T e—

Auto - a necessary evil?

Roger Orr
OR/2 Limited

ACCU 2013

S — — —— e mrr———

auto is new in C++11

* |t has been under discussion for a while, as
we shall see

« Some compilers added support for it early in
C++0x so it has had 'field testing’

auto Is re-purposed in C++11

- auto was a C++98 keyword

- Local objects explicitly declared auto or
register or not explicitly declared static or
extern have automatic storage duration.

- The storage for these objects lasts until the block in
which they are created exits.

auto int i; // explicit

int 1i; // implicit

History

What was the initial use case?
David Abrahams 26 Oct 2001 (ext-4278)

“the expression results in a very complic-
ated nested template type which is difficult
for a user to write down”. He suggested:

typeof (<expression>) x = <expression>;

(typeof became decltype in C++11)

could be replace with something like:

template <class T> T x = <expression>;

History

* In the subsequent discussion Andy Koenig
wrote:

“| would also like to see something like

auto x = <expression>;

| know we can't use auto, but you get the
idea.”

History

In the subsequent discussion Andy Koenig
wrote:

“| would also like to see something like

auto x = <expression>;

| know we can't use auto, but you get the
idea.”

But we did eventually use auto!

“Google Code Search finds less than 50
uses of auto in C++ code.”

History

First formal paper was N1478 (Apr 2003)

Emphasis on generic programming — the
draft proposal (ext-5364) begins:

“Proposal for "auto” and "typeof" to simplify
the writing of templates”

Contained another new keyword, fun,
which was replaced by overloading auto

(is auto the new static?)

and typeof turned into decltype

History

» What did we end up with?
» auto is repurposed and can be used as:

auto x = 5;
auto lambdal = [] (int 1){ return 1i,; };

new auto (1) ;

auto f()->int(*) [4];
template <class T, class U>
auto add(T t, U u) -> decltype(t + u);

History

auto Is a compile time construct — the type
Is baked in by the compiler
This is worth highlighting, especially for

those used to languages with dynamic
types

Reluctance to add special cases for auto

The general principle was to try and make
use of auto orthogonal to other choices:

so for example auto for function return
types is not restricted to templates

History

Once formally adopted into the working pa-
per auto became available for use -

www.aristeia.com/C++11/C++11FeatureAvailability.htm

Gcce 4.4 (formal release Apr '09)
MSVC 10 (formal release Apr '10)

(I've confirmed the earlier examples with
gcc 4.5 & 4.7 and MSVC 10 & 11)

http://www.aristeia.com/C++11/C++11FeatureAvailability.htm

e l—— — e o — —— e —

Interactions with other items

R-value references

Lambda

NSDMI (non-static data member initialisers)
Range-based for

And also related to decltype

Interactions with other items

» R-value references

auto varl = <expression>;
auto & var2 = <expression>;
auto && var3 = <expression>;

These are all valid (subject to constraints on
the actual expression)

» The last example may not do quite what you
expect ... more on this later

Interactions with other items

 Lambda

» This was one of the motivating cases for
auto - passing to a template is OK:

template <typename T> void invoke (T t);

invoke ([] (1nt 1){ return 1i; });

But what if you want a variable”?

<type> lambdal = [] (int 1){ return 1; };
int j = lambdal (7);

- What should replace <type> ?

= — — — = SEESS - S .

Interactions with other items

* NSDMI (non-static data member initialisers)

class x {
int 1 = 128;
double d = 2.71828;
b
» Could you use auto instead?
auto 1 = 128;
auto d = 2.71828;

» Short answer: no

N =

Interactions with other items

- Range-based for — can use this:

for (std::string x : container) {
}

 or this:
for (auto x : container) {

|

Interactions with other items

- Range-based for can also be

for (auto & X : container) {

* Or

for (auto const & x : container) {

}
- Note x is already const if the container is const

Interactions with other items

* You may or may not care that range-based
for is actually specified in terms of auto:

{

auto && range = range-inilt;
for (auto begin = begin-expr,
__end = end-expr;
__begin != end;
++ begin) {
for-range-declaration = * begin;
statement
}

Interactions with other items

The keyword decltype obtains the type of
an expression:

This is useful when you require the type in
places where auto does not work — for
example declaring a variable without an
initial value:

std: :vector<int> vec;

decltype (vec.cbegin()) 1ter;

There are subtle differences between the
two, which | will touch on later

Where must you use it

The basic principle behind auto is that the

compiler knows the type ... but you either
can't describe it or don't want to

Lambdas

“The type of the lambda-expression is a

unigue, unnamed nonunion class type —
called the closure type”

In this case you can't use

decltype (expression)

as the types of identical lambdas differ

Where must you use it

Side note:

A small number of types in the standard are
specified as unspecified so you cannot

name them portably.

auto gives you a way to create variables of
those types

This is almost never a genuine problem

Lambda example

- Lambdas are most often used as arguments
to other functions. However, if you want one
as a local variable:

int main ()

{
auto sum = [] (1nt x, 1nt v)
{ return x + vy; };

int 1(1);

int 3(2);

/] ...

std::cout << 1 << "+" << J << "="
<< sum (i, Jj) << std::endl;

____ — e S e e

Lambda example

» What is the type of the variable holding the
lambda?

* We may get some information by using
typeinfo: typeid (sum) .name ()

- MSVC:

class <lambda 8f4bf0680d354484748e55d11883b00a>
* gcCC.

Z4dmainEUli1E

(demangles t0 main::{lambda(int, int)#1})

____ — e S e e

Lambda example

There Is no choice here, we have to use the
compiler to name the type of the lambda
expression

However most people recommend you use
auto in (at least some of) the cases where

giving the name of type yourself is a valid
option

Where may you use it

What are the benefits and dangers of using
auto to replace a named type?

On the plus side:

Simplifies or removes complex declarations
Complies with the DRY principle

Code is (or may be...) easier to read

and easier to change

and smaller (apart from int)

Where may you use it

What are the benefits and dangers of using
auto to replace a named type?

On the plus side:

Simplifies or removes complex declarations
Complies with the DRY principle

Code is (or may be...) easier to read

and easier to change

and smaller (apart from int)

and, of course, so much cooler looking

Where may you use it

So why not use it everywhere?

On the minus side:

It may not express intent as clearly
Higher cognitive overhead

Conflicts with “program to interfaces”
Subtleties, especially over

const

& and &&
We'll look at some examples in a minute

Where can't you use it

You cannot use auto:

As the type of lambda arguments
To declare function arguments

To declare function return types without a
trailing-return-type declaration

To declare member data

(at least, not at present ... I'll mention some
future directions at the end of the talk)

Complex type example

* As | covered earlier declarations of complex
type were one of the motivations:

std::vector<std::set<int>> setcoll;

auto it = setcoll.cbegin();’

» This is shorter than the full type:

std::vector<std::set<int>>::const iterator

» Butis it better?

(* cbegin is another C++11 addition)

Complex type example

Many programmers were put off using the
STL because of the verbosity of the variable
declarations.

With C++03 one recommendation was to
use a typedef:
typedef std::vector<std::set<int>> collType;

collType::const iterator 1t ...

This is still valid in C++11, but having to pick
a type name adds to the cognitive overhead

Complex type example

Use of auto removes the scaffolding of the

type declaration but still leaves the type
safety as the variable is still strongly typed

So:

the code is quicker and easier to write
the purpose is not lost in the syntax
code generated is identical to explicit type

the variable automatically changes type if
the collection type changes

Complex type example

However the last point can be reworded

the variable autematically silently changes
type if the collection type changes

In order to know the actual type of the auto

you need to keep in mind the type of the col-
ection (and its const-ness)

However, you probably need to keep this in
mind anyway to correctly process the data

Complex type example

Also note that the code uses cbegin ():

auto 1t = setcoll.cbegin();

If we'd used begin () we might have got a
modifiable iterator. The C++03 code makes
it explicit by using the actual type name:

std::vector<std::set<int>>::const iterator it

The stress is slightly different and may

mean changing to your interface, as with the
addition of cbegin ()

DRY example

- auto allows you to specify the type name
once

std::shared ptr<std::string> str =

std::make shared<std::string>("Test");
- (1) We've repeated the std: :string

- (2) make shared exists solely to create
std: : shared ptr objects

* We can write it more simply as:

auto str = std::make shared<std::string>("Test");

DRY example

Using auto rather than repeating the type is
indicated most strongly when:

the type names are long or complex
the types are identical or closely related

auto Is less useful when:

the type name is simple - or important

The cognitive overhead on the reader of the
code is higher

DRY example

« So | think auto is less useful here:

// 1in some header
struct X {

int *mem var;
vold aMethod () ;
b s

// 1in a cpp file
volid X::aMethod () {
auto val = *mem var; // what type is val?

° YMMV — opinions differ here (also on
whether you are using an IDE with type info)

DRY example

*/

// in some header
—lstruct X {
int *mem_war;
vold aMethod();
B

// in a cpp file
Flwoid X::aMethod() {

{ autoc vil = *mem_var; // what type is wval?

Dependent return type example

» auto can simplify member function defini-
tions

class Example

{
public:
typedef 1int Result;

Result getResult();
bi

Example: :Result Example::getResult ()
{ return ...; }

_— ——— = e A

Dependent return type example

auto allows removal of the class name
from the return type

auto Example::getResult () —-> Result
{ return ...; }

Whether or not this makes the code clearer

depends on factors including:
familiarity

consistent use of this style
| personally still can't decide on this one

Polymorphism?

One problem with auto is the temptation to

code to the implementation rather than the
interface:

auto shape = make shared<ellipse> (2, 5);

shape->minor axis(3);

When the type of shape is the abstract base
class you can't make this mistake

(Aside: | think this is a bigger problem with
var in C# than with auto in C++)

Polymorphism?

auto is too “plastic” — it fits the exact type
that matches

Without auto the author needs to make a

decision about the most appropriate type to
use

This doesn't only affect polymorphism:
const, signed/unsigned integer types and

sizes are other possible pinch points

S — — —— e mrr———

What type is it?

 What does this do:

auto main() -> 1int {
auto 1 = '1"';
auto 7 = 1 * 'd’';

auto k = 3§ * 1001;
auto 1 = k * 100.;
' return 1:

}

- Easy to assume the auto types are all the
same — miss the promotion, the '1' or the .’

N —

What type is it?

» You can use the auto rules (on some com-
pilers) to tell you the type:

auto main () —-> int {
auto 1 = '1"';
auto j — i * 'd', x = HXH;

error: 1lnconsistent deduction for 'auto':

'int' and then 'const char*'

What type is it?

* You may also be able to get the compiler to
tell you the type by using template argument
deduction, for example:

template <typename T>
vold test () { T::dummy(); }

auto val = '1"';
test<decltype (val)>();

(11
=> see reference to function template instan-

7
tiation 'void test<char>(void)' being compiled

What type is it?

- The meaning of an auto variable declara-

tion follows the rules for template argument
deduction

auto val = '1";

» Consider the invented function template
template <typename T>

void £ (T t) {}

» the type of val is thatdeducedin £ ('1")

What type is it?

- auto differs from a naive use of decltype:

const 1int ci;
auto vall = c1i;
decltype(ci) valZ2 = ci;

- val2 is const int

» (Think about top level const)

__ ——— — e

What sort of reference?

 What's the difference?

auto 1 = <expr>
auto const cl = <expr>
auto & ri = <expr>
auto const & cri = <expr>
auto && rri = <expr>

« As above, auto uses the same rules as
template argument deduction

What sort of reference?

° Compare: template <typename T>

void f£ (T 1),

(
vold £ (T const cl) ;
(T & ri)
void £ (
(.

4

f
void £ ;

f(T const & cri);

i)

void T && rri

- It depends ... especially for the && case
(Scott Meyers “Universal Reference”)

T e—

What sort of reference?

» const Iinference (values)

int 1(0); int const ci(0);

auto vO = 0;
auto const vl = 0;
auto v2 = 1;
auto const v3 = 1;
auto vd = ci;

auto const vb

What sort of reference?

- const inference (values)

int 1(0); int const ci(0);

auto v = 0; // int

auto const vl = 0; // int const
auto v2 = 1i; // int

auto const v3 = i; // int const
auto vd = ci; // int (as earlier)

auto const vb

ci; // int const

What sort of reference?

» const inference (references)

int 1(0); int const ci(0);

auto & vO = 0;
auto const & vl = 0;
auto & v2 = 1;
auto const & v3 = 1;
auto & v4 = ci
auto const & v5 = c1

What sort of reference?

- const inference (references)

int 1(0);

int const ci(0);

A= S—0——0+ // error

auto const & vl = 0; // int const &

auto & v2 = 1; // int &

auto const & v3 = 1i; // int const &

auto & v4 = ci; // int const &

auto const & v5 = ci; // int const &
e ———————E =

What sort of reference?

» Reference collapsing

int 1(0); int const ci1(0);

auto && v0O = 0;
auto const && vl = 0;
auto && v2 = 1,
auto const && v3 = 1;
auto && v4d = ci;

auto const && vbH

What sort of reference?

» Reference collapsing

int 1(0); int const c1(0);

auto &§& vO = 0; //
auto const && vl = 0; //
auto &§& v2 = 1i; //
At = e
auto &§& v4 = ci; //
sre—eorst—Sr—vo——c++ //

int &&
int const &&
int &
error
int const &
error

- Note const disables reference collapsing

What sort of reference?

» This Is the complicated one:

auto && var = <expr>;

« Depending on <expr> var could be

- T &
- T & &

— T const &

- |s that all?

What sort of reference?

» This Is the complicated one:

auto && var = <expr>;

« Depending on <expr> var could be

- T &
- T & &

— T const &

- T const && (| didn't show that one)

What sort of reference?

* But it is a bit obscure ... (compiler is wrong here)

censt int x() { return 8; }

Jint main()

1

int i(@); int const ci(e@);

auto & ve = @8;
auto const &8 vl = @;
auto R v2 = 13
auto const && v3 = 1i;
auto R vd = i
auto const && w5 = ci;
auto B we = w();
B - 1e; int 880G
b
h -
|_|t e e e e e R e n st iRk i SR S S S e
v output from: Build e EEE|N
Tud gL wiiid gl Avalido LW gl o vwgiude 1 cic Cliee

wprojectsicpphtempivirtualqueryimpl.cpp(l64): error i 'vB' i you cannot assign to a variable that is const
VirtualQuery.cpp

Summary .cpp

Generating Code...

What sort of reference?

» Here's an example of deducing const &&

class T{};
const T x() { return T(); }
auto && var = x();

- var Is of type T const ss
- (non-class types, like int, decay to &&)

More dubious cases

« auto does not work well with initializer lists

int main () {
int varl{l};

auto var2{1l};

» You might expect varl and var2 to have
the same type.

- Sadly the C++ rule have introduced a new
'vexing parse' into the language

More dubious cases

« auto does not work well with initializer lists

int main () {
int varl{l};
auto var?2{1l};

auto pl = &varl, p2 = &var2z;

* Produces
error: 1nconsistent deduction for
'auto': 'int*' and then

'std::initializer list<int>*'

More dubious cases

Mix of signed/unsigned integers — or differ-
ent sizes — can cause problems with auto

In many cases the compiler generates a
warning, if you set the appropriate flag(s)

But not all

for (int 1 = v.size() - 1; 1 > 0; 1 -= 2)
{
process(v[i], v[1i-1]);

}
Change int to auto and the code breaks

Future directions

» Polymorphic lambda (N3559)

auto Identity = [] (auto a) { return a; };

» Generates a family of lambdas — much like
a template does.

* Identity (17) Instantiates the lambda for int
* TIdentity(3.14159) for double
» Agreed in principle

Future directions

- auto in function arguments

vold func (auto a);

» Generates an implicit function template

» Equivalent to something like this
template <typename T1>

void func(TI1 a);

» This may or may not get standardised

Future directions

 Auto function return type (N3582)

» Currently auto for function return type re-

quires a return type declaration, this pro-
posal allows for:

auto g () { return 'X'; } // implicit
struct A { auto f£(); }; // fwd declare

auto A::f() { return 42; }

Future directions

The implicit deduction is agreed in principle

ne paper includes an extension to allow
reference return types:

auto const & log() { return thelLogger; }

Future directions

auto for member variables

The difficulty is that the type of auto is only

known when the variable is initialised. This
occurs after the class has been parsed.

decltype can be used instead (as this can
be processed during the initial parse):

class X {

decltype (foo()) aFoo;

Conclusion

auto is a new tool in the C++ programmer's
arsenal.

Use of it can make code easier to write, to
understand and to maintain

However, over-use or careless use can res-
ult in code that is hard to follow or contains
subtle bugs

Know your tools!

