

Auto - a necessary evil?

Roger Orr
OR/2 Limited

ACCU 2013

auto is new in C++11

● It has been under discussion for a while, as
we shall see

● Some compilers added support for it early in
C++0x so it has had 'field testing'

auto is re-purposed in C++11

● auto was a C++98 keyword
– Local objects explicitly declared auto or

register or not explicitly declared static or
extern have automatic storage duration.

– The storage for these objects lasts until the block in
which they are created exits.

auto int i; // explicit
int i; // implicit

History

● What was the initial use case?
● David Abrahams 26 Oct 2001 (ext-4278)

“the expression results in a very complic-
ated nested template type which is difficult
for a user to write down”. He suggested:
typeof(<expression>) x = <expression>;
(typeof became decltype in C++11)

● could be replace with something like:
template <class T> T x = <expression>;

History

● In the subsequent discussion Andy Koenig
wrote:

“I would also like to see something like
auto x = <expression>;
I know we can't use auto, but you get the

idea.”

History

● In the subsequent discussion Andy Koenig
wrote:

“I would also like to see something like
auto x = <expression>;
I know we can't use auto, but you get the

idea.”
● But we did eventually use auto!

– “Google Code Search finds less than 50
uses of auto in C++ code.”

History

● First formal paper was N1478 (Apr 2003)
● Emphasis on generic programming – the

draft proposal (ext-5364) begins:
– “Proposal for "auto" and "typeof" to simplify

the writing of templates”
● Contained another new keyword, fun,

which was replaced by overloading auto
– (is auto the new static?)

● and typeof turned into decltype

History

● What did we end up with?
● auto is repurposed and can be used as:

– auto x = 5;
– auto lambda1 = [](int i){ return i; };
– new auto(1);

– auto f()->int(*)[4];
– template <class T, class U>
auto add(T t, U u) -> decltype(t + u);

History

● auto is a compile time construct – the type
is baked in by the compiler

– This is worth highlighting, especially for
those used to languages with dynamic
types

● Reluctance to add special cases for auto
– The general principle was to try and make

use of auto orthogonal to other choices:
so for example auto for function return
types is not restricted to templates

History

● Once formally adopted into the working pa-
per auto became available for use -

● www.aristeia.com/C++11/C++11FeatureAvailability.htm

– Gcc 4.4 (formal release Apr '09)
– MSVC 10 (formal release Apr '10)

● (I've confirmed the earlier examples with
gcc 4.5 & 4.7 and MSVC 10 & 11)

http://www.aristeia.com/C++11/C++11FeatureAvailability.htm

Interactions with other items

● R-value references
● Lambda
● NSDMI (non-static data member initialisers)
● Range-based for
● And also related to decltype

Interactions with other items

● R-value references
auto var1 = <expression>;
auto & var2 = <expression>;
auto && var3 = <expression>;

These are all valid (subject to constraints on
the actual expression)

● The last example may not do quite what you
expect … more on this later

Interactions with other items

● Lambda
● This was one of the motivating cases for
auto - passing to a template is OK:
template <typename T> void invoke(T t);
invoke([](int i){ return i; });
But what if you want a variable?
<type> lambda1 = [](int i){ return i; };
int j = lambda1(7);

● What should replace <type> ?

Interactions with other items

● NSDMI (non-static data member initialisers)
class x {
 int i = 128;
 double d = 2.71828;
};

● Could you use auto instead?
 auto i = 128;
 auto d = 2.71828;

● Short answer: no

Interactions with other items

● Range-based for – can use this:
for (std::string x : container) {
 ...
}

● or this:
for (auto x : container) {
 ...
}

Interactions with other items

● Range-based for can also be
for (auto & x : container) {
 ...
}

● Or
for (auto const & x : container) {
 ...
}

– Note x is already const if the container is const

Interactions with other items

● You may or may not care that range-based
for is actually specified in terms of auto:

{
 auto && __range = range-init;
 for (auto __begin = begin-expr,
 __end = end-expr;
 __begin != __end;
 ++__begin) {
 for-range-declaration = *__begin;
 statement
 }
}

Interactions with other items

● The keyword decltype obtains the type of
an expression:

– This is useful when you require the type in
places where auto does not work – for
example declaring a variable without an
initial value:

std::vector<int> vec;
decltype(vec.cbegin()) iter;

● There are subtle differences between the
two, which I will touch on later

Where must you use it

● The basic principle behind auto is that the
compiler knows the type … but you either
can't describe it or don't want to

● Lambdas
– “The type of the lambda-expression is a

unique, unnamed nonunion class type —
called the closure type”

● In this case you can't use
 decltype(expression)
as the types of identical lambdas differ

Where must you use it

● Side note:
● A small number of types in the standard are

specified as unspecified so you cannot
name them portably.

● auto gives you a way to create variables of
those types

● This is almost never a genuine problem

Lambda example

● Lambdas are most often used as arguments
to other functions. However, if you want one
as a local variable:

int main()
{
 auto sum = [] (int x, int y)
 { return x + y; };

 int i(1);
 int j(2);
 // ...
 std::cout << i << "+" << j << "="
 << sum(i, j) << std::endl;
}

Lambda example

● What is the type of the variable holding the
lambda?

● We may get some information by using
typeinfo: typeid(sum).name()

● MSVC:
 class <lambda_8f4bf0680d354484748e55d11883b00a>

● gcc:
 Z4mainEUliiE_
(demangles to main::{lambda(int, int)#1})

● There is no choice here, we have to use the
compiler to name the type of the lambda
expression

● However most people recommend you use
auto in (at least some of) the cases where
giving the name of type yourself is a valid
option

Lambda example

Where may you use it

● What are the benefits and dangers of using
auto to replace a named type?

● On the plus side:
– Simplifies or removes complex declarations
– Complies with the DRY principle
– Code is (or may be...) easier to read
– and easier to change
– and smaller (apart from int)

Where may you use it

● What are the benefits and dangers of using
auto to replace a named type?

● On the plus side:
– Simplifies or removes complex declarations
– Complies with the DRY principle
– Code is (or may be...) easier to read
– and easier to change
– and smaller (apart from int)
– and, of course, so much cooler looking

Where may you use it

● So why not use it everywhere?
● On the minus side:

– It may not express intent as clearly
– Higher cognitive overhead
– Conflicts with “program to interfaces”
– Subtleties, especially over

● const
● & and &&

● We'll look at some examples in a minute

Where can't you use it

● You cannot use auto:
– As the type of lambda arguments
– To declare function arguments
– To declare function return types without a

trailing-return-type declaration
– To declare member data

● (at least, not at present ... I'll mention some
future directions at the end of the talk)

Complex type example

● As I covered earlier declarations of complex
type were one of the motivations:
std::vector<std::set<int>> setcoll;
auto it = setcoll.cbegin();*

● This is shorter than the full type:
std::vector<std::set<int>>::const_iterator

● But is it better?

 (* cbegin is another C++11 addition)

Complex type example

● Many programmers were put off using the
STL because of the verbosity of the variable
declarations.

● With C++03 one recommendation was to
use a typedef:
typedef std::vector<std::set<int>> collType;
collType::const_iterator it …

● This is still valid in C++11, but having to pick
a type name adds to the cognitive overhead

Complex type example

● Use of auto removes the scaffolding of the
type declaration but still leaves the type
safety as the variable is still strongly typed

● So:
– the code is quicker and easier to write
– the purpose is not lost in the syntax
– code generated is identical to explicit type
– the variable automatically changes type if

the collection type changes

Complex type example

● However the last point can be reworded
– the variable automatically silently changes

type if the collection type changes
● In order to know the actual type of the auto

you need to keep in mind the type of the col-
lection (and its const-ness)

● However, you probably need to keep this in
mind anyway to correctly process the data

Complex type example

● Also note that the code uses cbegin():
auto it = setcoll.cbegin();

● If we'd used begin() we might have got a
modifiable iterator. The C++03 code makes
it explicit by using the actual type name:
std::vector<std::set<int>>::const_iterator it

● The stress is slightly different and may
mean changing to your interface, as with the
addition of cbegin()

DRY example

● auto allows you to specify the type name
once
std::shared_ptr<std::string> str =
 std::make_shared<std::string>("Test");

– (1) We've repeated the std::string
– (2) make_shared exists solely to create

std::shared_ptr objects
● We can write it more simply as:

auto str = std::make_shared<std::string>("Test");

DRY example

● Using auto rather than repeating the type is
indicated most strongly when:

– the type names are long or complex
– the types are identical or closely related

● auto is less useful when:
– the type name is simple - or important
– The cognitive overhead on the reader of the

code is higher

DRY example

● So I think auto is less useful here:
// in some header
struct X {
 int *mem_var;
 void aMethod();
};

// in a cpp file
void X::aMethod() {
 auto val = *mem_var; // what type is val?
 ...

● YMMV – opinions differ here (also on
whether you are using an IDE with type info)

DRY example

Dependent return type example

● auto can simplify member function defini-
tions
class Example
{
public:
 typedef int Result;

 Result getResult();
};

Example::Result Example::getResult()
{ return ...; }

Dependent return type example

● auto allows removal of the class name
from the return type
auto Example::getResult() -> Result
{ return ...; }

● Whether or not this makes the code clearer
depends on factors including:

– familiarity
– consistent use of this style

● I personally still can't decide on this one

Polymorphism?

● One problem with auto is the temptation to
code to the implementation rather than the
interface:
auto shape = make_shared<ellipse>(2, 5);
shape->minor_axis(3);

● When the type of shape is the abstract base
class you can't make this mistake

● (Aside: I think this is a bigger problem with
var in C# than with auto in C++)

Polymorphism?

● auto is too “plastic” – it fits the exact type
that matches

● Without auto the author needs to make a
decision about the most appropriate type to
use

● This doesn't only affect polymorphism:
const, signed/unsigned integer types and
sizes are other possible pinch points

What type is it?

● What does this do:
auto main() -> int {
 auto i = '1';
 auto j = i * 'd';
 auto k = j * 100l;
 auto l = k * 100.;
 return l;
}

● Easy to assume the auto types are all the
same – miss the promotion, the 'l' or the '.'

What type is it?

● You can use the auto rules (on some com-
pilers) to tell you the type:
auto main() -> int {
 auto i = '1';
 auto j = i * 'd', x = "x";
 ...

 error: inconsistent deduction for 'auto':
 'int' and then 'const char*'

What type is it?

● You may also be able to get the compiler to
tell you the type by using template argument
deduction, for example:
 template <typename T>
 void test() { T::dummy(); }
 auto val = '1';
 test<decltype(val)>();
=> “see reference to function template instan-
tiation 'void test<char>(void)' being compiled”

What type is it?

● The meaning of an auto variable declara-
tion follows the rules for template argument
deduction
 auto val = '1';

● Consider the invented function template
 template <typename T>
 void f(T t) {}

● the type of val is that deduced in f('1')

What type is it?

● auto differs from a naïve use of decltype:
 const int ci;
 auto val1 = ci;
 decltype(ci) val2 = ci;

● val1 is int
● val2 is const int
● (Think about top level const)

What sort of reference?

● What's the difference?
 auto i = <expr>
 auto const ci = <expr>
 auto & ri = <expr>
 auto const & cri = <expr>
 auto && rri = <expr>

● As above, auto uses the same rules as
template argument deduction

What sort of reference?

● Compare: template <typename T>
 void f(T i);
 void f(T const ci);
 void f(T & ri);
 void f(T const & cri);
 void f(T && rri);

● It depends ... especially for the && case
(Scott Meyers “Universal Reference”)

What sort of reference?

● const inference (values)
 int i(0); int const ci(0);

 auto v0 = 0;
 auto const v1 = 0;
 auto v2 = i;
 auto const v3 = i;
 auto v4 = ci;
 auto const v5 = ci;

What sort of reference?

● const inference (values)
 int i(0); int const ci(0);

 auto v0 = 0; // int
 auto const v1 = 0; // int const
 auto v2 = i; // int
 auto const v3 = i; // int const
 auto v4 = ci; // int (as earlier)
 auto const v5 = ci; // int const

What sort of reference?

● const inference (references)
 int i(0); int const ci(0);

 auto & v0 = 0;
 auto const & v1 = 0;
 auto & v2 = i;
 auto const & v3 = i;
 auto & v4 = ci
 auto const & v5 = ci

What sort of reference?

● const inference (references)
 int i(0); int const ci(0);

 auto & v0 = 0; // error
 auto const & v1 = 0; // int const &
 auto & v2 = i; // int &
 auto const & v3 = i; // int const &
 auto & v4 = ci; // int const &
 auto const & v5 = ci; // int const &

What sort of reference?

● Reference collapsing
 int i(0); int const ci(0);

 auto && v0 = 0;
 auto const && v1 = 0;
 auto && v2 = i;
 auto const && v3 = i;
 auto && v4 = ci;
 auto const && v5 = ci;

What sort of reference?

● Reference collapsing
 int i(0); int const ci(0);

 auto && v0 = 0; // int &&
 auto const && v1 = 0; // int const &&
 auto && v2 = i; // int &
 auto const && v3 = i; // error
 auto && v4 = ci; // int const &
 auto const && v5 = ci; // error

– Note const disables reference collapsing

What sort of reference?

● This is the complicated one:
 auto && var = <expr>;

● Depending on <expr> var could be
– T &
– T &&
– T const &
– Is that all?

What sort of reference?

● This is the complicated one:
 auto && var = <expr>;

● Depending on <expr> var could be
– T &
– T &&
– T const &
– T const && (I didn't show that one)

What sort of reference?

● But it is a bit obscure … (compiler is wrong here)

What sort of reference?

● Here's an example of deducing const &&
class T{};
const T x() { return T(); }

auto && var = x();
– var is of type T const &&
– (non-class types, like int, decay to &&)

More dubious cases

● auto does not work well with initializer lists
int main() {
 int var1{1};
 auto var2{1};

● You might expect var1 and var2 to have
the same type.

● Sadly the C++ rule have introduced a new
'vexing parse' into the language

More dubious cases

● auto does not work well with initializer lists
int main() {
 int var1{1};
 auto var2{1};
 auto p1 = &var1, p2 = &var2;

● Produces
 error: inconsistent deduction for
 'auto': 'int*' and then
 'std::initializer_list<int>*'

More dubious cases

● Mix of signed/unsigned integers – or differ-
ent sizes – can cause problems with auto

● In many cases the compiler generates a
warning, if you set the appropriate flag(s)

● But not all
for (int i = v.size() - 1; i > 0; i -= 2)
{
 process(v[i], v[i-1]);
}

● Change int to auto and the code breaks

Future directions

● Polymorphic lambda (N3559)
auto Identity = [](auto a) { return a; };

● Generates a family of lambdas – much like
a template does.

● Identity(17) instantiates the lambda for int
● Identity(3.14159) for double
● Agreed in principle

Future directions

● auto in function arguments
void func(auto a);

● Generates an implicit function template
● Equivalent to something like this
template <typename __T1>
void func(__T1 a);

● This may or may not get standardised

Future directions

● Auto function return type (N3582)
● Currently auto for function return type re-

quires a return type declaration, this pro-
posal allows for:
auto g() { return 'X'; } // implicit
struct A { auto f(); }; // fwd declare
…
auto A::f() { return 42; }

Future directions

● The implicit deduction is agreed in principle
● The paper includes an extension to allow

reference return types:
auto const & log() { return theLogger; }

Future directions

● auto for member variables
● The difficulty is that the type of auto is only

known when the variable is initialised. This
occurs after the class has been parsed.

● decltype can be used instead (as this can
be processed during the initial parse):
class X {
 decltype(foo()) aFoo;
};

Conclusion

● auto is a new tool in the C++ programmer's
arsenal.

● Use of it can make code easier to write, to
understand and to maintain

● However, over-use or careless use can res-
ult in code that is hard to follow or contains
subtle bugs

● Know your tools!

