
3

Overload issue 60 april 2004

contents credits & contacts

Overload Editor:

John Merrells
overload@accu.org

Contributing Editors:

Alan Griffiths
alan@octopull.demon.co.uk

Mark Radford
mark@twonine.co.uk

Readers:

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Chris Lowe
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:

http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letters to the Editor(s) 6

Achieving FitNesse in C++

Alan Griffiths 7

Transforming XML with XSLT

Fazl Rahman 10

A Little Detail Alexander Nasonov 13

From Mechanism to Method:

Generic Decoupling

Kevlin Henney 15

All Heap No Leaks Paul Grenyer 20

4

Overload issue 60 april 2004

Editorial - An Industry that
Refuses to Learn

Now, most of the development group members had been the
industry for two to three years, except one who had been in the
industry for about a decade and a half – he and I spontaneously
started to reminisce about how this was exactly the rhetoric
surrounding objects a decade earlier! We pointed out that this
promised reusability hadn’t been delivered then, and we were not
confident it would be this time around. We also pointed out some
other common sense things, such as you need to get past the margin
of usability first because all too often software is difficult enough
just to use, and if it’s difficult to use then forget about reusing it.
However we couldn’t get the architect to understand any of this,
and he went on to lead the company in reaping the cost of his
dubious wisdom.

So, why am I telling you this story? Well, the above tale is an
illustration of the search for the silver bullet – that one thing that
is the solution to all problems. It seems like a poignant way of
starting off this editorial, in which I want to talk about what I see
as the greatest troubles of our industry. These are the troubles
that are uncomfortable – even painful – to talk about. These are
the troubles that I encounter far too often, that condemn our
industry as nothing short of dysfunctional, and that every time I
encounter them make me wish I had a different career (ok, the
grass is always greener on the other side, I know). What I have
to say may come across as something of a rant, and if it does, so
be it!

At the time of writing this I’m in my seventeenth year in the
industry, and I’ve seen my share of failed projects. In fact, I’ve
seen more fail than succeed. I say this with some confidence that
readers who have a comparable number of years in the industry
will, with some sadness, share the sentiment (recently a friend
told me of a former colleague who after fifteen years in the
industry has yet to work on a successful project). We work in an
industry that worships technology. We’ve all been privy to
debates about the merits of one programming language versus
another and one technology versus another, and why one is better
for some projects and not for others, but let me say this: I have
never seen a project fail as a direct result of a particular
technology! In fact, I think it’s fair to say that most of the projects

I’ve seen fail were doomed to fail, before any technical work was
done or before any technology had been put in place. I’ve just
mentioned the term silver bullet, a term coined by Frederick
Brooks in his “No Silver Bullet” essays, which can be found
included as chapters in the second edition of his book “The
Mythical Man-Month”. There’s much of relevance to discuss in
these essays, but I’m going to let that pass because I want to turn
my attention to another chapter of the same book: the one entitled
“Why Did the Tower of Babel Fail?” In this chapter the author
argues compellingly that those building the tower had a clear
purpose (even if naïve), and they had adequate technology,
plenty of time and all other resources. Yet the project failed.
Again Brooks’ arguments are compelling: it was lack of
communication (and consequently a lack of organisation) that
was to blame. It has been my experience too, that much of the
time projects fail because of lack of communication. I say much
of the time, because some of the time there are other reasons too,
but I don’t want to get into detail because it’ll distract from the
point I want to make.

Frederick Brooks was project manager for IBM’s OS/360, and
in “The Mythical Man-Month” he documents the lessons he learned
on this and other projects. Now be afraid, be very afraid, because
the first edition was first published back in 1975, which means
anyone in the industry under twenty-eight years of age (and that’s
a significant proportion) wasn’t even born when the first edition of
“The Mythical Man-Month” was first published – and we’re still
getting it wrong today!

Just writing about this makes me shudder, but let’s press on
anyway, I have another story to tell...

A few weeks ago, I was having a conversation with a web
programmer. Now web programming is something I still haven’t
done, but there was a possibility of me getting into it and helping
out on a project with this programmer’s company, so he was giving
me some background on what’s involved before I started pitching
into the detail. I’m précising the conversation rather a lot here, but
basically, the programmer explained that the most significant issues
are to do with the transactional nature of programming for the web
– the browser collects information, sends it to the web server, and

I
reckon it’s now getting on for two and a half years since I sat in that meeting with the
rest of the development group. I’d made the mistake of giving up my independence and

joining a company owned by someone else – a small and apparently promising
company about to get bigger, and with a bunch of development staff that were well above
the industry norm in terms of their enthusiasm for their jobs. Then one day and out of the

blue, management hired a technical architect, and soon after his arrival, a development
group meeting was called to brief the group on his vision for future technical direction.
Components featured highly on his agenda because, he explained, if we developed

components, we would get the benefit of reusability.

5

Overload issue 60 april 2004

when the web server replies there is no knowledge in the browser
of what went before. As he was telling me this I began to recall a
couple of projects I worked on in the early 1990s that involved
writing Windows front-ends for mainframe systems. This involved
tapping into the 3270 terminal protocol commonly in mainframe
systems, where the terminal is not interactive with the mainframe
– rather it collects input from a form presented on the screen, sends
the whole lot back to the mainframe in a buffer, and springs back
into action when the mainframe sends a new buffer full of
information back to be presented. I think I started to detect a pattern
emerging.

As I mulled over the above conversation I began to think about
the two friends I made at the time of my first job as a contractor
in 1997, working in a small software house based in
Buckinghamshire – a company with a history of supplying
mainframe systems. While I was there I became friends with two
of the permanent staff who I still regularly visit. Both have been
in the industry for nearly two decades longer than I have. Now the
scary bit: these two old timers are part of a generation of
programmers who solved the problems associated with the
transactional programming model over a quarter of a century ago!
They solved them when programming mainframes in assembler,
the new generation of web programmer solves them using a variety
of modern technologies, but the problems and their solutions
haven’t changed much in a quarter of a century.

Let’s face it, how could these two old timers pass their
knowledge on to the modern generation of programmers anyway?
What mechanisms are available for facilitating this kind of
communication? Well, in the early 1990s hope appeared in the
form of the patterns movement, which offered a framework for
capturing problems, their solutions, together with all relevant
information such as the tradeoffs involved. Around that time the
“Design Patterns” book (by Gamma et al) appeared, and made
Patterns visible to the development community at large.
However, Patterns were hijacked and became another
bandwagon, another buzzword! This is the most damning
indictment against the industry: Patterns were hijacked not
because of any fault of Erich Gamma or any of his co-authors,
but because it is in the nature of an industry that is more
impressed by fads than by progress.

I fear that my two Bucks based friends are now part of a whole
generation of programmer that the technology and silver bullet

crazed industry has seen fit to forget about. In recent times the
Agile Development movement, and the Extreme Programming
approach in particular, has brought practices such as unit testing
– practices that my two friends regarded, in their youth, as a way
of life – to the attention of the modern programmer. I fear that
such practices will now join the armoury of buzzwords that must
be present on a CV to make sure it is found by agency database
searches. I fear the same will happen to these practices as
happened with Patterns: the industry will pay lip service with
enthusiasm, but because of its deep rooted dysfunction it will lose
out to the desire to adopt – or rather the desire to be seen to adopt
– the latest fad.

The software development industry has not made any
significant progress towards improving its productivity over the
last quarter of a century. It continues to ignore communication
and instead looks to fads – in the form of fashionable practices or
technologies – to provide a silver bullet that will produce huge
leaps in productivity. I’m not saying practices and technologies
are not of value, on the contrary their continued development is
an essential part of progress, assuming they are used for their
merit and not just for their novelty value. Unfortunately,
developing something that is an essential part of progress is not
enough to make progress happen, and real progress – the
improvement of productivity – is not happening. Problems are
encountered in the course of any project, and it is the resource –
mainly in the form of people’s time – expended in solving
problems that significantly inflates project costs. This cost can be
cut dramatically if known solutions can be applied at the strategic
point in the project. This is where the price of looking for the
silver bullet really takes its toll – it distracts from the process of
reusing and cultivating existing knowledge because its promise
seduces the industry into concentrating on the search for what
can’t be found.

Making progress will be a struggle (if it is even possible)
because there are too few people who understand that there is a
problem. Further, of those who understand that there is a problem,
few have any idea how big the problem really is. I believe it is
unlikely that things will improve over the next decade, and
possibly longer. The software development industry is an industry
that refuses to learn.

Mark Radford
mark@twonine.co.uk

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines
All articles intended for publication in Overload 61 should be submitted to the editor by May 1st 2004, and for Overload 62 by July
1st 2004.

6

Overload issue 60 april 2004

Comments on Overload 58 article
‘A Standard Individual:
A Licenced Engineer’

I read with much interest the article in Overload 58 – ‘A Standard
Individual: A Licenced Engineer’. I thought it was very good
and I agreed with most if not all of it.

One small point however – the BCS CPD (Continuing
Professional Development) scheme has not disappeared, in fact it
is going strong and highly recommended (if not compulsory) for
their professional members to partake of. CPD itself is a
requirement for continued membership, it is the recording of it on
their scheme that is not compulsory. I record my courses, study
with the Open University, seminars and so on with their CPD
scheme and have found it to have a good balance between being
too complex and rigourous (and thus a chore to comply with) and
too simple (which is not of much realistic use).

I am also a member of another professional institution - the
Insitute of Physics, which used to have a CPD scheme a few years
ago but it was withdrawn and has not (yet) reappeared. As I am
registered CEng via the IOP I feel I ought to keep up to date with
developments in my field(s) even though it is not required, and
therefore I use the BCS scheme for all my development.

Yours,
Ray Poynter (aka Dr Ray Poynter CEng CPhys

MBCS MInstP)
rayp@tau-re.org

Testing Templated Code

I’ve just read Mark Radford’s editorial in the recent edition of
Overload, and felt some unease at the rather sweeping
statement that having templated code means you only have to
test it once. True, there is only one set of code rather than a lot
of similar copies, any one of which could later be
independently tweaked.

But, if a template algorithm works fine with one type, there’s no
guarantee it’ll work fine with another type. Assuming it compiles,
then the provided type conforms to the required interface, but the
implementation of that interface is in the hands of its provider, and
clearly affects the result of running the algorithm on that type. Now,
a counter argument might be that there are well-defined
requirements for some sorts of system, e.g. value types should be
default constructable, etc., which would aim to help out, but there’s
no accounting for problems in the implementation of even relatively
simple requirements.

I also thought of another category of potential problem. If the
template algorithm uses named functions of a type, then it’s going
to be pretty clear what functions get called (leaving aside
polymorphic behaviour), but if the algorithm is using operators,
then it might not be running the same code for different types. For
example, suppose there is a global operator+ in place, which
most types are using and the algorithm is adding instances together.
That’s all fine, but what happens when the supplied type
implements its own operator+? I don’t actually know off the
top of my head what’ll get precedence (if there isn’t an ambiguity),
but you can see the problem.

Having used pre-template compilers in the past (a situation like
the hypothetical management banning them), we occasionally
resorted to macros (with all their inherent problems) to synthesise
template behaviour on relatively simple functions which we wanted
implemented for lots of types.

Regards,
Simon Sebright

SimonSebright@hotmail.com

Mark’s Reply

Thanks to Simon for taking the time to write in. I’m flattered that
my first attempt at writing the editorial prompted someone to
write in! Now of course, it falls on me to respond.

Let me paraphrase Simon’s first point: the fact that a template
works with one type is no guarantee it’ll work with another, and
further, a specialisation may compile ok but the implementation
could do anything. Now I agree, a misbehaving implementation
would certainly throw a spanner in the works, but let us note in
passing that the issue is not specific to templates. For example,
a (non-template) function could take advantage of run-time
polymorphic behaviour by taking, as a parameter, a
pointer/reference to an abstract base class. The same issue
applies here with regard to the overriding of a virtual member
function.

In the case of implementation supplied by either a template
argument or the overriding of a virtual function, there is a
requirement for a kind of specification that cannot be enforced at
compile-time. The compiler can check syntax, and it can to some
extent check semantics, but it can only check the semantics that can
be represented in the code. What is at issue here is the specification
of run-time behaviour – and when run-time behaviour happens, the
compiler is no longer watching.

We clearly need to look elsewhere for help, and it presents itself
in the form of design by contract – a term coined because of an
analogy with legal contracts: a software routine can have
contractual obligations placed on its input that must be met in order
for it to behave correctly. Now, there are static aspects to such
contractual obligations in terms of the syntax and semantics of a
types interface, but that’s not the end of the story, for contractual
obligations extend well into run-time behaviour. By way of an
example, let’s take a look at the sorting algorithms in the C++
standard library, and more specifically, at the comparison operation
(which may be in the form of operator< or a predicate,
depending on the algorithm overload selected) used to determine
the sorting order.

The C++ standard states (in section 25.3) that in order for a
sorting algorithm to work properly the comparison function must
induce a strict weak ordering on the values compared. Note that
code using the sorting algorithms will compile without error even
if the strict weak ordering requirement is not met. The comparison
function could return a hard coded value of true every time and
compilation would be unaffected – but this would render all bets
off at run-time. With this contract specification in place, sort
algorithms can be tested using objects of a specimen type designed
to test the algorithm – the order into which these objects should be
sorted is known in advance (as part of their design), and they can

Letters to the Editor(s)

7

Overload issue 60 april 2004

be sorted from various random orders and the post sort sequence
checked to see if it is what is expected. It is important here to note
exactly what is being tested: the template! It is the logic encoded
in the template itself that is tested, to demonstrate that it honours
its (behavioural) contractual obligation, provided the supplied
argument object honours the contractual obligations of the
parameter type.

Simon also makes a point about operators: specifically, what
happens if the template uses an operator and there are other,
unexpected overloads of the same operator in scope? This issue isn’t
peculiar to operators – especially when argument dependent lookup
(ADL) gets in on the act. Anyway, with regard to templates (actually
it’s not just templates, but here it is templates with which we are
concerned), ADL and overloading combine to make up the compile-
time polymorphic behaviour of the template parameter’s types
interface. Now I have already argued that for a template to work
properly its argument objects must honour the contractual
obligations placed on their respective parameter types – and that’s
exactly what I’m going to do again here! When I first brought
design by contract into this response I mentioned that although
contractual obligations extend well into run-time behaviour, they

start with compile-time semantics. Compile-time polymorphism is
part of the set of semantics that constitute the (compile-time)
contractual obligations on template parameter types, and places
responsibility for the correct overload selection firmly with the
parameter type designer.

As Simon indicates, the correct behaviour of parameterised code
is dependent on its argument types also behaving correctly.
However, fundamental design principles such as separation of
concerns, encapsulation and design by contract all form symmetry
– that is, the presence of all of them forms something very robust
but things become very fragile in the absence of any. The testing of
components is a practice that relies on this symmetry to be intact,
but as long as the symmetry is intact, components can be tested
individually – the symmetry is comprised of the rules governing
the interplay between components, and not the interplay between
actual components themselves. Therefore, any particular
component can be tested to verify it is fulfilling its part of the
bargain, and if it is it can do no more and the rest is up to the other
participants.

Mark Radford
mark@twonine.co.uk

Achieving FitNesse in C++
by Alan Griffiths

Sometimes a very simple idea can make a very big difference.
FitNesse (and “Fit” on which it builds) are very simple ideas –
and when I first encountered them my reaction was “so what”. It
was only after talking to people using them that I found time to
investigate them more seriously. What then, do they offer?

What they offer is feedback on a system under development
meeting functional requirements. They encode tests in a format that
can both be executed and explained (or even edited) by a customer
and can also be executed directly against the system to demonstrate
the results. As a perennial problem with software development is a
failure of communication, anything that helps narrow the gap
between requirements and deliverables is worthy of investigation.

Fit and FitCpp

Fit is a Java component that takes some HTML input, interprets it
into tests, exercises the tests against the system being tested, and
outputs an updated version of the HTML that incorporates the
results. The developer needs to write some lightweight classes
that define the mapping between fields in the requirements
document and the parameters of the methods to be invoked in the
system. These classes are called “Fixtures” and, in the Java
implementation must conform to a “fixture” convention that
allows Fit to use the reflections API to set values and call
methods. (Conventions like this are common in the Java world:
Junit, EJBs, JavaBeans and NakedObjects are all technologies
that adopt this approach.)

FitCpp is a translation of the
Fit functionality into C++.
Clearly, C++ lacks a direct
analogue of “reflections”, but
by using a combination of
macros and templates it allows
the developer to achieve the
same effect.

What both of these tools do
is to scan the input HTML for
tables; these are used to specify
the fixture to use, together with
the input data and results
expected. The input is shown in
Table 1.
The reporting is very simple:
the results of tests that
succeed turn green (light grey
in illustration) and the results
(both expected and actual are
shown) of tests that fail turn
red (dark grey). The output is
shown in Table 2.

[continued on next page]

The system must be able to calculate the number of vowels and/or consonants in a

sentence.

sentence_analyser

Sentence vowels() consonants()

Hello world! 3 7

This sentence has four vowels and thirty three consonants. 4 33

“0123456789” Does it handle numbers 0123456789? 7 12

*(@$£)! &^%$£?@# <>/ 0 0

sentence_analyser

Sentence vowels() consonants()

Hello world! 3 7

This sentence has four vowels and thirty three consonants. 4 expected 33

16 actual

“0123456789” Does it handle numbers 0123456789? 7 12

*(@$£)! &^%$£?@# <>/ 0 0

Table 1: Input HTML

Table 2: Output Report

8

Overload issue 60 april 2004

[continued from previous page]

I have to admit that my initial reaction to this was “so what?” –
but what I had missed is that tables of test data and results are
very easy to incorporate into requirements documents and are
understood by users. Of course, editing the raw HTML that lies
behind the above display would put off the typical user: that is
where FitNesse comes in...

FitNesse

FitNesse is a Java based Wiki server that includes the facility to
passing the HTML on a page to Fit (or to FitCpp) and display the
results. It also allows the test pages to be organised into test
suites and provides summary reporting on the test results for each
page in the suite. (As with the individual tests these are colour
coded.)

The idea is that the functional requirements can be captured as
a combination of text and tables on the Wiki site. Obviously, when
these are first added all the tests will fail, but as the system is
developed more and more tests will pass – and as the tests change
colour they automatically provide visible feedback on progress for
both developers and customers.

All of this is easier to explain and confirm with the customer
than a test written in Java, C++, or a test scripting language. (And
the text that underlies the Wiki is easier to follow than HTML.)

Doing it yourself

If you’ve read this far then you’ll want to know what you need to
do to set this all up. There are basically four things to do:
1. get FitNesse and install it;
2. get fitcpp and install it;
3. capture the requirements as a set of Wiki pages; and,
4. write corresponding fixtures for your system.
Getting FitNesse is pretty trivial (just go to the website given in
the references below and follow the links). There are even helpful
.bat and .sh scripts for starting it – basically it runs straight out of
the archive.

Getting fitcpp isn’t quite as simple – the published code I
downloaded had a few bugs and is reliant on a number of Microsoft
C++ “features” that allow non-standard code to compile. I’ve
updated it with some fixes and to get it to compile with gcc – I’ve
made this updated version available on my website (and also passed
the changes back to the author).

Capturing the requirements as a Wiki page is pretty easy. The
above example looks like:

!define COMMAND_PATTERN {
../c++/fitcpp/overload/FitOverload.exe }

The system must be able to calculate the
number of vowels and/or consonants in a
sentence.

|!-sentence_analyser-!|
|sentence|vowels()|consonants()|
|Hello world!|3|7|
|This sentence has four vowels and thirty

three consonants.|4|33|
|”0123456789” Does it handle numbers

0123456789?|7|12|
|*(@$£)! &^%$£?@# <>/|0|0|

The first line overrides the default Java “fit” handler for the page
and directs FitNesse to invoke an alternative hander – we’ll
describe creating and using this file below. The paragraph that
follows is transcribed without change, and the table is marked out
using the vertical bars.

Writing a C++ fixture

The “.exe” file mentioned in the preceding section needs to come
from somewhere: obviously it contains any fixtures used for the
tests and some code from the FitCpp library. (Clearly, in any real
world usage it will also link against the application code.)

Writing a fixture takes a little more explaining, because one
needs to understand the role of a fixture and the conventions
involved. While there are many types of fixture possible (they
simply provide an interface for processing tables) the most useful
in writing tests is the “column” fixture used in the illustration
above (I didn’t choose the name). This fixture is defined as
follows:

#include "ColumnFixture.h"
#include "MainFixtureMaker.h"

class sentence_analyser
: public ColumnFixture {

public:
sentence_analyser();
string sentence;
int vowels();
int consonants();

};

The name of the fixture corresponds to the first line of the table –
you would typically have multiple fixtures and multiple
requirements tables for an application. Looking at the body of
the fixture you will see that it exposes public member data1 and
parameter-less member functions that return values. These
correspond to the columns of the table. Actually, in C++ (unlike
Java) you don’t have to make the names correspond to the
columns but it is easier to go with this convention.

In Java the reflections API is used to detect these
corresponding data and methods, but in C++ we have to write a
few more lines:

sentence_analyser::sentence_analyser() {
PUBLISH(sentence_analyser,

string, sentence);
PUBLISH(sentence_analyser,

int, vowels);
PUBLISH(sentence_analyser,

int, consonants);
}

These macros register the corresponding members with the fitcpp
processing engine.

In a real test harness the vowel() and consonant()
member functions would invoke functionality in the application

1 Note: the use of public data in this context isn’t an argument for adopting this
approach in general. Fixtures have a very specialised design context and are only
used within that context.

being tested. However, for the purposes of compiling and running
the above demonstration the vowel() method is implemented
as follows:

int sentence_analyser::vowels() {
return std::count_if(
sentence.begin(),
sentence.end(),
is_vowel());

}

Where is_vowel is a functor with the obvious functionality.

Joining the dots

In its original distribution FitCpp required some additional
“boiler plate” code that provides a “Maker” class to build the
Fixtures that are identified by the tables and a driver “main”
method that pushes the HTML through the FitCpp Parse engine. I
have factored all this out into a MainFixtureMaker class and a
generic main method and placed these into the FitCpp core
library. The result of this is that only a single line is needed to set
up the creation of a Fixture:

REGISTER_FIXTURE_MAKER(sentence_analyser)

This is based upon the assumption of statically linking the
Fixtures with the library and that statically linked objects of
global scope are initialised before entering main() . (This
behaviour isn’t strictly required by the ISO standard but, as far as
I can tell, it is common across all C++ implementations.)

Running the example

If we compile and link this code we will have an executable that
can be invoked from the FitNesse test page described above.
What happens when we invoke “test” on this page? And how do
we combine tests together?

Pressing “test” causes FitNesse to invoke the program specified
in the COMMAND_PATTERN directive. (This should be the program
containing the fixtures). The program then reads the HTML
supplied by Fitnesse from standard input and writes to standard
output.

The FitCpp framework scans the input looking for HTML tables.
When it encounters one it examines the first cell and constructs a
corresponding fixture (the contents of the first cell specifies the type
of the fixture). The next row of the table is used to match up the
column names with the members of the corresponding Fixture
“published” during construction. For column fixtures (like the
example we’ve been following) the remaining rows are processed
one cell at a time setting data or calling functions as appropriate.
(The example shows how this allows the sentence parameter
required by count_vowels() to be supplied prior to invoking
it). The results of any function calls are compared with the values
embedded in the HTML to select the appropriate output (green if it
matches, red if not).

There can be (and usually are) several tables within a
functional requirements page (which is a single invocation of
the program) the plugins corresponding to these tables will be
invoked sequentially as part of the same process. Neither
FitNesse nor FitCpp provides a mechanism for passing
information between these tests but, as program state is

maintained, the various fixtures can communicate using global
data/objects.

Scaling up

There are several issues of scale that need to be addressed: the
principal ones are managing a collection of functional requirements,
and allowing developers to apply the tests to their local version of
the system (instead of to the integration build on a server
somewhere). FitNesse addresses both of these concerns quite neatly
by having pages with special properties.

The web pages with FitNesse are organised into a hierarchy like
a file system (with the same convention seen in Java package names
– using a “.” character as a path separator). For example, a page
might be called “SystemRequirements” and beneath this would
come other pages such as “SystemRequirements.ChapterOne” etc.
By setting the “suite” or “virtual” property on a page then the
processing of the sub-pages can be tailored.

If the top-level page is given the “suite” property then it acquires
a “suite” option that can be used to run all the tests in pages that lie
beneath it. This results in a summary of the results of these tests
with links to the results of individual tests so that the user can “drill
down” if desired. Setting up a “suite” page that covers all the
functional requirements allows progress to be demonstrated in an
immediate and visible manner (as more functionality is delivered
more of the tests show “green”).

The “virtual” attribute is used in a local instance of the FitNesse
Wiki server running on a developer’s machine. This causes FitNesse
to fetch the content of all the subpages from another URL (the
remote Wiki server – in the configuration I have set up this is the
integration “build” machine). The local Wiki server will run tests
(and suites) locally against the developer’s version of the system
but the content of the functional tests is maintained on the central
server. To avoid confusion the pages retrieved from the remote
server are given a blue background before being shown by the local
server.

Miscellaneous Notes

As with any test framework it is normally appropriate to consider
beginning the test with a “StartUp” fixture and ending with a
“TearDown” fixture. (There is more on patterns of test design in
the FitNesse documentation.)

Row Fixtures

In the discussion above I’ve only discussed Column Fixtures,
there is a second type of Fixture supported by FitNesse/FitCpp –
RowFixtures. These are used for describing collections of rows
that may be returned by the application (think “result set”) and
allow missing and/or extra rows to be reported. The way they are
implemented is directly analogous to the ColumnFixtures
discussed above, and their use is adequately covered in the
FitNesse documentation.

Alan Griffiths
alan@octopull.demon.co.uk

References

FitNesse: http://sourceforge.net/projects/fitnesse/
FitCpp: http://fitnesse.org/

(Updated version referred to in this article:
http://www.octopull.demon.co.uk/download/

fitcpp.tar.gz)

9

Overload issue 60 april 2004

10

Overload issue 60 april 2004

Transforming XML with XSLT
by Fazl Rahman

David Nash’s article in C Vu of October 2003 covered reading
XML data into a program. Here, I hope to introduce newcomers
to manipulating XML with XSLT scripts, using an example
drawn from that article.

What Is It?

Simply stated, XML is portable, self-describing data structured as
a tree of named nodes, each possibly containing named
attributes, text, and sub-nodes. It may already be the most
popular way to bridge systems built using disparate technologies.
XSLT stands for eXtensible Stylesheet Language for
Transformations. The stylesheet part concerns the presentation of
XML (‘pure content’), but that’s about all I have to say about
that. The fact that transformations are part of XSLT shows the
W3C’s recognition of the need for manipulation, as well as
presentation, of XML content.

If you ever accidentally opened an XML file in a Microsoft
environment, you might have been surprised to see a collapsible
tree view like that in Figure 1. That is produced by the web browser
using a built in XSL transform which converts the data to HTML,
and is perhaps the most widespread example of using XSLT to adapt
input for a pre-existing parser. (It’s also handy way for looking at
non-trivial XML files.)

Figure 1 – XSLT used to render XML as HTML
An XSL transform is itself valid XML, usually stored in a file
with the extension “.xsl” and commonly called an XSL script.
Programs that execute XSL scripts against XML data are called
XSLT processors (see ‘Tools’ below). Modern integrated
development environments (IDEs) often contain a built in XSLT
processor to support rapid prototyping of transforms. For
example in IBM’s Websphere IDE you can view two XML files
side by side and point & click to specify how the source data
should map to the destination – and the IDE will create a
transform for you.

What Can I Do With It?

Although XML is rapidly becoming the preferred mechanism for
data sharing, the XML that one system produces might not be
structured precisely the way all of its consumers expect, despite
containing the needed information1. For example, David’s article

shows a C++ program that can read personal data like
person.xml, shown below.

<?xml version="1.0"?>
<Person>
<FirstName>Elvis</FirstName>
<LastName>Presley</LastName>
<DateOfBirth>
<Year>1935</Year>
<Month>01</Month>
<Day>08</Day>
</DateOfBirth>
</Person>

Assume today you build and debug a parser to read
person.xml. What if tomorrow you’re confronted with the
need to read personal information from a new source which
structures its data slightly differently? For example, consider
flatperson.xml, which contains the same information as
person.xml but more concisely2:

<?xml version="1.0"?>
<flatperson firstname="Elvis"

surname="Presley" dob="19350108" />

Often, as I hope to show here, an XSLT script can save you
having to touch your parser code by adapting the new data:

$ xsltproc expand.xsl flatperson.xml
<?xml version="1.0"?>
<Person>
<FirstName>Elvis</FirstName>
<LastName>Presley</LastName>
<DateOfBirth>
<Year>1935</Year>
<Month>01</Month>
<Day>08</Day>

</DateOfBirth>
</Person>

This article guides the novice in stages to construct scripts like
expand.xsl (and its converse, flatten.xsl) which can
interconvert between a flatperson and a Person.

Naturally, if your system produces output for others, you can be
sure that the XML structure it uses internally will not perfectly
match the format expected by each potential consumer. Here, a set
of XSLT scripts can adapt that internal representation for each
consumer. The classic example of this is a web portal that
transforms XML into browser- or device- specific markup as a final
stage of request processing. (Despite the ECMAScript standard,
browsers still have their quirks in the way they handle web content.)

Tools

XSLT processors are available in many flavours just like XML
parsers. They typically provide an API allowing you to
incorporate a transformation capability into a program, as well as
a command line wrapper for experimenting with. By default, a
processor will interpret scripts (for rapid prototyping), but can

1 See http://www.oasis-open.org for an effort underway to change this situation.

2 Ivan Kiselev’s soother for people (like me) who find XML configuration files overly
verbose for name-value pairs: “..any design decision is a compromise, some like it
hot and nobody’s perfect”.

also be told to precompile them for performance. I often use the
Cygwin environment which includes Gnome’s libxslt and its
xsltproc command (which we have seen in action above).
My JDK installation includes the Apache Xalan3 processor, so I
could achieve the same effect thus:

$ java org.apache.xalan.xslt.Process
-XSL expand.xsl -IN flatperson.xml

See Resources at end for pointers where you can download these.
I use xsltproc in this article for brevity.

How Does a Transform Work?

An XSL script has a top-level xsl:transform element
typically containing a number of ‘functions’ that you write, having
the job of operating on some part of the input XML to produce
some part of the output data. These ‘functions’ are embodied in
xsl:template elements and can be written declaratively
and/or imperatively, depending on how you want them to be
invoked. By default a template will just copy any text it contains
to the output when called; however templates also have at their
disposal rich data manipulation and control flow constructs
similar to those lurking in your favourite programming languages.

The XSLT processor treats the input XML data as a tree of nodes,
each of which has an associated path (a route, by name, down the
tree to that node). The processor starts at the top of this tree (path:
“/”) then searches the transform script for a template matching the
current path (via the template’s match="..." attribute).

If the processor finds a matching template, it invokes it. What
happens next depends on how the template is coded. E.g. it could
imperatively call other templates as part of its processing, just like
a C function can call other functions.

If no user-supplied template matches the root node, a “default
template” is invoked, which prints out the text of the current node
then recursively traverses its descendants. This is the effect of
transforming person.xml using an ‘empty’ XSL transform (one
containing no user templates):

$ xsltproc empty.xsl person.xml
Elvis
Presley
1935
1
8

Hello...

Time for a concrete example4. This is the hello.xsl script,
containing one simple template.

<?xml version="1.0"?>
<xsl:transform

xmlns:xsl="http://www.w3.org/1999/
XSL/Transform" version="1.0">

<xsl:output method="text"/>
<xsl:template match="/"> Hello World
</xsl:template>
</xsl:transform>

Don’t worry too much about the packaging – focus on the single
xsl:template element. You’ll often see scripts with a template
declared to match "/" whose job is simply to invoke other
templates in the desired order, a role akin to a main() function.
Our template is less ambitious, doing its work with no help.

Two things to note are: (1) The match attribute declares its
intention to be called in the context of the root input node and (2)
It just ignores the input data and outputs the greeting we’ve all
grown to love, with a nod to Kernighan & Ritchie.

This shows hello.xsl being applied to person.xml on the
command line.

$ xsltproc hello.xsl person.xml
Hello World

As you can see, the contents of person.xml don’t figure in the
output – all we see is the greeting.

So, we’ve seen one script blindly copy all text from its input to
the output and another ignoring its input altogether. Time for
something with a bit more intent behind it.

Personal Hello

When manipulating XML you generally want your templates to
read parts of the input structure and create output with a structure
more suitable for your purposes. Let me introduce the
xsl:value-of tag, which is a bit like the SQL select
statement, as it returns the value of some specified aspect of the
data. You specify what you want to retrieve, in its select
attribute, with a path (i.e. a particular route to a particular node in
the input tree).

For example, in our hello template we could query the
Person’s first name with the path /Person/FirstName. To
upgrade hello.xsl so it greets the right person on first name
terms, replace the text World with the tag <xsl:value-of
select="/Person/FirstName"/>.

This shows the resulting script personal.xsl and its effect
on our Person data.

$ cat personal.xsl
<?xml version="1.0"?>
<xsl:transform

xmlns:xsl="http://www.w3.org/1999/
XSL/Transform" version="1.0" >

<xsl:output method="text"/>
<xsl:template match="/" >
Hello <xsl:value-of select=

"/Person/FirstName"/>
</xsl:template>

</xsl:transform>

$ xsltproc personal.xsl person.xml
Hello Elvis

Expand an Attribute

We’re nearing the original goal of converting flatperson data
to Person data (for which, hypothetically, we have a pre-
existing parser). New aspects to this are: A flatperson
holds its information in attributes (like firstname) which the
‘expanding’ transform must read; and the output must contain
XML elements (like FirstName) encapsulating this
information, rather than plain text like “Hello ...”.

11

Overload issue 60 april 2004

3 In JDK 1.4 the Xalan classes live in <JAVA_HOME>\jre\lib\rt.jar. In case of
classpath woes, try adding this jar to your classpath. If your JDK precedes 1.4 you
can download the Xalan classes (see Resources).

4 I recommend installing one of the free XSLT processors and trying out the examples.

12

Overload issue 60 april 2004

We can reference an attribute (in xsl:value-of and elsewhere)
using @<AttributeName> in a path. For example a flatperson’s
first name has the path “/flatperson/@firstname”. (This has a
modicum of charm, I confess.)

Creating XML structure in the output is achieved by simply
embedding XML tags in the template body.

This shows the script expandfirst.xsl and how it partly
reconstitutes a flatperson to a Person (for brevity, it only
reconstitutes the first name).

$ cat expandfirst.xsl
<?xml version="1.0"?>
<xsl:transform

xmlns:xsl="http://www.w3.org/1999/
XSL/Transform" version="1.0" >

<xsl:output indent="yes" />
<xsl:template match="/" >
<Person>
<FirstName>
<xsl:value-of select=

"/flatperson/@firstname"/>
</FirstName>

</Person>
</xsl:template>

</xsl:transform>

$ xsltproc expandfirst.xsl flatperson.xml
<?xml version="1.0"?>
<Person>
<FirstName>Elvis</FirstName>

</Person>

(Note the xsl:output tag tells the processor what kind of
output is expected. Without the method="text" attribute, the
processor defaults to emitting an <?xml..?> header . Without
the indent attribute, redundant whitespace like newlines would
not be added, leading to slightly leaner output at the expense of
readability.)

Flatten an Element

For completeness let’s look at the reverse direction. The
xsl:attribute tag can inject an attribute into an output XML
element. To illustrate, here is flattenfirst.xsl, the ‘inverse’
of expandfirst.xsl. It takes a Person on input and outputs
a minimal flatperson containing just the first name:

$ cat flattenfirst.xsl
<?xml version="1.0"?>
<xsl:transform

xmlns:xsl="http://www.w3.org/1999/
XSL/Transform" version="1.0" >

<xsl:template match="/" >
<flatperson>
<xsl:attribute name="firstname">
<xsl:value-of select=

"/Person/FirstName"/>
</xsl:attribute>

</flatperson>
</xsl:template>

</xsl:transform>

$ xsltproc flattenfirst.xsl person.xml
<?xml version="1.0"?>
<flatperson firstname="Elvis"/>

(Note that all xsl:attribute tags must precede other content
for an element. You might see why if you consider where
attributes would end up in the output in relation to, say sub-
elements.)

Completing the Scripts

Within the context of a flatperson , the path
“/flatperson/@dob” refers to the dob attribute whose
value (for Elvis) is “19350108”. The function substring()
can pick out individual parts so we can populate the Year,
Month and Day elements of a reconstituted Person. For
example this tag extracts the YYYY digits of a flatperson’s
dob attribute:

<xsl:value-of select=
"substring(/flatperson/@dob,1,4)"/>

Armed with this, the hands-on reader is encouraged to upgrade
expandfirst.xsl into the script expand.xsl which
reconstitutes the whole Person from a flatperson.

XSLT additionally provides access to a rich set of string-related
functions, including regular expressions. For details see the Xquery
and Xpath specifications (Resources).

Now, by default, the XSL processor merges a sequence of text
items into a single text item when creating an output node, so the
following would be one way to concatenate a Person’s
DateOfBirth sub-elements, for readers wishing to complete
flattenfirst.xsl:

<xsl:attribute name="dob">
<xsl:value-of select=

"/Person/DateOfBirth/Year"/>
<xsl:value-of select=

"/Person/DateOfBirth/Month"/>
<xsl:value-of select=

"/Person/DateOfBirth/Day"/>
</xsl:attribute>

Conclusion

Of course you can parse XML and navigate/manipulate the
resulting DOM tree using various languages. However XSLT
was specifically designed to transform XML so it supports
working at a higher level than SAX or DOM. Though
transforming then parsing can be slower than one-step parsing
with a new parser, building and debugging that new parser will
often be overkill as a first port of call when a simple XSLT script
lets you reuse an existing parser. Once you’re happy with a script,
you would typically dispense with the command line interpreter
in favour of programmatically invoking a precompiled version of
your script from your application.

I hope I have helped curious readers in their first few steps with
XSLT, with simple but self-contained examples, and shown how
relatively painlessly it can adapt XML data for a pre-existing parser.

Fazl Rahman
Fazl.Rahman@web.de

[concluding sections at foot of next page]

Acknowledgements

LOTS of people kindly read drafts! My thanks in particular to
Frederek Althoff, Phil Bass, Dr Islam Choudhury, Dr Trevor
Hopkins and Dirk Laessig for helpful feedback.

References

David Nash, “Combining the STL with SAX and Xpath for
Effective XML Parsing”, C Vu Volume 15 No 5 (October 2003,
pp.18-20)

Ivan Kiselev, Aspect Oriented Programming with AspectJ, SAMS
Publishing.

Kernighan & Richie, The C Programming Language, Prentice-Hall
(The archetypal use of “Hello World” to introduce a
programming language.)

Resources

XSLT specification on the W3C site:
http://tinyurl.com/2ewsm

Xpath/Xquery functions/operators: http://tinyurl.com/2puva

Gnome project’s libxslt: http://xmlsoft.org/XSLT
Windows binary distribution: http://tinyurl.com/2p9yt

Xalan-c at Apache website: http://xml.apache.org/xalan-c

Sun have a Web Services tutorial with a good intro to XML and
XSLT: http://tinyurl.com/2572z

The newsgroup comp.text.xml is full of helpful stuff.

Check http://cocoon.apache.org for an approach that
heavily uses XSLT for multi channel user interfaces.

13

Overload issue 60 april 2004

A Little Detail
by Alexander Nasonov

Some time ago I wrote a simple mixin class template. A week later I
found a little problem with it. Although I found a solution in a
second I decided to analyse it more deeply. It’s worth analysing
further because it concerns some fundamental features of C++.

Here is the problematic code:

template<class T>
struct Mixin : T {
~Mixin();

};

I guess I know your feelings. The class template looks like an
example taken from a C++ book. You might have been taught with
code like this. Your feelings about it most likely are based on
unchallenged assumptions about simple C++ language constructs.
Despite its basic nature the code has one little problem.

Why does this code look nice at first glance? Well, if it was an
ordinary class you could just compile it and see that everything is fine.
But the “just compile it” idea doesn’t work in the case of class
templates. Actually, writing the code is only half the job. The second
half is instantiating the template. This will be done by the user unless
you think of all possible cases and instantiate them in your tests.

This is a different way of thinking. If you deal with templates
you should imagine how different instantiations could be compiled.
You can tell me “Hey, what’s the problem, I can write tests and
instantiate the template there”. Yes, you can. But first you have to
find the right classes for instantiations. As an example, can you find
an instantiation of Mixin<X> that breaks the code above?

Don’t think too much, I have an answer. Here it is:

struct X {
virtual ~X() throw();

};

Once the right class is found you can try to compile it. My
compiler (g++ 3.2.2) complains:

1.cpp: In instantiation of 'Mixin<X>':
1.cpp:12: instantiated from here
1.cpp:3: looser throw specifier for 'void

Mixin<T>::Mixin() [with T = X]'
1.cpp:7: overriding 'virtual X::~X()

throw ()'

According to our best friend, the C++ standard [1], paragraph
15.4, bullet 3:

If a virtual function has an exception-specification, all
declarations, including the definition, of any function that overrides
that virtual function in any derived class shall only allow exceptions
that are allowed by the exception-specification of the base class
virtual function.

None is allowed in a destructor of base class X. Therefore, none
should be allowed in a destructor of the derived class
Mixin<X>:

template<class T>
struct Mixin : T {
~Mixin() throw();

};

Well, we found a quick solution to the problem. Does it have
some drawbacks? Can it break other instantiations? For example,
what if T’s destructor may occasionally throw? Mixin<X> has
an empty exception specification list, therefore,
std::unexpected will be called. This function will call
std::terminate and program execution will be aborted.
This is definitely not what a user wants.

Luckily, many C++ gurus recommend not throwing exceptions
in the destructor at all. It’s enough to mention in the documentation
of Mixin that the destructor of T must meet the Nothrow
requirement.

It seems that the problem is solved. Indeed, if you’re a bug hunter
who has just ended up with code like that above you can stop
reading here. I’d rather analyze it a little bit more.

What is annoying me in a destructor with an empty exception
specification is the fact that a compiler may put the destructor’s
code into a try-catch block. It protects your application against
“exception leaks”. The try-catch block can be omitted only if the
destructor’s body is available and the compiler can deduce that the
destructor never throws. Otherwise, unnecessary try-catch blocks
make the code bigger and execution slower.

Another inconvenience of the code was suggested by Phil
Bass while reviewing this article. His concern is a design flaw
rather than implementation details. Phil suggested that, if

14

Overload issue 60 april 2004

Mixin is part of a general-purpose library, it would be great if
Mixin were to follow a project-specific exception specification
policy.

There are two major exception specification policies used in
destructors:

● No exception specification at all
● Empty exception specification

Probably, the first policy is used more widely than the second. I
would say both are used in C++ projects. For example, the C++
standard library uses both.

Needless to say, a Mixin<T> destructor that is neutral to the
exception specification policy of T is preferred rather than a
destructor that forces using either choice.

I recommend that you stop reading for a moment and try to find
a best-of-all-worlds solution. A solution that is free from the
limitation of the first version of Mixin and that doesn’t dictate a
particular exception specification policy.

Although you have little freedom in defining the destructor the
solution may surprise you. It is no destructor at all, that is, an
implicitly defined destructor:

template<class T>
struct Mixin : T {
};

Why is this better? To explain why, let me refer you to [1],
paragraph 15.4, bullet 13. Apart from an explanation of our case
it contains an example with multiple inheritance, which we’ll
analyze later. In my informal interpretation, an implicitly defined
destructor “inherits” its exception specification from the base
destructor. Whatever exception specification T’s destructor has so
has an implicitly defined destructor of Mixin<T>. Perfect,
exactly what we need!

You may ask how to keep it implicitly defined in real class
templates. I recommend that you use RAII wrappers, smart pointers,
C++ strings and containers wherever you can. This reduces the need
for explicitly defined destructors to very unusual cases.

More complexity

Now it’s time to solve the problem I faced. It’s almost the same
as our original problem with one difference – Mixin has an
additional base:

struct Base {
// ...

};

template<class T>
struct Mixin : Base, T {
// ...

};

It’s clear that we can always use a nothrow destructor in Mixin.
I’d like you to analyze the case of an implicitly defined
destructor. Just remember that, on the one hand, an implicitly
defined destructor inherits exception specifications from all its
bases, and on the other hand, if any of the base destructors is
virtual, ~Mixin() can’t have a less restrictive exception
specification. The analysis is a kind of combinatorial puzzle.

You can combine the virtuality and exception specifications of
all the destructors. Fortunately, there are only a few
combinations.

The first case is a non-virtual destructor ~Base(). The analysis
shows that the destructor of Base has to have an empty exception
specification in order to define ~Mixin() implicitly.

struct Base {
~Base() throw();

};

template<class T>
struct Mixin : Base, T {
};

Although this solution dictates the exception specification policy
of the Base destructor, it’s still of interest because the resulting
Mixin class template is neutral to the user’s exception
specification policies.

The second case doesn’t have a solution. If Base’s destructor is
virtual we can always find a type T that breaks the compilation
regardless of the exception specification of ~Base().

This was my case. I could take the destructor’s virtuality out of
the base into another class responsible for polymorphic cloning and
destruction (let’s say, storage management). Although it would
better fit the one class, one responsibility principle I decided to use
a quick fix solution:

struct Base {
virtual ~Base();

};

template<class T>
struct Mixin : Base, T {
~Mixin() throw();

};

Conclusion

I’d like to draw two conclusions. First, a summary of what has
been done.

Mixin classes often come with general-purpose libraries or
libraries that make no assumptions about the projects that will use
them. It’s important to follow the project’s rules and policies even
when a set of projects is unknown to the library author. In this article
I showed how to solve one particular problem with respect to
possible uses of your code.

The second conclusion is rather philosophical. Although you
can rarely find code simpler than that discussed in this article it’s
worth analyzing it. I dare say there is no such thing as a little
detail in C++. Everything is important in the C++ world. If you
find an interesting note on a C++ feature or some side effect, try
to play with it. Many C++ tricks and modern techniques were
discovered this way. Keep trying! Together we’ll make a better
language.

Alexander Nasonov
alnsn@yandex.ru

Reference

[1] ISO/IEC 14882

From Mechanism to Method:
Generic Decoupling
by Kevlin Henney

Simplification of code is often equated with the elimination of
options. At best, this turns out to be a false correlation; at worst,
it hampers the long-term code quality and development. The side
effects of premature generalization and over-abstraction [1] are as
much a problem in software as the consequences of premature
optimization: complexity, unmaintainability, brittleness,
bloatware, strengthened coupling, weakened cohesion, loss of
flexibility – in short, a lot of criticisms that we would prefer not
to have leveled at our own code.

It is true that in many cases of simplification options will be
eliminated, but more often than not the eliminated options are the
ones that tended to complicate the code or were of little practical
use in the first place – dead code waiting for a garbage collector.

For example, in the C++ Standard library, the only noticeable
role that traits and allocator parameters of the
std::basic_string serve is to complicate the usage and error
reporting on, typically, std::string. Their role is so constrained
as to make them almost completely useless. The few people that
take advantage of them are often attempting to solve the wrong
problem or are employing the wrong solution. There is in fact a
great deal of scope for increased simplicity and useful
parameterization in string types [2, 3]; it’s just a shame that
std::basic_string and its moribund parameters are already
parked in that space.

It is possible to simplify the structure of software without losing
effective options. It is even possible to do so and increase your
options. Now, that sounds worthwhile: simpler and more flexible.

Decoupling in General

Although we cannot predict the future with any certainty, it is
still possible to write code that is graceful and accommodating –
rather than troublesome and resistant – in the face of change.
Software development is concerned with the development of
structure – partitioning and connection, separation and
composition – so any conscious and conscientious approach to
software development should have, as one of its prominent
manifesto promises, a clear focus on structure management.

The aggressive pursuit of LCHC (low coupling and high
cohesion) can ensure that the effect of change is simplified and
isolated, rather than traumatic and global. LCHC also simplifies
testing, building, versioning, experimentation, optimization, team
organization, and pretty much any other development activity you
can think of that absorbs more time, effort, or grief than you had
originally anticipated. Sadly, few approaches can genuinely boast
LCHC as one of their main pledges, preferring instead the active
pursuit of more obviously crowd-pleasing headlines such as reuse.

The trick to achieving generality is, somewhat counter-
intuitively, to make the code specific enough to be fit for purpose.
A fit to the task in hand must be targeted with one eye; the other
should be seeking opportunities to keep options open, but without
attempting to pursue all of the choices. It is tempting to try to
enumerate all the possible ways in which something could change
and be adapted and then incorporate all the necessary hooks and
extra parameterization into your design. Unfortunately this style
tends to make your code more complex to understand. In fact, your
code can become so full of conveniences that it’s almost impossible

to use either simply or correctly. Over-guessing may narrow rather
than widen your options. You – and your users – may end up with
a lot of unused code and many workarounds.

By contrast, a concerted focus on dependency management will
deliver you some tangible benefits in the short term – development
times, build times, lunch times – and reduce the cost of change in
the long term. The loose coupling keeps the code supple and more
stable as, over time, the genuine sources of variation, and therefore
parameterization, become apparent and needed.

So what are the sources of coupling in C++ code? We can
classify two basic forms of coupling:
● Physical coupling requires that for the compilation of one piece

of code the compiler must see another piece of code. In practical
terms this means that the code depended upon appears in the
same source file or is pulled in by #include.

● Conceptual coupling [4] implies that for a piece of code to work
there is a dependency on another concept, which may exist either
tacitly outside the code or explicitly within it. For instance, a
template parameter can be described by a set of requirements
outside the code, whereas a class definition is known to the
compiler.

One does not necessarily imply the other:
● An inheritance relationship represents both a conceptual and a

physical relationship. A derived class is conceptually dependent
on its base class(es) because it may use or override features. The
compiler must also be able to see the definition of any base
classes to compile a derived class.

● A class or function template conceptually depends on its
template parameters, but the use of the parameter does not
require any #include support. A dependency on an actual
parameter type occurs at the point of use of instantiation, but not
at the point of definition.

● The use of inline functions or template code written in headers
may introduce a physical dependency, but not necessarily a
conceptual dependency. Use of an inline function or a class
template also pulls in any of the dependencies that are used in
implementation, but are not relevant to the usage interface.

There are four complementary approaches for decoupling a C++
system.

Dynamic Typing

Why does that compile-link cycle take so long? Static type
checking is the root cause of the delay; the design of the
preprocessor merely exacerbates the issue. Want to know that
your code makes at least basic sense? Let the compiler check
your types and how you’re using them and then let the linker tie
all the loose ends in your program together. Efficiency and
confidence in execution is your reward; extended surfing breaks
and water cooler conversations are your punishment. Hmm, OK,
perhaps we need a different spin on this: long build times put the
irritation and detrimental into iterative and incremental
development, frustration and time wasting that are only
temporarily relieved by a machine upgrade.

If you weaken the type system you reduce the physical
dependencies. This may conjure up images of void * in your
mind, but banish those thoughts immediately: I want to loosen
coupling, but the kind of unsafe promiscuity that void * often
encourages is not quite what I had in mind. A more dynamically
checked type system lies at the heart of many interpreted languages,
from LISP to Smalltalk, Awk to Ruby. Good support for reflection

15

Overload issue 60 april 2004

16

allows you to get at the soft underbelly of other statically typed
systems, such as Java or the meta-information available in many
component middleware architectures. It is a matter of balance: you
loosen the checking at compile time to increase flexibility, but you
increase scope for failure at run time. You pays your money; you
makes your choices; you takes your chances. That’s the essence of
design.

C++ does not currently have good standard support for
reflection: the existing RTTI mechanism is a foot in the door, but
no more. In spite of the half-open door, C++ programs often make
effective use of dynamic typing:
● Variant types, such as boost::any [5, 6] or CORBA’s any

type, can hold values of arbitrary type. Depending on your
application you can choose to leave the type fully uninterpreted,
as in the case of any, or you can impose constraints on the
contained types that are reflected in the interface of the variant
(e.g., comparison or arithmetic operations).

● Work in terms of strings, interpreting them as necessary and with
respect to the context. In the Age of the Internet, strings are the
new integers: everyone’s using them for everything. Whether we
are talking about internal command languages or data exchange,
strings are remarkably versatile – given the right functions and
classes, they support the Three Rs. You can take some of the
guesswork out of how to structure your data and work with it by
adopting a data definition language or meta-language, of which
XML is certainly the most fashionable.

However, remember that these techniques reduce only the
physical dependencies not the conceptual ones. Those are as
strong as ever and will be lining up to bite you at run time should
you disrespect them. You still need to know how to use them.
Their correct usage is now implicit rather than explicit, and
semantic drift between versions or developers is all too easy.

Flexibility has a price... and a number. This was recently brought
home to me when I was entering a particularly long order number
into a spreadsheet cell: the spreadsheet abbreviated the many
significant digits of the reference number using scientific notation.
Aha, yes, it is a number, just not that kind of number.

Interface Classes

Inheritance in its most common employment seems to be used
more for subclassing (with a focus on inheritance of code) than
for subtyping (with a focus on classification and substitutability).
Hierarchies that accumulate implementation, often with concrete
classes inheriting from concrete classes, lead to classes that are
hard to understand.

But common is not the same as recommended: such usage is in
direct contrast to much of the advice on practice that is available
and held in some regard. For instance, only the leaves of a hierarchy
should be concrete; its roots should be fully abstract. virtual
functions should be introduced into a hierarchy as pure virtuals
rather than with default implementations that must be guessed, and
delegation and non-public derivation should be used to acquire
implementation when there is no intent to hold a reference or
pointer to a base class.

Is this just so much theory? No, it’s better than either just theory
or just practice: it’s both. In practice it can be demonstrated that the
failure to use inheritance in a controlled manner can be much worse
than not using it at all [7]. The use of deep hierarchies, with
implementation scattered, defaulted, accumulated, and overridden
over a derived trail of concrete classes, actively ambushes our

ability as humans to grasp all the features of a concept within a
single embrace. This kind of inheritance often sabotages the
localization benefits of encapsulation.

All this may sound harsh and idealistic, but it is typically less
harsh and far less idealistic than believing in the timely
development, and appropriate quality, of a project that takes the
common but unrecommended path. Of course there is wriggle room
for pragmatism, for compromise. But remember that to compromise
has two different meanings – make sure you choose the one that
means to settle or resolve by making concessions rather than the
one that means to expose to suspicion, disrepute, or mischief.

Inheritance is the strongest form of logical coupling you can
have. The need for physical coupling follows in its wake: base
classes must be directly visible or included in the source above their
derived classes. But derivation is a blade with two edges: you can
also use it to reduce coupling in a system.

An interface class [8, 9] (also known as a protocol class [10])
refocuses a class hierarchy’s clients on the conceptual interface,
away from the physical baggage and variability of its descendents.
The absence of code in an interface class contributes to its stability
[11] and comprehensibility – although a code-free class sometimes
clashes with a programmer’s instincts for producing executable
code. The Observer pattern [12] is an example of a larger pattern
that includes this smaller interface-decoupling pattern:

class subject;

class observer {
public:
virtual ~observer();
virtual void update(subject *) = 0;

protected:
observer() {}

private:
observer(const observer &);
observer &operator=(const observer &);

};

The use of virtual functions in interface classes is distinctly
public. Such a recommendation is clearly in tension with the
alternative recommendation that class hierarchies should always
have non-virtual public interfaces [13]. A number of practices,
such as the Template Method pattern [12] and the corresponding
Form Template Method refactoring [14], tend to give rise to non-
virtual public interfaces in C++. Such interfaces have some
useful properties, but they typically arise as a consequence of
specific practices rather than being a necessary and general virtue
in their own right. They are by no means the only tool in the box.
Design should be considered a dialogue with a situation rather
than a monologue; there is often more than one reasonable route
that such a conversation may take.

Hidden Delegation

Wherever there is a recommendation concerning inheritance, you
can be sure that not far behind it is a contrasting recommendation
framed in terms of delegation. The root of delegation-based
decoupling is the forward declaration. It can be used both to
resolve the problem of tail-chasing cyclic dependencies and to
reduce the exposed physical dependency of using an #include,
reducing the essential surface area between class definitions:

Overload issue 60 april 2004

class observer;

class subject {
public:
virtual ~subject();
virtual void attach(observer *) = 0;
virtual void detach(observer *) = 0;
...

protected:
subject() {}

private:
subject(const subject &);
subject &operator=(const subject &);

};

For classes that are, by nature, concrete and not part of a class
hierarchy, interface decoupling through interface classes has
relatively little to offer. Value objects [5], for instance, are best
manipulated directly in terms of their concrete type. Interface
classes are primarily a means for decoupling class hierarchies.
Another practice is required for specifically concrete classes.

The common idiom goes by various names, of which the most
evocative is also the name originally coined for it in the late 1980s:
the Cheshire Cat idiom [15]. The name, taken from Lewis Carroll’s
surreal cat whose ability to disappear except for its grin quite
bemused Alice, is apt:

class cat {
public:
...

private:
class body;
body *self;

};

Here the representation disappears entirely from the class
definition in the header, leaving behind only the discreet smile of
a pointer. The details of the body are elaborated in the
corresponding source file:

class cat::body {
public:
body();
~body();
... // representation details

};

This technique also goes by the name of the Pimpl idiom [16] or,
very descriptively, as the Fully Insulating Concrete Class [10].
Naturally, all idioms have consequences that must be considered:
the additional level of indirection, extra memory management,
and restriction on inlined functions are the price of the afforded
creature comforts in this case. The introduction of this separation
also allows representation sharing, although this is not a path one
should tread either necessarily or lightly [3].

Cheshire Cats can be introduced to complement the use of
interface classes, ensuring that class hierarchy users are as insulated
from representation details as possible. However, they are less
effective with class templates. Compiler portability constraints
mean that it is common to require the definition of class template

members in header files. In such situations, having to include the
full definition of the nested body in the header rather takes the smile
off the technique.

Template Parameters

Templates are not normally associated with loosening physical
coupling. Quite the opposite. The inclusion of source code in
headers imposes a significant burden on the size of headers and
the patience of the programmer. However, the conceptual
loosening that arises from defining function and class templates
independently of their actual template parameter types has a
knock-on physical decoupling effect. The point at which the
physical dependency on the actual parameter type is needed is
deferred to the point of use in the code.

Generic decoupling forms the basis of generic programming
and the STL: templated iterator ranges for algorithm-based
functions and container constructors, and templated value types
to allow any appropriate convertible value to be used in a function,
member or non-member. The following function (inlined for
brevity) shows how the implementation of an Observer’s
subject class might use existing STL features to automate
observer updates:

class subjected : public subject {
...
void notify() {
std::for_each(

observers.begin(),
observers.end(),
std::bind2nd(

std::mem_fun(
&observer::update),
this));

}
...
std::list<observer *> observers;

};

An alternative approach perhaps demonstrates a number of
generic-decoupling techniques a little more explicitly:

template<typename argument_type>
class update {
public:
explicit update(argument_type argument)

: argument(argument) {}
template<typename updateable>
void operator()(updateable *target)

const {
target->update(argument);

}
private:
argument_type argument;

};

template<typename argument_type>
update<argument_type>
updater(argument_type argument) {
return update<argument_type>(argument);

}

17

Overload issue 60 april 2004

18

Overload issue 60 april 2004

This generalized code leads to the following crisp usage:

class subjected : public subject {
...
void notify() {
std::for_each(

observers.begin(),
observers.end(),
updater(this));

}
...
std::list<observer *> observers;

};

The obvious trade off with using templates to decouple is that
implementation detail typically migrates to header files. This is
particularly noticeable when introducing member function
templates in place of ordinary member functions. Another
consequence of the decision to template member functions is that
they cannot be declared virtual. A more dynamically typed,
variant-based approach can counterbalance this [5, 17].

What is also apparent with generic decoupling is that the code
tends to become more flexible and more precise as an immediate
consequence. For instance, a different take on the needs of an
observer dispenses with the need for any forward declarations:

template<typename subject>
class observer {
public:
virtual ~observer();
virtual void update(subject *) = 0;

protected:
observer() {}

private:
observer(const observer &);
observer &operator=(const observer &);

};

And consequently allows more flexible and varied observing:

class data;
class events;

class watcher : public observer<data>,
public observer<events> {
public:
virtual void update(data *);
virtual void update(events *);
...

};

Noosely Coupled Exceptions

As another worked example of generic decoupling, it is possible to
loosen the noose of cyclic dependencies. Consider the standard
exception classes defined in <stdexcept>. Each exception takes
a std::string for construction. Note that std::string is
mentioned only in the single argument constructor: There is no
requirement that it is used for implementation, and the only query
function offered by the standard exceptions, <stdexcept>,

returns a const char *. Given this asymmetry in construction
versus query types, and the role of exceptions in a program, it is
certainly open to question whether std::string should be used
at all in the interface.

However, the issue is not so much with the choice of type
dependencies in the library in general, but with the nature of the
dependencies: The <string> header defines
std::basic_string, some of whose functions throw
std::out_of_range. There is therefore a cyclic dependency
between the types defined in <stdexcept> and those in
<string>; this logical dependency is made more physical when
inlined implementations are used – the norm for template
implementations. The absence of a standard <stringfwd>
header or a more general concept of strings means that each vendor
is invited to break the cycle in their own way, some of which meet
users expectations and some of which do not (e.g., char *may
or may not convert implicitly for the exception constructor
argument).

As an aside, it can be considered surprising that exceptions are
granted the privilege to use string given that I/O and file handling,
which are more obviously and intimately connected with string
handling, have no such honor. Although file streams depend on
char_traits, as found in <string>, const char * is
used as the type for naming files and the type for predefined string
insertion and extraction. The <string> header itself depends on
I/O streams, representing another dependency noose.

Loosening the Noose

Returning to the <stdexcept> and <string> cycle, a
decoupling can be arrived at by considering sufficiency and
substitutability: the exception classes in <stdexcept> are
conceptually more primitive than std::string and should not
have the imposition and dependency on such a specific string
type. The dependency should be narrower and more
accommodating. The diversity of string-user needs means that
such users cannot be characterized collectively as a community.
Likewise, their needs cannot be met by a single type such as
std::basic_string – a class template that attempts to be
all things to all people, but manages only a few in each case.

So what if we don’t depend on a specific string type at all? The
following is an alternative version of std::logic_error,
which uses a dynamically allocated char * internal representation
and has no dependency on <string>:

class logic_error : public exception {
public:
explicit logic_error(const char *detail)

: detail(duplicate(detail,
strchr(detail,

'\0'))) {}
template<typename string>
explicit logic_error(const

string &detail)
: detail(duplicate(detail.begin(),

detail.end())) {}
logic_error(const logic_error &other)

: detail(duplicate(
other.detail,
strchr(other.detail,

'\0'))) {}

19

Overload issue 60 april 2004

logic_error &operator=(const
logic_error &rhs) {

char *new_detail =
duplicate(rhs.detail,

strchr(rhs.detail,
'\0'));

delete[] detail;
detail = new_detail;
return *this;

}
virtual ~logic_error() {
delete[] detail;

}
virtual const char *what()

const throw() {
return detail;

}
private:
template<typename iterator>
static char *duplicate(iterator begin,

iterator end) {
char *result =

new char[end – begin + 1];
copy(begin, end, result);
result[end – begin] = '\0';
return result;

}
char *detail;

};

Lightly Strung

The most commonly used string initializer for exceptions is a
vanilla null-terminated character sequence. In the revised
logic_error shown, this maps directly to a constructor
without requiring conversions and the creation of temporary
string objects:

throw std::logic_error("illogical");

The templated constructor caters to the standard string type, and
indeed any other character container that satisfies the minimal
requirements for begin and end members that return random-
access iterators – SGI’s rope [18], std::vector<char>, or
a suitable string type of your own devising. So with a few
obvious drawbacks, not only has the cyclic dependency been
removed, the generality of the code has been increased:

std::vector<char> message;
...
throw std::logic_error(message);

I said few drawbacks. That is not to say that there are none.
However, the most obvious and significant limitation may not be
considered that great a disadvantage: a string type that has a user-
defined conversion to char *, but does not sport begin and
end functions, can no longer be used to directly initialize a
logic_error. The success of such a conversion is not
guaranteed in the existing Standard, but the arrangement of types
in the headers often supports it. The suggested redesign is

forward rather than backward looking: string classes that support
such user-defined conversions are unsafe and the absence of
support for container operations is nonstandard. So if you were to
rework your own existing classes to support this style of string
decoupling, existing code that worked in terms of legacy string
classes would need to be modified – either with explicit casts or,
taking the hint, with more standard-conforming types.

Conclusion

Code should be supple, not subtle. For code there is such a thing
as being too well connected and too eager to please. Generality
and reuse are often better served by paying attention to necessity
and to the core activities of software development –
comprehension, change, and confirmation – than to whimsy and
speculation.

Refactoring code to reduce its coupling often has the effect of
increasing its cohesion. In the exception example, physical and
conceptual decoupling improved the precision of the requirement
on the string type: only specific features were required, not the
whole interface. This LCHC strategy suggests a design path that is
as applicable to domain-specific libraries as it is to the liberalization
of string types.

Kevlin Henney
kevlin@curbralan.com

References and Notes

[1] Richard P. Gabriel. Patterns of Software: Tales from the
Software Community (Oxford, 1996).

[2] Andrei Alexandrescu. “Generic<Programming>: A Policy-
Based basic_string Implementation,” C/C++ Users Journal
C++ Experts Forum, June 2001,

www.cuj.com/experts/1906/alexandr.htm

[3] Kevlin Henney. “From Mechanism to Method: Distinctly
Qualified,” C/C++ Users Journal C++ Experts Forum, May
2001, www.cuj.com/experts/1905/henney.htm

[4] Conceptual dependencies are sometimes referred to as logical
dependencies. The distinction between – and separation of –
logical from physical has been handed down to us from
structured analysis and design. However, the bias inherent in the
use of the word logical tends to cast all physical concerns into
the shade as impure and irrational. Such Puritanism is of little
practical use. The natural complement of physical is conceptual
rather than logical, whose antonym is illogical. C++’s reliance
on the preprocessor may not be elegant, but, given its rules, it is
entirely logical that a piece of code requiring a declaration in a
header file should also have a physical dependency on it.

[5] Kevlin Henney. “From Mechanism to Method: Valued
Conversions,” C++ Report, July-August 2000,
www.curbralan.com

[6] Boost C++ Libraries, www.boost.org
[7] Les Hatton. “Does OO Sync with the Way We Think?”, IEEE

Software, 1998, www.oakcomp.co.uk
[references concluded at foot of next page]

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in November 2001 at
http://www.cuj.com/experts/documents/s=7989/

cujcexp1911Henney/

Thanks to Kevlin for allowing us to reprint it.

20

Overload issue 60 april 2004

[continued from previous page]

[8] Martin D. Carroll and Margaret A. Ellis. Designing and Coding
Reusable C++ (Addison-Wesley, 1995).

[9] Kevlin Henney. “From Mechanism to Method: Total Ellipse,”
C/C++ Users Journal C++ Experts Forum, March 2001,
www.cuj.com/experts/1903/henney.htm

[10] John Lakos. Large-Scale C++ Software Design (Addison-
Wesley, 1996).

[11] Robert C. Martin. “Object-Oriented Design Quality Metrics:
An Analysis of Dependencies,” ROAD, September-October
1995, www.objectmentor.com

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley, 1995).

[13] Herb Sutter. “Sutter’s Mill: Virtuality,” C/C++ Users Journal,
September 2001.

[14] Martin Fowler. Refactoring: Improving the Design of Existing
Code (Addison-Wesley, 1999).

[15] Robert B. Murray. C++ Strategies and Tactics (Addison-
Wesley, 1993).

[16] Herb Sutter. Exceptional C++ (Addison-Wesley, 2000).
[17] Kevlin Henney. “From Mechanism to Method: Function

Follows Form,” C/C++ Users Journal C++ Experts Forum,
November 2000,
www.cuj.com/experts/1811/henney.htm

[18] SGI Standard Template Library Programmer’s Guide,
www.sgi.com/tech/stl/

All Heap No Leaks
by Paul Grenyer

The use of new and delete in C++ can cause problems for both
novice and expert developers alike. Using new without a
corresponding delete results in a memory leak. Some languages
such as C#, Java and Python provide managed objects that can be
created on the managed heap leaving deletion to the garbage
collector.

Smart pointers allow similar behaviour to be achieved in C++,
with the added bonus that they provide deterministic destruction of
the object to which they point. However, the user still has to know
that they should be using smart pointers and many don’t. In this
article I am going to look at a way of writing C++ objects that can
only be created on the heap, and that must be managed by (memory
management) smart pointers.

Creating Objects on the Heap

There are a number of situations in which it makes sense to force
objects to be created on the heap. I recently developed a thin
database access layer for use with my cross-platform test
framework [1]. The sole purpose of the layer is to allow
databases to be created and dropped before and after tests.
Although Open Database Connectivity (ODBC) is available on
both Windows and Linux (my initial target platforms), I decided
to allow the use of ActiveX Data Objects (ADO) on Windows as
it sometimes provides better performance.

ODBC and ADO are very different. ODBC is implemented as a
C based API and ADO is implemented as a family of COM objects.
However, both use a connection string to connect to a database and
allow the execution of strings containing SQL statements. Therefore
both types of database connection can be used via a common
abstract base class.

Like many other types of resources a database connection is
expensive and the most expensive operation is generally the initial
connection to the database. In an ideal situation an application
would have a single database connection object that is shared by
all of the objects in the application that require database access.
Connection to the database would be put off until absolutely
necessary (lazy evaluation), and maintained for as long as possible.
This results in the connection being created in one part of the
application and (potentially) destroyed in another.

A common interface to one or more concrete objects, and the
lifetime requirements of a database connection object, make it an
ideal candidate for heap creation. One of the most likely scenarios

is that the appropriate database connection object would be created
at the highest possible level via a Factory Method [2] that takes the
connection string as a parameter. The database connection object
is then passed to objects in the application that need to use it [3],
via a reference counted smart pointer [4]). The first object to attempt
to execute a SQL statement causes a connection to the database to
be made, and then the connection is maintained throughout the
lifetime of the database connection object.

As the database connection object is created via a factory method,
it follows that it should be destroyed via a Disposal Method [5]. The
disposal method can be passed to the reference counted smart pointer
and used to destroy the database connection object instead of delete.
This is an example of the Resource Acquisition Is Initialisation [6]
idiom provided by smart pointers.

The use of factory and disposal methods gives the writer of the
database connection object complete control over how and where
the object is created.

Background

In Item 27 of More Effective C++ [7] Scott Meyers discusses
ways of restricting objects so that they can only be created on the
heap. Meyers explains that sometimes a developer wants to
create objects that can destroy themselves by calling delete
this. If an attempt was made to create such an object on the
stack the effects could be catastrophic, so it makes sense to
enforce heap creation.

Equally there are times when a developer wants to prevent an
object from being created on the heap. For example local (or
automatic) variables are unlikely to require heap creation. Meyers
also discusses preventing objects from being created on the heap.
This can be achieved by declaring operator new and
operator new[] private. Meyers also suggests that unless there
is a compelling reason not to, operator delete and
operator delete[] should also be made private.

namespace Meyers {

class NotOnHeap {

private:

static void* operator new(size_t);

static void operator delete(void*);

static void* operator new[](size_t);

static void operator delete[](void*);

};

}

21

Overload issue 60 april 2004

Meyers forces heap-only creation by making the object’s destructor
private (or protected if you want to be able to inherit from the
object) and implementing a disposal method. For example:

namespace Meyers {

class HeapOnly {

private:

~HeapOnly() {}

public:

// Disposal Method

void Destroy() { delete this; }

};

}

If an attempt is made to create this object on the stack:

int main() {

using namespace Meyers;

HeapOnly heapOnly;

}

the compiler will issue an error. However, if the object is created
on the heap:

int main() {

using namespace Meyers;

HeapOnly* pHeapOnly = new HeapOnly;

pHeapOnly->Destroy();

}

the compiler is perfectly happy (gcc 3.2.3 [8] issues a warning
about HeapOnly only having a private destructor and no friends).

In terms of forcing objects to be created on the heap, Meyers’s
example does exactly what is needed. However, it does have one
drawback. The developer using the heap-only object must explicitly
call Destroy in order to prevent a memory leak. Wouldn’t it be
better if when the pointer pointing to the heap-only object went out
of scope it destroyed the object automatically? After all that is what
this article is about! Enter smart pointers!

Managing Heap-Only Objects
with Smart Pointers

With the exception of developing this managed heap-only object, I
don’t remember the last time I explicitly used the delete
keyword. Every time I create an object on the heap I use a smart
pointer to prevent a memory leak. Generally, I use Boost’s [9]
scoped_ptr and shared_ptr, although there are other smart
pointers available, including the reference counted smart pointer
described by Meyers at the end of More Effective C++ [7].

So what happens if shared_ptr is used with Meyers’s heap-
only object?

int main() {

using namespace Meyers;

boost::shared_ptr<HeapOnly>

pHeapOnly(new HeapOnly);

}

The compiler reports an error because shared_ptr cannot call
HeapOnly’s private destructor. Herb Sutter discusses some ways of
getting around this in his CUJ [10] article Befriending Templates
[13]. However, I prefer a different approach suggested by an accu-
general regular, James Slaughter, which requires some changes to
Meyers’s HeapOnly object.

So, let’s start with a new object, a managed object rather than a
heap-only object:

class Managed {

private:

~Managed() {}

public:

static void Destroy(Managed* pManaged) {

delete pManaged;

}

};

shared_ptr can take a second constructor argument, which is
a function pointer used to destroy the object. To accommodate
this, the managed object’s Destroy member function is now
static and has a single parameter which is a pointer to the
managed object. The pointer is used to delete the object instead
of delete this. The lifetime of the managed object can now
be fully managed by the shared pointer like this:

int main() {

boost::shared_ptr< Managed >

pManaged(new Managed, Managed::Destroy);

}

The above syntax isn’t as nice as it could be and the developer
using the managed object must still make a conscious decision to
use the smart pointer and must also know that shared_ptr’s
constructor can take a second parameter. Wouldn’t it be better if
the developer could only use the smart pointer? Some would
argue that restricting a developer is bad. I agree in a lot of
instances, but not this one, when the aim is to have a heap-based
managed object that cannot leak memory.

So, how can a developer be forced to use a smart pointer? The
answer is to make all the managed object’s constructors, including
the copy-constructor, private (or protected if the you want to inherit
from the object) and provide a static factory method that returns a
smart pointer (obviously if the managed object has a number of
different constructors then a factory method that takes the
appropriate parameters must be added for each):

class Managed {

public:

typedef boost::shared_ptr< Managed > SmartPtr;

// Factory Method

static SmartPtr Create() {

return SmartPtr(new Managed, Destroy);

}

private:

Managed() {}

~Managed() {}

// Disposal Method

static void Destroy(Managed* pManaged) {

delete pManaged;

}
Managed(const Managed&);

};

An instance of the managed object can then be created in the
following way:

int main() {

Managed::SmartPtr pManaged = Managed::Create();

}

22

Overload issue 60 april 2004

Although we now have a managed C++ object, the solution still
isn’t as versatile as it could be. What if the developer using the
managed object is not able to use Boost (possibly for some
commercial reason) or would like to use a custom smart pointer
or a smart pointer that offers thread safety? Any type of memory
management smart pointer can be used with the managed object,
as long as it supports assignment and can take a disposal method
as a second constructor parameter. The introduction of a template
template parameter [12] allows smart pointers to be interchanged
easily.

template< template< class > class SmartPtrT >

class Managed {

public:

typedef SmartPtrT< Managed > SmartPtr;

static SmartPtr Create() {

return SmartPtr(new Managed, Destroy);

}

private:

Managed() {}

~Managed() {}

static void Destroy(Managed* pManaged) {

delete pManaged;

}

Managed(const Managed&);

};

The syntax used to create the parameterised managed object can
be simplified by introducing a typedef:

int main() {

typedef Managed< boost::shared_ptr >

Managed;

Managed::SmartPtr pManaged =

Managed::Create();

}

Ok, so now we have a managed object that can be used with
different smart pointers. However, this solution requires a lot
of extra code to be added to each new managed class written.
Let’s have a look at some boilerplate code that can be used to
simplify the conversion of regular objects into managed
objects.

Managed Object Boilerplate Code

First we need a regular object to convert to a managed object. An
abstract base class pointer usually points to an object created on
the heap. Therefore in this example I am going to use the simple
class hierarchy that the thin database access layer described
above provides, as it consists of an interface class with a single
pure virtual member function, and a concrete class that
implements the base class’s member function:

class IConnection {

public:

virtual ~IConnection() {}

public:

virtual void ExecuteSQL(const std::string&

sql) = 0;

};

class Connection : public IConnection {

public:

explicit Connection(const std::string&

connectionString) {

std::cout << "Connection String: "

<< connectionString << "\n";

}

virtual ~Connection() {

std::cout << "Disconnecting\n";

}

virtual void ExecuteSQL(const std::string&

sql) {

std::cout << "Execute: " << sql << "\n";

}

};

IConnection cannot be created on the stack or the heap, as it
has a pure virtual member function. Connection can be created
on the stack or the heap, as it has the compiler generated default
public constructor and destructor (see item 45 of Scott Meyers’
Effective C++ [14]), and no pure virtual member functions.

For Connection to be fully managed it must be prohibited
from being created on the stack or on the heap, other than via a
factory method. Preventing heap creation is easy, as discussed
above; all that needs to be done is to define private or protected
implementations of operator new and operator new[].
The factory method can then use these implementations to create
an instance of Connection on the heap.

There are two ways of preventing Connection from being
created on the stack: As discussed above, it can be given private
or protected constructors and destructors or a pure virtual member
function.

As the intention is to create boilerplate code Connection itself
should be modified as little as possible. Inheriting from a managed base
class is a simple way of adding (and documenting) managed behaviour.
The following ManagedBase class defines a protected operator
new and operator new[] (with their corresponding delete
operators), disposal method, virtual destructor to ensure proper
deletion, and pure virtual member function:

class ManagedBase {

private:

template< typename ConcreteT,

typename InterfaceT,

template< class > class SmartPtrT >

friend class Managed;

class OnlyAvailableToManaged {};

virtual void ForceUseOfManaged (const

OnlyAvailableToManaged&) const = 0;

template< template< class > class SmartPtrT,

class InterfacePtrT,

class ConcretePtrT,

class ConcreteTypeT >

friend class SmartPtrPolicyTraits;

protected:

virtual ~ManagedBase() {}

static void Destroy(const ManagedBase*

pManagedBase) {

delete pManagedBase;

}

static void* operator new(size_t size) {

return ::operator new(size);

}

static void operator delete(void *pObject) {

::operator delete(pObject);

}

static void* operator new[](size_t size) {

return ::operator new[](size);

}

static void operator delete[](void

*pObject) {

::operator delete[](pObject);

}

};

In practice there is nothing to stop the creator of Connection
from declaring its constructors and destructors public, and
therefore negating that method of preventing stack creation. If a
pure virtual member function is used, which in its simplest form
would have a return value of void and exactly zero parameters,
the creator of Connection could allow stack creation by
overriding it and giving it a body.

One solution to the problem presented by using a pure virtual
member function to prevent stack creation was suggested in a
private email from Mikael Kilpelainen. If the pure virtual member
function (ForceUseOfManaged) has a parameter
(OnlyAvailableToManaged) of a type that is private to the
class in which the pure virtual member function is declared, it is
possible to restrict the classes that can override the pure virtual
member function to friends of the class in which it is declared.

Therefore, the only way that the creator of Connection can
override the pure virtual member function declared in
ManagedBase is to make Connection a friend of
ManagedBase. This cannot be done without modifying
ManagedBase. The knock-on effect is that another class must be
provided that derives from Connection and is a friend of
ManagedBase. This class is discussed next.
ManagedBase lacks the necessary factory method. Although

it is possible for a base class to create an instance of its subclass
[15] a factory method is not present in ManagedBase. The factory
method is a member of another class, Managed:

template< typename ConcreteT,

typename InterfaceT,

template< class > class SmartPtrT >

class Managed : private ConcreteT {

public:

typedef SmartPtrT<InterfaceT> InterfacePtr;

typedef SmartPtrT<ConcreteT> ConcretePtr;

private:

~Managed() {}

public:

static InterfacePtr Create() {

return SmartPtrPolicyTraits< SmartPtrT,

InterfacePtr,

ConcretePtr,

ConcreteT >

::Initialise(new Managed);

}

};

Managed has a private destructor to prevent stack creation. As
Managed’s factory method will create an instance of
Connection (ConcreteT) and return a smart pointer
(SmartPtrT) of type IConnection (InterfaceT), all
three must be specified as template parameters.
Managed inherits from ConcreteT so that it can override and

define a body for the pure virtual function
(ForceUseOfManaged) defined in ManagedBase. The smart
pointers for the types ConcreteT and InterfaceT are
typedef’d for convenience.

The factory method (Create) uses traits [11] & [12] to enable
initialisation code for different smart pointers to be added easily.
The factory method creates an instance of Managed on the heap,
and passes a pointer to it to the trait Initialise function. The
Initialise function returns a copy of the initialised smart
pointer, which is then returned by the factory method.

When calling the trait Initialise function the smart
pointer type must be specified so that the compiler knows which
trait to use. The interface type and concrete smart pointer type
and the concrete type must also be specified as these are used by
the Initialise function. The traits template is defined as
follows:

template< template< class > class SmartPtrT,

class InterfacePtrT,

class ConcretePtrT,

class ConcreteTypeT >

class SmartPtrPolicyTraits;

A partial specialisation [12] is used to define the way in which
Boost’s smart_ptr is initialised:

template< class InterfacePtrT,

class ConcretePtrT,

class ConcreteTypeT >

class SmartPtrPolicyTraits< boost::shared_ptr,

InterfacePtrT,

ConcretePtrT,

ConcreteTypeT > {

public:

static InterfacePtrT

Initialise(ConcreteTypeT* pConcrete) {

return ConcretePtrT(pConcrete,

&ManagedBase::Destroy);

}

};

Initialise needs to be able to access Destroy , the
protected static member function defined in ManagedBase.
One way to allow this would be to make Destroy public, but
then it could be called from anywhere. Destroy should only be
called by the specified smart pointer. The alternative solution is
to declare SmartPtrPolicyTraits a friend of
ManagedBase. The required friend template is shown in the
definition of ManagedBase above, but here it is again:

class ManagedBase {

protected:

template< template< class > class SmartPtrT,

class InterfacePtrT,

23

Overload issue 60 april 2004

24

Overload issue 60 april 2004

class ConcretePtrT,

class ConcreteTypeT >

friend class SmartPtrPolicyTraits;

...

};

All the boilerplate code is now in place. In order to make
Connection a managed object it must be modified to inherit
from ManagedBase:

class Connection : public ManagedBase,

public IConnection {

public:

explicit Connection(const std::string&

connectionString) {

std::cout << "Connection String: "

<< connectionString << "\n";

}

...

};

There is still one outstanding problem. Connection’s
constructor takes a single argument and Managed does not have
the appropriate constructor or factory method. There are at least
two possible solutions to this problem; each has its advantages
and disadvantages.

The first is to create a partial template specialisation of
Managed specifically for Connection, which has the
appropriate constructor and factory method:

template< typename InterfaceT,

template< class > class SmartPtrT >

class Managed< Connection,

InterfaceT,

SmartPtrT >

: private Connection {

public:

typedef SmartPtrT<InterfaceT> InterfacePtr;

typedef SmartPtrT<Connection> ConcretePtr;

private:

explicit Managed(const std::string&

connectionString)

: Connection(connectionString) {}

~Managed() {}

public:

static InterfacePtr Create(const

std::string& connectionString) {

return SmartPtrPolicyTraits< SmartPtrT,

InterfacePtr,

ConcretePtr,

Connection >

::Initialise(new

Managed(connectionString));

}

};

The advantage with this solution is that you can control how the
constructor parameter is passed to Create and on to
Managed’s constructor. For example, if for some reason
Connection modified connectionString, the partial

template specialisation allows the parameter to be specified as
and passed by (non-const) reference. The disadvantage of this
solution is that it is a lot of extra code, as it is effectively a
reimplementation of Managed.

The second solution is to give Managed a number of templated
constructors and create function pairs. For example:

template< typename ConcreteT,

typename InterfaceT,

template< class > class SmartPtrT >

class Managed : private ConcreteT {

...

private:

explicit Managed() : ConcreteT() {}

template< typename A >

explicit Managed(const A& a)

: ConcreteT(a) {}

template< typename A, typename B >

explicit Managed(const A& a, const B& b)

: ConcreteT(a, b) {}

...

public:

static InterfacePtr Create() {

return SmartPtrPolicyTraits< SmartPtrT,

InterfacePtr,

ConcretePtr,

ConcreteT >

::Initialise(new Managed);

}

template< typename A >

static InterfacePtr Create(const A& a) {

return SmartPtrPolicyTraits< SmartPtrT,

InterfacePtr,

ConcretePtr,

ConcreteT >

::Initialise(new Managed(a));

}

template< typename A, typename B >

static InterfacePtr Create(const A& a,

const B& b) {

return SmartPtrPolicyTraits< SmartPtrT,

InterfacePtr,

ConcretePtr,

ConcreteT >

::Initialise(new Managed(a, b));

}

};

The advantage is that extra code is not needed for objects that
have different numbers of constructor parameters, assuming that
none of the objects have a number of constructor parameters
greater than the constructor and Create pair with the highest
number of parameters. The disadvantages are that you cannot
control how the parameters are passed to Create and onto the
constructor, as you can by using the partial template
specialisation and that you cannot use an object that has more

constructor parameters than the constructor and Create pair
with the highest number of parameters unless you modify
Managed. There is, however, a workaround for the second
disadvantage using the boost [9] PreProcessor library, shown
to me by Paul Mensonides:

#include <boost/preprocessor/arithmetic/inc.hpp>

#include <boost/preprocessor/repetition/

enum_binary_params.hpp>

#include <boost/preprocessor/repetition/

enum_params.hpp>

#include <boost/preprocessor/repetition/

repeat.hpp>

#ifndef MAX_ARITY

#define MAX_ARITY 1

#endif

template< typename ConcreteT,

typename InterfaceT,

template< class > class SmartPtrT >

class Managed : private ConcreteT {

public:

typedef SmartPtrT<InterfaceT> InterfacePtr;

typedef SmartPtrT<ConcreteT> ConcretePtr;

private:

explicit Managed() : ConcreteT() {}

#define CTOR(z, n, _) \

template< BOOST_PP_ENUM_PARAMS(\

BOOST_PP_INC(n), typename A) > \

explicit Managed(BOOST_PP_ENUM_BINARY_PARAMS \

(BOOST_PP_INC(n), \

const A, & p)) \

: ConcreteT(BOOST_PP_ENUM_PARAMS(\

BOOST_PP_INC(n), p)) {} \

/**/

BOOST_PP_REPEAT(MAX_ARITY, CTOR, ~)

#undef CTOR

virtual ~Managed() {}

virtual void ForceUseOfManaged(const

ManagedBase::OnlyAvailableToManaged&)

const {}

public:

static InterfacePtr Create() {

return SmartPtrPolicyTraits< SmartPtrT,

InterfacePtr,

ConcretePtr,

ConcreteT >

::Initialise(new Managed);

}

#define CREATE(z, n,) \

template< BOOST_PP_ENUM_PARAMS(\

BOOST_PP_INC(n), typename A) > \

static InterfacePtr \

Create(BOOST_PP_ENUM_BINARY_PARAMS(\

BOOST_PP_INC(n), \

const A, &p)) { \

return SmartPtrPolicyTraits< SmartPtrT, \

InterfacePtr, \

ConcretePtr, \

ConcreteT > \

::Initialise(new \

Managed(BOOST_PP_ENUM_PARAMS(\

BOOST_PP_INC(n), p))); \

} \

/**/

BOOST_PP_REPEAT(MAX_ARITY, CREATE, ~)

#undef CREATE

};

The above code tells the C++ pre-processor to generate
MAX_ARITY constructor and Create function pairs. For more
information on exactly how it does this, consult the boost
PreProcessor library documentation on the Boost [9] website.

There is no need to choose between either the constructor and
Create function pairs solution or the partial template
specialisation solution. Both solutions coexist quite happily
together. The compiler will choose the partial template
specialisation solution over the templated constructor and Create
function pairs solution. Therefore you should use the templated
constructor and Create function pairs solution by default, when
the constructor parameters of your object are passed by const
reference and write a partial template specialisation when your
object requires constructor parameters to be passed by something
other than const.

Finally we are at the stage where instances of our managed object
can be created. The syntax used to create a managed object can be
greatly simplified using another typedef:

int main() {

typedef Managed< Connection,

IConnection,

boost::shared_ptr >

ManagedConnection;

ManagedConnection::InterfacePtr

pConnection = ManagedConnection::Create(

"Connection String");

pConnection->ExecuteSQL(

"SELECT * FROM MyTable");

}

Now that we have our managed object, we should check that it
behaves in the way we expect. We have already seen that it can
be created on the heap via the factory method; let’s see if it can
be created on the heap using new:

int main() {

typedef Managed< Connection,

IConnection,

boost::shared_ptr >

ManagedConnection;

ManagedConnection::InterfacePtr

pConnection

= new ManagedConnection(

"Connection String");

...

}

25

Overload issue 60 april 2004

26

Overload issue 60 april 2004

No. The compiler gives an error stating that it cannot access
operator new and operator delete in
ManagedConnection as they are private. So far so good;
What about creating the managed object on the stack:

int main() {

typedef Managed< Connection,

IConnection,

boost::shared_ptr >

ManagedConnection;

ManagedConnection connection(

"Connection String");

}

No, this doesn’t work either. The compiler gives an error, stating
that it cannot access the private constructor and destructor in
ManagedConnection . Ok, what about creating the
Connection object directly on the heap:

int main() {

IConnection* pIConnection =

new Connection("Connection String");

}

No, this doesn’t work. The compiler complains that it cannot
instantiate Connection as it is an abstract class and that it
cannot access Connection’s new and delete operators as
they are private. What about creating Connection directly on
the stack?

int main() {

Connection

connection("Connection String");

}

This final test doesn’t work either. The compiler complains that it
cannot create Connection as it is an abstract class. Making
Connection static or a class member does not work either, for
the same reason.

These five tests demonstrate that our managed object works as
expected.

Finally

In this article I have discussed how to use smart pointers to
prevent memory leaks and ways of forcing objects to be created
on the heap only, while also preventing the possibility of a
memory leak.

I expect this technique to be useful not only to library writers but
also to general application writers who are concerned about possible
misuse of their objects by other people.

I also hope this will appeal as a viable alternative to people
thinking about Microsoft’s Managed C++ as a solution to their
memory leak problems.

Paul Grenyer
paul@paulgrenyer.co.uk

References:

[1] Aeryn: http://www.paulgrenyer.co.uk/aeryn/

[2] Design Patterns: elements of reusable object-oriented software ,
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Addison Wesley, ISBN 0201633612

[3] The method of creating objects at the highest level and then
passing some form of reference around has come to be known
in some circles as Parameterise from Above and is a much talked
about work in progress by Kevlin Henney:
http://www.java.no/web/moter/javazone03/

presentations/KevlinHenney/

Programmer_s%20Dozen.pdf

[4] Reference Counting, Kevlin Henney:
http://www.two-sdg.demon.co.uk/curbralan/

papers/europlop/ReferenceAccounting.pdf

[5] Factory and Disposal Methods, Kevlin Henney:
http://www.two-sdg.demon.co.uk/curbralan/

papers/vikingplop/

FactoryAndDisposalMethods.pdf

[6] Executing Around Sequences, Kevlin Henney:
http://www.two-sdg.demon.co.uk/curbralan/

papers/europlop/

ExecutingAroundSequences.pdf

[7] More Effective C++, Scott Meyers, Addison Wesley, ISBN
020163371X

[8] gcc 3.2.3: http://gcc.gnu.org/

[9] Boost: www.boost.org/

[10] CUJ: http://www.cuj.com/

[11] Traits: a new and useful template technique, Nathan C. Myers:
http://www.cantrip.org/traits.html

[12] C++ Templates: The Complete Guide, David Vandervoorde,
Nicolai M. Josuttis, Addison Wesley, ISBN 0201734842

[13] Befriending Templates, Herb Sutter,
http://www.cuj.com/documents/s=8244/

cujcexp2101sutter/

[14] Effective C++: 50 Specific Ways to Improve Your Programs
and Designs, Scott Meyers, Addison Wesley, ISBN 0201924889

[15] Data Abstraction and Heterarchy, Kevlin Henney,
http://www.cuj.com/documents/

s=7992/cujcexp1908henney/

Acknowledgments

Thanks to: James Slaughter, Adrian Fagg, Phil Nash, Mark
Radford, Kevlin Henney, Allan Kelly, Mikael Kilpelainen,
Jennifer Hart, Paul Mensonides, Tim Pushman

