
3

Overload issue 57 october 2003

contents credits & contacts

Overload Editor:

John Merrells
overload@accu.org

Contributing Editor:

Alan Griffiths
alan@octopull.demon.co.uk

Readers:

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Chris Lowe,
Pete Goodliffe
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:

http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letters to the Editor(s) 6

Is IT worth it? Allan Kelly 7

Statically Checking Exception

Specifications Ken Hagan 10

Software as Read Jon Jagger 13

Chaos Theory - Part 2 Alan Griffiths 14

Single Exit Jon Jagger 16

Error and Exception Handling

David Abrahams 18

SINGLETON - the Anti-Pattern!

Mark Radford 20

A Policy-Driven CORBA

Template Library Jeff Mirwaisi 22

4

Overload issue 57 october 2003

Editorial – The state of
software development

Software development
as a profession

Is software development a profession? Clearly, many
contributors to the mailing list feel that it should be – they
bemoan the lack of accreditation that is available to architects,
doctors, accountants, and so on. Some of them even proposed
that the ACCU might fulfil this role! (In the UK there is an
organisation better constituted to do this – the BCS – but it lacks
the recognition and authority that would be needed.)

How does a profession come to be? It requires several things:
for the professional it requires there to be a strong incentive to be
recognised as a professional (this could be legal, financial, or access
to market). For the client, a strong incentive to employ a
professional (this could be legal, guarantee of quality, or access to
market). Is this what we see in software development?

At the weekend I was talking to a friend of mine from university,
he works in software development and is a qualified project
manager. To me this was a novelty – most of the project managers
I’ve worked with have no qualification and, indeed, don’t seem to
have ever opened a book on the subject. (Mostly they have attained
the role because that is what you do after enough years as an
analyst-programmer, business analyst, or whatever.) It seems that
his qualification (Prince 2) has some market value – there are
organisations that require it, but hasn’t been enough to keep him in
employment recently. It is also hard to assess for those not familiar
with it: it relates to a particular method which may or may not be
suitable for a specific project.

The situation is worse for developers – what recognition do
developers get for having enough interest in what they are doing
to open a book? There are qualifications in particular technologies
– but these are often short-lived and don’t always reflect a
developer’s primary skill: that of solving problems. This isn’t just
a problem for the developer, but also for the prospective employer:
how are they to identify the useful candidates?

This last question has vexed me somewhat over the last couple of
weeks – I’ve been doing technical assessments of candidates for a
client. Before I see candidates their CVs have been reviewed and the
best selected, followed by eliminating those that get poor scores on
BrainBench – but despite this selection process the majority are clearly
unsuitable. (For example, when presented with a class hierarchy that
makes use of the implementation of “cat” by specialising it to produce
“dog” they approve of this approach to the reuse of code.)

But it is not typical of the job market for an employer to care
about such fine distinctions between developers – despite my
misgivings about their abilities almost all of these developers are

in work and have succeeded in a series of jobs. Typically they
assume they have done well enough on the test – displaying a
confidence in their abilities, which appears to reflect that they are
able to deliver what their employers expect of them.

To me it is clear that the majority of developers and the majority
of their employers neither recognise nor care about the qualities
that have been represented as “professional” in the ACCU. And yet
these businesses are commercially viable – they are not being out-
competed by a few more discerning organisations. It would appear
that, for the business that employs them, there is no commercial
value to professionalism in software development staff.

To me this is something of a paradox: I have repeatedly
demonstrated ways to reduce the cost and timescale of software
development. The size of the savings can be considerable – in one
organisation a cost overrun of 120% was typical (and a significant
part of the turnover), reducing this to 15% was not recognised and the
“traditional” approach has been reinstated. (The other difference,
which affected developers more than business costs, was a similar
reduction in unpaid overtime.) Professionalism in software
development does save time and money – it can be demonstrated; it
is repeatedly reported in books and journals; and, it is rarely practised.

Where does this leave software development? Clearly, it doesn’t
meet the conditions I outlined above as being necessary for
development as a profession. It isn’t a profession now and it won’t
be in the foreseeable future.

Does this mean that there is no point in being “professional” in
the way we approach it? I hope not: the habit of doing things right
is a part of who I am – and I have enough experience of the pain
that doing things wrong engenders to want to avoid it. I know that
a lot of you feel likewise – the ACCU seems to have attracted
developers who care about what they do. But, despite the ambitions
of some, it isn’t a profession.

Software development as a craft

Is software development a craft? In many ways this seems a
much more appropriate analogy. The degree to which it relies on
the practice of good judgement, and the extent to which this
relies on experience is suggestive of this. There are often
different “schools” within a craft and the variations between
different development methods and tools fits well, as does the
importance of the teachings of various masters. (Clearly the
masters are those who are sought out for this purpose, not those
who appoint themselves.)

The existence of several schools of software development is
clear: there are “heavyweight” methods (like RUP); there are

A
few weeks ago I returned from holiday to find a lot of postings on the accu-general
mailing list that had been initiated by my last editorial. The thing that started them

was a posting by Allan Kelly (which also appears as a “letter to the editor(s)” in this
issue). The thing that struck me about the discussion was that it generalised rapidly from
the evolution of Overload to the evolution of software development as a profession.

5

Overload issue 57 october 2003

lightweight methods (like Crystal); there are weakly typed
languages (like SmallTalk); and, there are strongly typed languages
(like Java). Some proponents of each of these tend to believe that
they alone have seen the one true way – while more measured
observation will show that each has both successes and failures.
(The existence of several schools isn’t incompatible with being a
profession – but it does make agreeing the criteria for any
professional qualification more difficult.)

What is missing from “software development as a craft” is a
recognised system of apprenticeships, journeymen and masters.
Very few organisations consider that “I studied with Angelica
Langer” is a better qualification than “I glanced at a book once” –
and neither, judging by the CVs I see, do developers. (In case you
are wondering I chose the example because there is at least one
organisation that looks for this specific qualification – they know
who they are.)

Does this mean that there is no point in seeking out the masters
to learn from them? Again, I hope not: there is far too much to
learn for trial and error to be an effective approach (especially
when it is often hard to be sure which factors affect the result).
The ACCU contributes here by providing several forums in
which the masters can be sought: mailing lists, journals and
conferences.

Software development as a science

Is software development a science? It is tempting to think that the
existence of “computer science” courses provides some basis for
this – but the true sciences (mathematics, physics, etc.) don’t
have “science” in their name. And a closer examination of
“Computer Science” shows it to be mostly technology (there is
some applied science – mostly mathematics).

The essence of science is the ability to devise experiments to test
theories (at least that is how Popper and I see it). And in software
development this is singularly hard to do. There is too much
uncontrolled variability – and it isn’t clear which variables are
important. There are people trying to make a science of it: Alastair
Cockburn collects anecdotal evidence about projects and tries to
identify common factors – but this work is still at a stage where
there is a lot of “interpretation” which may not sufficiently
repeatable to support experimentation.

One day there may be a science of software development, but as
far as I can tell it is a long way off.

Software development
as a team activity

One classification I had not considered until recently is the idea that
the important classification of software development is that it is a
form of teamworking. This certainly fits with my often repeated
plea for communication over documentation. And (as I discovered
recently when reading an unpublished thesis on the subject – I hope
to bring you some of this material in the future) there are various
established classifications of team behaviour and development that
are very useful in assessing development projects.

Oddly, this had not occurred to me as a useful classification
despite its use in one of the first discussions I ever read on
development processes (The Mythical Man Month). This uses
analogies to teams in several different fields of endeavour to
establish the roles and interactions that have proven successful.

On reflection though I think this is the right answer: looking back
over various projects I find a strong correlation between the quality
of the team (rather than of the individuals) and the results of the
project. (The only exceptions I can think of are where a good team
failed – and I would ascribe the failure to external factors.)

Software development
and Overload

The remit of the ACCU has drifted over the years, it started with a
very narrow focus on C as the “C Users Group (UK)”. It has
expanded into other languages (Overload was originally the journal
of the Borland C++ User Group) and other areas of development.

Overload has always been more focussed on the “front line”
rather than on the “supply lines” – which has its risks as well as its
benefits. There is clearly interest in software development as a
professional activity, as a craft, as a team activity and as an
organisational function. These interests are not always compatible,
but we can try to cover them all.

What appears in Overload is very dependent upon what is
submitted for publication, and this covers an increasing range of
topics. But there is a commitment from the team of readers to ensure
that every article is as good as we can make it. You can do your
part by submitting great material – or just by encouraging the
authors of things you like.

It is up to you.
Alan Griffiths

alan@octopull.demon.co.uk

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines

All articles intended for publication in Overload 58 should be submitted to the editor by November 1st, and for Overload 59 by
January 1st 2004.

The dbg library

Since my article on debugging and the dbg library was
published in Overload 46, I’ve had a large number of readers
commenting on how useful the library is, and even more
positive feedback from programmers who’ve found it “out on
the net”.

Overload readers may be interested to know that the official
homepage has now moved to http://dbg.sf.net/. The library
has had several updates since the article was published, and is still
under active development.

Pete Goodliffe
pete@cthree.org

The ACCU is a three-legged stool

Dear Editor(s),
First can I thank you for the Overload 56 editorial, it was well

written, well timed and highly relevant. Maybe I shouldn’t
comment on it because I am one of those who has been pushing
Overload in a non-programming direction, but maybe that means I
also have something relevant to say.

I’ve been conscious for a while that some of my pieces are
drifting away from core remit of “programming”. However, I do
get the occasional e-mail from people, and I did speak to a few
people at this year’s conference and nobody has said “Off topic!
Stop!”, in fact, my opinion is that people like this stuff.

I also recall that several of the non-programming sessions at
the conference were very well attended, e.g. Hubert Matthews,
“The Extreme Hour” and Alan Griffith’s own “Too Agile?”
sessions.

In my opinion what is happening is that ACCU is maturing, from
a troublesome teenager into an promising 20-something. The
organisation and its membership are no longer entry-level
programmers, they have senior, even managerial positions. The
choice ACCU must make is whether we say “Sorry guys, we are
strictly programmers, managers not wanted” or whether we try to
accommodate all.

To my mind the answer has to be the latter. If the organisation
does not stretch and grow it will forever be a temporary home
for a few programmers. Sure, it is fun to complain about
managers on accu-general but we either spend our life
complaining or we take responsibility for doing something about
it. We have to engage with management, and academics, another
of our pet-hates.

The differentiation between C Vu and Overload is clearer this
month than it has been for a long time. C Vu is the journal of the
ACCU, a dialogue between the officers and the members, it is
also the home of new talent – both in writing and software
development. Overload is maturing into a serious software
development journal – it needs to broaden its remit and its
readership.

You’ll notice that I have deliberately blurred the distinction
between the journals and the organisation. For me, ACCU is a three-
legged stool: journals, conference and mailing list. These support
the membership and help them grow. As the members grow so too
does the organisation, mentored developers has appeared and pub
meets are becoming more regular. I’m convinced some cities in the

UK, specifically London, could copy Reg Charney’s excellent
monthly meetings in San Jose.

There is another reason why this debate is about more than the
journals. Each year at conference we are reminded of the need to
“stay under the VAT limit.” (For those not in the UK, this is the level
where an organisation must start to charge and pay sales tax.) As
our membership continues to grow we will breach this limit, clever
accounting can only delay this so long. When this happens the
ACCU will have to consider its options carefully, it is better this
happens before the event than after.

ACCU, and specifically the journals, need to grow, they need to
stretch and raise their sights. I’m reminded of a quote I once heard
from Christopher Alexander, I don’t remember it verbatim but it
was along the lines of “I’m frequently disappointed that young
architects don’t aim higher”. I think it is time for the ACCU to aim
higher.

Allan Kelly
allan@allankelly.net

Stream-based parsing in C++

Fundamentally, this paper describes a technique for writing
recursive-descent parsers in C++ using operator overloading so that
the driving logic of the parser is written in a way that looks like the
parsed grammar rules. As presented, I think the technique is not
usable, but it is not completely flawed and can be made usable.

My first comment is on usefulness. The author states “while
C++ is certainly capable of handling recursion, the language is
not really capable of handling recursive definitions such as the
grammar in its present state”. I’m not so sure I understand that
sentence correctly as there is no explanation of what is lacking
to handle “recursive definitions such as the grammar in its
present state”. I think that what is hinted at is that applying the
given technique to a (directly or not) recursive grammar would
produce code with infinite recursion. While some use of
recursion can be removed by using closures (which the technique
is able to handle by special casing), not all can and I don’t think
parsing techniques unable to handle recursion in a grammar are
particularly useful. I don’t know how this problem is removed in
functional programming languages (Haskell could perhaps
handle it using lazy evaluation, but not Common Lisp). Related
to this, the author presents a second grammar as a rewriting of
the original one with recursion removed. There is no recursion
in the second grammar, but the parsed language is quite different
to the one of the first grammar (and I don’t think rewriting could
remove recursion for that grammar while still parsing the same
language).

My second comment is on the error handling, reporting and
recovery. There is no explanation of the way errors in the parsed
input are supposed to be reported, and as the technique uses
backtracking, the naive way is not valid. The code presented just
doesn’t consume anything on the input in the presence of an error,
and nothing is present in the output to indicate that an error
occurred. There is also no error recovery strategy, but that’s a minor
point as I don’t know a general parsing technique using
backtracking with an error recovery strategy.

[concluded at foot of next page]

6

Overload issue 57 october 2003

Letters to the Editor(s)

My next comment is on performance. The author states that the
code presented is not optimised for speed of execution, nor for
space, but is not slow. How do you qualify a parser with an
exponential behaviour in terms of input length? Indeed, alternation
is handled by backtracking and using backtracking without early
termination due to error detection can lead to exponential time
behaviour even in simple grammars which are parsable using LL(1)
parser. A comparatively minor inefficiency is that the remaining
input is copied around and in most grammars I know, tail rules
consume a bounded (and often quite limited) number of tokens.
This alone would give an O(N?) behaviour.

The technique presented is interesting, and can be ameliorated
to the point of being usable. For example, an error state could be
added to the result. It can be used as a criteria for the alternation
operator (if several cases are not errors, that can be considered as
an error or handled with the list of results approach given in the
paper – this is better that the “use the longest match” rule used first
in the paper) and to stop parsing by the sequence operator. With that
modification, first, one should be able to handle non left recursive
grammars (the Dragon book gives an algorithm to remove any left
recursion of a grammar) and second, the exponential behaviour is
removed leaving us with the quadratic one.

Removing the quadratic behaviour is easy: instead of copying a
list around, use an iterator. After that, I guess that the parser will

have a linear time behaviour for LL(k) grammars and be able to
handle any non ambiguous grammar or any grammar with the list
of results approach.

Now, how to report errors to the user in a useful way? As the
method uses backtracking, it is not possible to report the error when
it is detected. A possibility is to add an error message and an error
position to the error state. In case of error, alternation would build
an special error message if the error is that an ambiguity is detected
or choose one of the error messages (the one which produced the
longest parse before failing is the obvious candidate) of the failing
cases when all possibilities fail.

One would still miss an error recovery scheme (that is how
to continue to parse after having reported one error so that other
errors can be reported), but, as I’ve never seen one presented for
parsing techniques using backtracking, this is a very minor
point.

Browsing boost.org I found out that they have a parser
framework. From the documentation it looks like a finalized
variation on the same themes as Frank’s paper taking into account
my comments. It surely needs to be looked at by anyone wanting
to expand on Frank’s paper for a purpose other than
experimentation with C++ syntax or parser definition.

Jean-Marc Bourguet
jm@bourguet.org

7

Overload issue 57 october 2003

Is IT worth it?
by Allan Kelly

If you’re a dedicated software developer you probably read a lot.
I always think it pays to read widely, get outside the software
field and expose yourself to some new ideas. While for some
developers outside the field means swapping Sutter’s Exceptional
C++ for Hofstadter’s Gödel, Escher and Bach some of use do
venture as far as The Economist, and maybe the odd business
book. After all, IT is itself a massive business and, if we believe
the hype, can benefit real businesses.

If you have ventured into the business press lately you will have
found business writers and mangers questioning the true value of
IT. This has been going on since the Y2K bug, dot-com bust and
telecoms crash but has picked up momentum in the last few months
thanks to an article entitled IT Doesn’t Matter in the Harvard
Business Review.

Now the HBR (as aficionados call it) is a rather august journal
that sees itself at the heart of the business debate. Its detractors
may suggest that many more copies are bought than are actually
read but it still has the capacity to ignite a debate, which is just
what IT Doesn’t Matter did.

What did he say?

Nicholas G. Carr is a business writer and consultant, and a past
editor of HBR. So when he writes about IT he is writing from a
business perspective. Before you turn the page, remember that it
is business that pays us. Unless you flip burgers by day and write
Linux by night the chances are that at some point you need to
consider IT from a business perspective too.

Carr’s argument runs something like this. IT is really a form of
infrastructure, like the telegraph or railways. During the last 20
years or so we have been building this infrastructure, not just the
internet but putting PCs on people’s desks, writing word processors,
CRM packages, etc. During this time there has been an advantage

to getting there first. That is, the company that is first to install
word processors would see a business advantage, a competitive
advantage to use business speak.

However, says Carr, that time is past. The infrastructure is now
built. There is no point in you upgrading your secretaries to
Pentium 19s because (a) it will cost you, and (b) it doesn’t offer
that much advantage over your competitor where they all have
Pentium 18s.

In the process IT has become a commodity. You can buy 500g
of IT like you buy 500g of cheese at the local deli. Look at the net
services being promoted by Microsoft, IBM and others to see this
in action. “Computing on demand” – you can switch it on and off
like electricity, 100Mips of computing power may come from a
Linux server farm in Aberdeen or a mainframe in Mumbia.

Now, since IT is a commodity there is no differentiating
factor, there is nothing unique, therefore it cannot be the basis
of competitive advantage. Even though IT may be essential to
our operations it is not something we can use to gain an edge on
our competitor. If I need 100Mips of power to run my business
then so be it, I can buy it and so can my competitor, therefore it
is not something that gives me an advantage. The only
difference is how much each of us pay our suppliers for it, I need
to drive a harder bargain with IBM than my competitor drove
with EDS.

Even if you come up with some revolutionary new idea for using
IT you still can’t create an advantage because it is easy for anyone
to copy.

Carr makes a good argument. He shows how IT has followed
the same path of previous infrastructure technologies, complete
with investor bubble and bust.

In conclusion he suggests we need to move “from offense to
defense”. Rather than spending vast sums on IT projects we need
to look to manage the risks associated with IT – such as network

[continued on next page]

8

Overload issue 57 october 2003

outages – and manage IT costs more closely. Why buy new PCs
when the old ones still work? Why invest in storage when as much
as 70% is wasted?

Is IT really a commodity?

Undoubtedly some aspects of IT have become commodities.
Hard discs, RAM chips, even PCs are really commodities even if
we take a perverse interest in the seek time on a Maxor versus a
Shugart drive, or whether we have SIMMs or DIMMs in our box.

It is probably also true that increasingly software is becoming a
commodity. Although it is an unusual commodity that is only
available from one supplier, can Microsoft Word really be a
commodity word processor if it is only available from one supplier?
So, part of the “software as commodity” debate is entwined with
the Microsoft monopoly debate.

However, it is true that mail clients, and particularly web-based
e-mail are pretty much a commodity. As the ASP software model
spreads software starts to look more like a service than a product.

However, there is a dimension to IT that defies the commodity
classification, that is intent. This point is expressed by David
Fenny:

“we encounter a unique characteristic of IT, its inherent lack of
application purpose. If I explain to someone any of a range of
traditional technologies – balance scales, bulldozers, or blast
furnaces – the application is obvious. However, if I explain what is
meant by a multi-media workstation, who knows what relevance it
may have within a bank, a supermarket chain, or a government
department.” (Willcocks, 1997, p.xxii)

We may all have access to the same commodity hardware and
software but what do we choose to do with it? Two companies
can buy the same hardware and software. They can each operate
in the same mail order businesses but if one company intends to
simply make their operation more efficient, while the other
intends to identify repeat customers and sell more to them then
there is a significant different in the outcome. Of course, this
increases the importance of getting your implementation and roll-
out right.

The true power of IT is beyond simple automation and efficiency,
that is a commodity. If we want to get the most from IT we need to
use it in innovative ways and keep innovating. IT becomes a tool to
help bring about change, and indeed, learn to do things better than
our competition. And most importantly of all, keep innovating,
changing and learning. Not that we want to change for change’s sake
– or for the sake of the IT – but, change for the sake of the businesses.

IT has another agenda

The role of IT has traditionally been seen as one of automation.
Sometimes, when you speed things up enough you get something
new. For example, you could view Amazon as a very fast form
of catalogue shopping, but it is so fast that is has become a new
way of shopping.

However, IT has another agenda, one of learning. Imagine being
asked by one of your company’s clerks, Bert, for a small
application. He explains what he wants to you – so you learn
something. But at the same time you ask questions “Why do you
do it like that?” which forces Bert to think and learn himself.

Next you then code the application and show it to Bert. As a
result you are both forced to think, together, on what it is doing, to
remove incorrect assumptions and even improve the entire process.
You have both learned.

Now the application is deployed Bert has some spare time on his
hands. So he can follow up some of those complaints (yes, the ones
he was throwing in the trash). As a result he talks to Doris and
together they realise that if we could just extend the application a
bit, it could help Doris and cut down on some of the mistakes.

(Unfortunately, with all this done your boss notices that he
doesn’t need both Bert and Doris so fires one of them. The next
week he is told to cut his IT budget so he fires you too.)

The point is: IT has the power to help people learn about their
business not because it provides some neat little training package,
but because it helps us reflect on what we are doing and why. If
handled correctly the process of introducing IT helps us remove
obstacles which block our vision and encourages us to think about
the bigger picture.

American Hospital Supply

One of the examples given by Carr is American Hospital
Supply (AHS). During the 1970s this company introduced a
mainframe based electronic ordering system for hospitals.
Hospitals came to value this as it allowed them to operate
more efficiently and AHS increased profitability. By the
1990s other companies had similar PC based systems. Now
the mainframe system became a hindrance and AHS could
not compete against these competitors who used commodity
systems.

For Carr this demonstrates that in the past IT could provide an
advantage but, with commoditisation the advantage was eroded
and became a millstone. Others could do the same thing more
cheaply.

We could interpret this differently, yes AHS had an advanced
system and could out-compete other firms for a while, but did it
lose the advantage because of commoditisation or because it
stopped development and stopped changing?

By keeping its system closed for use by itself and its customers
the company gave other companies an incentive to develop
alternatives. This was a management decision, not an inescapable

consequence of the technology, the management could have
chosen to act differently.

For example, AHS could have chosen to spin out its software
development as a separate company and openly sell the software
to other companies. The original AHS would still have a head
start, but by selling software the company would bring in
additional revenue and pre-empt the emergence of competition.

One also needs to ask: why did AHS not choose to develop a
commodity version of its software? If others could then it
certainly could have. This would have lowered their own cost,
albeit at the expense of higher development costs. Either way, the
lesson is to continue moving forward, continue to learn and move
upwards with new ideas and products. So, while technology
creates new opportunities it is still a servant to the management
intent. At AHS management saw the intent as narrowly defined
automation.

Apple Computers have faced a similar situation. Once MacOS
could beat the competition hands down. but Apple didn’t license
it and allowed Microsoft Windows to become the commodity
player. Now Apple are fighting back, precisely because their
technology is not a commodity like Windows they have more
control over what they do with it.

Not only is it bringing about learning but it brings about change.
Sometimes for the better, and sometimes for the worse, but if we
simply automate what already exists, then we don’t see the full
benefit of IT.

This is where we leave the realm of IT and consider
management. If management don’t want change then fine, things
can stay as they are, but ultimately someone else will adopt the
changes we reject and beat us in business.

If management accept change then there are two ways to go
about it. One is the top-down, mandated change that we saw with
the business process re-engineering (BPR) movement. This is the
change that says “The consultant knows best, there shall be an IT
system and this is what you shall do.” This has the capacity to
destroy businesses.

Alternatively, there is the more compassionate management who
want to harness this change and learning for the benefit of the
business. Giving Bert and Doris their new system improves the
quality of their work, recognising that the people who work with
the existing system probably know more about the subtleties in the
process than a BPR consultant ever will.

So far, I’ve described this from a business perspective. The flip
side, the IT perspective, is also interesting. If you try to introduce
a new system without properly considering those who will use it
then you will encounter problems. And if you’ve ever wondered
why people tell you something today, and come to you tomorrow
to contradict themselves it may be that in telling you they too were
learning.

In both perspectives we are uncovering knowledge. Such
knowledge can lie unrecognised until IT is applied to the problem,
but, while the IT may be a commodity and offer no competitive
advantage this is not true of the knowledge. Indeed, knowledge
offers a very special resource that can be used to give companies a
unique competitive advantage.

Move on up

There is another reason why software need not become a
commodity. As we complete software and hardware technologies
we raise our sights, we tackle bigger problems.

There was a time when developing a new computer meant
developing a new operating system. We still develop new OSs, but
if we are building a new machine we won’t need an army of
developers to write an OS. We can buy Windows off the shelf, or
port Linux. This frees the resources (money and developers) to
concentrate on new applications.

A good example of this is XML. Ten years ago all file formats
were proprietary, getting data from Lotus 1-2-3 into my applications
was painful. The idea of getting it in nicely tagged mark-up
language would have been a joy. Problem solved.

But now that we have XML, and the file format problem is solved
we don’t stop. EDI (electronic data interchange) is being re-invented,
web services are appearing, SOAP is being used in applications where
we would never have dreamed of using CORBA or DCOM.

XML may have solved one immediate problem, but in doing so
we created a thousand other opportunities for using it. Indeed, we
are still learning of new applications for XML.

In short, as we commoditise one part of the software market it
serves as a base to move onto the next. Again, we are learning,
always trying something just beyond our reach. It doesn’t matter
if today’s advantages are tomorrow’s commodities, we will have
moved on to some new advantage.

What does this mean for
software development teams?

On the one hand, if Carr is right it doesn’t look like there is much
future for software development teams. However, if we view
software as the medium in which we embed our knowledge then
there is a brighter future.

In this future software developers codify company knowledge.
They become what Nonaka calls Knowledge Engineers. Of
course, the software is not itself knowledge but it is the result of
knowledge work. By changing, or not changing, the software
developers become the gatekeepers of change. Choosing to
accept a change request will spread one person’s insights to
many, refusing the same request is limiting our capacity to
change.

There is a very difficult line to define here between what changes
should be accepted and what should not. This is nothing new in
software development but it does mean we need to move away from
the myth that we can limit change. Forget the idea that if we had
enough time, enough analysis and good enough people we could
write down a complete specification. Forget it because the very
process of writing it down will change it.

Your best analyst could work with Bert for six months and
produce the perfect specification. However, as soon as people, and
especially Bert, see it coded they will learn and see room for
improvement.

Fortunately, software people are used to change. We love
learning new languages, operating systems, and application
domains. Unfortunately, we don’t always recognise that other
people don’t relish change in quite the same way, in truth most
people don’t like change and feel threatened by it.

I increasingly suspect the reason IT people have a reputation for
lacking social skills is simply that they are placed in the position of
introducing change where people don’t want it. My suspicion is
that the social skills of IT people are at least average, but
introducing change requires more understanding and empathy than
average. Not only this, but we often work under time constraints
that don’t leave us time to talk through someone’s problems, or
sympathise with them.

Conclusion

If Carr is right, and we want to stay in the software business we
have two choices. We either need to get into writing commodity
packages, or we need to accept a life in maintenance.

However, I can’t accept Carr’s argument. I think he is exposing
an over-simplistic view of IT, for all the reasons I’ve outlined
above I think he’s wrong. And for all the same reasons I
increasingly believe we need to view software less as IT and more
as business.

Allan Kelly

References

[1] Carr, N.G., 2003, “IT Doesn’t Matter”, Harvard Business
Review, May 2003. Available at www.hbr.com, also check his
website, http://www.nicholasgcarr.com, where you will
find some other responses to his ideas.
[2] Nonaka, I., and Takeuchi, H., 1995, The Knowledge Creating
Company, Oxford University Press
[3] Willcocks, L., Feeny, D., and Islei, G., 1997, Managing IT as
a Strategic Resource, McGraw-Hill

9

Overload issue 57 october 2003

10

Overload issue 57 october 2003

Statically Checking
Exception Specifications

by Ken Hagan

The C++ newsgroups occasionally have threads about “fixing”
exception specifications (hereafter “ES”) so that they can be
checked at build-time. One practical problem is maintenance; an
ES depends on all the callees of a function as well as the function
itself. A more fundamental problem is that the exceptions that can
be thrown from templated code can vary with the instantiation
parameters and these are clearly unknowable when the
programmer writes the template. Perhaps the programmer is the
wrong person to be writing the ES.

Outline of a Solution

As the language stands right now, a function with no ES can throw
anything. My basic change is to say that when a function has no
explicit ES, the programmer wants the build system to deduce one.

Except where dynamic linking is used, the compiler can
determine the most restrictive ES that the programmer could have
written for the function, by noting which exceptions are thrown and
caught and which functions are called. Since source code isn’t
generally available for the called functions, the calculation cannot
be completed, but it can be reduced to an ES-expression. For
example, for this function the compiler might emit
ES(Foo)=ES(Baz)-Quux+Oink.

void Foo() {
try { if(Baz()==42) throw Oink(); }
catch (Quux& b) { /*stuff*/ }

}

The linker then considers each function in turn, replacing
expressions with an absolute ES wherever possible. If not every
expression is resolved on the first pass, it makes another pass and
so on until completed. When compiling templates, the compiler
can emit ES-expressions that depend on template parameters.
When instantiating those templates (perhaps in a pre-link phase)
the expressions can be converted to non-dependent expressions.

The ES-expressions may be stored in a separate file, in the object
file using some extension, or in the object file as an un-nameable
data item that the linker is sure to discard. The first is cumbersome,
the second might conflict with an ABI and the third is a filthy hack,
but all three are workable. For static libraries, library code is no
different from our own as far as the linker is concerned.

To eliminate false positives we need a new cast: the
nothrow_cast. It operates on pointers to functions; so it modifies
individual calls rather than the definitions. It tells the compiler that this
invocation of the function will not throw the specified type. As usual
with casts, if you lie to the compiler then it will get its revenge in the
form of implementation defined or undefined behaviour.

Four complications

1) Pointers to Functions

We expect to be able to write an expression for the minimal ES
involving only class names and the ES-es of named functions.
With function pointers, we don’t know which function they point
to. We can, however, identify the pointer itself. It must be one of
the following 4 cases, and each can be named.

● A global variable, such as baz (in the example below).
● A struct or class member, such as Quux::m_pfn.
● A function parameter or return value, such as Foo(4th).
● A local (automatic) variable, such as Foo()::name.
For structure members, and function parameters, no attempt is
normally made to distinguish between different instances or
invocations. The local variable case can be eliminated by the
compiler because ES(Foo()::name) can always be replaced
with the ES of whatever was used to initialise name, but that’s
just an optimisation.

What then? Well firstly, we can write the minimal ES for a function
that uses such a pointer, simply referring to the ES of this named item.

extern int (*baz)();
void Foo() {
try { if((*baz)()==42) throw Oink(); }
catch (Quux& b) { }

}

For this function, ES(Foo) = ES(*baz)-Quux+Oink. Great,
as long as the linker can figure out ES(*baz). That’s slightly
harder than ES(Baz), because, informally, Baz is a constant but
baz is a variable. However, we can model (*baz)() as a function
that calls all of the functions that are assigned to baz throughout the
program, and each of those assignments will be seen by the
compiler. For each assignment, the compiler can spit out ES(*baz)
+= ... , where the right hand side is either ES(Function) or
ES(*another_pointer).

All the linker has to do is join all the pieces together. The linker
has an ES for a named object that possibly depends on the ES-es of
other named objects. Pointers to functions are now no different from
the functions themselves, and they all get thrown into the pot and
resolved together.

Pointers to pointers to functions, such as virtual function tables,
add little new to the problem. Instead of tracking everything that
(*p)() might point to we have to track everything that
(**pp)() might point to.

2) Recursion

In the presence of recursion, the call graph of a program has
cycles. For such functions we might have ES(Foo) = +Quux
- Oink + ES(Foo). Now, a function neither increases nor
decreases its ES by calling itself, so when ES(Foo) appears on
the right hand side of an expression for itself it can be ignored.
This allows us to break the cycles in recursive systems.

Though we can ignore ES(Foo) for itself, we cannot ignore it
elsewhere in the cycle. Part of the cycle might throw exceptions
that are caught by other parts of the cycle, so the minimal ES
exposed from a recursive cycle depends on where you enter it.

In fact, this property that lets us evaluate ES-expressions in any order
we like. We can just pick one and recursively replace every term on
the right hand side with its expansion. Eventually we will have a long
expression with either absolute classes or repetitions of the left-hand
side. We remove the latter and we have our absolute ES.

3) Shared Libraries

For shared libraries, the linker doesn’t see the actual code when it
is linking the client application. Whether this is a problem
depends on how the linking is achieved. I’m familiar with
Windows, so I’ll treat the two cases on that platform and then
ignorantly assert that other platforms add nothing new.

The first case is load-time dynamic linking. The linker is given
an “import library” which describes the data and functions exposed
by the DLL. Any references to those are replaced with placeholder
items in the linked application and the operating system loader “fills
in the blanks” when the application is loaded into memory to run.
The provision of an import library makes this case very similar to
the static case. I believe it is sufficient for the import library to
contains ES-expressions for just those items mentioned in the
library’s header file, since that it all the compiler sees and so that
is all that can appear in client object files. This is certainly the case
in my extended example.

The second case is run-time linking, where the program uses
some magic to conjure an address out of the ether. To take a slightly
non-trivial example...

extern IFoo* CreateSuperFoo();
// in external library

IFoo* (*pfn)() = /*magic*/;
// in client code

IFoo* p = (pfn)();

The details of CreateSuperFoo and also of whatever IFoo-
derived class that this library actually offers is a complete
mystery to the build system. It may be written in a different
language so it is quite possible that neither the compiler nor
linker ever see it. Here we have the one place where I think a
programmer has to write an ES.

The two main objections to ES that I noted at the beginning of
the article don’t apply. A dynamically loaded extension cannot be
a template, though it may be an instantiation. Neither is it likely to
change often and even if it does, all knock-on effects on the rest of
the system are now the compiler’s problem.

4) False Positives

The final problem is that a function might throw an exception in
the case of bad input, and carry an ES to that effect, but many
callers might never feed bad parameters into the function. This
partly depends on one’s programming style. If I might return to
the example...

if(x<0) return false;
x = Sqrt(x); // assuming Sqrt() throws

// when x<0

There are certainly situations where one should write one of the
following...

Type Sqrt(Type x) { if(x<0) abort(); ... }
Type Sqrt(Type x) { assert(x>=0); ... }

...and happily spit in the faces of irate clients whose programs
were aborted, saying “Don’t do that then!”. However, if we
choose to throw an exception instead then our clients will either
be faced with link-time ES errors or be forced to write such
abominations as

if(x<0) return false;
try { x = Sqrt(x); } catch (...) {
/*unreachable*/ }

Not only does this look bad, but it probably incurs run-time
penalties (space and time). As with the function pointers, we
know something that the compiler doesn’t, so we tell it with a
cast.

if(x<0) return false;
nothrow_cast<std::logic_error>(Sqrt)(x);

The nothrow_cast tells the compiler that the function does
not throw the mentioned type.

Costs and Benefits

I think it is worth confessing at this point that I’ve only spent the
time and energy on this because I wanted static checking.
Showing that it could be done with minimal impact on existing
source code seemed like a good way to argue the case. It all
turned out a little harder than I expected, so is static checking
worth this effort?

First, I note that the current standard allows ES violations at run-
time, so any ES violations detected by this system can only result
in linker warnings. The linker must still generate a working
executable.

Costs and Limitations

The scheme derives the minimal ES from whatever source code
is presented to it, so the same program might “fail” if compiled
against StlPort rather than Dinkumware, or if compiler settings
change. A debug build might give false positives that an
optimising build can rule out as a by-product of its analysis.

You and your library vendors will all have to run all the code
through the new compiler. The scheme adds no new compile-time
errors, so if the library vendors are still in business then they
shouldn’t have much of a problem with this.

If you don’t modify the code then you may get warnings from the
ES checking phase, which will disable the various optimisations
mentioned below. You’ve lost nothing except for the extra build costs.

If you are able to modify your code, you can eliminate all the errors
using explicit ES and throw_cast, respectively. In both cases you
can let the diagnostics guide you. There is no problem of figuring out
what changes to make, simply the time involved in actually doing it.

The extension does require more complicated compilers and
linkers. I can’t judge how much more complicated because I’ve
never written a compiler or linker, let alone one for C++. There is
also a cost in build time which I don’t feel qualified to estimate, but
I have already noted that we don’t need to reduce ES expressions
in any particular order.

Benefits

Having to treat ES violations as warnings actually yields a couple
of migration paths. A vendor could just ignore the whole idea,
implementing the nothrow_cast as a do-nothing template
function. Equally, since there is no new run-time behaviour, the
whole thing could be done by a tool like lint.

If we can spot violations of throw() at build-time rather than
run-time, with any tool, the Abrahams exception safety guarantees
are easier to police. The cast may be useful to the compiler even
without the link-time checking, since it can optimise more strongly
if it believes exceptions can’t happen.

However, we get maximum benefit if the compiler and linker do
the checking. The cost of exceptions that cannot ever occur can be

11

Overload issue 57 october 2003

12

Overload issue 57 october 2003

reduced to zero in both time and space and any function that can’t
throw (and all its immediate callers) can be recompiled with that
knowledge. With these optimisations, Standard C++ is more

attractive for embedded systems and vendors needn’t include
compiler options to disable exceptions.

Ken Hagan

Consider the common scenario of an interface header file...
struct IFoo { // struct IFoo::vbtl {
virtual void Bar() = 0; // void (*pBar)(IFoo*);
virtual int Quux() = 0; // int (*pQuux)(IFoo*);

}; // };
void AddFoo(IFoo*);
void DoStuff();

...used by a shared library source file...

IFoo* global; // IFoo::vtbl** global;
void AddFoo(IFoo* foo)
{ global = foo; } // ES(AddFoo) = 0

// ES(*IFoo::vtbl.pBar) += ES((*AddFoo 1st).pBar)
// ES(*IFoo::vtbl.pQuux) += ES((*AddFoo 1st).pQuux)

void DoStuff()
{ global->Bar(); } // ES(DoStuff) = ES(*IFoo::vtbl.pBar)

...and implemented in an application source file...

class Foo : public IFoo {
virtual void Bar() // ES(*IFoo::vtbl.pBar) += ES(Foo::Bar)
{ throw 1; } // ES(Foo::Bar) = int

virtual int Quux() // ES(*IFoo::vtbl.pBar) += ES(Foo::Bar)
{ return 0; } // ES(Foo::Quux) = 0

};
int main() {
AddFoo(new Foo); // ES(*(*(AddFoo 1st).pBar)) += ES(Foo::Bar)

// ES(*(*(AddFoo 1st).pQuux)) += ES(Foo::Quux)
DoStuff();

} // ES(main) = ES(AddFoo) + ES(DoStuff)

In the application, the compiler can see that the IFoo* parameter to AddFoo is actually a “new Foo”. Had that detail not been
visible, the compiler could only have written...

ES(*(*(AddFoo 1st).pBar)) += ES(*IFoo::vtbl.pBar)
ES(*(*(AddFoo 1st).pQuux)) += ES(*IFoo::vtbl.pQuux)

We bring all this together in the linker. Our raw data from compiling the library is...

ES(*(IFoo::vtbl->pBar)) += ES(*(AddFoo 1st)->pBar)
ES(*(IFoo::vtbl->pQuux)) += ES(*(AddFoo 1st)->pQuux)
ES(DoStuff) = ES(* IFoo::__vtable.pBar)
ES(AddFoo) = 0

That from compiling the application is...

ES(*IFoo::vtbl.pBar) += ES(Foo::Bar)
ES(Foo::Bar) = int
ES(*IFoo::vtbl.pQuux) += ES(Foo::Quux)
ES(Foo::Quux) = 0
ES(*(AddFoo 1st)->pBar)) += ES(*IFoo::vtbl.pBar)
ES(*(AddFoo 1st)->pQuux)) += ES(*IFoo::vtbl.pQuux)
ES(main) = ES(AddFoo) + ES(DoStuff)

Bringing it all together and substituting yields...

ES(main) = 0 + ES(DoStuff)
= ES(*(AddFoo 1st)->pBar)
= ES(*IFoo::vtbl.pBar)
= ES(Foo::Bar)
= int

Software As Read
by Jon Jagger

Programming is writing, and writing is visual. We should explore
software as read not code as executed. Less code, more software.

Iteration

In his Overload 45 (October 2001) article, minimalism – omit
needless code, Kevlin worked on the simple problem of printing
the std::strings inside a std::vector to std::cout.
An early version looked like this:

typedef vector<string> strings;
typedef strings::iterator iterator;
for (iterator at = items.begin();

at != items.end(); ++at) {
cout << *at << endl;

}

A later version looked like this:

class print { ... };
for_each(items.begin(), items.end(),

print(cout));

And the final version looked like this:

typedef ostream_iterator<string> out;
copy(items.begin(), items.end(),

out(cout, "\n"));

Readability

The main source of repetition is repetition. When programming
in C++ you often find yourself making a call to a template
function where two of the arguments are created by calling
begin and end on a container. This quickly gets repetitive. The
repetition itself suggests several solutions. Ranges are basic
building blocks of the STL design and it is surprising they are not
a visible and explicit artefact of its type system. For example:

template<typename iterator>
class range {
public: // types
typedef iterator iterator;

public: // c’tor
range(iterator start, iterator finish)
: from(start), until(finish) { }

public: // properties
iterator begin() const {
return from;

}
iterator end() const {
return until;

}
private: // state
iterator from, until;

};

This would make containers substitutable for a range over
themselves which would in turn allow STL algorithms to expect a
range argument rather than two iterator arguments. For example:

template<typename range,
typename function>

function for_each(const range & all,
function apply) {

return for_each(all.begin(), all.end(),
apply);

}

This version of for_each is not part of STL so you have to
provide it yourself. Once you’ve done this you can rewrite
this:

for_each(items.begin(), items.end(),
print(cout));

as the impressively readable:

for_each(items, print(cout));

Understanding this statement is a complete no brainer. It clearly
and concisely expresses its intention. However, it does require
you to create the print class (which hides away the “\n”
detail). Alternatively, you could pull the same trick by writing a
non standard version of copy:

template<typename range, typename output>
output copy(const range & source,

output sink) {
return copy(source.begin(),

source.end(), sink);
}

allowing the beautifully readable:

copy(items, out(cout, "\n"));

Preference

Which versions do you prefer? The explicit iteration, the
for_each versions, or the copy versions? Can you explain
why?

I prefer the copy versions. The name for_each is itself a
subtle but strong hint that iteration is involved. It suggests that
each of the items will be printed to std::cout, one at a time.
The iteration comes first (for_each, leftmost), followed by
the action (print, rightmost). In contrast, the copy is subtler
and simply suggests copying the items to cout. It has more of
a “single operation” feel to it. The iteration is not visible (and
the “\n” is). This difference is important, not because you
should always try to hide all iteration, but because the intention
was to “write the items to cout”. In other words, the copy
version is a simpler and more direct expression of the problem.
Lots of code is too solution focused; it lacks an expression of
the problem and hence is hard to understand and costly to
maintain.

Many thanks to Kevlin for an insightful review of a first draft of
this article.

Jon Jagger
jon@jaggersoft.com

www.jaggersoft.com

13

Overload issue 57 october 2003

14

Overload issue 57 october 2003

Chaos Theory – Part 2
by Alan Griffiths

In a couple of ways this article represents a return to my past:
both to C++ and to the “Chaos Theory” theme. For the last
couple of years my professional interest has been diverted
from C++ to other areas (specifically to Java, J2EE and
development methods). As a result I’ve accumulated a backlog
of C++ related material waiting to be read. In particular, I’ve
finally found time to read “Modern C++ Design” which
demonstrates the ability to use the language to do things at
compile time. Other books (like “Generative Programming”)
that I’ve read during my diversion have also used these ideas
and there are libraries (boost has a fine example) to support
these uses. But I wanted to do more than read and admire
these novel ideas. I wanted to try them out – but I was in
search of a problem.

The problem I chose is one that I wrote about once before –
in the “first” article in a series of articles on “Chaos Theory”.
This was a long time ago, I can’t remember why but the rest of
the series never materialised (in fact I can’t find a copy of the
first article either – but I think it was published in C Vu about
ten years ago.)

Chaos theory is a branch of mathematics that was developed
in the nineteenth century by Poincaré in an attempt to solve the
problem “Is the Solar System stable?” Although he failed to
solve the problem he made a sufficient dent to be awarded a
significant prize for this work. Towards the end of the last
millennium work on the stability of mathematical systems grew
in importance with the increasing use of computers to do
numerical modelling.

The types of mathematical model to which chaos theory
applies are those that develop over time and whose current state
depends upon the past. It gets interesting when this change is
complicated enough that exact solution is infeasible and
numerical modelling is the only approach to getting results.
What the mathematicians showed was that even when it isn’t
possible to write down an exact description of the evolution of
the model it is still possible to make useful predictions about the
type of behaviour.

This sounded fun, so I decided to try it for myself and started
writing a series of articles for C Vu. At least I think I did – I never
wrote the second article and I can’t find the first! The first article
introduced an easy to understand non-linear system and
demonstrated the application of these predictions. The system in
question takes a pair of numbers and generates a new pair of
numbers – and what chaos theory predicts is that one of three things
will happen:
1 There is an infinite non-repeating sequence of number pairs.
2 Eventually the sequence of number pairs settles into a limited

range of values – an “attractor”.
3 From some point in the sequence all the number pairs have the

same value. (This is really a special case of 2)
(In the particular system I’m writing about the first of these is
extremely implausible and it turns out that case 3 is what
happens.) My thoughts turned to finding these fixed values at
compile time.

/*
"This sentence has eight vowels and
twenty consonants"

The above sentence is false because the
numbers eight and twenty are arbitary
(and wrong). But we can create a
sequence of number pairs (Vn, Cn) by
substituting the numbers into a sentence
of this form and counting the vowels and
consonants to get the next pair of
numbers.
Continuing to substitute these values

back into the sentence then one of three
things must happen:

1/ The series of pairs (Vn, Cn)
diverges

2/ The series of pairs (Vn, Cn)
loops though a sequence of values

3/ The series of pairs (Vn, Cn)
converges to constant values

The following program executes this
algorithm *at compile time* to find
values of (Vn, Cn) which make the
sentence true and outputs the
result.
*/

#include <string>
#include <iostream>
namespace {

/*
The first issue to address is that it
isn’t possible to count vowels or
consonants in a string at compile
time. Compile time processing is
limited to creating types and
constant integral expressions. There
are two approaches to this that
occur to me: create a type for each
character and represent a sentence
as a typelist or break the sentence
into subsentences representing the
fixed and variable portions and
represent these as types. While
the former is clearly a lot more
general it involves more work and
it is the latter approach to the
problem that I adopted.
So for the variable parts I have:

*/

template<int count>
struct number_as_subsentence;

/*
OK, we’ll have to define some
specialisations for this before we can
use it, but this is a useful placeholder
for the full sentence template.
*/

template<int vowels, int consonants>
struct sentence {
enum {
no_of_vowels = 11
+ number_as_subsentence<vowels>

::no_of_vowels
+ number_as_subsentence<consonants>

::no_of_vowels,

no_of_consonants = 23
+ number_as_subsentence<vowels>

::no_of_consonants
+ number_as_subsentence<consonants>

::no_of_consonants,
is_true = no_of_vowels == vowels

&& no_of_consonants == consonants
};

static std::string as_string() {
static const std::string

beginning("This sentence has ");
static const std::string

middle(" vowels and ");
static const std::string

end(" consonants!");

return beginning
+ number_as_subsentence<vowels>

::as_string()
+ middle
+ number_as_subsentence<consonants>

::as_string()
+ end;

}
};

/*
This template provides a compile time
mechanism to take a number of vowels
and a number of consonants and determine
the effect of placing them into our
template for a sentence. It will also
construct the corresponding sentence
for us.
What’s next? In the original

program there was a loop to keep
trying the sequence of sentences
until we find one that is true. But
that is another thing that we cannot
do at compile time: we can’t do
iteration, we have to rework the
algorithm as recursion:
*/

template<int vowels,
int consonants,
bool finished = false>

struct calculate_sentence
: private sentence<vowels,

consonants> {

typedef typename calculate_sentence<
calculate_sentence

::no_of_vowels,
calculate_sentence

::no_of_consonants,
calculate_sentence::is_true>

::result result;
};

/*
This keeps trying new sentences all
right, but we need to end the recursion
(which is what the third parameter is
for). Interestingly one cannot use a
“metaprogramming if_” (like that in the
boost library) here because both the true
and false conditions get instantiated.
With the current approach we just need a
specialisation of calculate_sentence as
follows:
*/

template<int vowels, int consonants>
struct calculate_sentence<vowels,

consonants, true> {
typedef sentence<vowels,

consonants> result;
};

/*
That is really all the interesting bits
of the program done. The templates for
describing the numbers are tediously
repetitive - but there is a useful pre-
processor to handle that:
*/

#define NUMBER_AS_SUBSENTENCE(number,\
text, vowels, consonants)\

template<>\
struct number_as_subsentence<number> {\
static std::string as_string() {\
return text;\

}\
\

enum {\
no_of_vowels = vowels,\
no_of_consonants = consonants\

};\
}

NUMBER_AS_SUBSENTENCE(0,"zero",2,2);

NUMBER_AS_SUBSENTENCE(1,"one",2,1);

NUMBER_AS_SUBSENTENCE(2,"two",1,2);

NUMBER_AS_SUBSENTENCE(3,"three",2,3);

...
NUMBER_AS_SUBSENTENCE(48,"forty eight",3,7);

NUMBER_AS_SUBSENTENCE(49,"forty nine",3,6);

NUMBER_AS_SUBSENTENCE(50,"fifty",1,4);

[concluded at foot of next page]

15

Overload issue 57 october 2003

16

Overload issue 57 october 2003

[continued from previous page]

#undef NUMBER_AS_SUBSENTENCE
}

/*
To run the program we only need
instantiate the template and output the
result...
*/

int main() {
std::cout << calculate_sentence<8, 20>

::result::as_string()
<< std::endl;

}
Alan Griffiths

alan@octopull.demon.co.uk

The full program is available on my website at:
http://www.octopull.demon.co.uk/C++/ThisSentence/

Single Exit
by Jon Jagger

In CVu 15.4 Francis makes a case that some functions are less
complex if they use multiple return statements. In Overload 55 I
stated my preference for single exit via a single return. I’d like to
explore the examples Francis presented to try and explain my
preference more explicitly.

Example 1 – Multiple Returns

The first code fragment Francis presented was as follows:

bool contains(vector<vector<int> >
const & array, int value) {

int const rows(array.size());
int const columns(array[0].size());
for (int row(0); row != rows; ++row) {
for (int col(0);

col != columns;
++col) {

if (array[row][col] == value) {
return true;

}
}

}
return false;

}

And he wrote:
“if you are a believer that functions should never have more than

a single return you have a problem because however you reorganise
your code the requirement is for two distinct exit conditions”.

I’m a firm believer, but even if I wasn’t I’d have to agree that
some multiple returns somehow feel more acceptable than others.
And as Francis says “perceived complexity is a function of many
things”. However I don’t think it’s quite accurate to say the
requirement is for two distinct exit conditions. To try and explain
what I mean, consider the following implementation of
contains1:

bool contains(const vector<vector<int> >
& array, int value) {

vector<int> all;
for (int at = 0; at != array.size();

++at) {
copy(array[at].begin(),

array[at].end(),
back_inserter(all));

}

return find(all.begin(), all.end(),
value) != all.end();

}

This is an unusual implementation but it does show that the
requirement is always to return a single value to the function caller
(in this case either true or false). Exactly how you do so
depends on your choice of implementation which is a different
matter. Another approach would be to design an iterator adapter class
that “flattens” the iteration through a container of containers.

Francis continues “The only ways these can be combined in a single
return statement require either continuing processing after you know the
answer or increasing the perceived complexity of the code.” Here is the
heart of the issue – the complexity of the code. Is a single-return
version of contains necessarily more complex?

Example 1 – Single Return

Here’s a more realistic single-return version of contains:

bool contains(const vector<vector<int> >
& values, int value) {

int at = 0;
while (at != values.size()

&& !exists(values[at], value)) {
++at;

}
return at != values.size();

}

This makes use of the following non-standard helper function:

template<typename range, typename value >
bool exists(const range & all,

const value & to_find) {
return find(all.begin(), all.end(),

to_find) != all.end();
}

1 The array[at] duplication can be avoided like this:
copy(array[at], back_inserter(all));

which uses a handy (but sadly non-standard) version of copy which, coincidentally, I
also used in my other article (Software As Read).

template<typename range, typename output>
output copy(const range & source,

output sink) {
return copy(source.begin(), source.end(),

sink);
}

Example 1 – Comparison

What are the differences between these single/multiple return
versions?

● Line count. No difference. (I haven’t counted lines containing
a single left/right brace).

● Maximum indent. The deepest control in the multiple-return
version is 3 – the return in an if in a for in a forwhereas the
deepest control in the single-return version is 1 – the increment
in the while. This is the reason the single-return version needs
fewer lines containing a single left/right brace.

● Function count.The multiple-return version is a single function
whereas the single-return version uses a helper function. The
helper function is useful in its own right and could quite
conceivably have already existed. Small helper functions are
significant because they can help to make other functions smaller
and clearer.

● Loop scaffolding complexity. By using the helper function the
single-return version has lost a whole level of iteration
scaffolding.

● Return expression complexity. The multiple-return version
uses two literals, true and false. One of these returns occurs
at indentation level 3. In contrast the single-return version uses
a single boolean expression at indentation level 1.

● Loop condition complexity. The multiple-return version has
two very simple (and very similar) boolean expressions as its
two for statement continuation conditions. The single-return
version has one (more complex) boolean expression in its
while statement continuation condition. How comfortable you
are with this more complex boolean expression (using the &&
short-circuiting operator) is largely a matter of how familiar you
are with this style.

● Style. If you are looking for an element in a C++ vector you
could argue that it’s reasonable to expect to use the C++ find
algorithm, as the multiple-return version does. In contrast the
single-return version uses a more C-like explicit subscript
iteration. The difference is quite subtle in this case but it does
serve to highlight an important point Francis made – “perceived
complexity is a function of many things (one of them being the
individual reader)”. I think its fair to say the more experience you
have of “mature” C++/STL style the more readable you’d find
the single-return version.

Example 2 – Multiple Returns

The second code fragment Francis presented is as follows (some
code elided, I assume the int <-> bool conversions are
deliberate):

bool will_be_alive(life_universe
const & data,

int i,
int j) {

int const diagonal_neighbours = ...;
int const orthogonal_neighbours = ...;
int const live_neighbours =

diagonal_neighbours +
orthogonal_neighbours;

if (live_neighbours == 3)
return true;

if (live_neighbours == 2)
return data[i][j];

return false;
}

I would start by rewriting this as follows:

bool will_be_alive(const life_universe &
data,

int i,
int j) {

const int diagonal_neighbours = ...;
const int orthogonal_neighbours = ...;

const int live_neighbours =
diagonal_neighbours +
orthogonal_neighbours;

if (live_neighbours == 3)
return true;

else if (live_neighbours == 2)
return data[i][j];

else
return false;

}

The difference is the explicit coding of the control-flow
surrounding the return statements. Do you think making the
control-flow explicit is a good thing? If you’re not that bothered I
invite you to consider the following:

if (live_neighbours == 3)
return true;

I hope you’re more concerned by this lack of indentation.
These days indenting your code to reflect logical grouping is
taken as an article of faith that people forget to question or
recall exactly why it is used. Indentation visibly groups
similar actions and decisions occurring at the same level. If
you believe that indentation is a Good Thing there is a strong
case for clearly and explicitly emphasising that all three return
statements exist at the same level. In contrast, and
significantly, the multiple-returns in the first example are not
at the same level.

Example 2 – Single Return

Francis also presented example 2 using a single return involving
nested ternary operators:

return (live_neighbours == 3)
? true
: (live_neighbours == 2)
? data[i][j]
: false;

I agree with Francis that this adds nothing in terms of clarity. In
fact I think it’s a big minus. This is the kind of code that gives the
ternary operator a bad name. But inside this long and inelegant

[concluded at foot of next page]

17

Overload issue 57 october 2003

18

Overload issue 57 october 2003

[continued from previous page]

statement there is a shorter and more elegant one trying to get
out. To help it escape consider a small progression. We start with
this (not uncommon) pattern:

bool result;
if (expression)
result = true;

else
result = false;

return result;

This is exactly the kind of code that gives single-exit a bad name.
It is overly verbose; it isn’t a simple, clear, and direct expression
of its hidden logic. It is better as:

if (expression)
return true;

else
return false;

But this is still overly verbose. So we take a short step to:

return (expression) ? true : false;

And removing the last bit of duplication we finally arrive at:

return expression;

This is not better merely because it is shorter. It is better
because it is a more direct expression of the problem. It has
been stripped of its solution focused temporary variable, its
if-else, and its assignments; all that remains is the problem
focused expression of the answer. It has less code and more

software. Applying the same process to the chained if-else
containing three return statements we arrive not at a nested
ternary operator but at this:

return live_neighbours == 3 ||
live_neighbours == 2 &&
data[i][j];

This is focused on and is a direct expression of the problem in
exactly the same way.

Conclusion

My rules of thumb are as follows:
● Almost all functions are better with a single return. The issue is

separation of concerns. Do you separate out the statements that
determine the answer from the statement/s that return the
answer? Multiple-return versions don’t whereas single-return
versions do.

● Multiple return statements become less acceptable the further apart
they become (both in terms of logical indentation and physical line
number). Large functions have greater scope for abuse simply
because they allow multiple returns to live farther apart.

● Multiple return statements are more acceptable when they are
all at the same level of a mutually-exclusive selection. In most
cases these multiple returns can be refactored into a more
expressive single return.

But remember, dogmatically following rules is not a recipe for
good software. The best software flows from programmers who
think about what they do and who follow principles and practices
that naturally generate quality.

Many thanks to Kevlin for an insightful review of a first draft of
this article.

Jon Jagger
jon@jaggersoft.com

Error and Exception Handling
by David Abrahams

When should I use exceptions?

The simple answer is: “whenever the semantic and performance
characteristics of exceptions are appropriate.”

An oft-cited guideline is to ask yourself the question “is this an
exceptional (or unexpected) situation?” This guideline has an
attractive ring to it, but is usually a mistake. The problem is that
one person’s “exceptional” is another’s “expected”: when you really
look at the terms carefully, the distinction evaporates and you’re
left with no guideline. After all, if you check for an error condition,
then in some sense you expect it to happen, or the check is wasted
code.

A more appropriate question to ask is: “do we want stack
unwinding here?” Because actually handling an exception is likely to
be significantly slower than executing mainline code, you should also
ask: “Can I afford stack unwinding here?” For example, a desktop
application performing a long computation might periodically check
to see whether the user had pressed a cancel button. Throwing an
exception could allow the operation to be cancelled gracefully. On the
other hand, it would probably be inappropriate to throw and handle
exceptions in the inner loop of this computation because that could
have a significant performance impact. The guideline mentioned

above has a grain of truth in it: in time critical code, throwing an
exception should be the exception, not the rule.

How should I design my
exception classes?

1 Inherit from std::exception. Except in very rare
circumstances where you can’t afford the cost of a virtual table,
std::exception makes a reasonable exception base class,
and when used universally, allows programmers to catch
“everything” without resorting to catch(...). For more
about catch(...), see below.

2 Don’t embed a std::string object or any other data member
or base class whose copy constructor could throw an exception.
That could lead directly to std::terminate() at the throw
point. Similarly, it’s a bad idea to use a base or member whose
ordinary constructor(s) might throw, because, though not
necessarily fatal to your program, you may report a different
exception than intended from a throw-expression that includes
construction such as:

throw some_exception();

There are various ways to avoid copying string objects when
exceptions are copied, including embedding a fixed-length

buffer in the exception object, or managing strings via reference-
counting. However, consider the next point before pursuing
either of these approaches.

3 Format the what() message on demand, if you feel you really
must format the message. Formatting an exception error message
is typically a memory-intensive operation that could potentially
throw an exception. This is an operation best delayed until after
stack unwinding has occurred, and presumably, released some
resources. It’s a good idea in this case to protect your what()
function with a catch(...) block so that you have a fallback
in case the formatting code throws

4 Don’t worry too much about the what() message. It’s nice to
have a message that a programmer stands a chance of figuring
out, but you’re very unlikely to be able to compose a relevant
and user-comprehensible error message at the point an exception
is thrown. Certainly, internationalization is beyond the scope of
the exception class author. Peter Dimov makes an excellent
argument that the proper use of a what() string is to serve as
a key into a table of error message formatters. Now if only we
could get standardized what() strings for exceptions thrown
by the standard library...

5 Expose relevant information about the cause of the error in your
exception class’s public interface. A fixation on the what()
message is likely to mean that you neglect to expose information
someone might need in order to make a coherent message for
users. For example, if your exception reports a numeric range
error, it’s important to have the actual numbers involved
available as numbers in the exception class’s public interface
where error reporting code can do something intelligent with
them. If you only expose a textual representation of those
numbers in the what() string, you will make life very difficult
for programmers who need to do something more (e.g.
subtraction) with them than dumb output.

6 Make your exception class immune to double-destruction if
possible. Unfortunately, several popular compilers occasionally
cause exception objects to be destroyed twice. If you can arrange
for that to be harmless (e.g. by zeroing deleted pointers) your
code will be more robust.

What About Programmer Errors?

As a developer, if I have violated a precondition of a library I’m
using, I don’t want stack unwinding. What I want is a core dump
or the equivalent - a way to inspect the state of the program at the
exact point where the problem was detected. That usually means
assert() or something like it.

Sometimes it is necessary to have resilient APIs which can stand
up to nearly any kind of client abuse, but there is usually a
significant cost to this approach. For example, it usually requires
that each object used by a client be tracked so that it can be checked
for validity. If you need that sort of protection, it can usually be
provided as a layer on top of a simpler API. Beware half-measures,
though. An API which promises resilience against some, but not all
abuse is an invitation to disaster. Clients will begin to rely on the
protection and their expectations will grow to cover unprotected
parts of the interface.

Note for Windows developers: unfortunately, the native
exception-handling used by most Windows compilers actually
throws an exception when you use assert(). Actually, this is

true of other programmer errors such as segmentation faults and
divide-by-zero errors. One problem with this is that if you use JIT
(Just In Time) debugging, there will be collateral exception-
unwinding before the debugger comes up because catch(...)
will catch these not-really-C++ exceptions. Fortunately, there is a
simple but little-known workaround, which is to use the following
incantation:

extern "C" void straight_to_debugger(
unsigned int,
EXCEPTION_POINTERS*) {

throw;
}

extern "C" void
(*old_translator)(unsigned,

EXCEPTION_POINTERS*)
= _set_se_translator(

straight_to_debugger);

This technique doesn’t work if the SEH is raised from within a
catch block (or a function called from within a catch block), but it
still eliminates the vast majority of JIT-masking problems.

How should I handle exceptions?

Often the best way to deal with exceptions is to not handle them
at all. If you can let them pass through your code and allow
destructors to handle cleanup, your code will be cleaner.

Avoid catch(...) when possible
Unfortunately, operating systems other than Windows also wind
non-C++ “exceptions” (such as thread cancellation) into the C++
EH machinery, and there is sometimes no workaround
corresponding to the _set_se_translator hack described
above. The result is that catch(...) can have the effect of
making some unexpected system notification at a point where
recovery is impossible look just like a C++ exception thrown
from a reasonable place, invalidating the usual safe assumptions
that destructors and catch blocks have taken valid steps to ensure
program invariants during unwinding.

I reluctantly concede this point to Hillel Y. Sims, after many long
debates in the newsgroups: until all OSes are “fixed”, if every
exception were derived from std::exception and everyone
substituted catch(std::exception&) for catch(...),
the world would be a better place.

Sometimes, catch(...), is still the most appropriate
pattern, in spite of bad interactions with OS/platform design
choices. If you have no idea what kind of exception might be
thrown and you really must stop unwinding it’s probably still
your best bet. One obvious place where this occurs is at language
boundaries.

David Abrahams

References

The following paper is a good introduction to some of the issues
of writing robust generic components:

D. Abrahams: “Exception Safety in Generic Components”,
originally published in M. Jazayeri, R. Loos, D. Musser (eds.):
Generic Programming, Proc. of a Dagstuhl Seminar, Lecture Notes
on Computer Science. Volume 1766

19

Overload issue 57 october 2003

20

Overload issue 57 october 2003

SINGLETON – the anti-pattern!
by Mark Radford

A pattern captures and documents good practice that has been
learned by experience. Patterns are a relative newcomer to
software development, yet have actually existed in spirit within
that community for as long as software has been developed. The
point is this: skilled software developers have always known that
when solving problems, some solutions seemed to work – with the
benefit of prior experience, some solutions just felt right. A Pattern
captures a problem and a solution that works, but that’s not all, for
it is very rare to find a solution that works in all circumstances.
When experienced software developers apply a solution, they do so
as a result of their experience, taking into account the context in
which the problem occurs as well as the tradeoffs accepted in
adopting that solution. Therefore, a Pattern captures a problem in
context, together with a solution and its tradeoffs.

Patterns came to the attention of software developers in the 1990s
and have accumulated a healthy body of literature. The book Design
Patterns [1] is the best known and the one responsible for getting the
mainstream of the community interested. It is rather ironic and sad, that
this very book is also responsible for one of the worst red herrings ever
to mislead the software developers: Singleton!

According to Design Patterns the intent of SINGLETON is to:
Ensure a class has one instance, and provide a global point of

access to it.
Unfortunately this is rather vague, and this in itself causes some
difficulties in discussing SINGLETON, because it fails to take into
account that a SINGLETON is only meaningful if it has state. In the
absence of state, ensuring there is only ever one object of a
particular class is meaningless, because each instance is the same
as every other one.

I have implemented SINGLETON many times over the past several
years, and now, I can’t think of one case where the SINGLETON

solution was actually a good solution to the problem it attempted
to solve. It seems to me that there are some serious problems with
the whole approach, because correspondence between problem and
solution domain models, encapsulation, and the ability to perform
initialisation, are all compromised. Further, it is now my belief that
the Design Patterns examples of where deployment of SINGLETON

is claimed to be a good approach, fail to stand up under scrutiny
(but more about that shortly).

I have remarked that patterns capture good ways of solving
problems. However, for every good way there are many bad ones
and some of these can be found deployed several times in practice.
One reason for the repeated deployment of a bad solution is that it
appears to solve the problem, and usually this is for one (or, for that
matter, both) of two reasons:
● The problem that needs solving has not been correctly identified,

and this results in the deployed solution being a solution to the
wrong problem

● The solution has been deployed because it really does solve the
problem, but subject to a set of tradeoffs ranging in quality from
less than optimal to downright unsuitable

Such a recurring solution – i.e. one that leads to a worse rather
than better design context – is known as an anti-pattern. It is my
belief that SINGLETON is not a pattern but an anti-pattern, and that
its use causes design damage! In this article I will attempt to state
my case. I will start by listing several reasons why I think
S INGLETON is a bad idea, and finish by making some
recommendations for alternative approaches.

Problems

According to Design Patterns, SINGLETON is a design pattern –
this means it is either language independent, or at least applicable
to several languages. I will detail what I think the critical
problems with SINGLETON are – i.e. the reasons why I choose to
use the strong term design damage – with this factor in mind.

Design Models

I think the best way to proceed here, is to start by going back to
the basics of interface design, and in particular the questions of:
● How much knowledge should an object be able to assume of the

outside world in which it will be used?
● How much responsibility should be captured within a single

interface?
The answer to the first of these is simply this: an object’s
knowledge of the outside world should extend to what it is told via
its interface. The purpose of an object is to provide certain
functionality to its clients, and to this end an object should provide
the minimum useful interface that makes this functionality
accessible. This underpins modularity in a design. How an object is
used in the outside world beyond its interface is something that it
should – as a matter of design principle – not assume any
knowledge of. Therefore it follows that an interface can’t make any
assumptions about how many objects that support that interface are
needed, because that issue is resolvable only in the outside world.

The question of how much responsibility an interface should be
charged with is somewhat less concrete. An interface should be
cohesive to the point that it embodies one role in a design, but where
the boundaries of a role definition lie is by no means hard and fast.
Consider an interface supporting a simple FACTORY METHOD: we
can see that beyond whatever functionality the interface provides,
its role is extended to also serve up other objects with related roles.
However, in the case of SINGLETON, the interface must not only
serve up the single object, but must also – in addition to whatever
design role it plays – promise to manage that object. Its role
therefore extends to three responsibilities.

Object design affords the capability to preserve correspondence
between the problem domain model, through the stages of modelling
the solution domain, and down to the implementation code. In his
Design [2] presentation Kevlin Henney uses the term modelarity as
meaning “a measure of the correspondence between the components
of the problem being modelled and those in its solution”. This
modelarity factor alone plays a large part in accounting for the
effectiveness of objects in software design. A key feature of a well
designed system is the harmony between modelarity and modularity.

The whole premise on which SINGLETON is based is that there
can only ever be one object of a certain class. When a design is
viewed from the perspective of preserving modelarity, it suddenly
becomes apparent that this premise is far from sound! In arguing
this particular case, I will go back to Design Patterns, and examine
what it claims are good uses of SINGLETON. In the section titled
“Motivation” Design Patterns makes the following statements:
● Although there can be many printers in a system, there should

only be one print spooler
● A digital filter will only have one A/D converter
● An accounting system will be dedicated to serving one company
The above three assertions all have something in common: they
describe cases of a client (the system that uses the print spooler, the
digital filter and the company) needing and using the services of
only one instance of a supplier (the spooler, A/D converter and

accounting system, respectively). Now Design Patterns asserts that
the spooler, A/D converter and accounting system are therefore
candidates for being SINGLETON. This however is not the case and
would compromise modelarity, because there is no inherent reason
why these three types of service supplier can only have one instance
– the real case is that only one instance is needed by the client, and
the real problem is that of how the client should manage the one
instance it needs. Forcing the supplier to only ever have one instance
deprives the model of its opportunity to express the cardinality. The
model suffers because the wrong problem has been solved!

There is another way in which the use of SINGLETON compromises
the harmony between modelarity and modularity. Here the problem
is more subtle because SINGLETON appears to underpin modularity by
putting an interface and the management of its instance in one place,
but this is actually an illusion. The problem domain is the source of
and motivation for the model, but the management of instances is a
facet of the design of a software system – it does not happen in the
problem domain. Therefore, instance management is a concern in its
own right that should be separated from others. It follows that, while
it could be argued that putting an interface and the management of
its instance in one place constitutes modularity, the argument that this
is the wrong modularity is far more compelling!

Encapsulation

Encapsulation is fundamental to object oriented design. It is the
principle by which concerns are compartmentalised, and
boundaries are drawn around them. Specifically, encapsulation
manifests itself in software design in the form of implementation
detail being kept cordoned off and used only via a public
interface. It is this principle – the encapsulated implementation
being accessed via a well defined public interface – that
underpins many of the benefits that good design brings with it:
clear communication of intended usage, ease of testability etc.

Global variables have been known to be the enemy of
encapsulation for some time. SINGLETONs have but one instance,
and it penetrates the scopes in which it is used via a route other than
the public interface, making it the operational equivalent of a global
variable. Therefore, SINGLETONs have many of the same drawbacks
as global variables, and it is unfortunate that their appearance in
Design Patterns has lead to so many software developers failing to
notice this. In both cases – i.e. SINGLETONs and global variables –
it becomes difficult to specify the pre and post conditions for the
client object’s interface, because the workings of its implementation
can be meddled with from outside, but without going through the
interface. A consequence of the difficulties in specifying pre and
post conditions is that unit tests become harder to specify.

Initialisation

Usually, at the start of a program you won’t have the information
needed for a SINGLETON’s initialisation. Initialisation on first use is
no good, because you won’t know which path will be taken through
the program until it is actually run. If there is only one instance of a
SINGLETON, then it must be initialised only once, on or just before the
first use of the (unique) object. However, the path through the code
will not be known until run time, and so there is no way to know the
point at which the SINGLETON instance must be initialised.

One attempt to get around this I have seen (I’m deliberately not
using the word “solution”) is to attempt to initialise on every
possible control flow on which a reference to the SINGLETON is
obtained, with an exception being raised if it is used prior to

initialisation. Besides being plain ugly, this approach introduces a
maintenance headache; specifically this means:
● If a new control flow is introduced into the program and a reference

to the SINGLETON object is acquired on it, then it is also necessary
to ensure the initialisation is executed on the new control flow.

● When the test suite is updated to take account of the new control
flow, an additional test – i.e. a test that fails if acquiring a
reference to the Singleton object raises an exception – will be
needed to ensure initialisation has taken place

All this is not to say that initialising the SINGLETON’s instance is
impossible, but the number of necessary workarounds and
overheads can easily be seen mounting up.

Recommendations

Having given reasons why the use of SINGLETON causes damage to
software design, what recommendations can be made for alternative
approaches? It seems logical to look at the drawbacks described
above, and suggest approaches that do not suffer from the same
drawbacks. I’ll start by addressing the latter two drawbacks – i.e.
initialisation difficulties and breach of encapsulation – and then
assess the situation. Consider the following two approaches, when a
Client object uses the services of a Supplier object –
Supplier being the object that would have been a SINGLETON,
had such a design approach been used.

Both these approaches are examples of the pattern PARAMETERISE

FROM ABOVE (see [3]). Actually, there’s something familiar about
these two approaches, and so there should be, because they’re
just describing normal design practices!

It is obvious that using either of the above approaches, there will
be no problems initialising the Supplier object. In both cases
Supplier can be initialised when it is created, be it in Client
itself (latter approach) or in Client’s client.

Encapsulation is also significantly strengthened, and a good way
to demonstrate this is to consider what happens when Client’s
interface is unit tested. When the design approach used makes
Supplier a SINGLETON the behaviour of Supplier is
unpredictable because it is outside the control of both Client and
its client. In this scenario the behaviour of the component under test
– and hence the outcome of the test – is affected by something invisible
and uncontrollable. Replace this scenario with one where either of the
above two approaches is used and this changes as follows:
● In the former case Supplier can be replaced with a test

implementation exhibiting behaviour designed to test Client
● In the latter case Supplier is an implementation detail of
Client , so the lifetime of Supplier is encapsulated
completely within Client and therefore there is no element of
randomness about it

[concluded at foot of next page]

21

Overload issue 57 october 2003

Approach When it makes sense

Pass the Supplier object directly into When the Client
the Client’s methods that make use of object is not the sole
it, by passing the Supplier object user of the Supplier
directly through the interfaces of those object
methods.

Pass the information (i.e. the arguments) When the Client
needed to create the Supplier object object is the sole user
to Client through its interface, so that of the Supplier
Client can create the Supplier object
object within its implementation.

22

Overload issue 57 october 2003

[continued from previous page]

Now that initialisation and encapsulation are taken care of, what
of the issues related to models and class design? Well, interface
design seems to be in good shape: what could be more natural than
passing an object – either a supplier object, or the information
needed to create one – through an object’s interface? Unfortunately,
the approaches recommended here will not automatically avoid
compromising any models. What is for certain is that no models are
automatically compromised either, which would be the case were
an approach involving SINGLETON to be used (for reasons described
earlier in this article). It was SINGLETON’s mixing of concerns in its
interface – its role in the model and the object management concern
– that was problematic, but provided participating interfaces are
designed with attention being paid to cohesion, this does not happen
when a PARAMETERISE FROM ABOVE approach is adopted.

Summary

For a problem and its solution to be a pattern, the solution must
be a good one in practice. SINGLETON is based on the premise that
a class must only ever have one instance, and must itself enforce
this singularity – but the premise is false because the client of the

class, not the class itself, is in a position to know how many
instances are needed. Further, breaching encapsulation and
causing initialisation difficulties cannot be good for any set of
design tradeoffs. Given the design damage that SINGLETON

inflicts, it must be considered an anti-pattern.
Mark Radford

mark@twonine.co.uk

References

[1] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.
[2] Kevlin Henney, Design: Concepts and Practices, Keynote
presentation at JaCC, Oxford, 18th September 1999 (available
from www.curbralan.com).
[3] PARAMETERISE FROM ABOVE is a term in use, but there
is currently no formal write-up.

Acknowledgements

Thanks to Kevlin Henney and Alan Griffiths for their helpful
comments.

A Policy-Driven CORBA
Template Library to Facilitate
the Rapid Development of
DOC Middleware
by Jeff Mirwaisi

While CORBA provides a robust, well-defined standard for the
development of distributed object computing (DOC) middleware,
the machinery needed to deploy a non-trivial application tends to
be, at best, tedious and repetitive and, at worst, a source of hard-
to-discover errors. As an application/system grows in complexity,
the need for a reusable CORBA machinery abstraction becomes
self-evident. The tried-and-true practice of cutting and pasting
and the common setup function paradigm does not provide an
adequate solution to the problem. In order to address these needs
and overcome the problems of the classical design, this paper
presents a policy-driven abstraction mechanism that promotes
code reuse while preserving the rich capabilities CORBA
provides.

1. Introduction

CORBA has developed into a robust, mature distributed object-
computing standard over the years, but the effort in environment
setup of large systems with many servant types is problematic. The
cost of recreating the same or slightly differing requirements for
multiple servant types or for multiple applications is unacceptable
given that the reward for such work is non-existent and the power
of modern development tools renders classical methods [1]
inefficient. Large-scale CORBA applications and systems may
provide hundreds of disparate servant types with varying
requirements on the underlying ORB facilities. To meet the needs
of CORBA server/system developers, the following presents a C++
policy-driven library design that eliminates the code redundancy
issues in traditional CORBA applications while maintaining the
rich set of options provided by the CORBA standard.

Template meta-programming has emerged as a powerful tool
with which to construct reusable, extensible libraries. The CORBA

Template Library (CTL) relies heavily on said techniques and
borrows the policy-driven design approach pioneered by Andrei
Alexandrescu in “Modern C++ Design” (MCD) [2]. The generic
functionality this provides is ideal for library designers as it allows
an extensibility lacking in traditional OO- and procedure-based
libraries. Template-based policies provide the necessary paradigm
to accomplish the “write once use many” goal, while providing a
method for future extension that is both safe and predictable, and
allowing us to leverage working code to dramatically cut down on
testing, development, and redesign time.

2. Motivation

Expertise in the application of CORBA and the design of
distributed computing systems is secondary to that of
constructing a system that “does something.” Work involved in
the design and development of the machinery needed to deploy
an application using CORBA is wasted effort because the real
objective is the functionality exposed via CORBA. For instance,
in order to set up a minimal CORBA server environment, an
ORB must be initialized, a servant must be instantiated and
activated, and an active thread must run the ORB dispatching
mechanism. In the simplest case, this is not a burden and does not
indicate a need for yet another library/abstraction. A transient
servant could simply be activated under the Root POA and the
application’s main thread would run the dispatch loop. If,
however, we were to need a system with many servant instances,
multiple POAs with differing POA policies and ORB
requirements, the task becomes substantially more difficult. If we
wish to develop a true peer-to-peer application, where the
application is both a client and a server, instead of a pure server
application, the necessary setup becomes even more
cumbersome.

Historically, these concerns have been met with procedural setup
and initialization functions, code repetition, or an OO abstraction
mechanism, none of which are ideal. Procedural solutions fall short
because of lack of easy reconfiguration of servant initialization
behavior. Environmental changes require modification of servant
setup code, possibly in multiple locations, for instance, calls to a

number of different POA setup procedures and object instantiation
and activation functions. A simple change from a transient, system-
identified, stack-allocated servant to a persistent, user-identified,
heap-allocated servant is error prone and takes more effort than the
alternate policy-driven model presented here. The traditional OO-
based design also fails to simplify deployment significantly and can
in fact be more difficult to adapt than the procedural solution.
Inheritance-based solutions rely on a given base type that limits
your design choices or requires a large number of similar base types
to achieve all possible combinations, i.e., a reference counted
transient servant, a non reference counted version, and persistent
version of both, etc.

Addressing these limitations with a reusable and extensible
template library provides an abstraction layer that will allow
developers to concentrate on the functionality they want to expose,
not the machinery needed to expose them. To that end, the following
presents some meta-programming techniques to simplify our goal,
and a policy driven library of reusable types that simplify DOC
middleware development to a point where the only new work
needed in most cases is the development of the methods exposed
by a given interface. The following pages present the basic
techniques employed by the library and a synopsis of the library
policies and their usage.

3. CORBA Template Library (CTL)

The CORBA Template Library (CTL) presented here attempts to
provide an extensible library of policies and composable
elements to simplify the deployment of large-scale CORBA
applications. The design concentrates on the servant activation
process, the mechanism by which the servant accesses the
information it needs during the activation process, and the
organization of servant instances in a larger service framework.
The CTL is a freely available C++ source code library, available
under the BSD license.

Currently the library is tied to ACE/TAO but work is underway
to make it as ORB agnostic as possible.

3.1 Servant Activation/Deactivation

Servants represent the concrete implementation of a CORBA
Object in a particular programming language. They are local
instances of a type that are made known to the CORBA
framework in order to service remote requests. A local servant
instance is “activated,” made known to the CORBA framework,
by first instantiating the servant, finding or creating a suitable
Portable Object Adapter (POA), registering with that POA, and
finally some secondary object-activation activity such as Object
exposition through the Naming Service. In order to preserve the
rich set of options available to CORBA developers a policy-
based design was chosen that allows every set of possible
activation scenarios to be expressed by way of four policy-type
delegates: memory policies, POA- activation/selection policies,
object-activation policies, and auxiliary policies. The servant
activation (createServant()) and deactivation
(destroyServant()) functions simply dispatch the requests
to the specified policy delegates.

3.1.1 Memory Activation/Deactivation
The memory policy is the first called during activation and the
last called during deactivation. Most users will simply use the
empty memory policy, which does nothing. But a number of

23

Overload issue 57 october 2003

Basic CORBA Terminology
CORBA, Common Object Request Broker Architecture:

CORBA is a standardized middle-ware framework that
facilitates distributed-object system development. The CORBA
standard is maintained and developed by the OMG (Open
Messaging Group, www.omg.org) Among other things the
standard provides specific mappings between a platform
independent “interface definition language” (IDL) and a number
of development languages such as C++ and Java, a transparent
messaging infrastructure for marshalling requests for, and data
to, the remote processes, and a set of well defined Services such
as the Naming Service.

ORB, Object Request Broker: the ORB is the messaging component
of a CORBA system, all outgoing requests go through an ORB and
are packaged and marshaled across the wire, all incoming requests
are de-marshaled and dispatched by the ORB. The ORB has a
number of secondary functions as well such as bootstrapping
(resolve_initial_references), IOR management/manipulation
(string_to_object, object_to_string) etc.

POA, Portable Object Adapter: the POA is the bridge between
the ORB and a servant skeleton. ORBs dispatch a remote
request/invocation to a POA that in turn either rejects the
message or delivers it to a concrete servant implementation by
way of its skeleton.

CORBA Object: Objects are the CORBA counterparts to servant
instances, while the servant is a process local entity, an Object
is accessible across process and machine boundaries.

IOR, Interoperable Object Reference: IORs are encoded names
that uniquely identify an Object, they include the host’s contact
information, the object key that identifies the Object to the
ORB/POA, and any other data necessary to contact the Object.

IDL, Interface Definition Language: IDL is a platform
independent language to describe interfaces and data types. The
IDL is run through an IDL compiler that generates language
specific mappings of the types. Skeleton and stub code is
generated by the IDL compiler.

RootPOA: The Root POA is the primary POA hosted by an ORB;
all other POAs are subordinates of the RootPOA. Simple
transient Objects with system ids can be activated under the
RootPOA. It is also the only POA immediately available when
the ORB is initialized and the last to be destroyed during
deactivation.

Name Service: the Naming Service (CosNaming) is a CORBA
service for exposing objects in a directory like manner –
advertised object references are identified by a name and kind
and placed in a naming-context, which is similar to a directory
or folder. Clients can resolve names (files) and contexts
(directories) bound to the Name Service obtaining an Object
reference for the associated name that can be narrowed to an
expected interface.

Skeleton: generated server side code that bridges the gap between
the POA and the servant, conforms to an expected interface used
by the POA and provides the mapped IDL types interface to be
overridden by the servant implementation

Stub: generated client side code that supports the IDL specified
interface and interacts with the ORB to reach a remote Object,
a remote proxy to the Object and servant.

Servant: user generated code that conforms to the interface
expected by a skeleton and implements the necessary code to
fulfill the methods of the IDL specified interface.

24

Overload issue 57 october 2003

policies are provided to simplify garbage collection of free store
allocated servants. The memory policy also provides a
convenient base type for alternate allocation strategies, such as a
pooled allocator.

3.1.2 POA Activation/Deactivation
The POA activation process is arguably the most cumbersome
aspect of CORBA applications, and generates the most redundant
code. While it is possible to use a procedural approach that
simplifies the most common-use scenarios, with seven basic
policies and a number of extension policies (pluggable protocols
such as bi-directional GIOP) an exhaustive set of POA activation
procedures is not a practical option.

The CTL provides two mechanisms by which a POA can be
created: two functions create_poa and create_from_poa,
which are explicitly specialized with the policy type desired; and a
servant POA policy that will create the POA for a servant during
the activation process. The two options allow for easy POA
activation whether the POA to Object relationship is one-to-many
or one-to-one.

A classic POA activation scenario involves first obtaining and
narrowing a reference to the RootPOA obtaining the
POAManager, generating the policy list, creating the new POA,
and then cleaning up.

CORBA::Object_var obj

= orb->resolve_initial_references("RootPOA");

PortableServer::POA_var root

= PortableServer::POA::_narrow(obj);

PortableServer::POAManager_var poa_manager

= root->the_POAManager();

CORBA::PolicyList policies;

policies.length(2);

policies[0] = root->create_lifespan_policy(

PortableServer::PERSISTENT);

policies[1] = root->create_id_assignment_policy(

PortableServer::USER_ID);

PortableServer::POA_var wfa_poa = root->create_POA(

"WidgetFactoryAdmin_i",

poa_manager,policies);

poa_manager->activate();

for(CORBA::ULong i=0;i<policies.length();++i)

policies[i]->destroy();

The equivalent when using CTL is to specify a POA activation
policy during servant activation:

POAPolicy::FromRoot<D,POAPolicy::PersistentUserID<> >

// POA policies which require an id to create the

// POA also provide a set_poa_id method.

And an example when using CTL to create a new POA outside of
servant activation:

PortableServer::POA_var w_poa = POAPolicy::create_poa<

POAPolicy::PersistentUserID<> >(orb,"Widget_i");

The POA policy types provided are composable in a linear
hierarchy, as are most of the types in the CTL. So for instance,
assuming you wanted a POA that used bi-directional GIOP,
hosted transient system id Objects, and didn’t allow implicit
activation of servants, the appropriate specification would merely
be a string of nested template types:

POAPolicy::Bidirectional<

POAPolicy::TransientSystemID<

POAPolicy::NoImplicit<> > >

POA deactivation, in both the classic and CTL use scenarios, is
relatively simple. The CTL POA policy takes care of it
automatically if it created the POA. If the POA was not created
during the activation process but was instead created as above the
user is responsible for destroying the POA when it is no longer
needed, for instance:

w_poa->destroy(true,true);

3.1.3 Object Activation/Deactivation
Once a suitable POA has been created a servant instance must be
tied to the POA and an Object reference that specifies the servant
to the outside world must be generated. A persistent Object
reference remains the same across different execution contexts
while a transient Object reference is unique each time the servant
is activated. CTL provides two simple policy types that activate
persistent and transient Objects under the specified POA during
the activation process. A number of other policies are also
provided such as Multicast servant activation but are not
discussed here.

A classic persistent Object activation scenario:
PortableServer::ObjectId_var oid

= PortableServer::string_to_ObjectId(

"WidgetFactoryAdmin_i");

wfa_poa->activate_object_with_id(oid.in(),&wfa);

CORBA::Object_var wfa_obj

= wfa_poa->id_to_reference((oid.in()));

Example::WidgetFactoryAdmin_var wfa_ref

= Example::WidgetFactoryAdmin::_narrow(wfa_obj);

In contrast, when using the CTL, activating a servant with a
persistent Object reference is simplified to specifying the object-
activation policy:

ObjPolicy::UserID<D>

// object policies which require an id during

// activation expose a set_object_id method.

Object deactivation is done automatically during servant
deactivation in the case of CTL servants. A classic CORBA
application would need to explicitly deactivate the Object when it
is no longer needed:

PortableServer::ObjectId_var oid

= wfa_poa->servant_to_id(&wfa);

wfa_poa->deactivate_object(oid);

3.1.4 Auxiliary Activation/Deactivation
Auxiliary policy processing is the last step during activation and
the first during deactivation. It provides a point during the
activation/deactivation process after the servant has been
associated with a CORBA Object and before, in the case of
deactivation, that Object has been torn down. As such it is an
ideal point from which to expose the Object to some form of
external lookup such as the Naming Service; or to set up
messaging policies to be used, such as timeout policies. Two
simple exposition policies are presented here: one that binds the
newly activated Object to the ORB’s IOR table, and one that
binds the Object to the root naming-context of the Naming
Service.

The IOR table provides a mechanism by which external ORB
processes can discover an Object and obtain a reference to the
Object. When a call to orb->resolve_initial
_references("NameService") is made, if an initial
reference was not supplied during ORB initialization a multicast

request is sent to external ORB processes that in turn query their
IOR table to try to fulfill the request for the name
specified("NameService" in this case). A CTL servant can
request IOR table binding and unbinding during activation and
deactivation respectively, by providing the appropriate Auxiliary
policy:

AUXPolicy::BindIORTable<D>

// The BindIORTable policy exposes a method

// set_iortable_id to specify the ID the Object

// reference will be associated with in the table.

The equivalent classic CORBA application would need to:
obj = orb->resolve_initial_references("IORTable");

IORTable::Table_var tbl

= IORTable::Table::_narrow(obj);

CORBA::String_var str

= orb1->object_to_string(wfa_obj);

tbl->rebind("WidgetFactoryAdmin_i",str.in());

in order to bind the Object reference to the IOR table. And in
order to unbind do the complementary

tbl->unbind("WidgetFactoryAdmin_i");

during deactivation. This of course entails either maintaining the
above IORTable::Table_var or reacquiring it when needed.
The corresponding CTL use is transparent and automatically done
during the servant deactivation process.

The Naming Service provides a directory service for exposing
“well known” servants to distributed systems. Much like the IOR
Table it provides a mechanism for exposition and lookup. CTL
servants that wish to take advantage of the Naming Service simply
specify the appropriate auxiliary policy such as:

AUXPolicy::BindRootNamingContext<D>

// The BindRootNamingContext policy provides a

// set_cosnaming_data method to specify the id and

// kind that will be bound to the root naming-context.

to be used during activation and deactivation. A classic CORBA
application on the other hand needs to manually register with the
Naming Service after the Object has been activated:

CosNaming::Name name;

name.length(1);

name[0].id

= CORBA::string_dup("WidgetFactoryAdmin_i");

name[0].kind

= CORBA::string_dup("WidgetFactoryAdmin_i");

obj = orb->resolve_initial_references("NameService");

CosNaming::NamingContext_var nc

= CosNaming::NamingContext::_narrow(obj);

nc->rebind(name,wfa_obj);

And correspondingly unbind before deactivation:
nc->unbind(name);

Like the other CTL policy types the Auxiliary policies may be
combined into a composite. So if a servant wanted to bind both
to the IOR table and the Naming Service a composite policy
type:

AUXPolicy<BindIORTable<D,

AUXPolicy::BindRootNamingContext<D> >

could be used.

3.2 Mix-in Composition: Host and
Delegate

The CTL makes extensive use of the Curiously Recurring
Template Pattern and Parameterized Inheritance to deliver a

“composable” design. Composable in this context refers to the
ability to extend an inheritance hierarchy by nesting template
types. The main use for this technique in the CTL is to provide a
consistent means by which to retrieve the necessary data needed
during servant activation/deactivation. The choice of whether to
“host” the data in the servant type or to “delegate” the request to
some other type is left up to the user. Hosts store the data as a
member of the servant type and provide a common interface used
by the policies to retrieve that data. Delegates provide the same
interface but act as proxies for the data. The CTL provides a
number of Host and Delegate mix-in types in the
CTL::MIX::Host and CTL::MIX::Delegate namespaces
respectively.

All the types in the MIX namespace use both a D (Derived) and
B (Base) template parameter and are therefore “composable” as
nested templates. Assuming S is the servant base type and we
wished to construct a servant that hosts its own ORB_var
(CTL::MIX::Host::ORB) and POA_var

(CTL::MIX::Host::POA) we could form the composite type by
writing out the template CTL::MIX::Host::ORB<D,

CTL::MIX::Host::POA<D, S> > where D, as noted above,
represents the most derived type i.e. the type that inherits from the
composite. To simplify the above, which gets rather ugly when
many types are composed, the CTL::Compose namespace
provides a family of templates that will allow the type to be
expressed in a simpler manner. For instance, the composeDB type
could be use to rewrite the above as
CTL::Compose::composeDB<D,S, CTL::MIX::Host::ORB,

CTL::MIX::Host::POA>::type, or without the fully qualified
names composeDB<D,S,ORB, POA>::type.

For a further discussion of composition see the sidebar
Template Techniques Used in the CTL (next page), and the
material in the references section. The following sections present
some of the more important elements of the CTL::MIX
namespace.

3.2.1 Mix-in ORB
Every servant needs a reference to an ORB so that a POA can
either be found or created, and an Object can be activated. The
ORB mix-in type provides an interface for accessing the
ORB_var that the servant type will use. The Host variation
maintains a member ORB_var and provides an additional
method set_orb, while the Delegate dispatches the request to
the servant’s “container”.

3.2.2 Mix-in ORBTask
CTL provides a helper type CTL::OrbTask that is simply an
ORB_var and thread that runs the ORB reactor loop. The mix-in
type CTL::MIX::Host::ORBTask helps simplify many
multi-orb applications.

3.2.3 Mix-in POA
Once a POA has been created or found on behalf of a servant, it
needs to be stored for subsequent use during Object activation
and deactivation. The mix-in types CTL::MIX::Host::POA
and CTL::MIX::Delegate::POA provide an interface that
returns a PortableServer::POA_var& that the
activation/deactivation policy methods can use to store and gain
access to the associated POA. The Host variety also provides a
set_poa method.

25

Overload issue 57 october 2003

26

Overload issue 57 october 2003

3.3 Servant Holders

Once a servant has been activated and an Object reference (IOR)
has been generated that data needs to be stored somewhere. The
CTL provides two simple holder types, CTL::BasicServant
and CTL::TunneledServant. The only difference between
the two is that CTL::TunneledServant allows the storage
of a second IOR that identifies the servant, for instance an
alternate route through a DSI gateway. Both Holder types support
a getServantPtr and setServantPtr method.
CTL::TunneledServant supports the additional methods
getTServantPtr and setTServantPtr.

3.4 Container Holders

An optional Holder type that maintains a parameterized-back-
pointer to some arbitrary type is also provided.
CTL::BasicContainer maintains this data and provides a
simple interface for modifying and accessing the information.
The Delegate types in CTL::MIX::Delegate use this
information to redirect requests for activation data to the type
specified to CTL::BasicContainer. The interface supported
is very simple: getContainer, attachToContainer and
detachFromContainer.

3.5 Servant State

CTL::ServantState acts as a common base that servants
can use to report activation and deactivation failure. The interface
is simple and merely provides a method of setting and querying a
bit field that represents different servant states. All CTL servants
support the CTL::ServantState interface.

3.6 A Complete Servant

All CTL servants provide a simple interface:
createServant() and destroyServant(). These in turn
use the policy types provided to activate and deactivate the
servant. Though the interface is simple the templated nature of
the policy driven design allows for an unlimited set of servant
activation/deactivation scenarios. Two base servant types are

presented below. They are identical except that the second
inherits from an extra “container” template type that represents a
container holder type as described in section 3.4. The number of
template parameters may seem extravagant but they allow us to
formulate a generic servant activation/deactivation mechanism.

template <typename D,typename S, typename SS,

typename PP = CTL::POAPolicy::Empty,

typename OP = CTL::ObjPolicy::Empty,

typename MP = CTL::MemPolicy::Empty,

typename AP = CTL::AUXPolicy::Empty,

typename B = CTL::EmptyType >

struct CompositionServant : CTL::CompositionType<D,B>,

S,SS,MP,PP,OP,AP,CTL::ServantState {

typedef B BASE;

typedef D DERIVED;

virtual void createServant() {

initializeMemoryPolicy(

static_cast<DERIVED*>(this));

initializePOAPolicy(

static_cast<DERIVED*>(this));

initializeObjectPolicy(

static_cast<DERIVED*>(this));

initializeAUXPolicy(

static_cast<DERIVED*>(this));

}

virtual void destroyServant() {

destroyAUXPolicy(static_cast<DERIVED*>(this));

destroyObjectPolicy(

static_cast<DERIVED*>(this));

destroyPOAPolicy(static_cast<DERIVED*>(this));

destroyMemoryPolicy(

static_cast<DERIVED*>(this));

}

virtual ~CompositionServant() {}

};

And the similar servant base type that also provides a template
parameter for a container holder type.

Template Techniques used
in the CTL

Fulfilling the requirements of an extensible, reusable library
requires a number of template techniques. A basic understanding
of template meta-programming is assumed, as is a familiarity
with policy-driven design as expressed in “Modern C++ Design”
(MCD) [2]. Beyond basic template techniques and the concepts
propounded in MCD, a number of other mechanisms are used.
The major techniques used in CTL are briefly described below.

Policy-based Design

Though the concept of policy driven designs is not completely new
(POA policies), the concept has been adopted in recent years by the
generic programming community, thanks in large part to the
pioneering work presented in “Modern C++ Design” (MCD) and
the Loki library. Policies represent the behavior exposed by a type
(P) when dealing with a particular type (T) and, therefore, are
groups of related functions, in contrast to traits, which describe a
particular type (T) by way of a set of descriptive typedefs and
values.

There are a number of ways to represent policies, the simplest
of which is a class template that is made available to the client type
via a template template type. Unfortunately, template template
types are just now being handled consistently across different C++
compiler implementations. Therefore, CTL uses the simpler form
of a specialized templated struct specialized by the client, except
in the situation where the policy is not inherited. In those cases the
policy design is simplified and a template type, whose methods
are static, is expected. A complete discussion of policy-based meta-
programming is not given here, but for the sake of completeness
the following gives a quick demonstration.

A simple example:
template <typename T>

struct P {void f() {}};

P is a very simple policy for an arbitrary type T. In the above
example, P makes no demands on the type T. This is of course
not the general case but is merely a simplification used to
illustrate the policy paradigm.

template <template <typename U> class T>

struct C : T<C<T> > {};

27

Overload issue 57 october 2003

C is an arbitrary client of policies. It designates that one
arbitrary policy is needed (T) and will inherit from said policy,
specifying itself as the parameter type.

typedef C<P> CP;

CP is a completely defined type, which uses the P policy above
in conjunction with the C policy client.

A number of resources dealing with policies [2] and templates
[4] are provided in the references.

The Curiously Recurring
Template Pattern

The Curiously Recurring Template Pattern (CRTP) [5], for
lack of a better term, is a template technique that introduces
the most derived type as a parameter known to the base type
at compile time. This fact allows the base type to make up-
calls via a static cast of the instance to the derived type’s
complete interface. Effectively, this imposes interface
requirements on the derived type. This is similar to an
abstract interface, which needs to be overridden in the
concrete type, without the necessity for a virtual function and
the extra baggage of a formal abstract interface. Templates
allow us to extend the interface concept by breaking away
from the large-scale (whole interface) contract, to a method-
by-method contract. The base type does not require that the
derived type inherit from a particular base, only that it
provides the methods we need.

A simplified example:
template <typename D>

struct U {

void f() {static_cast<D*>(this)->g();}

};

U represents a template base type. It requires that derived
types implement some function: <arbitrary return
type> g(). Obviously U can require any signature for g.
The simplest possible signature is required in the above
example.

struct V : U<V> {void g() {}};

V represents a complete hierarchy. It implements the method
as required by the base type (U) and inherits from a
specialization of U, designating itself as the most derived
type.

Parameterized Inheritance

Parameterized inheritance allows us another degree of
freedom when creating a type. While traditional inheritance
allows us to specify the access of the base type (public,
protected, private), the number of copies of the base to keep
(virtual), as well as whether a single or multiple base type(s)
are the ancestor of the type, parameterized inheritance
leverages the template system to inherit from an arbitrary
type on demand. This allows us to reuse the same method
implementation without regard to base type, thereby
producing a true mix-in on-demand development strategy,
which greatly enhances our ability to reuse code.

A simplified example:
template <typename B>

struct M : B {virtual void f() {}};

M represents a parameterized inheritance mix-in type, which
provide an implementation of a method f() that can be used to

make disparate abstract types concrete (assuming they only
require an override of a pure method void f()).

struct U {virtual void f()=0;};

struct V {virtual void f()=0;};

U and V represent two arbitrary unrelated abstract types with a
common method (void f()). Derived types “could” either
reproduce the common implementation in the concrete types,
leading to code redundancy, or delegate to a non-member
function common to both. Among other issues, this requires us
to provide a delegating implementation in both concrete types
(code redundancy) and, unless the common method is
templated, either does not allow us to access state information
encapsulated in the instance or forces us to inherit from a fixed
base and use a polymorphic call from the common function
being delegated to. Note that when combined with the above
technique (CRTP), M’s implementation of f() can use state
members and methods of the complete type.

struct CU : M<U> {};

struct CV : M<V> {};

CU and CV are concrete implementations of U and V ,
respectively. They are complete as a consequence of the shared
implementation of f() implemented in M.

Parameterized Back-Pointer

Parameterized Back-Pointer formalizes a common methodology
and abstracts it by using the generic meta-programming power
of C++ templates. It is common practice to expect a member
type to use a reference to the containing type.

struct S {

struct T {

T(S* s) : s_(s) {}

S* s_;

};

S() : t_(this) {}

T t_;

};

A similar scenario arises when we simply want a type to have a
reference to an unrelated type that exposes an expected
interface.

A simple example:
template <typename C>

struct CT {

C* c_;

CT(C* c) : c_(c) {}

void g() {c_->f();}

};

CT represents a simple type that uses a parameterized back-
pointer. It expects a reference to some arbitrary type (C) that has
a matching signature for f(). The relation between the
parameter C and CT is not necessarily one of containment (i.e.,
CT is a member of C) but we use the term containment in lieu of
a better term.

struct U {

void f() {}

CT<U> ct_; U() : ct_(this) {}

};

U is an arbitrary type that supports the method f() as expected
by CT, and contains an instance of CT (ct_) that is constructed
with a pointer to the current U instance.

28

Overload issue 57 october 2003

template <typename D, typename S, typename SS,

typename PP = CTL::POAPolicy::Empty,

typename OP = CTL::ObjPolicy::Empty,

typename MP = CTL::MemPolicy::Empty,

typename AP = CTL::AUXPolicy::Empty,

typename C = CTL::EmptyType,

typename B = CTL::EmptyType >

struct ContainedCompositionServant

: CTL::CompositionServant<

D,S,SS,MP,PP,OP,AP,B>, C {

typedef B BASE;

typedef D DERIVED;

virtual ~ContainedCompositionServant() {}

};

// The D parameter represents the Derived type.

// The S parameter represents a Servant holder type

// i.e. BasicServant<Example::Widget>

// The SS parameter represents the skeleton type

// i.e. POA_Example::Widget

// PP is the POA policy

// OP is the object-activation policy

// MP is the memory policy

// AP is the Auxiliary policy

// B is an arbitrary base type

// C, which is used in the second type, is the

// Container Holder type.

Note that the resultant types inherit from all the template
parameters and have their combined interface.

As shown above the CTL::ContainedCompositionServant
type reuses the CTL::CompositionServant type. The
CTL::CompositionType is not discussed here, but can be
considered as B (the arbitrary base parameter).

To illustrate that the above is not as complicated as it seems from
initial inspection, let’s consider a simple servant. The servant will
have a transient system id POA, and register with the Naming
Service when activated.

module Example {

interface MyType { string fn(); }

};

The types Example::MyType and POA_Example::MyType
are generated from the above IDL. Below is a ready to use servant
type and server. Note that the fully qualified names are dropped for
readability.

struct simple : composeDB<

simple, CompositionServant<

simple,

BasicServant<Example::MyType>,

POA_Example::MyType, POAPolicy::FromRoot<

POAPolicy::TransientSystemID<> >,

ObjPolicy::SystemID<>, MemPolicy::Empty,

AUXPolicy::BindRootNamingContext<

simple> >,

Host::ORB, Host::POA >::type {

simple() {

set_cosnaming_data("simple", "simple kind");

}

char* fn() {

return CORBA::string_dup("Hello World");

}

};

int main(int argc,char* argv[]) {

simple s;

s.orb_ = CORBA::ORB_init(argc,argv);

s.createServant();

s.orb_->run();

return 0;

}

The above is a complete server application,
simple::createServant()will construct the POA, activate
the servant and register it with the Naming Service using the id
"simple" and the kind "simple kind". If a client resolved the
Object reference in the Naming Service and invoked the fn()
method, the string "Hello World" would be returned.

4 A Widget Factory Example

To illustrate the power and ease of use of the CTL, the following
presents an example that uses many of the CTL features.
Experienced CORBA developers will note how much simpler the
code is than a similar traditional application [1]. An equivalent
classic application can be found on the ACCU website. Beyond
the exotic-looking base types, the code is almost reduced to that
of a standard C++ application. Furthermore, if an error exists in
the setup machinery, we have a single point of failure and only a
single policy that needs to be debugged.

The example demonstrates a simple Widget server application.
The server uses two ORBs, one for public access to the factory’s
interface and one that provides private access (from the local
machine) to the factory’s administrative interface. The two different
servants that implement these interfaces share common information
and are in fact part of a larger Widget Factory “component”. Both
the servants of the factory component are persistent Objects and
each advertises its existence with the Naming Service and IOR
table. The publicly accessible interface provides a method for
Widget creation while the private admin interface provides a
method to destroy all the Widgets created and a method to shut
down the Widget Factory.

<example.idl>

module Example {

interface Widget {

void do_something();

};

interface WidgetFactory {

Widget create_widget();

};

interface WidgetFactoryAdmin {

void destroy_all_widgets();

void shutdown_widget_factory();

};

The above IDL describes the three basic interfaces and types that
the following Widget factory will implement. Once it is run
through an IDL compiler a skeleton and stub will be generated
for Widget, WidgetFactory, and
WidgetFactoryAdmin.

The servants presented here make use of a simple helper type
CTL::RefCountImpl that extends the functionality of
PortableServer::RefCountServantBase by providing
methods to get the current reference count and to wait on a specific
count.

template <typename D,typename S,

typename SS,typename C>

struct factory_servant

: ContainedCompositionServant<

D,BasicServant<S>,

SS, MemPolicy::Empty,

POAPolicy::FromRoot<

D,POAPolicy::PersistantUserID<> >,

ObjPolicy::UserID<D>,

AUXPolicy::BindRootNamingContext<

D,AUXPolicy::BindIORTable<D> >,

BasicContainer<C*>,

RefCountImpl<

D,PortableServer

::RefCountServantBase> > {};

template <typename D,typename S,

typename SS,typename C>

struct simple_servant

: ContainedCompositionServant<

D,BasicServant<S>,

SS, MemPolicy::Empty,

POAPolicy::Empty,

ObjPolicy::SystemID<D>,

AUXPolicy::Empty,

BasicContainer<C*>,

RefCountImpl<

D,PortableServer

::RefCountServantBase> > {};

These two servant base types will allow us to reuse the groups of
policies without restating them for each servant type. The
factory_servant base type will be shared between the
WidgetFactory_i and WidgetFactoryAdmin_i types.
The Widget_i type will use the base type simple_servant.

template <typename C>

struct Widget_I

: composeDB<Widget_i<C>,

simple_servant<Widget_i<C>,

Example::Widget,

POA_Example::Widget,C>,

Delegate::ORB,Delegate::POA>::type {

void do_something() throw (CORBA::Exception){}

};

Widgets are the product created by our factory for use by remote
clients. Once Widget_i has been specialized for the container type
it is a ready-to-use servant type. When createServant() is
called the corresponding CORBA Object is activated and an Object
reference is generated. WidgetFactoryAdmin_i will
eventually call deactivateServant() for each of the
Widget_i servants created by the factory.

template <typename C>

struct WidgetFactory_I

: composeDB<WidgetFactory_i<C>,

factory_servant<WidgetFactory_i<C>,

Example::WidgetFactory,

POA_Example::WidgetFactory, C>,

Host::ORBTask,

Host::POA >::type {

WidgetFactory_i() {

set_cosnaming_data("WidgetFactory_i",

"WidgetFactory_i");

set_object_id("WidgetFactory_i");

set_poa_id("WidgetFactory_i");

set_iortable_id("WidgetFactory_i");

}

Example::Widget_ptr create_widget()

throw (CORBA::SystemException) {

ACE_Guard<ACE_Thread_Mutex>

grd(getContainer()->mtx_);

Widget_i<C> * p = new Widget_i<C>;

//exception unsafe for clarity

p->attachToContainer(getContainer());

p->createServant();

getContainer()->widget_data_.push_back(p);

return p->getServantPtr();

}

};

The WidgetFactory interface is the publicly visible portion
of our component; any remote client can request a new Widget.
WidgetFactory_i, a servant type that supports the
WidgetFactory interface, is a template that generates a
servant once it is specialized with a container type. The C
(container) parameter will later be provided as
WidgetFactoryData. Before the servant is activated, the
user will provide a (C*) WidgetFactoryData* by way of
attachToContainer , allowing us to gain access to the
vector of Widget_i<WidgetFactoryData>* that is shared
between the public factory interface’s servant and the private
factory admin interface’s servant that is a member of
WidgetFactoryData.

template <typename C>

struct WidgetFactoryAdmin_I

: composeDB<WidgetFactoryAdmin_i<C>,

factory_servant<

WidgetFactoryAdmin_i<C>,

Example::WidgetFactoryAdmin,

POA_Example::WidgetFactoryAdmin,C>,

Host::ORBTask,

Host::POA >::type {

WidgetFactoryAdmin_i() {

set_cosnaming_data("WidgetFactoryAdmin_i",

"WidgetFactoryAdmin_i");

set_object_id("WidgetFactoryAdmin_i");

set_poa_id("WidgetFactoryAdmin_i");

set_iortable_id("WidgetFactoryAdmin_i");

}

void destroy_all_widgets()

throw (CORBA::SystemException) {

ACE_Guard<ACE_Thread_Mutex>

grd(getContainer()->mtx_);

for(std::size_t i=0;

i<getContainer()->widget_data_.size();

++i) {

//simple loop for clarity

getContainer()

->widget_data_[i]->destroyServant();

getContainer()

->widget_data_[i]->_remove_ref();

}

getContainer()->widget_data_.clear();

}

29

Overload issue 57 october 2003

30

Overload issue 57 october 2003

void shutdown_widget_factory()

throw (CORBA::SystemException) {

getContainer()->event_.signal();

}

};

WidgetFactoryAdmin_i is similar to the above
WidgetFactory_i, except for the interface the servant will
expose to remote clients. It also requires a template parameter to
designate its “container” type, which will later be specified as
WidgetFactoryData. Like the above servant type it also
hosts its own CTL::OrbTask and POA. Because
WidgetFactory_i and WidgetFactoryAdmin_i operate
on independent ORBs a request coming in on
WidgetFactory_i ’s ORB can not gain access to the
WidgetFactoryAdmin_i. Therefore if the ORB hosting the
admin servant is listening on localhost:10000 only local
access is granted to the admin interface.

struct WidgetFactoryData {

ACE_Event event_;

ACE_Thread_Mutex mtx_;

PortableServer::POA_var widget_poa_;

WidgetFactory_i<WidgetFactoryData> factory_;

WidgetFactoryAdmin_i<WidgetFactoryData>

factory_admin_;

std::vector<Widget_i<WidgetFactoryData>*>

widget_data_;

// widget delegates to container to

// determine orb to use

CORBA::ORB_var& orb(Widget_i<

WidgetFactoryData>*) {return factory_.orb_;}

// widget delegates to container

// to determine which POA to use

PortableServer::POA_var& poa(Widget_i<

WidgetFactoryData>*) {return widget_poa_;}

};

WidgetFactoryData is a “container” for all three servant-
types. It provides the necessary interface for the Widget_i
servant delegates, and specializes the WidgetFactory_i and
WidgetFactoryAdmin_i templates with itself as the
container type. Because Widgets are publicly available we re-
use the public ORB specified by the WidgetFactory_i
servant. WidgetFactoryData stores all the information that’s
shared across our “component”.

int main(int argc,char* argv[]) {

try {

WidgetFactoryData data;

data.factory_.orb_.initialize(

argc,argv,"public");

data.factory_admin_.orb_.initialize(

argc,argv,"local");

Instantiate the “container” and initialize/activate the two
independent ORBs

data.factory_.attachToContainer(&data);

data.factory_admin_.attachToContainer(&data);

data.factory_.createServant();

data.factory_admin_.createServant();

Attach the two factory servant types to the container and create
the Objects, which will by virtue of the policies given
automatically register themselves with the IOR table and the
Naming Service.

data.widget_poa_

= POAPolicy::create_from_poa<

POAPolicy::TransientSystemID<> >

(data.factory_.orb_,

data.factory_.poa_,

"widget_poa");

Create the POA that Widget_Is will be activated in.
data.event_.wait();

Wait for the WidgetFactoryAdmin_i servant to signal that
the application should shut down. And then proceed to final
cleanup.

data.factory_admin_.destroy_all_widgets();

Destroy all Widget_i instances that were created on behalf of
clients.

data.widget_poa_->destroy(true,true);

Destroy the POA we manually created above
data.factory_admin_.destroyServant();

data.factory_.destroyServant();

Destroy the two factory servants
data.factory_.orb_->destroy();

data.factory_admin_.orb_->destroy ();

Finally, shutdown the two ORBs and their associated threads.
}

catch(const CORBA::Exception&) {return -1;}

catch(...) {return -2;}

return 0;

}

5 Conclusion

With the aid of a policy-driven CORBA template library, the
deployment of the machinery needed to build large-scale
distributed object computing facilities has been greatly
simplified. Expertise about the CORBA setup mechanisms has
been encapsulated in an extensible and easily applied framework
of policies, thus allowing rapid development that concentrates on
the application’s functionality and lowers the barrier to entry for
developers. Code reuse is promoted without relying on methods
that are, at best, hard to extend (procedural, simple object-
oriented inheritance or cut and paste). Therefore, the developer’s
task is reduced to that of providing the application’s core
functionality, freed of the burdens imposed by classic CORBA
application designs. Easy extensibility ensures that future needs
such as Real-Time ORB usage, SSLIOP setup, and Trading
Service registration can be added once as policies and deployed
with minimal effort.

Jeff Mirwaisi
jeff_mirwaisi@yahoo.com

6 References

[1] Michi Henning, Steve Vinoski, Advanced CORBA
Programming with C++, 1999, Addison-Wesley
[2] Andrei Alexandrescu, Modern C++ Design, 2001, Addison
Wesley
[3] Mark Delaney, “Parameterized Inheritance Considered
Helpful” CUJ, January 2003
[4] David Vandevoorde, Nicolai M. Josuttis, C++ Templates: The
Complete Guide, 2002, Addison Wesley
[5] Jim Coplien, “The Curiously Recurring Template Pattern”,
C++ Report, Feb. 1995, 24-27

