

Order Notation in Practice

Roger Orr

OR/2 Limited

What does complexity measurement mean?

– ACCU 2014 –

What is Order Notation?

● This notation is a way of describing how the
number of operations performed by an
algorithm varies by the size of the problem
as the size increases

● You've probably heard of order notation
before – if you have studied computer
science then the next section is likely to be
revision

Why do we care?

● Almost no-one* is actually interested in the
complexity of an algorithm

● What we normally care about is the
performance of a function

– The complexity measure of an algorithm will
affect the performance of a function
implementing it, but it is by no means the
only factor

(*Present audience possibly excepted)

Ways to measure performance

● There are a number of different ways to
measure the performance of a function

● Typical measures include:
– Wall clock time
– CPU clock cycles
– Memory use
– I/O (disk, network, etc)
– Power consumption
– Number of <> brackets used

Complexity measurement

● Complexity measurement is (normally)
used to approximate the number of
operations performed

● This is then used as a proxy for CPU clock
cycles

● It ignores 'details' such as memory access
costs that have become increasingly
important over time

● It often is a measure of one operation

Introduction to Order Notation

● A classification of algorithms by how they
respond to changes in size.

● Uses a big O (also called Landau's symbol,
after the number theoretician Edmund
Landau who invented the notation)

● We write f(x) = O(g(x)) to mean
There exists a constant C and a value N

such that |f(x)| < C|g(x)| x > N∀

Example of Order Notation

● If f(x) = 2x2 + 3x + 4
● Then f(x) = O(x2)
● If h(x) = x2 + 345678x + 456789
● Then h(x) = O(x2)
● Note that, in these two cases, the values of

C and N are likely to be different:
– For f we can use (3, 4)

For g we can use (2, 345679) or (4000, 87)

Example of Order Notation

● Note that f and h are both O(x2) although
they're different functions.

● For the purposes of order classification, it
doesn't matter what the multiplier C is nor
how big the value N is.

● Note too that formally O is a “<=”
relationship. So j(x) = 16 is also O(x2)

● If f(x) = O(g(x)) and g(x) = O(f(x)) then we
can write f(x) = θ(g(x))

Some common orders

● Here a some common orders, with the
slower growing functions first:

– O(1) – constant
– O(log(x)) – logarithmic
– O(x) – linear
– O(x2) – quadratic
– O(xn) – polynomial
– O(ex) - exponential

Order arithmetic

● When two functions are combined the order
of the resulting function can (usually) be
inferred

● When adding functions, you simply take the
biggest order

– eg. O(1) + O(n) = O(n)
● When multiplying functions, you multiply the

orders
– eg. O(n) * O(n) = O(n2)

Order arithmetic for programs

● For a function making a sequence of
function calls the order of the function is the
same as the highest order of the called
functions

void f(int n) {

 g(n); // O(n.log(n))
 h(n); // O(n)
}

● In this example f() = O(n.log(n))

Order arithmetic for programs

● For a function using a loop the order is the
product of the order of the loop count and
the loop body

void f(int n) {

 int count = g(n); // count is O(log(n))
 for (int i = 0; i != count; ++i) {
 h(n); // O(n)

}
● In this example too f() = O(n.log(n))

Order for standard algorithms

● Many standard algorithms have a well-
understood order. One of the best known
non-trivial examples is probably quicksort
which “everyone knows” is O(n.log(n)).

Order for standard algorithms

● Many standard algorithms have a well-
understood order. One of the best known
non-trivial examples is probably quicksort
which “everyone knows” is O(n.log(n)).

● Except when it isn't, of course!
– On average it is O(n.log(n))
– The worst case is O(n2)

● Also, this is the computational cost, not the
memory cost

Order for standard algorithms

● The C++ standard mandates the complexity
of many algorithms.

● For example, std::sort:
“Complexity: O(N log(N)) comparisons.”

● and std::stable_sort:
“Complexity: It does at most N log2(N) comparisons; if
enough extra memory is available, it is N log(N).”

● and std::list::sort:

“Complexity: Approximately N log(N) comparisons”

Order for standard operations

● The C++ standard also mandates the
complexity of many operations.

● For example, container::size:
“Complexity: constant.”

● and std::list::push_back:
“Complexity: Insertion of a single element into a list takes
constant time and exactly one call to a constructor of T.”

Order for standard algorithms

● .Net lists complexity for some algorithms.
● For example, List<T>.Sort:

“On average, this method is an O(n log n) operation, where
n is Count; in the worst case it is an O(n ^ 2) operation.”

● Java does the same
● For example, Arrays.sort:

“This implementation is a stable, adaptive, iterative
mergesort that requires far fewer than n lg(n) comparisons
when the input array is partially sorted, while offering the
performance of a traditional mergesort when the input
array is randomly ordered...”

Order for standard operations

● However, neither Java not .Net seem to
provide much detail for the cost of other
operations with containers

● This makes it harder to reason about the
performance impact of the choice of
container and the methods used.

Let's try some experiments

● So that's the theory; what happens when we
try some of these out in an actual program
on real hardware?

– YMMV (different clock speeds, amount
of memory, speed of memory access
and cache sizes)

strlen()

● Should be simple enough: O(n) where n is
the number of bytes in the string.

int strlen(char *s) /* source: K&R */
{
 int n;

 for(n = 0; *s != '\0'; s++)
 {
 n++;
 }
 return n;
}

● Anyone looked inside strlen recently?

strlen() – more than you wanted to know
strlen:
 mov rax,rcx ; rax -> string
 neg rcx
 test rax,7 ; test if string is aligned on 64 bits
 je main_loop
 xchg ax,ax
str_misaligned:
 mov dl,byte ptr [rax] ; read 1 byte
 inc rax
 test dl,dl
 je byte_7
 test al,7
 jne str_misaligned ; loop until aligned
main_loop:
 mov r8,7EFEFEFEFEFEFEFFh
 mov r11,8101010101010100h
 mov rdx,qword ptr [rax] ; read 8 bytes
 mov r9,r8
 add rax,8
 add r9,rdx
 not rdx
 xor rdx,r9
 and rdx,r11
 je main_loop
 mov rdx,qword ptr [rax-8] ; found zero byte in the loop
 test dl,dl
 je byte_0 ; is it byte 0?
 test dh,dh
 je byte_1 ; is it byte 1?
 shr rdx,10h
 ...

byte_1:
 lea rax,[rcx+rax-7]
 ret
byte_0:
 lea rax,[rcx+rax-8]
 ret

strlen()

● Naively we compare time for:
timer.start();
strlen(data1);
timer.stop();

● The call appears to take no time at all
● Gotcha: strlen() use can be optimised away

if the return value is not used.
● It's important to check you're measuring

what you think you're measuring!

strlen()

● Set up a couple of strings:
char const data1[] = "1";
char const data2[] = "12345...67890...";

● Compare time for v1 = strlen(data1) against
v2 = strlen(data2)

● Gotcha: strlen() of a constant string can be
evaluated at compile time: O(1)

● It's important to check you're measuring
what you think you're measuring!

strlen() - O(n)

Linear and consistent

strlen() - O(dear)

Discontinuous (and no longer as consistent)

strlen() - zoom in

strlen() - small n

This machine has 64K L1 + 512K L2 cache per core

strlen()

● O(n) to a very good approximation for n
between cache size and available memory

● Small discontinuity around cache size
● O(n) when swapping, but the factor 'C' is

much bigger (250 – 300 times bigger here)

string::find()

● Let's swap over from using strlen() to using
string::find('\0')

● Exactly the same sort of operation but with
a very slightly more generic algorithm

● We expect this will behave just like strlen()

string::find()

Sorting

● Let's start with a (deterministic) bogo sort
template <typename T>
void bogo_sort(T begin, T end)
{
 do
 {
 std::next_permutation(begin, end);
 } while (!std::is_sorted(begin, end));
}

● NSFW
● O(n × n!) comparisons

Sorting

● Timings
10,000 items – 1.13ms
20,000 items – 2.32ms
30,000 items - 3.55ms

– 40,000 items - 4.72ms
● O(n) – but … how?
● I cheated and set the initial state carefully
● Be very careful about best and worst cases!

Sorting

● Timings (randomised collection)

● I got bored after 14 items
● It looks like we hit a 'wall' at 13/14

Sorting

● Timings (randomised collection)

● Same graph after 8 items
● Note: the 'wall' effect depends on scale

Sorting

● std::sort
– the best known in C++

● qsort
– the equivalent for C

● bubble_sort
– easy to explain and demonstrate

● stable_sort
– retain order of equivalent items

● partial_sort
– sort 'm' items from 'n'

Sorting

● I must mention AlgoRythmics – illustrating
sort algorithms with Hungarian folk dance

● https://www.youtube.com/watch?v=ywWBy6J5gz8

● Helps to give some idea of how the
algorithm works

● Also shows the importance of the multiplier
C in the formula

https://www.youtube.com/watch?v=ywWBy6J5gz8

Sorting

● “I'd like to go back in time and kill the inventor of
bubblesort” - Andrei Alexandrescu

Sorting

● Granted

Sorting

● std::sort is faster than qsort
– don't tell the C programmers

● You do pay (a little) for stability
● partial_sort is a “dark horse” - do you really need

the full set sorted?

● That was with randomised input
● A lot of real data is not randomly sorted

Sorting

● bubble_sort's revenge

List or vector?

● The complexity of std::sort is the same as
std::list::sort – so what's the difference?

● Must copy the whole object in a vector
● Can just swap the pointers in a list

List or vector?

●

List or vector?

● So at this data size list is over twice as slow
as vector to sort but uses just over half as
many comparisons

● Perhaps measure sort complexity in other
terms than just the number of comparisons

● However note that the items sorted in this
example are quite small (wraps an int)

List or vector?

● The performance will depend on the size of
the object being copied

● With a bigger object footprint
– Same number of comparisons
– Same number of pointer swaps (list)
– More bytes copied (vector)

● Repeat the test with a bigger data structure
(we won't display the # of comparisons)

List or vector?

List or vector?

List or vector?

● This is what we expect: the performance
depends very heavily on the size of the
object being copied
So, in this test on this hardware, the break-
even point comes at somewhere around
100 bytes for the object footprint

● This is bigger than I was expecting
● For comparison here is the effect on sorting

the list when we change the object footprint

List or vector?

List or vector?

● This is less expected: it is about 2 – 3 times
slower to sort a list of 1Kb objects than a list
of int objects.

● The only difference is the memory access
pattern: objects are further apart and so
cache use is less efficient.

● But once you're further apart than a cache
line (64bytes) why does more size still make
a difference?

Back to basics

● Allocate a range of memory and access it
sequentially with 'n' steps of size 'm'.

● There is an overall trend, of sorts, with
some anomalies

● The specifics will vary depending on the
hardware you're running on and will depend
on both the size and associativity of the
various caches

Back to basics

Back to basics

Back to basics

● While the specifics vary, the principle of
locality is important

● If it is multiplicative with the algorithmic
complexity it can change the complexity
measure of the overall function

Cost of inserting

● Suppose we need to insert data into a
collection and the performance is an
issue

● What might be the effect of using:
– std::list
– std::vector
– std::deque
– std::set
– std::multiset

Cost of inserting

● std::list “constant time insert and erase
operations anywhere within the sequence”

● std::vector “linear in distance to end of vector”
● std::deque “linear in distance to nearer end”
● std::set & std::multiset “logarithmic”

● We also need the time to find the insert point

Cost of inserting

● Randomly inserting 10,000 items:
● std:list ~600ms

– very slow – cost of finding the insertion
point in the list

● std::vector ~37ms
– Much faster than list even though we're

copying each time we insert
● std::deque ~310ms

– Surprisingly poor – spilling between buckets
● std::set ~2.6ms our winner!

Cost of inserting

● May be worth using a helper collection if the
target collection is costly to create
– Use std::set as the helper and construct

std:list on completion ~4ms
– Use a std::map of iterators into the list so

list built in right order ~4.8ms
● The helper collection will increase the

overall memory use of the program

Cost of sorted inserting

● Inserting 10,000 sorted items:
● std:list ~0.88ms

– Fast insertion (at known insert point)
● std::vector ~0.85ms (end) / 60ms (start)

– Much faster when appending
● std::deque ~3ms

– Roughly equal cost at either end; a bit
slower than a vector

● std::set ~2ms (between vector and deque)

Cost of inserting

● What about order notation effects?
● If we use 10x as many items:

– std:list ~600s (1000x)
– std::vector ~3.7s (100x)
– std::deque ~33s (100x)
– std::set ~66ms (33x)

● The find cost for list dwarfs the insert cost,
which is often a hidden complexity

Cost of inserting

● Can we beat std::set ?
● Try naïve std::unordered_set() - very

slightly slower at 10K (~2.8ms vs
~2.6ms) but better at 100K (~46ms vs
~66ms)

● However, in this particular case we have
additional knowledge about our value set
and so can use a trivial hash function

● Now std::unordered_set() takes ~2.3ms
(10K) and ~38ms (100K)

Conclusion

● The algorithm we choose is obviously
important for the overall performance of
the operation (measured as elapsed time)

● As data sizes increase we eventually hit the
limits of the machine; the best algorithms
are those that involve least swapping

● For smaller data sizes the characteristics of
the cache will have some effect on the
performance

Conclusion

● While complexity measure is a good tool we
must bear in mind:

● What are N (the relevant size) and C (the
multiplier)?

● Have we identified the function with the
dominant complexity?

● Can we re-define the problem to reduce the
cost?

Making it faster

● We've seen a few examples already of
making things faster.

● Compile-time evaluation of strlen() turns
O(n) into O(1)
– Can you pre-process (or cache) key

values?
– Swapping setup cost or memory use

for runtime cost

Making it faster

● Don't calculate what you don't need
● We saw that, if you only need the top 'n',

partial_sort is typically much faster than a
full sort

● If you know something about the
characteristics of the data then a more
specific algorithm might perform better

– strlen() vs find()
– Sorting nearly sorted data
– 'Trivial' hash function

Making it faster

● Pick the best algorithm to work with
memory hardware
– Prefer sequential access to memory
– Smaller is better
– Splitting compute-intensive data items

from the rest can help – at a slight
cost in the complexity of the program
logic and in memory use

Some other references

● Scott Meyers at ACCU “CPU caches”:
http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

● Ulrich Drepper “What Every Programmer Should
Know About Memory”:
http://people.redhat.com/drepper/cpumemory.pdf

● Herb Sutter's experiments with containers:
http://www.gotw.ca/gotw/054.htm

● and looking at memory use:
http://www.gotw.ca/publications/mill14.htm

● Bjarne Stroustrup's vector vs list test:
http://bulldozer00.com/2012/02/09/vectors-and-lists/ (esp slides 43-47)

● Baptiste Wicht's list vs vector benchmarks:
http://www.baptiste-wicht.com/2012/12/cpp-benchmark-vector-list-deque/

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf
http://people.redhat.com/drepper/cpumemory.pdf
http://www.gotw.ca/gotw/054.htm
http://www.gotw.ca/publications/mill14.htm
http://bulldozer00.com/2012/02/09/vectors-and-lists/
http://www.baptiste-wicht.com/2012/12/cpp-benchmark-vector-list-deque/

