
What's an ABI and why is it so complicated?
Jonathan Wakely
Red Hat

1

Introduction
Once again, I'm talking about whatever it is that I've been hacking on recently.

What's an ABI?
Why does it maer?
How can you manage your code's ABI?
Really ugly hacks (time permiing)

Caveat: some of this stuff might be more relevant to Unix-like systems. Please correct me if I say something that isn't true for Windows or other
systems.

2

Is that like an API?
You all know what an Application Programming Interface is.

e names of functions you can call, their argument types, return values, effects etc.

For example, the Berkeley sockets API, Win32, OpenGL, POSIX.

But knowing the API is not sufficient to use some library you download from the internet, it might not work for your CPU or OS … but why not?

3

Application Binary Interface
Behind an API you also rely on an ABI, usually defined by the OS.

For example, the System V Application Binary Interface documents:

a standard binary interface for application programs on systems that implement an operating system that complies with the X/Open
Common Application Environment Specification, Issue 4.2 and the System V Interface Definition, Fourth Edition.

System V Application Binary Interface
hp://www.sco.com/developers/devspecs/gabi41.pdf

(e System V ABI is used by most Unix-like systems in use today)

4

Rules for compilers
Unless you're compiling for bare-metal embedded systems where your program image runs directly on the hardware, the compiler needs to follow the
rules of the platform.

e OS must recognise your program as a valid executable to be able to run it, and your program needs to know how to call functions in system
libraries.

[…] the resulting executable programs use the specified interface to all system routines and services, and have the format described in the
ABI specification.

System V Application Binary Interface
hp://www.sco.com/developers/devspecs/gabi41.pdf

5

Rules for compilers
An ABI specification should define at least:

function calling conventions and symbol naming
representation of data types (size, alignment, floating point format)
object file format e.g. ELF, PE/COFF, Mach-O
how programs are loaded, dynamic linking, symbol relocations, thread-local storage

For the System V ABI these specs are split into generic and processor specific parts.

6

Calling Conventions
Calling conventions dictate how functions are called, specifically which registers are used and how.

Which direction the stack grows and where the stack pointer is
Any alignment requirements for the stack
How arguments are passed:

Registers might be used for simple types, so which ones get used in which order must be known
Other arguments are placed on the stack, so their positions and order must be known

Which registers are used for return values
Which registers are preserved across the call and which are not

7

Symbol naming
When the compiler generates code to call a function it needs to know how the function's name is represented, so the linker can find it and the right
function can be called.

Usually a C function such as void frob() is simply called frob in the assembly code, but some ABIs (or other languages) might use something
different, like _frob.

8

Representation of Types and Values
C data types are mapped to some native representation supported by the CPU

On x86 short is a signed 16-bit object ("halfword") and int is a signed 32-bit object ("word")

Floating point types typically use IEEE single-, double- or extended-precision formats

Alignment restrictions on types will affect stack layout, and padding in structs

Bit-field layout must be specified

How is a null pointer represented?

9

So that's an ABI

Armed with that information your compiler and linker can generate valid programs and libraries that can run and call other code on your target
system

10

And then came C++ …
C++ complicates things significantly

ere are lots more things that get done implicitly by the language and so look simple in the code, but in order to reuse existing toolchains designed
for C those features must be implemented explicitly by the compiler at the binary level

11

Why is it so complicated?
Inheritance
Namespaces and overloading
Virtual functions
Exception handling
RTTI, vague linkage, local statics, new[]
…

12

Inheritance
In addition to the rules the compiler must follow for struct layout, which are inherited from the platform ABI used for C programs, a C++ compiler
must decide how to arrange the layout for types with base classes

Should base class sub-objects come before or aer the derived type's members?

With multiple inheritance, should bases be laid out le to right, or right to le?

13

Namespaces and overloading

Extern functions in C have unique names, so as we saw earlier the symbol name for void frob() can be simply frob

In C++ we can have void blargle() and void blargle(int) and void argle::blargle() in the same program

e compiler needs to generate a unique name for each entity with external linkage, so it uses a name mangling scheme to encode scope and
argument types into symbol names:

_Z7blarglev
_Z7blarglei
_ZN5argle7blargleEv

14

Virtual functions
Each polymorphic class has a vtable in the program, which is effectively an array of function pointers

Each object of a polymorphic type contains an extra data member inserted by the compiler, called the vptr, which is just a pointer to the vtable

e ABI dictates the layout and use of the vtable and vptr

15

Exception handling
When you throw and exception in your C++ code the compiler translates that into a call to some function provided by the C++ runtime (called
__cxa_throw in the Itanium C++ ABI)

e runtime allocates an exception object, looks for a matching catch (handler) and starts unwinding the stack

If a handler is found another function in the runtime is called to get access to the exception object that was created, in order to initialize the handler

e ABI dictates the names and semantics of the runtime functions, and how the information about active handlers is represented

16

RTTI, vague linkage, local statics, new[]

e compiler generates std::typeinfo objects for the types in the program, and the information needed for dynamic_cast to work

Template instantiations, inline functions and vtables might all be emied in multiple translation units, so the compiler and linker need to have a
mechanism for merging or discarding duplicate copies (e.g. COMDAT sections)

Local static variables need thread-safe initialization, which needs to be done consistently across different translation units

Array new[] needs to store the number of elements allocated somewhere, so the correct number of destructors can be run by delete[]

17

What isn't part of the ABI?

ings with internal linkage, such as namespace-scope functions declared static or in an unnamed namespace

Whether a member function is public or private only affects whether a call to it compiles or not, it shouldn't affect the binary output

Similarly for deleted functions, since you can't call one, it can't have any effect on the compiled code

Default arguments of functions

18

Itanium C++ ABI
So when using C++ there are many more things that the implementation has to choose how to represent

ere is some sanity though, there's a cross-vendor C++ ABI specification (originally developed for Itanium compilers but used on any processors
now) which defines how C++ compilers should do name mangling and exception handling: hp://mentorembedded.github.io/cxx-abi/abi.html

GCC and Clang and some other compilers follow that specification, so code compiled with GCC and Clang can be linked together and interoperate.

19

Why is it even more complicated?
Namespaces and overloading
Virtual functions
Exception handling
RTTI, vague linkage, local statics, new[]
Standard Library implementation

Standard Library ABI

For C programs there are a number of structs such as div_t (and POSIX types like stat and timeval) that must have a fixed layout for a given
ABI

C++ adds many more types in its standard library, all of which can be affected by the ABI complications we've been looking at

Inline functions and templates expose implementation details to users, and private members and the order in which virtual functions are declared is
also visible in headers

is means that almost everything in the Standard Library has to be considered as part of the implementation's ABI!

20

Why does this matter?
e ABI is what allows you to link to other code, either other files in your own project or third-party libraries

Your toolchain + OS define an ABI, but any C++ library defines its own ABI too, which is affected by:

e functions that define the public API, which will be compiled to some mangled name that the linker uses
e types which use expose their details such as the order of data members, and any virtual functions

21

Binary compatibility
A library is binary compatible, if a program linked dynamically to a former version of the library continues running with newer
versions of the library without the need to recompile.

If a program needs to be recompiled to run with a new version of library but doesn't require any further modifications, the library is
source compatible.

Binary compatibility saves a lot of trouble. It makes it much easier to distribute soware for a certain platform. Without ensuring binary
compatibility between releases, people will be forced to provide statically linked binaries.

Binary Compatibility Issues With C++
hps://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++

22

Binary incompatibility
What breaks a library's ABI?

Removing (or renaming) exported functions or classes
Adding, removing or reordering member variables or virtual functions

ere's an excellent list of Dos and Don'ts in the KDE Binary Compatibility Issues With C++ document

23

Designing APIs for stable ABIs
Consider defining module interfaces in terms of stable types

If your functions use simple types like string_view or array_view then they are insulated from the details of how std::string or
std::vector (or your own sequence types) are defined

A more extreme form is to only define APIs in terms of extern "C" functions

Hack: dummy vtable entries

24

Library versioning

ELF shared libraries on Unix-like systems conventionally include a version number in the filename, e.g. libfoo.so.3 and that filename is also the
value of the DT_SONAME entry in the dynamic segment

e libfoo.so.3 file may be a symlink to the actual library file with a more precise version numnber, such as libfoo.so.3.0.4 or
libfoo.so.3.1.2, but any libfoo.so with the same interface number of 3 should have the same SONAME of libfoo.so.3 and be binary
compatible, so can be used by any binary with a DT_NEEDED entry of libfoo.so.3

25

Library versioning
Some linkers allow versioning of individual symbols within a library

If libfoo.so.3 exports a function foo(), the symbol could have a version appended to its mangled name, so code that links to the library has a
reference to _Z3foov@@LIBFOO_3.0 rather than _Z3foov

A later release of libfoo that changes the behaviour of foo() can define the function twice, so that _Z3foov@@LIBFOO_3.0 continues to refer
to a function with the old behaviour but _Z3foov@@LIBFOO_3.1 is a separate symbol that refers to a function with the new behaviour

26

Inline namespaces
C++11 supports inline namespaces, allowing a type to be defined in an inner namespace but referred to in source code as if it were a member of the
outer namespace

namespace lib {
 inline namespace v1 {
 class Widget;
 }
}

is gives the library author more control over the type, as it can be replaced in a later release by lib::v2::Widget, which has a different
mangled name, but source code using the library just refers to lib::Widget and doesn't need to be changed

27

Inline namespaces
So inline namespaces allow a particular name in the source code to map to a different name for linkage purposes

But inline namespaces are not a complete solution

A class with a member variable of type lib::Widget changes its ABI if recompiled with lib::v2::Widget instead of lib::v1::Widget,
the types of member variables are not represented in a type's mangled name

28

Libabigail
Compare two versions of a shared library, or compare a program with a new version of a shared library, to see if the new shared library has any ABI
incompatibilities:

Functions changes summary: 0 Removed, 1 Changed, 0 Added function
Variables changes summary: 0 Removed, 0 Changed, 0 Added variable

1 function with some indirect sub-type change:

 [C]'function void lib::func(const lib::Str&)' has some indirect sub-type changes:
 parameter 0 of type 'const lib::Str&' has sub-type changes:
 in referenced type 'const lib::Str':
 in unqualified underlying type 'struct lib::Str':
 1 data member insertion:
 'unsigned int lib::Str::capacity', at offset 96 (in bits)

29

std::string in GCC 5
namespace std {
#if _GLIBCXX_USE_CXX11_ABI
inline namespace __cxx11 __attribute__((__abi_tag__("cxx11"))) {
template<typename C, typename Tr, typename A>
class basic_string {
// new SSO string ...

 };
}
#else
template<typename C, typename Tr, typename A>
class basic_string {
// old COW string ...

 };
#endif
} // namespace std

e abi_tag aribute tells G++ that everything in the namespace relates to an ABI change, allowing it to warn about possible ABI problems related
to use of those types, and to alter the name mangling of functions that return those types

30

e end
ese slides are available at hps://gitlab.com/wakelyaccu/abi

You can download and view the HTML version of these slides with commands like:

git clone https://gitlab.com/wakelyaccu/abi.git
firefox abi/abi.html

31

