
Getting Legacy C/C++ under Tests

Peter Sommerland and Michael Rüegg

ACCU 2013 / Bristol, UK / April 13, 2013

Who are we?

Figure : University of Applied Sciences Rapperswil, Switzerland

Software Quality

An elephant in the room

Manual testing or no testing at all

Manual testing or no testing at all

But: Small cute things. . .

Grow to become larger problems!

Part I - TDD with CUTE

TDD Cycle

TDD with C++ can work! => CUTE

◮ Unit testing library for C/C++ with tool support for Eclipse
C/C++ Development Tooling project (CDT)

◮ Simple to use: a test is a function

◮ Designed to be used with IDE support

◮ Deliberate minimization of #define macro usage => macros
make life harder for C/C++ IDEs

Where can I get it?
◮ Grab it for free from http://cute-test.com

TDD Demo: Simulation of a switch

Part II - Getting legacy code under test with
seams

What is legacy code?

◮ Definition of Michael Feathers: Code without unit tests

Dependencies and the legacy code dilemma

◮ Perils of dependencies in software

◮ Triggers for changing existing code (Feathers): adding new
functionality, fixing a bug, applying refactorings and code
optimisations

◮ The Legacy code dilemma

◮ We do not want to change the code inline

◮ There is hope: Seams - but they are hard and cumbersome to
create by hand! => refactorings and IDE support
necessary

Our contribution: Mockator

◮ Refactorings and toolchain support for achieving seams in
C/C++

◮ Eclipse plug-in for (CDT)

◮ C++ mock object library (header-only) with Eclipse support

What is a Seam?

◮ Term introduced by Michael Feathers in Working Effectively
With Legacy Code: “A place in our code base where we can

alter behaviour without being forced to edit it in that place.”

◮ Inject dependencies from outside to improve the design of
existing code and to enhance testability

◮ Every seam has an enabling point: the place where we can
choose between one behaviour or another

◮ Different kinds of seam types in C++: object, compile,
preprocessor and link seams

4 Phases, SUT, DOC

Figure : Source: xunitpatterns.com

How to decouple SUT from DOC?

◮ Introduce a seam: makes DOC exchangeable!

◮ C++ provides different mechanisms:

◮ Object seam (classic OO seam)

◮ Introduce interface - change SUT to use interface instead of
DOC directly

◮ Pass DOC as a (constructor) argument

◮ Compile seam (use template parameter)

◮ Make DOC a default template argument

Starting Position

// Real object ’Die’ makes it hard to test the

// system under test (SUT) ’GameFourWins’

// in isolation

struct Die {
int roll() const { return rand() % 6 + 1; }

};
struct GameFourWins {
void play(std::ostream& os = std::cout) {
if (die.roll() == 4) {
os << "You won!" << std::endl;

} else {
os << "You lost!" << std::endl;

}
}

private:

Die die;

};

Object Seam

◮ Based on subtype / inclusion polymorphism

◮ Used refactoring: Extract interface (Fowler)

Example

◮ Enabling point: DI via ctor / member function:

struct IDie { // extracted interface

virtual ~IDie() { }
virtual int roll() const =0;

};
//NEW: GameFourWins(IDie& d) : die{d} {}
void testGameFourWins() {
struct : IDie {
int roll() const {

return 4;

}
} fake;

GameFourWins game{fake}; // enabling point

std::ostringstream oss;

game.play(oss);

ASSERT_EQUAL("You won!", oss.str());

}

Refactoring excursus

◮ William F. Opdyke: “Refactorings always yield legal programs

that perform operations equivalent to before the refactoring.”

◮ Most important point: Functionality preservation

Can you spot the problem?

struct AlwaysSixDie : Die {
int roll() const {
return 6;

}
};
struct Croupier {
void sixWinsJackpot(Die const& die) {
if (die.roll() == 6) { /* jackpot */ }

}
};
//NEW:

struct Die : IDie { /* .. */ };
void quiz() {
Croupier croupier;

AlwaysSixDie die;

croupier.sixWinsJackpot(die); // huuh?

}

Object Seam

◮ Trade-offs:

◮ Run-time overhead of calling virtual member functions
◮ Tight coupling
◮ Enhanced complexity and fragility

◮ Demo

Compile Seam

◮ Based on static / parametric polymorphism

◮ Compile-time duck typing:

template <typename T> void foo(T t)

◮ t can be of any type as long as it provides the operations
executed on it in foo (known as the implicit interface)

◮ Used refactoring: Extract template parameter

◮ Enabling point: Template instantiation

Compile Seam

Compile Seam

template <typename Dice=Die> // compile seam

struct GameFourWinsT {
void play(std::ostream &os = std::cout){
if (die.roll() == 4) {
os << "You won!" << std::endl;

} else {
os << "You lost!" << std::endl;

}
}

private:

Dice die;

};
// do not break existing code

typedef GameFourWinsT<> GameFourWins;

Compile Seam

void testGameFourWins() {
struct FakeDie {
int roll() const {
return 4;

}
};
GameFourWinsT<FakeDie> game; // enabling point

std::ostringstream oss;

game.play(oss);

ASSERT_EQUAL("You won!\n", oss.str());

}

C++11 Excursion: Local Classes

◮ With C++98/03: local classes had no linkage => could not
be used as template arguments

◮ With C++11: awkward restriction has been removed

◮ Still no first-class citizens:

◮ Access to automatic variables prohibited
◮ Not allowed to have static members
◮ Cannot have template members

Compile Seam

◮ Advantages: No run-time overhead, compile-time duck
typing (no interface burden)

◮ Disadvantages: Increased compile-times, (sometimes)
reduced clarity

◮ Demo

What if we cannot change our SUT?

◮ Preprocessor seam

◮ Link seams:

◮ Shadow functions
◮ GNU’s wrap function
◮ Runtime function interception with ld.so

◮ Absolutely no changes on existing code of SUT needed!

Preprocessor Seam
◮ Use of the C preprocessor CPP: Replace calls through

#defines
◮ Useful for tracing function calls with debug information

// myrand.h

#ifndef MYRAND_H_

#define MYRAND_H_

int my_rand(const char* fileName, int lineNr);

#define rand() my_rand(__FILE__, __LINE__)

#endif

// myrand.cpp

#include "myrand.h"

#undef rand

int my_rand(const char* fileName, int lineNr){
return 3;

}

◮ Enabling point: compiler options to include header file or to
define macros (GCC -include option)

Preprocessor Seam

◮ Trade-offs: Many! As a means of last resort only!

◮ Preprocessor lacks type safety causing hard to track bugs
◮ Recompilations necessary
◮ Redefinition of member functions is not possible
◮ . . .

◮ Demo

Link Seams

◮ Goal: Avoid dependency on system or non-deterministic
functions, e.g. rand(), time(), or slow calls

◮ Tweak build scripts by using your linker’s options

◮ Three kinds with GNU toolchain:

◮ Shadowing functions through linker order
◮ Wrapping functions with GNU’s wrap option
◮ Run-time function interception of ld

◮ Enabling point: linker options

◮ Constraints: All link seams do not work with inline functions

Shadow Function

◮ Based on linking order: linker takes symbols from object files
instead the ones defined in libraries

◮ Place the object files before the library in the linker call

◮ Allows us to shadow the real implementation:

// shadow_roll.cpp

#include "Die.h"

int Die::roll() const {
return 4;

}

$ ar -r libGame.a Die.o GameFourWins.o

$ g++ -Ldir/to/GameLib -o Test test.o \
> shadow_roll.o -lGame

Shadow Function

◮ Mac OS X GNU linker needs the shadowed function to be
defined as a weak symbol:

struct Die {
__attribute__((weak)) int roll() const;

};

◮ Trade-off: No possibility to call the original function

◮ Demo

Wrap Function

◮ Based on GNU’s linker option wrap

◮ Possibility to call the original / wrapped function

◮ Useful to intercept function calls (kind of monkey patching):

FILE* __wrap_fopen(const char* path,

const char* mode) {
log("Opening %s\n", path);

return __real_fopen(path, mode);

}

◮ “Use a wrapper function for symbol. Any undefined reference

to symbol will be resolved to wrap symbol. Any undefined

reference to real symbol will be resolved to symbol.” -
LD’s manpage

Wrap Function

◮ Watch out for C++ mangled names!

◮ Example with Itanium’s ABI:

$ gcc -c GameFourWins.cpp -o GameFourWins.o

$ nm --undefined-only GameFourWins.o | \
> grep roll

U_ZNK3Die4rollEv

extern "C" {
extern int __real__ZNK3Die4rollEv();

int __wrap__ZNK3Die4rollEv() {
return 4;

}
}

$ g++ -Xlinker -wrap=_ZNK3Die4rollEv \
> -o Test test.o GameFourWins.o Die.o

Wrap Function

◮ Trade-offs:

◮ Only works with GNU’s linker on Linux (Mac OS X not
supported)

◮ Does not work with functions in shared libraries

◮ Demo

Run-time function interception

◮ Alter the run-time linking behaviour of the loader ld.so

◮ Usage of the environment variable LD PRELOAD the loader
ld.so interprets

◮ Manpage of ld.so: “A white space-separated list of

additional, user-specified, ELF shared libraries to be loaded

before all others. This can be used to selectively override

functions in other shared libraries.”

◮ Instruct the loader to prefer our code instead of libs in
LD LIBRARY PATH

Run-time function interception

◮ Used by many C/C++ programs (e.g., Valgrind)

◮ Not done yet: would not allow us to call the original function

◮ Solution: use dlsym to lookup original function by name

◮ Takes a handle of a dynamic library (e.g., by dlopen)

◮ Use pseudo-handle RTLD NEXT: next occurence of symbol

Run-time function interception

#include <dlfcn.h>

int rand(void) {
typedef int (*funPtr)(void);

static funPtr origFun = 0;

if (!origFun) {
void* tmpPtr = dlsym(RTLD_NEXT, "rand");

origFun = reinterpret_cast<funPtr>(tmpPtr);

}
int notNeededHere = origFun();

return 3;

}
$ g++ -shared -ldl -fPIC foo.cpp -o libFoo.so

$ LD_PRELOAD=path/to/libRand.so executable

Run-time function interception

◮ Mac OS X users: Note that environment variables have
different names!

◮ LD PRELOAD is called DYLD INSERT LIBRARIES

◮ Additionally needs the environment variable
DYLD FORCE FLAT NAMESPACE to be set

◮ Demo

Trade-offs

◮ Advantages:

◮ Allows wrapping of functions in shared libraries
◮ No recompilation / relinking necessary
◮ Source code must not be available
◮ Linux and Mac OS X supported

◮ Disadvantages

◮ Not reliable with member functions
◮ Not possible to intercept dlsym itself
◮ Ignored if the executable is a setuid or setgid binary

Seams - What have we achieved?

◮ With object and compile seams:

◮ No fixed / hard-coded dependencies anymore
◮ Dependencies are injected instead
◮ Improved design and enhanced testability

◮ Preprocessor seam is primarily a debugging aid

◮ Link seams help us in replacing or intercepting calls to libraries

Part III - Mock objects

Test double pattern
◮ How can we verify logic independently when code it depends

on is unusable? How can we avoid slow tests?

Figure : Source: xunitpatterns.com

Mock object

Figure : Source: xunitpatterns.com

Test stub vs. mock object

Figure : Source: xunitpatterns.com

Why the need for mock objects?

◮ Simpler tests and design

◮ Promote interface-oriented design

◮ Independent testing of single units

◮ Speed of tests

◮ Check usage of third component (is complex API used
correctly?)

◮ Test exceptional behaviour (especially when such behaviour is
hard to trigger)

Types of test doubles

◮ There exist different categories of test doubles and different
categorizers:

◮ Stubs: substitutes for expensive or non-deterministic classes
with fixed, hard-coded return values

◮ Fakes: substitutes for not yet implemented classes
◮ Mocks: substitutes with additional functionality to record

function calls, and the potential to deliver different values for
different calls

Mockator

◮ Mock functions and objects with IDE support

◮ Mock functionality is not hidden from the user through
macros => better transparency

◮ Conversion from fake to mock objects possible

◮ Support for regular expressions to match calls with
expectations

◮ Demo

Wrap-up

Future work for Mockator

◮ Support other toolchains beside GCC (Clang, MS)

◮ Gain more practical experience (e.g., embedded software
industry)

◮ Support other programming languages

Conclusions

◮ TDD in C++ does not need to be a pain: Try CUTE

◮ Seams help in making legacy code testable and lead to better
software design

◮ Our refactorings and toolchain support makes seams easier to
apply

◮ Next step is often the use of test doubles

◮ Mockator contains a mock object library with code
generation for fake and mock objects

Questions?

Figure : http://ifs.hsr.ch

◮ CUTE: www.cute-test.com

◮ Mockator: www.mockator.com

◮ Credits: TDD and mock slides from Peter Sommerlad

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

Linticator

Linticator gives you immediate feedback on programming style and common

programmer mistakes by integrating Gimpel Software’s popular PC-lint and

FlexeLint static analysis tools into Eclipse CDT.

PC-lint and FlexeLint are powerful tools, but they are not very well integrated into a

modern developer's workflow. Linticator brings the power of Lint to the Eclipse C/C++

Development Tools by fully integrating them into the IDE. With Linticator, you get

continuous feedback on the code you are working on, allowing you to write better code.

• Automatic Lint Configuration

Lint's configuration, like include paths and symbols, is automatically updated from your

Eclipse CDT settings, freeing you from keeping them in sync manually.

• Suppress Messages Easily

False positives or unwanted Lint messages can be suppressed directly from Eclipse,

without having to learn Lint's inhibition syntax–either locally, per file or per symbol.

• Interactive “Linting” and Information Display

Lint is run after each build or on demand, and its findings are integrated into the editor

by annotating the source view with interactive markers, by populating Eclipse’s problem

view with Lint’s issues and by linking these issues with our Lint Documentation View.

• Quick-Fix Coding Problems

Linticator provides automatic fixes for a growing number of Lint messages, e.g, making

a reference-parameter const can be done with two keystrokes or a mouse-click.

Register at http://linticator.com if you want to try it for 30 days or order via email. Linticator

is available for Eclipse CDT 3.4 (Ganymede) up to 4.2 (Juno). It is compatible with

Freescale CodeWarrior and other Embedded C/C++ IDEs based on Eclipse CDT.

More information:

http://linticator.com

Pricing for Linticator is CHF 500.- per user

(non-floating license). A maintenance contract

that is required for updates costs 20% of

license fee per year. The compulsory first

maintenance fee includes 6 month of free

updates.

Orders, enquiries for multiple, corporate

or site licenses are welcome at ifs@hsr.ch.

Linticator requires a corresponding PC-Lint

(Windows) or FlexeLint license per user.

IFS Institute for Software

IFS is an institute of HSR Rapperswil,

member of FHO University of Applied

Sciences Eastern Switzerland.

In January 2007 IFS became an associate

member of the Eclipse Foundation.

The institute manages research and

technology transfer projects of four

professors and hosts a dozen assistants and

employees. Contact us if you look for Code

Reviews, UI, Design and Architecture

Assessments.

http://ifs.hsr.ch

IFS INSTITUTE FOR SOFTWARE! HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

Free Trial

mailto:ifs@hsr.ch?subject=Linticator%20Information%20Flyer
mailto:ifs@hsr.ch?subject=Linticator%20Information%20Flyer
http://gimpel.com
http://gimpel.com
http://linticator.com/account/register
http://linticator.com/account/register
http://linticator.com/wiki/linticator/PricingAndPurchasing
http://linticator.com/wiki/linticator/PricingAndPurchasing
http://linticator.com
http://linticator.com
mailto:ifs@hsr.ch
mailto:ifs@hsr.ch
http://gimpel.com/
http://gimpel.com/
http://gimpel.com/
http://gimpel.com/
http://ifs.hsr.ch/
http://ifs.hsr.ch/
http://ifs.hsr.ch/
http://ifs.hsr.ch/

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

Includator
#include Structure Analysis and Optimization for C++ for Eclipse CDT

The Includator plug-in analyzes the dependencies of C++ source file structures generated by #include

directives, suggests how the #include structure of a C++ project can be optimized and performs this

optimization on behalf of the developer. The aim of these optimizations is to improve code readability and

quality, reduce coupling and thus reduce duration of builds and development time of C++ software.

Includator Features

• Find unused includes

Scans a single source file or a whole project for superfluous #include directives and proposes them to

be removed. This also covers the removal of #include directives providing declarations that are

(transitively) reachable through others.

• Directly include referenced files

Ignores transitively included declarations and proposes to #include used declarations directly, if they

are not already included. This provides an “include-what-you-use” code structure.

• Organize includes

Similar to Eclipse Java Development Tool's Organize imports feature for Java. Adds missing #include

directives and removes superfluous ones.

• Find unused files

Locates single or even entangled header files that are never included in the project’s source files.

• Replace includes with forward declarations (EXPERIMENTAL)

Locates #include directives for definitions that can be omitted, when replacing them with

corresponding forward declarations instead. This one is useful for minimizing #includes and reducing

dependencies required in header files.

• Static code coverage (EXPERIMENTAL)

Marks C++ source code as either used, implicitly used or unused by transitively following C++

elements’ definitions and usages. This helps to trim declarations and definitions not used from your

source code. In contrast to dynamic code coverage, such as provided by our CUTE plug-in (http://

cute-test.com) it allows to determine required and useless C++ declarations and definitions instead of

executed or not-executed statements.

User Feedback and Participation

Includator is free to try and test. Register at http://includator.com for a 30-day trial license.

More information:

http://includator.com

Includator is CHF 830.- per

user (non-floating license). A

maintenance contract is

required for updates at 20%

of the license fee per year.

The compulsory first

maintenance fee includes 6

month of free updates.

Orders, enquiries for

multiple, corporate or site

licenses are welcome at

ifs@hsr.ch.

Enquiries for corporate or

site licenses are welcome

at ifs@hsr.ch. Significant

volume discounts apply.

IFS INSTITUTE FOR SOFTWARE! HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

#

Get Swiss Quality

Free Trial

mailto:ifs@hsr.ch?subject=Includator%20Information%20Flyer
mailto:ifs@hsr.ch?subject=Includator%20Information%20Flyer
http://cute-test.com
http://cute-test.com
http://cute-test.com
http://cute-test.com
http://includator.com/account/register
http://includator.com/account/register
http://includator.com
http://includator.com
mailto:ifs@hsr.ch
mailto:ifs@hsr.ch
mailto:ifs@hsr.ch
mailto:ifs@hsr.ch
http://ifs.hsr.ch
http://ifs.hsr.ch

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

Green Bar for C++ with CUTE

Eclipse plug-in for C++ unit testing with CUTE

Automated unit testing improves program code quality, even under inevitable change and

refactoring. As a side effect, unit tested code has a better structure. Java developers are

used to this because of JUnit and its tight integration into IDEs like Eclipse. We provide the

modern C++ Unit Testing Framework CUTE (C++ Unit Testing Easier) and a

corresponding Eclipse plug-in. The free CUTE plug-in features:

• wizard creating test projects (including required framework sources)

• test function generator with automatic registration

• detection of unregistered tests with quick-fix for registration

• test navigator with green/red bar (see screen shots to the right)

• diff-viewer for failing tests (see screen shot down to the right)

• code coverage view with gcov (see screen shot below)

Support for Test-driven Development (TDD) and automatic Code Generation

The CUTE plug-in incorporates support for Test-Driven Development (TDD) in C++ and

preview of Refactoring features developed by IFS and its students.

• create unknown function, member function, variable, or type from its use in a test case

as a quick-fix (see screen shots below)

• move function or type from test implementation to new header file, after completion

TDD cycle.

• toggle function definitions between header file and implementation file, for easier change

of function signature, including member functions (part of CDT itself)

• extract template parameter for dependency injection, aka instrumenting code under test

with a test stub through a template argument (instead of Java-like super-class

extraction)

• check out Mockator flyer page for further code refactoring and generation features.

More information:

http://cute-test.com

IFS Institute for Software

IFS is an Institute of HSR Rapperswil,

member of FHO University of Applied

Sciences Eastern Switzerland.

In January 2007 IFS became an

associate member of the Eclipse

Foundation.

The institute manages research and

technology transfer projects of four

professors and hosts a dozen assistants

and employees. Contact us if you look

for Code Reviews, UI, Design and

Architecture Assessments.

http://ifs.hsr.ch

Eclipse update site for installing the

free CUTE plug-in:

http://cute-test.com/updatesite

IFS INSTITUTE FOR SOFTWARE HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

Get Swiss Quality

Free

mailto:ifs@hsr.ch?subject=
mailto:ifs@hsr.ch?subject=
http://cute-test.com
http://cute-test.com
http://ifs.hsr.ch
http://ifs.hsr.ch
http://www.cute-test.com/wiki/cute/CUTE_Installation_and_System_Requirements
http://www.cute-test.com/wiki/cute/CUTE_Installation_and_System_Requirements
http://ifs.hsr.ch
http://ifs.hsr.ch

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

Mockator - Eclipse CDT Plug-in for

C++ Seams and Mock Objects

Refactoring Towards Seams

Breaking dependencies is an important task in refactoring legacy code and putting this

code under tests. Michael Feathers' seam concept helps in this task because it enables to

inject dependencies from outside to make code testable. But it is hard and cumbersome

to apply seams without automated refactorings and tool chain configuration assistance.

Mockator provides support for seams and creates the boilerplate code and necessary

infrastructure for the following four seam types:

• Object seam: Based on inheritance to inject a subclass with an alternative

implementation. Mockator helps in extracting an interface class and in creating the

missing test double class including all used virtual member functions.

• Compile seam: Inject dependencies at compile-time through template parameters.

Apply the “Extract Template Parameter” refactoring and Mockator creates the missing

test double template argument class including all used member functions.

• Preprocessor seam: With the help of the C++ preprocessor, Mockator redefines

function names to use an alternative implementation without changing original code.

• Link seam: Mockator supports three kinds of link seams that also allow replacing

dependencies without changing existing code:

• Shadow functions through linking order (override functions in libraries with new

definitions in object files)

• Wrap functions with GNU's linker option -wrap (GNU Linux only)

• Run-time function interception with the preload functionality of the dynamic linker for

shared libraries (GNU Linux and MacOS X only)

Creating Test Doubles Refactorings

Mockator offers a header-only mock object library and an Eclipse CDT plug-in to create

test doubles for existing code in a simple yet powerful way. It leverages new C++11

language facilities while still being compatible with C++03. Features include:

• Mock classes and free functions with sophisticated IDE support

• Easy conversion from fake to mock objects that collect call traces

• Convenient specification of expected calls with C++11 initializer lists or with Boost

assign for C++03. Support for regular expressions to match calls.

Integrates easily with CUTE!

More information:

http://Mockator.com

IFS Institute for Software

IFS is an Institute of HSR Rapperswil,

member of FHO University of Applied

Sciences Eastern Switzerland.

In January 2007 IFS became an

associate member of the Eclipse

Foundation.

The institute manages research and

technology transfer projects of four

professors and hosts a dozen assistants

and employees. Contact us if you look

for Code Reviews, UI, Design and

Architecture Assessments.

http://ifs.hsr.ch

Also check out IFS’ other plug-ins

http://cute-test.com

http://sconsolidator.com

http://linticator.com

http://includator.com

Eclipse update site for installing

Mockator for free:

http://mockator.com/update/indigo

http://mockator.com/update/juno

IFS INSTITUTE FOR SOFTWARE HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

Get Swiss Quality

Free

mailto:ifs@hsr.ch?subject=Mockator%20Information%20Flyer
mailto:ifs@hsr.ch?subject=Mockator%20Information%20Flyer
http://mockator.com
http://mockator.com
http://ifs.hsr.ch
http://ifs.hsr.ch
http://cute-test.com/
http://cute-test.com/
http://sconsolidator.com/
http://sconsolidator.com/
http://linticator.com/
http://linticator.com/
http://includator.com/
http://includator.com/
http://ifs.hsr.ch
http://ifs.hsr.ch

Contact Info: Prof. Peter Sommerlad

phone: +41 55 222 4984

email: ifs@hsr.ch

SConsolidator

Eclipse CDT plug-in for SCons

SCons (http://www.SCons.org/) is an open source software build tool which tries to fix the

numerous weaknesses of make and its derivatives. For example, the missing automatic

dependency extraction, make’s complex syntax to describe build properties and cross-

platform issues when using shell commands and scripts. SCons is a self-contained tool

which is independent of existing platform utilities. Because it is based on Python a SCons

user has the full power of a programming language to deal with all build related issues.

However, maintaining a SCons-based C/C++ project with Eclipse CDT meant, that all the

intelligence SCons puts into your project dependencies had to be re-entered into Eclipse

CDT’s project settings, so that CDT’s indexer and parser would know your code’s compile

settings and enable many of CDT’s features. In addition, SCons’ intelligence comes at the

price of relatively long build startup times, when SCons (re-) analyzes the project

dependencies which can become annoying when you just fix a simple syntax error.

SConsolidator addresses these issues and provides tool integration for SCons in Eclipse

for a convenient C/C++ development experience. The free plug-in features:

• conversion of existing CDT managed build projects to SCons projects

• import of existing SCons projects into Eclipse with wizard support

• SCons projects can be managed either through CDT or SCons

• interactive mode to quickly build single source files speeding up round trip times

• a special view for a convenient build target management of all workspace projects

• graph visualization of build dependencies with numerous layout algorithms and search

and filter functionality that enables debugging SCons scripts.

• quick navigation from build errors to source code locations

More information:

http://SConsolidator.com

Install the free SConsolidator plug-in

from the following Eclipse update site:

http://SConsolidator.com/update

Also check out IFS’ other plug-ins at:

http://cute-test.com

http://mockator.com

http://linticator.com

http://includator.com

SConsolidator has been successfully

used to import the following SCons-

based projects into Eclipse CDT:

• MongoDB

• Blender

• FreeNOS

• Doom 3

• COAST (http://coast-project.org)

IFS INSTITUTE FOR SOFTWARE HSR Hochschule für Technik, Oberseestrasse 10, CH - 8640 Rapperswil! http://ifs.hsr.ch

!

!

!

Free

mailto:ifs@hsr.ch?subject=SConsolidator%20Information%20Flyer
mailto:ifs@hsr.ch?subject=SConsolidator%20Information%20Flyer
http://www.scons.org/
http://www.scons.org/
http://sconsolidator.com
http://sconsolidator.com
http://cute-test.com/
http://cute-test.com/
http://mockator.com
http://mockator.com
http://linticator.com/
http://linticator.com/
http://includator.com/
http://includator.com/
http://coast-project.org
http://coast-project.org
http://ifs.hsr.ch
http://ifs.hsr.ch

	Software Quality
	Part I - TDD with CUTE
	Part II - Getting legacy code under test with seams
	Part III - Mock objects
	Wrap-up

