
Immutability FTW!

@KevlinHenney

(I told you so...)

@KevlinHenney

Change is the
only constant.

Heraclitus

You cannot step
twice into the
same river.

Heraclitus

Time is like a river,
but frozen not flowing.
Eddies, pools and falls
are fixed in place,
timeless and immutable.

Kevlin Henney
"Remembrance of Things Past"

http://www.spec - fiction.ca/remembrance - of - things - past/

When it is not
necessary to
change, it is
necessary not to
change .

Lucius Cary

const

LSP

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2 , then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

public class Ellipse

{

 private double semiMajor , semiMinor ;

 public Ellipse(double a, double b) ...

 public double semiMajorAxis () ...

 public double semiMinorAxis () ...

 public void semiMajorAxis (double a) ...

 public void semiMinorAxis (double b) ...

 ...

}

public class Circle extends Ellipse

{

 public Circle(double r) ...

 public double radius() ...

 public void radius(double r) ...

 ...

}

public class Ellipse

{

 ...

 public void semiMajorAxis (double a) ...

 public void semiMinorAxis (double b) ...

 ...

}

public class Circle extends Ellipse

{

 ...

 @Override

 public void semiMajorAxis (double a)

 {

 throw new UnsupportedOperationException ();

 }

 @Override

 public void semiMinorAxis (double b) ...

 ...

}

The reason a solution is so hard to come by is because the
problem is poorly stated: mathematics tells us that a circle is an
ellipse, so I can substitute a circle wherever an ellipse is required,
suggesting that a circle is a subtype of an ellipse.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The reason a solution is so hard to come by is because the
problem is poorly stated: mathematics tells us that a circle is an
ellipse, so I can substitute a circle wherever an ellipse is required,
suggesting that a circle is a subtype of an ellipse.

The troubles start when we introduce any state modifying
functions, such as assignment or the ability to change the major
and minor axes independently.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The reason a solution is so hard to come by is because the
problem is poorly stated: mathematics tells us that a circle is an
ellipse, so I can substitute a circle wherever an ellipse is required,
suggesting that a circle is a subtype of an ellipse.

The troubles start when we introduce any state modifying
functions, such as assignment or the ability to change the major
and minor axes independently.

We are so confident that we understand the mathematical
concepts behind circles and ellipses that we have not bothered to
ask any more questions of that domain.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The first observation is that there is no way to change circles and
ellipses once you have created them.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The first observation is that there is no way to change circles and
ellipses once you have created them.

This is the correct mathematical model: there are no side effects
in maths, conic sections do not undergo state changes, and there
are no variables in the programming sense of the word.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The first observation is that there is no way to change circles and
ellipses once you have created them.

This is the correct mathematical model: there are no side effects
in maths, conic sections do not undergo state changes, and there
are no variables in the programming sense of the word.

Readers who are comfortable and familiar with functional
programming and data flow models will recognise the approach.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The first observation is that there is no way to change circles and
ellipses once you have created them.

This is the correct mathematical model: there are no side effects
in maths, conic sections do not undergo state changes, and there
are no variables in the programming sense of the word.

Readers who are comfortable and familiar with functional
programming and data flow models will recognise the approach.

In the case of circles and ellipses, the circle is simply an ellipse
with specialised invariants. There is no additional state and none
of the members of an ellipse need overriding as they apply
equally well to a circle.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

public class Ellipse

{

 private double semiMajor , semiMinor ;

 public Ellipse(double a, double b) ...

 public double semiMajorAxis () ...

 public double semiMinorAxis () ...

 ...

}

public class Circle extends Ellipse

{

 public Circle(double r) ...

 public double radius() ...

 ...

}

«interface»

UsageInterface

CommonCode

ConcreteLeaf ConcreteLeaf

Pure Interface Layer
Interfaces may extend

interfaces, but there is no

implementation defined in

this layer.

Common Code Layer
Only abstract classes are

defined in this layer, possibly

with inheritance, factoring out

any common implementation.

Concrete Class Layer
Only concrete classes are

defined, and they do not

inherit from one another.
ConcreteLeaf

public interface Ellipse

{

 double semiMajorAxis ();

 double semiMinorAxis ();

 ...

}

public interface Circle extends Ellipse

{

 double radius();

 ...

}

public class ??? implements Ellipse

{

 private double semiMajorAxis , semiMinorAxis ;

 ...

}

public class ??? implements Circle

{

 private double radius;

 ...

}

public class ??? implements Ellipse

{

 private double semiMajorAxis , semiMinorAxis ;

 ...

}

public class ??? implements Circle

{

 private double radius;

 ...

}

The Naming of Cats is a difficult matter,

It isn't just one of your holiday games;

You may think at first I'm as mad as a hatter

When I tell you, a cat must have THREE DIFFERENT NAMES.

[...]

But above and beyond there's still one name left over,

And that is the name that you never will guess;

The name that no human research can discover ñ

But THE CAT HIMSELF KNOWS, and will never confess .

[...]

T S Eliot

public class Ellipse

{

 private double semiMajor , semiMinor ;

 public Ellipse(double a, double b) ...

 public double semiMajorAxis () ...

 public double semiMinorAxis () ...

 ...

}

public class Circle

{

 private double radius;

 public Circle(double r) ...

 public double radius() ...

 public Ellipse toEllipse () ...

 ...

}

public class Ellipse

{

 private double semiMajor , semiMinor ;

 public Ellipse(double a, double b) ...

 public double semiMajorAxis () ...

 public double semiMinorAxis () ...

 public boolean isCircle () ...

 ...

}

Conversions

Overloading

Derivation

Genericity

Mutability

