
Cleaning
code
Techniques for

Large Legacy Restoration Projects
~~---~~

Mike Long

What’s in this for you?

• Gain an understanding of the value of legacy

• Learn how to make the business case for
remedial work in large software projects

• Know the tools necessary to be able to
quantify and visualize technical debt in big
projects

• How to manage large legacy restoration
projects

Legacy

Code I have known

Mini-Legacy

Code I have known

Greenfield Heaven

Code I have known

Legacy
saltmines

COBOL
Rube

Goldberg
~ or ~

What is a
Legacy

Restoration
Project?

What is a Legacy restoration project?

“A legacy system is an old method, technology,
computer system, or application program.”
Wikipedia

What is a Legacy restoration project?

“To me, legacy code is simply code without
tests”
Michael Feathers

http://www.flickr.com/photos/fraserspeirs/3394782283/

http://www.flickr.com/photos/fraserspeirs/3394782283/

What is a Legacy restoration project?

“Some crap made by someone else”
Developers, Developers, Developers

Large: Software at scale is a different
beast

• > 1MLoC

• > 10 years old

• > 100 developers

• => Large Legacy Project

What is a Legacy restoration project?

• Business commitment

• Large, long lived codebase

• Valuable codebase

• Step change in quality

• Specific targets

• Time-limited

h
tt

p
:/

/w
w

w
.f

lic
kr

.c
o

m
/p

h
o

to
s/

er
ig

in
al

/2
9

0
8

0
8

2
2

7
/

http://www.flickr.com/photos/eriginal/290808227/

How does a codebase become a big
mess?

• Explosive growth – big bang development

• Sustained schedule pressure

• No quality requirements

• High staff turnover

• Success

How Why does a codebase become a
big mess?

• Feature driven development plans

• Stakeholders don’t know software

• Developers don’t know software

• Quality is tested-in, not built-in

• Under-empowered technical leaders

What to do when things get bad

“organizations which design systems … are
constrained to produce designs which are
copies of the communication structures of

these organizations.”

“This point of view has produced
the observation that there's never

enough time to do something right,
but there's always enough time to

do it over”

Rewrite trap #1: re-implementing
existing features == commercial

suicide
• Netscape

• Borland

• Microsoft

Rewrite trap #2: The 2nd System Effect

“This second is the most
dangerous system a man ever
designs…The result, as Ovid
says, is a “big pile.”

Too big to fail?

Should we declare bankruptcy?

For a re-write to be worth it:
• We really have “enough time to do it over”

– Money is no object, re-implementation of existing features

• We use incremental value delivery to stave off the second
systems effect
– mature and disciplined team

• We can mitigate the knowledge loss
– small and simple system, and the same team as initial

implementation

• And the existing platform is facing obsolescence

For all other cases, rewrite is commercial suicide

Tools and techniques

Identify & remove waste

The Carrying Cost of Code

Carrying Costs

• Large projects take time to build

• Defect tracking systems

• Communication costs

• Knowledge costs

How much of your code is dead?

• Callcatcher

• Listen to your linker

– [Obsolete]

– __declspec(deprecated(“**TESTING DEAD**”))

Duplicate code

Tests are inventory

• Tests are inventory, whether scripts, unit tests,
or gui tests

• Long term failing tests

– Delete them or fix them,

– then automate this process

• Flicker tests

There are no fixed costs

• Exploit the huge opportunities for waste
reduction in large legacy

– If you have a big development population, any
waste reduction is a huge boost to productivity

– Think build times, feedback delays, broken builds,
testing cycles, installation times

• But baseline and monitor it!

• Measure it in business terms ($$$)

Sharp tools

• Look for waste introducing systems

– Legacy Version control systems

– Legacy Defect tracking

• Introduce productivity enhancing tools

– Continuous Integration

– Automation

Automate the donkey work

• Builds
• Dev Setup
• Deployment
• Testing
• Support

Churn

• What is changing?

• What is not changing?

– The active set of classes

• Drive your decisions on where to put your
effort

Static Analysis

• The compiler is the first port of call

– -wall or /warn:4

• I have had very good experiences with
coverity and cppcheck, YMMV

• Resource leak detection and memory
corruption detection

Visualization

Visualization

What can you visualize with this?

• Complexity

• Defects

• Static analysis results

• Churn

• Understanding

• Maintainability

“Up and to the right”

• Trends are important

• Only trend metrics that
will change (no-one is
motivated by code
coverage going from
2.066 to 2.067%)

• Put the goal or next
milestone in the trend

• Treemaps can also show
trends

Making the business case

“We need to fix this” [Citation Needed]

Quantify, visualize, communicate

• Quantify:

– Communicate in terms of measured business costs
and business benefits

• Visualize:

– A picture is worth a thousand bug reports

• Communicate:

– blah, blah, consultant, blah

Metrics

• Hard:

– Complexity

– coverage

– test cases

– churn, turmoil,
changeset frequency

– static analysis, dead
code, duplicate code,
warnings,

– Defects (escaped)

• Soft:

– Feature implementation
time

– Customer satisfaction

– Employee satisfaction

Avoiding metricide

Hard conversations

• “We’re going slow now, but to go faster we
need to slow down”

• “As we improve the codebase we will
introduce regressions in seemingly random
ways”

• “Throwing money at the problem is not going
to significantly move the needle on quality”

How much effort to spend on Quality?

• Hint: you don’t get to decide

• You are going to have to sacrifice feature
development

• in exchange you must promise more frequent
release quality increments

Managing Legacy Restoration

Legacy Restoration is Culture
Change

• Change can’t happen without new values

• New values must be driven by new culture

• Identifying waste requires new perspective

• From Complaining to Fixing

Phases to change

1. Establish a sense of urgency
2. Create a guiding coalition
3. Develop a vision for the

change
4. Communicate the vision for

buy-in
5. Empower broad-based action
6. Generate short-term wins
7. Never let up
8. Incorporate changes into the

culture

Quality by Being Careful

• Defects come from incomplete communication,
not only mistakes

• The need for carefulness is fear in disguise

• Fear of changing code leads to localized bug fixes

Write clean and understandable code

Peer review

Different levels of specification and testing

Improve both trust and quality

• Without trust you can’t

– get the sponsorship to invest in internal quality

– have the developers believe in a better future

• Trust comes with transparency

Lottery Factor

Not my stuff

• Large long-lived codebases rarely have many
of the original developers around

• This makes the current developers code
archeologists

• Ownership comes before collective ownership

• Engineers are historians

Engineers as historians

• The larger a codebase is, the more of it will be
completely unknown to the development team,
especially if the project went through a period of
explosive growth.

• Developers are more likely to re-implement
functionality that already exists

• There will be a lot of cargo cult programming. Existing
patterns in the codebase will be copied without
knowing the true reasons behind doing so. This is
dangerous because even the bad practices and leaky
abstractions will be followed and cemented

Knowledge and Skills

• Knowledge sharing

• Lottery factor

• Skills matrix

• Code understanding

• Pair programming

• Code reviews

• Learning culture

Where to start: churn + roadmap

• Combine what is changing with your new
development roadmap

– Things that don’t change:

• don’t have bugs

• are not slowing down feature development

• are probably rarely read

– Compare new feature only development with
refactoring + new development

• improving areas of high churn will h

Is it really worth it?

• In making the case for remedial work, you
need to justify the cost – it might really be
cheaper for the company to have crappy code.

• If this is the case, you might want to look
elsewhere for work. There are no happy
endings here

• The good news is that this situation is highly
unlikely

Resources

Change should be managed

• Direction
– Look for the bright spots,

think in terms of specific
behaviors, be specific in
goals

• Motivation
– Make people feel the need

for change, make it small,
cultivate a growth mindset

• Environment
– Change the situation, build

habits, and rally the herd

• How to get legacy code
under automated test

• How to break
dependencies

• Strategies for dealing
with common anti-
patterns

• Detailed explanations of
70 refactorings together
with the mechanics of
how to apply them
safely

• A structured technique
for avoiding the weeds
when performing deep
refactoring

1

LibreO ffice: the story of
cleaning and re-factoring
a giant code-base

M ichael M eeks <m ichael.m eeks@ suse.com >

m m eeks,#libreoffice-dev, irc.freenode.net

“S tand at the crossroads and look; ask for the
ancient paths, ask w here the good w ay is, and w alk

in it, and you w ill find rest for your souls...” -
Jerem iah 6:16

Conclusions

Conclusions

• Prevention is better than cure

• Legacy software is valuable software

• There is always a business case for restoration

– You just need to prove it

• Restoration is culture change

Too big to fail?

Questions?

