goldman, D. 1996, Emotional Intelligence, Bloomsbury.
Kelly, A. 2000, High Church C++ ,

http://www.allankelly.net/writing/WebOnly/HighC

hurch.htm

Manns, M. K. and Rising, L. 2005, Fearless Change – Patterns for
Introducing New Ideas, Addison Wesley, Boston, MA.

Senge, P. 1990, The Fifth Discipline, Random House Books.
Sutter, H. 1999, Exceptional C++, Addison-Wesley.
Whitmore, J. 2002, Coaching for Performance GROWing People,

Performance and Purpose, Nicholas Brealey, London.1 Much of this essay is inspired by Senge’s chapter entitled “The Leader’s New Work.”

28

Overload issue 65 february 2005

C++ Properties – a Library
Solution

by Lois Goldthwaite

Properties are a feature of a number of programming languages –
Visual Basic and C# are two of them. While they are not part of
standard C++, they have been implemented in C++ for the CLI
(popularly known as .Net) environment and Borland C++
Builder, which comes with a library of useful components which
make heavy use of properties in their interfaces. And when
programmers are asked their ideas for extensions to C++,
properties are a popular request. [1,2]

So what is a property? The C++/CLI draft spec says, “A property
is a member that behaves as if it were a field... Properties are used to
implement data hiding within the class itself.” In the class declaration,
properties must be declared with a special keyword so the compiler
knows to add appropriate magic:

class point {

private:

int Xor;

int Yor;

public:

property int X {

int get() {

return Xor;

}

void set(int value) {

Xor = value;

}

}

...

};

point p; p.X = 25;

In application code, properties look like ordinary data members
of a class; their value can be read from and assigned to with a
simple = sign. But in fact they are only pseudo-data members.
Any such reference implicitly invokes an accessor function call
“under the covers” and certain language features don’t work with
properties. One example is taking the address of a data member
and assigning it to a pointer-to-member.

Let me say up front that I dislike this style of programming with
properties. The subtle advantage of “hiding” a private data member
by treating it as a public data member escapes me. And from the
object-oriented-design point of view, I think they are highly
suspect. One of the fundamental principles of OO design is that
behaviour should be visible; state should not. To conceal behaviour
by masquerading it as a data member is just encouraging bad
habits.

Properties are syntactic saccharine for getter and setter member
functions for individual fields in a class. Of course, in the quest
for good design, replacing a public data member with simple
get/set functions for that data member does not achieve a large
increase in abstraction. A function-call syntax which does not
overtly refer to manipulating data members may lead to a cleaner
interface. It allows the possibility that some “data members” may
be computed at runtime rather than stored. An overwhelming
majority of books on OO design recommend thinking in terms of

objects’ behaviour, while hiding their state. Let us encourage good
habits, not bad ones.

UK C++ panel member Alisdair Meredith, with almost a
decade’s daily experience using the Borland VCL properties, had
these comments:

Properties work fantastically well in RAD development where
you want interactive tools beyond a simple source code editor.
For all they appear glorified get/set syntax, they make the life of
the component writer much simpler. There are no strange coding
conventions to follow so that things magically work, and a lot of
boilerplate code vanishes. From this perspective they are most
definitely A Good ThingTM.

Of course the property concept goes way beyond simply
supporting GUI tools, and that is where the slippery slope
begins...

If functional programming is ‘programming without side
effects’, property oriented programming is the other extreme.
Everything relies on side effects that occur as you update state.
For example: you have a Left property in your GUI editor to
determine position of a control. How would you move this control
at runtime? Traditionally we might write some kind of Move()
function, but now we can set the Left property instead and that
will somehow magically move the control on the form as a side-
effect, and maybe trigger other events with callbacks into user
code as a consequence.

Experience shows that people prefer to update the Left
property rather than look for some other function. After all, that
is how you would perform the same task at design/compile time.
Generally, code becomes manipulating properties (and expecting
the side effects) rather than making explicit function calls. Again,
this is the ‘minimum interface’ principle so that there is one and
only one simple way of achieving a given result. Typically, the
Move() function is never written, and this reinforces the
programming style.

As we move beyond the GUI-tools arena, I find the property
syntax becomes more and more confusing. I can no longer know
by simple inspection of a function implementation if I can take
the address of everything used as a variable, or even pass them
by reference. This only gets worse when templates enter the mix.

And the problem becomes worse yet when developers become
fond of using write-only properties – values which can be set to
achieve the side effect, but can never be queried.

The one-sentence summary of his experience is that using
properties in non-GUI classes did not help productivity: “Properties
made our code easier to write, but immensely more difficult to maintain.”
My own experience in trying to debug code with properties bears
this out. While stepping through some code to look for leaks of
memory and COM interfaces, I was examining all variables by
hovering the mouse over them. Multiple hovers over the same
variable (or what appeared to be a simple variable) showed up a
data structure with different values each time, because the
underlying property function was creating an additional COM
interface with each access.

My impression is that the main benefit envisioned for
properties is not their syntactic sleight-of-hand but (1) their ability
to be discovered through introspection/reflection and manipulated
non-programmatically by some sort of Rapid Application
Development tool, and (2) their ability to be stored (I think
“pickled” is the term used with Java Beans) in this configured
state, so that they can be loaded at runtime, already configured.

[1] appears to take for granted that these features should come as
a package, if standard C++ were to be extended to embrace
properties.

However I might feel about using properties, I have to
recognise that many people do find them useful, at least for
certain types of applications. For people who do like this style of
programming, at least some of the benefits can be achieved
through library classes without changing the C++ language and
compilers. The accompanying sample code defines some utility
class templates which may be used as members of domain
classes:

Property – a read-write property with data store and automatically
generated get/set functions. This is what C++/CLI calls
a trivial scalar property.

ROProperty – a read-only property calling a user-defined getter.

WOProperty – a write-only property calling a user-defined setter.

RWProperty – a read-write property which invokes user-defined
functions.

IndexedProperty – a read-write named property with indexed
access to own data store.

For programmer convenience these classes offer three redundant
syntaxes for accessing their data members (or apparent data
members – properties need not have real storage behind them):

● function call syntax

● get/set functions

● operator = (T) and operator T() for assignment to and
from properties.

The read-only and write-only property classes implement only
the accessors appropriate to their semantics, but for compatibility
with C++/CLI they do reserve (unimplemented) the unnecessary
get or set identifier.

Instances of the utility templates as outlined in this paper do
have an address, they have a type for template deduction, and
they can be used in a chain of assignments. They can also be used
with today’s compilers and debuggers. If someone brings forward
a RAD tool to read and manipulate properties through metadata,
then a “property” modifier or some other marker for the tool
could be added to their declaration to help in generating the
metadata.

This technique, described in its basic form in C++ Report back
in 1995[3], seems at least as convenient, and produces as
economical source code, as most uses of properties. The basic
assignment and return functions can be inlined, and therefore should
be efficient. In order to support chaining, the setter functions return
their new value, but for complete compatibility with C++/CLI they
should have a void return type.

One objection to these that has been raised is that CLI
properties allegedly take up no space inside a class, whereas a
C++ subobject cannot have a size of 0 (ignoring certain clever
optimizations). On the other hand, I expect that most useful
properties will need some way to preserve state between set and
get , and that has to take up space somewhere. The size of
Property<T> takes up as much space as a single object of its

template parameter, while the other three hold only a single
pointer to an implementation object. Note that the Object and
member function template parameters do not have to refer to the
containing object, though that is likely to be the most common
usage. They could delegate the processing to an external or
nested helper class. The choice of implementation object (though
not its type or member functions) can even be changed
dynamically, and several objects could share a single
implementation object.

The biggest inconvenience to these classes that I perceive is that
all but the simplest Property<T> instances need to be initialized
at runtime with the address of their implementation object (usually
the containing class). A smaller inconvenience is that using them
on the right hand side of an assignment invokes a user-defined
conversion, which could affect overload resolution and a sequence
of conversions.

One of the features of C++/CLI properties is that they can be
declared as virtual or pure virtual, for polymorphic overriding by
derived classes. This obviously is not possible with data member
declarations. But if the implementation object (which usually means
the containing object) is itself polymorphic and the designated
member functions are virtual, then the property will behave in a
polymorphic fashion.

The C++/CLI feature of default (nameless) indexed properties
can be simulated with a member operator [] (except that in
C++/CLI indexes can take multiple arguments, but there is a
separate proposal for C++ to allow comma-separated arguments
inside square brackets).

Aside from matters of stylistic preference, I can see two possible
scenarios in which these classes might be useful. One scenario
would be in source code which needs to be portable between
C++/CLI and standard C++ environments. Using the
Property<T> templates on the standard C++ side could
compensate for a lack of compiler support for properties.

The second scenario would be for migrating code which uses
public data members to a more encapsulated style. The class
definitions could be rewritten to use the Property<T> templates,
while client code need not be rewritten, only recompiled.

A brief sample program (at the end of this article) shows the
utility classes in use. As it illustrates three different styles of setting
and getting a property value, the expected output is this:

Name = Pinkie Platypus

Name = Kuddly Koala

Name = Willie Wombat

ID = 12345678

ID = 9999

ID = 42

Children = 42

Children = 42

Children = 42

WO function myClass::addWeight called with

value 2.71828

WO function myClass::addWeight called with

value 3.14159

WO function myClass::addWeight called with

value 1.61803

29

Overload issue 65 february 2005

30

Overload issue 65 february 2005

Secretkey = *****

Secretkey = !!!!!

Secretkey = ?????

Convenor = Herb

Minutes = Daveed

Coffee = Francis

Lois Goldthwaite

References

[1] John Wiegley, PME: Properties, Methods, and Events.
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2002/n1384.pdf

[2] David Vandevoorde, C++/CLI Properties.
http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2004/n1600.html

[3] Unfortunately I don’t have a more exact reference to hand.

Initialisation Methods for
Properties

Overload Technical Reviewer Phil Bass raised this question
while reviewing the article for publication:

The ROProperty, WOProperty and RWProperty classes provide a
function call operator for initialisation. Why don’t they have
constructors instead?

After looking over the code now (it was originally written last
April) I have added a default constructor which makes sure the
pointers are set to 0 for safety. But they still need to have an
initialisation function. Initialising them, either with a named
function or an overloaded function call operator, gives runtime
flexibility. These are the benefits that occur to me:

● If the implementation object were initialised in a constructor, it
would create a dependency on the prior existence of the
implementation object. In a complex application where such
dependencies might be chained or even circular, this would be
a nuisance.

● The implementation object can be rebound. I don’t know of any
specific use cases that would drive this, but the capability falls
out of doing it this way and might prove useful.

● One implementation object could serve several different
instances of objects with a property. Again, it just falls out. If
pressed to come up with a use case, I would look for a situation
where the ‘property’ has to be extracted from some
heavyweight situation – a database, a large table in memory,
a remote procedure call, or some kind of bottleneck where
localised optimisations like caching could make a difference.
This encapsulates the resource issues and shares the benefits
around.

● Since the function call operator (or some initialisation
function) has to exist anyway, adding a constructor call
which takes a value might confuse some programmers as to
which they were calling. It wouldn’t confuse the compiler –
NumberOfChildren(p) in an initialiser list for myClass
would invoke the constructor, whereas
NumberOfChildren(this) inside a myClass constructor
is calling the operator()() – but they look alike in code
and many people are kind of vague about such details (which
is a reason why many people avoid function objects).

● The combination of the first and last points above brings us to
the REAL reason why we don’t initialise it in a constructor: the
most common use case is likely to be that the enclosing object
exposing the property provides its own implementation for it.
If we need to initialise a data member with a constructor, we
would naturally expect to do so in the initialiser list of the
enclosing object’s constructor, like this:

myClass() : NumberOfChildren(this),

WeightedValue(this),

Secretkey(this) {}

But as the myClass instance doesn’t really exist before its
constructor is entered, using its this pointer as an argument to
the member constructors in the initialiser list seems, well,
dubious. Of my three test compilers only MSVC++ gave a
warning that “the this pointer is only valid within nonstatic
member functions.” All three compiled and ran this program, but
I wouldn’t want to rely on that as proof of correctness. I’m
afraid I did not devise a stress test involving a polymorphic
hierarchy to see how far I could push it before something broke.

I did think hard about what syntax in a property class
constructor would be able to deduce the address of the property’s
enclosing object as a default – that would be really useful! – but
concluded there is no way to say that in C++. So, since the user of
the class will have to initialise it at some point, not having a
constructor means that initialisation has to go into the body of the
enclosing object’s constructor rather than its initialiser list. I opted
for the function call syntax as more concise than a named member
function.

I admit that all this was written as a proof-of-concept rather than
well-tested production code. For industrial-strength use, one needs
to envision pathological scenarios that might arise. If the
overloaded setter using function-call syntax ever takes a parameter
of the same type as the implementation object (value has type
Object *), there is going to be an ambiguity with the initialiser;
for this situation the solution is a named initialiser member
function and/or a named set() function. Another low-probability
scenario (which means one that is guaranteed to bite you sooner
or later) is using an external implementation object which is itself
a const instance. The workaround for this would be another,
slightly different, utility class template wrapping a const Object
* my_object;

One of the advantages of implementing properties as library
classes instead of a built-in language feature is that the
programmer can vary or extend them as needed!

// Some utility templates for emulating

// properties — preferring a library solution

// to a new language feature

// Each property has three sets of redundant

// acccessors:

// 1. function call syntax

// 2. get() and set() functions

// 3. overloaded operator =

// a read-write property with data store and

// automatically generated get/set functions.

// this is what C++/CLI calls a trivial scalar

// property

template <class T>

class Property {

T data;

public:

// access with function call syntax

Property() : data() { }

T operator()() const {

return data;

}

T operator()(T const & value) {

data = value;

return data;

}

// access with get()/set() syntax

T get() const {

return data;

}

T set(T const & value) {

data = value;

return data;

}

// access with '=' sign

// in an industrial-strength library,

// specializations for appropriate types

// might choose to add combined operators

// like +=, etc.

operator T() const {

return data;

}

T operator=(T const & value) {

data = value;

return data;

}

typedef T value_type;

// might be useful for template

// deductions

};

// a read-only property calling a

// user-defined getter

template <typename T, typename Object,

T (Object::*real_getter)()>

class ROProperty {

Object * my_object;

public:

ROProperty() : my_object(0) {}

ROProperty(Object * me = 0)

: my_object(me) {}

// this function must be called by the

// containing class, normally in a

// constructor, to initialize the

// ROProperty so it knows where its

// real implementation code can be

// found.

// obj is usually the containing

// class, but need not be; it could be a

// special implementation object.

void operator()(Object * obj) {

my_object = obj;

}

// function call syntax

T operator()() const {

return (my_object->*real_getter)();

}

// get/set syntax

T get() const {

return (my_object->*real_getter)();

}

void set(T const & value);

// reserved but not implemented,

// per C++/CLI

// use on rhs of '='

operator T() const {

return (my_object->*real_getter)();

}

typedef T value_type;

// might be useful for template

// deductions

};

// a write-only property calling a

// user-defined setter

template <class T, class Object,

T (Object::*real_setter)(T const &)>

class WOProperty {

Object * my_object;

public:

WOProperty() : my_object(0) {}

WOProperty(Object * me = 0)

: my_object(me) {}

// this function must be called by the

// containing class, normally in a

// constructor, to initialize the

// WOProperty so it knows where its real

// implementation code can be found

void operator()(Object * obj) {

my_object = obj;

}

31

Overload issue 65 february 2005

32

Overload issue 65 february 2005

// function call syntax

T operator()(T const & value) {

return (my_object->*real_setter)(value);

}

// get/set syntax

T get() const;

// reserved but not implemented,

// per C++/CLI

T set(T const & value) {

return (my_object->*real_setter)(value);

}

// access with '=' sign

T operator=(T const & value) {

return (my_object->*real_setter)(value);

}

typedef T value_type;

// might be useful for template

// deductions

};

// a read-write property which invokes

// user-defined functions

template <class T,

class Object,

T (Object::*real_getter)(),

T (Object::*real_setter)(T const &)>

class RWProperty {

Object * my_object;

public:

RWProperty() : my_object(0) {}

RWProperty(Object * me = 0)

: my_object(me) {}

// this function must be called by the

// containing class, normally in a

// constructor, to initialize the

// ROProperty so it knows where its

// real implementation code can be

// found

void operator()(Object * obj) {

my_object = obj;

}

// function call syntax

T operator()() const {

return (my_object->*real_getter)();

}

T operator()(T const & value) {

return (my_object->*real_setter)(value);

}

// get/set syntax

T get() const {

return (my_object->*real_getter)();

}

T set(T const & value) {

return (my_object->*real_setter)(value);

}

// access with '=' sign

operator T() const {

return (my_object->*real_getter)();

}

T operator=(T const & value) {

return (my_object->*real_setter)(value);

}

typedef T value_type;

// might be useful for template

// deductions

};

// a read/write property providing indexed

// access.

// this class simply encapsulates a std::map

// and changes its interface to functions

// consistent with the other property<>

// classes.

// note that the interface combines certain

// limitations of std::map with

// some others from indexed properties as

// I understand them.

// an example of the first is that

// operator[] on a map will insert a

// key/value pair if it isn’t already there.

// A consequence of this is that it can’t

// be a const member function (and therefore

// you cannot access a const map using

// operator [].)

// an example of the second is that indexed

// properties do not appear to have any

// facility for erasing key/value pairs

// from the container.

// C++/CLI properties can have

// multi-dimensional indexes: prop[2,3].

// This is not allowed by the current rules

// of standard C++

#include <map>

template <class Key,

class T,

class Compare = std::less<Key>,

class Allocator

= std::allocator<std::pair<

const Key, T> > >

class IndexedProperty {

std::map<Key, T, Compare,

Allocator> data;

typedef typename std::map<Key, T, Compare,

Allocator>::iterator

map_iterator;

public:

// function call syntax

T operator()(Key const & key) {

std::pair<map_iterator, bool> result;

result

= data.insert(std::make_pair(key, T()));

return (*result.first).second;

}

T operator()(Key const & key,

T const & t) {

std::pair<map_iterator, bool> result;

result

= data.insert(std::make_pair(key, t));

return (*result.first).second;

}

// get/set syntax

T get_Item(Key const & key) {

std::pair<map_iterator, bool> result;

result

= data.insert(std::make_pair(key, T()));

return (*result.first).second;

}

T set_Item(Key const & key,

T const & t) {

std::pair<map_iterator, bool> result;

result

= data.insert(std::make_pair(key, t));

return (*result.first).second;

}

// operator [] syntax

T& operator[](Key const & key) {

return (*((data.insert(make_pair(

key, T()))).first)).second;

}

};

// =================================

// and this shows how Properties are

// accessed:

// =================================

#include <string>

#include <iostream>

class myClass {

private:

Property<std::string> secretkey_;

// --user-defined implementation functions--

// in order to use these as parameters,

// the compiler needs to see them

// before they are used as template

// arguments. It is possible to get rid

// of this order dependency by writing

// the templates with slight

// differences, but then the program

// must initialize them with the

// function addresses at run time.

// myKids is the real get function

// supporting NumberOfChildren

// property

int myKids() {

return 42;

}

// addWeight is the real set function

// supporting WeightedValue property

float addWeight(float const & value) {

std::cout << "WO function "

<< "myClass::addWeight "

<< "called with value "

<< value

<< std::endl;

return value;

}

// setSecretkey and getSecretkey support

// the Secretkey property

std::string setSecretkey(

const std::string& key) {

// extra processing steps here

return secretkey_(key);

}

std::string getSecretkey() {

// extra processing steps here

return secretkey_();

}

public:

// Name and ID are read-write properties

// with automatic data store

Property<std::string> Name;

Property<long> ID;

// Number_of_children is a read-only

// property

ROProperty<int, myClass,

&myClass::myKids> NumberOfChildren;

// WeightedValue is a write-only

// property

WOProperty<float, myClass,

&myClass::addWeight> WeightedValue;

// Secretkey is a read-write property

// calling user-defined functions

RWProperty<std::string, myClass,

&myClass::getSecretkey,

&myClass::setSecretkey> Secretkey;

IndexedProperty<std::string,

std::string> Assignments;

// constructor for this myClass object

// must notify member properties

// what object they belong to

myClass() {

NumberOfChildren(this);

WeightedValue(this);

Secretkey(this);

}

};

33

Overload issue 65 february 2005

34

Overload issue 65 february 2005

int main() {

myClass thing;

// Property<> members can be accessed

// with function syntax ...

thing.Name("Pinkie Platypus");

std::string s1 = thing.Name();

std::cout << "Name = "

<< s1

<< std::endl;

// ... or with set/get syntax ...

thing.Name.set("Kuddly Koala");

s1 = thing.Name.get();

std::cout << "Name = "

<< s1

<< std::endl;

// ... or with the assignment operator

thing.Name = "Willie Wombat";

s1 = thing.Name;

std::cout << "Name = "

<< s1

<< std::endl;

std::cout << std::endl;

// The same applies to Property<> members

// wrapping different data types

thing.ID(12345678);

long id = thing.ID();

std::cout << "ID = "

<< id

<< std::endl;

thing.ID.set(9999);

id = thing.ID.get();

std::cout << "ID = "

<< id

<< std::endl;

thing.ID = 42;

id = thing.ID;

std::cout << "ID = "

<< id

<< std::endl;

std::cout << std::endl;

// And to ROProperty<> members

int brats = thing.NumberOfChildren();

std::cout << "Children = "

<< brats

<< std::endl;

brats = thing.NumberOfChildren.get();

std::cout << "Children = "

<< brats

<< std::endl;

brats = thing.NumberOfChildren;

std::cout << "Children = "

<< brats

<< std::endl;

std::cout << std::endl;

// And WOProperty<> members

thing.WeightedValue(2.71828);

thing.WeightedValue.set(3.14159);

thing.WeightedValue = 1.618034;

std::cout << std::endl;

// and RWProperty<> members

thing.Secretkey("*****");

std::string key = thing.Secretkey();

std::cout << "Secretkey = "

<< key

<< std::endl;

thing.Secretkey.set("!!!!!");

key = thing.Secretkey.get();

std::cout << "Secretkey = "

<< key

<< std::endl;

thing.Secretkey = "?????";

key = thing.Secretkey;

std::cout << "Secretkey = "

<< key

<< std::endl;

std::cout << std::endl;

// and IndexedProperty<> members.

// Multiple indices in square brackets

// not supported yet

thing.Assignments("Convenor",

"Herb");

std::string job = thing.Assignments(

"Convenor");

std::cout << "Convenor = "

<< job

<< std::endl;

thing.Assignments.set_Item("Minutes",

"Daveed");

job = thing.Assignments.get_Item(

"Minutes");

std::cout << "Minutes = "

<< job

<< std::endl;

thing.Assignments["Coffee"] = "Francis";

job = thing.Assignments["Coffee"];

std::cout << "Coffee = "

<< job

<< std::endl;

std::cout << std::endl;

return 0;

}

