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Editorial: A Glimpse Behind
the Scenes

While we were debating where we’d missed the path a voice came
from the mists hiding the top of a near vertical rock face “you
shouldn’t be down there – the path is up here”. While that gave a
point of reference, it didn’t solve the problem of how to proceed from
where we had arrived. We had gone wrong, but we had company:
another group of people arrived and by all sharing the results of
exploration we found a way forward that eventually rejoined the path.

This story does have relevance to Overload but, before
explaining the connection, I’m going discuss a little of what
happens behind the scenes to produce the copies of Overload that
arrive for you to read every couple of months. You have probably
guessed a part of it, but the issue that I want to address is one that
rarely makes an explicit appearance in the journal: 
● people write articles (volunteers to do this are always welcome); 
● the articles are reviewed by the panel of advisors (this usually

leads the authors to revise the articles); and,  
● the editor chooses the articles to accept, pass to C Vu or which

to reject completely.
Usually the review by the advisors is uncontroversial, but
occasionally an article generates real debate. When considering
Jeff Daudel’s article “A Unified Singleton System” (Overload
56) there was such a concern over the content of the article that
the editor (then John Merrells) was moved to include an editorial
comment. And, in the next issue, one of the advisors (Mark
Radford) wrote a balancing article “Singleton - The Anti-
Pattern!” (Overload 56).

Such debate is rare, most articles present material that the whole
editorial team is happy with. However, it has happened again (but
on a lesser scale). One of the articles published in the last issue
moved one of the advisors, Phil Bass, to email me re-iterating the
concerns that he expressed about the article when first presented.
I could have relegated this to the “letters” page but, by implication,
it raises issues of editorial policy that I feel should be discussed.

First here is what Phil Bass has to say:

This summer I went walking in the Lake District with my girlfriend, and on one of
the days we found ourselves walking through a mist that reduced visibility to around
10 metres. Unable to use other mountains as reference points (or, indeed, much

of the mountain we were on) we were reliant on a compass and dead reckoning. Despite
our best efforts we eventually found ourselves on a scree slope with no sign of a path.
We were not exactly lost – we had a bearing to follow and would eventually reach
landmarks and a path leading us to our destination, but the going was slow and difficult.

When Allan Kelly’s article entitled “The Encapsulate Context
Pattern” was circulated for review I expressed considerable
disquiet. This is what I said in an email on 23rd August:

“It actually presents an Anti-Pattern as if it were a real Pattern
giving the impression that it represents good practice when, in fact,
the opposite is true.

Also, I believe the mention of Kevlin Henney, Frank Buschmann
and EuroPLoP gives the article an unwarranted air of authority.

I would prefer this not to be published. If it is published I think it
should be accompanied by further discussion so that dissenting
views can be expressed.

You were not convinced by my argument, no-one else expressed
any reservations and the article was published without comment. In
spite of that I remain convinced that publication of this article did
more harm than good and I would appreciate the opportunity to
argue my case in the pages of Overload.”

I will come back to Encapsulate Context in a moment, but first I
would like to make an analogy:

Pattern 24 - Swap Colours
Context You are playing chess.
Problem You are down to one bishop and it’s on a black square.

Unfortunately, your opponent’s major pieces are all on white
squares and you are struggling to create an effective attack.

Forces
1. The Bishop is a useful piece. You don’t want to lose it.
2. The Bishop needs to be defended, but you would prefer to use
your pieces to attack your opponent’s position.

Solution Change the colours of the squares on the board. Black
squares become white and white squares becomes black. Now
you have a bishop on a white square.

I won’t try to push the analogy any further because this “pattern”
is quite obviously complete nonsense. It describes a genuine
problem and presents a false solution. Ignoring, for the moment,
that changing the colours of the squares is against the rules, it
actually doesn’t address the real problem.

I believe “Encapsulate Context” has all the hallmarks of “Swap
Colours”. In my opinion, it describes a genuine problem and
presents a false solution. I will try to explain why...

I think it is fair to summarise “Encapsulate Context” as follows:

Encapsulate Context
Context Many systems contain data that must be generally

available to divergent parts of the system.
Problems Using global data is poor engineering practice.

Using long parameter lists in order to avoid global data has an
adverse effect on maintainability and object substitutability.

Solution Long parameter lists can be avoided by collecting
common data together into a Context object and passing that in
parameter lists.
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OK, here we can see real concerns being expressed about the
article. So why then did I choose to publish it without comment? Well,
partly because the other advisors and I don’t share these concerns.

While we agree with Phil that it would be better to have avoided
arriving at the problem, people do get to this point and don’t always
have the opportunity for a “fundamental restructuring of the

system”. It is more helpful to facilitate the communication between
such people than to take the part of the anonymous voice saying
“you shouldn’t be down there”. It may serve as a warning to avoid
retracing the steps that lead to the situation, but doesn’t address the
tactical problem of dealing with it.

Maybe I was wrong. I can imagine that some Overload reader
somewhere is facing the problems described by Allan Kelly. They
probably know they have problems, but upon reading the article
they may get the impression that the solution presented solves the
underlying problem and not only the symptomatic one. This too is
a pattern “Shifting The Burden” – described by Peter Senge in “The
Fifth Discipline” (an excellent book on organisational problems).
“Shifting The Burden” is a bad practice or “anti-pattern” largely
because by failing to address the true causes of a problem, but
giving the appearance of fixing it, it encourages the problem to
grow to proportions that make an eventual solution problematic.

Maybe I was right. I’ve used “Encapsulate Context” in the past
– albeit long before reading the article. I took an application that
had, scattered throughout its code, snippets of code that went to
various sources of configuration data (the Windows registry, the
command line, several databases, configuration files) and moved
all of these snippets into a context object. This made it far simpler
to test components (we didn’t need to set up copies of all the sources
of configuration data for each test). When additional configuration
data was required by some new code, it was clear how to obtain it
– from the context object. And the difference between live and test
configurations became easy to parameterise. Even the author of the
original code was impressed by the changes. That system is still
running and being developed and – as of the last report – without
suffering the high maintenance/low testability problems that are a
risk of such highly-coupled approaches.

There is a fine line to be drawn here and, while I think that we
got this one right, it is necessary to be vigilant. The role of the
Overload team is to help the author present tools and techniques
that may be of use to the reader and let the reader be the judge of
when they are appropriate. I expect readers to use their judgement
when considering the application of such ideas – they should know
that there are always trade-offs. Knives and forks can be dangerous,
but I don’t insist my children eat with blunt sticks.

And the lesson I take from my experience in the Lake District?
While it is good to know where one should be it is also worth
listening to the people solving the same problem you have
encountered where you are.

Alan Griffiths
overload@accu.org

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such.  The use of such terms is not intended to support nor
disparage any trade mark claim.  On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines

All articles intended for publication in Overload 65 should be submitted to the editor by January 1st 2005, and for Overload 66 by
March 1st 2005.

Resulting Context Using a Context object improves substitutability,
encapsulation and coupling, and reduces the need for copying data.

First of all I am not at all convinced that the pattern context
occurs in well-designed systems. Allan presents an example that
purports to illustrate how the context arises, but I don’t find it at
all convincing. Personally, I would not be tempted to design a
stock exchange trading system like that example, so it looks like
a straw man to me. However, let’s give Allan the benefit of the
doubt and work on the assumption that such systems do exist.

I agree that global data is a Bad Thing. And I agree that overly
long parameter lists are a sign of a problem. But long parameter
lists are only a symptom of a deeper problem. Coalescing several
parameters into one changes the interface in only a trivial way. The
same information is passed from the client code to the function, so
coupling and cohesion are not significantly different.

Now, if we consider many different functions spread throughout
the system and a Context object that contains all the global
information that any of those functions might need, things
definitely get worse. Where a function actually needs only one item
of global data we provide it with all the global data items,
introducing unnecessary coupling. And where that function
originally had direct access to the one item of global data it needed,
now it must extract it from a Context object, increasing the
complexity of the interface.

The resulting context is a significantly more coupled system. As
far as I can see, the effect on maintainability is minimal, there is no
effect on substitutability, and encapsulation has suffered. We have
gone from a Bad Thing to an even Worse Thing. That is the opposite
of a design pattern; it is an Anti-Pattern.

I will add just one further comment. If you find yourself
designing a system with significant amounts of global data and/or
passing data between distant parts of a system, you have a problem.
It may be a deep-seated problem. Think carefully about what this
data is, where it is needed and how the system is partitioned. The
problem can only be solved by a fundamental restructuring of the
system. There probably isn’t a single design pattern that will do
that. “Encapsulate Context” won’t help you. Don’t use it.
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Evolution of the Observer
Pattern

by Phil Bass

Back in the early 1990s four wise men began a voyage of discovery.
They were trying to trace the origins of good software design. They
crossed great deserts of featureless software and fought through
almost impenetrable jungles of code. What they found changed the
way we think about software development. Eric Gamma, Richard
Helm, Ralph Johnson and John Vlissides discovered a plethora of
Design Pattern species falling into 23 separate genera.

The “Gang of Four”, as they have become known, published
their findings in 1995 [1] and “patternologists” have been studying
these creatures ever since. I have taken a particular interest in the
Observer pattern and I have evidence for changes in its morphology
and behaviour. The Observer pattern is evolving rapidly and this
paper presents some recent and, I believe, important changes.

Historical Perspective

In their description of the Observer pattern the Gang of Four
assumed that a Subject has a single point of attachment and that
Observers attach directly to their Subjects. I have argued ([2],
[3]) that Subjects can have multiple attachment points (Events)
and that Observers may attach indirectly via structures known as
Callbacks. Indeed, it is possible to understand the Observer
pattern purely in terms of Events and Callbacks. From this
perspective, a Subject is anything that publishes Events and an
Observer is anything that attaches Callbacks to Events.

Formally, a Subject provides registries of event handlers, while
Observers add handlers to these registries and subsequently remove
them again. State change events in a Subject are communicated to
the Observers by calling the registered handlers. In this paper,
however, we will use ‘Event’ to mean “registry of event handlers”
and ‘Callback’ to mean “registered event handler”. This terminology
is slightly unusual, but it simplifies the discussion considerably.

In the Gang of Four pattern, detaching an Observer required the
Subject to search its collection of attached Observers. I proposed a more
efficient mechanism in which the Observer stores an iterator returned
when a Callback is attached to an Event and passes the iterator back to
the Event when the Callback is detached. Although more efficient, this
approach requires more client code and is more vulnerable to
programmer error. (I call this the correctness vs. efficiency problem.)

Until recently, my own research has been confined to Events
based on lists of pointers to a polymorphic callback base class. For
example, here is a complete specimen of the common Event
(Eventus Vulgaris)1 as described in [3].

// Abstract Function interface class.

template<typename Arg>

struct AbstractFunction {

virtual ~AbstractFunction() {}

virtual void operator() (Arg) = 0;

};

// Event class template.

template<typename Arg>

struct Event : list<AbstractFunction<Arg>*> {

void notify(Arg arg) {

typedef AbstractFunction<Arg> Func;

for_each(begin(), end(),

bind2nd(mem_fun(&Func::operator()),

arg));

}

};

Specimen 1 – An Event from early 2003

We will compare this with several specimens of a newly
discovered species (Eventus Adaptabilis) that is able to use
different types of container and different types of callback. These
adaptive changes allow E. Adaptabilis to thrive in a much wider
range of programming environments. They also provide a solution
to the correctness vs. efficiency problem, as we shall see shortly.

A Remarkable New Species

The key to the greater adaptability of E. Adaptabilis is a second
template parameter, which specifies the type of container and,
hence, the type of the callback pointers stored within it.

template<

typename Arg,

typename Container =

std::list<Callback::Function<Arg>*> >

struct Event;

Specimen 2 – The defining feature of Eventus Adaptabilis.

This tiny fragment suggests answers to several questions that
have puzzled patternologists. It explains, for example, why most
E. Adaptabilis individuals are almost indistinguishable from their
E. Vulgaris cousins. Because, by default, E. Adaptabilis uses the
same container type as E. Vulgaris the two species often have
identical external appearance and behaviour. It is also clear from
this fragment how E. Adaptabilis is able to adapt so easily to
different environments. Simply by specifying a different
Container argument E. Adaptabilis can acquire any of the
characteristics of that Container.

It is not clear, however, from Specimen 2 whether E. Adaptabilis
acquires its behavioural traits through inheritance, nor can we
deduce which types of container constitute valid parameters to the
E. Adaptabilis template. To answer such questions we must look
inside the Event. Our next specimen is instructive, here.

template<typename Arg, typename Container>

struct Event : Container {

struct notify_function {

notify_function(Arg a) : arg(a) {}

typedef typename

element<Container>::type pointer;

void operator()(const pointer& ptr)

{(*ptr)(arg);}

Arg arg;

};

// ...  indistinct features

void notify(Arg arg) {

// for_each(begin(), end(),

//          notify_function(arg)); ???

}

};

Specimen 3 – Some internal structure of E. Adaptabilis.1 The std:: prefix has been omitted to improve the layout on the printed page.



7

Overload issue 64 december 2004

Unfortunately, the details of the notify() function have not been
preserved. When this specimen was first discovered we assumed
that the notify() function is similar to that of E. Vulgaris, as
shown by the comment. In fact, this assumption turned out to be
incorrect, but Specimen 3 does clearly show several interesting
features. It is immediately clear, for example, that E. Adaptabilis
inherits all the characteristics of its Container.

The most striking feature of Specimen 3, however, is the nested
function object class, notify_function. It is perfectly adapted
to its assumed role in the notify() function. It provides exactly
the right interface for the for_each() algorithm and yet makes
only the minimum assumptions about the container element types.
Where E. Vulgaris is restricted to using std::list<>, E.
Adaptabilis is free to use vectors, lists, sets, user-defined containers,
etc. And where E. Vulgaris requires the container element type to
be a built-in pointer to an AbstractFunction<Arg>, E.
Adaptabilis accepts built-in pointers and smart pointers to ordinary
functions and function objects of any type that can be called with
an argument convertible to Arg.

It is interesting to note that the notify_function is public and,
therefore, available to client code. This seems to be a violation of
encapsulation, but it also provides benefits, as we shall see later.

Another note-worthy feature of the notify_function is the
element<Container>meta-function. The implementation of this
meta-function was missing from Specimen 3, but an intact sample
was discovered later and is shown here as Specimen 4.

template<typename Container>

struct element {

typedef typename Container::value_type type;

};

Specimen 4 – The element meta-function.

In itself this is an unremarkable structure. It just extracts the
value_type from a container that conforms to the standard
requirements. In evolutionary terms, however, its existence is
quite interesting. E. Adaptabilis can only benefit from the
element<> meta-function when it uses a non-standard container
and only then if the meta-function is specialised for that
container. As yet, there are no known cases of E. Adaptabilis and
non-standard containers co-existing like this in the wild. It must
be a matter of speculation, therefore, whether this feature has any
real benefit.

The internal structure of the notify() function was a surprise.
Instead of the ubiquitous for_each() function it uses a hitherto
unknown algorithm, slither(). The notify() function can be
seen in Specimen 5 and the slither() algorithm itself is shown
in Specimen 6.

template<typename Arg, typename Container>

struct Event : Container {

// ...

void notify(Arg arg) {

slither(this->begin(),

this->end(),

notify_function(arg));

}

};

Specimen 5 – E. Adaptabilis notify() function.

template<typename Iterator, typename Function>

void slither(Iterator first, Iterator last,

Function function) {

if(first != last) {

for(Iterator next = first;

++next != last;) {

function(*first), first = next;

}

function(*first);

}

}

Specimen 6 – The slither() algorithm.

Like for_each(), slither() applies a given function to the
result of dereferencing every iterator in the range [first, last).
However, slither() uses two iterators. At the start of the for
loop body first points to the function about to be called and
next points to the next one. At that point the function is called,
first is moved forward to next by assignment, and next is
incremented. The loop then proceeds to the next iteration or
terminates. The overall effect is the same as for_each() and yet
the algorithm is more complex.

Patternologists puzzled over this for a long time. Natural
selection is a powerful mechanism for reducing the costs associated
with unnecessary complexity. It should prefer for_each() over
slither(). And yet here was an example of evolution proceeding
in the wrong direction. Several explanations were proposed to
account for this anomaly. Perhaps slither() is just a transient
mutation that hasn’t yet been weeded out by competition with
for_each(). Or, perhaps there is some hidden benefit to
slither() that more than compensates for the cost.

I have made a crude attempt to measure the relative costs of
for_each() and slither(). As is often the case when measuring
speed of execution I found the result surprising. There was no
difference in speed between the two algorithms. (I used GCC 3.2.3 on
Linux Red Hat 9 with full optimisation.) In fact, my attempt to extend
the running time by increasing the number of function pointers in the
container just consumed all the available RAM and triggered swapping,
which made further measurements meaningless. However, I saw
approximately 200 million loop iterations per second on my 700 MHz
PC before swapping kicked in. I tentatively concluded, therefore, that
there is no significant cost associated with the slither() algorithm.

The negligible cost of slither() may explain how it manages
to compete with for_each(), but it doesn’t explain why it came
into existence. For that we need to look at E. Adaptabilis in a hostile
environment. Consider the following sample program:

#include "Event.hpp"

// Callback that detaches itself from the

// event when called.

struct Disconnect : Callback::Function<int> {

Disconnect(Event<int>& e)

: event(e),

position(e.insert(e.end(),this)) {}

void operator()(int i) {

event.erase(position);

}

Event<int>&          event;

Event<int>::iterator position;

};
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int main() {

Event<int> event;

Disconnect disconnect(event);

event.notify(7);   // !

event.notify(7);

return 0;

}

Specimen 7 – E. Adaptabilis in a hostile environment.

Here we have a callback that connects itself to an event in its
constructor and disconnects itself when it is called. Such
callbacks are extremely poisonous to E. Vulgaris , but E.
Adaptabilis is immune. To see why, consider the
Event::notify() call. E. Vulgaris iterates through its list of
callback pointers using for_each() which (invariably)
increments a single iterator. When the iterator reaches a
Disconnect callback for_each() invokes the callback,
which erases itself from the list, invalidating the iterator. The
for_each() algorithm then tries to increment the invalid
iterator and continue the sequence of function calls, typically
with disastrous results. E. Adaptabilis , however, uses the
slither() algorithm. When it gets to the Disconnect
callback it invokes the callback, which erases itself from the
list, invalidating the iterator as before. But slither() doesn’t
increment the invalid iterator, it simply assigns a new value to
it. This is, of course, a valid operation, so the algorithm
completes normally and E. Adaptabilis lives to notify another
event.

Together these features provide an answer to the question of what
constitutes a valid Container argument to the E. Adaptabilis
template, Event<Arg,Container>. The Container must be a
class with begin() and end() member functions returning
Forward iterators. It must contain a nested typedef, value_type,
that defines the type of the container elements, or it must provide
a specialisation of the element<> meta-function for that purpose.
The element type must define a dereference operation. And the
result of dereferencing an element must be a function or function
object that can be called with an argument of type Arg.

These are very general requirements. They can be summarised
informally as:
● An E. Adaptabilis event is a container of pointers to functions.
● In this context, a pointer is any type that can be dereferenced;
● And a function is any type that can be called with an argument

of the right type.

The Correctness vs. Efficiency
Problem

Programmers working with E. Vulgaris must remember to store
the iterator returned when a callback is attached and pass it back
to the event when the callback is disconnected. This is tedious
and it is tempting to leave the callback attached “for ever” to
avoid having to manage the iterator. This usually leads to disaster
and is always frustrating for the hapless programmer.

The need to store the iterator can be removed by searching
the list of pointers before disconnecting the callback. However,
in E. Vulgaris this technique carries a significant performance
penalty because the std::list<> it uses only supports search
algorithms with linear complexity. With E. Adaptabilis,
however, there is an alternative. Specimen 8 provides a good
example.

#include <iostream>

#include <set>

#include "Event.hpp"

using namespace std;

void log(int i) {

clog << "void log(" << i << ")" << endl;

}

int main() {

typedef std::set<void (*)(int)> container;

Event<int,container> event;

event.insert(log); // no need to store an

// iterator

event.notify(8);

event.erase(log); // efficient search and

// erase

return 0;

}

Specimen 8 – E. Adaptabilis using a std::set<>

This variant uses a std::set<> of function pointers as its
container. The insertion, removal and iteration operations are all
“fairly efficient”. By that I mean that, for most applications,
efficiency is not an issue. And for very demanding applications it
is always possible to use a variant of E. Adaptabilis based on
specialised containers. It’s even possible to use a specialised
iteration algorithm thanks to the public access of the nested
notify_function class.

Summary and Conclusion

This paper has described a recently discovered species of Event
(Eventus Adaptabilis) with a remarkably wide range of habitats.
E. Adaptabilis is closely related to the more common Eventus
Vulgaris but is more adaptable in the following ways:
1. It accepts callbacks taking parameters convertible to its own

argument type;
2. It accepts callbacks of ordinary function types or function object

types;
3. It can store built-in pointers or smart pointers to callbacks;
4. It can use any of the standard containers and many other

container types;
5. It is immune to callbacks that disconnect themselves from the

event;
6. It allows user-defined iteration algorithms to be used.
It achieves all this without sacrificing efficiency and without
forcing the programmer to store iterators. A rare specimen
indeed.

Phil Bass
phil@stoneymanor.demon.co.uk
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An Experience Report on
Implementing a Custom

Agile Methodology on a
C++/Python Project

by Giovanni Asproni, Alexander Fedotov
and Rodrigo Fernandez

In this article we’ll describe our experience in implementing an
agile methodology in a C++/Python project.

The promise of agile methodologies is to make software
development faster and, at the same time, have higher code quality,
higher customer satisfaction, and happier programmers. This is very
appealing! However, their implementation is not easy, especially
when it is the first one in the organisation, and the main language
used is C++.

In fact, introducing a new methodology – and more generally,
any kind of change – in an organisation may create several
technical, human, and political problems. We’ll describe the choices
we made in order to minimise their occurrence, and how we
managed to solve the ones we faced.

We’ll start by briefly introducing the project. Then, we’ll explain
what agile software development means and why we decided to use
an agile approach.

We’ll describe the methodology with the rationale behind it, and
we’ll show the reasons why we decided to not pick an out of the
box one like Extreme Programming [3].

Finally, we’ll give an assessment of the results of our approach,
including what worked well and what we would do differently the
next time in similar circumstances.

Project Overview

The project consisted of the development of a family of C++ and
Python programs used to produce, store, manage and distribute
biological data to and from an Oracle database. These were
developed for internal use.

The purpose was to substitute a family of old C programs that
used text files as a storage medium. During the years the amount
of data had increased so much that the usage of text files became a
serious bottleneck in the data production process – the usage of
files, and the way the programs were written, forced a serial process
that was becoming too time consuming.

The usage of a relational database seemed the perfect solution
to this: it could allow the execution of several production tasks at
the same time, having the certainty that the data was kept consistent
thanks to the isolation and synchronisation given by the
transactional model. Implementing transactions in the C programs
in order to keep the data in text files, would have been a very
difficult task, and an obvious waste of time.

Six years before the three of us started to work on the project,
some people already understood the limitations of those C
programs, and started to work on their substitutes: a family of C++
programs that used an Oracle database (Python was something the
three of us decided to introduce). During those years, the team size
varied from a minimum of one to a maximum of five programmers.
As far as we know, not all of them worked full-time on the project.

When we were assigned to the project, we inherited a code base
of about fifty thousand lines of C++ code that had not been put into
production yet. At that point, the project had become of critical
importance to the business, and our task was to make it production

ready in about one year – this meant fixing the bugs as well as
implementing several new requirements.

When we started our work, the programming team was
composed entirely of the three of us. None of us had been involved
in the project before – all members of the original team either left
the company, or were assigned to other tasks. From time to time,
when some specialists joined the team, its size increased to four or
five, to go back to three after a while.

Here is where our story begins.

The Beginnings

Unfortunately, the code we inherited was not in a very good
shape – it was very difficult to modify and extend, there was not
a single test and it was bug-ridden.  Furthermore, there were a big
number of (very volatile) new requirements to implement.

However, at first, we tried to improve it – part of the code-base
was shared with another project that was maintained by a team with
members in our office and in a room nearby, so we had the
opportunity to ask questions and understand the code better. We
added some tests, refactored some parts, and rewrote some others.
But, after two months spent doing this, we realised that we were
not making any real progress: the code was too tightly coupled in
totally unpredictable ways. Fixing a bug caused others to show up
from nowhere – and the number and the volatility of new
requirements caused even more trouble. Furthermore, the code
shared with the other project was in common for the wrong reasons
– trying to exploit commonality where there was none – and that
caused maintenance problems for the other team as well.

We analysed the situation, and decided that rewriting everything
from scratch was a much better option: the basic logic of the programs
was simple, and one year, if well used, was more than enough.

We had a few problems to solve though
● Convince our boss
● Convince our customer. This was the person that had the ultimate

responsibility on the requirements, and also one of the users of
the programs

● Organise our activities properly
To solve these problems, we decided to use an agile
methodology. Before explaining why, we’ll summarise what
Agile Development is about.

Agile Software Development

“Agility is more attitude than process, more environment than
methodology.” Jim Highsmith [9]

The term Agile Software Development is a container that includes
all the methodologies that share the values and principles stated on
the Agile Manifesto (see sidebar on next page). The main
characteristic of all these methodologies is that they are people-
centric – i.e., they emphasise teamwork, face-to-face
communication, and short feedback-loops. Furthermore, the
processes and tools used have to be suited to the needs of the
people involved: they may differ for specific methods, but the
general recommendation in the agile community is to use the
simplest ones that help in solving the problem at hand, and dismiss
or substitute them as soon as they are not useful anymore.

That said, the following practices are becoming de-facto
standards in all agile methods (and most of them are standard also
on several non-agile methods as well)
● Extensive unit-testing
● Test-driven development (i.e., write the tests before the code)
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● Short iterations (never longer than two months, usually 1-2 weeks)
● Merciless refactoring
● Continuous integration
● Configuration management
● Automatic Acceptance testing
Agile methodologies are especially suited for projects with
highly volatile requirements, tight schedules and up to 10-12
developers. In fact, with more people involved, communication
may become difficult. However some techniques to apply them
to large projects are starting to appear [8].

The most important goal that this kind of methodologies tries to
achieve is to deliver value to all the stakeholders of the project,
including the developers.

The value delivered to the customer may be obvious: software
that is fit for its intended purpose on time and within budget.

The value delivered to the developers is much less obvious: job
satisfaction and self-motivation. In fact, the usage of an agile

methodology can be a big help in increasing and keeping developers’
motivation [2], and, more interestingly, self-motivation is the most
important factor influencing developers’ productivity [5]. An important
consequence of these facts is that, delivering value to developers has
a direct positive impact on the value delivered to the customer.

To learn more about agile development, a good starting point is
the AgileAlliance web site [10].

Why an Agile Methodology?

At this point, many of the reasons why we decided to use an agile
methodology should be clear.

First of all, we wanted to organise our development activities
properly making the most out of the time and resources available.
Our company didn’t mandate the use of any particular methodology
so we had total freedom of choice.

We wanted a methodology that was able to cope with unstable
requirements. In our case, they were changing very often –
sometimes from one day to the next – and we wanted to be able to
respond to these changes as smoothly as possible.

We wanted to have early results and short feedback loops, so we
could demonstrate our progress early and often.

We wanted to write high quality software with a clear
architecture, no code duplication, and fully tested.

Each of us wanted to be involved in every development activity,
from discussing the requirements to coding the solution.

We wanted to have fun, to learn new things, and to write code
we could be proud of.

We didn’t want to have too much overhead: we were on a tight
schedule, so we wanted to work only on what was essential to
achieve the goal.

The methodology had to be simple to implement but effective.
Finally, the methodology shouldn’t get in to our way. It had to

be natural to follow its practices.
Given these requirements, and the fact that one of us (Giovanni)

had already experience with Extreme Programming and agile
development, it seemed natural to use an agile methodology.
However, we didn’t choose one out of the box (e.g., Extreme
Programming), because, doing that, there could have been the risk
of focusing more on the methodology itself than on the goals of the
project. What we did instead, was to follow a “methodology-per-
project” approach [6]: we created our own one based on our needs
and experience, in other terms we used our common sense.

The Methodology

Our methodology was based on some values: communication,
courage, feedback, simplicity, humility, and trust. They were never
stated explicitly as such – i.e., we never sat around a table to
discuss them – but they were always present on the background.

We always strove to have open and honest communication among
us and with the customer. We tried to make every assumption explicit
– sometimes asking seemingly obvious questions – in order to avoid
misunderstandings and wrong expectations.

We had the courage to take decisions and to accept accountability
for them. We had the courage to never give up to pressure to deliver
on unrealistic schedules – of course we always explained why, and
tried to offer alternative solutions. We had also the courage to be
honest, not hiding problems from the customer, or from our boss.

We had always the humility to recognise our own limitations, so
we always listened to other people’s opinions and advice, or asked
for help when necessary.

The Agile Manifesto
The Agile Manifesto has been taken from [4].

Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:
● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan
That is, while there is value in the items on the right, we value
the items on the left more.

Principles behind the Agile Manifesto
● Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.
● Welcome changing requirements, even late in development.

Agile processes harness change for the customer’s competitive
advantage.

● Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

● Business people and developers must work together daily
throughout the project.

● Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

● The most efficient and effective methodology of conveying
information to and within a development team is face-to-face
conversation.

● Working software is the primary measure of progress.
● Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

● Continuous attention to technical excellence and good design
enhances agility.

● Simplicity-the art of maximising the amount of work not done-
is essential.

● The best architectures, requirements, and designs emerge from
self-organising teams.

● At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behaviour accordingly.
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We always looked for simple and clean solutions to the current
problems. Our requirements were so unstable, that was pointless to
try to predict the evolution of the system for a time period longer
than one month.

We trusted each other; we knew that each of us had the skills and
the motivation to make the project succeed.

The methodology itself was quite simple. Actually was easier to
implement than to explain
● As every modern method (agile or not), it was iterative and

incremental, with, usually, one-week long iterations. This was to
give the customer – and us – a better feeling of progress and better
control of the project. In fact the short feedback loop allowed her to
change her ideas on some functionality without losing too much
development time, and allowed us to know how well we were doing

● Team meeting every day before starting our activities. The meetings
were usually ten minutes long. They were organised in a Scrum
like fashion [11] [12]: everybody said what he did the day before,
what problems he encountered, and what was going to do that day.
Their purpose was to put everybody in synch with the others, and
to decide how to solve the problems encountered along the way

● Metaphor. This was the very high level architecture of the system.
Its purpose was to communicate with the customer, and to drive our
development activities. It helped us in making all important design
decisions. Every time we had a doubt on how to do something, the
metaphor had a fundamental role in helping us finding a solution

● Coding standards. They were agreed at the beginning of the
project. Their purpose was to allow us to guess the precise
meaning of a name, to read code faster, and to give guidance on
where to look for classes, functions, etc.

● Collective code ownership. Every member of the team had the
power to change anything in the code to accommodate new
requirements, or refactoring odd-looking code. Its main purpose
was to avoid the typical problems created by “personal” code
ownership, such as being dependent on a particular developer
for the modifications in his or her parts of the system. It helped
also in enforcing the coding standards.

● Collective accountability. If someone in the team made a
mistake, the entire team would have been accountable for it in
front of the customer and the boss. Its main purpose was to avoid
scapegoating and finger pointing. Of course, in order to make
this work, trust among us was essential

● Direct face-to-face communication was preferred to other forms
of more indirect communication (i.e., written documentation,
phone calls, e-mails, etc.). Its purpose was to make
communication faster, and more precise

● Everybody was involved in all phases of development. Its
purpose was to allow us to have fun, learn new things, and keep
self-motivation high. It was also instrumental in improving the
design of the system, since we always had brainstorming
sessions before taking any important decision that could affect
the architecture of the system

● Requirements prioritisation. Its purpose was twofold: to allow
the customer to have the certainty of having the most important
requirements implemented, and to give us a clear goal for each
iteration

● Configuration management. Its purpose was to keep track of the
modifications made to the system, rollback changes, and to be
able to rebuild a specific version if we needed to. We managed
the configuration of every artefact: source code, documentation,
build scripts and also the external tools and libraries we used

● Extensive testing. Code was not finished until we had tests for
it. Is purpose was to verify that the system worked as expected,
and to allow us to make changes to the code with the confidence
that we hadn’t broken any existing functionality. As a side effect,
it helped in improving our development speed as we proceeded
because we had to spend less time hunting for bugs

● Merciless refactoring. Its main purpose was to keep the code clean
and supple. One of its side effects (in concert with extensive testing)
was to allow us to develop a set of reusable libraries. These, in turn,
allowed us to increase our speed substantially, since, as we went
along, the development of new functionality became more
assembling of reusable assets and less development of new code

● Automation of all repetitive tasks-and of code generation when
possible. Repetitive tasks are boring and slow if done manually,
and bored people make silly mistakes. Enough said

● Never, ever, compromise design or code quality for any reason.
The expected lifetime of the code we produced was in the order
of several years, so it had to be maintainable and extensible. In
conjunction with refactoring and testing, it allowed us to go
faster as we proceeded

● Modify the methodology if necessary. Its purpose was to not get
stubbornly stuck to practices or tools that were not useful
anymore. For example, some times we modified the length of an
iteration to fit our needs

In order to make our methodology work properly, we had to do also
some complementary things right from the beginning of the project
● Define very clearly the responsibilities of the different

stakeholders. This was fundamental to reduce problems and
finger pointing in case of problems

● Ask our boss to not put any of us on other teams working on
other projects at the same time. This would have been a
teamicide [7], would have lead to time fragmentation, and would
have made estimating impossible

● Strong emphasis on teamwork. We asked the customer to address
her requests to the team, not individuals; for example, if she wanted
to ask something by e-mail she had to address it to each of us

● During an iteration, the customer was not allowed to change the
functionality being implemented. Its purpose was to avoid chaos,
and had also the nice side effect of forcing the customer to think
in more depth about her needs and priorities

● When possible, we used available code and libraries instead of
writing our own – e.g., boost, CppUnit, Log4cplus, etc. This
reduced development time, reduced the code base to maintain,
and improved overall code quality

● Colocation in the same room, this had the purpose of increasing
the communication bandwidth, and avoiding any of us being out
of synch with the others – luckily we hadn’t had to ask for this
because we were already in the same office

From time to time we had to ask some “specialists” (i.e., Oracle
database experts) for help. As far as we were concerned, they
were akin to external consultants, and, since they worked on the
project only for limited amounts of time, the fact that they were
not located in our room was not a problem.

Every time we dealt with one of these specialists, we managed
to learn enough from them so that, after a while, we could take over
their tasks and carry on without their help. We acted as what Scott
Ambler calls “generalizing specialists” [1]: each of us had some
strong skills – e.g., C++ programming, or Object Oriented Design,
etc. – but had also the ability and the will to learn and apply new
ones.
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We deliberately decided not to enforce the following practices
used by Extreme Programming and other agile methods:
● Pair programming
● Test driven development (TDD)
● Planning game and story cards
● Automated acceptance tests written in collaboration with the

customer
Pair programming all the time could be tough. It is a very intense
experience, and it requires a bit of time to get used to. Apart from
that, we thought that, in our specific case, we could work faster
without pairing. However, from time to time, we used this technique,
especially for working on some particularly difficult tasks.

Test driven development does not come naturally to everybody, and,
since we wanted to implement the methodology in a way that was
natural for each of us, we didn’t mandate – or forbid – the usage of this
practice. However, as time passed we started to use it more and more.

The planning game, story cards, and automated acceptance tests
written with the user, were never used because we already
introduced many changes, and we thought that introducing more
could have shifted too much the attention from the product to the
process, or overwhelm our customer. In fact she was very keen on
manual acceptance testing, and also more traditional requirements
gathering meetings.

To (partially) overcome the absence of automated acceptance
tests, we wrote tests for high level functionality using CppUnit. This
was less than ideal, but better than nothing.

Implementing the Methodology

“People hate change...
and that’s because people hate change...
I want to be sure that you get my point.
People really hate change.
They really, really do.” Steve McMenamin as quoted in [7]

Introducing any kind of change in an organisation can be very
difficult. Humans are creatures of habit and tend to despise
change. Furthermore, some people may perceive a change as a
threat to their position of power. This fact can cause several
political and technical problems.

In our case, in order to minimise the impact of the potential
problems we implemented our methodology with great discretion.
We never mentioned it explicitly – actually, we didn’t even give it
a name – we only explained our practices to our boss and our
customer presenting them as simple common sense. The reason for
doing that was to minimise the chance of having endless (and
useless) methodological discussions.

In order to make the project succeed, we had to perform four
concurrent, but strongly connected, activities:
● To manage the customer
● To manage the boss
● To carry out the technical tasks
● To have fun
These activities were all equally important. In fact, the failure of
performing any of them could have made the project fail.

In the following paragraphs we’ll show how our methodology
helped us in carrying out these activities, leading to the successful
completion of the project.

Managing the Customer

Managing the customer and her expectations was the most
challenging and time-consuming activity. In many respects, she was

a typical customer: she had the tendency to give us solutions, instead
of explaining the problems; she had the very common “everything
has top priority” mentality and, finally, we had to buy her trust.

All practices of our methodology had an important role in
helping us to change her attitude, but face-to-face communication,
incremental delivery, and short iterations were the ones that had a
more immediate and direct effect.

Face to face communication is the fastest and more effective
channel for exchanging information. Part of this information – that
cannot be easily conveyed by other means of communication – is
composed by the feelings, and emotions that are transmitted through
gestures, and facial and body expressions. This last point is
particularly important, for human beings are not entirely rational, and
often make choices based on feelings or fears instead of logic or facts.

Being aware of that, we always presented facts to substantiate our
choices, decisions, and proposals, but also took great care to be
reassuring and look confident. This was helpful on several occasions.

We preferred face to face communication to written
documentation to the point that, usually, we answered our
customer’s e-mails by going to her office and talking to her directly.
This kind of answer was much more powerful than answering by
e-mail for a couple of reasons: ambiguity and misunderstandings
could be dealt with much more easily, and showing up in person
sent a clear message of commitment to the project.

Finally, it was of great help in keeping her focused on the business
side of the project, was instrumental in eliminating ambiguities from
the requirements, solve problems more easily, helping her in prioritising
the requirements, and in avoiding implicit assumptions and
expectations by making every aspect of the project explicit and visible.

Incremental delivery and short iterations helped greatly in buying
her trust. She could verify early and often our real progress by running
the programs delivered at the end of each iteration. Furthermore, she
could estimate the completion dates based on real data.

After a while, she started to realise the advantages of all the other
practices as well, and to see how they reinforced each other.

Unfortunately, not everything went as well as we wanted. A couple
of times we had to discuss some technical requirements with her (and
our boss), and agree to implement an inferior solution for political
reasons. Of course, when we did that we always made them aware of
the drawbacks in order to avoid finger pointing in case of problems.

Managing the Boss

Managing the boss was easier than managing the customer. As
long as the customer was happy, he was happy as well.

Initially, he was dubious about our decision of starting from
scratch, and also about our approach. To convince him to give us a
try, Giovanni – the officially appointed technical leader – accepted
to link his career advancements and salary increase to the successful
outcome of the project. This apparently careless gamble was
actually a calculated risk. We had enough experience and domain
knowledge to know that the risk of failure was quite low.

In fact, after a few months of work, the results were so good that
our boss started to promote our way of working around the
company. He also convinced us to give some seminars about
configuration management and testing to other development teams.

Managing the Technical Activities

During our purely technical tasks, e.g., design, coding, and
testing, we had been able to apply the methodology without
effort. In fact it felt very natural to work in that way.
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Since the languages used were C++ and Python, we hadn’t the
possibility of having any refactoring tool, but we never had any
special problems for this reason. We managed to do merciless
refactoring by hand quite well.

One of the main purposes of using Python was to reduce our
coding effort. All C++ code used to access the database was
generated by a Python program we wrote for that purpose. We
accessed all the tables with the same pattern, so we could generate
the C++ code directly from the SQL used to create the database.
This saved us a huge amount of time and reduced the occurrence
of bugs.

As the project went on, we were able to increase our
development speed, due to the number of tests we had, to the
absence of duplication, and to the refactoring that allowed us to
improve our architecture and create a set of reusable libraries.

This last point deserves some explanation. A very common
approach to create reusable libraries is to work bottom-up: trying
to write them as reusable artefacts right from the start.
Unfortunately, this approach doesn’t always give the results
intended, because trying to predict all possible uses is very difficult.
Our approach, instead, was “use before reuse”. When we had a
specific problem to solve, the first thing we did was to look if we
already solved a similar one. If we found it we would refactor the
solution to an abstraction that could solve both of them; otherwise
we wrote just the code for the specific case. Working in this way,
we created several reusable libraries that helped in increasing our
productivity quite a lot: we reached a point in which most
programming tasks were mainly assembling components in our
libraries.

The methodology was also instrumental in helping us solve some
technical problems we had along the way.

Most of them were caused by our target operating system: Tru64
Digital Unix. Unfortunately, this wasn’t a very well supported
platform either by the software houses, or by the open source
community. We had to write our own compilation scripts for boost,
CppUnit, and other libraries. And the particular configuration of
our hardware was less than optimal for developing software: as the
code base grew, the compilation process became a painfully slow
experience – from forty minutes to four hours, depending on the
load of the machines.

To solve this we decided to port our code base under Linux and
Windows – for which we had much faster machines that were also
under our control – and compile under Digital Unix (usually once
per day) only to run the tests when everything was already working
on Windows and Linux.

Thanks to our extensive test suite, the full automation of the build
process, and our obsession in keeping the code clean, the porting
proved to be a painless experience. It had also a nice side effect: we
ended up with truly portable software, with fewer defects. Some
bugs that were missed from a compiler were almost certainly found
by one of the others.

Having Fun

Fun is a fundamental part of work. It comprises all the things
that make work something to look forward to. It comprises all
the factors that motivate us in doing a job in the best possible
way.

We decided, right from the start, that we wanted to really enjoy
the project, and our methodology was strongly influenced by this
decision.

Our strongest motivating factors (in no particular order) were
● Doing a quality job
● Delivering value
● Involvement
● Learn new things
● Having a challenge
The first three were directly addressed by our methodology.

The fourth factor was only partially addressed by it – i.e., learning
a new approach to software development. So, we made some very
deliberate choices to learn even more: we explicitly decided to learn
more about Oracle, Python, and some modern (but not arcane) C++
techniques, and also made some design experiments.

The fifth was actually created by our boss, and our customer,
with their initial belief that we were going to fail.

It was OK to experiment and make mistakes – we had configuration
management and lots of tests to protect us from their consequences.

We certainly managed to enjoy the project, and this showed up
in the final product, and in the satisfaction of the customer.

Conclusion

The first production quality version of the programs was released
in about nine months. It had a very low number of bugs and no
memory leaks.

Before releasing to production, our customer decided that she
wanted even more functionality implemented, so the first
production version was released in sixteen months after we started
to work on it. So far there has been only one bug – that was easily
fixed – in more than five months of operation.

Compared with the system we had to maintain when we were
assigned to the project, the new one had much more functionality
implemented, the performances were five to ten times better than
the previous one, and was much easier to maintain,

The last point deserves some more explanation. Maintainability
is something that is usually difficult to achieve, and even more
difficult to quantify. So how can we claim to have written
maintainable code?

We certainly put great care in keeping the architecture simple
and tidy, in localising responsibilities as much as possible, and in
writing clean self-documenting and well-tested code. But, more
importantly, soon after the production release, there have been
several changes and additions in the implemented functionality that
really put maintainability under test: so far, the implementation of
each of them has been quite straightforward, causing, at most, very
localised changes in the code-base.

Even if the project has been quite successful, there are some
things that, with hindsight, we would do differently. In particular,
we would use TDD right from the start; we would push to have
automated acceptance tests written in conjunction with the
customer; and we would try to fight harder to avoid political
compromises for deciding on purely technical issues.

Manual acceptance testing had been the cause of many problems,
being a very time consuming and error prone activity. Sometimes
the customer simply hadn’t the time to run her tests, and, because
of that, we couldn’t proceed to work on the next iteration. For this
reason, about four months out of sixteen have been wasted.
Furthermore, it was easy to make mistakes during the tests’
execution: several times, the customer came to us claiming,
wrongly, to have found a bug in the code, when what had really
happened was that she had made an error in the testing procedure.

[concluded at foot of next page]
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[continued from previous page]

The few technical compromises we had to make for political
reasons always caused the problems we forecasted, that regularly
gave rise to long and painful discussions about the reasons of the
problems with our boss and with the customer.

Finally, we would keep the possibility of dynamically adapting
the methodology to the needs of the project. We are aware of the
fact that there is no one-size-fits-all methodology, but, from our
experience, we are convinced that, sometimes, a methodology
cannot fit even a single project if it is not flexible enough to change
along with the needs of the project.

We don’t claim that our methodology can work for every team, or
project – in particular, we don’t recommend anybody to put his or her
career at stake as Giovanni did. However, we think that our approach
can be used by other teams to develop their own methodology. In fact
the most important assumption behind our choices (and behind the
agile manifesto) was that the process and tools should fit the needs of
the people involved in the project, not the other way round. In fact,
happy programmers produce better software.

Giovanni Asproni
aspro@acm.org

Alexander Fedotov
fedotov@ebi.ac.uk

Rodrigo Fernandez
rodrigo.fernandez@bnpparibas.com
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Yet Another Hierarchical
State Machine

by Stefan Heinzmann

Most of you are probably familiar with state machines. Finite
state machines (FSMs) are widely used in both digital electronics
and programming. Applications include communication
protocols, industrial control or GUI programming. UML includes
a more flexible variant in the form of statechart diagrams. Here,
states can contain other states, making the corresponding state
machine hierarchical. 

Hierarchical state machines (HSMs) can be converted to
ordinary (flat) state machines, so most implementors concentrate
on the implementation of FSMs, and many implementations exist.
The conversion however tends to lose the original structure of the
HSM, making it difficult to make the connection between a
statechart and its implementation. Clearly, it would be nicer if the
HSM could be implemented directly in source code. 

Direct implementations of HSMs seem to be comparatively
rarely published. Miro Samek provides a prominent
example in his book [1]. See the sidebar (next page)
for some more information about his approach, which
provided the motivation for the approach I will present
here. UML tools are available that generate source code
directly from statechart diagrams (example: Rhapsody
[5]). More information about HSMs and Statecharts
can be found in [1],[2],[3] and – of course – through
Google. 

The implementation I’m presenting here allows
you to code your HSM in C++ directly, without the
need for special code generation tools or wizards,
although such a wizard could ease development
further by converting the statechart automatically.
Template techniques are used to enable the compiler

to optimize the code through inlining, and I believe the resulting
code ranks among the fastest you can get, provided you have a
good up-to-date optimizing compiler (which you’ll need anyway
because of the templates). 

Only a subset of UML statecharts are supported at present. If you
need advanced features like concurrent states or history pseudo-
states, you need to expand the solution yourself (tell me if you do
so, it would be nice to have a complete implementation). 

The TestHSM Example 

It is best to describe how a hierarchical state machine works
when you have an example. I lifted the statechart shown below
from Miro’s book. It specifies the state machine for the test
example he implemented in his book ([1] page 95). We’ll
implement the same here. The example is artificial and only
serves the purpose of providing a number of test cases for
checking the correct implementation of the state machine. Its
advantage is that it is quite small and therefore well suited for
demonstration. It is driven by keypresses on the keyboard. 
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An HSM is a state machine where states can be grouped into a
composite state. Actions defined for such a composite state then apply
automatically to all states contained therein. This allows a considerable
simplification of the state diagram. In our diagram, you can easily see
this. Each state is drawn as a box with rounded edges and bears a
unique name. Composite states are those that contain other states.
States that contain no other states are leaf states. The only leaf states
in our example are s11 and s211. Arrows represent the transitions
between the states, they are labeled with an event that causes this
transition to be taken. In the example, the transitions are annotated
with the key that needs to be pressed to invoke the transition. 

If a transition originates from a composite state, it is taken whenever
a substate does not handle the corresponding event itself. A state can
thus pass on the handling of a specific event to its enclosing state. For
example, pressing the ekey causes a transition to state s211 regardless
of the currently active state. Rather than cluttering the diagram with
numerous transition arrows, it suffices to introduce an all-
encompassing top-level state s0 and handle the e key there. 

This does not just simplify the diagram, it also points out where
code reuse is possible. A statechart implementation should use this
opportunity. We therefore need a possibility to pass unhandled
events to the encompassing state. If no state handles the event, it is
ultimately discarded. Each state can have special exit and entry
actions associated with it. Those actions are executed whenever a
transition leads out of or into a state, respectively. This is called an

external transition. By contrast, an internal transition does not
execute any exit and entry actions. Our state machine
implementation needs to do the necessary bookkeeping to call the
actions in the right order. In particular, the actions associated with
a transistion are executed after all exit actions and before any entry
action associated with the relevant states are executed. 

During operation the state machine is always in a leaf state. So
transitions ultimately lead from one leaf state to another. If a
transition is drawn to target a composite state, the composite state
needs to specify one of its substates as the initial state. In our
example, the initial state of composite state s0 is specified to be state
s1. As this state is also composite, it needs an initial state, too, in
this case s11. The effect is that any transition targeting state s0 is
in reality targeting state s11. A composite state that does not specify
an initial state can not be the target of a transition. Our example
diagram only contains two action specifications. In our code we will
additionally print out trace messages for illustration, but the diagram
does not show this. The action specifications shown are: 
● The transition from s21 to itself (a self-transition). This is an

example of a transition that has a guard (in brackets []) and an
associated action (after the slash /). The guard is a condition that
must evaluate to true to enable the transition. If it evaluates to
false, the transition is not taken and none of the actions are
executed. A self-transition exits and reenters the state, hence the
associated exit and entry actions are executed. 

Miro Samek’s HSM Implementation 
If coding state machines is one of your favourite pastimes you
will surely have come across Miro Samek’s book “Practical
Statecharts in C/C++” [1]. Chris Hills reviewed it for ACCU
quite favourably a few months ago. I can second this, yet I’m
still in the game for new state machine designs. Why is that? 

Well, you may have noticed that Miro’s way of implementing state
machines isn’t typesafe and requires quite a few typecasts, neatly
tucked away in a set of convenience macros. His implementation of
hierarchical state machines isn’t the fastest either, because of his way
of handling entry and exit actions. There is a strong reason for this:
His implementation works with just about anything that calls itself a
C++ compiler, even ancient versions like VC++1.5. That means he
completely avoids the “newer” C++ features like templates. If you are
programming for embedded systems this is a good thing because “full”
C++ compilers are only slowly gaining ground here. 

State machines are more widely applicable than that, however,
and even in embedded systems you may have the luck to use a
compiler that attempts to support the full language, for example
g++. Hence I believe there is a “market” for state machine designs
that use the full language in order to address the deficiencies of
Samek’s design. This is what motivated me. 

Miro’s implementation represents the current state with a member
function pointer that points to the state handler function for this state.
This is an efficient representation, but it means that the handler
function has to do double duty in that it also handles the entry and exit
actions. For this, special reserved event codes are used, and a transition
leads to potentially quite a large number of function calls through
member function pointers. This is especially annoying when you
realize that a large fraction of those will do little or no real work. 

It also restricts your freedom in the way in which you can
represent events. You are forced to use the predefined event class
defined by Miro’s framework, and some events/signals are
predefined. The code presented here assumes nothing about the

event representation. This aspect is left entirely to the concrete case
you’re concerned with. 

Another difference is that Miro needs a number of typecasts,
which are mostly hidden in convenience macros. This is because
of the C++ restrictions in automatic conversion of member function
pointer types. Miro’s code works efficiently, but lacks type safety. 

Miro works out which entry and exit actions are to be called in
a function tran(), which does the work at runtime. This is very
flexible as it allows dynamic transitions that can change at runtime.
This comes at a cost, however, as there are potentially many
handler functions that must be called without much work being
done in them. As most transitions are static, he implemented an
optimization that does the calculation of the transition chain only
once and stores the result in a static variable. The code presented
here only supports static transitions and calculates the chain at
compile time, allowing inlining the entire chain. The result is
typically both faster and uses less storage than Miro’s code. Also,
Miro found it hard to obey the UML rule that the actions associated
with a transition are executed after any exit actions and before any
entry actions are executed. His implementation executes the
transition actions as the first thing, followed by all exit and entry
actions. This makes exit actions a lot less useful. My code avoids
these drawbacks. 

The flip side is that Miro’s code is more portable because the
demands on the compiler are low. This is most welcome in
embedded systems, where compilers often don’t even attempt to
implement the whole C++ standard. His solution is thus more
widely applicable than mine. 

Both implementations lack support for some more advanced
features of UML statecharts, such as concurrent states or history
pseudo-states. It is as yet an open question how difficult they are
to add to the solution that I presented here. If you find you need
such features and have an idea how to include them in the code
presented here, I’d be interested to hear from you.
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● The internal transition inside s11 is not drawn with an arrow. It
merely specifies an action that is to be taken when a certain event
occurs, but no transition to another state occurs, and no exit or
entry actions are performed. In our case the internal transition
has a guard, so the associated action (foo = 0) is only executed
when the h key is pressed while foo evaluates to true. 

Note the difference between a self-transition and an internal
transition. The latter never changes the active state and doesn’t
execute any exit or entry actions. Note also that internal
transitions can be specified in a composite state, too, although
this isn’t shown in our example. 

Representing the State 

Flat state machines often represent the current state using a
variable of enum type. Other implementations use a function
pointer that points to the handler function for the current state.
This handler function is called whenever an event occurs. Still
other implementations represent states with objects, so the
current state is represented by a pointer to the current state’s
object instance. This latter implementation is suggested by the
State design pattern [6]. This is also the approach taken here,
with the additional feature that all states have unique types to
allow compile-time algorithms based on the state hierarchy. Only
instances of leaf states need to be present, as they are the only
states that can be active at any time. Composite states only exist
as types, they are abstract and can therefore not be instantiated.
The relationship between a composite state and its substates is
modelled through inheritance. A composite state is the base class
of its substates. All states derive from a top-level state class. 

Often, entry or exit actions are empty or consist of trivial statements.
I wanted to use the benefits of inlining as much as possible to allow
the compiler to optimize away the overhead associated with functions
that don’t do much. I was prepared to dismiss the possibility of
determining the target state at run time. If all transitions go from a
source state to a target state, both of which are known at compile time,
the compiler can figure out the entry and exit functions that need to be
called and inline all of it into a single optimized string of code. My goal
was to use templates to implement this compile-time task. 

I chose therefore to represent the states as instances of class
templates. Leaf states and composite states have separate templates.
Each different state in the diagram is thus represented by a different
instantiation of a predefined class template. Implementing state
handlers and entry/exit actions is done by specializing member
functions from this class template. If you don’t specialize it, an
empty default is automatically taken. 

Here’s the definition of the CompState and LeafState class
templates: 

template<typename H>

struct TopState {

typedef H Host;

typedef void Base;

virtual void handler(Host&) const =0;

virtual unsigned getId() const =0;

};

template<typename H, unsigned id,

typename B> struct CompState;

template<typename H, unsigned id,

typename B=CompState<H,0,TopState<H> > >

struct CompState : B {

typedef B Base;

typedef CompState<H,id,Base> This;

template<typename X> void handle(H& h,

const X& x) const { Base::handle(h,x); }

static void init(H&); // no implementation

static void entry(H&) {}

static void exit(H&) {}

};

template<typename H>

struct CompState<H,0,TopState<H> > :

TopState<H> {

typedef TopState<H> Base;

typedef CompState<H,0,Base> This;

template<typename X> void handle(H&,

const X&) const {}

static void init(H&); // no implementation

static void entry(H&) {}

static void exit(H&) {}

};

template<typename H, unsigned id,

typename B=CompState<H,0,TopState<H> > >

struct LeafState : B {

typedef B Base;

typedef LeafState<H,id,Base> This;

template<typename X> void handle(H& h,

const X& x) const { Base::handle(h,x); }

virtual void handler(H& h) const

{ handle(h,*this); }

virtual unsigned getId() const { return id; }

static void init(H& h) { h.next(obj); }

// don’t specialize this

static void entry(H&) {}

static void exit(H&) {}

static const LeafState obj;

};

template<typename H, unsigned id, typename B> 

const LeafState<H, id, B> LeafState<H, id,

B>::obj; 

And here’s how you use this to specify the states of our example: 
typedef CompState<TestHSM,0>     Top;

typedef CompState<TestHSM,1,Top>  S0;

typedef CompState<TestHSM,2,S0>     S1;

typedef LeafState<TestHSM,3,S1>       S11;

typedef CompState<TestHSM,4,S0>     S2;

typedef CompState<TestHSM,5,S2>       S21;

typedef LeafState<TestHSM,6,S21>        S211;

I used indentation to indicate state nesting. Each state bears a
unique numeric ID code, starting with 0 for the top-level state
which is outside of the all-encompassing s0 state of our example.
The ID code ensures that all states are distinct types. Except for
the top-level state you have to specify the enclosing state for each
state. This is how the hierarchy is defined. It leads to a
corresponding class inheritance pattern, i.e. Top is a base class
for all other states. 

The TestHSM class is where the current state is held (it
corresponds loosely to Miro’s QHsmTst class). This class hosts the
state machine. Actions are typically implemented as member
functions of this class. As the states all have different types, we can
only represent the current state through a pointer to the top-level
state, from which all states are derived. Dispatching an event to the
current state handler calls the handler() member function of the
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current state through that pointer. The handler()member function
thus needs to be virtual. All states that can actually be the current
state, that is all leaf states, contain nothing but a vtbl-Pointer. So,
ironically, they are objects without state. 

The current state of the state machine is represented by a pointer
to the corresponding state object. 

const TopState<TestHSM>* state_;

Invoking the handler of the current state in response to an event
is called dispatching, and it is done simply like this (assuming
we’re in a member function of TestHSM): 

state_->handler(*this);

Note that only LeafState has a static member obj; CompState
does not need it because it can’t be instantiated anyway, as it does
not implement the pure virtual functions inherited from
TopState. The LeafState and CompState templates provide
empty implementations for entry and exit actions. If you provide
specialized functions yourself, they will be taken instead. This is
how you implement your own entry and exit actions. More on
this later. 

Representing Events 

An event is something that triggers actions and state transitions in
the state machine. Without events, the state machine is sitting still
and doing nothing. State machines are reactive systems. Events
are not represented by anything predefined in this state machine
implementation. You are essentially free to provide what you see
fit for this task. The only thing you need to do is to call the event
dispatcher shown above whenever an event happens. In order for
the state handlers to determine what happened, you will also need
to provide access to data associated with the event. For example,
you could store an event ID-code in a member variable of the
state machine’s host class and have the state handler functions
interrogate it to find out about the particular event at hand. Here’s
how our TestHSM class does it: 

enum Signal { A_SIG,B_SIG,C_SIG,D_SIG,

E_SIG,F_SIG,G_SIG,H_SIG };

class TestHSM {

public:

TestHSM();

~TestHSM();

void next(const TopState<TestHSM>& state)

{ state_ = &state; }

Signal getSig() const { return sig_; }

void dispatch(Signal sig)

{ sig_ = sig; state_->handler(*this); }

void foo(int i) { foo_ = i; }

int foo() const { return foo_; }

private:

const TopState<TestHSM>* state_;

Signal sig_;

int foo_;

};

Here, the event is represented by enum values corresponding to
the actual key pressed on the keypad. On each keypress, the
surrounding system needs to call dispatch() to invoke the
dispatcher. In our example, we do it like this: 

int main() {

TestHSM test;

for(;;) {

printf("\nSignal<-");

char c = getc(stdin);

getc(stdin); // discard '\n'

if(c<'a' || 'h'<c) {

return 0;

}

test.dispatch((Signal)(c-'a'));

}

}

You can see how the state machine is driven from the outside by
calling dispatch() repeatedly. This is the essence of driving a
reactive system. You call it each time something interesting
happens. This is also easy to integrate with the message pump or
event loop of a typical GUI, although I don’t show this here (I
would have to commit to a specific GUI, making it more difficult
for you to try the code if you use a different system). 

Your representation of events may be completely different from
that in the example, and it is neither necessary to store it in a single
member variable nor indeed do you need to store it in the state
machine host class at all. You just need to make sure the handler
functions can somehow get at it. This is easiest when it is stored in
the host class, as a reference to the host object is always passed to
the handlers. 

Handlers and Actions 

Implementing the handler functions is the central element of
implementing the statechart. Here are the handler functions for
our example. You may want to cross-check with the diagram
while browsing through this source code. We implement a
function template specialization for each state.

template<> template<typename X> inline void

S0::handle(TestHSM& h, const X& x) const {

switch(h.getSig()) {

case E_SIG: { Tran<X,This,S211> t(h);

printf("s0-E;"); return; }

default: break;

}

return Base::handle(h,x);

}

template<> template<typename X> inline void

S1::handle(TestHSM& h, const X& x) const {

switch(h.getSig()) {

case A_SIG: { Tran<X,This,S1> t(h);

printf("s1-A;"); return; }

case B_SIG: { Tran<X,This,S11> t(h);

printf("s1-B;"); return; }

case C_SIG: { Tran<X,This,S2> t(h);

printf("s1-C;"); return; }

case D_SIG: { Tran<X,This,S0> t(h);

printf("s1-D;"); return; }

case F_SIG: { Tran<X,This,S211> t(h);

printf("s1-F;"); return; }

default: break;

}

return Base::handle(h,x);

}

template<> template<typename X> inline void

S11::handle(TestHSM& h, const X& x) const {

switch(h.getSig()) {

case G_SIG: { Tran<X,This,S211> t(h);

printf("s11-G;"); return; }
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case H_SIG: if(h.foo()) {

printf("s11-H;");

h.foo(0); return;

} break;

default: break;

}

return Base::handle(h,x);

}

template<> template<typename X> inline void

S2::handle(TestHSM& h, const X& x) const {

switch(h.getSig()) {

case C_SIG: { Tran<X,This,S1> t(h);

printf("s2-C;"); return; }

case F_SIG: { Tran<X,This,S11> t(h);

printf("s2-F;"); return; }

default: break;

}

return Base::handle(h,x);

}

template<> template<typename X> inline void

S21::handle(TestHSM& h, const X& x) const {

switch(h.getSig()) {

case B_SIG: { Tran<X,This,S211> t(h);

printf("s21-B;"); return; }

case H_SIG: if(!h.foo()) {

Tran<X,This,S21> t(h);

printf("s21-H;"); h.foo(1);

return;

} break;

default: break;

}

return Base::handle(h,x);

}

template<> template<typename X> inline void

S211::handle(TestHSM& h, const X& x) const {

switch(h.getSig()) {

case D_SIG: { Tran<X,This,S21> t(h);

printf("s211-D;"); return; }

case G_SIG: { Tran<X,This,S0> t(h);

printf("s211-G;"); return; }

default: break;

}

return Base::handle(h,x);

}

This is about as straightforward as is gets. Let’s look at the last
handler: S211::handle() as an example. If you check with the
diagram, you can see that the s211 state handles transitions
associated with two events: Pressing d causes a transition to state
s21, while pressing g causes a transition to state s0. Each of the
transitions print a log message. The function S211::handle()
implements this behaviour, and you should have no trouble
making the connection between the diagram and the code. This
simple handler function illustrates 3 points: 
1. The event (key code) is retrieved from the host object using the

getSig() function. A switch discriminates amongst the
different events that are relevant for this state. The default case
forwards the unhandled event types to the parent state. The
CompState /LeafState class templates contain helpful
typedefs to make this convenient. If no state handles the event,
it ends up in the handler for the top state, where it is silently

discarded by default. If you want a different behaviour, you may
specialize the handle() function template for the Top state. 

2. Actions are implemented as ordinary function calls, for example to
member functions of the host class. In our example handler, the
action is simply a call to printf(), which prints a log message. 

3. Transitions are managed by yet another class template: Tran.
The details of this are explained later, suffice to say that a Tran
object is created on the stack in much the same way as a scoped
lock object, and it is destroyed automatically at the end of the
scope. At construction time all relevant exit actions associated
with the state transition are called, and at destruction the relevant
entry actions are performed. Also, the host object’s state pointer
is made to point at the new state. In between construction and
destruction of this Tran object you can call any actions that are
associated with this particular transition. 

The UML statechart formalism allows a few more variations. It
allows conditional transitions, that is transitions that are only
executed when a guard condition holds true. This can be
acommodated easily by testing the guard condition with an if-
statement inside the corresponding switch case. The handler
function S21::handle() illustrates this in case H_SIG. For an
internal transition, you don’t construct a Tran object. This is
what is done in case H_SIG of S11::handle(). 

The implementation of exit and entry actions is similarly
straightforward: 

// entry actions

template<> inline void S0 ::entry(TestHSM&)

{ printf("s0-ENTRY;"); }

template<> inline void S1 ::entry(TestHSM&)

{ printf("s1-ENTRY;"); }

// and so on...

// exit actions

template<> inline void S0 ::exit(TestHSM&)

{ printf("s0-EXIT;"); }

template<> inline void S1 ::exit(TestHSM&)

{ printf("s1-EXIT;"); }

// and so on...

Can it get any simpler? Here we just call the action routine that
needs to be executed whenever a state is exited/entered. Again,
we just print a log message, but anything could be done here.
The only thing missing is the init routines, which are necessary
for each state that has an initial transition. This initial transition
may have an associated action, but usually just points to a
substate. 

// init actions (note the reverse ordering!)

template<> inline void S21 ::init(TestHSM& h)

{ Init<S211> i(h); printf("s21-INIT;"); }

template<> inline void S2 ::init(TestHSM& h)

{ Init<S21> i(h); printf("s2-INIT;"); }

// and so on...

As before, the action is the printing of a log message. Another
special template Init is used to specify the transition to the
initial substate. Please crosscheck with the diagram. In most
practical cases, action routines will be members of the host class.
This is hinted at in our example with the function foo(). This is
where you put the actual code that implements the actions. The
handlers only have the task of selecting the right action and state
transition and invoke them in the right order. Try to keep detailed
action code out of the handlers. 



The Magical Tran Template 

The most interesting part is the last: the Tran template that
figures out which entry and exit actions to call: 

template<typename C, typename S, typename T>

// Current,Source,Target

struct Tran {

typedef typename C::Host Host;

typedef typename C::Base CurrentBase;

typedef typename S::Base SourceBase;

typedef typename T::Base TargetBase;

enum { // work out when to terminate

// template recursion

eTB_CB = IsDerivedFrom<TargetBase,

CurrentBase>::Res,

eS_CB = IsDerivedFrom<S,CurrentBase>::Res,

eS_C = IsDerivedFrom<S,C>::Res,

eC_S = IsDerivedFrom<C,S>::Res,

exitStop = eTB_CB && eS_C,

entryStop = eS_C || eS_CB && !eC_S

};

// We use overloading to stop recursion. The

// more natural template specialization

// method would require to specialize the

// inner template without specializing the

// outer one, which is forbidden.

static void exitActions(Host&, Bool<true>) {}

static void exitActions(Host& h, Bool<false>){

C::exit(h);

Tran<CurrentBase,S,T>::exitActions(h,

Bool<exitStop>());

}

static void entryActions(Host&, Bool<true>) {}

static void entryActions(Host& h,Bool<false>){

Tran<CurrentBase,S,T>::entryActions(h,

Bool<entryStop>());

C::entry(h);

}

Tran(Host& h) : host_(h)

{ exitActions(host_,Bool<false>()); }

~Tran() { Tran<T,S,T>::entryActions(host_,

Bool<false>()); T::init(host_); }

Host& host_;

};

It uses a gadget described in Herb Sutter’s GotW #71 [4]. It is used
to test at compile time whether a class D is derived from a class B
either directly or indirectly. This is an important ingredient in the
mechanism that figures out the exit/entry actions to call. Here it is: 

template<class D, class B>

class IsDerivedFrom {

private:

class Yes { char a[1]; };

class No { char a[10]; };

static Yes Test( B* ); // undefined

static No Test( ... ); // undefined

public:

enum { Res = sizeof(Test(static_cast<D*>(0)))

== sizeof(Yes) ? 1 : 0 };

};

So how does Tran work? I explained already that all the exit
actions are called when a Tran object is constructed and all entry

actions are called when it is destructed again. Our states are all
different types, so Tran needs to be a template. Its template
parameters are the type of the current state (which is always a
leaf state), the source state (where the transition arrow originates,
which may be a composite state that contains the leaf state either
directly or indirectly) and the type of the target state. 

Tran now needs to walk up in the inheritance hierarchy of the
current state (C) until it finds the common base class of current and
target state (C and T), but it must not stop before the source state
(S) was reached. From there it needs to descend the hierarchy down
to the target state T. While ascending, it needs to call the exit actions
of the states along the way, and when descending it needs to call
the entry actions of the states along the way. 

Ascending uses template recursion in exitActions(), and
descending uses a similar recursion in  entryActions(). The
additional Bool parameter of these functions is used to terminate
the recursion at the right point via overloading. Finding the right
point is where Herb’s gadget enters the picture. 

The point where the recursion needs to terminate is at the first
state that is common to both source and target state, in other words
a common base class of both states. So when you are ascending
from the source state you will eventually encounter a base class of
the target state, and there’s where the recursion must end. Similarly
when ascending from the target state you will eventually encounter
a state that is a base class of the source state. 

So we know how to ascend from both ends towards the common
base class, but we actually need to descend towards the target class
once we have ascended from the source state, so it appears as if
we’ve got it the wrong way up. But this is not a problem, as we can
ensure the correct order of the entry routines by just swapping the
recursion point with the invocation of the action as seen in
entryActions(). The effect is that in exitActions() , the
actual exit actions are invoked as we drill recursively into the
inheritance hierarchy, while in entryActions() the entry actions
are invoked as we work ourselves back out of the hierarchy. 

You can now also see why there is a member function template
handle() in the CompState/LeafStateclass template. Since Tran
needs to know the current state in order to work out which entry and
exit actions to invoke, it is necessary to pass it up the inheritance
hierarchy in the default case of each handler function’s switch
statement. If we didn’t do that, transitions handled in the handler for a
composite state would miss the exit actions of its substates. 

Finally, the handling of the initial state of a composite state
deserves explanation. Remember that targetting a composite state
with a transition leads you to the initial state specified within the
composite state. The init action of a target state is always executed
after executing the entry action. The init action of a leaf state is to
announce itself to the host class as the new state. This behaviour
shouldn’t be changed. A composite state by default has no init
action. So if you target a composite state with a transition, you will
get a compile-time error, unless you specifically provide an init
function for this composite state. Inside such an init function, you
use the following Init class template to specify the initial substate. 

template<typename T>

struct Init {

typedef typename T::HostClass Host;

Init(Host& h) : host_(h) {}

~Init() { T::entry(host_); T::init(host_); }

Host& host_;

};
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A Test Run 

When you compile all the code for our example, you may run a
little test to see whether the actions are called in the right order.
Here’s what I got: 

top-INIT;s0-ENTRY;s0-INIT;s1-ENTRY;s1-INIT;s11-ENTRY;

Signal<-a

s11-EXIT;s1-EXIT;s1-A;s1-ENTRY;s1-INIT;s11-ENTRY;

Signal<-e

s11-EXIT;s1-EXIT;s0-EXIT;s0-E;s0-ENTRY;

s2-ENTRY;s21-ENTRY;s211-ENTRY;

Signal<-e

s211-EXIT;s21-EXIT;s2-EXIT;s0-EXIT;s0-E;

s0-ENTRY;s2-ENTRY;s21-ENTRY;s211-ENTRY;

Signal<-a

Signal<-h

s211-EXIT;s21-EXIT;s21-H;s21-ENTRY;s21-INIT;

s211-ENTRY;

Signal<-h

Signal<-x

You’ll notice that Miro’s implementation renders a different
result (page 100 in [1]). Notably, the actions associated with a
transition are executed before any exit actions in Miro’s version.
This violates the UML rules, but Miro explains that this was
deliberate, as obeying this rule would have made his
implementation significantly more complicated. My code obeys
the rule with no noticeable hit on code performance. 

Furthermore, note that when pressing the e key, s0 is exited and
reentered. This is not immediately obvious from the way the diagram
is drawn. In fact, Miro’s code doesn’t show this behaviour. The UML
definition seems to specify the behaviour of my code, although this
isn’t entirely clear to me. It certainly is more consistent with the
behaviour of self-transitions. If my interpretation turned out to be
correct, it would be clearer to draw transition arrows in UML
statecharts such that they always leave the source state boundary
towards the outside, and also enter it from the outside. Hence the exit
action of the source state is always called, even when the target is a
substate of the source state. Likewise the entry action of the target state
is called even when the source state is one of its substates. 

Efficiency of the Generated Code 

With such a lot of templates, you might worry about the kind of code
generated. Templates are still being accused of causing code bloat, a
reason why embedded programmers in particular still hesitate to use
them. If used wisely, however, templates in conjunction with inlining
can actually reduce the amount of code produced. So how does the
system presented here fare in this respect? 

Given a good quality compiler and a sensible setting of compiler
switches, all handle(), init(), entry() and exit() functions
will be inlined into the virtual handler() function for a state. As
a result, you get as many handler functions as there are leaf states.
A good compiler will also be able to fuse the switch statement of
a handle() function with those from the handle() functions of
the base classes, so that you effectively get a larger switch
incorporating all cases that need to be considered in a state. The
result is the same as if you had converted the hierarchical state
machine into a flat one, taking all entry and exit actions into
account, and implemented the handler function for each flat state
manually. The code generated literally is exactly the same. The

templates flatten the hierarchical state machine into a simple state
machine and generate the code for that. 

In particular, empty actions don’t produce any code at all, not
even a call to an empty procedure. If the entry and exit actions
associated with a particular transition are also empty, the transition
simmers down to a single assignment to the host class’s state
variable, which on many processors is just one or two instructions. 

The result is probably about as fast as it gets, but there is no code
sharing between states. This is the reason why you should not
include a lot of action code in the handlers, but rather call a
corresponding action function in the host class. This is particularly
true for handler functions of composite states. 

Afterword 

Templates can be used to advantage here in order to allow the
compiler to thoroughly optimize the code. It is even fairly readable
and requires neither liberal casting nor preprocessor macros as the
solution described by Miro Samek. It does require a dose of
template metaprogramming, and this may challenge your compiler. 

So we’ve got a balance of advantages and drawbacks: 
+ Transitions are worked out at compile time, allowing generation

of very efficient inlined code 
+ Malformed statecharts are caught at compile time 
+ Stylized code lends itself well to automatic code generation 
+ The code is typesafe and doesn’t need casts 
+ Complete flexibility in representing events 
– We need full template support in the compiler 
– All transitions must be static (known at compile time) 
– Only a subset of the functionality of UML statecharts is

supported 
[concluded at foot of next page]

boost::fsm

The well-known boost library [7] is about to acquire statechart
support. Andreas Huber has developed a library that aims to
cover the entire functionality of UML statecharts, and it should
appear in one of the next official releases of boost. Until it is
accepted, you may have a look in boost’s sandbox:
http://boost-sandbox.sourceforge.net/libs/fsm/

doc/index.html is the entry point to the documentation
accompanying boost::fsm. 

Some of the design goals of boost::fsm match mine. Both
facilitate direct coding of statecharts in C++ without the aid of
special code generation tools. Such tools ought to be pretty
straightforward in both cases, however. Both solutions are type
safe and detect malformed statecharts at compile time. 

The support of boost::fsm for the complete UML semantics
makes it less efficient, although it should still surpass the efficiency
of Miro Samek’s implementation in many cases. In particular,
entering a state is done through construction of a state object. It gets
destructed again when exiting the state. As states are allocated using
operator new, the heap manager is excercised unless you overload
operator new and operator delete. This is done so that you
can include your own extra data members with a state. 

No dynamic allocation happens in the solution I introduced
here. As noted, the resulting code should be fast and consume little
memory. The downside is of course that some major facilities of
UML statecharts aren’t supported. 

The benefit is yours: You’ve got a choice between a restricted,
efficient solution and a flexible, universal solution. 



[continued from previous page]

If you find this approach useful, have improvements or
comments on offer or bugs to fix, I’d like to hear from you. 

I’d like to thank Miro Samek and Andreas Huber for discussion
and advice as well as for their work on HSM implementations. My
work wouldn’t exist without theirs. Thanks also to the Overload
reviewers. 

Stefan Heinzmann
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A Mini-project to Decode A
Mini-language – Part Two

by Thomas Guest

Part 1 of this two-part article [15] described the preliminary stages of
a mini-project to write a codec for a mini-language, delivering:
● a rough specification of the codec,
● a suite of test data,
● some prototype code,
● three implementation strategies.
Part 2 continues the project and presents the final implementation.

Motivation

Part 1 of this article drew inspiration from “The Art of UNIX
Programming”, by Eric Raymond [13].  Part 2 continues to draw
from this same source, which applies as readily to
implementation as it did to design.

At this point, I can reveal a second motivating source, “The Tale
of a Struggling Template Programmer”, Stefan Heinzmann [7],
which served to remind me how frustrating software development
can be: sometimes the tools are to blame, sometimes the languages
appear faulty, and sometimes the poor programmer takes a wrong
turn. More personally, it reminded me that I ought to experiment
with modern C++1.

Anyone familiar with both sources will appreciate there’s a degree
of tension between them. In what follows, I document my attempts to
resolve this tension. Along the way, we shall revisit the world of
MPEG video encoding and get started with the Boost Spirit library.

Project Recap

To briefly recap, then, our goal is to write a tool to convert the
binary format used in MPEG-2 digital video broadcasting into a
textual form and back again – to write a dvbcodec. For example,
we would like to convert a section of the Program Association
Table (PAT), whose syntax is as follows:

program_association_section() {

table_id                   8

section_syntax_indicator   1

'0'                        1

reserved                   2

section_length            12

transport_stream_id       16

reserved                   2

version_number             5

current_next_indicator     1

section_number             8

last_section_number        8

for(i=0; i<N; i++) {

program_number          16

reserved                 3

if(program_number == '0') {

network_PID           13

}

else {

program_map_PID       13

}

}

CRC_32                    32

}

[ISO/IEC 13818-1] Table 2-26 – Program association section

The numerical values here represent field widths in bits: the first
byte of the section encodes the table_id , the next bit the
section_syntax_indicator, and so on until the final four
bytes which encode the cyclic redundancy check.

The PAT is just one of the tables we would like to decode. There
are many others, the next three most important being the the
Conditional Access Table, the Program Map Table and the Network
Information Table (CAT, PMT and NIT).

The textual output format we decided on should reflect the
syntax description as follows:

program_association_section() {

table_id                   8 = 0x0

section_syntax_indicator   1 = 0x1

'0'                        1 = 0x0

...

CRC_32             32 = 0xcae52d9f

}

We came up with three possible implementation strategies for our
dvbcodec:
● Implement a pat-codec. Then implement a cat-codec, then a pmt-

codec, etc.
● Implement a general codec which understands the full bitstream

syntax and can use it to parse an arbitrary section format. All that
then remains is to prime this codec with the required section
formats.

● Devise a code generator which, given a section format, will
generate a program to encode/decode that particular format.

Towards a Solution

The first strategy holds little appeal: it risks being a recipe for
cut-and-paste code and boring repetition. We reject it.

1 My job involves writing portable C++ to run on embedded platforms. The compilers
supplied for these platforms often do not support “modern” C++ features such as
templates.



The second and third strategies look to have more going from them,
particularly since we have restricted our scope to a subset of the full
bitstream syntax. Although these strategies appear rather different, they
both require us to parse syntax descriptions of the general form
exemplified by the program_association_section.

So, we need a parser. We need one capable of handling conditionals
and loops: one capable, that is, of handling a Turing-complete mini-
language. Raymond [13] can advise. In general terms, he suggests:
● Where possible, reuse. Look for a proven, documented,

supported, portable, parser. (He argues these criteria pretty much
imply an open source solution.)

● Prefer scripting languages such as Python and Perl. These
facilitate rapid development and are less prone to memory
management bugs. You may not need the raw performance
offered by C/C++, and the library support offered by these
languages is often superior.

On the more specific subject of parsers, Raymond recommends
lex and yacc though, in keeping with the Unix philosophy of
documenting weaknesses, he admits these tools are not perfect.
He also suggests:

“If you can implement your parser in a higher-level language than
C (which we recommend you do ...) then look for equivalent facilities
like Python’s PLY ...”

I tend to agree with Raymond, but I’m not convinced PLY is the
way to go here. Of course, it won’t get me very far with my aim
of finding out about modern C++, but it’s also not part of the
standard Python distribution. In fact, a web search reveals several
other Python parser frameworks – it’s unclear which will prevail.

The C++ standard library doesn’t provide a parser either. We
might make some progress tokenising our data with std::strtok
or even std::sscanf, but this won’t suffice. lex and yacc are
of course a tried and tested solution, but I’d rather not have to learn
two more mini-languages.

The next place to look is in the next best thing to the C++
standard library, namely Boost [3]. Three clicks from the front page
takes us to the Spirit parser, which claims to be a scalable parser
framework written in C++. We trust the source, the documentation
is good, the examples compile: let’s try some code.

Getting Started With Spirit

The code below is a complete program to recognise lines of the
form:

reserved 2 = 0x3

this being the format we arrived at for fields of our text sections.

#include <boost/spirit/core.hpp>

#include <iostream>

#include <string>

using namespace boost;

/**

* @brief Parse a string representing a field 

* @returns True if the field matches the

* format: <field_name> <bitwidth> = <value>,

* false otherwise.

*/

bool parseField(std::string const & str) {

return spirit::parse(

str.begin(), 

str.end(),

spirit::lexeme_d[+spirit::graph_p]

>> spirit::uint_p

>> '='

>> spirit::hex_p,

spirit::space_p).full;

}

int main() {

std::cout << "Enter text.\n"

<< "Lines will be matched against: \n"

<< "<field_name> <bitwidth> = "

<< <hexvalue>\n"

<< "Type 'q' to quit\n";

std::string str;

std::string const quit("q");

while(std::getline(std::cin, str) &&

str != quit) {

std::cout << (parseField(str)

? "hit" : "miss")

<< std::endl;

}

return 0;

}

Here, the action is concentrated in the function parseField(),
which wraps a call to spirit::parse(). spirit::parse()
accepts as arguments:
● two iterators marking the start and end of the data to be parsed,
● a parser,
● a skip parser.
We have used spirit::space_p directly as our skip parser: this
primitive parser recognizes whitespace and tells spirit::parse()
which characters it should skip past in the input. A more
sophisticated skip parser might be used to skip comments.

Operator Overloading

The parser itself is a sequence of sub-parsers which can be read:
recognise input consisting of a block one or more printable
characters, followed by an unsigned integer, followed by the
equals sign, followed by a hexadecimal integer.

Operator overloading is used by Spirit to make such expressions
into readable approximations of EBNF syntax descriptions (see also
[1] for more on this technique). Here, we see that operator<<() has
been overloaded as a sequencing operator, prefix operator+() has
been overloaded to mean “one or more of”, and operator[]() is
overloaded to adapt the behaviour of a sub-parser – in this case using
spirit::lexeme_d to turn off whitespace skipping.

Parser Generators

I should also mention that the '=' sub-parser is a shorthand for
spirit::ch_p('='), which in turn is a parser generator returning
the character literal parser spirit::chlit<char>('=').

Similarly, spirit::hex_p and spirit::uint_p are parser
generator functions which return suitable specialisations of the
spirit::uint_parser template struct.  The full template
parameters of this struct are as follows:

template<typename T = unsigned,

int Radix = 10,

unsigned MinDigits = 1,

int MaxDigits = -1>

struct uint_parser { /* */ };
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The helper functions hex_p and uint_p are often good enough,
but it’s also useful to have the full flexibility of the base parser.
For example, if we need to match larger hex values, and long
long is available, we could create an alternative hex parser:

uint_parser<unsigned long long, 16> const

long_long_hex_p

= uint_parser<unsigned long long, 16>();

In fact, the uint_parser should work with any user defined
scalar type.

(You’ve probably noticed I’m now working in the boost::spirit
namespace. I continue to do so for the remainder of this article.)

One thing I cannot do with the hex parser, unfortunately, is get
it to accept the 0x we’ve used to prefix hex digits. We can fix the
bug in our program by introducing a new parser rule.

with_base_hex_p

=  lexeme_d

[

as_lower_d["0x"]

>> hex_p

];

Note here:
● the as_lower_d directive, which converts all characters from the

input to lowercase, and therefore recognising both 0x and 0X.
● the rather unusual code layout. I have tried to follow the Spirit

style guide [17] when writing parser grammars.  This will
become increasingly more important when we develop a more
substantial grammar.

● the string literal "0x", which in this context becomes yet another
parser.

Semantic Actions

Simply recognising fields is not enough: we need to act on their
contents. That is, we must associate semantic actions with the
sub-parsers. This can be done using another overload of
operator[](), which enables us to link an action to a parser.

Here, then is an encoder which will convert text versions of
sections to binary. I have omitted #include directives etc. for
brevity. The full implementation is available with the source
distribution for this article [8].

typedef std::string::const_iterator iter;

/**

* @brief Put the input value to the output

*  stream using the specified bitwidth

*/

void putBits(std::ostream &, unsigned w,

unsigned v) { /* */ }

/**

* @brief Parse a field of the form:

*  <field_name> <bitwidth> = <value>

*/

bool parseField(iter const & begin,

iter const & end,

unsigned & bitwidth,

unsigned & value) {

return parse(

begin, 

end,

lexeme_d[+graph_p]

>> uint_p[assign_a(bitwidth)]

>> '='

>> lexeme_d

[

! as_lower_d["0x"]

>>  hex_p[assign_a(value)]

]

,

space_p).full;

}

int main() {

std::string str;

int line = 0;

try {

while(std::getline(std::cin, str)) {

++line;

unsigned bitwidth, value;

if(parseField(str.begin(), str.end(),

bitwidth, value)) {

putBits(std::cout, bitwidth, value);

}

}

}

catch(std::exception & exc) {

std::cerr << "Error parsing line " << line 

<< "\n" << str << "\n"

<< exc.what() << std::endl;

return -1;

}

return 0;

}

Note here:
● I have used typedefs for the iterators passed into the parser.

This will ease switching to another forward iterator type, if
required.

● I decided to make the 0x preceding hexadecimal values optional,
using Spirit’s overload of operator!()

● The use of the assign_a actor for our semantic action. We could
have used any function accepting an unsigned integer or any
functor providing operator()(unsigned int). Again, it’s
simpler to use one of Sprit’s off-the-peg actors.

● The program implements a classic Unix filter. This makes it
suitable for use in a Unix pipeline. See [13] for more on this.
Unfortunately, I’m not sure this is a great idea for binary output:
I haven’t found a portable way to reset std::cout for binary.

Exceptions in Parsers

Another important point to note about our simple encoder is the
way it handles failure conditions using C++ exceptions rather
than C-style error codes. There are plenty of failure conditions to
handle: a value might not fit in the available bitwidth, the output
stream might not be in a suitable state, and so on.

In this simple parser we might equally well have passed error
codes around, but a more complex parser is likely to involve
recursion and/or nested function calls. Exceptions perform well in
both the simple and the complex case, offering a scalable solution.

The Spirit parser framework itself uses exceptions internally for
similar reasons. To quote the documentation:

“C++’s exception handling mechanism is a perfect match for
Spirit due to its highly recursive functional nature. C++ Exceptions
are used extensively by this module for handling errors.”
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Like our program, Spirit should not leak any such exceptions to
its users.

Weaknesses

The simple encoder presented above follows Postel’s
prescription, to a degree [11]. It doesn’t mind too much about
whitespace; it allows any sequence of printable characters as a
field name; and it isn’t fussy about the presentation of
hexadecimal numbers.

Its main flaw is that it does not look at the text format of our
sections as a whole: it simply skips the lines which close blocks or
start loops, for example. This means the encoding will quietly do
the wrong thing given input where a new-line has gone missing, or
where the data has been truncated. This is dangerous. It also means
the encoder cannot check the integrity of our text data – for
example, to confirm the section_length field contains the actual
section length, or to validate a CRC.

When we start thinking along these lines, we realise that
perhaps the encoder should calculate the values of these fields for
us. We’ll need a CRC generator anyway – why not embed it in the
encoder?

These are important points. However, we never considered data
validation when we planned our codec and I’m not going to worry
about it just yet – I need to get started on the decoder. Data
validation, though valuable, would need to be optional since an
encoder must let us generate broken data for test purposes.

Also, Raymond [13] encourages us to limit options whenever
possible: if we can release code earlier then our users can tell us
which options they really want. Ideally, he suggests we make the
release open-source, and allow users to (submit patches which)
implement these options.

Progress Review

We’ve used Spirit to write a micro-parser to drive the encoder. We’re
ready to start on the decoder. Spirit’s scalability will be tested.

The Decoder

I decided to attempt the second implementation strategy: to
develop a codec which understands the bitstream syntax and can
use it to parse an arbitrary section format. I had no good reason
for preferring this to the code-generator strategy.

As already noted, this is a parsing task. We will use Spirit to
define the grammar used by the bitstream syntax. We can then parse
our static program data – the section formats we’re interested in –
which gives us the basis we need to parse the run-time program
inputs, that is, actual instances of binary encoded sections.

Grammar Definitions and
Parse Trees

I do not propose to dwell on the practical use of Spirit for much
longer: we’ve already seen enough of what it can do, so for full
implementation details please refer to [16] and the codec source
distribution [8].

For the decoder, note that simply parsing the data once and
associating semantic actions to the various lexical elements is not
enough. For instance, to process descriptor loops we need to revisit
the same parser node several times.  Spirit provides abstract syntax
trees for exactly this purpose.

I do think it is worth presenting here a portion of the section
grammar. To me, this is a quite remarkable application of C++. For

even more remarkable transcriptions of EBNF syntax definitions into
Spirit grammars – including a C++ tokenizer and a C parser – I would
recommend a visit to the Spirit Applications Repository [14].

/**

* @brief MPEG-2 Section grammar defined

* using Boost Spirit.

* Reference: - ISO/IEC 13818-1, MPEG-2

*              Transport Stream

*/

struct Section :

public boost::spirit::grammar<Section> {

template <typename ScannerT>

struct definition {

definition(Section const & /*self*/) {

section_

=  section_ref_

>> section_body_

;

section_ref_

=  text_id_

>>  '('

>>  ')'

;

text_id_

=  leaf_node_d[

lexeme_d[

alpha_p

>> * (alnum_p | '_')

]

]

;

quoted_binary_

=  leaf_node_d[

lexeme_d[

'\''

>>  bin_p

>> '\''

]

]

;

section_body_

=  ch_p('{')

>> *(    field_

|  loop_

|  conditional_

|  section_ref_

)

>> '}'

;

field_

=  identifier_

>>   uint_p

;

identifier_

=  text_id_

|  quoted_binary_

;

conditional_

=  str_p("if")

>> condition_
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>> section_body_

>>  ! (str_p("else")

>>  section_body_)

;

condition_

=  inner_node_d['('

>> text_id_

>> "=="

>> quoted_binary_

>> ')'

]

;

loop_

=  loop_control_

>> section_body_

;

loop_control_

=  leaf_node_d[str_p("for")

>>  '('

>>  * (anychar_p - ')')

>>  ')'

]

;

}

...

boost::spirit::rule<ScannerT> const &

start() const {

return section_;

}

};

};

Decisions Taken

Many of the decisions taken when writing our naive encoder
scale up to the decoder: limited use options; exceptions used in
preference to error codes; Spirit style guide for grammar
definitions; typedefs for iterators.

Some decisions were ones we haven’t yet faced. The main one
was: where should we put section format definitions (for the PAT,
CAT, PMT and NIT)? There are two obvious alternatives:
● create a C++ source file containing  these  definitions – perhaps

as an array of string literals,
● place them in a text file in a known location, and have this file

read when the decoder starts up.
The second alternative is perhaps most faithful to our original
aims. Program logic and program data are nicely separated, and
extending the decoder to handle other sections is a simple matter
of editing the text file. No recompilation necessary.

Despite these attractions, I went for the first option – partly
because it’s easier to implement and partly because I didn’t want to
work out where to put the text file.

The other corner I cut concerns determining how and when to
exit loops. The issue is fully described in the first part of this article
(see the subsection headed “Complications”). My resolution was
to notice that loops always exit when we’ve used up the number of
bytes encoded in a length field – with the single exception of the
outermost loop, which may end four bytes early in order to leave
space for a CRC. So, the decoder maintains a stack of length

fields, testing the top value after each loop iteration, popping it on
loop  exit. The first item to be stacked may need adjusting to allow
for the four byte CRC. Again, the source distribution should make
this clear.

I could find no official statement regarding what could be
used as a field name in the section format definitions: inspection
suggested that these names were rather similar to C identifiers,
with the important addition of quoted binary values for fixed
fields (e.g. the '0' which is the third named field in the
program_association_section format definition).

A few more parse tree node directives might have resulted in a
leaner decoder, but I wanted the syntax grammar to be as simple as
possible. I am inexperienced in writing grammars and preferred a
small amount of extra code in my application. The application is
quite compact anyway.

Ship Happens [1]

Raymond [13] has lots of practical advice on how to ship a
source code distribution, going down to details of file naming
conventions. Some of the suggestions I have followed are:
● choose a suitable license
● include a README
● set up a project homepage [8]
● include a BUGS file, listing known defects and limitations
● include platform/compiler details
● include self-test code
The BUGS file is a strangely satisfying thing to write,
particularly if you’ve ever delivered software which doesn’t
admit to defects, let alone limitations (or indeed if you’ve ever
used such software). In this case it is essential to document
both.

Version 0.1 of the dvbcodec features the naive encoder
described in the preceding – really only of use for system testing
(we can check that decoding then encoding a file recreates the
original file). The decoder is rather better – in fact, I’ve extended
it beyond the original specification to handle a few more section
formats: dvbcodec -l gives details.

Having done the hard work and shipped our beta release, the rest
of this article is dedicated to some closing thoughts.

Is C++ the Right Tool for the Job?

My criteria for language selection were somewhat artificial. If I
had been allowed a free hand I almost certainly would have been
biased towards Python [12]. However, having gone the C++ route
– the modern C++ route, even – it would seem a good point to
step back and review my selection.  

Raymond [13] has reservations about C++, which I summarise
here:
1 By not automating memory management it fails to address C’s

biggest shortcoming; and backwards compatibility with C has
compromised the language’s design.

2 Object oriented software design isn’t all it’s cracked up to be.
All too often it leads to shaky object hierarchies, unnecessary
abstractions and code which is hard to maintain,

3 C++ is so complex that no one programmer can be expected to
know it all,

4 If C++ really were superior to C, it would now dominate it.
(Incidentally, as already mentioned, Raymond is not knocking
C++ to promote C. His recommendation is to adopt scripted and
mixed language solutions.)
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To fully address all these points is outside the scope of this
article. Instead I shall look at each in the context of the development
of our codec:
1 By using standard library containers – map, vector, stack,

string etc – I have avoided a single direct call to operator
new. If I’ve got my exception handling and my use of Spirit right,
there should be no leaks. Regarding C compatibility, I have
benefited from the C standard library in a few places. Converting
from C string literals to C++ strings is convenient.

2 The application code (as opposed to the Spirit framework code)
uses only two concrete classes. I have resisted the temptation to
make these generic, or to make them derive from an abstract
class. The RAII class idiom is usefully employed. The Spirit
framework itself has moved with the times: what was
“implemented with run-time polymorphic classes” is now “a
complete rewrite ... using expression templates and static
polymorphism”.

3 Agreed! Spirit’s fine documentation includes examples which
have served as a basis for my own application. When I deviated
from these examples too far the result was a barely
comprehensible torrent of compiler errors. Typeless
programming in a strongly typed language can be tough2.

4 C is far more portable. I believe our codec is standards
compliant, so maybe in the long term it will be portable.
However, at the moment (September 2004) the list of compilers
which cope with Spirit is small. So our codec isn’t really
portable. Not one of the compilers I use at work could cope
with this program. This reflects my experience with C++ over
the years: to get the good stuff, either you wait, or you work
around compiler limitations. Bear in mind too that of two types
of compiler bugs – incorrect error messages, no object code;
no error messages, incorrect object code – the second is far
more insidious and dangerous: and the presence of the first
naturally leads a programmer to suspect the existence of the
second.

Despite all this, Spirit has proven itself flexible, scalable, capable
of expressing grammars clearly and of writing efficient parsers
without the need to step outside C++. Indeed, it could never have
been done without C++. I am sure I will use the Spirit parser
framework again.

Open Source

The future of Unix is Linux is open source. Raymond is
passionate about software quality and argues convincingly that
open source the best way to deliver the highest quality software. I
do not propose to rehearse these arguments here: Raymond’s
writings are available both in print form and online. (See, for
example [4]).

What does interest me is that I cannot see how the full power of
Spirit could be realised using anything other than a full source code
distribution. It’s all done with header files. Maybe with some

reworking the implementation could be delivered in pre-built
libraries, multiplied up by the various operating system, platform,
version permutations – but wouldn’t this make it even harder for
compilers to build applications based on Spirit?

Of course, open source means more than just access to source: but
it’s still notable that this style of C++ favours open source distribution3.

And Finally

I’m still not sure if it would have been better to write a code
generator, to generate our codec from the section formats.

Maybe I’ll try using Spirit and C++ to generate a C codec.
Thomas Guest

thomas.guest@ntlworld.com
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